
The Sync-Up Process to Improve the

Multiple Stakeholder Communication

of Requirements Analysis in Embedded

Medical Software Development

Surafel Demissie

Supervised by:

Dr Frank Keenan

Prof Fergal McCaffery

A thesis submitted in fulfilment of the requirements for the degree of

Master of Science to the

Dundalk Institute of Technology

School of Informatics and Creative Arts

September 28, 2021

Declaration

We, the undersigned declare that this thesis entitled The Sync-Up Process to Improve

the Multiple Stakeholder Communication of Requirements Analysis in Embedded Medical

Software Development is entirely the author’s own work and has not been taken from the

work of others, except as cited and acknowledged within the text.

The thesis has been prepared according to the regulations of Dundalk Institute of

Technology and has not been submitted in whole or in part for an award in this or any

other institution.

Author:

Signature

Date

Supervisor:

Signature

Date

i

Acknowledgements

Firstly I would thank my beloved wife Fikirte who was always by my side and supporting

me during the challenging time of my study. I would also like to thank my family specially

my mother Meseret for her love and support throughout my life.

I would also like to thank my supervisory team, first and foremost, Dr Frank Keenan

for his excellent supervision and continued patience with me throughout the duration of

this project. Also, Prof Fergal McCaffery, who gave me the chance to be part of the

RSRC research team and whose own work continued to inspire me.

I would like to thank the companies who participated in this research. A special

thanks goes to Dermot Barron for his support at every stage of this research, particularly

in the implementation of the Sync-Up process.

Finally, to all my colleagues and friends, thank you for your encouragement and

support.

ii

Contents

Declaration i

Acknowledgements ii

List of Figures ix

List of Tables xi

Publications xiii

Abstract 1

1 Introduction 2

1.1 A Development Process for Embedded Systems 4

1.2 Agile in Embedded Medical & Safety-Critical 5

1.3 Research Questions and Objectives . 6

1.4 Document Outline . 9

2 Research Background 10

iii

2.1 Embedded Systems . 10

2.1.1 Components of Embedded Systems 12

2.1.2 Roles In Embedded System Development 14

2.2 Embedded System Design Process and Challenges 16

2.2.1 Embedded System Design Process 16

2.2.2 Challenges for Embedded System Development 18

2.3 Industrial Investigation . 20

2.3.1 Interview with Company A . 21

2.3.2 Interview with Company B . 24

2.3.3 Summary of Industrial Investigation 27

2.4 Agile Software Development . 28

2.4.1 Agile Values and Principles . 28

2.4.2 Agile Methods and Practices . 29

2.4.3 eXtreme Programming (XP) . 30

2.4.4 Scrum . 33

2.5 Agile in Embedded safety-critical . 36

2.5.1 Systematic Review . 36

2.5.2 Planning the Review . 37

2.5.3 Conducting the Review . 39

2.5.4 Reporting the Review (Dissemination) 42

2.5.5 Addressing the Research Questions 43

2.5.6 Summary of the SR . 55

2.5.7 Suitable Agile Practices . 56

2.6 Conclusion of Research Background . 66

2.6.1 Research Questions and Objectives Revisited 67

3 Research Setting 68

3.1 Research Methodology . 68

3.1.1 The Research Onion . 68

3.1.2 Research Philosophy . 69

3.1.3 Research Approach . 69

3.1.4 Research Strategies, Choices and Time horizons 70

3.2 Case Study Research . 72

3.2.1 Case Study Design and Planning 73

3.2.2 Define data collection procedures and protocols for data collection 74

3.2.3 Collecting Evidence . 75

3.2.4 Analysis of collected data . 75

3.2.5 Reporting . 76

3.2.6 Summary of Selected Strategy . 76

4 Proposed Solution 78

4.1 High-Level View of the Proposed Process 79

4.1.1 Detailed Steps of the Proposed Process 81

4.2 Walk-through of Proposed Process . 86

4.2.1 Summary of the Walk-through . 94

4.3 Conclusion of Proposed Solution . 96

5 Expert Review 97

5.1 Expert Selection . 97

5.2 Review Process . 100

5.2.1 Challenges and Experience . 101

5.2.2 Comments on a Process . 105

5.3 Improvement . 109

5.3.1 Improvement 1 . 109

5.3.2 Improvement 2 . 111

5.4 Conclusion of Expert Review . 111

6 Implementation 113

6.1 Exploratory Case Study . 114

6.1.1 Feedback from Teams . 115

6.1.2 Exploratory Case Study Conclusion 117

6.2 Confirmatory Case Study . 118

6.2.1 Company’s pre-implementation Process 118

6.2.2 Implementation . 119

6.3 Conclusion of Implementation . 124

6.3.1 Research Questions Revisited . 124

7 Summary and Conclusion 126

7.1 Summary and Conclusion . 126

7.1.1 Research Contribution . 128

7.2 Research Limitations and Future Work 130

A Industrial Interview Questions 132

B Protocol for a Systematic Reviews (SR) 134

C Selected Studies From SR 138

D Case Study Protocol (CSP) 144

E Expert Evaluation Consent 146

F Expert Review Questions 147

F.1 Section 1 . 147

F.2 Section 2 . 148

G Case Study Interview Questions 150

Bibliography 152

List of Figures

1.1 Research Approach Overview . 8

2.1 Generic Embedded System defined by Barr (1999) 12

2.2 Roles in Embedded Software Development 14

2.3 Embedded System Design Life cycle Berger (2002), Ernst (1998) 16

2.4 The Life cycle of the XP process (Abrahamsson et al. (2017)) 32

2.5 Scrum Framework adapted from Sutherland and Schwaber (2014) 35

2.6 The SR Process(Kitchenham and Charters (2007)) 37

2.7 Screening Results . 40

2.8 Role-Feature-Reason . 59

2.9 Given-When-Then Format . 60

2.10 ATDD Cycle (adapted from Hendrickson (2008) 61

3.1 The Research ‘Onion’ Saunders et al. (2009) 69

3.2 Case Study Research Design (adapted from Yin and Robert (2009) . . . 73

ix

4.1 High-Level View of Sync-Up Process . 79

4.2 Proposed Process . 82

4.3 Smart Temperature and Humidity Control 87

4.4 Connect with Device User Story . 88

4.5 Read Current Temperature User Story 88

4.6 Calculate Average Temperature User Story 88

4.7 Fit Table for Read Temperature AT Case 93

4.8 Passing Test Case . 95

4.9 Failing Test Case . 95

5.1 Initial Version of Proposed Process . 109

6.1 Pre-Implementation Process Flow of Company A 121

List of Tables

2.1 First and Second Version XP Practices 33

2.2 Scrum Activities and Roles Involved . 35

2.3 Digital Libraries Selected . 38

2.4 Empirical Study Type Adapted from Tonella et al. (2007) 41

2.5 Studies in Category . 42

2.6 Challenges in the Studies . 51

2.7 Agile Practices Identifies . 54

2.8 Agile Methods Combination . 55

2.9 PP Variations . 66

3.1 Summary of Selected Research Instruments 77

4.1 Read Temperature Acceptance Test . 90

4.2 Calculate Average AT Case . 90

4.3 Modified AT Case with New Entries . 92

xi

5.1 Factors of Communication Challenges and Effects on the Projects 105

6.1 Sample User Stories Developed . 120

6.2 Sample Acceptance Tests Developed . 120

B.1 Digital Libraries . 135

B.2 Data Extraction Template . 136

D.1 Case Study Protocol According to Pervan and Maimbo (2005) 144

Publications

1. The Sync-Up Process to Assist Multiple Stakeholder Communication of

Requirement Analysis in Embedded Medical Software Development – ICICT 2021.

The paper presented the result of the case studies conducted to evaluate the

proposed process.

2. Improving Multi-domain Stakeholder Communication of Embedded Safety-critical

Development using Agile Practices: Expert Review. In Proceedings of the 8th

International Conference on Model-Driven Engineering and Software Development

– MODELSWARD 2020. This paper presented the result of the expert review

conducted to evaluate the proposed process.

3. Agile Usage in Embedded Software Development in Safety Critical Domain–A

Systematic Review, International Conference on Software Process Improvement

and Capability Determination - SPICE 2018. This paper presented the result of

the systematic review that was conducted to investigate the challenges related to

agile usage in embedded safety critical domains.

4. Supporting Embedded Medical Software Development with MDevSPICE R© and

Agile Practices, International Journal of Computer, Electrical, Automation, Control

and Information Engineering - ICCSE 2017.

5. Investigating the Suitability of Using Agile for Medical Embedded Software

Development, International Conference on Software Process Improvement and

Capability Determination - SPICE 2016.

xiii

Abstract

The development of embedded medical software is different from ordinary software

development as it needs to be coordinated with the hardware development. A typical

embedded system project involves multiple stakeholders such as the business unit,

software developers, hardware engineers and firmware developers. Agile methods have

been successfully adopted in generic software engineering, and more recently in embedded

medical software development.

In this research, a systematic review has been performed to identify the challenges of

embedded medical and safety-critical software development domains. From the challenges

identified, this research focuses on the challenge of multiple stakeholder communication in

embedded medical software development. Additionally, agile practices which have been

successfully adopted in the embedded safety-critical domains have been investigated.

This thesis describes the development and evaluation of a process (Sync-Up) to improve

multiple stakeholder communication for embedded medical software development during

requirement analysis.

Through this research, the following contribution to knowledge has been made in the

area of embedded medical domain. The development of the Sync-Up process to assist

multiple stakeholder communication of embedded medical software development. The

Sync-Up process is evaluated through both expert review by leading experts, and a case

study conducted in an embedded company. Findings from the evaluations undertaken

show a positive outcome during the requirement analysis phase of the Sync-Up process.

1

Chapter 1

Introduction

Introduction

An embedded system is a special purpose computer that is designed to perform a specific

task with software stored on a chip that is referred to as firmware Kamal (2011). Today

such systems are everywhere in our day-to-day life from household items such as a digital

camera, refrigerator and TVs, to complex and critical devices like pacemakers and smart

grid control units Vahid and Givargis (2000).

A typical embedded system consists of hardware and software. The hardware

includes a microprocessor or microcontroller, memory, input-output (I/O) and additional

components such as sensors and actuators which enable interaction with the environment.

The embedded software is application-specific as it is dedicated to perform pre-designed

specific tasks repeatedly, thereby controlling the functionality of the hardware device.

Functions in such software are generally activated by external controls or remote input

of data. Successful development here requires hardware devices to be available. Another

characteristic is the necessity for real-time responses. Also, limited memory and power

resources need to be considered.

Because the users of the embedded system do not need to intervene in the operation,

2

except for the simple reset operation, once the embedded software is loaded into the

system, the software is “expected to run for a very long time by itself without any changes

to the software” Qian et al. (2009). It is expected that such software has been developed

and integrated with the hardware correctly.

The complexity and growth rate of embedded software has been increasing over

the past number of decades. As more functionality is added onto systems devices

are becoming increasingly sophisticated and interconnected making embedded software

development more challenging Zhang et al. (2014). A study by Teich (2012) states that

today a single vehicle can contain more than 100 million lines of code. “The complexity of

many modern embedded systems is at the level of distributed communicating electronic

devices such as electronic control units (ECUs)”. In a single car, as many as 70-90

ECUs communicate with one another to provide special services such as stability control,

antilock braking, or entertainment functions.

A key area in this sector is embedded medical software. Such software can be

as simple as software running under a digital thermometer that has display, reset or

switching operations or a complex software running under an implantable device such as

a pacemaker or Magnetic Resonance Imaging (MRI). According to recent reports, the

medical device market is expected to grow over the next five years with sales figures

expected to expand from 470.5bn USD in 2018 to 640.9bn USD in 2023 BCC (2018).

Reflecting the critically of such devices, the embedded medical software development

process is under the regulation of various international standards Hrgarek (2012).

Based on their geographical location, medical device companies must follow the

required international standards and guidance documents before marketing their products

Munzner (2003). As such, they are obliged to conform to regulations outlined by

Medical Devices Regulation (MDR) in Europe or Food and Drug Administration (FDA)

in the US. In the EU for example, medical companies must have CE mark on their

products to show that they have passed the conformity assessment (British Standards

Institution-BSI). Audits will be performed by the regulatory body of the specific country.

3

Such an audit process includes satisfying the following standards: medical device quality

management standard (EN ISO 13485:2016), medical device risk management (EN ISO

14971:2019) and medical device product level standard IEC 60601-1 (2005). Although

beneficial, demonstrating conformance to such standards brings additional challenges to

the embedded software development process.

In order to deal with the complex regulation process in an organised and structured

manner, medical companies have been implementing traditional software development

process models such as Waterfall Royce (1970) or V-Model Forsberg and Mooz (1991).

Given the plan-driven nature of such models, with clearly defined milestones and

associated artefacts, regulations and audits are easily facilitated at each checkpoint.

However, such models are reported to be risky, and their implementation invites failure

Royce (1970) Munassar and Govardhan (2010). For example, if requirements change

during the development phase, the amount of rework is costly. Another key factor

is the limited customer involvement which may result in miscommunication between

development team and customers. Additionally, in these models, the implementation

comes late in the process. This will make the expected results invisible for a long time

with “no early prototypes” which can be “disconcerting to management and customers”

Munassar and Govardhan (2010).

1.1 A Development Process for Embedded Systems

A software development process can be defined as the “description of phases in the product

life-cycle through which the software is being produced” Abrahamsson et al. (2002).

Generally, the phases of the software development process are requirements definition,

architectural and detailed design, implementation, testing and maintenance Munassar

and Govardhan (2010).

The development of embedded software depends on the corresponding hardware

development process as it must interact with hardware components such as sensors and

4

actuators. Such a parallel development process of hardware and software is known as

Co-design Teich (2012) and Wolf (1994). Berger (2002) extended the traditional V-model

to suggest a seven-phase embedded system design life-cycle. In this life-cycle, hardware

and software engineers work together during the initial “specification” phases but then

follow separate V-models. Hardware design path activities are followed on one side of the

V-model and the software design path activities on the other side of the V-model. Such

parallel development activities include diverse stakeholders such as hardware engineers

and software engineers that must have effective communication and knowledge sharing.

The two teams re-join to complete “integration” and “acceptance testing” phases.

Typically, Embedded Medical Software is produced through following a plan-driven

process. The V-Model is commonly used as it involves decomposition of requirements

and the creation of system specifications on the left-side and emphasises integration of

parts and validation on the right Rottier and Rodrigues (2008). Having software and

hardware development processes, the embedded medical domain has been implementing

this model as “it appears to be the best fit with regulatory requirements” Mc Hugh et al.

(2013) and enables system level integration and acceptance testing.

1.2 Agile in Embedded Medical & Safety-Critical

The development of embedded medical and safety critical software must deal with

challenges at a high-level concerning certification and regulation and technical challenges

associated with embedded system at a lower level. One approach that may offer assistance

is Agile Methods (AMs) which has been a hot topic in embedded medical and safety

critical domains in recent times.

AMs are an umbrella of software engineering methods that are based on iterative,

incremental, and evolutionary software development process Greer and Hamon (2011).

AMs have been in use in the application software development domain for the last two

decades Dingsøyr et al. (2012). Generally, agile methods recommend a high degree of

5

expert customer involvement, the ability to incorporate changing requirements and short

development cycles producing working software. Numerous agile methods are available

including eXtreme Programming (XP) Beck and Andres (2005), Scrum Schwaber and

Beedle (2001), Feature Driven Development (FDD) Palmer and Felsing (2001), Dynamic

Systems Development Model (DSDM) Stapleton (2014), Lean Mary Poppendieck (2003)

and DevOps Erich et al. (2014). Although each employs different practices, all adhere to

the Agile Manifesto Beck et al. (2001).

Previous studies of agile implementation in embedded medical and safety critical

domains report both benefits and challenges Xie et al. (2012). This is because the

development of embedded software is different from commercial or application software

as it has to interact with hardware in real-time Woodward and Mosterman (2007). While

commercial software development focuses on algorithm and data processing, embedded

software development aims at managing and controlling the system or hardware.

Existing literature covers agile usage and challenges in the safety critical domain

and embedded system themes separately. In this research, the challenges of agile usage

in the embedded medical domain will be investigated. The research is formulated based

on research questions and objectives outlined in the following section.

1.3 Research Questions and Objectives

This research is formulated based on the Initial Research Questions (IRQ) and the Refined

Research Question (RRQ). To answer these research questions, a number of research

objectives were formulated. The IRQ of this research are defined as follow:

IRQ.1 : What are the challenges related to agile implementation in embedded

safety-critical software development?

IRQ.2 : What agile practices have been used, and how are the practices

6

implemented in embedded safety-critical software development?

Based on the findings of the initial research questions, a specific focus was applied

to address one of the challenges identified for embedded medical software development.

The following Refined Research Question (RRQ) was formulated.

RRQ : How can we support multiple stakeholders communication during

requirements analysis of embedded medical software development using a

combination of suitable agile practices?

To address the IRQ and RRQ, the following research objectives were formulated:

OBJ.1 : To identify the challenges affecting an agile implementation in embedded

safety critical domains and investigate the improvement recommendations.

OBJ.2 : To identify suitable agile practices and investigate their implementations

in embedded medical and other embedded safety critical domains.

OBJ.3 : To develop a process using a combination of suitable agile practices,

that assist the multiple stakeholder communication of embedded medical software

development.

Aim

The aim of this research is to support the challenge of multiple stakeholders

communication of embedded medical software development using a combination of

suitable agile practices. From the systematic review (SR), this research identified suitable

agile practices that have been preferred in embedded medical and other embedded safety

critical domains. In order to support multiple stakeholder communication, the Sync-Up

process has been developed using a combination of suitable agile practices.

7

The Sync-Up Process

The Sync-Up process has been developed to assist multiple stakeholder communication

during requirements analysis in embedded medical software development. The process

is developed by combining agile practices identified as most suitable through the SR.

The overall approach is based on the foundation of Acceptance-Test Driven Development

(ATDD).

The Sync-Up process has been reviewed by leading experts in the embedded

safety-critical domain, and suggestions and recommendations were addressed to evolve

the process. The validation of the process was conducted through exploratory and

confirmatory case studies. The exploratory case study was conducted in an academic

setting while the confirmatory case study was conducted in an embedded company.

The overall approach of the research including the research questions and objectives

is illustrated in Figure 1.1.

Figure 1.1: Research Approach Overview

8

1.4 Document Outline

The document contains seven chapters. Chapter 1 is this introductory chapter. Chapter

2 presents the research background that consists of the systematic review and industrial

investigation that was performed with embedded companies. This is followed by Chapter

3, which is the research setting. Chapter 4 presents the description of the Sync-Up process.

Chapter 5 presents the expert review conducted with leading experts in embedded and

agile software development domains. Chapter 6 presents the implementation that covers

the case studies conducted to evaluate parts of the proposed process. Finally, the

summary and conclusion will be presented in Chapter 7.

9

Chapter 2

Research Background

Introduction

This chapter presents the literature review and industrial investigation conducted to

investigate the challenges of embedded medical software development. The chapter

begins with an overview and development process of embedded systems. Thereafter the

challenges of embedded medical software development will be presented. Subsequently,

the review of agile methods and practices will be presented. Finally, the systematic

review, which is conducted with a particular focus on the challenges related to agile usage

in embedded medical and other embedded safety-critical software development domains,

will be presented.

2.1 Embedded Systems

According to Marwedel (2006), “embedded systems are information processing systems

embedded into enclosing products such as cars, telecommunication or fabrication

equipment”. The system is composed of software and hardware components to carry

out a specific function. The software inside an embedded system usually embeds into

10

CHAPTER 2. RESEARCH BACKGROUND

flash memory or read-only memory (ROM). Most embedded systems are a subset of a

larger system. For example, modern cars and trucks have many embedded systems to

control the anti-lock brakes, the vehicle’s emissions, and to display information on the

dashboard Barr (1999).

Embedded system applications have become an integral part of human lives.

Applications such as home security and alarm systems, thermostat, washing machines,

cars, traffic light, elevators, printers, digital watches, digital cameras and automatic teller

machines (ATMs) are some examples of embedded systems Barr (1999); Bolton (2000);

Fisher et al. (2005).

Embedded systems interact with the external environment using sensors and

actuators to control or respond to certain behaviours. As a result of the interaction

with the a real-world, embedded systems are also called real-time systems. In real-time

systems, the correctness of the system depends “not only on the logical results of the

computations but also on the physical time when these results are produced” Kopetz

(2011). Interaction involves receiving data or input command, processing data, and

responding to the environment within a reasonable time-frame. Based on the response

time, real-time embedded systems are categorised as hard and soft real-time embedded

systems. Hard real-time embedded systems must perform all computation and respond

to the environment in strict time. Such systems must also “sustain a guaranteed temporal

behaviour under all specified load and fault conditions” Kopetz (2011). Hard real-time

embedded systems are mostly used in safety-critical applications. Some examples

of hard-real time systems include anti-lock braking system, cardiac pacemaker, and

Antimissile system. Soft real-time embedded systems, on the other hand, have a less

strict response time. For these systems missing a deadline is usually considered tolerable.

Some examples of soft-real time systems include digital cameras, wireless router, and

global positioning system.

The development of embedded systems “requires a holistic approach that integrates

essential paradigms from hardware design, software design, and control theory in a

11

CHAPTER 2. RESEARCH BACKGROUND

consistent manner” Henzinger and Sifakis (2006).

2.1.1 Components of Embedded Systems

An embedded system in its simplest form consists of memory, input-output (IO)

interfaces, application-specific processor and software to invoke the required operation.

Figure 2.1 shows the structure of a generic embedded system as defined by Barr (1999).

A short summary of each component will be explained in the following subsections.

Figure 2.1: Generic Embedded System defined by Barr (1999)

Memory

Memory is a hardware component that stores data temporarily or permanently. Memories

that store data temporarily are also called volatile memories, and the ones that store

permanently are called non-volatile memories. The embedded system needs the volatile

memory to store program variables and intermediate results and to manage data

structures such as the stack. Data stored in volatile memories will be lost if the power of

the system is turned off. The non-volatile memories are used to store data permanently.

These memory types are usually used to store permanent data that needs to be retrieved

after power is switched off. Applications such as an operating system are stored in these

memories.

12

CHAPTER 2. RESEARCH BACKGROUND

IO Interfaces

IO interfaces are hardware components that connect the embedded system with the

outside world. Input interfaces can be sensors and probes, communication signals, or

control knobs and buttons. On the other hand, output interfaces typically display

communication signals or changes to the physical world. Output interfaces have different

variations such as binary output, serial output, displays and time derived outputs.

Processor

A processor is a basic unit that takes inputs and produces an output after processing the

data or computing. There are two main types of processors. These are microprocessor

and microcontroller. A microprocessor is a programmable chip that has the capabilities

of computing and decision making. They have the arithmetic and logic unit (ALU)

and a control unit (CU) to process the execution of instructions. A microcontroller is a

programmable digital processor with necessary peripherals and on-chip memory. They

can be thought of as a microprocessor with additional peripherals and on-chip memory.

Embedded Software

Embedded software is an entity that is tied to a specific hardware device with the role

of interacting with the physical world. Unlike application software, embedded software

has less visibility and fixed hardware requirements. The developers of embedded software

are experts in the application domain with a good understanding of the target hardware

that includes reading schematics and datasheets. A specific class of embedded software

that helps to control and access the hardware is called embedded firmware. They are

called firmware as a result of the difficulty in upgrading or fixing bugs. Appliances such

as microwave ovens, refrigerators and televisions have embedded firmware.

13

CHAPTER 2. RESEARCH BACKGROUND

2.1.2 Roles In Embedded System Development

A typical embedded system project can contain a business team and technical experts.

The business team is composed of Customer representative. The technical experts can be

composed of Hardware Engineers, Firmware Engineers, Software Developers and Testing

professionals. Figure 2.2 shows the overall roles that are involved in an ideal embedded

system project. On the next subsections, a short summary of each role will be presented.

Figure 2.2: Roles in Embedded Software Development

Customer

A customer represents a person that has a business understanding of the product to be

developed. The customer will be involved during the duration of the project to provide

guidance on project requirements, User stories and acceptance testing.

Technical Experts

The technical experts in embedded system includes hardware engineer,

embedded/firmware engineer, application Software engineer and testing expert.

14

CHAPTER 2. RESEARCH BACKGROUND

Hardware Engineer

Hardware engineers design and develop the functions of the dedicated computer chips and

systems. The tasks of the hardware engineer include studying the data-sheets of various

components and peripherals from the point of view of their electrical characteristics,

designing the schematic of the printed circuit board (PCB) for the product, designing

the power section of the device, board bring-up and testing when the PCB arrives and

solving any hardware related issues with other developers.

Embedded (Firmware) Engineer

The embedded/firmware engineer design and develop an optimised code for specific

hardware platforms. The tasks of the embedded engineer include writing very well-versed

device drivers and microprocessor interfacing. Depending on the application, the engineer

is also expected to understand the system on chip (SOC) and different peripheral devices.

Application Software Engineer

Software developers are responsible for the development of the application software that

interacts with the embedded device. The software development engineer can be involved

from requirement elicitation to development and acceptance testing. The application

software development for an embedded system can include database development and

User Interface (UI) design.

Testing Expert

The testing expert conducts the overall functional testing of the product. Additionally,

the testing expert will set up test environments and conduct automated and manual tests

by designing testing scenarios.

15

CHAPTER 2. RESEARCH BACKGROUND

2.2 Embedded System Design Process and Challenges

2.2.1 Embedded System Design Process

The design of embedded systems requires a holistic approach that integrates essential

paradigms from hardware design and software design. A typical design process of

embedded systems follows a “top-down design process” known as hardware-software

co-design. In this approach, hardware and software components are designed concurrently

by taking into consideration the cost, energy, performance and speed Wolf (1994) and

Teich (2012). Figure 2.3 shows the “embedded system design cycle” defined by Berger

(2002). The summary of the major phases will be presented in the next subsections.

Figure 2.3: Embedded System Design Life cycle Berger (2002), Ernst (1998)

Product Specification

The first phase of the cycle involves defining a product specification composed of

functional and non-functional requirements. The functional requirement includes the

operations to be performed by the system. Non-functional requirements include speed,

16

CHAPTER 2. RESEARCH BACKGROUND

power, and manufacturing cost Wolf (1994). According to Berger (2002), the product

specification has to involve the meeting between a customer, marketing or sales engineer

and two or three R&D types through “customer visit tour” to turn a concept into a set

of product requirements Berger (2002).

Hardware/Software Partitioning

After defining the product specification, the next phase includes deciding the

components/modules of the problem that will be solved in hardware and software Berger

(2002). For an algorithm to be implemented, the “partitioning decision” will enable us

to decide if the algorithm can be implemented purely in software, hardware, or in some

combination of the two Berger (2002).

Software Design

The next phase involves the separation of software and hardware design phases. The

software design phase involves developing and running code benchmarks on single-board

computers with specific microprocessor. The single-board computers are known as

evaluation boards as they help to “evaluate the performance of the microprocessor by

running test code on it”. Having separate paths, the “hardware and software designers

and system architects must synchronise their work progress to optimise and debug a

system in a joint effort” Ernst (1998). The separation of the design phases is reported

to create a major problem in synchronisation and integration of hardware and software

Ernst (1998), Berger (2002).

Hardware Design

The hardware design activities involve design engineers reading design schematic,

designing circuits for functionalities, and using simulation tools to model the performance

17

CHAPTER 2. RESEARCH BACKGROUND

of the processor and memory systems. The next activity involves building schematics and

layout a printed circuit board (PCB).

Hardware/Software Integration

The process of integrating embedded software and hardware is an exercise in debugging

and discovery. The integration involves “combining the first hardware prototype, the

application software, the driver code, and the operating system software together with a

pinch of optimism and to have the design work perfectly out of the chute” Berger (2002).

Acceptance Testing & Maintenance

Acceptance testing involves the testing of the embedded product with respect to

predefined requirement parameters such as performance. Acceptance testing of the

embedded system is much “more stringent than the vast majority of desktop applications”

Berger (2002). Maintenance involves upgrading existing products, rather than designing

new products. The upgrade of existing products requires optimisation to create both

hardware and software that complement each other, and this requires tools that are

tailored to reverse engineering Berger (2002).

2.2.2 Challenges for Embedded System Development

The development of embedded systems brings challenges from embedded software

development which is related to hardware dependency, real-time and resource constraints.

Woodward and Mosterman (2007) identified five challenges that are believed to

break the embedded software project trade-offs. These are complexity, optimisation,

interdependency, verification, and tools. Complexity refers to the addition of more and

more functionality onto a single system. Optimisation refers to the selection of the

“best” combination of hardware and software elements that interact with each other. The

18

CHAPTER 2. RESEARCH BACKGROUND

challenge of interdependency comes from having different parts of the design process that

are increasingly interdependent but keeping the design processes and design domains

separate. The report states that a better way of “synchronising different design version

must be developed.” Verification refers to checking if the system implemented meets

the specification. The study calls for better techniques of verification automation using

system specification.

A systematic literature study by Rong et al. (2014) categorised factors affecting

embedded system design in four categories. These are development factors, human

factors, external factors and internal factors. The development factor includes a lack

of proper methodologies. The study states that hardware-software partitioning is one of

the challenging development factors that play an important role in system design. The

human factors represent the skill developers should have in the diversified development

environment. The report states that “close interaction among hardware and software

developers was necessary yet unsatisfied for embedded systems design.” The external

factors are market pressure that affects time-to-delivery, which can introduce other

experts from, for example, marketing and business. The category of internal factors

includes hardware dependency, resource constraints such as memory, power consumption

and response time.

A study by Graaf et al. (2003) reported the result of 36 interviews with software

practitioners from seven industrial companies building embedded software products and

one research institute. The study reports that most embedded software development

are sub-processes of systems engineering, and coordinating such sub-processes is one of

the most challenging aspects of developing embedded software. Additionally, systems

engineering is mostly driven by hardware development because of longer lead times.

Another study by Ebert and Jones (2009) states that the “embedded software systems

pose extraordinary challenges to the software engineer due to their complexity”. The

complexity comes from having a large number of interactions among the various parts

of these systems. The report also states that “malfunctions of embedded software are

19

CHAPTER 2. RESEARCH BACKGROUND

much higher than those of application software” and embedded software engineers must

use more extensive defect prevention activities than other software domains.

Summary of Challenges

The summary of challenges associated with the development of an embedded system are:

• Interaction - refers to the interaction that software, embedded and hardware

engineers need to have to deliver the embedded system. It was reported that close

interaction is required between these diverse members and studies calls for better

ways to assist collaboration.

• Interdependency - comes from having different parts of the design process that are

increasingly interdependent.

• Lack of proper methodologies - it was reported that the embedded system design

is affected by the lack of proper methodologies that combine hardware/software.

• Hardware dependency - the embedded system design is affected by the close ties of

to hardware development.

In order to understand the embedded medical software development process and explore

the challenges, an industrial investigation was conducted with two embedded medical

companies.

2.3 Industrial Investigation

The industrial investigation was conducted with two companies that develop embedded

medical software. The first company, Company A, produces high-performance aerosol

drug delivery technology for hospitals for better patient care. The second company,

20

CHAPTER 2. RESEARCH BACKGROUND

Company B, produces a global positioning system (GPS) player tracking and analysis

equipment.

In order to conduct the industrial investigation, semi-structured interview questions

were developed. Semi-structured interviews are composed of open-ended and specific

questions that are “designed to elicit not only the information foreseen but also unexpected

types of information” Shull et al. (2007). The interview questions were developed around

the process of developing embedded medical software following the guidance of (Dawson.

C, 2008, pp.69) and Brace (2018). The interview questions have been reviewed by

supervisors, and comments have been addressed on irrelevant topics. The list of questions

is shown in Appendix A.

2.3.1 Interview with Company A

The interview was conducted with two engineers. The first engineer is a senior electronic

engineer while the second one has software engineering experience. As both interviewees

have declined to record the interview, detailed hand-written notes were taken and

immediately transcribed following the interview. In the following subsections, the

responses of the interviewees will be summarised.

Development Team Structure

At the time of the interview, the development team was composed of design assurance (a

dedicated person responsible), one lead software developer, a second software engineer,

that acts as a reviewer of the development steps, and a technical design engineer that

executes the validation and verification test scripts.

21

CHAPTER 2. RESEARCH BACKGROUND

Requirement Definition and Architectural Design

The interviewees stated that initially, the marketing team collaborate with stakeholders

to develop the design input and, marketing requirements document (MRD). The

stakeholders are composed of number of members from lead engineer, development

team and hazard analysis. The MRD will then be distilled into a software requirement

document (SRD). The SRD defines the simple basic description of the device functionality

such as monitoring of voltages and currents.

At the time of defining MRD, if the development team realised that they couldn’t

implement a particular functionality, that was defined by the marketing team, they would

have to inform the marketing team to update the MRD. One of the interviewees also

stated that changes in the hardware would also have consequences on the MRD. For

example, a timer that was set for 4 hours would have required 6 hours when they are

implementing different algorithms.

Moving forward, the interviewees suggested that they can see problems relating to

the user interface when they are developing firmware. The user interface is anything

that the user interacts with such as display, touch screen, buttons and knobs, cover, cap,

and cases. They suggested that addressing different stakeholder demands on the user

interface and making everyone happy would be challenging.

Implementation, Testing and Maintenance

Once they have all controls defined on the SRD, the team will develop software and

hardware in parallel with the printed circuit board (PCB) layers and first fabrication

prototyping. The implementation is based on phase-based modules which include

developing the control parts of the circuit, control of every other function layers of the

hardware, developing a phased version of the code and implementing functional and

test coverage. The interviewees stated that before software developers start coding, the

22

CHAPTER 2. RESEARCH BACKGROUND

hardware with the desired specifications of timing and frequency should be available. If

the hardware is not available, the software development activities need to wait for the

hardware to be delivered for integration and testing to be performed at a low level.

When asked if the company have used generic off the shelf evaluation boards, the

interviewees stated that if they have concerns on specific modules, sometimes they use

similar hardware that was developed in-house from previous projects and they then

perform tests on this alternative hardware while waiting for the actual hardware to be

delivered.

According to the interviewees, during the early phases of the development, sometimes

hardware-related bugs affect software development. Bugs such as the power supply not

acting as it should and noise on the board affecting measurement and resulting in the

incorrect functionality of the algorithm.

In addition to hardware development, the development of embedded medical software

is also affected by the availability of mechanical parts. One of the interviewees stated that

for example, a breath detection system needs the mechanical parts to run the software

testing and get the parameters correct for the algorithm. Subsequently, this could cause

some delays to the overall development process. The interviewee also highlighted that

the weekly meetings are used to track such delays.

Risks Analysis

Hazard and risks analysis were part of the SRD. The interviewees stated that at the

time of the interview, the company was considering splitting them from the SRD. From

a product development perspective, the company has a system hazard user analysis

document that identifies risks that could involve hospital visits and observation of the

user. There was also another document, failure mode effects analysis (FMEA), that

defines hardware failures that would have a consequence on software.

23

CHAPTER 2. RESEARCH BACKGROUND

Summary of Interview with Company A

The key issues that have been identified from the interview were:

• Hardware, software, and mechanical development dependency - the interviewees

stated that the embedded software development would be affected if hardware and

mechanical parts were not delivered in time. Sometimes they use similar hardware

in-house to test some modules while the actual hardware is developed.

• Multiple stakeholder demands - they have suggested that addressing the demands

different stakeholders have on the user interface must include the overall hardware

and embedded software functionalities and making everyone happy would be

challenging.

• Managing changes in the MRD - they have suggested that the MRD will need to

change if the development team could not perform the functionally in software.

Changes in the hardware were also suggested to affect the MRD.

2.3.2 Interview with Company B

Company B, established in 2017, is based in Newry and develops performance tracking

and real-time data analysis devices for elite sport clubs. The company produces products

that are composed of hardware, firmware, and software components. The software

component is used to extract data from the sensors. The interview was conducted with

a Software Architect (former principal Software Engineer). At the time of the interview,

the interviewee was working between two products which are team series and pro-series or

elite version. Recording of the interview was allowed, and the recording was transcribed

immediately following the interview. In the following subsections, the responses of the

interviewee are summarised.

24

CHAPTER 2. RESEARCH BACKGROUND

Development Team Structure

At the time of the interview, the company had separate development teams for the

consumer side and elite side products. They also had another developer in the team

working on Android development. Additionally, the embedded firmware development was

mostly looked after by an embedded engineer that was working remotely from Romania.

In addition to the software developers and an embedded engineer, hardware engineers

were also responsible for the development of hardware components such as APEX pods,

docking stations and antennas that were produced in-house.

Requirement Definition and Architectural Design

According to the interviewee, the initial phase of development is driven by the advances

in the hardware. From the very start, software developers, the embedded engineer, the

product owner, and product managers all come together during the initial phase and come

up with the initial requirements, design and then refine from there. The interviewee

highlighted that; user stories are defined only from the application software side. On

the other hand, acceptance tests are conducted by sport scientists at the end, when the

application software becomes ready.

Implementation, Testing and Maintenance

Regarding implementation, the interviewee stated that hardware is the first component

that will be developed. That will make its way to the embedded firmware development.

The embedded engineer will collaborate with hardware designers and develop the

firmware. Once the firmware is produced at a beta stage, the embedded engineer will

forward the full specification of the protocol to the software developers. For example,

for the athlete series product, the software developers will use the specification protocol

to interface with the device through a Bluetooth low energy (BLE) connection and start

25

CHAPTER 2. RESEARCH BACKGROUND

developing the application software. Once the hardware and application software are

ready, then the quality assurance (QA) tests and acceptance testing will be conducted.

The interviewee recalled one occasion on the team series product where narrowing

down bugs, which might be either from software, embedded or hardware side, was

challenging. On this product, data was collected and transferred through USB that

plugs into a docking station and with twelve units going into it. The unit was throwing

some configuration error. The application software development team looked at the

error and then passed it down to the embedded developer, and then at some point, the

embedded developer passed it to the hardware team. The issue took quite a number of

months to solve. The embedded and hardware developers thought it was an issue with

the application software, the software developers, on the other hand, thought it was a

hardware issue. It turns out to be a bug in the firmware of the operating system that

was running on the unit. The data type was getting bigger than it was supposed to be

and roll over into a bigger data type. This bug was crashing the application software

after that number was got above the threshold. The interviewee suggested that, if the

user stories and acceptance tests were developed with the engagement of the embedded

and application software engineers, they might narrow down the solution quicker.

Another challenge that was experienced by the interviewee was the remoteness of

the embedded engineer. The interviewee stated that it would have been easier to discuss

and resolve issues when the software teams and an embedded engineer can communicate

face to face. But discussing over Skype, it was difficult to narrow down problems during

the integration of the embedded firmware and the application software components.

Summary of Interview with Company B

The key issues that have been identified from the interview were:

• Dependency on hardware development - it was stated that the initial stage of the

software development needs to wait for the specification protocol to be available.

26

CHAPTER 2. RESEARCH BACKGROUND

• Bug tracking - tracking and narrowing down issues from the application and

hardware side were difficult to manage.

• The remoteness of the embedded engineer - this has been reported to be difficult

in general requirement discussions and when problems arise.

2.3.3 Summary of Industrial Investigation

The industrial investigation was conducted to investigate the process and challenges of

developing embedded medical software. The interview conducted with both embedded

companies revealed that the development of embedded medical software involves diverse

technical stakeholders such as software developers, design engineers, embedded firmware

engineers, hardware developers and QA engineers. The interviewees stated that the

availability of such stakeholders created a challenge on putting multiple stakeholder

demands of hardware and software into the software requirements. In one of the

companies, where the embedded engineer was working remotely, general requirement

discussions were reported to be challenging.

Additionally, interviewees from both companies also revealed that embedded medical

software development is dependent on the availability of hardware and mechanical

parts. The interview also revealed that the embedded medical software development

has a different process than generic software development process as it must interact

with the corresponding hardware and mechanical components. The availability of

such additional development processes of hardware and mechanical components brings

additional challenges when dealing with bugs that can be from the software side or

hardware side.

27

CHAPTER 2. RESEARCH BACKGROUND

2.4 Agile Software Development

Introduction

This section will examine agile software development. Initially, the values and principles

of agile software development will be discussed. Then a description of agile methods that

were reported to be widely used will be presented.

The software development process involves a set of activities which leads to the

production of a software product Somerville and Somerville (2015). Royce et al. (2009)

categorised the trends in software engineering into three generations. These are waterfall

(1960s - 1970s), process improvement (1980s - 1990s) and agile development (2000s and

on). Agile software development has been the latest trend from the early 2000s.

The term agile method was coined in 2001 by a group of industry leaders and

advocates of lightweight frameworks. All agile methods share four common values and

twelve principles that have been defined in the agile manifesto Beck et al. (2001). Any

method or approach that claims to be agile needs to consider the values and adhere to

the principles.

2.4.1 Agile Values and Principles

The four values which are part of the agile manifesto advocates:

Individuals and Interactions over Processes and Tools

Working Software over Comprehensive Documentation.

Customer Collaboration Over Contract Negotiation.

Responding to Change Over Following a Plan.

The manifesto, Beck et al. (2001), states that “while there is value in the items on

28

CHAPTER 2. RESEARCH BACKGROUND

the right, agile manifesto value the items on the left more.” For example, the first value

of the manifesto states that the success of the team depends on the way individuals work

together, their ability to communicate effectively and efficiently. Such interaction is more

valuable than processes and tools. The second value, which highlights the importance

of working software over documentation, prioritise getting the software to the customers

than letting documentation be a bottleneck. This means documentation is also essential,

but it is suggested not to overdo it. The customer collaboration over contract negotiation

encourages building a continuous customer feedback loop over contracts which dictate

what was delivered in the end. The fourth value prioritises responding to change through

frequent reviewing of the current plan and having a dynamic strategy to address new

information that the team gather.

2.4.2 Agile Methods and Practices

A methodology is a system of practices, techniques, procedures, and rules used by those

who work in a given discipline ISO 24765 (2010). Practices are concrete activities and

work products that a method defines to be used in the process. Abrahamsson et al. (2017)

defined a process as a “description of phases in the product life-cycle through which the

software is being produced”.

AMs are an umbrella of software engineering methods that are based on iterative,

incremental and evolutionary software development process. These methods have evolved

to reflect industry feedback. For example, XP started off with 12 practices Beck (1999)

but an updated version, XP2 Beck and Andres (2005), replaces these practices with 24

practices that are categorised as either primary or corollary. With the original version,

XP1, the intention was that each practice was mandatory for each project. However, this

has evolved, and XP2 has been modified to follow a phased adoption of XP practices.

All AMs encompass on the four core values of the agile manifesto. The latest report

from VersionOne.Inc (2020), the largest and longest-running survey on agile, states that

29

CHAPTER 2. RESEARCH BACKGROUND

Scrum and Scrum/XP hybrids constitute about 70 % of reported agile usage. Scrum on

its own increased its prominence as the most popular agile method from 40% in the first

survey in 2007 to 58% and 70% when combined with other methods in 2020. At the

same time, Extreme Programming (XP) lost ground from being the second most popular

method (23%) to being used in combination with Scrum at 6%. The report also states

that 84% of organisations are "still maturing" in their agile practice adaption and calls

for opportunities for improvement.

Kniberg (2015) on his book Scrum and XP from the Trenches stated that Scrum and

XP can be combined because “Scrum focuses on management and organisation practices

while XP focuses mostly on actual programming practices”. The author also stated that

some XP practices that are directly addressed by Scrum can be seen as overlapping, and

we can simply be stuck to Scrum.

Solinski and Petersen (2016) stated that Scrum and XP are the most popular and

adopted methodologies. Additionally, combinations of the classic Waterfall/XP, and

Scrum/XP have also been reported to be commonly used. Another study by Theocharis

et al. (2015) reported that “agile and traditional approaches are used in a mixed-method

approach”. Specifically, Scrum has been reported to be combined with the classic

Waterfall model and V-shaped processes. In the following subsections, a summary of

the two most common agile methods and their respective practices will be presented.

2.4.3 eXtreme Programming (XP)

XP was formulated in the late 1990s when Kent Beck was working on the Chrysler C3

payroll project. Beck defined XP as “a lightweight methodology for small-to-medium-sized

teams developing software in the face of vague or rapidly changing requirements” Beck

(1999). The term extreme is used to reflect the concept of taking software engineering

practices to extreme levels Beck and Andres (2005). The methodology emphasises

teamwork and customer involvement throughout the software development process. XP

30

CHAPTER 2. RESEARCH BACKGROUND

provides a faster time to market, higher quality software, better customer satisfaction, and

highly motivated development teams. It is developed based on a set of values, principles,

and practices that helps developers to improve the software quality. XP has five core

values which are communication, simplicity, feedback, courage & respect. On the other

hand, the principles of XP serve as a bridge between the values and the practices. These

principles are rapid feedback, assumed simplicity, incremental changes, embracing change

and quality work.

Roles in XP

According to Beck (1999), XP has the following major roles:

• Customer - the customer is responsible for writing user stories and sets priorities

on implementation. He picks for them for product releases and iterations.

• Programmers - the programmers write the code, tests, refactors code, identifies

tasks to be performed and estimates the time to perform them.

• Testers - this team member is responsible for helping the customer to write

acceptance tests.

• The Coach - the coach checks the evolution of the process and watches the team’s

work in following the process.

• Doomsayer - this member tracks the project risks and warns the team about

them.

The XP life cycle

The life-cycle of XP is composed of six major phases. As shown in Figure 2.4 the phases

are exploration, planning, iteration to release, productionizing, maintenance and death.

31

CHAPTER 2. RESEARCH BACKGROUND

Figure 2.4: The Life cycle of the XP process (Abrahamsson et al. (2017))

• Exploration Phase - in this phase the project team will conduct exploration

activities such as familiarising themselves with the tools and technologies they will

be using and exploring architectural possibilities and prototypes for the system.

The customer on their side will write story cards that will be part of the first

release.

• Planning - in this phase, programmers estimate each story, prioritise and select

the stories that will be involved in the first small release. The customer will be

contacted for all aspects of the software feature. During this phase, the team will

set goals for the entire project.

• Iterations to Release - this phase involves the implementation of a number of

iterations before the first release. This involves the creation of the whole system

architecture. This phase will generate a system that is ready for production.

• Productionizing - in this phase performance and extra testing activities will be

conducted using the acceptance test. The team will work on stabilising the product

and tuning performance.

• Maintenance - after the production phase, the maintenance phase will run to

work on enhancements and bug fixing.

32

CHAPTER 2. RESEARCH BACKGROUND

• Death - in this phase, the customer will confirm the correctness of the system

developed, and there are no stories left. Documentation of the system will also be

written. The death phase may also occur "if the system is not delivering the desired

outcomes, or if it becomes too expensive for further development" Abrahamsson

et al. (2017).

Practices of XP

The first version of XP defined 12 practices Beck (1999). In the second version of XP Beck

and Andres (2005) defend 24 practices categorised as primary and corollary practices.

Beck suggested that the primary practices must be applied first. It will be difficult or

dangerous to implement corollary practices before completing the preliminary practices.

Table 2.1 summarises the first and second version of the practices of XP.

XP1 XP2
Primary Practices Corollary Practices

The Planning Game Sit Together Daily Deployment
Small Releases Whole Team Single Code Base
Metaphors Informative Work-space Shared Code

Simple Design Energised Work Code and Tests
Testing Test-First Programming Root-Cause Analysis

Refactoring Incremental Design Shrinking Teams
Pair Programming Pair Programming Team Continuity

Collective Ownership Quarterly Cycle Pay-Per-Use
Continuous Integration Continuous Integration Real Customer Involvement

Sustainable Pace (40-Hour Week) Slack Incremental Deployment
Whole Team Quarterly Cycle Negotiated Scope Contract

On-Site Customer Stories
Coding Standards Weekly Cycle

Ten-Minute Build
Table 2.1: First and Second Version XP Practices

2.4.4 Scrum

Scrum is a process framework that helps teams “to manage work on complex products”

and address complex adaptive problems. The framework was initially developed by

33

CHAPTER 2. RESEARCH BACKGROUND

Jeff Sutherland in 1993 for managing and developing software products combining

concepts from a previous article, the new product development game Takeuchi and Nonaka

(1986), object-oriented development, empirical process control, iterative and incremental

development and complex adaptive systems Schwaber and Sutherland (2017), Rubin

(2012). The Scrum framework is composed of roles, activities and artefacts (Practices).

• Roles - the roles of the scrum framework includes Product Owner (PO), Scrum

Master (SM) and Development Team.

– PO - the product owner is a person that is “responsible for managing product

backlog”. Additionally, the PO is also responsible to “ensure that the Product

Backlog is visible, transparent, and clear to all, and shows what the Scrum

Team will work on next” Schwaber and Sutherland (2017).

– SM - the SM is a facilitator that maintain the Scrum processes to maximise the

value of the scrum team and ensure that “the Scrum Team adheres to Scrum

theory” Schwaber and Sutherland (2017).

– Development Team - the development team includes the rest of the team that

performs the actual software development.

• Activities and Artefacts (Practices) - the scrum activities includes sprint planning

meeting, product backlog grooming, daily Scrum, sprint review and sprint

retrospective. On the other hand, scrum artefacts are product backlog and sprint

backlog.

Figure 2.5 shows the Scrum framework, adapted from Sutherland and Schwaber

(2014), with roles, activities and artefacts. The framework starts with a vision of a

product owner that will be broken down into a set of features called product backlog.

The product backlog items will then be refined, estimated, and prioritised using the

activity product backlog grooming. Rubin (2012).

Once backlog items are prioritised, the sprint starts with a sprint planning meeting

34

CHAPTER 2. RESEARCH BACKGROUND

Figure 2.5: Scrum Framework adapted from Sutherland and Schwaber (2014)

which involves the entire scrum team. During this stage, the team selects the features

that will be implemented and assign sub-tasks to developers. During development, the

team will synchronise activities through a 15-minute time-boxed daily scrum meeting.

At the end of a sprint, the scrum team and stakeholders will hold an inspect-and-adapt

activity known as sprint review. Additionally, the SM will organise a meeting to conduct

a continuous process improvement using a sprint retrospective meeting Rubin (2012).

The whole cycle will be repeated again on the next sprint planning session. Table 2.2

summarises the activities of the Scrum framework and the roles that are involved.

Activities Roles

Backlog Grooming PO
Sprint Planning PO, Development Team, SM
Daily Scrum Development Team
Sprint Review PO, Development Team, SM
Sprint Retrospective PO, Development Team, SM

Table 2.2: Scrum Activities and Roles Involved

35

CHAPTER 2. RESEARCH BACKGROUND

2.5 Agile in Embedded safety-critical

Introduction

Agile has been the subject of safety and critical domain in recent years. Emerging medical

devices are highly relying on embedded software that runs on a specific platform in

real-time. The development of embedded software is different from ordinary software

development due to the hardware-software dependency. Previous literature reviews

discussed the challenges of bringing agile practices to embedded software developments

in general. In this research, a systematic review was conducted to investigate the

challenges related to agile implementation in embedded safety-critical domains (IRQ.1).

Additionally, the SR investigated agile practices that have been used and the way in

which the practices have been implemented in embedded medical and other embedded

safety-critical domains (IRQ.2). The following subsection presents the systematic review

conducted.

2.5.1 Systematic Review

A systematic review (SR) is a “means of aggregating knowledge about a software

engineering topic or research question” Kitchenham et al. (2009). The aim of a SR is

to “support the development of evidence-based guidelines for practitioners” and “provide

appropriate software engineering solutions in a specific context” Kitchenham et al. (2009).

In this research, a light version of SR, which is suggested by Kitchenham and Charters

(2007), has been performed. This version of a SR is called light because it is manageable

for a researcher (student) to perform the review with the guidance of supervisors.

Figure 2.6 shows the phases involved when conducting the SR. These phases are planning

the review, conducting the review and reporting the review.

36

CHAPTER 2. RESEARCH BACKGROUND

Figure 2.6: The SR Process(Kitchenham and Charters (2007))

2.5.2 Planning the Review

In the planning phase, a “pre-review activities” will be conducted. These are defining

a review protocol, research questions, defining the search strategy and inclusion and

exclusion criteria. In this research, a review protocol has been defined by the researcher

and reviewed by supervisors with the guidance of Kitchenham and Charters (2007). The

review protocol defines the basic review procedures, selected digital libraries, search

strings, inclusion and exclusion criteria and data extraction procedure. The review

protocol is shown in Appendix B.

After defining the review protocol, the planning phase will also involve defining the

research questions. The research questions that are part of the SR have been designed to

focus on the initial research questions, IRQ.1 and IRQ.2. The existing literature covers

agile usage and challenges in the safety-critical domain and embedded system themes

separately. The SR that was performed focused on agile usage in embedded safety-critical

domains. The research questions that have been defined are:

IRQ.1 What are the challenges related to agile implementation in embedded safety-critical

software development?

IRQ.2 What agile practices have been used, and how are the practices implemented in

embedded safety-critical software development?

The search strategy which is defined in the review protocol includes search strings

37

CHAPTER 2. RESEARCH BACKGROUND

and the selection of digital libraries that will be used to conduct the search process. The

search have been selected and arranged to address the research questions. Keywords

were derived from common and emerging agile method names according to Abrahamsson

et al. (2017) and VersionOne.Inc (2017) which was reported at the time of conducting

the review. Additionally, keywords were also derived from embedded system and safety

critical terminologies that were part of the research question. The following set of strings

have been used for the search process.

("agile" OR "scrum" OR "extreme programming" OR "test driven development" OR "lean"

OR "DevOps") AND ("embedded system" OR "embedded software" OR "hardware development"

OR "medical" OR "safety-critical") AND ("challenge" OR "requirement")

Additionally, we have applied the snowballing technique to avoid missing any relevant

studies Wohlin (2014). After defining the search strings, the following digital libraries

have been selected for the search process.

Digital Libraries

IEEE Xplore
ACM Digital library
Google Scholar
ScienceDirect
SpringerLink

Table 2.3: Digital Libraries Selected

The review protocol also defines a set of inclusion and exclusion criteria. These are

summarised as follow:

• Inclusion Criteria

– Studies on agile implementation for embedded software and embedded system

development.

– Studies on agile implementation for embedded safety-critical domains.

– Studies that are published between 2010 and 2020.

38

CHAPTER 2. RESEARCH BACKGROUND

– Studies that are written in the English language.

• Exclusion criteria

– Studies discussing agile implementation for generic software development

(non-embedded system development).

– Studies that are not in the embedded safety-critical domains.

– Studies that are not written in English language.

After defining the inclusion and exclusion criteria, a data extraction template has

been defined on the tabulated format on a spreadsheet to manage the data extraction.

The data extraction template should be tabulated in a manner consistent with the review

questions. The template was tabulated to gather data on the challenges related to agile

implementation in embedded safety-critical software development, IRQ.1, agile practices

that have been used and the way in which the practices have been implemented, IRQ.2.

The template includes entries such as ID, Source, Year, Author/Title, Domain, Study

Type, Challenges, Agile Practices, and Summary. The contents of the data extraction

template and a short description of the entries are shown in the Appendix B.

2.5.3 Conducting the Review

Selection of Primary Study

The search process was performed applying the search strings on each digital library. All

search results from each database have been recorded. The first screening was performed

based on title, abstract and conclusion. This has resulted in a total of 496 studies.

In addition to the spreadsheet, the organisation of the results has been managed using

Mendeley1, an application that is used for managing and sharing research studies. Studies
1https://www.mendeley.com

39

CHAPTER 2. RESEARCH BACKGROUND

from the first screening have been imported to Mendeley, and individual studies have been

analysed based on the inclusion and exclusion criteria to further screen relevant studies.

The 496 studies have been filtered further by detailed reading, removing duplicates

of similar studies published on different databases and publications by the same author

reporting the progress of a project published in a short period of time. The second

screening results in a total of 43 relevant studies. Figure 2.7 shows the number of selected

studies from each digital library after the first and second screening stages.

Figure 2.7: Screening Results

Data Extraction

Having filtered the primary studies, the data from individual studies have been recorded

on the pre-defined data extraction template. The "light" version of the SR process

suggests that the extraction process has to be performed by the researcher(student) with

the supervision and cross-checking of supervisors. This involves applying a “test-retest

process”, that involves performing a “second extraction from a random selection of

primary studies to check data extraction consistency” Kitchenham and Charters (2007).

The extraction process of this SR has been conducted with the supervision of supervisors

and applying a test-retest process.

After the data extraction process, the selected studies have been categorised based

on the empirical study types suggested by Tonella et al. (2007). The study types include

40

CHAPTER 2. RESEARCH BACKGROUND

experimental, observational, experience report, case study and systematic review. We have

also included additional categories, Authors Opinion for studies that report the opinion

of the authors. Studies that didn’t specify the methodology clearly are categorised under

Unclear category. Table 2.4 shows the study types and description of each category.

Study Type Description

Experiment A controlled study to observe and isolate the
effect and factors involved in it. Factors other
than the study that may influence the outcome
should be controlled.

Observational Study A study that gathers observations to connect
factors in a non controlled manner requiring
observation. Such a study often takes the form of
a survey, in which random sampling is applied to
select a population of cases to be observed.

Experience Report Analysis of one case without controlling the
context. The goal is to show the superiority of the
proposed technology. On the other hand, setup,
data collection and analysis are not discussed in
detail.

Case Study Analysis of one case and setup, collection and
analysis of data will be discussed.

Systematic Review The evaluation of all research studied in the past
relevant to a topic of interest.

Authors opinion The research present the opinion of the author or
new proposed ideas that are not evaluated
through empirical evidence.

Unclear Study that didn’t specify the methodology clearly
or that cannot be categories under any of the
other study types.

Table 2.4: Empirical Study Type Adapted from Tonella et al. (2007)

Data Synthesis

After the data extraction, the next activity of the SR process involves data synthesis.

Data synthesis is the process of “collating and summarising the results of the included

primary studies” Kitchenham and Charters (2007). Initially, the primary studies have

been analysed based on the number of frequency of each study type. In the following

subsections, the general overview of the studies will be presented.

41

CHAPTER 2. RESEARCH BACKGROUND

Overview of the Studies

Table 2.5 shows the categorisation of the studies under each study types. The majority

of the studies are case studies and experience reports.

Previous systematic reviews have also been identified. Study P24, which also

addressees the previous review P36, report the result of a review that includes agile

implementation with respect to embedded software, hardware and integrated circuit.

This review concludes that most of the previous reports are case studies and experience

reports, and there is a lack of rigorous empirical research on the actual benefits of agile

methods in embedded domain. Study P33 performs a mapping of the principles of the

agile manifesto to embedded system development.

Study Type Papers

Case Studies P3 P4 P7 P8 P13 P15 P16 P20 P21 P22 P23
P25 P26 P29 P30 P32 P34 P35 P37 P40

Experience Report P1 P5 P6 P9 P17 P19 P28
Literature Review & Survey P2 P10 P14 P24 P33 P36
Authors Opinion P12 P31 P39 P41 P43
Unclear P18 P27 P38
Experiment P11 P42

Table 2.5: Studies in Category

Studies from different embedded safety-critical domains have also been identified.

Some of the domains are medical & healthcare (P19, P26 & P30) automotive (P8, P13

P20 & P22) aircraft/avionics (P2, P15 & P11), consumer products (P3, P6, P20 P23)

and general safety-critical (P9, P15 & P30).

2.5.4 Reporting the Review (Dissemination)

The final step of the SR process involves reporting the review. Kitchenham and Charters

(2007) states that “it is important to communicate the results of a systematic review

effectively”. The result can be reported in peer-reviewed academic journals and/or

42

CHAPTER 2. RESEARCH BACKGROUND

conferences. The result of the SR of this study has been published in peer-reviewed

conference paper Demissie et al. (2018). The following subsection will present how the

data collected from the SR address the research questions.

2.5.5 Addressing the Research Questions

This section discusses how the data extracted from the selected studies address

the research questions. The synthesised overview of the challenges related to agile

implementation in embedded safety-critical software development, IRQ.1 and agile

practices that have been used and the manner in which each practice have been

implemented, IRQ.2, will be presented in the following subsections.

Addressing IRQ.1

IRQ.1 - What are the challenges related to agile implementation in embedded

safety-critical software development?

This research question aims to investigate the challenges related to agile implementation

in embedded safety-critical software development. The analysis of the extracted data

revealed challenges related to agile implementation in embedded safety-critical domains.

The challenges that have been identified are categorised into the following groups:

• Multiple Stakeholder Communication: studies that describe challenges related

to the specialised domain knowledge and long communication chain between diverse

stakeholders.

• Hardware Development: studies that describe the challenges related to hardware

development. These studies reported factors such as long lead-time of hardware

development and hardware-software dependency.

• Regulatory Compliance: studies that describe challenges related to complex

43

CHAPTER 2. RESEARCH BACKGROUND

regulatory compliance.

• Tool Support: Studies that describe the challenge related to tools and availability

of tools support.

Multiple Stakeholder Communication Challenge

This group of studies reported the communication challenge that occurred due to the

diversified members involved. P1 reported the result of semi-structured interviews

conducted with engineers working in a large avionics company. The study reported that

diverse teams within the overall project had their own pace of completing tasks. Deadlines

and milestones were defined in the contracts for the whole project, but individual teams

choose their own development life-cycles within this framework, creating a “silo effect”.

The study also reported that the definition of “what finished is” was separate between

the team that produce the circuits and the firmware team that bring the circuit to

life. Additionally, the software team were working in the software plan and hardware

team, and firmware people were working in the firmware plan. The lack of visibility and

late-stage integration occurred because each team was focusing on its own tasks, and lost

the visibility of changes that were occurring elsewhere in the project.

The need for further requirements elaboration and additional scope was reported to

force changing the requirements. Such changes were reported to affect the coordination

between teams and impact the project’s system component. The study suggested that

working closely with system, hardware and firmware teams when defining requirements

and integration will help to have a better schedule and sprints. The research suggested

that applying agile software development in safety critical “require the development of

tools and methods” but, it didn’t provide details on how the methods should be used

and the usage of tools. The study concluded that there is a need to understand how

agile software development can be scaled in complex systems engineering projects with

multiple development teams that include software and hardware members.

44

CHAPTER 2. RESEARCH BACKGROUND

P3 reports the challenge related to geo separated and multidisciplinary teams in

collaboration and integration. The study also reports the challenges related to the

effort required to collaborate user stories which span across different teams of cross

geographical zones. P4 reports the results of a case study with nine practitioners at a

large-scale embedded systems company. The study reported that interviewees mentioned

communication within cross-functional teams was a challenge. The challenge was as

the result of a customer representative not being sufficiently available and involved in the

development team. It was suggested that agile practices would help to clarify requirement

coverage and the degree to which the customer expectations are met. The study also

reported that collaboration between diverse members will help in developing requirements

of higher, clearer, unambiguous quality. This will result in higher software quality (fewer

errors), as well as, less waste due to rework since issues will be resolved while discussing

the requirements. The research was limited by the set of agile practices that were adopted

by the case company and calls for further research with additional companies.

A report by study P7 stated that communication of requirements changes was a

challenge at one of the companies involved. The study also reported that writing or

revising user stories or acceptance test cases by the business roles was difficult due to the

limited technical knowledge of the customer to discuss quality requirements. Additionally,

there was a lack of communication of implemented changes between roles. The study

highlighted that the case company’s product line software was running on several different

hardware versions and “a test case may fail due to variability in the underlying hardware

rather than that the requirement is not fulfilled”. A change might be applied to fix the

test case and also rewrite the requirements without communicating the changes. This was

reported to make the tracing and managing of test cases difficult. The study concluded

that further studies are required to investigate requirements format and improve the

coordination and effectiveness of agile requirements practices.

P8 reports the result of a study that aims to investigate the applicability of agile

methods to the software development at Volvo Car Cooperation (VCC). The study

45

CHAPTER 2. RESEARCH BACKGROUND

reported that the introduction of agile methods was hindered by individualism and

long communication chains. The study stated that information was passing through

different channels. For example, to clarify unclear requirements, “information has to go

through the software responsible, to the architects, to the electrical department and so

on”. Additionally, the study also stated the lack of domain knowledge between diverse

teams such as for example, hardware and electronics knowledge than software knowledge

resulted in the creation of vague requirements.

Study P11 addresses the challenge of team-based communication when five

distributed teams that are working on different interfaces of an aircraft cockpit display

system. The study reported that communication between the team was poor because

different members of the team have been modifying the specification of interface

requirements independently and that results in problems and delays during the products

hardware-software integration. The research conducted was in academic setting that

mimics the execution of an aircraft embedded software project and lacks real industrial

environment.

In P14, the author discussed the challenges that need to be addressed in

mass-produced embedded systems. Scaling the system engineering activities of this

domain requires cross-functional teams to collaborate as “components in a large-scale

system are technically very difficult and interdependent and require years of experience

to be fully understood by developers.” The research calls for broadening research on

scaling agile to address the challenge.

Study P16 highlighted the importance of close cooperation and teamwork between

developers and testers to improve requirement engineering practices and avoid a rework

and technically infeasible requirements at an early stage. Based on interviews with

different roles in the six companies, the study recommended that “testers’ reviews of

requirements as a good practice that enhances both the communication and the quality

of the requirements, thereby resulting in better alignment of the testing effort”. This will

result in early identification of problems with the test specification and avoiding more

46

CHAPTER 2. RESEARCH BACKGROUND

expensive problems in the future.

P20 investigated the effect of interaction speed and business goals in a large scale

company developing in-house embedded software. The study reported that one of the

key factors affecting interaction was knowledge unavailability. The team without the

required knowledge of a particular feature will need to interact with an external expert.

The study reported that such an expert might not be available, and this will force the

team to make assumptions that lead to redoing most of the work. The other reported root

factor, affecting the interaction speed, was the availability of unclear requirements. The

study highlighted that to clarify unclear requirements, and the team was also affected by

long waiting time and the continuous interaction for clarification.

Study P23 investigated requirement engineering challenges related to a product with

team composition of software and hardware of automotive companies. The study reported

communication-related challenges such as creating a shared understanding of value and

building and maintaining system understanding. Regarding shared understanding, the

study stated that writing meaningful user stories and high-level user stories could help to

communicate value early and “offer a unique opportunity to bridge distances between

customer and developer”. Additionally, the study also reported that “requirements

need to be discussed with and communicated to other stakeholders within or outside

the organisation, delaying feedback”. Building and maintaining system understanding

between system managers and agile teams was also reported to be challenging. The

study stated that agile teams could add or change backlog items in collaboration with

the product owner without notifying the systems engineers about the changes. The study

recommended that increased gate-keeping and backlog grooming by the agile team and

system engineers will be required to avoid issues during system integration and testing.

In P25, the result of a case study conducted at Ericsson involving a cross-functional

team was reported. The study reported that inefficient communication happened between

team members as a result of “over specialisation” that refers to team members focusing

on their own task and not having adequate knowledge about the overall product. The

47

CHAPTER 2. RESEARCH BACKGROUND

interviewees from the case study highlighted that problems with knowledge sharing create

a challenge for communicating technical dependency and calls for an effective way of

communication across teams.

Study P30 reported the result of three case studies on the adaptation of agile practices

into embedded system development involving hardware development. The author stated

that “agile methods offer benefits to embedded system development similar to benefits of

software benefits, but the methods need to be tailored due to the special characteristics

of embedded system development.” One of the special characteristics that have been

reported is “the different knowledge between developers, which e.g., required tailoring the

planning meeting according to the disciplines.”

In P34, the challenges of automotive requirements engineering (RE) have been

investigated with respect to communication and organisation structure. The study

reported that high-level requirements are often vague and abstract. On the other hand,

lower-level requirements, are very detailed and technical, and in many cases, there is

a gap. “It can happen that engineers add details to the requirements or correct them,

without communicating it”. Additionally, the study reported that there is a lack of

common interdisciplinary understanding because communication between the multiple

disciplines involved in the development has been challenging.

Hardware Development

Study P14 reports that companies within the embedded systems domain struggle with

the alignment of hardware and software development cycles. Another study, P24,

state the difficulty of managing hardware iterations which results in different paces of

software and hardware development. Study P30 also states that the slower nature of

hardware development affects the implementation of agile methods in embedded systems

development.

The systematic review reported by study P36 stated that hardware dependencies

48

CHAPTER 2. RESEARCH BACKGROUND

affect applying agile methods to embedded software development because of the long

development cycles.

In study P37, the experiences and best practices when combining Lean and

agile hardware development have been reported. The study stated that “one of the

differences between hardware and software development is that you can split the software

into (almost) arbitrarily sized bites but not the hardware iterations”. Additionally,

development errors may arise from the interaction between hardware and software. But

"those won’t be known / can’t be resolved until all software is completed."

In study P38, the author stated that hardware is not available during design time

and “software testing is often considered to be impossible.” As a result, testing will mostly

be postponed until after hardware development. The author highlighted that as testing

is the last phase in the process, it might be shortened when the deadline is nearing.

Regulatory Compliance

The availability of standards and regulation process is reported to bring difficulty in

implementing agile in regulated domains. Studies such as P2, P15, P39 and P40 reported

this challenge. A survey conducted by P2, in the European avionics industry reported that

“verification and certification constitute a large portion of the total costs of development

(estimated 40%)”.

In P15, an industrial case study to develop a high-integrity fire and gas detection

system using Scrum according to the IEC61508 standard have been reported. The report

states that “the inherent quality assurance mechanisms in Scrum are not sufficient to meet

the demands imposed by the IEC61508 standard.” The study analysed the standard and

with the consultation of an independent assessor, customised the Scrum process by adding

additional tasks for a team-internal QA role.

Study P39 analyses two standards, IEC 62304 and IEC 82304-1 and reports on

49

CHAPTER 2. RESEARCH BACKGROUND

adopting DevOps methods in a tightly regulated software development of medical devices.

The study states that such standards require special attention in relation to continuous

integration and make it difficult using continuous deployment after deployment to the

customer. The study calls for new tools and methods to be specifically developed for

using DevOps in regulated software development.

Study P40 reported that the development of airborne systems following standard

DO-178B has “milestones and project progress connected to audits (on system design or

software) or formal documents (a document is issued that is required at a certain stage in

the process).” As a result, such compliance to standards shifts focuses away from working

software.

Tool Support

The importance of proper tools to provide a high level of automation have been reported

in study P2. Study P6 report the challenges of DevOps adoption in embedded systems

using a multiple-case study. According to the study “the embedded systems domain,

especially in critical systems, there is a lack of technology that would allow new software

features to be automatically deployed repeatedly and reliably on a continuous basis.”

Summary

In this subsection, the result of the SR to address the research question, IRQ.1, has been

reported. Table 2.6 summarises the challenges that have been identified and the number

of studies reporting the challenges. The majority of the studies reported the challenge of

multiple stakeholder communication. The challenge related to hardware development has

also been reported in some of the studies. This is followed by the challenge of regulatory

compliance that has been reported in four studies. Two studies reported the challenge of

tool support.

50

CHAPTER 2. RESEARCH BACKGROUND

The key finding related to the IRQ.1 is that the challenge of multiple stakeholder

communication was reported in most of the studies. The studies reported that the

embedded safety critical domains were affected by the lack of collaboration between

diverse members and agile methods need to be tailored to address this challenge.

Challenge Studies

Multiple Stakeholder
Communication

P1 P3 P4 P7 P8 P11 P14 P16 P20 P23 P25 P30 P34

Hardware
Development

P14 P24 P30 P36 P37 P38

Regulatory
Compliance

P2 P15 P39 P40

Tool Support P2 P6
Table 2.6: Challenges in the Studies

Addressing IRQ.2

IRQ.2 - What agile practices have been used, and how are the practices implemented in

embedded safety-critical software development?

This research question aims at investigating agile practices that have been used in

embedded safety-critical software development and the way in which the practices are

implemented. The majority of studies report the implementation of a combination of

agile practices. In studies P2, P3 and P19, the implementation of practices from Scrum

and XP has been reported. In P2 the result of a survey conducted among European

avionics industry has been reported. The study extracted practices such as Test-Driven

Development (TDD), Coding Standards, Design Improvement/Refactoring and Planning

Game to be usable in an avionics development process that is governed by DO-178. The

study concluded that “agile methods may promise to resolve some of the specific challenges

in the avionics domain, but there is still a clear need for more research and industrial

experimentation to verify the applicability and to demonstrate improvement effect.” In

P3, the author shares several changes that take place when the transition takes place

51

CHAPTER 2. RESEARCH BACKGROUND

from V-mode methodology to Scrum in Embedded Software Testing Industries. The

study states that the transition challenges the testers to think outside of the box as

customer-centric than relying on manual procedures to perform day-to-day testing tasks.

On the other hand, study P19 report the implementation of Scrum and XP practices

within a medical device software development organisation based in Ireland. Practices

such as On-Site Customer, User Stories and self Organising Teams have been reported.

In some reports, the Scrum framework has been extended in different variations. For

example, P15 extends Scrum with additional XP techniques to develop safety-critical

software and have the software certified according to the IEC 61508 standard.

The modified Scrum, known as SafeScrum, implements two backlogs for functional

requirements and safety requirements. The extension also includes the usage of agile

practices such as Test-Driven Development, Daily Stand-ups, and Continuous Integration.

Study P41 propose the Scrum variant for cyber-physical systems (CPS) known as

Scrum-CPS. This report proposes two sprints, a Design Sprint and a hardware sprint

that synchronises using the concept of Agile Release Train (ART).

In addition to combining and extending existing agile practices, some studies such as

P5, P11 and P42 report the combination of agile practices with Model-Based Development

(MBD). In P5 agile practices from Scrum and XP have been combined with MBD to

develop a spatial real-time embedded system. Five Scrum teams develop and integrate

two different Cockpit Display Systems using the safety-critical Application Development

Environment (SCADE) Suite. The study reports the implementation of practices such as

Sprint Planning Meetings, Daily Meetings, Sprint Reviews, Sprint Retrospectives, User

Stories and Pair Programming (PP). Regarding PP, the study states that “this applied

technique also helped to speed up the delivery and communication among members.”

Study P11 report the implementation of aircraft cockpit display system using Scrum

practices combined with MBD. In P42 the implementation of Scrum for the integration,

and management of nanosatellite event Simulator is reported. The study combined Scrum

with the software Safety-Critical Application Development Environment (SCADE), which

52

CHAPTER 2. RESEARCH BACKGROUND

is a MBD tool that helps to simulate and generate code automatically from the state

machine representing satellite operational phases.

In addition to Scrum and XP, some studies report the implementation of Test Driven

Development (TDD), Lean, DevOps and Behaviour-Driven Development (BDD). Studies

such as P2, P15, P18, P26 and P38 report the implementation of TDD. Study P2

investigated agile methods for Avionics software development. The study stated that

TDD with other practices from Scrum needs to extend the existing testing activity.

Study P9 reports the result of an investigation on the expectations and challenges

from scaling Agile in organisations dealing with mechatronics development. The study

states that TDD is applied by one-third of the respondents. On the other hand, study

P15 reports the importance of TDD to establish high test coverage when developing

safety-critical software according to the IEC 61508 standard. Additionally, studies such

as P18, P26 and P38 reported implementation and benefit of TDD.

Study P37 propose a Lean-Agile Framework for hardware development using

practices such as Two-Level Rolling Planning, Cadence, Synchronisation, and Key

Decision Points. In study P43, on the other hand, the usefulness of the Lean method has

been investigated for developing medical devices. The study identifies key influences

on the software development life-cycle (SDLC) and suggests that the Lean software

development model “can be employed while not affecting regulatory compliance.”

Regarding DevOps, studies P6 and P39 report the implementation of DevOps in

embedded and regulated software development domains. In P6, the challenges for DevOps

adoption in embedded systems have been reported. The study states that cross-functional

teams and continuous integration practices still need improvement. Additionally, in the

embedded systems domain practice such as Acceptance Tests(ATs) “takes several months

after the completion of system development”. The study calls for future research to tackle

the challenges. Study P39, on the other hand, investigated adopting DevOps in tightly

regulated software development using two standards, IEC 62304 and IEC 82304-1. The

53

CHAPTER 2. RESEARCH BACKGROUND

study calls for “further analysis of medical device software and DevOps.”

The implementation of BDD has been reported in study P32. The study reported

the integration of hardware-software (HW-SW) co-design with the BDD to allow the

development teams to work concurrently without delay by other teams. The study stated

that BDD provides the “ability to describe the behaviour of the software as executable

user stories in HW-SW) co-design environment.” Table 2.7 summarises the list of agile

practices and corresponding studies that report the implementation of the practices.

Table 2.8 summarises the combination of agile methods that have been identified.

Agile Practices Studies

Test-Driven Development P2 P15 P18 P26 P38
Continuous Integration P15 P18 P26 P40
Daily Scrum (Stand-up) P1 P8 P15 P18
Sprint Retrospective P5 P8 P18
User Stories P4 P5 P19
Acceptance Criteria/Testing P4 P6 P26
Pair Programming P1 P5 P8
Cross-Functional Teams P4 P6 P8
Cadence P30
On-Site Customer P19
Coding Standards P2
Two-level planning P37
BDD P32

Table 2.7: Agile Practices Identifies

54

CHAPTER 2. RESEARCH BACKGROUND

Methods Studies Modifications & Suggestions

Scrum

P3 The methods need to extend testing activities by having more
acceptance testing

P12 Scrum was adopted to be linked with the Co-Design for the
development of software and hardware.

P29 Scrum was used in pilot projects.
P30 Dividing the work into iterations, especially on the hardware side

was experienced difficult, and all the tasks were not completed in one
iteration.

P35

Scrum and XP P9 Adopted a combination of Scrum practices combined with XP for
open source safety-critical software.

P19

Scrum and MBD
P5 Development of a spatial real-time embedded system within using

Scrum and SCADE system tools.
P11
P42 Scrum combined with model-based design.

Scrum-CPS P41 Proposed two sprints for design and hardware that synchronises using
the concept of Agile Release Train (ART)

SafeScrum P15 Extensions to make Scrum applicable to the development of
safety-critical software using two backlogs for functional and safety
requirements

Lean P43

DevOps P6 Needs to address poor communication between developers and
infrastructure owners using DevOps.

P39

Table 2.8: Agile Methods Combination

2.5.6 Summary of the SR

In this research, a SR has been conducted to answer the research questions, IRQ.1

and IRQ.2. The investigation on the challenges related to agile implementation in

embedded safety-critical domains have shown that challenges such as multiple stakeholder

communication, hardware development, regulatory compliance and tool support have

been reported in the studies.

In addition to identifying the challenges of agile usage in embedded safety-critical

domains, the review has also investigated agile practices that have been reported to be

used in embedded safety-critical domains (IRQ.2). Most of the studies reported the

implementation of more than one agile practice. The combination of Scrum and XP

practices have been reported in most of the studies. Practices such as Acceptance Testing,

55

CHAPTER 2. RESEARCH BACKGROUND

Cadence, Two-level planning and BDD have also been reported.

The review has also investigated the way in which individual practices have been

implemented or modified. Different agile practices have been modified or combined

with other development technologies such as model-driven development. Scrum

has been modified to address functional and safety requirements (SafeScrum) and

hardware-software designs (Scrum-CPS).

As shown in Table 2.7, the majority of agile practices that have been reported in

the SR are drawn from agile methods such Scrum and XP. Additionally, practices from

ATDD and BDD are also reported. As such practices were used in embedded safety

critical domains, they are considered suitable candidate for embedded medical software

development. In the following subsections, a short summary of such candidate agile

practices that have been reported in more than one study will be presented.

2.5.7 Suitable Agile Practices

TDD

TDD is a practice that focuses on writing automated tests before the production code

that specifies and validates what the code will do. “For every tiny bit of functionality in

the production code, you first develop a test that specifies and validates what the code

will do. You then produce exactly as much code as will enable that test to pass.” Janzen

and Saiedian (2005).

The steps to implement TDD is based on the red-green-refactor cycle defined by

Beck (2003). The steps are:

1. Add a unit test;

2. Run all tests and see the new one added in step 1 fail (Red).

56

CHAPTER 2. RESEARCH BACKGROUND

3. Make a little change to satisfy the new change.

4. Run all tests and see them all succeed (Green).

5. Refactor to remove duplication.

TDD helps users write better code. This is because testable code is written by default

Beck (2003), Jeffries and Melnik (2007). TDD is reported to encourage programmers

to learn quickly, communicate more clearly, and seek out constructive feedback Beck

(2003). This will make the practice suitable to assist the communication between

developers. TDD also helps software developers produce working, high-quality code that’s

maintainable and, most of all, reliable Karlesky et al. (2006).

Continuous Integration

According to Fowler and Foemmel (2006), “continuous integration is a software

development practice that requires team members to integrate their work frequently.”

Code written locally by developers will be merged into a common shared source repository

called source control. Developers check out the latest common version of files and check

in any changes they make. When a change is applied to a source control repository by a

developer, it will be built automatically by a continuous integration server.

In addition to the server, continuous integration also needs a comprehensive

automated test suite. Humble and Farley (2010) state that “it’s essential to have some

level of automated testing to provide confidence that your application is actually working.”

The automated tests are used to check if the resulting build made by developer actually

works. Continuous integration gives the confidence that the latest build version is always

ready for production deployment. This is because all code is tested and only merged only

when all tests are passed.

57

CHAPTER 2. RESEARCH BACKGROUND

Daily Scrum (Stand-up)

The Daily Scrum is a 15-minute time-boxed event for the development team to synchronise

activities and create a plan for the next 24 hours. This is done by inspecting the work

since the last Daily Scrum and forecasting the work that could be done before the next

one. The Daily Scrum is held at the same time and place each day to reduce complexity.

The Daily Scrum helps the team to “inspect progress toward the Sprint Goal and to

inspect how progress is trending toward completing the work in the Sprint Backlog”

Schwaber and Sutherland (2017). This meeting helps to improve communications and

promote quick decision making. Additionally, the development team’s level of knowledge

will also be improved.

Sprint Retrospective

A Sprint Retrospective is a continuous improvement activity that is held prior to the next

Sprint. The objective of this activity is to inspect the previous Sprint with regards to

people, relationships, process, and tools and plan for improvements on the next Sprint.

“The Scrum Team plans ways to increase product quality by improving work processes

or adapting the definition of ’Done’.” Schwaber and Sutherland (2017)

User Stories

User stories are a simplified description of features that are broken down into smaller

pieces. “All agile user stories include a written sentence or two and, more importantly,

a series of conversations about the desired functionality” Cohn (2004). User stories are

usually written on sticky notes and arranged on walls or tables to facilitate visualisation

and planning. Jeffries (2001) defines the common model to capture the components of

User Stories called Three C’s. The model involves Card, Conversation and Confirmation.

The card represents a token representing the requirement with notes written reflecting

58

CHAPTER 2. RESEARCH BACKGROUND

priority and cost. The conversation is used to show that details come with the exchange

and opinions of the customers and the product owner. The Confirmation represents the

ATs of the User story.

User Stories are written in different formats or templates. The two common formats

are the role-feature-reason format and Given-When-Then format.

• Role-Feature-Reason - this format is also known as Connextra template. The story

is written in the following format:

As a (role), I want (function) so that (business value.)

The layout of this format is shown in Figure 2.8.

• Given-When-Then - this format is commonly used to write AT with User Stories.

The format is based on human-understandable cause-and-effect clauses known as

Gherkin scenarios. Gherkin is a domain-specific language that is adopted from the

Cucumber syntax that defines a series of steps using Given/When/Then statements

Wynne et al. (2017). A typical user story description based on this format is shown

in Figure 2.9

Figure 2.8: Role-Feature-Reason

The user story description using both formats have an estimation and prioritisation.

Estimation refers to the overall effort that will be required to implement the user story.

It is conducted using story points, numbers drawn from a pool of numbers of a set size.

59

CHAPTER 2. RESEARCH BACKGROUND

Figure 2.9: Given-When-Then Format

For example using Fibonacci-like sequence a user story could have 1,2,3,5,8,13,20,40 or

100 story points. The reason for using a Fibonacci-like sequence is to encourage stories to

be estimated relatively. For example, assuming user story-1 has been assigned two story

points, if user story-2 requires about twice the effort of user story-1, it probably can be

a five story points Cohn (2004).

Additionally, the prioritisation of user stories is used to decide stories with the highest

value to be implemented first. The common way of prioritising stories is using numerical

values (1-3). User stories classed as 1 are critical and must be delivered first. User stories

with medium priorities are classed as two and stories with low priorities are classed as 3.

User stories are reported to enables teams to develop the right software and

“facilitates creating a common understanding concerning the requirement” Lucassen et al.

(2016).

ATDD

ATDD is a practice that involves the collaboration of the whole team to discuss acceptance

criteria with examples and then distills them into a concrete set of acceptance tests

(ATs). The ATs represent the expectations of behaviour the software. ATDD involves

the collaboration of the development team, business (customer) team and testing team.

The three participants are called in different terminologies. For example, Pugh (2010)

60

CHAPTER 2. RESEARCH BACKGROUND

calls them “the triad” while in Gärtner (2012), they are called “the-three-amigos”.

The ATDD cycle, defined by Hendrickson (2008), has four major phases. These are

discuss, distill develop and demo. Figure 2.10 shows the ATDD cycle. In the following

subsections, a short summary of each phase will be presented.

Figure 2.10: ATDD Cycle (adapted from Hendrickson (2008)

Discuss

The first phase of the ATDD cycle involves the discussion of the user stories. This phase

is also called the specification workshop. The discussion will be conducted between the

development team, testers and business stakeholders during the planning phase. The

discussion and collaboration will help to have a shared understanding of the project and

to clarify any misunderstanding of the external view of the system and what the business

stakeholder expects. Pugh (2010) stated that “the members learn from each other about

the business domain and the development and testing issues.” The team will discuss each

user story and then write acceptance criteria for each user stories. Acceptance criteria

define conditions or boundaries that a user story must satisfy so that the story will be

accepted by a user. In short, acceptance criteria are “general condition of acceptance”

61

CHAPTER 2. RESEARCH BACKGROUND

that defines what needs to be done Pugh (2010). Acceptance criteria need to be written

clearly without any ambiguity in a language that is understandable by all members. A

common form of writing acceptance criteria is a bullet point highlighting the intent of

the story where each bullet point is a condition.

After defining the acceptance criteria, the team will discuss to write acceptance

tests (ATs). ATs are scenarios which are derived from acceptance criteria with detailed

specifications of acceptance of the system behaviour. Each acceptance criteria can have

one or more ATs. ATs use test cases to validate scenarios. According to IEE (1990),

acceptance test cases are defined as “a set of test inputs, execution conditions, and

expected results developed for a particular objective, such as to exercise a particular

program path or to verify compliance with a specific requirement.” A particular test

case might also include subtests that will also be executed as a sequence. “The outcome

and/or final state of one subtest is the input and/or initial state of the next.” (Beizer,

1995, p.3). Two common notations used to write ATs are:

• Fit Tables - Fit, stands for a framework for integrated tests, is developed by Ward

Cunningham to help to get customers involved in writing acceptance tests Mugridge

and Cunningham (2005).In this notation, ATs are written in tabular notation. The

rows and columns of a table provide a clear and simple structure.

• Gherkin Language - a domain specific language that use plain-text language with a

extra structure. The notation uses regular spoken language to describe requirements

and scenarios Wynne et al. (2017). Gherkin uses keywords such as Feature,

Background, Scenario, Given, When, Then, And and But.

The outcome of this phase is a set of ATs in the form of concrete expectations and

examples that can be executed.

62

CHAPTER 2. RESEARCH BACKGROUND

Distill

The next phase involves the development of test cases in a format that works with the

test automation framework. Test cases that are developed previously will be turned into

an executable format that can be loaded to a testing framework. Variety of tools such

as Fitnesse, Cucumber, Robot Framework and Concordion are used to automate the test

cases.

Develop

This phase involves hooking up the test when developing the code. The development

team will write code using the TDD approach and execute the acceptance tests. During

development, the developer might identify scenarios that were not identified earlier

Demo

The final phase involves demonstrating the product to the business stakeholders and

Product Owner (PO) to re-validate the tests and ATs.

Pair Programming (PP)

In his book, Extreme Programming Explained: Embrace Change; Kent Beck explained

PP as a way of programming where “all code is written with two programmers at one

machine”. The two pairs can interchange roles. One of the pairs is known as the driver,

who is in control of the keyboard and is thinking about the best way to solve the problem.

The second member of the pairs, the observer, is observing the whole approach and look

for “test cases and perform code inspections” Beck and Andres (2005). Through pairing,

developers or engineers take parts in development, coding, updating and writing unit

tests. This practice is reported to increase the quality of the work product and increase

63

CHAPTER 2. RESEARCH BACKGROUND

the knowledge of each engineer such that the total time to implement a project is lower

with pair programming than without Alistair Cockburn (2000), VanderLeest and Buter

(2009).

One of the main benefits of PP is knowledge sharing. Alistair Cockburn (2000) states

that “knowledge is constantly being passed between partners, from tool usage tips (even

the mouse) to programming language rules, design and programming idioms, and overall

design skill.” According to a meta-analysis study performed by Hannay et al. (2009), the

previous study on PP shows that this practice can help in achieving correctness on highly

complex programming tasks.

Another study performed by Williams (2010) states that PP can be used as a form

of continuous review, debugging and problem identification. The study summarised that

PP has the following benefits for industrial teams:

• Knowledge management

• Enhanced learning

• Higher product quality

• Enhanced team spirit

• Improved cycle time

• Reduced product risk

PP and Its Variants

The investigation of this practice has shown different flavours and variations:

• Cross-Functional PP (CFPP) James E. Hewson (2003), combines one software

engineer with one hardware engineer working for the same objective. This can be

the embedded project they are working on.

64

CHAPTER 2. RESEARCH BACKGROUND

• Pair Design (PD) a more hybrid concept of PP. PD has become a common trend

in User Experience (UX) design. UX design is the process of designing products

that are easy to use and interact. It focuses on enhancing the experience that

people have while interacting with the product. PD involves two designers working

on the same problem simultaneously for the duration of the project. PD “reduces

the communication overhead of a design team”, and also provides “higher quality

design with less documentation” Anderson and Noessel (2017). For example, a

front-end developer working with a graphic designer to build the grid during the

sketching session. The graphic designer and front-end developer are “made aware

of each other” as they are working on the same grid.

• Remote Pair Programming (RPP), a form of PP that is based on real-time

collaboration tools where remote pairs collaborate using collaborative code editing

tools. This form of PP is affected by “network latency, possibly from bandwidth

limitations, and from having to cope with the partner’s IDE configuration (e.g.

colours, layout, key bindings, and so on).” Schenk et al. (2014)

• Distributed PP (DPP) Baheti et al. (2002), two members of the team

synchronously collaborate on the same design or code from different geographical

locations. Unlike RPP, that uses different collaborative tools, DPP uses dedicated

collaboration tools that are distributed and replicate the files to both pairs locally

and keep them in sync.

• Mob Programming, a software development approach where the whole team

work at the same time, in the same space, and at the same computer to deliver a

single work item continuously collaborating. “The team works together to do almost

all the work a typical software development team tackles, such as defining stories,

designing, testing, deploying software, and working with the customer” Zuill and

Meadows (2016)

Table 2.9 summarises the variations of PP and the combinations of pairs that involve

65

CHAPTER 2. RESEARCH BACKGROUND

in the implementation.

PP Variation Pair Composition

Cross-Functional PP (CFPP) Software Engineer and Hardware Engineer
Pair Design (PD) Designer and Front-end Developer, or Two

Designers
Remote Pair Programming (RPP) Two Programmers remotely using their

own real-time tools.
Distributed PP (DPP) Two Programmers remotely using the

same real-time tools that are located on
their local machines.

Mob Programming The whole team working at the same
space.

Table 2.9: PP Variations

Cross-Functional Teams

A cross-functional team is a team that is composed of members from different functional

area to achieve a common goal. This practice is reported to increase the productivity,

creativity and organisational learning of the development team Parker (2003).

2.6 Conclusion of Research Background

This chapter begins by describing the embedded systems design process and challenges of

developing embedded safety-critical software. The industrial investigation which was

conducted to explore the embedded medical software development process was also

presented. This chapter also describes agile software development and agile methods

that are reported to be mostly used in embedded safety-critical domains. In the following

subsection, the research questions IRQ.1 and IRQ.2 will be revisited.

66

CHAPTER 2. RESEARCH BACKGROUND

2.6.1 Research Questions and Objectives Revisited

IRQ.1 What are the challenges related to agile implementation in embedded safety-critical

software development domains?

The SR was conducted to investigate the challenges related to agile usage in

embedded safety-critical software development. The systematic review revealed

that the challenge of multiple stakeholder communication has been reported in

most of the studies.

IRQ.2 What agile practices have been used, and how are the practices implemented in

embedded safety-critical domains?

The SR investigated suitable agile practices that have been used in embedded

safety-critical software development. The review reported that most of the studies

reported the implementation of a combination of agile practices. Practices from

Scrum and XP have been reported in most of the studies. Additionally, practices

such as acceptance testing, BDD and Synchronisation have also been identified.

Using IRQ.1 and IRQ.2 the challenges related to agile usage and agile practices

that have been used in embedded safety-critical domains have been investigated. A

focus has been applied, and this study will focus on addressing the challenge of multiple

stakeholder communication in embedded medical software development domain. The

refined research question, RRQ, will aim to address this challenge by proposing a process

using a combination of suitable agile practices. This will be discussed in chapter 4. In

the next chapter, the research methodology will be presented.

67

Chapter 3

Research Setting

3.1 Research Methodology

A research methodology is the “strategy, plan of action, process or design” behind the

choice of a particular research method Crotty (1998). (Guba et al., 1994, pp.108) stated

that “methodology asks the question: how can the inquirer go about finding out whatever

they believe can be known?”. The research onion proposed by Saunders et al. (2009) has

been used as a guideline to design this research. As shown in Figure 3.1, the research

onion has different layers, and the researcher has to make a systematic choice peeling

away each layer.

3.1.1 The Research Onion

The outermost layer of the research onion describes research philosophy.

68

CHAPTER 3. RESEARCH SETTING

Figure 3.1: The Research ‘Onion’ Saunders et al. (2009)

3.1.2 Research Philosophy

According to Saunders et al. (2009), research philosophy refers to the formulation of

knowledge . There are four types of research philosophies. These are positivism,

interpretivism, realism and pragmatism.

3.1.3 Research Approach

The next layer of the research onion is research approach. It describes how the findings of

the theory have been analysed and presented. Two main research approaches outlined by

Saunders et al. (2009) are deduction and induction. When a deduction is used, theory and

hypothesis are developed, and a research strategy is designed to test the hypothesis. On

the other hand, induction data collection involves theory being developed as a result of

the data analysis. A summary of some of the strategies will be presented in the following

subsections.

69

CHAPTER 3. RESEARCH SETTING

3.1.4 Research Strategies, Choices and Time horizons

Peeling away research approach, the next three layers which are: research strategies,

research choices and time horizons can be thought of as the main ingredient for turning the

research question into a research project. The research strategy is defined as “the general

plan of how the researcher will go about answering the research questions” Saunders et al.

(2009). There are different research strategies from which a researcher may select. These

strategies have “large overlaps among them, and hence the important consideration would

be to select the most advantageous strategy for a particular research study” Yin (2003).

The research choices helps in deciding the number of data types (qualitative or

quantitative) that will be used. The choices are mono method, mixed method, and

multi-method. In mono-method, we will use one data type, either qualitative or

quantitative. On the other hand, both data types are used in mixed method. The

multi-method uses wider range of approaches. Creswell and Creswell (2017).

The time horizons defines the time frame that the project is intended for completion

Saunders et al. (2009). The research onion defines two types of time horizons:

cross-sectional and the longitudinal. The cross sectional time horizon is one where the

data is collected at a certain point. On the other hand, the longitudinal time horizon

refers to the collection of data repeatedly over an extended period. This approach is used

when the research is examining change over time. The next subsection presents a short

summary of some of the research strategies.

Experiment

This research strategy focuses on the causal links between independent and dependent

variables. The investigation is conducted by controlling the “conditions experienced by

participants, administer an intervention, and then test whether the intervention affects

the outcome” Shadish et al. (2002). Experimental research often conducted in laboratory

70

CHAPTER 3. RESEARCH SETTING

settings to control of sample selection, measurement of variables and control of other

variables. These settings are “unlikely to be related to the real world of organisations”

as the extent to which the findings can be generalised to all organisations is likely to be

lower than the real world of organisations Saunders et al. (2009). Therefore, experiments

are not a suitable method for this research as the focus of this study.

Survey

Survey research includes the selection of a sample from a “well-defined population, and

the data analysis techniques used to generalise from that sample” Easterbrook et al.

(2008). This strategy allows the collection of a large amount of quantitative data using

a questionnaire, and the data will be analysed using descriptive and inferential statistics.

The data will be collected from “only a fraction of the population, that is a sample, rather

than from every member of the population” Kitchenham and Pfleeger (2008). According

to Easterbrook et al. (2008), survey research is suited for research which seeks to answer

“what” questions. Survey research is not considered for the initial, problem investigation,

phase of this research as a SR is considered to provide a more in-depth insight into the

investigation.

Grounded Theory

Grounded theory is a research strategy that aims at generation of theory, that is

“grounded” in the systematically collected and analysed data Glaser and Strauss (1967).

In grounded theory, data is collected, marked with codes which are then grouped and

categorised to form the bases for the creation of theory. Grounded Theory is not a suitable

method for this research as the focus of this study is not theory development.

71

CHAPTER 3. RESEARCH SETTING

3.2 Case Study Research

From these various strategies, this research sought to adopt the case study research

strategy as the appropriate strategy for research. A case study is an “empirical

inquiry about a contemporary phenomenon (e.g., a "case"), set within its real-world

context-especially when the boundaries between phenomenon and context are not clearly

evident” Yin (2012). The case study is a flexible design strategy with a wide variety of

data collection methods, including direct observation, participant observation, interviews,

focus groups, documentary sources, archival records, and physical artefacts.

Figure 3.2 shows the design process of case study research adapted for this research

based on Yin and Robert (2009). The research questions, IRQ.1 and IRQ.2 and objectives

OBJ.1 and OBJ.2 are the initial starting point of the study. A SR has been performed

to constitute a conceptual and theoretical structure and address IRQ.1 and IRQ.2. The

research proposed a solution to address multiple stakeholders communication of embedded

medical and safety critical domains using a combination of suitable agile practices (RRQ)

and address the objective stated at OBJ.3.

After defining the conceptual and theoretical structure, the next step includes

defining and designing the case study. Runeson and Höst (2009) define five major steps

when designing a case study research in software engineering:

1. Case study design and planning.

2. Define data collection procedures and protocols for data collection.

3. Collecting evidence.

4. Analysis of collected data.

5. Reporting.

72

CHAPTER 3. RESEARCH SETTING

Figure 3.2: Case Study Research Design (adapted from Yin and Robert (2009)

3.2.1 Case Study Design and Planning

Planning the case study includes deciding the data collection methods, an organisation

to visit, persons to interview, how interviews should be conducted and unit of analysis.

The overall plans for a case study can be formulated in a case study protocol. The case

73

CHAPTER 3. RESEARCH SETTING

study protocol for this research is shown in Appendix D

The design of the case study must also consider ethical considerations when dealing

with confidential information. Runeson and Höst (2009) state that “subjects must

explicitly agree to participate in the case study, i.e. give informed consent”. In this

research, a non-disclosure agreement(NDA) was signed with a case company, and the

interviewee from the company signed consent document. Additionally, the research was

approved by the School of Informatics and Creative Arts (ICA) Ethics Committee of

DkIT.

3.2.2 Define data collection procedures and protocols for data

collection

The next step in designing the case study includes deciding data collection methods.

Having different data sources to choose from, the case study design must explicitly decide

the appropriate data collection procedure for the project. Yin (2003) states that “good

case studies benefit from having multiple sources of evidence.” The findings from different

sources need to be rechecked. This is called “triangulating or establishing converging lines

of evidence” Yin (2003). In software engineering case studies, the most applicable data

collection methods are interviews, observations, archival data and metrics Yin (2003),

Runeson and Höst (2009). The data collection procedures selected for this research are

direct observation, interviews and archival records.

Direct observations involve passively recording and documenting the activities that

take place during the study. In the exploratory case study and the confirmatory case

study, the researcher directly observes the events that have been occurring during the

project.

Data collection through interviews involve a series of questions being asked by the

researcher based on the topic of interest. Interview questions are formulated from the

74

CHAPTER 3. RESEARCH SETTING

research questions as open and closed questions Runeson and Höst (2009). In this

research, semi-structured interviews were conducted to collect case data. With the

consents of participants, interviews are recorded and transcribed for analysis.

Archival records data collection often takes a form of computer files, organisational

charts and documents from different development phases Yin (2014). Artefacts generated

from the case studies are used to analyse the results of the case studies.

3.2.3 Collecting Evidence

Data collection can be performed directly or indirectly. Direct data collection method

allows the researcher to have direct contact with the subjects and collect data in real

time. For the case of indirect data collection method, the researcher collects data without

interacting with subjects.

3.2.4 Analysis of collected data

The most critical step of performing a case study is analysing the case study data. “The

basic objective of the analysis is to derive conclusions from the data, keeping a clear

chain of evidence” Runeson and Höst (2009). The analysis is performed on an individual

or a group that is being studied by the case based on the unit of analysis. The unit of

analysis is a tentative definition that is related to the initial research questions and will

be “revisited as a result of discoveries during the data collection” Yin and Robert (2009).

Runeson and Höst (2009) state that to perform analysis, data has to be “coded, which

means that parts of the text can be given a code representing a certain theme, area or

construct”. The next step includes applying analytic techniques such as pattern matching,

explanation building, and time-series analysis. A pattern-matching logic enables us to

compare the empirically based pattern of the data that has been collected with the

predicted one. Explanation building is used when the case study started with open-ended

75

CHAPTER 3. RESEARCH SETTING

research questions that would lead to an explanation-building. The time-series analyses

involve assembling key events into a chronology and producing array. The array “may

not only produce an insightful descriptive pattern but also may hint at possible causal

relationships”.

During the process of analysis, a small set of generalisations can be formulated,

eventually resulting in a formalised body of knowledge. Generalisations require carefully

constructed claims, and the “claims must be presented soundly and resist logical

challenge” Yin (2003). This research is formulated on the bases of open-ended research

questions. As a result, we will use an explanation building technique to analyse the

collected data.

3.2.5 Reporting

The reporting of the case study “should include sufficient data and examples to allow

the reader to understand the chain of evidence” Runeson and Höst (2009). The chain of

evidence should result in drawing case conclusion and a possible update to the proposed

solution. The result of the proposed case studies will be analysed, and generalisations

and claims will be reported based on the chain of evidence.

3.2.6 Summary of Selected Strategy

This chapter presents the selected research strategy. The research questions and

objectives drive the initial theoretical and conceptual structure. Following the definition

of research questions and objectives, a systematic review and industrial investigations

have been conducted to answer the initial research questions, IRQ.1 and IRQ.2. In order

to address the RRQ, the research proposed a process using a combination of suitable agile

practices. The process is evaluated through expert review and case study.

Table 3.1 summarises the steps of the case study research and the research

76

CHAPTER 3. RESEARCH SETTING

instruments that will be used. The next chapter will present the proposed process.

Case Study Step Selected Research Instrument

Case Study Design and Planning The case study protocol, as shown in Appendix D.
Data collection procedures Semi-structured interviews and archival records.
Collecting Evidence Direct and indirect data collection.
Analysis of collected data Explanation building technique.

Table 3.1: Summary of Selected Research Instruments

77

Chapter 4

Proposed Solution

Introduction

This research initially investigates the challenges of embedded safety critical software

development through the SR to address IRQ.1 and IRQ.2. From the challenges identified,

the research focuses on addressing multiple stakeholder communication of embedded

medical software development which is defined in the RRQ as:

RRQ : How can we support multiple stakeholder communication during requirements

analysis of embedded medical software development using a combination of suitable

agile practices?

In order to address the RRQ, the research proposed a process using a combination

of suitable agile practices. On the following section, the high-level descriptions of the

proposed process will be presented.

78

CHAPTER 4. PROPOSED SOLUTION

4.1 High-Level View of the Proposed Process

This research is proposing a process, called Sync-Up process, to improve multiple

stakeholder communication of embedded medical software development. At the high

level, the process is composed of three major phases, PHASE 1, PHASE 2 and PHASE

3. Figure 4.1 shows a high-level view of the Sync-Up process.

Figure 4.1: High-Level View of Sync-Up Process

PHASE: 1 involves the initial requirement analysis and design stage. During this

stage, the embedded cross-functional team composed of software developers, hardware

and firmware engineers and product team will collaborate and analyse requirements.

The inclusion of technical experts will help the team to consider the technical feasibility

79

CHAPTER 4. PROPOSED SOLUTION

of the requirements, such as what works and what doesn’t work from the perspectives of

different technical members of the team. Additionally, involving technical stakeholders

during the early stages will help in reducing the possibility of rework during the later

stages of the development.

PHASE 2 and PHASE 3 are defined on the foundation of ATDD. In standard ATDD,

originally defined by Hendrickson (2008), the developer, customer and tester will gather

to discuss and distill on requirements such as user stories and elaborate examples and

acceptance tests (ATs) of the user stories Pugh (2010), Gärtner (2012). Additionally,

they will also collaborate on the development and demo stages. A typical embedded

project, on the other hand, has additional roles such as hardware and firmware engineers

in addition to the standard ATDD roles. In these phases, the standard ATDD steps

are redefined to involve experts such as the hardware and firmware engineers during the

discuss and distill stages of the ATDD cycle.

For example, in PHASE 2, the technical experts collaboratively discuss and distill

on the user stories from a technical feasibility point of view and elaborate the examples

and ATs. The discuss and distill activities with the technical experts will help the team

to consider detailed technical specifications and write the examples and ATs. The ATs

will be elaborated further with additional inputs from the technical experts. This will

make the ATs acceptable by all members of the embedded team and provides a channel

for communication between the diverse members. Additionally, the ATs will keep the

developers on the right track during later stages of development.

In PHASE 3, the ATs will be implemented. Additionally, each member of the

embedded cross-functional team will sync up on different implementation issues and

dealing with bugs until all ATs are passed. Once all tests are passed, the demo stage helps

in ensuring that the feature has been built according to the previously set requirements

and expectations.

The detailed description of the Sync-Up process includes a detailed definition of the

80

CHAPTER 4. PROPOSED SOLUTION

three phases using a combination of agile practices that are identified through the SR

shown in Table 2.7. The next section presents a detailed description of the proposed

process.

4.1.1 Detailed Steps of the Proposed Process

The detailed steps of the process are defined using agile practices identified from the

SR. PHASE 1 is defined further using agile practices that are reported to be used

for requirement analysis and design. PHASE 2, on the other hand, is defined using

agile practices that are reported to be useful for enabling collaboration between multiple

stakeholders with diverse knowledge. Figure 4.2 shows the detailed steps of the proposed

process. The next subsection presents a description of the steps.

PHASE 1: Requirement Analysis and Design

Step 1.1: Define User Stories

In Step 1.1, user stories will be written for the feature that is under consideration. When

writing user stories, having a combination of technical experts from each domain will help

the team write the user stories with a complete understanding of the system from the

embedded, hardware and software perspectives. The user stories will be written using

appropriate formats discussed in subsection 2.5.7.

Step 1.2: Prioritise, Estimate User Stories

After defining the user stories, the team will prioritise the user stories based on features

with more business values and dependencies. The team will also estimate user stories.

Estimation is a process of deciding the amount of effort it takes to complete the

implementation of the user stories. The embedded, hardware or product members will

81

CHAPTER 4. PROPOSED SOLUTION

Figure 4.2: Proposed Process

collaborate in clarifying dependencies and help the team to achieve better estimates and

priorities.

82

CHAPTER 4. PROPOSED SOLUTION

Step 1.3: Develop Acceptance Criteria & Acceptance Tests (ATs)

For the user story, the team will write acceptance criteria. Such acceptance criteria

will define conditions that must be satisfied to be accepted by each technical experts.

For example, the acceptance criteria that are developed in collaboration with firmware,

hardware and product experts will define the scope of the requirements and provide a

common set of conditions and reduce ambiguity. The expectations of each technical

member will be addressed through the acceptance criteria, and this will help to mark the

story as done. Additionally, acceptance tests (ATs) will be written for each acceptance

criteria. The ATs defines a detailed specification of the acceptance criteria.

Step 1.4: Develop Release Plan

The final activity of PHASE 1 is the release plan. The release plan describes which feature

will be delivered in the upcoming release. In release planning, a list of user stories being

considered in the coming sprints will be decided, and the team will decide to commit on

the completion of the selected user stories.

PHASE 2: Discuss & Distill User Stories

This phase involves the clarification of the user stories and ATs by further discussing

before the actual implementation of the user stories. When the sprint starts, each team

will implement the ATDD steps, discuss and distill user stories.

Step 2.1: Discuss

During the discuss step, the team members will collaborate and discuss with examples

and elaborate the ATs. The ATs will help to clarify technical constraints and feasibility

from the embedded, hardware and software aspects of the feature under consideration.

83

CHAPTER 4. PROPOSED SOLUTION

Each member of the embedded cross-functional team will contribute to the discussion

for a common understanding. The team will elaborate the ATs using agile practice such

as cross-functional pairing. As a result of the pairing between the technical experts, the

ATs written will have detailed constraints acceptable by the experts.

Step 2.11: Assign New Stories

This step is implemented if the previous step (Discuss) result in the splitting of the user

stories. The discussion with multiple stakeholders could result in the splitting of the

stories and such new stories will need to be assigned to the current or next sprint.

Step 2.2: Distill

After defining the examples and elaborating the ATs, members of the team will implement

distill step. In this step, the team will capture the examples and acceptance test cases

using the notations that work with the test automation framework selected for the project.

The two common types of notations are discussed in subsection 2.5.7.

PHASE 3: Implementation and Execution of ATs

Step 3.1 & 3.2 Implement Hardware/Software and Execute ATs

In these steps, members of the embedded cross-functional team will implement the

hardware and software components. The implementation also includes the execution

of ATs. This stage is executed until all ATs for the current iteration are passed. The

implementation of ATs is conducted following the principles of TDD. In TDD, developers

first write a failing test. This is followed by writing the minimum amount of code that

is required to get the ATs passed (Green). Once the ATs are green, members of the

embedded cross-functional team will conduct exploratory testing through cross-functional

84

CHAPTER 4. PROPOSED SOLUTION

pairing. For example, the technical expert such as embedded engineer and the software

developer can pair to test the behavioural and performance-related parameters from the

embedded system perspective.

Step 3.3: Demo

Once all tests are passed, the user stories will be marked as done, and the embedded

project team will move to the demo step to demo the feature to the product owner (PO)

and business stakeholders. This step involves re-validating the ATs and making sure that

the required functionality has been delivered.

Step 3.4: Sprint Retrospective

The final step of PHASE: 3 involves the implementation of sprint retrospective. It is a

continuous improvement activity that is held before the next sprint. The objective of this

step is to inspect the previous sprint with regards to people, relationships, process, and

tools and plan for improvements on the next sprint. The improvements on the current

sprint will be considered on the next requirement analysis and design that is defined in

PHASE: 1.

85

CHAPTER 4. PROPOSED SOLUTION

4.2 Walk-through of Proposed Process

This subsection will present a walk-through of the proposed process using an ideal

embedded system project. The following project defines a smart temperature and

humidity control embedded system.

Smart Temperature and Humidity Control Project

A company planned to develop a smart temperature and humidity control application

(API) that lets users monitor temperature and humidity by remotely connecting with

the controller device. For evaluation and testing purpose, the company bought DHT22

temperature and humidity sensor, a microcontroller using Arduino board and a WiFi

module for connectivity. The controller has to enable connection for registered users. The

data from the sensor will be archived over ThingSpeaka, an open-source Internet of Things

application and API to store and retrieve data using the HTTP protocol over the Internet.

Figure 4.3 shows the block diagram of the ideal project. The application, on the other

hand, has to enable registered users to read current temperature or humidity, calculation

of the average temperature for the day and provide the temperature and humidity history

for the week.
ahttps://thingspeak.com/

Figure 4.3 shows the block diagram of the ideal project. The embedded system,

shown in the dotted box, is composed of DHT22 temperature and humidity sensor,

Arduino microcontroller, WiFi module and power supply. The system will be connected

to the ThingSpeak platform that will be accessed by the API. The walk-through of the

Sync-Up process for the project will be presented for PHASE:1 and PHASE:2. For

PHASE:3, Implementation and Execution of ATs, the walk-through will be presented

partially as this phase will require the actual implementation of the project.

86

CHAPTER 4. PROPOSED SOLUTION

Figure 4.3: Smart Temperature and Humidity Control

PHASE 1: Requirement Analysis and Design

Step:1.1: Define User Stories

In Step:1.1, the cross-functional team that constitute representatives from product owner

(PO), software, hardware, embedded and testing engineers will gather and analyse

requirements. The team will write user stories for the features of the project. Using

the Role-Feature-Reason format of user stories discussed in 2.5.7, the team will define

user stories such as: Figure 4.4, Figure 4.5 and Figure 4.6 for some of the features

described in the ideal project description. Figure 4.4 defines a user story for connecting

with the device. Figure 4.5, on the other hand, defines a user story for reading the current

temperature, and Figure 4.6 defines a user story for calculating the average temperature.

We can assume that each user stories have been assigned an identification (ID) values of

01, 02 and 03, respectively.

87

CHAPTER 4. PROPOSED SOLUTION

Figure 4.4: Connect with Device User Story

Figure 4.5: Read Current Temperature User Story

Figure 4.6: Calculate Average Temperature User Story

Step:1.2: Prioritise, Estimate User Stories

After defining the user stories, the team will perform prioritisation and estimations.

The user stories will be estimated with the involvement of all technical members of
88

CHAPTER 4. PROPOSED SOLUTION

the embedded cross-functional team. For example, user story 01 defined for connecting

with the device can be assigned 3 story points as configuring and connecting with the

device will need more efforts. On the other hand, the user story 02 defined for reading

the current temperature and user story 03 defined for calculating average temperature

can be assigned 1 story points as reading the sensor data and calculating the average

temperature can require less effort once the connection with the device have been made.

In addition to estimation, the prioritisation of the user stories will also be conducted based

on the business need and dependency between different functionalities of the project. For

example, user story 02 should be implemented after the user story 01 as we cannot read

temperature unless we connect with the device. Additionally, any user story that have a

functionality of communicating with the device require the device to be in standby mode

and configured properly.

Step:1.3: Develop Acceptance Criteria & Acceptance Tests (ATs)

After defining the user stories and performing prioritisation and estimation, acceptance

criteria will be written by the cross-functional embedded cross-functional team team

composed of customers, product owner, developers, testers and embedded engineers. For

user story 01, the following set of acceptance criteria can be defined.

• Access the cloud APP that has access to the device.

• Provide user name and password to the app.

• Request connection with the device.

• Verify connectivity.

The acceptance criteria for user story 02, reading the current temperature, can be

used to check if connectivity with the device has been made before trying to read the

current temperature.

89

CHAPTER 4. PROPOSED SOLUTION

• Check the connectivity of the APP with the device.

• Read the temperature at the current time.

Once acceptance criteria are defined, ATs will be written using notations that will

be selected for the project. From the common notations that are used to write ATs, we

will present the walk-through using Fit Tables. Using this notation, ATs are written in

the form of tables. An example of AT table for reading temperature from the device at

a specific time is shown in Table 4.1.

Input Expected Output
ReadTime Temp()

0 Temp Data
1 Temp Data
2 Temp Data
3 Temp Data
4 Temp Data

Table 4.1: Read Temperature Acceptance Test

Table 4.1 shows the acceptance test case written for user story 02 using the

ColumnFixture notation. In this notation, table columns are mapped to fields or methods,

and output values will have parentheses. The Read Time represents the time, in seconds,

at which reading will be performed, and the Temp value with parentheses represent the

output temperature value that is read at the specified time. On the other hand, Table 4.2

shows the acceptance test case written for the user story 03. The first two columns show

the minimum and maximum temperature values and the third column shows the average

temperature output.

Input Input Expected Output
min max Average()
25 35 30
-40 -20 -30
70 81 75.5

Table 4.2: Calculate Average AT Case

90

CHAPTER 4. PROPOSED SOLUTION

Step 1.4: Develop Release Plan

This step involves the selection of user stories that are going to be implemented during

the current sprint. Based on the prioritisation and business needs, the team will select

stories that must be considered in the current sprint. For example, we can assume that

before working on user stories that implement the application software components of the

project, the user stories that define the basic device configuration and communication

should be implemented first.

The output of Phase 1 involves a set of user stories that are prioritised and estimated.

Additionally, acceptance criteria and ATs, that are defined for the user stories, with release

planning that will decide the user stories that are going to be implemented in the current

sprint.

Phase: 2: Discuss & Distill User Stories

Step:2.1: Discuss

In this step, the embedded cross-functional team will discuss and distill the user stories

and ATs. One of the main benefits of the discuss stage is to perform a detailed clarification

on parameters and extreme cases. The involvement of technical experts of the team will

help to clarify the ATs of the user stories. For example, for the previous test case written

to read the current temperature, the technical experts of the team such as the embedded

and hardware engineers can discuss on the sampling period for the DHT22 sensor, which

is 2 seconds. This means that for an accurate result, consecutive readings should not be

performed in less than 2 seconds. As a result, the team can agree on the delay imposed

as a result of the sensor sampling time. The AT shown in 4.1 can be modified to check

consecutive readings. Based on the discussion, additional constraint can be added to

the initial ATs by adding inputs columns with CurrentReadTime and PreviousReadTime

entries. The early clarification of such additional information, before development starts,

91

CHAPTER 4. PROPOSED SOLUTION

will help the team to avoid possible future rework.

Input Input Expected Output
PreviousReadTime CurrentReadTime Temp()

0 1 0.0
1 4 Temp Data
7 8 0.0
10 20 Temp Data
Table 4.3: Modified AT Case with New Entries

Table 4.3 shows the modified AT case table. We can observe that from the discussions

between technical experts, the initial acceptance test case can be elaborated further with

the new information. For example, the expected output values can be assigned empty or

0.0 for readings that are performed in less than 2 seconds.

Step:2.2: Distill

This step involves capturing the examples and ATs using the appropriate test automation

framework. Some of the common AT frameworks include FitNesse, Cucumber and

Robot framework. In this walk-through, the distill step will be presented using FitNesse

framework. This framework uses table based AT formats known as Fit Tables. An

example of a Fit table for the AT case shown in Table 4.3 is shown in Figure 4.7. Based on

the rules defined in this AT case, for reading performed in less than or equal to 2 seconds

interval, the system under test (SUT) is supposed to respond with 0.0 temperature value.

On the other hand, readings performed in more than 2 seconds should have the current

temperature. For the walk-through, we will generate random float values between (0 -

40) to mimic temperature readings.

92

CHAPTER 4. PROPOSED SOLUTION

Figure 4.7: Fit Table for Read Temperature AT Case

Phase 3: Implementation and Execution of ATs

Step 3.1 & 3.2 Implement Hardware/Software and Execute ATs

The implementation of hardware and software involves writing the application code and

building the embedded components. During the application code development, the ATs

will be executed. To execute the ATs using the selected automation framework, an

additional code needs to be written for the Fit table in Figure 4.7. Such code is known

as a fixture. The path to the fixture class will be defined using the classpath: command

on the Fit table wiki page. The fixture code will then test the SUT for all test scenarios.

The SUT code that is developed for this walk-through is an abstract application

that mimics the ideal smart temperature and humidity control application. During the

implementation of the application, the AT cases needs to be executed until all tests cases

are passed. A passing and failing test cases are shown in Figure 4.8 and Figure 4.9. In

Figure 4.8, the AT case is passed as the difference between current read time and previous

read times are more than two seconds, and the SUT responded with the temperature data

93

CHAPTER 4. PROPOSED SOLUTION

as expected.

During the implementation phase of both software and embedded components, the

SUT could respond differently than the previously agreed acceptance criteria. Let us

assume the temperature sensor is sending irregular temperature data every one second

due to temperature sensor sampling error (hardware problem) or application software

error.

The previously agreed AT case should generate an error, as shown in Figure 4.9. For

example, the first row shows temperature reading performed in one-second duration. The

expected result, (0.0) and actual result (26.69) are different, and the test fails. On the

initially developed AT case, the teams have agreed to have common acceptance criteria

and AT that should be fulfilled to mark the user story as complete. The elaborated AT

cases from the discussions with the experts clarified that readings should be performed

in more than two-second duration for correct sampling. The AT cases will help the team

to track down the issues based on initially agreed acceptance criteria.

Once all acceptance tests are passed for the selected user stories in the current

sprint, the final step of Phase 3, Sprint Retrospective, will be implemented. The team

will analyse the current sprint for possible improvement and will go back phase 1 for the

next set of user stories.

4.2.1 Summary of the Walk-through

In this subsection, a walk-through of the Sync-Up process was presented for an ideal

embedded system project. The walk-through was also demonstrated using an automated

acceptance testing framework known as FitNesse. The expected artefacts of each step

have been discussed. One of the main objectives of the proposed process is to support

the collaboration of multiple stakeholders that are involved in an embedded medical

project. Through the steps of the process that allows cross-functional embedded teams

to collaborate and sync up, the walk-through has shown that the acceptance criteria and

94

CHAPTER 4. PROPOSED SOLUTION

Figure 4.8: Passing Test Case

Figure 4.9: Failing Test Case

95

CHAPTER 4. PROPOSED SOLUTION

AT cases developed will help the involved teams to have a common language to drive the

overall development process.

4.3 Conclusion of Proposed Solution

This chapter presents the description of the proposed process that is developed to address

the research question, RRQ.

The chapter began by describing the high-level and detailed description of the

process. Additionally, a walk-through of the process was presented for an ideal embedded

system project. The walk-through shows the expected artifacts and expected benefits of

the proposed process. The next chapter will present the first part of the validation process

using expert review.

96

Chapter 5

Expert Review

Introduction

This chapter presents the validation of the proposed process through expert review. The

expert review will help in evaluating the proposed process by leading experts that have

experience in agile and embedded software development. The review process includes

the selection of experts, presenting the walk-through of the proposed process to the

experts and addressing the improvements suggested by the experts. The next subsection

presents the expert selection process. This is followed by the review process, and finally,

the improvements suggested by the experts will be presented.

5.1 Expert Selection

The search for the experts was conducted through LinkedIn1, a social network for

professionals. The researcher contacted candidate experts that satisfied the criteria

defined in the following subsection.
1https://www.linkedin.com

97

CHAPTER 5. EXPERT REVIEW

Criteria for Selecting Experts

The experts have been selected based on their knowledge and experience on agile software

development within embedded safety critical domains. The main criteria that have been

used for selecting the experts were:

• Having many years of experience implementing agile software development either

as a product owner, scrum master, developer or consultant.

• Having experience in embedded safety critical domains.

• Having experience in implementing or coaching the implementation of specific agile

practices such as ATDD.

The expert identification, communication, and review was conducted over the period

of ten months. Connection requests were sent to 17 experts. Additionally, the researcher

advertised the expert review request on closed groups of embedded systems. Initially

seven experts agreed to be part of the expert review. During the later stage of the

communication, four of the experts agreed to review the proposed process.

Once experts were identified, they were sent an expert consent form for their

participation and willingness. The expert consent form that was sent to the experts is

shown in Appendix E. Four leading experts have been involved in reviewing the Sync-Up

process. A short synopsis of each expert profile will be presented as follow.

Expert 1

Expert 1 has over twenty years of experience in different industries where he worked in

many different roles including, developer, tester, analyst, product manager, test manager

and agile/lean coach. The expert had a well-known case study on the implementation of

ATDD.

98

CHAPTER 5. EXPERT REVIEW

Expert 2

Expert 2 has fourteen years of experience in software testing of embedded medical devices

such as injection devices and infusion pumps, smart lighting embedded software and

various embedded test automation tools projects. At the time of the review, the expert

was working on two projects. On one of the projects, he was a scrum master that includes

eight people composed of software developers, software testing and product owner. On the

other project, he was working as a delivery manager which involves hardware engineers,

firmware developers, mobile app developers and quality assurance.

Expert 3

Expert 3 is a speaker, consultant and author of a dozen books on agile, Lean and managing

high-technology product development. The expert has helped managers, teams and

companies to move to an agile approach by applying a pragmatic approach. She has

helped companies in embedded safety critical domains.

Expert 4

Expert 4 has twenty years of experience in software and embedded system design for

instrumentation in safety-critical industrial and medical applications. She is among the

first to apply agile methods to embedded systems development. She has led agile change

initiatives beyond software development in safety-critical systems such as avionics, factory

automation, medical & defence system, and teaches modern agile approaches like mob

programming, agile hardware, and Lean development methods.

99

CHAPTER 5. EXPERT REVIEW

5.2 Review Process

For Expert 1, one meeting was conducted, and the researcher presented the walk-through.

The expert was then asked to provide his advice and suggestions. For Expert 2, Expert

3 and Expert 4, two meetings were conducted using video conferencing tools Skype and

Zoom. The first meeting was an introductory session where the researcher and the experts

would get to know each other. In this meeting, the experts were asked questions related

to their experience in agile software development, embedded software development and

challenges faced by the experts. On the second meeting, the researcher presented a

walk-through of the proposed process, and the experts were asked to provide their advice

on the proposed process. The experts were asked to point out the deficiency observed,

benefits, improvement and other suggestions they would like to add. The list of presented

questions is given in Appendix F. With the consent of the experts, the video conferences

were recorded and transcribed for reference.

The summary of the review conducted with each expert is presented in the following

subsections.

Expert 1

This expert has extensive experience in the implementation of ATDD and has been

helping companies to improve their collaboration by implementing ATDD practices such

as discuss and distill. With the limited availability, the expert was only presented the

walk-through of the proposed process.

When asked to comment on the benefits of the Sync-Up process, the expert stated

that he believes the proposed process can work and help the embedded cross-functional

team to deliver faster. The expert went on to state that the main reason we pair people

is because “we want to inject quality” at the beginning rather than detecting problems at

the end. He stated that during the development phase, if we “find issues late”, there will

100

CHAPTER 5. EXPERT REVIEW

be a lot of rework. By injecting some quality at the beginning of this phase as a result

of pairing, we can remove possible rework. The expert noted that the impression he got

from leaders is, if people are paired, then they will only get one thing done instead of

two things that they could work and “this could be a problem”. To overcome this, the

expert emphasised the importance of “coaching managers” and explaining the concepts

from Lean on limiting work in progress (WIP). He stated that by limiting WIP, we can

actually get more things done. According to the expert, occupying the members of the

cross-functional team only for about 70% of their time is more likely to produce more

work than if we occupy them for 100%.

For the remaining experts, two interviews were conducted. The first interview

was conducted to gather the challenges and experience faced by the experts. On the

other hand, the second interview was conducted for the comments and suggestion on the

proposed process. The result of the first interview conducted with the experts will be

presented in the following subsection.

5.2.1 Challenges and Experience

Expert 2

The expert stated that he has been working with diverse teams such as hardware

engineers, firmware developers, application software engineers and scientist teams. The

expert noted that from his experience hardware teams were not following agile and they

were working at “their own pace”. The firmware teams, on the other hand, would work

based on the initially available hardware. Additionally, the application software teams

were completely relying on the embedded software. The expert stated that such diverse

stakeholders were not integrating their tasks properly.

The expert gave an example from his previous project experience. He stated that

on the project to develop the smallest endoscope, the teams initially agreed to use an

101

CHAPTER 5. EXPERT REVIEW

Android operating system for displaying the real-time image of the endoscope camera.

The selection of this operating system would have “some delays in a microsecond” on

the processing of the image. During the requirement analysis and development phases,

the stakeholders had all agreed on the delay and the team delivered first build and went

for a trial with doctors and scientists. Once it went into the doctors and scientists

“they found that this delay was unacceptable”. The expert stated that this change cost

the team around four months of delay because they needed to change the operating

system from Android to Linux completely. The change in the operating system required

additional changes to the video connection and communication protocols. The expert

stressed that the involvement of some of the stakeholders, such as the scientist team, at

the later stage created “huge delay” and a clear example of the communication gap and

miss-collaboration of diverse members.

When asked to comment on the benefits of the syncing up, the expert stated that

most of the time failure occurs because stakeholders were not reviewing and analysing

requirements and AT cases. The expert referred to another project where he was involved.

In this project, the teams initially agreed on AT cases and developers started based on

this test. The expert stated that when about 40% of the development was completed, a

reviewer team from stakeholders started reviewing the AT cases and found that the AT

test cases were “not something which they were expecting”. The expert went on to state

that this change has ended up wasting about 40% of the time of the software developers,

firmware engineers and test protocol designers because the detailed test plan development

was already started. The expert stated that all members of the stakeholders should sync

up early and agree on the user stories and AT cases before development is started, to

avoid the cost of rework.

Expert 3

This expert was initially asked about the experience of implementing agile and the

challenge of multiple stakeholder communication. The expert responded that from her

102

CHAPTER 5. EXPERT REVIEW

experience working with different embedded clients, hardware teams have always been

“almost separated from firmware teams”. The software team, on the other hand, would

have often been in a third location. The expert also stated that even if the teams were

in the same location, they would have been on “different forces”. The separation of such

diverse teams was creating a number of long integration groups. The expert stated that

for embedded software development, most problems show up after the product is in the

field, and this would make it “really difficult to tell where the problem arises”.

When asked to comment on the benefits of the syncing up, the expert stated that to

have a coherent user story that has important components from the architecture, we need

to sync up various layers such as the application program interface (API), middle-ware

and the platform which encompasses both firmware and hardware. The expert stated that

user stories should impact on the architecture, not just the software side. Additionally,

the expert noted that ATs should also include the hardware acceptance, the firmware and

the mechanical aspects of the system.

The expert used an example of a client that implemented user stories for software and

firmware and design by contact for the hardware. The client was using separate Kanban

for software and firmware user stories, so the firmware was always verified in advance of

the software. The expert advised the client that the firmware and software teams have

to work together as a cross-functional team, otherwise, they would run into problems

because the cycle time of the firmware Kanban and the software Kanban will be different.

The expert went on to state that the client didn’t like her advice because the client was

not looking at the user story cycle time, merely the software and firmware. The expert

stated that “we might end up with big teams involving software, firmware and hardware

developers, but all multiple stakeholders should come together as a cross-functional team

and create the user stories”. Additionally, having the firmware and mechanical experts

will help the team to consider the implications of the firmware and mechanical components

on the user stories.

103

CHAPTER 5. EXPERT REVIEW

Expert 4

The expert stated that she worked with diverse members such as software admins,

software engineers, firmware engineers, electronics designers, mechanical engineers,

materials scientists and mathematicians. She was involved in projects covering different

stages of the software development life-cycle (SDLC) such as requirement analysis, design,

and implementation.

The expert gave an example project on multiple stakeholder communication. She

stated that in the project the system engineer wanted all groups to do their design for a

scientific instrument that needs to produce each measurement within tight performance

time constraint (a few seconds). The expert went on to state that the system engineer

was not willing to tell other teams how much of that time could be allocated to the

software they were designing. There were “too many unknowns” for him to do this, and

no other disciplines outside software could work incrementally. The expert stated that

this created a big strain in the project team because this situation could only be addressed

by a cross-functional team where all disciplines could cooperate in a fluid way to “emerge”

a workable solution in an iterative way.

When asked to comment on the benefits of the syncing up, the expert stated that from

her experience, the most expensive problems boil down to “stakeholders having misaligned

views or goals”. In her experience, it was a rampant problem, and the Sync-Up process

can help to point out this challenge. Additionally, having worked in flight simulation

that includes mathematical modelling, design and various engineering types, the expert

stated that such disciplines that go into simulation work can also benefit from the Sync-Up

process.

Table 5.1 summarises the project experiences of the experts regarding multiple

stakeholder communication.

104

CHAPTER 5. EXPERT REVIEW

Factors of Multiple Stakeholder
communication challenge

Effects on Projects

Involvement of stakeholder at later
stage of development.

Delay on project timeline, wasting
developers time.

Separation of hardware, software and
firmware teams (Separate Kanban).

Long integration groups.

Too many unknowns between
between different disciplines.

Strain on project timeline.

Stakeholders having misaligned views
or goal.

Extra effort required when problem
arise.

Table 5.1: Factors of Communication Challenges and Effects on the Projects

5.2.2 Comments on a Process

In the first part of the interview conducted with each expert, we have explored the

experience of the experts on multiple stakeholder communication. The second section

of the interview includes the researcher presenting the walk-through of the proposed

process, and the experts were asked to give their comments on the proposed process.

The summary of the comments given by each expert will be presented in the following

subsections.

Expert 1

Being an expert on implementing ATDD, this expert was asked to give his advice on the

steps that involve ATDD. In his experience, he preferred to do the examples with the

discuss and distill steps, after starting the sprint. The expert noted that the discuss and

distill practices are very demanding activities, and we cannot expect people to implement

them for more than an hour or more. Based upon his experience, he found that it’s “more

effective” to discuss and distill based on the user story bases. The expert went on to

state that when we start our sprint, we can take a user story and get all the stakeholders

together and design the examples. Once each stakeholder is happy with the examples,

developers will start writing the functional tests cases and implement the code for those

105

CHAPTER 5. EXPERT REVIEW

specific user stories.

The expert also suggested that the discuss and distill activities could result in the

splitting of the user stories. The expert went on to state that when we define user stories

and get people to write examples, we will find out very soon whether a user story is too

big and needs to be split. According to the expert, if there are three or more examples

in a single user story then the user story is “already too big”. The expert suggested that

the cross-functional team can identify a set of examples, and by looking at the examples,

the team can find a way of splitting the user stories in two or three. The new user stories

can be added to the current or the next sprint depending on how priorities are stored.

Expert 2

The expert stated that Phase 1 can be implemented in two ways. The first way

suggested was that members of stakeholders all come together and discuss and create

their requirements. The expert went on to state that the best scenario would be if

the product owner (PO), Scrum Master, a technical expert from each domain like the

hardware lead, the firmware lead, application lead and testing member are all involved

and sync up to create user stories and ATs. The expert went on to state that hardware

teams usually work in multiple activities and depends on tools, labs and also their work

usually depends on vendors. The expert stated that to incorporate the changes in line

with members such as firmware and software teams, syncing up is important.

The second way suggested by the expert was if multiple stakeholders create a

cross-functional team and write user stories and ATs. From his experience, the expert

noted that creating a cross-functional team in the embedded domain is difficult. The

expert went on to state that the hardware team’s dynamics are different than that of the

software team and their working pattern is also different. According to the expert, the

hardware team generally work in a pure waterfall model. The software team, on the other

hand, follow the design output of the hardware team and adopt the changes proposed.

106

CHAPTER 5. EXPERT REVIEW

Despite the difficulty of creating a cross-functional team, the expert suggested that the

activities in Step 1, which are defining user stories and ATs, can be implemented using

cross-functional teams composed of each technical expert.

Expert 3

A walk-through of the proposed process was presented to the expert, and the expert

was asked to provide the deficiency and recommendations observed. She stated that if

hardware, software and firmware teams in their silos, separately sync up their activities

after some period of time, “that’s not agile”. The expert suggested that the activities

in PHASE:1 should include all members of stakeholders in one cross-functional team.

The expert stated that in this phase syncing up is “non-existent” as we’re part of a

cross-functional team with a representative of all layers of architecture. The expert also

noted that the discussions on the user stories such as the discuss and distill stages in

PHASE:2, should also include the entire team.

For PHASE:3, the expert stated that we might need “little sync ups” frequently. In

her experience, hardware and firmware teams iterate on the design and create tooling

for simulations. The expert stated that as long as simulations are available, hardware

and firmware teams can have something to share with other members such as software

developers and syncing up will be possible.

Expert 4

The expert stated that in practice, some of the sequencing of steps often cannot be done

as planned. For instance, breaking user stories into smaller ones will cause re-estimation,

and this itself will raise questions that cause a rethink of the requirement that preceded

the first user story definition.

The expert went on to state that engineering is a creative endeavour, but is not

107

CHAPTER 5. EXPERT REVIEW

usually seen as such. For example, in a TV series, the actors start to mould the characters,

causing the writers to get new insights, and so on to the point that in the best instances no

one can say how many cycles through the write-edit-act loop have been done. Similarly,

the agile embedded software teams end up making small utilities that help to allow

hardware and software to proceed independently via strong interfaces with frequent cycles

of the hardware test. This will allows better hardware and software ideas to feed to the

next set of user stories. The expert stated that the Sync-Up process definition has to

allow an indeterminate number of cycles around the creative loop.

Summary of Comments

The comments stated by the each experts is summarised as as follow:

• The implementation of the discuss and distill steps should be conducted after

starting the sprint.

• The embedded teams should discuss and distill on the user story bases.

• The discuss and distill activities could result in the splitting of the user stories that

can be added to the current or the next sprint.

• Phase 1 can be implemented in two ways. In both ways, creating a cross-functional

team is difficult in the embedded domain.

• The activities in Step 1, can be implemented using cross-functional teams composed

of each technical expert.

• For PHASE:3, we might need “little sync ups” frequently as long as simulations are

available.

• Some of the sequencing of steps often cannot be done as planned but embedded

software teams have to make small utilities that allow hardware and software to

proceed independently.

108

CHAPTER 5. EXPERT REVIEW

5.3 Improvement

All the four experts were presented with the walk-through of the initial proposed process

which is shown in Figure 5.1. The experts were then asked to give their advice on any

improvements they may suggest. The improvements and suggestions made by each expert

were taken into consideration and applied to the initial version of the proposed process.

The improvements made after the suggestion of the experts will be presented in the

following subsections.

Figure 5.1: Initial Version of Proposed Process

5.3.1 Improvement 1

Expert 2 stated that the activities in PHASE:1 can be implemented using a

cross-functional team. This expert noted the difficulty of creating a cross-functional teams

109

CHAPTER 5. EXPERT REVIEW

in embedded system projects. The expert suggested that he prefers if the hardware lead,

firmware lead, application lead and the product owner all come together and create the

user story and ATs. On the other hand, the expert highlighted the importance of syncing

up during the development phase.

According to Expert 3, the way diverse teams sync up in different stages has to

be clarified. She suggested that the initial steps of defining the user story and ATs

should be conducted using a cross-functional team. On the other hand, the expert

stated that during the development phase, PHASE:3, we will need little sync ups as

separate silos with simulations on the hardware and continuous integration with the

software. Additionally, the other experts also stated that multiple stakeholders need to

sync up during development frequently in their separate silos. The experts stated that

the frequency of syncing up during the development phase will depend on the availability

of simulations and cost of prototyping. The experts stated that when the hardware is

not ready, simulation and prototyping of the hardware can be used by software and

firmware teams in advance and development can be started. As highlighted by Expert 1,

for a complex machine, prototyping can be very expensive. On the other hand, for small

devices such as wearable items, prototyping can be done using evaluation boards.

Update on Process

On the initial version of the proposed process, the Sync-Up process was designed to

only involve the embedded engineer to sync up with the development teams in all three

phases. The changes to the initial version of the proposed process made as part of the

feedback from the experts, attempted to resolve this issue, i.e. a cross-functional team will

be formed and the team will implement PHASE:1 and PHASE:2 using cross-functional

pairing.

110

CHAPTER 5. EXPERT REVIEW

5.3.2 Improvement 2

All experts stated that the PHASE:2 could lead to the splitting of the user stories and such

new user stories need to be assigned to the current or the next iteration. Additionally,

the experts stated that it’s better to conduct the discussion of the user stories when the

Sprint starts.

Update on Process

On the initial version of the proposed process, the splitting of user stories was not

considered. On the latest version of the proposed process, an additional decision was

placed after the discuss step to check if the new user stories are being added to the

current or next sprint. On the other hand, the discussion of the user stories is modified

to be conducted when the sprint starts. The latest version of the proposed process is

shown in Figure 4.2.

5.4 Conclusion of Expert Review

The validation of the Sync-Up process was conducted through expert reviews. The

experts involved have shared their experiences on the challenges of multiple stakeholder

communication and the importance of involving all stakeholders when we analyse the

requirements of embedded medical software development.

The improvements and suggestions made by each expert have been taken into

account, and appropriate changes have applied to the initial version of the proposed

process.

In addition to expert review, the Sync-Up process was validated using case studies

that were conducted in academic and industrial settings. On the next chapter, the

111

CHAPTER 5. EXPERT REVIEW

implementation of the process will be presented.

112

Chapter 6

Implementation

Introduction

This chapter presents the evaluation of the Sync-Up process. The evaluation involves an

exploratory and confirmatory case studies that are conducted in academic and industrial

settings respectively. The objective of the exploratory case study was to explore the

Sync-Up process when developers analyse the requirement by writing user stories and

ATs. The confirmatory case study was conducted in three phases. The first phase

involves understanding the pre-implementation process of an embedded company. This

is followed by the implementation of the Sync-Up process following the proposed phases

and generating artefacts. Finally, interviews were conducted to analyse the effect of the

Sync-up process. Additionally, archival records and artefacts that were generated from

the case study were collected for analysis. The next section presents the exploratory case

study.

113

CHAPTER 6. IMPLEMENTATION

6.1 Exploratory Case Study

The exploratory case study was conducted to investigate the Sync-up process when

developers analyse requirements by writing user stories and ATs. To conduct the case

study, we set up two teams:

• Team One - composed of four software developers.

• Team Two - composed of a cross-functional team involving three software

developers, electronic engineer and embedded engineer.

In both teams, the software developers had previous experience of writing user

stories, ATs and following an agile process to produce working software. The teams

were given a description of an ideal embedded system project that is described at a high

level as shown below:

Exploratory Case Study Project Description

A home automation system that controls the room temperature automatically and saves

power by switching fans ON and OFF have been presented. For the described system,

a temperature sensor will be used to measure the room temperature in real-time. The

functional behaviour of the controller has been in a way that when the temperature becomes

greater than certain optimum range, the fan should be turned ON and when temperature

becomes lower than the optimum range, the fan should be turned OFF.

Both teams were given the project description and were asked to analyse

requirements following PHASE:1 of the proposed process, which includes:

• Step 1.1: Define User Stories

• Step 1.2: Prioritise, Estimate User Stories

• Step 1.3: Develop Acceptance Criteria and ATs

114

CHAPTER 6. IMPLEMENTATION

• Step 1.4: Develop Release Plan

6.1.1 Feedback from Teams

The researcher was involved in observing both teams directly as they followed the

steps. All artefacts produced were collected. These included expected artefacts such

as user stories, ATs and any extra artefacts, including a list of questions provided by the

participants.

Team One

The team wrote six user stories of which three were assigned for iteration one and three

were assigned for iteration two. Regarding ATs, the team only wrote two ATs leaving the

user stories incomplete. The ATs were to check features of the described system. One

of the user stories, for example, was Read temperature, and the corresponding AT was

to check the temperature read value at different time intervals. Quite a few questions

were raised by Team One as they did not have direct access to the embedded engineer.

Despite developing the user story from the system description, the team was left with

additional technical questions such as:

1. What’s the source of energy?

2. What’s the connection?

3. How often is temperature read?

4. Can we amend/tailor max/min temperature?

In total, there were 15 questions. As these were unanswered, the team had to make

certain assumptions and progressed with the understanding that the user stories would

need to be revisited once answers were available.

115

CHAPTER 6. IMPLEMENTATION

Team Two

This team wrote seven user stories from which three user stories were assigned to iteration

one and four user stories were assigned to iteration two. The team also wrote four

ATs. The user stories that were written by the team also include the basic functional

behaviour described in the project description. But this team also wrote detailed ATs as

the embedded engineer was collaborating with the software developers.

When this team were analysing requirements, the developers were left to write

user stories, and, in some intervals, elaboration/communication was performed. The

embedded engineer was able to interact with the software developers and was clarifying

issues and confusions that the developers were having. Similar questions have been raised

as Team One, but in Team two, the majority of the questions were clarified during the

discussion with the embedded engineer. For example, a question similar to one of the

questions in Team one, have been raised and the embedded engineer explained:

• How real-time systems work?

• How sensors read data from the environment? and what possibilities are there from

the types of sensors.

.

The developers were able to understand the system to be developed with more

technical constraints in mind and have two dimensional views of the system. As a

result, the user stories were written more easily and clearly characterising the anticipated

requirements.

116

CHAPTER 6. IMPLEMENTATION

6.1.2 Exploratory Case Study Conclusion

The exploratory case study was conducted to explore the benefit of involving technical

experts, such as an embedded engineer when analysing requirements. The exploratory

case study provides positive feedback in terms of writing user stories, prioritising,

estimating and developing ATs. The embedded engineer, as part of a cross-functional

team, helped the development teams to understand the technical constraints more clearly

and avoid confusions about the system that is going to be developed.

We have also observed that key to effective collaboration is having team members

with technical knowledge that will allow the team to understand the concept. For

example, one of the participants in Team Two had an engineering background, in addition

to software development and was asking different questions allowing the embedded

engineer to explain different aspects of the system description.

The main lessons learned from the exploratory case study were:

• A cross-functional team (Team Two) that is composed of software and embedded

engineers can write better user stories than a software development team without

embedded engineers. The team can easily discuss to clarify technical constraints.

On the other hand, the software developers in Team One were only able to write user

stories by making some assumptions. Such user stories would need to be revisited

if clarifications are made in the future.

• The cross-functional team (Team Two) was able to perform better estimation and

prioritisation. The discussion with the technical expert (the embedded engineer)

helped the team to understand dependencies and the amount of effort required to

complete some tasks of the user story.

• Additionally, a cross-functional team that is composed of software and an embedded

engineer was able to write ATs that have more technical constraints.

117

CHAPTER 6. IMPLEMENTATION

6.2 Confirmatory Case Study

The confirmatory case study was conducted to validate PHASE 1 and PHASE 2 of

the proposed process. The case study was conducted in three stages. The first stage

involves an exploration of the embedded company’s current process. We approached a

software architect (former principal software engineer) from the company and conducted

an exploratory interview to analyse the previous process. The interview was recorded

and transcribed for analysis.

The second phase involves implementing the selected phases. A product team

from the company conducted an induction session on the proposed process and, after

understanding the steps of the Sync-Up process, the team followed the steps and

guidelines suggested by the Sync-Up process when analysing the requirements.

The third phase involves performing a post-implementation interview with the

software architect and gathering archival records and artefacts that were generated by

the cross-functional team for analysis. The next subsection describes the result of the

confirmatory case study.

6.2.1 Company’s pre-implementation Process

The pre-implementation interview that was conducted with an architect has been

presented in subsection 2.3.2. After the interview, a process flow was developed by the

researcher and sent to the architect for updates and modifications. The process diagram

is shown in Figure 6.1. From the interview we can observe that:

• There were separate teams looking after each different area of a product, i.e.

consumer and elite. The embedded development was mostly looked after remotely.

Additionally, Sport scientists who act like end users, conduct ATs and make sure

that everything is working from their perspective.

118

CHAPTER 6. IMPLEMENTATION

• Initially, the development process is driven by the availability of hardware and the

embedded firmware interface protocol. The application software development team

perform other tasks such as database design and user interface design while the

interface protocol is available.

• The implementation of ATs was conducted at the end when the application software

is ready. The embedded engineer works remotely and the interviewee suggested that

when issues arise during integration stages he prefer to work face to face with the

embedded engineer.

6.2.2 Implementation

The proposed process was initially presented to the software architect, who was

communicating with the researcher. The company was conducting a backlog grooming

practice, which involves reviewing the current backlog items and reassessing prioritisation

and estimation. During this period the team was willing to evaluate the sync-up process.

A cross-functional team (known as the R&D team in the company) that was composed of

three product / sports -scientists, the software architect, three developers and three QA

engineers were involved during the requirement analysis following the proposed steps.

The R&D team, went through some training on the steps and formats of ATs. The

interviewee stated that the team understood the process and agreed to use the process

moving forward. The researcher communicated with the software architect and observed

the implementation based on indirect observation. The team was working on a product

feature for the US Soccer known as drill labelling. It is a feature in the software that

allows a user to set predetermined labels to be used when naming drills they cut within

the Sonra software. It also allows users to specify primary, secondary and tertiary labels

and any combination of these can be used to name a drill.

The user stories and ATs generated from the discussions were shared with the

researcher for reference. Sample user stories and ATs developed are shown in Table 6.1

119

CHAPTER 6. IMPLEMENTATION

and Table 6.2.

ID User Story Acceptance Criteria
US_1 As a user of the coach

app, I want be able to
create a squad

• Once a user is logged in, they can
create a squad

• A user should be able to enter data in
all fields when creating a squad.

• A squad should not be created if
required fields are left blank

US_2 As a user, when I create a
squad I want to be able to
add a profile picture for
that squad

• When creating a squad, a user should
be able to add a profile picture

• When a user adds a picture, the
picture should be resized to avoid high
res images being added to the system

Table 6.1: Sample User Stories Developed

ID Title Expected Result Priority Section Type
C3604 Verify coach can set up a

squad
The coach must be
able to add a squad
successfully

Medium Squad
Management

Functional

C3605 Verify user can join an
existing squad

User can receive a
notification to join a
squad. User can accept
the notification and
successfully join the
squad.

Medium Squad
Management

Functional

C3606 Verify user can add a
profile picture for the
squad

User can edit the squad
by selecting a new profile
picture.

Medium Squad
Management

Functional

C3612 Verify user can name
their squad

User can name their
squad in 2 ways below:

1. On initial squad set up

2. When squad is edited
in settings

Medium Squad
Management

Functional

Table 6.2: Sample Acceptance Tests Developed

After the team finished the backlog grooming activity using the Sync-Up process,

120

CHAPTER 6. IMPLEMENTATION

an interview was conducted with the software architect to gather the outcome of the

requirement analysis based on the proposed process. Additionally, artefacts generated

from the discussion, such as user stories and ATs, were collected. The following subsection

summarises the result of the interview.

Figure 6.1: Pre-Implementation Process Flow of Company A

Post-Implementation Interview Summary

The interview was conducted using the semi-structured interview questions shown in

Appendix G. The interviewee stated that prior to this process the team was analysing

requirements through backlog grooming but it was only based on high-level features and

epics that would have been broken down into stories and that was as far as it would

have went. With the introduction of the proposed process steps, the team conducted the

121

CHAPTER 6. IMPLEMENTATION

requirement analysis by writing user stories, splitting them out and also writing ATs with

the collaboration of the product team and QAs that involves the Sport scientists.

The interviewee stated that using the process, the product team refined the

acceptance criteria or definition of done (DOD). The product team then discussed the

ATs with the technical members such as software developers. He went on to state that

“before the process, we all had our own ATs, but now there’s common ATs from a product

team, and everyone was going to align with it”. He stated that done could have different

meanings for each of the members involved. For example, done to the firmware developer

may mean a working firmware, done to a test engineer may mean all the test are passing

and done to the application engineers may mean all the stories are implemented. Having

the involvement of all the technical experts syncing up, everyone can agree what’s a DOD

for the overall piece of work, not just each individual work.

When asked if discussion between the product team and technical stakeholders brings

new information that helps the teams to decide on removing or splitting the user stories,

the interviewee stated that prior to the process, coming into the meetings, they were only

discussing very high-level epic and user stories. When a story was too big (high-level),

they put a lot of points on it, and that usually would need to be reassessed, and the

user story had to be broken down into multiple different stories. The interviewee also

highlighted that without getting additional information from the product team, they

didn’t know how to go about estimating the user stories effectively. He also stated that

in terms of prioritisation once they get that additional information through the discussion

with the product team, they were able to reassess priorities and got a different value that

takes less time.

When asked about the major challenges they encountered when using the process

during requirement analysis, the interviewee stated that one of the bigger challenges not

just with the sync-up process but any kind of new process involved getting people buying

into it and involvement because some people don’t like changes and sometimes it takes

a while for people to buy into a different way of doing things. He went on to state that

122

CHAPTER 6. IMPLEMENTATION

before this process, it was probably a meeting they just attend to understand a high-level

user story or epic. The PO would explain features and they would break down into

separate user stories and that was it. But after implementing the Sync-Up process, more

activities were involved with splitting, estimating, and prioritising the user stories. But

also, then the addition of the ATs which would have been lacking before.

When asked if he could suggest a major improvement, the interviewee stated that

he would prefer to conduct the Sync-Up the process in a two hour slot. He stated

that from his experience, usually cross-functional teams are comfortable in getting the

discussions done in two hour periods. But obviously the addition of writing the ATs

not just from the product side but also from the QA side, will require more time.

The interviewee recommended splitting meetings into separate meetings to avoid team

members agitations.

Summary of Confirmatory Case Study

The confirmatory case study was conducted to validate the proposed process when

cross-functional teams analyse requirements. The initial exploratory interview revealed

that the ATs were conducted by the Sport scientists and QA engineers after development

is finished. Additionally, the team were spending more time as they were writing

high-level user stories that required revisiting during later stages. The introduction of the

proposed process allowed the product team and sport scientists to collaborate and analyse

requirements by writing user stories, splitting user stories, prioritising and estimating the

stories and defining a common ATs that will be accepted by all members.

The confirmatory case study revealed that analysing requirements involving all

stakeholders will help the team to:

• Write better user stories with detailed information from all stakeholders involving

sport scientists and the product team. The discussion also helps the team to split

the user stories.

123

CHAPTER 6. IMPLEMENTATION

• Conduct better estimation and prioritisation with the involvement of all

stakeholders.

• Have common acceptance criteria (DOD) that will be accepted by all stakeholders.

6.3 Conclusion of Implementation

This chapter began by describing the exploratory case study that was conducted to

explore the proposed process. From the exploratory case study, the expected benefits of

analysing requirements syncing up with the embedded engineer were investigated. This

chapter also presented the confirmatory case study that was conducted with an embedded

company. In the following subsection, the research question RRQ will be revisited.

6.3.1 Research Questions Revisited

RRQ: How can we support multiple stakeholders communication during the

requirements analysis stage of embedded medical software development using a

combination of suitable agile practices?

In order to address this research question, the research proposed a process using a

combination of suitable agile practices that are reported to be used in embedded safety

critical domains. The proposed process was evaluated through expert review, that was

discussed in the previous chapter.

The proposed process was also validated through exploratory and confirmatory case

studies. The exploratory case study revealed that a cross-functional team that was

composed of an embedded engineer and software developers develops better user stories

with more technical parameters. Additionally, the cross-functional team was able to

prioritise and estimate the user stories more clearly. After understanding the expected

124

CHAPTER 6. IMPLEMENTATION

benefits of syncing up with technical expert such as an embedded engineer, a confirmatory

case study was conducted in an embedded company.

Before conducting the case study, an initial investigation of the company’s process

was conducted using open-ended interview questions. This was followed by the

implementation of the proposed process by a corss-functional team composed of sport

scientist, product team and software developers. After the team used the proposed

process, a post-implementation interview was conducted to evaluate the outcome of the

proposed process. The confirmatory case study revealed that analysing requirements

involving all stakeholders will help the team to write better user stories, split the user

stories effectively, prioritise and estimate the stories more clearly. Additionally, the

acceptance tests that were developed with the collaboration between diverse members

help the team to have a common DOD that all members will follow.

125

Chapter 7

Summary and Conclusion

This chapter provides a summary of previous work. This is followed by revisiting of the

research questions and objectives. Subsequently, the contribution of this research will be

presented. Finally, the potential future research will be presented.

7.1 Summary and Conclusion

Embedded systems have become an integrated part of our daily lives. These systems

span from household applications in appliances, entertainment devices, and vehicles to

critical applications. Many embedded systems are safety-critical and may cause severe

harm to people and property if they malfunction Bouyssounouse and Sifakis (2005). The

development of embedded systems involved the parallel development of hardware and

software. A crucial part of embedded systems is embedded software that controls the

functionalities of the embedded system.

Within the embedded safety-critical domain, there is an increasing demand for

improving the embedded software development process. One approach that may assist

is agile software development. The previous report on the usage of agile practices stated

that there are some challenges related to embedded safety-critical software development

126

CHAPTER 7. SUMMARY AND CONCLUSION

as a result of the parallel development of hardware and software.

To understand the challenges related to agile usage in embedded safety-critical

software development and identify agile practices that have been preferred, a systematic

literature review was conducted. The review identified challenges and suitable agile

practices. Among the challenges identified, a focus was applied and the research focuses

on the challenge of multiple stakeholder communication for embedded medical software

development.

In order to assist multiple stakeholder communication of embedded medical software

development, a process has been developed. The foundation of the process is based on

ATDD which has been reported to assist communication and collaboration. Additionally,

suitable agile practices from Scrum and XP are also included. Once the initial version

of the process is developed, an expert review was conducted to review the process.

Leading experts in embedded safety-critical domains and agile software development were

involved in reviewing the process, and appropriate amendments were made to address the

comments of the experts.

Thereafter, parts of the process were evaluated through performing an exploratory

case study in an academic setting and a confirmatory case study within an embedded

company. The exploratory case study helps in understanding the expected benefits of

syncing with an embedded engineer when analysing requirements. The confirmatory case

study conducted in an embedded company helps in evaluating the requirement analysis

phases of the Sync-Up process. Two sets of interviews were conducted with the software

architect from the company before and after the implementation.

The result of the expert review and industrial investigation have shown a positive

result of the process in terms of assisting multiple stakeholder communication of

embedded medical software when analysing requirements.

127

CHAPTER 7. SUMMARY AND CONCLUSION

7.1.1 Research Contribution

This research aims to provide three key contributions which are:

1. An investigation of the challenges related to agile usage in embedded safety-critical

software development domains.

2. Identification of agile practices that were suitable in embedded safety-critical

software development and an investigation into how these practices have been used.

3. The development and evaluation of the Sync-Up process to address the issue

of poor multiple stakeholder communication during embedded medical software

development.

Contribution to the knowledge of embedded safety-critical community

A systematic literature review was conducted to investigate the challenges related to agile

usage in embedded safety-critical domains. One of the challenges that was identified

in the SR was multiple stakeholder communication, which was affecting embedded

safety-critical projects. Through the SR, safety-critical domains such as medical &

healthcare, automotive, aircraft/avionics, consumer products and general safety-critical

reported this challenge. Most of the studies, which are case studies and experience

reports, stated that multiple stakeholders in an embedded safety-critical domain have

to communicate effectively when analysing requirements to deliver the embedded project

in time.

In addition to the SR, the experts that have been involved in reviewing the

proposed process stated that multiple stakeholder communication has been affecting the

embedded safety-critical companies they were working with. The experts have worked

with companies in domains such as medical, flight simulation and different industrial

internet of things (IOT). From their embedded project experiences, the experts outlined

128

CHAPTER 7. SUMMARY AND CONCLUSION

that diverse teams such as software engineers, firmware engineers, electronics designers

and mechanical engineers were working in separate silos that leads to different integration

groups. The experts also reported that the embedded projects were affected in their

project delivery, wasting developer’s time and the need to rework.

Contribution to the knowledge of agile software development community

Despite having success stories in general software development projects, the SR reported

that agile hasn’t been used much in embedded safety-critical domains. Prior to the SR,

the previous literature covers agile usage and challenges in the safety-critical domain

and embedded system themes separately. The SR performed in this research focuses on

agile usage in safety-critical embedded software development. The investigation involves

the identification of agile practices that have been used and the manner in which the

practices have been implemented. The selected studies identified in the SR reported that

the embedded safety-critical software development has been looking for rigorous research

to advance the usage of agile software development.

Additionally, the experts that have been involved in reviewing the proposed process

stated that agile usage in safety-critical embedded software development has been in it’s

infancy stage and reported that the suitable agile practices that were identified from the

SR will benefit the agile community in understanding the practicality challenges of such

practices in embedded safety-critical domain.

The Development and Evaluation of the Sync-Up process

The Sync-Up process is developed through agile practices that are identified from the SR

and reported supporting communication. Agile practices drawn from Scrum, eXtreme

Programming (XP) and acceptance test-driven development (ATDD) have been used

to develop the process. The standard ATDD process has been redefined to involve the

additional roles such as embedded engineers, hardware engineers and other technical

129

CHAPTER 7. SUMMARY AND CONCLUSION

members to collaboratively analyse requirement and guide the overall development

process.

In order to evaluate the Sync-Up process, leading experts in embedded safety-critical

and agile software development domains have reviewed the initial version of the process.

Recommendations and comments from the experts have been addressed, and the process

evolved through several iterations. Additionally, exploratory and confirmatory case

studies were conducted to validate parts of the process. The result of the case studies

shows a positive result in terms of improving the collaboration of multiple stakeholders

when analysing requirements.

7.2 Research Limitations and Future Work

There are limitations that should be acknowledged in this research. The first one is that

only PHASE 1 & PHASE 2 of the Sync-up process have been implemented in the case

studies. The effectiveness of the Sync-Up process would need to be evaluated through

the implementation and evaluation of all the phases including PHASE 3, which is the

implementation and execution of ATs.

The other limitation of the work conducted is the number of confirmatory case

studies. The Sync-Up process was validated through one confirmatory case study. Having

more case studies with more embedded companies will help to get more data sources. This

would help to validate the the process through cross-case analysis. The research aims to

conduct more case studies as part of future work.

Finally the number of experts involved to review the process were not as much as

initially planned. Although efforts were made, it was not possible to get more experts to

review the process due to availability. To help with this limitation the research focused

on getting quality experts. The experts involved in the review process are pioneer in

the domain of agile and embedded system design with known publications, books and

130

CHAPTER 7. SUMMARY AND CONCLUSION

keynote speech.

In the future, additional case studies will be conducted to validate the remaining

phase (PHASE 3) of the Sync-Up process. This phase has not been evaluated due

to schedule constraints. As demonstrated through the expert review, the process can

be useful to assist the multiple stakeholder communication of embedded medical and

other embedded safety critical domains. The future work also includes looking into other

embedded safety critical domains. By fully understanding and evaluating overall phases

that make the process unique, the fortunes of the Sync-Up process can only improve.

131

Appendix A

Industrial Interview Questions

ID Question

1. General Question

1.1 What is your development team made of?

1.2 What are you developing?

1.3 What have you produced?

2. Requirement Definition and Architectural Design

2.1 How do you define the system requirements of your software and hardware?

2.2 Do you involve diverse members (software, embedded, hardware) during

requirement design and analysis?

2.3 Have you faced communication challenge when different professionals

involved in system design and analysis?

2.4 How do you define acceptance test (ATs) of the software and hardware?

2.5 Are ATs discussed with hardware/embedded engineer?

3. Implementation

3.1 How do you perform implementation of software and hardware?

3.2 What hardware related issues have you faced during the implementation

of the embedded software?

3.3 Do you have to communicate issues with the hardware/embedded

engineer?

132

APPENDIX A. INDUSTRIAL INTERVIEW QUESTIONS

3.4 Are you using any dedicated tools/medium to engage with the

hardware/embedded engineer?

4. Testing and Maintenance

4.1 How do you perform testing and integration of hardware and software?

4.2 Is there a scenario/example where bugs in the hardware affecting the

software development process and vice versa? If so, how do you deal with

it?

4.3 How do you perform ATs of the software and the hardware?

4.4 Is there a scenario where acceptance testing has been passed from an

embedded software perspective and failed from a hardware perspective?

What about the reverse?

4.5 How about the interaction between stakeholders during testing?

5. Risk Management

5.1 Are you dealing with risks associated with hardware and software?

6. General Challenge

6.1 What are the general challenges you faced when you develop software and

embedded software?

133

Appendix B

Protocol for a Systematic Reviews (SR)

Surafel Demissie, Dr Frank Keenan, Dr Fergal McCaffery

Research Questions

The research questions to be addressed by this study are:

• What are the challenges related to agile implementation in embedded medical and safety

critical software development?

• What agile practices have been used and how are the practices implemented in embedded

medical and safety critical software development?

Search Process

The search process is based on title, keywords https://www.overleaf.com/project/5ec6ff0df12a8a000125e647and

abstract. A set of search strings will be used and aggregated for the outcome from each of the

digital libraries that are shown in the following Table:

134

APPENDIX B. PROTOCOL FOR A SYSTEMATIC REVIEWS (SR)

Source Responsible
IEEE Xplore Surafel
ACM Digital
library

Surafel

Google scholar Surafel
ScienceDirect
Surafel
SpringerLink Surafel

Table B.1: Digital Libraries

Search strings

("agile" OR "scrum" OR "extreme programming" OR "test driven development" OR "lean"

OR "DevOps") AND ("embedded system" OR "embedded software" OR "hardware development"

OR "medical" OR "safety critical") AND ("challenge" OR "requirement")

Inclusion criteria

Articles on the following topics:

• Studies on agile implementation for embedded software and embedded system

development.

• Studies on agile implementation for embedded medical and other safety critical domains.

• Studies that are published between 2010 and 2020.

• Studies that are written in English language.

“Individual researchers (such as a PhD student) can apply a test-retest approach, and

re-evaluate a random sample of the primary studies found after initial screening to check the

consistency of their inclusion/exclusion decisions.”

135

APPENDIX B. PROTOCOL FOR A SYSTEMATIC REVIEWS (SR)

Exclusion Criteria

• Studies discussing agile implementation for general purpose software (non-embedded

system development).

• Studies that are not in the embedded medical and safety critical domain.

• Studies that are not written in English language.

Data Collection

Extracted information about the studies should be tabulated in a manner consistent with the

review question. Tabulating the data is a useful means of aggregation but it is necessary to

explain how the aggregated data actually answer the research questions. The data extracted

from each paper will be tabulated based on the following template:

Data Description RQ
ID Unique identification of each study.
Source IEEE Xplore, ACM Digital library, Google Scholar,

ScienceDirect and SpringerLink.
Year The year the study was conducted.
Author Contributing Authors.
Title Title of the study.
Domain The domain of the project or study.
Study Type Empirical study type adapted from Tonella et al.

(2007). Study type includes experimental,
observational, experience report, case study,
systematic review, authors opinion and unclear

Challenges Challenges the study reported. IRQ.1
Agile Practices Agile practices that have been reported in the study. IRQ.2
Summary A short summary of the study.

Table B.2: Data Extraction Template

The data will be extracted by the student and will be checked by the supervisor.

136

APPENDIX B. PROTOCOL FOR A SYSTEMATIC REVIEWS (SR)

Data Analysis

Data synthesis involves collecting and summarising the results of the included primary studies.

Synthesis can be descriptive (non-quantitative). Using statistical techniques to obtain a

quantitative synthesis is referred to as meta-analysis

IT and software engineering systematic reviews are likely to be qualitative (i.e. descriptive)

in nature.

Dissemination

The results of this SLR will be a section of a MSc thesis. The results of this SLR will also be

published on a conference paper.

References

1. Wohlin (2014)

2. Kitchenham and Charters (2007)

137

Appendix C

Selected Studies From SR

ID Study

P1 Islam, G. and Storer, T., 2020. A case study of agile software development for safety-Critical

systems projects. Reliability Engineering & System Safety,p.106954.

P2 Hanssen, G.K., Wedzinga, G. and Stuip, M., 2017, May. An assessment of avionics software

development practice: Justifications for an agile development process. In International

Conference on Agile Software Development (pp. 217-231). Springer, Cham.

P3 Jie, J.L.H., 2016. Industrial Case Study of Transition from V-Model into Agile SCRUM

in Embedded Software Testing Industries. ACM SIGSOFT Software Engineering Notes,

41(2), pp.1-3.

P4 Bjarnason, E., Wnuk, K. and Regnell, B., 2011, July. A case study on benefits and

side-effects of agile practices in large-scale requirements engineering. In proceedings of

the 1st workshop on agile requirements engineering (pp. 1-5).

P5 Goncalves, G.S., Lima, G.L.B., Maria, R.E., Wisnieski, R.T., dos Santos, M.V.M., Ferreira,

M.A., da Silva, A.C., Olimpio, A., Otero, A.G.L., de Vasconcelos, L.E.G. and Sato, L.Y.C.,

2015, September. An interdisciplinary academic project for spatial critical embedded system

agile development. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC)

(pp. 8C3-1). IEEE.

Continued on Next Page

138

APPENDIX C. SELECTED STUDIES FROM SR

Table C.1 – Continued from Previous Page

ID Study

P6 Lwakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H., Bosch, J. and Oivo,

M., 2016, January. Towards DevOps in the embedded systems domain: Why is it so hard?.

In 2016 49th hawaii international conference on system sciences (hicss) (pp. 5437-5446).

IEEE.

P7 Bjarnason, E., Unterkalmsteiner, M., Borg, M. and Engström, E., 2016. A multi-case study

of agile requirements engineering and the use of test cases as requirements. Information

and Software Technology, 77, pp.61-79.

P8 Katumba, B. and Knauss, E., 2014, December. Agile development in automotive

software development: Challenges and opportunities. In International Conference on

Product-Focused Software Process Improvement (pp. 33-47). Springer, Cham.

P9 Gary, K., Enquobahrie, A., Ibanez, L., Cheng, P., Yaniv, Z., Cleary, K., Kokoori, S.,

Muffih, B. and Heidenreich, J., 2011. Agile methods for open source safety-critical software.

Software: Practice and Experience, 41(9), pp.945-962.

P10 Albuquerque, C.O., Antonino, P.O. and Nakagawa, E.Y., 2012, June. An investigation

into agile methods in embedded systems development. In International Conference on

Computational Science and Its Applications (pp. 576-591). Springer, Berlin, Heidelberg.

P11 Mirachi, S., da Costa Guerra, V., da Cunha, A.M., Dias, L.A.V. and Villani, E., 2017.

Applying agile methods to aircraft embedded software: an experimental analysis. Software:

Practice and Experience, 47(11), pp.1465-1484.

P12 Lima, G.L.B., Ferreira, G.A.L., Saotome, O., da Cunha, A.M. and Dias, L.A.V., 2015,

April. Hardware development: Agile and co-design. In 2015 12th International Conference

on Information Technology-New Generations (pp. 784-787). IEEE.

P13 Eklund, U. and Bosch, J., 2012, May. Applying agile development in mass-produced

embedded systems. In International Conference on Agile Software Development (pp.

31-46). Springer, Berlin, Heidelberg.

P14 Eklund, U., Olsson, H.H. and Strøm, N.J., 2014, May. Industrial challenges of scaling

agile in mass-produced embedded systems. In International Conference on Agile Software

Development (pp. 30-42). Springer, Cham.

Continued on Next Page

139

APPENDIX C. SELECTED STUDIES FROM SR

Table C.1 – Continued from Previous Page

ID Study

P15 Hanssen, G.K., Haugset, B., Stålhane, T., Myklebust, T. and Kulbrandstad, I., 2016, May.

Quality assurance in scrum applied to safety critical software. In International Conference

on Agile Software Development (pp. 92-103). Springer, Cham.

P16 Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell, B.,

Sabaliauskaite, G., Loconsole, A., Gorschek, T. and Feldt, R., 2014. Challenges and

practices in aligning requirements with verification and validation: a case study of six

companies. Empirical software engineering, 19(6), pp.1809-1855.

P17 Mulder, F.A., Verlinden, J.C. and Maruyama, T., 2014, May. Adapting scrum development

method for the development of cyber-physical systems. In Proceedings of the 10th

international symposium on tools and methods of competitive engineering TMCE (pp.

19-23).

P18 Douglass, B., 2013. Agile development for embedded systems. In Software Engineering for

Embedded Systems (pp. 731-766). Newnes.

P19 McHugh, M., McCaffery, F. and Coady, G., 2014, November. An agile implementation

within a medical device software organisation. In International Conference on Software

Process Improvement and Capability Determination (pp. 190-201). Springer, Cham.

P20 Martini, A., Pareto, L. and Bosch, J., 2013, June. Improving businesses success

by managing interactions among agile teams in large organizations. In International

Conference of Software Business (pp. 60-72). Springer, Berlin, Heidelberg.

P21 Alsaqaf, W., Daneva, M. and Wieringa, R., 2019. Quality requirements challenges in the

context of large-scale distributed agile: An empirical study. Information and software

technology, 110, pp.39-55.

P22 Pernstål, J., Gorschek, T., Feldt, R. and Florén, D., 2015. Requirements communication

and balancing in large-scale software-intensive product development. Information and

Software Technology, 67, pp.44-64.

P23 Kasauli, R., Liebel, G., Knauss, E., Gopakumar, S. and Kanagwa, B., 2017, September.

Requirements engineering challenges in large-scale agile system development. In 2017 IEEE

25th International Requirements Engineering Conference (RE) (pp. 352-361).IEEE.

Continued on Next Page

140

APPENDIX C. SELECTED STUDIES FROM SR

Table C.1 – Continued from Previous Page

ID Study

P24 Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T. and

Lehtonen, T., 2013. Agile methods for embedded systems development-a literature review

and a mapping study. EURASIP Journal on Embedded Systems, 2013(1), p.15.

P25 Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M. and Olsson, H.H.,

2014, May. Technical dependency challenges in large-scale agile software development. In

International Conference on Agile Software Development (pp. 46-61). Springer, Cham.

P26 Duffau, C., Grabiec, B. and Blay-Fornarino, M., 2017, October. Towards embedded system

agile development challenging verification, validation and accreditation: Application in

a healthcare company. In 2017 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW) (pp. 82-85). IEEE.

P27 Takahira, R.Y., Laraia, L.R., Dias, F.A., Abraham, S.Y., Nascimento, P.T. and Camargo,

A.S., 2014, July. Scrum and Embedded Software development for the automotive industry.

In Proceedings of PICMET’14 Conference: Portland International Center for Management

of Engineering and Technology; Infrastructure and Service Integration (pp. 2664-2672).

IEEE.

P28 Shigemura, R.A.L., Goncalves, G.S., Dias, L.A.V., Tasinaffo, P.M., da Cunha, A.M.,

Mizioka, L.S., Yanaguya, L.H. and Pugliese, V.U., 2018. Using Correct-by-Construction

Software Agile Development. In Information Technology-New Generations (pp. 245-253).

Springer, Cham.

P29 Heidenberg, J., Matinlassi, M., Pikkarainen, M., Hirkman, P. and Partanen, J., 2010,

June. Systematic piloting of agile methods in the large: two cases in embedded

systems development. In International Conference on Product Focused Software Process

Improvement (pp. 47-61). Springer, Berlin, Heidelberg.

P30 Könnölä, K., Suomi, S., Mäkilä, T., Jokela, T., Rantala, V. and Lehtonen, T., 2016. Agile

methods in embedded system development: Multiple-case study of three industrial cases.

Journal of systems and software, 118, pp.134-150.

P31 Punkka, T., 2012, October. Agile hardware and co-design. In Embedded Systems

Conference (pp. 1-8).

Continued on Next Page

141

APPENDIX C. SELECTED STUDIES FROM SR

Table C.1 – Continued from Previous Page

ID Study

P32 Alhaj, M., Arbez, G. and Peyton, L., 2017, April. Using behaviour-driven development with

hardware-software co-design for autonomous load management. In 2017 8th International

Conference on Information and Communication Systems (ICICS) (pp. 46-51). IEEE.

P33 Kaisti, M., Mujunen, T., Mäkilä, T., Rantala, V. and Lehtonen, T., 2014, May. Agile

principles in the embedded system development. In International Conference on Agile

Software Development (pp. 16-31). Springer, Cham.

P34 Liebel, G., Tichy, M., Knauss, E., Ljungkrantz, O. and Stieglbauer, G., 2018. Organisation

and communication problems in automotive requirements engineering. Requirements

Engineering, 23(1), pp.145-167.

P35 Martini, A., Pareto, L. and Bosch, J., 2016. A multiple case study on the inter-group

interaction speed in large, embedded software companies employing agile. Journal of

Software: Evolution and Process, 28(1), pp.4-26.

P36 Shen, M., Yang, W., Rong, G. and Shao, D., 2012, June. Applying agile methods to

embedded software development: A systematic review. In 2012 Second International

Workshop on Software Engineering for Embedded Systems (SEES) (pp. 30-36). IEEE.

P37 Laanti, M., 2016, May. Piloting Lean-Agile Hardware Development. In Proceedings of the

Scientific Workshop Proceedings of XP2016 (pp. 1-6).

P38 Test-Driven Development as a Reliable Embedded Software Engineering Practice.

P39 Laukkarinen, T., Kuusinen, K. and Mikkonen, T., 2017, May. DevOps in regulated software

development: case medical devices. In 2017 IEEE/ACM 39th International Conference on

Software Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER)

(pp. 15-18). IEEE.

P40 Mårtensson, T., Ståhl, D. and Bosch, J., 2016, November. Continuous integration

applied to software-intensive embedded systems–problems and experiences. In International

Conference on Product-Focused Software Process Improvement (pp. 448-457). Springer,

Cham.

Continued on Next Page

142

APPENDIX C. SELECTED STUDIES FROM SR

Table C.1 – Continued from Previous Page

ID Study

P41 Wagner, S., 2014, June. Scrum for cyber-physical systems: a process proposal.

In Proceedings Of The 1St International Workshop On Rapid Continuous Software

Engineering (pp. 51-56).

P42 Mattei, A.L.P., da Cunha, A.M., Dias, L.A.V., Fonseca, E., Saotome, O., Takachi, P.,

Gonçalves, G.S., Pivetta, T.A., da Silva Montalvão, V., Kendi, C. and de Freitas, F.L.,

2015, April. Nanosatellite Event Simulator Development Using Scrum Agile Method

and Safety-Critical Application Development Environment. In 2015 12th International

Conference on Information Technology-New Generations (pp. 101-106). IEEE.

P43 Cawley, O., Richardson, I. and Wang, X., 2011, May. Medical device software

development-A perspective from a lean manufacturing plant. In International Conference

on Software Process Improvement and Capability Determination (pp. 84-96). Springer,

Berlin, Heidelberg.

143

Appendix D

Case Study Protocol (CSP)

Table D.1: Case Study Protocol According to Pervan and Maimbo (2005)

Section Content

Preamble The purpose of the protocol is to manage the data collection and analysis

of the case study in organised way. The protocol will be stored in secured

file storage that will only be shared between involved researchers.

General This research focus on improving the multiple stakeholder communication

of embedded teams using a combination of agile practices. The research

conducted investigations on agile practices and proposed a process known

as Sync-Up Process. The process has been reviewed by leading experts in

the domain and modifications and recommendations were addressed. The

Sync-Up process has three major phases (Phase: 1, Phase: 2 & Phase: 3).

Phase: 1 and 2 focus on analysing requirement while Phase: 3 focus on

implementation. With the limitation of time constraint, the case study

will aim to evaluate the requirement analysis Phases (Phase: 1 and Phase:

2).

144

APPENDIX D. CASE STUDY PROTOCOL (CSP)

Procedures To evaluate Phase: 1 and Phase: 2 of the Sync-Up process, the

researcher approached companies developing embedded products. The

companies should have multiple stakeholders that are composed of

for example, product owners, application software development team,

embedded firmware/hardware experts, testing experts and other relevant

members.

Initially a pre-implementation analysis of the companies will be conducted

to understand the previous process of the company. Interviews will be

conducted with relevant members of the companies. The researcher will

give detailed presentations and walk-through of the Sync-Up process. Once

the companies agree to evaluate the process, the evaluation of Phase: 1

and Phase: 2 will be conducted.

The unit of analysis of the case studies will be the group consisting

of multiple stakeholders. The teams will follow the phases of the

Sync-Up process when analysing their requirements. Once requirements

are analysed following Phase: 1 and Phase: 2, a post implementation

interview will be conducted to gather data. Additionally, generated user

stories and acceptance tests will be gathers for analysis.

Research Instrument(s) Data will collected from multiple sources. Interview guides

and documentation will be used for pre-implementation and

post-implementation data collection. The use of more than one data

source is a technique known as triangulation that is highly recommended

by many researchers Miles and Huberman (1994); Yin (1994); Neuman

(2000) as a mechanism for increasing both the reliability and validity of

qualitative research.

Data analysis guidelines Detailed description of data analysis procedures, including data schemas,

priori codes etc. Based on our hypothesis, the team following the proposed

process should develop coherent user stories and AT cases with better

quality that will allow the stakeholders to have a common goal and project

delivery.

145

Appendix E

Expert Evaluation Consent

In order to validate the Sync-Up Process, Surafel Demissie, a postgraduate research student at

Dundalk Institute of Technology (DkIT), will conduct a series of expert evaluations as part of

his PhD thesis. The review will help in any refinements deemed necessary to the process.

I give my informed consent to participate in this evaluation, and I understand that the

interview session, which is part of the evaluation process, will be recorded. A summary of

the information contributed by me will be included in the final PhD dissertation. I have been

informed prior to the review about the precise aims of the review and that the researcher will

answer any questions I may have. I understand that my participation is entirely voluntary and

that I may withdraw from the interview at any time.

I understand that concerns about any aspect of the review may at any time be directed to

Dr Frank Keenan or Dr Fergal McCaffery, supervisors to the researcher at DkIT on:

Dr Frank Keenan: Tel: 0429370200 Dr Fergal McCaffery: Tel: 0429370462

Participant Date

Researcher Date

146

Appendix F

Expert Review Questions

F.1 Section 1

Background and Experience

1. What is your experience with agile software development and the companies you have

worked with?

2. Tell me about your experience with embedded system development?

3. Have you worked with a team of diverse members (software, embedded and hardware)

during requirement, design or implementation stages?

4. From your experience, have you experienced with multiple stakeholder communication

challenge between diverse members?

147

APPENDIX F. EXPERT REVIEW QUESTIONS

F.2 Section 2

The Sync-Up Process - Phase 1

1. When defining user stories, do you think syncing/pairing with the embedded/firmware

engineer will bring better understanding of the future to be implemented?

2. Do you think syncing/pairing with the embedded/firmware engineer will help in estimating

user stories?

3. Do you think syncing/pairing with the embedded/firmware engineer will help in

prioritising user stories?

4. When writing ATs, do you think syncing/pairing with the embedded/firmware engineer

will help to have better understanding of the ATs of the user stories?

The Sync-Up Process - Phase 2

1. Do you think discussing with an embedded/firmware engineer or other stakeholders will

enable the team to have common understanding?

2. Do you think the acceptance test case that is written syncing/pairing with the

embedded/firmware engineer will have better a set of test inputs, outputs and parameters

of execution conditions?

Overall Process

1. Can you name and explain the major benefits you have observed in the Sync-Up Process?

2. Can you name and explain briefly any deficiency you have observed in the Sync-Up

Process?

3. Do you have any suggestions to improve the Sync-Up Process?

148

APPENDIX F. EXPERT REVIEW QUESTIONS

4. Is there anything else you would like to mention about this process?

149

Appendix G

Case Study Interview Questions

ID Question

1. General Backlog

1.1 What’s backlog grooming, and how do you usually do it?

1.2 Have you involved all stakeholders such as embedded, firmware

representative and test engineer when conducting backlog grooming?

2. Sync Up Process

2.1 Was the involvement of multiple stakeholders affect the team to re-assess

the priorities and estimations?

2.2 During the sync up process, have you got new information that helps the

team to decide on removing a user story? How about splitting user stories?

2.3 During the sync up process, have you got new information that helps the

team to create a new user story?

2.4 During the discuss stage of the sync up process, have you got new

information/constraint that helps the team to add information to existing

acceptance tests?

2.5 During the discuss stage of the sync up process, what ambiguities

(misinterpretations) of acceptance tests have you clarified?

2.6 During the discuss stage of the sync up process, what ambiguities

(misinterpretations) of acceptance tests have you clarified?

150

APPENDIX G. CASE STUDY INTERVIEW QUESTIONS

2.7 Do you think the involvement of technical experts such as

embedded/firmware and test engineers will help the team to clarify

such ambiguities (misinterpretations)?

2.8 Can we check a random sample of user stories and acceptance test case

that shows the changes before and after the sync up process?

2.9 What are the major challenges you encounter when using the sync up

process during backlog grooming?

2.10 What changes/improvement will you suggest on the sync up process?

151

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002), ‘Agile software

development methods: Review and analysis’.

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2017), ‘Agile software

development methods: Review and analysis’, arXiv preprint arXiv:1709.08439 .

Alistair Cockburn, L. W. (2000), ‘The Costs and Benefits of Pair Programming’, Extreme

programming examined, pp. 223–247.

Anderson, G. and Noessel, &. C. (2017), Pair-Design Together, Better, O’Reilly Media,

Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Baheti, P., Williams, L., Gehringer, E., Stotts, D. and Smith, J. M. (2002), ‘Distributed

pair programming: empirical studies and supporting environments’, TR02-010.

University of North Carolina at Chapel Hill Dept. of Computer Science pp. 86–94.

Barr, M. (1999), Programming embedded systems in C and C++, " O’Reilly Media, Inc.".

BCC (2018), ‘Latest innovations in medical device technologies’, https://www.bccres

earch.com/market-research/healthcare/innovations-in-medical-device-tec

hnologies.html.

Beck, K. (1999), ‘Extreme programming explained: Embrace change’, XP Series (c), 190.

Beck, K. (2003), Test-Driven Development By Example, Vol. 2.

152

https://www.bccresearch.com/market-research/healthcare/innovations-in-medical-device-technologies.html
https://www.bccresearch.com/market-research/healthcare/innovations-in-medical-device-technologies.html
https://www.bccresearch.com/market-research/healthcare/innovations-in-medical-device-technologies.html

BIBLIOGRAPHY

Beck, K. and Andres, C. (2005), Extreme programming explained : embrace change ,2nd

Edition (The XP Series), Addison-Wesley.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R. et al. (2001), ‘Manifesto for agile

software development’.

Beizer, B. (1995), Black-box testing: techniques for functional testing of software and

systems, John Wiley & Sons, Inc.

Berger, A. (2002), Embedded Systems Design—An Introduction to Processes, Tools, and

Techniques s, Vol. 2002, CMP Books, CMP Media LLC, Lawrence, Kansas 66046.

Bolton, W. (2000), Microprocessor Systems, Longman.

Bouyssounouse, B. and Sifakis, J. (2005), Embedded systems design: the ARTIST

roadmap for research and development, Vol. 3436, Springer.

Brace, I. (2018), Questionnaire design: How to plan, structure and write survey material

for effective market research, Kogan Page Publishers.

Cohn, M. (2004), User stories applied: For agile software development, Addison-Wesley

Professional.

Creswell, J. W. and Creswell, J. D. (2017), Research design: Qualitative, quantitative,

and mixed methods approaches, Sage publications.

Crotty, M. (1998), The Foundations of Social Research: Meaning and Perspective in the

Research Process.

Dawson. C (2008), ‘Pratical research methods: A user-friendly guide to mastering

research’, Vasa p. 153.

Demissie, S., Keenan, F., Özcan-Top, Ö. and McCaffery, F. (2018), Agile Usage in

Embedded Software Development in Safety Critical Domain–A Systematic Review,

153

BIBLIOGRAPHY

in ‘International Conference on Software Process Improvement and Capability

Determination’, pp. 316–326.

Dingsøyr, T., Nerur, S., Balijepally, V. and Moe, N. B. (2012), ‘A decade of agile

methodologies: Towards explaining agile software development’.

Easterbrook, S., Singer, J., Storey, M.-A. and Damian, D. (2008), Selecting empirical

methods for software engineering research, in ‘Guide to advanced empirical software

engineering’, Springer, pp. 285–311.

Ebert, C. and Jones, C. (2009), ‘Embedded Software: Facts, Figures, and Future’,

Computer 42(4), 42–52.

Erich, F., Amrit, C. and Daneva, M. (2014), ‘Report: Devops literature review’,

University of Twente, Tech. Rep .

Ernst, R. (1998), ‘Codesign of embedded systems: Status and trends’, IEEE Design &

Test of Computers 15(2), 45–54.

Fisher, J. A., Faraboschi, P. and Young, C. (2005), Embedded computing: a VLIW

approach to architecture, compilers and tools, Elsevier.

Forsberg, K. and Mooz, H. (1991), The relationship of system engineering to the project

cycle, in ‘INCOSE International Symposium’, Vol. 1, Wiley Online Library, pp. 57–65.

Fowler, M. and Foemmel, M. (2006), ‘Continuous integration’, Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf 122, 14.

Gärtner, M. (2012), ATDD by example: a practical guide to acceptance test-driven

development, Addison-Wesley.

Glaser, B. and Strauss, A. (1967), ‘Grounded theory: The discovery of grounded theory’,

Sociology the journal of the British sociological association 12(1), 27–49.

Graaf, B., Lormans, M. and Toetenel, H. (2003), ‘Embedded software engineering: The

state of the practice’, IEEE Software 20(6), 61–69.

154

BIBLIOGRAPHY

Greer, D. and Hamon, Y. (2011), ‘Agile software development’, Software: Practice and

Experience 41(9), 943–944.

Guba, E. G., Lincoln, Y. S. et al. (1994), ‘Competing paradigms in qualitative research’,

Handbook of qualitative research 2(163-194), 105.

Hannay, J. E., Dybå, T., Arisholm, E. and Sjøberg, D. I. K. (2009), ‘The effectiveness

of pair programming: A meta-analysis’, Information and Software Technology

51(7), 1110–1122.

Hendrickson, E. (2008), ‘Driving development with tests: Atdd and tdd’, STARWest 2008

.

Henzinger, T. A. and Sifakis, J. (2006), The embedded systems design challenge, in

‘Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics)’, Vol. 4085 LNCS, pp. 1–15.

Hrgarek, N. (2012), Certification and regulatory challenges in medical device software

development, in ‘2012 4th International Workshop on Software Engineering in Health

Care (SEHC)’, IEEE, pp. 40–43.

Humble, J. and Farley, D. (2010), Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation (Adobe Reader), Pearson Education.

IEC 60601-1 (2005), Medical electrical equipment–part 1: General requirements for basic

safety and essential performance, Standard ISO/IEC/IEEE 60601-1:2005, International

Electrotechnical Commission.

IEE (1990), IEEE Standard Glossary of Software Engineering Terminology, Standard,

Institute of Electronical and Electronics Engineers, Washington, DC.

ISO 24765 (2010), Systems and software engineering – vocabulary, Standard

ISO/IEC/IEEE 24765:2010, International Organization for Standardization.

James E. Hewson (2003), ‘Cross-functional pair programming | Embedded’, https://ww

w.embedded.com/cross-functional-pair-programming.

155

https://www.embedded.com/cross-functional-pair-programming
https://www.embedded.com/cross-functional-pair-programming

BIBLIOGRAPHY

Janzen, D. and Saiedian, H. (2005), ‘Test-driven development concepts, taxonomy, and

future direction’, Computer 38(9), 43–50.

Jeffries, R. (2001), ‘Essential xp: card, conversation, confirmation’, XP Magazine 30.

Jeffries, R. and Melnik, G. (2007), ‘TDD–The Art of Fearless Programming’, IEEE

Software 24(3), 24–30.

Kamal, R. (2011), Embedded systems: architecture, programming and design, Tata

McGraw-Hill Education.

Karlesky, M. J., Bereza, W. I. and Erickson, C. B. (2006), Effective test driven

development for embedded software, in ‘2006 IEEE International Conference on

Electro/Information Technology’, IEEE, pp. 382–387.

Kitchenham, B. A. and Pfleeger, S. L. (2008), Personal opinion surveys, in ‘Guide to

advanced empirical software engineering’, Springer, pp. 63–92.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J. and Linkman, S.

(2009), ‘Systematic literature reviews in software engineering–a systematic literature

review’, Information and software technology 51(1), 7–15.

Kitchenham, B. and Charters, S. (2007), ‘Guidelines for performing systematic literature

reviews in software engineering’.

Kniberg, H. (2015), Scrum and XP from the Trenches, Lulu. com.

Kopetz, H. (2011), Real-time systems: design principles for distributed embedded

applications, Springer Science & Business Media.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. and Brinkkemper, S. (2016), The use

and effectiveness of user stories in practice, in ‘International working conference on

requirements engineering: Foundation for software quality’, Springer, pp. 205–222.

Marwedel, P. (2006), Embedded system design, Vol. 1, Springer.

156

BIBLIOGRAPHY

Mary Poppendieck, T. P. (2003), Lean software development : an agile toolkit,

Addison-Wesley.

Mc Hugh, M., Cawley, O., McCaffcry, F., Richardson, I. and Wang, X. (2013), An agile

V-model for medical device software development to overcome the challenges with

plan-driven software development lifecycles, in ‘2013 5th International Workshop on

Software Engineering in Health Care, SEHC 2013 - Proceedings’, pp. 12–19.

Miles, M. B. and Huberman, A. M. (1994), Qualitative data analysis: An expanded

sourcebook, sage.

Mugridge, R. and Cunningham, W. (2005), Fit for developing software: framework for

integrated tests, Pearson Education.

Munassar, N. M. A. and Govardhan, A. (2010), ‘A comparison between five models

of software engineering’, International Journal of Computer Science Issues (IJCSI)

7(5), 94.

Munzner, R. F. (2003), Entering the us medical device market, in ‘Proceedings of the

25th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (IEEE Cat. No. 03CH37439)’, Vol. 4, IEEE, pp. 3548–3550.

Neuman, W. L. (2000), ‘The meanings of methodology’, Social research methods 60, 87.

Palmer, S. R. and Felsing, M. (2001), ‘A Practical Guide to Feature-Driven Development’.

Parker, G. M. (2003), Cross-functional teams: Working with allies, enemies, and other

strangers, John Wiley & Sons.

Pervan, G. and Maimbo, M. (2005), in ‘Proceedings of the Ninth Pacific Asia Conference

on Information Systems’, PACIS, pp. 1281–1292.

Pugh, K. (2010), Lean-Agile Acceptance Test-Driven-Development: Better Software

Through Collaboration, Pearson Education.

157

BIBLIOGRAPHY

Qian, K., Den Haring, D. and Cao, L. (2009), Embedded Software Development with C,

Springer US, Boston, MA.

Rong, G., Liu, T., Xie, M., Chen, J., Ma, C. and Shao, D. (2014), ‘Processes for

Embedded Systems Development: Preliminary Results from a Systematic Review’,

Proceedings of the 2014 International Conference on Software and System Process

pp. 94–98.

Rottier, P. and Rodrigues, V. (2008), ‘Agile Development in a Medical Device Company’,

Agile 2008 Conference pp. 218–223.

Royce, W. (1970), The software lifecycle model (waterfall model), in ‘Proc. Westcon’,

Vol. 314.

Royce, W., Bittner, K. and Perrow, M. (2009), The economics of iterative software

development: Steering toward better business results, Pearson Education.

Rubin, K. S. (2012), Essential Scrum: A practical guide to the most popular Agile process,

Addison-Wesley.

Runeson, P. and Höst, M. (2009), ‘Guidelines for conducting and reporting case study

research in software engineering’, Empirical software engineering 14(2), 131.

Saunders, M., Lewis, P. and Thornhill, A. (2009), Research methods for Business Students

Fifth Edition.

Schenk, J., Prechelt, L. and Salinger, S. (2014), Distributed-pair programming can work

well and is not just distributed pair-programming, in ‘Companion Proceedings of the

36th International Conference on Software Engineering’, ACM, pp. 74–83.

Schwaber, K. and Beedle, M. (2001), Agile Software Development with Scrum, Vol. 18.

Schwaber, K. and Sutherland, J. (2017), ‘The scrum guide’.

Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002), ‘Experimental and

quasi-experimental designs for generalized causal inference’.

158

BIBLIOGRAPHY

Shull, F., Singer, J. and Sjøberg, D. I. (2007), Guide to advanced empirical software

engineering, Springer.

Solinski, A. and Petersen, K. (2016), ‘Prioritizing agile benefits and limitations in relation

to practice usage’, Software quality journal 24(2), 447–482.

Somerville, M. M. and Somerville, M. M. (2015), 3 – Informed Systems approach, in

‘Informed Systems’, pp. 45–66.

Stapleton, L. (2014), 8.07 – Administrative Evil and Patient Health: A Critique of

the Impact of Manufacturing Systems on Health Care, in ‘Comprehensive Materials

Processing’, pp. 127–150.

Sutherland, J. and Schwaber, K. (2014), ‘The scrum papers: Nut, bolts, and origins of

an agile framework (2011)’, SCRUM Training Institute .

Takeuchi, H. and Nonaka, I. (1986), ‘The new new product development game’, Harvard

business review 64(1), 137–146.

Teich, J. (2012), ‘Hardware/software codesign: The past, the present, and predicting the

future’, Proceedings of the IEEE 100(SPL CONTENT), 1411–1430.

Theocharis, G., Kuhrmann, M., Münch, J. and Diebold, P. (2015), Is water-scrum-fall

reality? on the use of agile and traditional development practices, in ‘International

Conference on Product-Focused Software Process Improvement’, Springer, pp. 149–166.

Tonella, P., Torchiano, M., Du Bois, B. and Systä, T. (2007), ‘Empirical studies in

reverse engineering: state of the art and future trends’, Empirical Software Engineering

12(5), 551–571.

Vahid, F. and Givargis, T. (2000), Embedded Systems Design: A Unified

Hardware/Software Introduction, 1st edn, John Wiley & Sons, Inc., New York, NY,

USA.

159

BIBLIOGRAPHY

VanderLeest, S. H. and Buter, A. (2009), Escape the waterfall: Agile for

aerospace, in ‘2009 IEEE/AIAA 28th Digital Avionics Systems Conference’, IEEE,

pp. 6.D.3–1–6.D.3–16.

VersionOne.Inc (2017), 11th annual state of agile report, Technical report.

VersionOne.Inc (2020), 14th annual state of agile report, Technical report.

Williams, L. (2010), ‘Pair programming.’, Encyclopedia of software engineering 2.

Wohlin, C. (2014), Guidelines for snowballing in systematic literature studies and a

replication in software engineering, in ‘Proceedings of the 18th international conference

on evaluation and assessment in software engineering’, Citeseer, p. 38.

Wolf, W. H. (1994), ‘Hardware-software co-design of embedded systems’, Proceedings of

the IEEE 82(7), 967–989.

Woodward, M. V. and Mosterman, P. J. (2007), Challenges for embedded software

development, in ‘2007 50th Midwest Symposium on Circuits and Systems’, IEEE,

pp. 630–633.

Wynne, M., Hellesoy, A. and Tooke, S. (2017), The cucumber book: behaviour-driven

development for testers and developers, Pragmatic Bookshelf.

Xie, M., Shen, M., Rong, G. and Shao, D. (2012), Empirical studies of embedded software

development using agile methods: a systematic review, in ‘Proceedings of the 2nd

international workshop on Evidential assessment of software technologies’, pp. 21–26.

Yin, R. K. (1994), ‘Discovering the future of the case study. method in evaluation

research’, Evaluation practice 15(3), 283–290.

Yin, R. K. (2003), Applications of case study research.

Yin, R. K. (2012), A (very) brief resfresher on the case study method, in ‘Applications

of Case Study Research’.

160

BIBLIOGRAPHY

Yin, R. K. (2014), Case study research: Design and methods (applied social research

methods), Sage publications Thousand Oaks, CA.

Yin and Robert (2009), Case Study research.Design and Methods.

Zhang, M., Raghunathan, A. and Jha, N. K. (2014), ‘Trustworthiness of Medical Devices

and Body Area Networks’, Proceedings of the IEEE 102(8), 1174–1188.

URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6827202

Zuill, W. and Meadows, K. (2016), Mob programming: a whole team approach, in ‘Agile

2014 Conference, Orlando, Florida’.

161

	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	Publications
	Abstract
	Introduction
	A Development Process for Embedded Systems
	Agile in Embedded Medical & Safety-Critical
	Research Questions and Objectives
	Document Outline

	Research Background
	Embedded Systems
	Components of Embedded Systems
	Roles In Embedded System Development

	Embedded System Design Process and Challenges
	Embedded System Design Process
	Challenges for Embedded System Development

	Industrial Investigation
	Interview with Company A
	Interview with Company B
	Summary of Industrial Investigation

	Agile Software Development
	Agile Values and Principles
	Agile Methods and Practices
	eXtreme Programming (XP)
	Scrum

	Agile in Embedded safety-critical
	Systematic Review
	Planning the Review
	Conducting the Review
	Reporting the Review (Dissemination)
	Addressing the Research Questions
	Summary of the SR
	Suitable Agile Practices

	Conclusion of Research Background
	Research Questions and Objectives Revisited

	Research Setting
	Research Methodology
	The Research Onion
	Research Philosophy
	Research Approach
	Research Strategies, Choices and Time horizons

	Case Study Research
	Case Study Design and Planning
	Define data collection procedures and protocols for data collection
	Collecting Evidence
	Analysis of collected data
	Reporting
	Summary of Selected Strategy

	Proposed Solution
	High-Level View of the Proposed Process
	Detailed Steps of the Proposed Process

	Walk-through of Proposed Process
	Summary of the Walk-through

	Conclusion of Proposed Solution

	Expert Review
	Expert Selection
	Review Process
	Challenges and Experience
	Comments on a Process

	Improvement
	Improvement 1
	Improvement 2

	Conclusion of Expert Review

	Implementation
	Exploratory Case Study
	Feedback from Teams
	Exploratory Case Study Conclusion

	Confirmatory Case Study
	Company's pre-implementation Process
	Implementation

	Conclusion of Implementation
	Research Questions Revisited

	Summary and Conclusion
	Summary and Conclusion
	Research Contribution

	Research Limitations and Future Work

	Industrial Interview Questions
	Protocol for a Systematic Reviews (SR)
	Selected Studies From SR
	Case Study Protocol (CSP)
	Expert Evaluation Consent
	Expert Review Questions
	Section 1
	Section 2

	Case Study Interview Questions
	Bibliography

