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Abstract 

The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in 

tetrapod vertebrates. There are four ENaC subunits (a, b, g, d), forming heterotrimeric abg- or 

dbg-ENaCs. While the physiology of abg-ENaC is well understood, for decades the field has 

stalled with respect to dbg-ENaC due to the lack of mammalian model organisms. The 

SCNN1D gene coding for d-ENaC was previously believed to be absent in rodents, hindering 

studies using standard laboratory animals. We analysed all currently available rodent genomes 

and discovered that SCNN1D is present in rodents but was independently lost in five rodent 

lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent 

lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, 

however habitat aridity does not provide a selection pressure for maintenance of SCNN1D 

across Rodentia. A fusion of two exons coding for a structurally flexible region in the 

extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea 

pigs). This conserved pattern evolved at least 41 Ma ago and represents a new autapomorphic 

feature for this clade.  Exon fusion does not impair functionality of guinea pig (Cavia porcellus) 

dbg-ENaC expressed in Xenopus oocytes. Electrophysiological characterisation at the whole-

cell and single-channel level revealed conserved biophysical features and mechanisms 

controlling guinea pig αβγ- and δβγ-ENaC function as compared to human orthologues. 

Guinea pigs therefore represent commercially available mammalian model animals that will 

help shed light on the physiological function of δ-ENaC. 

Keywords: epithelial sodium channel, ENaC, rodent, evolution, delta-subunit, SCNN1D, 

pseudogene, exon fusion 
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Introduction 

Water-to-land transition in the Devonian period, a key event in the evolution of tetrapod 

vertebrates (Daeschler et al. 2006), required significant physiological adaptations, including 

efficient mechanisms of sodium and water homeostasis which involve complex transport 

mechanisms in vertebrate kidneys (Kuo and Ehrlich. 2012; Rossier et al. 2015). In tetrapod 

vertebrates, sodium and water balance is controlled by hormones that match dietary sodium 

and water intake to their excretion rates. Vasopressin controls aquaporin-mediated renal water 

re-absorption and the renin-angiotensin-aldosterone system (RAAS) fine-tunes renal sodium 

re-absorption via epithelial sodium channels (ENaCs) (Rossier et al. 2015).  

The canonical ENaC found in mammalian renal distal convoluted tubules and the 

cortical collecting ducts is composed of three homologous subunits (α, β, γ) which assemble 

into a heterotrimeric, sodium-selective ion channel (Noreng et al. 2018). ENaCs are 

constitutively active ion channels, but channel activity can be adjusted by a multitude of 

regulatory mechanisms and stimuli (Kleyman and Eaton 2020). Whereas hormones such as 

aldosterone control ENaC subunit expression (Rossier et al. 2015), the abundance of ENaCs 

in the plasma membrane is controlled by a complex intracellular signalling network that 

regulates trafficking to and removal from the plasma membrane (Baines 2013). Furthermore, 

ENaC open probability is affected by the extracellular sodium and proton concentration 

(Kashlan et al. 2015; Wichmann et al. 2019; Kleyman and Eaton 2020), processing by intra- 

and extracellular proteases (Kleyman and Eaton 2020), and mechanical stimuli (Althaus et al. 

2007; Knoepp et al. 2020). The importance of a precise adjustment of ENaC activity is 

illustrated by ENaC mutations that lead to severe human diseases. Mutations that result in 

enhanced (αβγ-) ENaC activity cause Liddle syndrome (Shimkets et al. 1994), a hereditary 

form of hypertension, whereas mutations reducing ENaC activity cause hypotension and 

severe salt-wasting (pseudohypoaldosteronism type 1) (Chang et al. 1996). 

Three genes coding for α-, β- and γ-ENaC (SCNN1A, SCNN1B and SCNN1G, 

respectively) are present in modern cyclostomes, indicating that ENaC evolved early in 

vertebrates and likely became part of a machinery that controlled sodium homeostasis when 

vertebrates migrated to freshwater and terrestrial environments (Hanukoglu and Hanukoglu 

2016; Wichmann and Althaus 2020). A fourth ENaC subunit (δ), which is homologous to the 

α-subunit, appears in lobe-finned fishes (sarcopterygians) and is present in all major tetrapod 

lineages (Wichmann and Althaus 2020).  

Functional characterisation of human and amphibian ENaC orthologues revealed that 

the δ-subunit can form heteromeric channels with the β- and γ-subunits (Waldmann et al. 1995; 

Babini et al. 2003). Interestingly, the presence of the δ-subunit changes the biophysical 

properties and molecular regulation of the channel. Compared to αβγ-ENaCs, δβγ-ENaCs 
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have an enhanced activity generating larger ion currents in heterologous expression systems 

(Haerteis et al. 2009; Wichmann et al. 2018). Several regulatory mechanisms controlling ENaC 

activity, such as the auto-regulatory control by extracellular sodium ions (a processes termed 

sodium self-inhibition, SSI), the sensitivity to the extracellular pH, channel processing by 

proteases, or response to mechanical stimuli, differs between δβγ-ENaCs and αβγ-ENaCs 

(Haerteis et al. 2009; Wichmann et al. 2018; Wichmann et al. 2019; Knoepp et al. 2020). 

However, the physiological function of the δ-subunit remains unknown, and it is unclear 

whether it evolved as an additional level of ENaC regulation in tetrapod vertebrates or 

resembles an evolutionary relic of an α-subunit-like ancestor (Wichmann and Althaus 2020). 

Despite intensive efforts to elucidate the physiological function of δ-ENaC, to the best 

of our knowledge, no study up to today has reported a direct functional detection of δ-ENaC 

current signals in vivo. This is due to the lack of appropriate pharmacological tools to 

discriminate between αβγ- and δβγ-ENaCs, and lack of suitable model organisms (Paudel et 

al. 2021). Major advances in understanding the physiology and pathophysiology of canonical 

αβγ-ENaC were made by manipulating the genes encoding these three ENaC-subunits in 

mice. Unfortunately, the gene encoding the δ-subunit (SCNN1D) is believed to be a 

pseudogene in rodents, thus limiting research using the most common animal models in 

physiology and biomedicine. Consistently, Paudel et al. (2021) recently highlighted the need 

for appropriate rodent animal models in order to shed light on the role of δ-ENaC in health and 

disease. Apart from their important role as animal models in biomedical research, rodents 

comprise approximately 40 % of all extant mammalian species (Burgin et al. 2018). The order 

Rodentia is characterised by striking adaptive and evolutionary radiations, resulting in great 

diversity, e.g., in terms of locomotion, diet, geographical distribution, and ecology (Fabre et al. 

2012; Cox and Hautier 2015). Rodents are therefore suitable model organisms for diverse 

research areas. 

To study the enigmatic ENaC δ-subunit in rodents, we examined the existence of 

functional SCNN1D genes in the currently sequenced rodent genomes. First, we found that 

the SCNN1D gene it is not generally absent in rodents but was independently lost in different 

rodent suborders, including mice and rats. Second, we observed the fusion of two exons and 

incorporation of intron DNA into the δ-ENaC coding sequence in the Hystricomorpha (a group 

that includes guinea pigs). Third, we demonstrate that this exon fusion affects a structurally 

flexible region of the ion channel and does not impair functionality of guinea pig (Cavia 

porcellus) ENaCs in heterologous expression systems. Fourth, we provide evidence for 

conserved regulatory characteristics of guinea pig αβγ- and δβγ-ENaCs as compared to 

human orthologues and identify new molecular characteristics that indicate a physiological role 

in sodium homeostasis. Finally, we aimed to identify patterns in the geographical distribution 
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of rodent species that maintained or lost their functional δ-ENaC in order to shed light on the 

lack of potential selection pressures resulting in pseudogenisation of SCNN1D.  

Results 
Standardising SCNN1 gene nomenclature. To categorise the characteristics common to all 

four SCNN1 genes and the particular differences that we observed regarding the evolution of 

SCNN1D, and to facilitate future comparisons, we propose a standardisation of the 

nomenclature for the exons of all SCNN1 genes. Alternative splicing within the 'core' coding 

regions of all SCNN1 genes, i.e., the sequence encompassing both transmembrane regions 

and, hence, the entire extracellular part, has not yet been reported. Consistent with Saxena et 

al. (1998), the first transmembrane coding exon should therefore be defined as 'exon 2', and 

all downstream exons numerated accordingly, concluding with exon 13 (Figure 1 A). Exon 13 

encodes the second transmembrane region and the entire C-terminus. It appears that most 

but not all translational initiation sites are encoded by exon 2, with some being subject to 

alternative splicing of upstream exons, e.g. human SCNN1D which has 16 exons (Giraldez et 

al. 2012; Wesch et al. 2012; Zhao et al. 2012). To include potential translational start sites 

encoded by additional and/or alternative start sites upstream of exon 2, we suggest referring 

to those regions that contain experimentally validated start sites as exon 1. In the case of 

multiple exons upstream of exon 2, the exon 1 nomenclature should include alphabetical 

lettering, e.g., exon 1a, exon 1b, etc. This standardised nomenclature consistently aligns the 

coding regions in different exons (gene level) with the structural features (protein level) that 

have recently been resolved for human αβγ-ENaC (Figure 1 B and C). The extracellular loop 

of each ENaC subunit resembles a clenched hand holding a 'ball-like' structure (Figure 1 B) 

(Noreng et al. 2018). The 'finger' and 'thumb' are considered the major domains involved in 

ENaC gating, whereas the 'palm' and 'knuckle' domains contribute to channel regulation via 

inter-subunit interactions (Noreng et al. 2018). This conserved protein structure is also 

reflected in the organization of the SCNN1 genes themselves. Exon 2 and 13 encode the 

transmembrane region, flanking exons 3 to 12 which encode the extracellular part. 

Distribution of functional SCNN1D in rodents. The absence of SCNN1D in the genomic 

drafts of the rat and mouse genomes prompted us to search for potentially functional SCNN1D 

homologues in rodent genomes of different suborders, with the aim of determining whether 

SCNN1D is generally absent from rodents or specific to a subset thereof. This approach was 

further motivated by our earlier observation of selective erosion and gene loss within the 

pseudo-autosomal regions of Myomorpha genomes, which is not seen in other suborders 

(Maxeiner et al. 2020). Currently, 35 rodent families are recognised (D’Elía et al. 2019) (Figure 

2), comprising three major clades: Hystricomorpha (a group that includes Old World 
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porcupines, chinchillas and guinea pigs), Sciuromorpha (squirrels, dormice and mountain 

beaver) and Supramyomorpha. The Supramyomorpha are divided into Anomaluromorphi 

(anomalures and springhares), Castorimorphi (beavers and kangaroo rats), and Myomorphi 

(mouse-like species) (D’Elía et al. 2019). We investigated the evolutionary fate of the SCNN1D 

gene in all currently available genome sequences within this diverse order (Table 1, 

Supplemental Spreadsheet) and made two major observations, a fusion of exons 11 and 12 

to a 'super-exon' and an independent loss of the SCNN1D gene from all rodent suborders 

(including at least seven families). The generation of a super-exon is exclusive to the suborder 

Hystricomorpha, specifically to the infraorder Hystricognathi which includes guinea pigs (Cavia 

porcellus). Within the Sciuromorpha, two of the three families, Aplodontiidae (mountain beaver) 

and Gliridae (dormouse species), retain a functional SCNN1D copy, whereas it is absent from 

representatives of the Sciuridae family (the squirrel family). Sequence information on members 

of the Anomaluromorphi is limited but a potentially functional SCNN1D gene was found in the 

South African springhare (Pedetes capensis) which belongs to the Pedetidae family.  In the 

Castorimorphi, a full SCNN1D reading frame was found in the American beaver (Castor 

canadensis), belonging to the Castoridae, but there was no functional gene in the Gobi jerboa 

(Allactata bullata), illustrating the loss of SCNN1D in species within the Dipodidae family. The 

largest infraorder is the Myomorphi with the superfamilies Dipodoidea and Muroidea. Members 

of three out of five Muroidea families, the Muridae (rats, mice, gerbils), Cricetidae (hamsters, 

voles, lemmings, New World rats and mice) and Nesomyidae (Malagasy rats and mice and 

specific African species), retained only traces of an evolutionary ancient and, once likely, 

functional SCNN1D gene, which explains failed efforts to clone SCNN1D from laboratory mice, 

rats or hamsters. Bioinformatic evidence indicates that only the Spalacidae family (blind mole-

rats) and the genus Zapus within the superfamily Dipodoidea potentially have a functional 

SCNN1D copy, whereas the genera Jaculus and Allactaga do not. In the Hystricomorpha, 

multiple stop codons were present in the SCNN1D gene of the Patagonian mara (Dolichotis 

patagonum), illustrating gene loss in genera within the Caviidae family, whereas guinea pigs 

(C. porcellus) retained intact open reading frames in SCNN1D. Despite the loss of functional 

SCNN1D from several of the families mentioned above, evidence of a decaying SCNN1D is 

still present, embedded between the flanking genes ACAP3 and UBE2J2, which allowed us to 

integrate sequence information of exon 6 to plot a phylogenetic tree (Supplemental Figure 1, 

Supplemental Data 2, Supplemental Spreadsheet). An exception was the Heteromyidae in 

which SCNN1D is completely absent.  

Analysis of four SCNN1 genes in the guinea pig. Analyses of the complete SCNN1D gene 

sequences of available rodent genomes revealed that guinea pigs retain a functional SCNN1D 

gene (Figure 2). Caviidae are an interesting rodent family in that the SCNN1D gene in this 
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family displays a fusion of exons 11 and 12 to a super-exon (including the incorporation of 

intron sequences) (Figure 3) while some family members (e.g., D. patagonum) lost a functional 

SCNN1D. We therefore explored whether the open reading frame of the guinea pig (C. 

porcellus) SCNN1D is indicative of a functional gene product, i.e., an ion channel with the 

functional characteristics of known ENaC orthologues (Haerteis et al. 2009; Giraldez et al. 

2012; Wichmann et al. 2018). 
We outlined the genomic structure of the SCNN1 genes in C. porcellus and added 

experimental data for the presence of 'predicted' exons upstream of exon 2 based on our 

5’RACE results. Given the reduced size of the entire SCNN1D gene and its anticipated high 

GC content (Table 2), we initially needed to validate the primary DNA sequence of the guinea 

pig SCNN1D gene (Gene ID: 100714892) in order to rule out high-throughput sequencing 

artifacts. Indeed, re-sequencing revealed a frame-shift in the very C-terminus. The corrected 

sequence has been deposited on GenBank (MN187539). SCNN1A, SCNN1B and SCNN1G 

have a generally similar gene organization (Hanukoglu and Hanukoglu 2016). The 5’RACE 

experiments revealed the inclusion of a single exon upstream of exon 2 for SCNN1A and 

SCNN1B, while in the case of SCNN1G two alternative exons are present (1a or 1b, Figure 3 

A). The SCNN1D gene displays three major distinguishing features as compared to its 

homologues: (1) A collapsed gene size and increased GC content (Table 2, Figure 3 A, 

Supplemental Spreadsheet); (2) two alternative transcriptional start sites (short and long 

versions of exon 2) and the absence of any upstream exons, i.e., absence of exon 1; (3) a 

fusion of exon 11 and 12 forming a 'super-exon' (11*) due to the loss of splice donor and 

acceptor sites (Figure 3 A). 

The amino acid sequence of guinea pig δ-ENaC was analysed in comparison with 

human δ-ENaC and the α-subunits of both species (Figure 3 B, Supplemental Data 2). Four 

major differences in key regulatory motifs were observed between the δ- and α-subunits: (1) 

A domain that is unique to ENaC, and referred to as the Gating Relief of Inhibition by 

Proteolysis (GRIP) domain (Figure 1 C) (Noreng et al. 2018), is shorter in the δ-subunits, 

particularly in the regions that correspond to the P1 and P2 strands of the α-subunits (Noreng 

et al. 2020) (Figure 3 B); (2) consensus sites for the protease furin, which flank the P1 strand 

of the GRIP domain, are partly (for human δ-ENaC) or completely (for guinea pig δ-ENaC) 

absent (Figure 3 C); (3) a key residue that is involved in the coordination of sodium ions and 

sodium self-inhibition (Asp-338 in human α-ENaC; Noreng et al. 2020) is present in guinea pig 

α-ENaC (Asp-336), but absent in both human and guinea pig δ-ENaC (Figure 3 C); (4) in 

comparison with human δ-ENaC, guinea pig δ-ENaC has a slightly longer 'knuckle' region due 

to the fusion of exons 11 and 12 to a super-exon, adding five amino acids (Figure 3 D). 

According to the extracellular domain of human α-ENaC (Noreng et al. 2020), the additional 
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amino acids are likely incorporated into a region that is structurally flexible and located at the 

protein surface (Figure 3 E and F). 

General properties of guinea pig αβγ-ENaC and δβγ-ENaC in comparison to human 
ENaC isoforms. To investigate the functional properties of guinea pig ENaC isoforms and to 

compare them to known characteristics of human ENaC orthologues, we heterologously 

expressed guinea pig or human αβγ- or δβγ-ENaC in Xenopus laevis oocytes and recorded 

whole-cell transmembrane currents (IM) from oocytes clamped at -60 mV using the two-

electrode voltage-clamp technique. ENaC activity was determined as fractions of IM that were 

inhibited by 100 µM amiloride, a general ENaC blocker (ΔIami). Figure 4 A shows representative 

current traces for oocytes expressing either guinea pig αβγ- or δβγ-ENaCs and demonstrates 

that both guinea pig ENaC-isoforms are functional ion channels. Water-injected control 

oocytes did not generate any amiloride-sensitive currents. Guinea pig δβγ-ENaC generated 

significantly larger ΔIami (-6.03 ± 0.79 µA, n = 20) than αβγ-ENaC (-2.10 ± 0.21 µA, n = 19, p < 

0.0001, Student’s unpaired t-test with Welch's correction, Figure 4 B). The half-maximal 

inhibitory concentration (IC50) of amiloride for guinea pig αβγ-ENaC was 0.15 ± 0.02 µM (n = 

10), not significantly different from the amiloride IC50 for δβγ-ENaC (0.24 ± 0.05 µM, n = 10, p 

= 0.1095, Mann-Whitney U-test, Figure 4 C). As with the guinea pig ENaCs, human δβγ-ENaC 

generated significantly larger ΔIami (-10.23 ± 3.25 µA, n = 10) than human αβγ-ENaC (-6.518 

± 3.192 µA, n = 10, p = 0.0191, Student’s unpaired t-test, Figure 4 D/E). The amiloride IC50 

values for human ENaCs are consistent with published data (Waldmann et al. 1995) in that 

human δβγ-ENaC (IC50 = 2.22 ± 0.26 µM, n = 6) is less sensitive to amiloride than human αβγ-

ENaC (IC50 = 0.15 ± 0.01 µM, n = 6, p = 0.0022, Mann-Whitney U-test, Figure 4 F). In contrast 

to αβγ-ENaC, human δβγ-ENaC is more permeable to Na+ than Li+ (Waldmann et al. 1995). 

This trait is not shared by guinea pig δβγ-ENaC which is slightly more permeable to Li+ over 

Na+ (1.07 ± 0.04, n = 19) although not by the same magnitude as guinea pig αβγ-ENaC (1.77 

± 0.11, n = 13, p < 0.0001, Mann-Whitney U-test). 
The single channel conductance of human δβγ-ENaC is 12 pS (Waldmann et al. 1995; 

Wesch et al. 2012), which is more than twice as large as αβγ-ENaC (4.9 pS; Fronius et al. 

2010). This, together with an increased open probability (Haerteis et al. 2009) explains why 

the ΔIami of oocytes expressing human δβγ-ENaC are larger than of those expressing αβγ-

ENaC. We determined the single-channel conductance of guinea pig αβγ- and δβγ-ENaC 

(Figure 4 G/H). The slope conductances (Gslope, Figure 4 H) were calculated from linear 

regressions of recorded unitary conductances at membrane potentials clamped between -100 

mV and -20 mV. Interestingly, the Gslope of guinea pig αβγ-ENaC (4.43 ± 0.19 pS, n = 10) was 

not significantly different from the Gslope of guinea pig δβγ-ENaC (4.21 ± 0.35 pS, n = 7, p = 

0.57, unpaired Student’s t-test).  
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Isoform-specific control of ENaC activity by proteases and sodium. Proteolytic 

processing of ENaC subunits plays a major role in regulating channel activity. Before αβγ-

ENaC reaches the plasma membrane, the α- and γ-ENaC subunits are cleaved in the trans-

Golgi network by the endoprotease furin (Kleyman and Eaton 2020). The γ-ENaC subunit is 

cleaved once while the α-ENaC subunit is cleaved twice, thereby removing an inhibitory 

peptide within the extracellular domain (Kleyman and Eaton 2020). The release of this 

inhibitory peptide increases ENaC open probability to a moderate level. When furin-processed 

ENaC reaches the plasma membrane, the γ-ENaC subunit can be additionally cleaved by 

extracellular proteases (such as prostasin), thereby releasing the inhibitory peptide from the γ-

ENaC subunit and further increasing ENaC open probability (Kleyman and Eaton 2020). A 

well-established protocol for the assessment of proteolytic ENaC activation in Xenopus 

oocytes is the recording of ΔIami before and after exposure to the protease chymotrypsin 

(Haerteis et al. 2009; Wichmann et al. 2018) (Figure 5). Oocytes expressing guinea pig or 

human ENaCs were perfused with amiloride. Amiloride was removed for 3 min in order to 

determine baseline ΔIami. Afterwards, oocytes were perfused for 5 min with chymotrypsin (2 

µg/ml) in the presence of amiloride. Drugs and protease were subsequently removed and ΔIami

was determined again (Figure 5 A). The ratio between the two ΔIami was calculated to reveal 

fold-changes in ENaC activity due to application of chymotrypsin (Figure 5 B). To account for 

changes in ENaC activity over time, identical recordings were performed without chymotrypsin 

as controls. Consistent with published data (Haerteis et al. 2009), both human ENaC isoforms 

were activated by the application of extracellular protease. The ratio of the two ΔIami of human 

αβγ-ENaC expressing oocytes was 0.65 ± 0.04 (n = 8) under control conditions, and 

significantly increased to 1.77 ± 0.11 (n = 9; p < 0.0001, Student’s paired t-test) after 

chymotrypsin exposure (Figure 5 A/B). For oocytes expressing human δβγ-ENaC, the ratio of 

the two ΔIami was 0.87 ± 0.03 (n = 8) in protease-free controls and increased significantly to 

1.13 ± 0.06 (n = 9, p = 0.0079, Student’s paired t-test, Figure 5 A/B) in the presence of 

chymotrypsin. Chymotrypsin thus leads to a much stronger activation of human αβγ-ENaC 

than human δβγ-ENaC. Similarly, in oocytes expressing guinea pig αβγ-ENaC, the ratio of the 

two ΔIami after exposure to chymotrypsin was 1.52 ± 0.08 (n = 13), which was significantly larger 

than the chymotrypsin-free control (0.76 ± 0.02, n = 12, p < 0.0001, Mann-Whitney U-test, 

Figure 5 C/D). By contrast, oocytes expressing guinea pig δβγ-ENaC did not display any 

differences in the ratio of the two ΔIami following the application of chymotrypsin (0.78 ± 0.03, n 

= 15) or in the chymotrypsin free control group (0.75 ± 0.06, n = 12, p = 0.9427, Mann-Whitney 

U-test, Figure 5 C/D). In summary, whereas αβγ-ENaC is profoundly activated by

chymotrypsin, activity of δβγ-ENaC was less affected by protease treatment in both

mammalian ENaC orthologues.
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In addition to proteolytic processing of ENaC subunits, extra- and intracellular sodium 

concentrations are important determinants of ENaC activity. ENaC-mediated transmembrane 

currents typically reduce over time through either feedback inhibition driven by an increase in 

intracellular sodium concentration or through sodium self-inhibition (SSI) driven by an increase 

in extracellular sodium concentration (Chraïbi and Horisberger 2002). The magnitude of SSI 

was calculated as the percentage of the ENaC-mediated current that remained 3 minutes after 

rapidly switching the sodium concentration in the (extracellular) perfusion solution from 1 mM 

to 90 mM sodium (Figure 5 E). SSI of guinea pig δβγ-ENaC (16.09 ± 2.49 %, n = 17) was 

significantly smaller than SSI of guinea pig αβγ-ENaC (46.52 ± 2.708 %, n = 18; p < 0.0001, 

Student’s unpaired t-test, Figure 5 F). Under the same experimental conditions, the SSI of the 

human ENaC isoforms were similar to guinea pig ENaCs in that human δβγ-ENaC showed a 

significantly smaller SSI (17.72 ± 0.99 %, n = 10) than human αβγ-ENaC (57.68 ± 2.21 %, n = 

10, p < 0.0001, Mann-Whitney U-test, Figure 5 G/H).  

δβγ-ENaC activity is uncoupled from extracellular sodium concentrations. The control of 

ENaC activity by SSI avoids excessive uptake of sodium ions into the cells under conditions 

of high extracellular sodium concentrations (Kleyman et al. 2018). Thus, the reduced SSI in 

guinea pig and human δβγ-ENaC isoforms indicates uncoupling between ENaC activity and 

the extracellular sodium concentrations ([Na+]). We therefore increased the [Na+] gradually 

from 1 mM to 300 mM while the IM of ENaC expressing oocytes was being recorded. 

Osmolarity of the extracellular solution was kept constant using N-methyl-D-glucamine as a 

Na+ substitute. While the IM of guinea pig αβγ-ENaC expressing oocytes did not further 

increase at extracellular [Na+] beyond 60 mM, there was a continuous increase in IM of guinea 

pig δβγ-ENaC expressing oocytes across the employed range of extracellular [Na+] used 

(Figure 6 A). Values of IM at different extracellular [Na+] were fitted to Michaelis-Menten kinetics 

(Figure 6 B) to estimate the maximal current generated by each ENaC isoform (Vmax) and the 

extracellular [Na+] at which half the Vmax is achieved (KM) (Figure 6 C). Guinea pig δβγ-ENaC 

has a significantly higher KM (76.86 ± 4.63 mM Na+, n = 12) than guinea pig αβγ-ENaC (26.78 

± 4.01 mM Na+, n = 12, p < 0.0001, Mann-Whitney U-test), indicating that the presence of the 

δ-subunit causes increased ENaC activity at high extracellular [Na+]. The Vmax of guinea pig 

δβγ-ENaC was also significantly larger (-7.04 ± 0.68 µA, n = 12) than that of αβγ-ENaC (-3.44 

± 0.79 µA, n = 12, p = 0.0005, Mann-Whitney U-test), consistent with the larger ΔIami recorded 

in oocytes expressing δβγ-ENaCs as compared to those expressing αβγ-ENaC (Figure 4 A/B). 
Similar results were obtained with human ENaC isoforms (Figure 6 D - F). Human δβγ-

ENaC also had a significantly higher KM (73.73 ± 11.33 mM Na+, n = 10) than αβγ-ENaC (8.71 

± 1.91 mM Na+, n = 10, p = 0.0003, Student’s unpaired t-test with Welch’s correction). Vmax of 

human δβγ-ENaC (-11.88 ± 2.73 µA, n = 10) was larger than αβγ-ENaC (-6.27 ± 1.14 µA, n = 
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10), but statistical significance was not reached (p = 0.082, Student’s unpaired t-test with 

Welch’s correction, Figure 6 F). Nevertheless, the presence of the δ-subunit appears to 

increase ENaC activity at high extracellular [Na+] in both human and guinea pig ENaCs. 

Reduced sodium self-inhibition is pivotal to ENaC activity at high extracellular sodium 
concentrations. Proteolytic processing of ENaC subunits and SSI are linked regulatory 

processes. Cleavage of human αβγ-ENaC expressed in Xenopus oocytes causes a reduction 

in the magnitude of SSI (Chraïbi and Horisberger 2002) whereas mutations in furin cleavage 

sites that prevent proteolytic processing in mouse α-ENaC causes increased SSI (Sheng et al. 

2006). We recorded SSI of guinea pig αβγ-ENaC with and without prior incubation in 

chymotrypsin (2 µg/ml in NMDG-ORS) for 5 minutes (Figure 7 A). After incubation in 

chymotrypsin, SSI of guinea pig αβγ-ENaC was 19.28 ± 1.57 % (n = 15), significantly smaller 

than the SSI of guinea pig αβγ-ENaCs that were not treated with chymotrypsin (59.83 ± 3.19 

%, n = 8, p < 0.0001, unpaired Student’s t-test, Figure 7 B). The IM of guinea pig αβγ-ENaCs 

with and without prior incubation with chymotrypsin were then recorded as the extracellular 

[Na+] was increased from 1 mM to 300 mM (Figure 7 C). Exposure of guinea pig αβγ-ENaC to 

chymotrypsin significantly increased Vmax (-11.93 ± 1.69 µA) and KM (44.87 ± 4.06 mM Na+, n 

= 15) as compared to untreated αβγ-ENaCs (Vmax: -4.65 ± 0.37 µA, n = 11, p = 0.0009, unpaired 

Student’s t-test with Welch’s correction; KM: 17.56 ± 6.03 mM Na+, p < 0.0001, Mann-Whitney 

U-test, Figure 7 E/F). These data indicate that proteolytic reduction of SSI in guinea pig αβγ-

ENaC enhances ENaC activity across the range of extracellular [Na+] used and resembles the

activity of guinea pig δβγ-ENaC (Figure 6) which has an inherently reduced SSI and lacks

proteolytic activation (Figure 5).

The reduced sodium self-inhibition of human and guinea pig δβγ-ENaC generates 
increased activity at high extracellular sodium concentrations. We observed that both 

human and guinea pig δβγ-ENaC are more active at high extracellular [Na+] than αβγ-ENaCs 

(Figure 6). Human and guinea pig δβγ-ENaC have a reduced SSI (Figure 5) and the IM - [Na+] 

relationship is altered by a change in the magnitude of SSI (Figure 7). We therefore 

hypothesised that the magnitude of SSI of guinea pig and human δβγ-ENaC is reduced across 

the employed range of extracellular [Na+], thereby establishing increased ENaC activity. We 

recorded SSI of guinea pig αβγ- and δβγ-ENaC expressing oocytes at extracellular [Na+] 

between 3 mM and 300 mM (Figure 8 A). The magnitude of SSI in guinea pig αβγ-ENaC 

(Figure 8 B) increased steadily from 35.69 ± 3.98 % at 3 mM extracellular [Na+] to 73.15 ± 1.25 

% at 300 mM extracellular [Na+], while the magnitude of SSI of guinea pig δβγ-ENaC appeared 

to decline slightly as extracellular [Na+] increased. The relationship between SSI and the 

extracellular [Na+] was described by the slope derived from linear regression of SSI at 

logarithmic transformations of extracellular [Na+] between 3 mM and 300 mM (Figure 8 B). The 
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slope of the regression line of guinea pig αβγ-ENaC (21.02 ± 2.37, n = 6-9) was significantly 

larger than that of δβγ-ENaC (-6.20 ± 1.81, n = 6-10, ANCOVA, p < 0.0001, F1, 135 = 84.01). A 

similar result was obtained when the magnitudes of SSI of human ENaCs orthologues were 

estimated using the same protocol (Figure 8 C).  The slope of the linear regression of human 

αβγ-ENaC (15.72 ± 3.44, n = 9) was also significantly larger than that of δβγ-ENaC (3.37 ± 

3.73, n = 9-11, ANCOVA, p = 0.0166, F1, 142 = 5.879, Figure 8 C). In sum, these data indicate 

that the reduced SSI uncouples the control of δβγ-ENaC activity from extracellular [Na+], 

thereby leading to enhanced ENaC-mediated sodium uptake across a wide range of 

extracellular sodium concentrations.  

Functional gene coding for δ-ENaC is not associated with habitat aridity across 
Rodentia. In mammals, ENaC plays an important role in fine-tuning renal sodium re-

absorption and extracellular fluid volume as part of the RAAS (Schild 2010). It is therefore 

considered a key player in the control of sodium and water homeostasis. Interestingly, 

mammals living in dry (arid) habitats appear to have higher basal levels of the RAAS (Donald 

and Pannabecker 2015), and recent studies indicated that enhanced ENaC activity drives renal 

water re-absorption and faecal dehydration in desert mammals (Wu et al. 2014; Zhang et al. 

2019). Since δβγ-ENaCs have an enhanced activity as compared to αβγ-ENaCs and would 

therefore enhance sodium and, consequently, water conservation, we explored whether the 

presence of the δ-subunit in a rodent species might correlate with associated environmental 

factors. Geolocation data extracted from the Global Biodiversity Information Facility (GBIF) 

were used to plot the global distribution of non-invasive rodent species that maintained a 

functional SCNN1D and those that lost it (Figure 9, Supplemental Figures 2 - 5). Invasive 

rodent species, as described in the Global Invasive Species database, were excluded from the 

analysis in order to focus on the natural species' distributions (Supplemental Figure 5). In 

Sciuromorpha, loss of SCNN1D was observed in North American, East Asian and South 

African species (Figure 9). Interestingly, most of the species lacking SCNN1D are adapted to 

cold and warm arid environments (Supplemental Figure 2) (Wilson et al. 2017). In 

Supramyomorpha, species lacking SCNN1D are widely distributed across various climates in 

North America, Africa and South-East Asia (Figure 9, Supplemental Figure 3). Interestingly, all 

Hystricomorpha species we investigated maintained functional SCNN1D independent of 

habitat aridity, except for the Patagonian mara (D. patagonum) (Figure 9, Supplemental Figure 

4). Based on a potential habitat-dependent distribution of rodents with and without functional 

SCNN1D among Sciuromorpha, we tested whether its presence partially explained variation 

in habitat aridity. Species with and without the gene (n = 43) were found distributed across a 

wide range of habitat aridities (Figure 9). However, inclusion of gene presence did not 

significantly improve model fit compared to the null model of random species effects only (  2
(1) 
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= 1.20, p = 0.273), with random species effects alone explaining 49.5 % of the observed 

variance in aridity (cf. 52.2% conditional r2 for the model with gene presence). Modelling more 

complex phylogeny (species nested within clade) could not be resolved due to singular fits of 

the mixed effects models. Therefore, evidence based on this statistical analysis suggests that 

the presence of a functional SCNN1D does not appear to be associated with observed aridity 

across Rodentia given species level differences in habitat. 

Discussion 

This study closes an intriguing gap in knowledge regarding functional δ-ENaC in rodents, 

which has puzzled the field of ENaC research for more than twenty years - to the point that 

rodents had been assumed to lack a functional SCNN1D gene (Kleyman and Eaton 2020; 

Paudel et al. 2021). Based on an investigation of likely functional δ-ENaC-encoding SCNN1D 

genes in rodent genomes, we report that SCNN1D is not generally absent from rodents but 

was independently lost in at least five rodent clades, including the Muridae family (rats and 

mice). We note that previous studies employing RT-PCR indicated the presence of SCNN1D 

in mouse (Nie et al. 2009), but the entire gene has never been fully identified and its gene 

product has never been cloned. Given the current sequence coverage of the mouse genome, 

its position would have been identified. Hence, previously reported RT-PCR data (Nie et al. 

2009) are likely due to residual SCNN1D promoter activity that does not result in a functional 

mRNA.  

The 'loss of the SCNN1D' gene was actually a loss of function due to frame-shifts, 

preliminary stop signals or disruptions of splice-donor and splice-acceptor sites, rather than 

complex genomic rearrangements resulting in a deletion of genomic information, leaving its 

flanking genes, UBE2J2 and ACAP3, intact. Further, changes to a likely functional SCNN1D 

gene arose in the infraorder Hystricognathi, resulting in a fused super-exon consisting of exons 

11 and 12 with the separating intron. Exons 11 and 12 code for the ENaC 'knuckle' domain 

which interacts with the finger domains of the neighbouring ENaC subunits (Noreng et al. 2018) 

and plays an important role in sodium self-inhibition (SSI) (Chen et al. 2015). Strikingly, the 

incorporation of additional amino acids into this region of guinea pig δ-ENaC due to the exon 

fusion does not affect channel functionality. This is likely due to the peripheral location of the 

knuckle domain at the channel surface, which allows substantial flexibility in contrast to other 

domains which are, e.g., involved in key parts of the gating machinery of the ion channel. 

The most parsimonious explanation is that the 'super-exon' is a new autapomorphic 

feature of Hystricognathi. This clade comprises Hystricidae (Old World porcupines), 

Phiomorpha (African cane rats, dassie and mole rats) and Caviomorpha (New World 

hystricognaths. i.e., cavies and allies) (Patterson and Upham 2014). The oldest known 
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Hystricognathi are the caviomorphs Canaanimys maguiensis, Cachiyacuy kummeli and 

Cachiyacuy contamanensis from the late Middle Eocene (~41 Ma) of Peru (Antoine et al. 

2012). However, the origin of Hystricognathi is certainly in Asia and dates back into the Early 

Eocene or even Late Palaeocene (up to 56 Ma), although the oldest phiomorph fossils are 

known from younger deposits in the Middle Eocene of North Africa (Antoine et al. 2012; 

Marivaux et al. 2014;  Patterson and Upham 2014). The oldest Hystricidae are members of 

the genus Atherurus which were found in Late and Middle Miocene deposits of Pakistan (~15 

Ma) and Egypt (~11 Ma) (Weers 2005; Mein and Pickford 2006). Thus, we can confidently 

conclude that the fusion of exons 11 and 12 evolved in the Eocene at the latest because it was 

already present in the last common ancestor of Hystricognathi. Although the super-exon may 

not very substantially affect the function of δβγ-ENaC in general, it has been a stable feature 

for more than 41 Ma.  

Functional analyses of guinea pig αβγ- and δβγ-ENaCs expressed in Xenopus oocytes 

allowed us to compare their biophysical and regulatory properties with human ENaC 

orthologues. Compared to αβγ-ENaCs, we found that guinea pig δβγ-ENaCs, (1) generate 

larger transmembrane currents; (2) have a reduced sensitivity to extracellular proteases; (3) 

have a reduced SSI; and (4) exhibit uncoupling between the control of channel activity and the 

extracellular [Na+].  These characteristics are similar to those of the human ENaC orthologues. 

As a constitutively active ion channel, the transmembrane current generated by ENaC activity 

depends on the number of active channels in the plasma membrane, the single channel 

conductance and the open probability. Previous studies showed that δ-subunit incorporation 

does not lead to an increased membrane abundance of human (Haerteis et al. 2009) and 

Xenopus laevis δβγ-ENaCs (Wichmann et al. 2018). Assuming, accordingly, that there is also 

no difference in the membrane abundance between guinea pig δβγ-ENaC and αβγ-ENaC, the 

observed differences in transmembrane currents and in coupling between ENaC current and 

the extracellular [Na+], are likely caused by different single channel conductance or open 

probability. 

The single channel sodium conductance of human δβγ-ENaC is more than twice as 

large as that of αβγ-ENaC (Waldmann et al. 1995; Wesch et al. 2012). This seems to be a 

novel feature of human ENaCs, as the single channel sodium conductances of guinea pig and 

Xenopus laevis αβγ- and δβγ-ENaCs are similar (Wichmann et al. 2018). Unlike the human 

isoforms, the difference in transmembrane currents between guinea pig ENaC isoforms is not 

related to a larger single channel conductance of δβγ-ENaC, so that the difference between 

transmembrane currents of guinea pig αβγ- and δβγ-ENaCs and the relationship between 

transmembrane currents and extracellular [Na+], are likely due to differential ENaC open 

probabilities. Indeed, proteolytic processing and sodium self-inhibition, key control 
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mechanisms of ENaC open probability (Kleyman and Eaton 2020), are reduced in guinea pig 

and human δβγ-ENaCs. 

The Cryo-EM-derived structure of human αβγ-ENaC reveals a domain that is unique to 

ENaC and referred to as the Gating Relief of Inhibition by Proteolysis (GRIP) domain (Noreng 

et al. 2018). The peptide sequence that forms the GRIP domain resides between the α1 and 

α2 helices of the 'finger' domain and contains inhibitory tracts that are released when ENaC is 

cleaved by proteases. The intracellular protease furin cleaves ENaC within the Golgi apparatus 

at the consensus site (Arg-X-X-Arg) (Molloy et al. 1992). The human α-ENaC subunit has two 

furin consensus sites within the GRIP domain and is cleaved twice by furin. This removes the 

inhibitory peptide and changes ENaC from a near silent channel to one with an intermediate 

open probability (Kleyman and Eaton 2020). The γ-ENaC subunit is only cleaved once by furin. 

The activation of membrane bound ENaC is attributed to a second cleavage of γ-ENaC by 

extracellular proteases, releasing the inhibitory tract from γ-ENaC. This switches ENaC to a 

high open probability, increasing its activity (Kleyman and Eaton 2020). Consistent with 

previous reports (Haerteis et al. 2009), human αβγ- and δβγ-ENaCs are activated by 

extracellular proteases, but the activity increase of human δβγ-ENaC is smaller than that of 

αβγ-ENaC. While the activity of guinea pig αβγ-ENaC is increased, the activity of δβγ-ENaC 

did not change upon application of extracellular protease. Guinea pig δ-ENaCs lack the two 

furin consensus sites that are present in the α-subunit (Wichmann et al. 2019; Wichmann and 

Althaus 2020). Further, we showed previously that the presence of the δ-subunit in Xenopus 

laevis δβγ-ENaCs prevents extracellular protease (chymotrypsin) from cleaving the γ-subunit 

(Wichmann et al. 2019). It is thus likely that the insensitivity of guinea pig δβγ-ENaC to 

extracellular protease is caused by the absence of furin cleavage sites in δ-ENaC and 

prevention of γ-subunit cleavage. We also observed that the peptide sequences of human and 

guinea pig δ-ENaC GRIP domains are shorter than those of α-ENaC in both species, 

particularly in the region encompassing the P1 and P2 strands of the α-subunits GRIP 

domains. Removal of the P1 strand was recently suggested to cause the loss of SSI after 

proteolytic cleavage (Noreng et al. 2020). Thus, the shorter GRIP domains of human and 

guinea pig δ-ENaC may explain the greatly reduced SSI in human and guinea pig δβγ-ENaCs. 

Previous studies demonstrated that proteolytic processing activates ENaC by relieving 

SSI (Chraïbi and Horisberger 2002). As shown in this and previous studies (Ji et al. 2006), the 

magnitude of SSI is lower in human δβγ-ENaCs than in human αβγ-ENaCs. In line with the 

human ENaC isoforms, the magnitude of SSI in guinea pig δβγ-ENaCs is also reduced as 

compared αβγ-ENaCs. SSI likely involves the coordination of sodium ions in an extracellular 

region termed the acidic cleft (Kashlan et al. 2015; Wichmann et al. 2019). A key residue that 

likely coordinates sodium ions was identified the β6-β7 loop of the acidic cleft of human and 

mouse α-ENaC (Asp-338 and Asp-365, respectively) (Kashlan et al. 2015; Noreng et al. 2020) 
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and of Xenopus laevis δ-ENaC (Asp-296), which, in contrast to mammalian δβγ-ENaCs, shows 

a strong SSI. This conserved residue is absent from human and guinea pig δ-ENaCs 

(Wichmann et al. 2019), which might further contribute to the reduced SSI in these variants. In 

addition to the residues in the acidic cleft, intra-subunit interactions between the 'finger' and 

'knuckle' domains of neighbouring ENaC subunits are likely required to translate sodium 

binding in the acidic cleft to a change in the channel gate (Wichmann et al. 2019). This supports 

the idea that the shorter GRIP domains of human and guinea pig δ-ENaC may contribute to a 

reduced SSI by restricting conformational changes in the channels. Further, deletion of the 

'knuckle' domain in the a-subunit of mouse ENaC results in loss of SSI (Chen et al. 2015). The 

altered structure of the 'knuckle' domain due to exon fusion in guinea pig δ-ENaC might 

therefore also contribute to structural impairments that reduce SSI. 

Consistent with previous reports on human ENaC (Chraïbi and Horisberger 2002), the 

magnitude of SSI increases with the extracellular [Na+] in human and guinea pig αβγ-ENaCs, 

a phenomenon that was suggested to protect epithelial cells from absorbing excess sodium 

ions (Kleyman et al. 2018). SSI is a dynamic mechanism for regulating ion channel activity that 

responds instantaneously to changes in urinary [Na+]. This coupling of ENaC activity to the 

extracellular [Na+] is absent from human and guinea pig δβγ-ENaCs, resulting in increased ion 

channel activity as the extracellular [Na+] rose above approximately 60 mM. This enhanced 

activity under high extracellular [Na+] is linked to the reduced SSI in these ENaC isoforms. 

Previous studies on mouse αβγ-ENaC showed that the magnitude of SSI is reduced in 

proteolytically processed channels (Sheng et al. 2006). In addition, prevention of proteolytic 

processing of mouse α-ENaC by mutating the furin consensus sites increases the magnitude 

of SSI (Sheng et al. 2006). Consistently, exposure of guinea pig αβγ-ENaC to chymotrypsin 

led to SSI reduction and increased ion channel activity at higher extracellular [Na+]. 

Interestingly the KM and Vmax of the cleaved αβγ-ENaC were more than twice as big as those 

of uncleaved αβγ-ENaC, mirroring the difference between the KM and Vmax of the human and 

guinea pig δβγ- and αβγ-ENaC isoforms. In this instance the proteolytically processed αβγ-

ENaC behaves like the protease-insensitive δβγ-ENaC and displays greater activity at higher 

extracellular [Na+].  

In summary, guinea pig and human δβγ-ENaCs have an increased activity as 

compared to αβγ-ENaCs, and channel activity is not curbed at high extracellular [Na+] due to 

a strongly reduced SSI. Assuming that these characteristics are conserved among rodent 

ENaCs, the question of a physiological context in which such properties might be 

advantageous arises. Key targets for the RAAS are the distal convoluted tubules and cortical 

collecting ducts in the mammalian kidney, where aldosterone controls αβγ-ENaC expression 

to match sodium excretion to dietary sodium intake (Palmer and Schnermann 2015). The 

RAAS evolved in tetrapod vertebrates as an adaptation to a terrestrial environment, and, to 
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the best of our knowledge, there is no tetrapod vertebrate species that lacks genes coding for 

αβγ-ENaC. Given the physiological importance of αβγ-ENaC, we searched for evidence 

indicating that δβγ-ENaCs displaying increased activity (as compared to αβγ-ENaC) might be 

an advantage for rodent species living in particularly arid environments with higher 

physiological demands on sodium and water homeostasis.  

The loss of SCNN1D represents an apomorphic feature that evolved independently in 

all three major rodent clades. In the Sciuromorpha this trait is restricted to the Sciuridae, which 

at first glance indicates a phylogenetic signal. However, our sciurid sample comprises only 

ground squirrels of the subfamily Xerinae, more specifically, of the tribes Xerini and Marmotini 

(Steppan et al. 2004). Thus, representatives of the third xerine tribe Protoxerini and further 

species of the other sciurid subfamilies need to be investigated in order to test a phylogenetic 

signal for the respective taxon level. Although our results clearly show that loss of SCNN1D 

cannot generally be related to aridity of the habitat of the investigated species across Rodentia, 

there appears to be a climate-related signal within the Sciuridae under study. All the 

investigated Xerini are adapted to cold and warm arid environments like mountain regions, 

steppes, prairie, and (semi)deserts (Wilson et al. 2017). One exception is Marmota monax 

which is widely distributed from Alaska and Canada into open lowland environments of the 

eastern United States, covering a wide range of ecosystems and climates (Wilson et al. 2017) 

(Supplemental Figure 2). According to Polly (2003), Marmota monax subspecies evolved and 

differentiated over several glacial cycles within the last 750,000 years whereas other extant 

North American Marmota species evolved more recently. The observed higher diversity of 

molar shape in Marmota monax may reflect their greater adaptive potential due to repeated 

geographic fragmentation and thus could explain the wide range in habitat climates observed 

today. Another exception is Marmota marmota, whose environment has the highest mean 

humidity among the studied sciurid species we studied, although most of the observation sites 

refer to arid environments (see Figure 9 and Supplemental Figure 2). In the Alps, this species 

prefers habitats that match less vegetation and high sun exposure with early snowmelt (Allaine 

et al. 1994). However, future investigations of tree squirrels (Protoxerini, Sciurinae and other 

subfamilies) need to prove the SCNN1D loss as a potential ecological adaptation in Sciuridae. 

Among Supramyomorpha the loss of SCNN1D is restricted to Heteromyidae, Dipodidae 

and certain Muroidea. Besides being a potential phylogenetic signal (autapomorphic), the 

SCNN1D loss in Heteromyidae and Dipodidae could be also constrained by the arid 

environment the investigated species live in (Wilson et al. 2016; Wilson et al. 2017). 

Concerning Muroidea, the SCNN1D loss may be a synapomorphic character of Eumuroida, a 

clade comprising Nesomyidae, Cricetidae and Muridae. Future studies of Calomyscidae need 

to prove if the SCNN1D loss is characteristic of a more exclusive clade. However, no climatic 

or dietary signals are evident as our sample comprises species with very diverse diets 
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(omnivorous, herbivorous, insectivorous), habitats and geographic distributions (Wilson et al., 

2017). This indicates that the loss of SCNN1D is not a disadvantage for the respective species. 

Within Hystricomorpha only Dolichotis patagonum lost SCNN1D, although many 

members of this suborder inhabit arid environments. The Patagonian mara differs from other 

caviomorph rodents in reflecting a small ruminant adapted to open grass grasslands. However, 

a study on the digestive system and metabolic rates of Dolichotis patagonum shows no 

significant differences from other caviomorphs (Clauss et al. 2019). Therefore, no plausible 

explanation for the derived pattern in Dolichotis patagonum can be provided at this point. 

In general, possible geographic patterns (e.g., presence of SCNN1D in South American 

species, absence of SCNN1D in East Asian species) are certainly biased by our taxon 

sampling. For instance, given the fact that the Cricetidae members we investigated are all 

showing SCNN1D loss, it is likely that South American members of this family, which were not 

included in our study, also show the same pattern. Further, the available GBIF data might be 

biased as numbers of individual observations vary substantially between species. 

Nevertheless, the broad geographical distribution of species lacking SCNN1D - including the 

Eumuroida - indicates that the absence of SCNN1D does not appear to be a general 

disadvantage or adaptation to an extreme environmental climate. Rather, our data indicate 

that the role of δβγ-ENaC in renal sodium and water homeostasis might not be as crucial as 

that of αβγ-ENaC. 

Whether δ-ENaC is regulated by aldosterone, expressed in the mammalian distal 

nephron, or forms functional δβγ-ENaCs in the kidney remains unknown. None of the analysed 

rodent species with a functional SCNN1D appears to lack a SCNN1A gene coding for a-ENaC 

(data not shown). Given the efficacy of the RAAS in controlling sodium and water homeostasis 

across a wide range of mammalian species living in various environments, there does not 

appear to be any obvious benefit in an additional ENaC isoform with high activity in renal 

tubules. Further, [Na+] in the distal convoluted tubules and cortical collecting ducts are lower 

than plasma [Na+] and, based on the IM - [Na+] relationships observed in this study, differences 

in the activity between αβγ-ENaCs and δβγ-ENaC appear unlikely under these conditions. This 

might explain why pseudogenisation of SCNN1D does not appear to correlate with habitat 

aridity across Rodentia.  

The specific IM - [Na+] relationships might indicate that δβγ-ENaC operates under 

extracellular [Na+] that are equal or greater than plasma [Na+]. In humans, RNA and protein 

expression of δ-ENaC was observed in taste buds, which are exposed to a wide range of 

dietary [Na+], including concentrations that greatly exceed plasma [Na+] (Bigiani 2020a). In 

mice, αβγ-ENaC is involved in attractive salt taste to [Na+] lower than plasma [Na+] 

(Chandrashekar et al. 2010; Nomura et al. 2020). In humans, the role of ENaC in salt taste is 

unclear (Bigiani 2020b) but it was recently suggested that δ-ENaC might be relevant for the 
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detection of [Na+] that exceed plasma [Na+] (Bigiani 2020b). The functional properties of δβγ-

ENaC we observed here would be consistent with this notion. δβγ-ENaC could be involved in 

mechanisms triggering aversive responses to potentially dangerous [Na+] that exceed plasma 

[Na+] and renal urine concentration capacity. Such a secondary role in 'danger signalling' might 

explain the lack of obvious selection pressures maintaining SCNN1D purely based on 

environmental factors. Of note, current understanding of salt taste in rodents is based on 

studies using mice (Chandrashekar et al. 2010; Nomura et al. 2020) which lack functional δ-

ENaC and may have evolved alternative mechanisms for aversive salt taste signalling.  

Taken together, the data presented here show that SCNN1D is not generally absent 

across rodents and that pseudogenisation appeared independently in different clades. Despite 

genomic changes such as exon fusions, guinea pig δβγ-ENaC is a functional ion channel which 

has biophysical and regulatory characteristics that are very similar to those of the human 

orthologue. Guinea pigs are therefore suitable, commercially available rodent model animals 

that allow future investigations to shed light on the physiological function of δβγ-ENaC. 

Materials and Methods 

Bioinformatical analyses: Bioinformatical and phylogenetic analyses investigating the 

absence or presence of SCNN1D genes were performed essentially as has been described 

previously (Maxeiner et al. 2020). In short, the search query ‘SCNN1D and rodentia’ yielded 

results for some but not all currently annotated rodent genomes. Those in which SCNN1D was 

present were consistently flanked by the neighbouring genes UBE2J2 and ACAP3. In cases 

in which SCNN1D was not annotated, we used this particular genomic region and performed 

a sequence alignment to identify potential traces of a not yet annotated or by mutation decaying 

SCNN1D (pseudo-) gene. Information from the latter case were included in a phylogenetic tree 

based on the otherwise highly conserved exon 6 present and retained in size throughout all 

SCNN1 genes (cf. Supplemental Figure 1). Additionally, in our evolutionary assessment based 

on the phylogeny of rodent families reported by D'Elia et al. (2019) we extended our search 

employing the BLAST tool to search within distinct rodent families with default settings for blast 

and megablast searches. Supplemental Data Sheet 1 compiles the information that we 

retrieved from our search regarding exons sizes etc. 
The following sources were used for this study: NCBI databases 

(https://www.ncbi.nlm.nih.gov/gene/), BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi), 

Expasy sequence translation  (https://web.expasy.org/translate/), multiple sequence alignment 

tools MultAlin  (Corpet 1988; http://multalin.toulouse.inra.fr/multalin) and Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/), DNA/RNA GC Content Calculator 

(http://www.endmemo.com/bio/gc.php), graphical codon usage analyser (codon usage, 
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https://gcua.schoedl.de), DNA reverse complement tool (http://reverse-complement.com), and 

phylogeny tool MEGA X (Kumar et al. 2018). 

Images of ENaC structures were based on the cryo-EM-derived structures of human 

αβγ-ENaC (PDB code 6BQN) (Noreng et al. 2018) and the extracellular domain of human αβγ-

ENaC (PDB code 6WTH) (Noreng et al. 2020). Structures were visualised with open-source 

PyMol (Version 2.0, Schrödinger, LLC).  

To investigate the geographical distribution of rodent species and correlate functional 

SCNN1D with habitat aridity, positive occurrence data for Rodentia were downloaded from the 

Global Biodiversity Information Facility (GBIF 2020). GBIF is an international network and data 

infrastructure that provides open access to over 60,000 species-location datasets, from 

historical museum specimens and collections through to georeferenced smartphone 

photographs, that are combined using common data standards into a singular database of 

almost 2 billion occurrence records that can be queried. We extracted all positive occurrence 

data for Rodentia, excluding those from zoological institutions (accessed 24th September 

2020, for the specific download information, see GBIF 2020). This initial dataset was restricted 

to georeferenced observations (i.e., those with a known latitude and longitude). We further 

excluded occurrence data observed prior to 1900 due to the potential increase in 

misidentification. We limited the dataset to the 51 species for which genomes descriptions are 

available (cross-referencing potential differences in taxonomic naming, see table 1 for 

discrepancies). Species were cross referenced against the Global Invasive Species Database 

(GISD, available at http://www.iucngisd.org/gisd/), which is managed by the Invasive Species 

Specialist group of the IUCN, with 8 species deemed to be invasive (see Table 1). These were 

excluded due to their likely occurrence beyond their natural distribution within the GBIF 

database, biasing further analyses. The resulting dataset consisted of 223,392 geolocated 

observations for 43 species. To check the quality of the dataset, occurrence locations were 

mapped for each species and cross-checked against their natural distributions according to 

(Wilson et al. 2016; Wilson et al. 2017). Records falling outside of known species’ ranges were 

removed along with observations that mapped onto the marine environment, resulting in a 

cleaned dataset of 218,410 observations (Supplemental Figures 2 - 5). Global aridity data was 

accessed from the Global Aridity Index and Potential Evapotranspiration Climate Database v2, 

which is supported by the CGIAR Consortium for Spatial Information (accessed 24th 

September 2020, available at https://doi.org/10.6084/m9.figshare.7504448.v3). The aridity 

index estimated as the ratio of mean annual precipitation to mean annual reference evapo-

transpiration, and is provided as a 30 arc-second resolution (approximately 30m) raster giving 

the 30-year average for the period 1970-2000 modelled using the WorldClim Global Climate 

Data (for details on methodology, see Trabucco and Zomer (2018) and 

https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-
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climate-database-v2/). For each rodent observation, we extracted an aridity index taken as the 

median of all aridity surface values encompassed within radius of 0.02⁰ of the observation 

(approximately 2 km), to limit potential anomalies in microclimates.   

Nucleic acid isolation: Guinea pigs (Cavia porcellus; “Hartley GP, retired breeders”) were 

purchased from Charles River Laboratories (Sulzfeld, Germany). All animal handling was 

approved of and followed the standards set by the animal welfare and ethics committee of 

Saarland University and the local authorities.  Tissue samples for nucleic acid extraction were 

collected in TRIzol® reagent for RNA extraction (Invitrogen, Carlsbad, CA, USA) and DNA 

extraction was performed from blood samples using the Quick-DNA MiniPrep Plus extraction 

kit (Zymo Research Europe GmbH, Freiburg, Germany) according to the manufacturer’s 

protocol. RNA extraction strategies involved traditional TRIzol/chloroform extraction with 2-

propanol precipitation or purification by column resin using the Direct-zol RNA MiniPrep Plus 

kit (Zymo Research Europe GmbH). Nucleic acids were quantified using a NanoDrop One 

spectrophotometer (VWR International GmbH, Darmstadt, Germany) and stored until further 

use at -80 °C.  

5’RACE experiment: In order to determine the transcriptional start of all four guinea pig 

SCNN1 genes, cDNA was generated from testis and brain RNA using the SMARTer® RACE 

5’/3’ Kit (Takara Bio USA, Inc., Mountain View, CA, USA) and followed the manufacturer’s 

protocol generating amplicons using a nested primer approach. All gene specific oligomers 

were purchased from IDT (Coralville, IO, USA). The 5’RACE cloning strategy aimed at the 

inclusion of at least a single exon/exon junction to rule out artifacts of potential transcriptional 

start sites from contaminations of genomic DNA. All amplicons were cloned into a pRACE mini 

vector using the In-Fusion HD Cloning Kit (Takara Bio USA, Inc.; Mountain View, CA, USA) 

and validated by Sanger sequencing (ATGC-Lab, MPI for Experimental Medicine, Göttingen, 

Germany). 

Cloning of guinea pig SCNN1 genes: Based on current sequence information (NCBI), 

primers were designed for PCR amplification aiming at a full coverage of the potential guinea 

pig SCNN1D gene. Due to the relatively high GC content of the genomic region, a combination 

of polymerases has been applied to yield in a full coverage of the gene, such as PrimeSTAR® 

HS DNA Polymerase, SeqAmp DNA Polymerase (both: Takara Bio USA, Inc.), or Q5 High-

Fidelity 2X Master Mix (New England Biolabs GmbH, Frankfurt, Germany). The products were 

subcloned by Gibson assembly strategies using the NEBuilder® HiFi DNA Assembly Cloning 

Kit (New England Biolabs GmbH). Based on bioinformatical analyses of the SCNN1A, B and 

G genes as well as our own results of the SCNN1D gene sequencing effort, the coding 
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sequence was inferred and mini genes custom-synthesized (gblocks from IDT, Leuven, 

Belgium) with an optimized codon usage applying to the Xenopus expression system. 

Subsequently, all mini genes were cloned into an EcoRI/XbaI linearized pTNT™ vector 

(Promega Corporation, Madison, WI, USA). 

Sequence deposition: The sequence information of all guinea pig SCNN1 5’RACE 

sequences (SCNN1A, SCNN1B, SCNN1G and SCNN1D) as well as the full coverage of the 

guinea pig SCNN1D gene were deposited with NCBI GenBank using the following accession 

numbers: SCNN1A 5’RACE product (MN187466); SCNN1B 5’RACE product (MN187463); 

SCNN1G 5’RACE product A (MN187464); SCNN1G 5’RACE product B (MN187465); 

SCNN1D 5’RACE short version (MN187468); SCNN1D 5’RACE long version (MN187469); 

SCNN1D gene (MN187539). 

Plasmids and cRNA synthesis: The DNA coding sequences for guinea pig, human, and 

Xenopus laevis α, β, γ and δ-ENaC subunits were cloned into the pTNT expression vector 

(Promega Corporation). Plasmids were transformed into Escherichia coli (K12, DH5α) and 

isolated using QIAprep Spin Miniprep kit (Qiagen, Manchester, UK). Plasmid cDNAs for human 

ENaC subunits were linearized with FastDigest BamHI (ThermoFisher Scientific, Gloucester, 

UK) per manufacturer’s instructions. The guinea pig ENaC subunits were not linearized due to 

presence of restriction sites within the coding sequences. ENaC subunit cRNAs were 

generated by in vitro transcription with T7 RNA polymerase (Ribo-MAX large-scale RNA 

production system, Promega Corporation) in accordance with the manufacturer’s instructions. 

The ENaC subunit cRNAs were then diluted with diethyl pyrocarbonate (DEPC)-treated water 

to a final concentration of 10 ng/µl for human and 5 ng/µl for guinea pig ENaCs for two-

electrode voltage-clamp recordings. For patch-clamp recordings, guinea pig ENaC cRNA was 

diluted to 20 ng/µl per subunit.  

Isolation of Xenopus oocytes and cRNA injection: The experimental procedures were 

approved by the Animal Welfare and Ethical Review Body at Newcastle University (project ID 

630). Xenopus laevis ovaries were purchased from the European Xenopus Resource Centre 

(EXRC, Portsmouth, UK). Ovary lobes were manually dissected with forceps before being 

incubated and rocked (40 rpm) for 90 minutes in Oocyte Ringer Solution II (ORII; 82.5 mM 

NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.5) containing 2.6 mg/ml collagenase A 

(Roche, Welwyn Garden City, UK) in order to remove the follicular cell layer. Oocytes were 

then washed 6 times with ORII and washed a further 6 times with Modified Barth's Solution 

(MBS; 88 mM NaCl, 1 mM KCl, 0.41 mM CaCl2, 10 mM HEPES, 2.4 mM NaHCO3, 0.33 mM 

Ca(NO3)2, 0.82 mM MgSO4, 20 µg/ml gentamycin, pH 7.5). Stage V and VI oocytes were 
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manually selected and placed in MBS. Oocytes were injected (Nanoject automatic oocyte 

injector, Drummond Scientific, Broomall, PA, USA) with 13.8 nl of αβγ- or δβγ-ENaC cRNA 

and incubated at 16 °C for 16-24 hours in low sodium N-Methyl-D-Glucamine-Oocyte Ringer 

Solution (NMDG-ORS; 80 mM NMDG, 10 mM NaCl, 1 mM KCl, 2 mM CaCl2, 2.5 mM Sodium 

pyruvate, 5 mM HEPES, 20 µg/ml gentamycin, pH 7.4). For patch-clamp recordings, oocytes 

were incubated for 2-7 days.  

Two-electrode voltage-clamp recordings: Oocytes were clamped at a holding potential of -

60 mV using a Warner oocyte voltage clamp amplifier (OC725B/C Warner Instruments, 

Hamden, CT, USA). Whole cell transmembrane current signals (IM) were filtered at 1 kHz and 

were recorded using a strip chart recorder. Oocytes were superfused at room temperature with 

Oocyte Ringer Solution (ORS; 90 mM NaCl, 1 mM KCl, 2 mM CaCl2, 5 mM HEPES, pH 7.4) 

at a perfusion speed of 3-5 ml/min, unless otherwise stated. The application of amiloride (Alfa 

Aesar, Heysham, UK) was used to determine the fraction of the IM that was generated by ENaC 

(amiloride-sensitive current, ΔIami). 

Patch-clamp recordings: Patch-clamp recordings were performed using the cell-attached 

configuration as previously described (Wichmann et al. 2019). Mechanically devitellinized 

oocytes were placed in a recording chamber filled with bath solution (145 mM KCl, 1.8 mM 

CaCl2, 10 mM HEPES, 2 mM MgCl2, 5.5 mM glucose, pH 7.4). Borosilicate glass capillaries 

were used to generate patch-pipettes (6-10 MΩ resistance) by employing a two-stage puller 

(PP83, Narishige, London, UK). The patch-pipettes were then heat polished before being filled 

with pipette solution (145 mM NaCl, 1.8 mM CaCl2, 10 mM HEPES, 2 mM MgCl2, 5.5 mM 

glucose, pH 7.4). A LM-PC patch-clamp amplifier (List-Medical, Darmstadt, Germany) was 

used to amplify current signals which were low-pass filtered at 100 Hz (Frequency Devices, 

Haverhill, IL, USA). Current signals were recorded at 2 kHz using an Axon 1200 interface with 

Axon Clampex software (Axon Instruments, Foster City, CA, USA). All experiments were 

performed at room temperature. Single channel analysis was performed using Clampfit 10.7 

software (Molecular Devices, Wokingham, UK). 

Chemicals and reagents: Amiloride hydrochloride, CaCl2, Ca(NO3)2, NaHCO3, MgCl2 and 

MgSO4 were from Alfa Aesar (Heysham, UK). α-chymotrypsin, gentamycin (10 mg/ml), diethyl 

pyrocarbonate (DEPC), glucose, NaCl, N-Methyl-D-Glucamine (NMDG), and sodium pyruvate 

were from Sigma Aldrich (Dorset, UK). Dimethyl sulfoxide (DMSO), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and KCl were purchased from ThermoFisher Scientific 

(Gloucester, UK). Stock solutions of 100 mM amiloride were made in DMSO and stored at 4 
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°C. Stock solutions of α-chymotrypsin (2 mg/ml) were freshly made in ORS on the day of 

experiments, kept on ice and used within 4 hours.  

Data analysis and statistics: Electrophysiology: Data are presented as means ± standard 

error of the mean (SEM) and “n” represents the number of experiments performed. Each 

experimental approach was completed across 2 – 3 oocyte donors. Statistical analysis was 

performed using GraphPad Prism (v8.0.1; GraphPad Software Inc., San Diego, CA, USA). The 

D’Agostino-Pearson omnibus normality test was used to assess whether data had a Gaussian 

distribution. Data sets with Gaussian distribution were analysed using the two tailed Student’s 

t-test. In addition, a Welch’s correction was performed if the variances were not equal.

Normally distributed multiple groups were analysed using an ordinary one-way ANOVA with

post hoc Tukey’s multiple comparison test. Data sets that did not follow Gaussian distribution

were analysed using the two tailed Mann-Whitney U-test. A Kruskal-Wallis test with Dunn’s

multiple comparison test was used for the analysis of non-parametric multiple groups. Data in

Figure 8 C/E were each fitted to a simple linear regression model and regression lines were

compared using ANCOVA. All figures were assembled and finalised using Inkscape (v0.92.3).

Correlation of functional SCNN1D with habitat aridity: For each rodent observation, an 

aridity value was extracted as the median of all aridity surface values encompassed within a 

radius of 0.02⁰ of the observation (approximately 2 km). To test whether gene expression 

explains any variation in habitat aridity, gamma error distribution (logarithmic link function) 

nested Generalised Linear Mixed Models (GLMM) were constructed with species within clade 

as nested random effects and with or without gene presence as a categorical fixed effect. 

Models were compared to test whether inclusion of gene presence significantly improved 

model fit. Analyses were conducted in R programming language (R Core Team 2019) with 

models constructed using the package ‘lme4’ (Bates et al. 2015), model comparison conducted 

using ‘lmerTest’ (Kuznetsova et al. 2017) and aridity data handled using the package ‘raster’ 

(Hijmans). 

Data availability 
The electrophysiology data underlying this article are available in a Zenodo depository, at 

https://dx.doi.org/10.5281/zenodo.5291910. 

Acknowledgements 
The authors thank Dr. Andreas Werner for providing Xenopus oocytes and Dr. Pawel 

Szczesniak for helpful comments on the manuscript.  



25 

Funding information 
This work was supported by intramural seed grants (HOMFOR 2017-2019) by the Medical 

School of Saarland University (SM). MT was supported through an undergraduate summer 

studentship by The Physiological Society. MA receives funding from the Ministry of Culture 

and Science of the State of North Rhine-Westphalia (FKZ 005-2101-0144), GKC receives 

funding from the DFG (SFB-TR152/P22) and GVV is supported by a G0H9818N Odysseus 

grant from the Research Foundation Flanders (FWO). 

Author Contribution 
SM and MA conceived the study, SM, SMG, IR, MC, MA designed the study, SM, SMG, MC, 

MT, FB performed experiments, SM, SMG, IR, GVV, MC, MS, MT, MA interpreted the data 

and wrote the manuscript. GKC and NB provided reagents. All authors approved the 

manuscript. 



26 

Tables 

Table 1. Presence of an open reading frame (ORF) for SCNN1D in currently available 
rodent genomes.  

Rodent family Species Genome 
Assembly 

SCNN1D 
ORF Comments 

Gliridae Muscardinus avellanarius MusAve_v1_BIUU Yes 
Glis glis GliGli_v1_BIUU Yes 
Graphiurus murinus GraMur_v1_BIUU Yes 

Sciuridae Xerus inaurisa XerIna_v1_BIUU No 
Ictidomys tridecemlineatus SpeTri2.0 No unsequenced parts of exon 

13 
Cynomys gunnisoni ASM1131664v1 No 
Spermophilus dauricus ASM240643v1 No 
Urocitellus parryii ASM342692v1 No 
Marmota himalayana ASM528016v1 No 
Marmota marmota marMar No 
Marmota monax MONAX5 No 

Aplodontiidae Aplodontia rufa AplRuf_v1_BIUU Yes 
Pedetidae Pedetes capensis PedCap_v1_BIUU Yes exon 13 information is 

retrieved from two different 
sequencing results 

Anomaluridae No genomes available 
Zenkerellidae No genomes available 
Castoridae Castor canadensis C.can genome

v1.0
Yes invasive species 

Heteromyidae Dipodomys ordii Dord_2.0 No 
Geomyidae No genomes available 
Dipodidae Jaculus jaculus JacJac1.0 No 

Allactaga bullatab AllBul_v1_BIUU No 
Zapodidae Zapus hudsonius ZapHud_v1_BIUU Yes 
Sminthidae No genomes available 
Platacanthomyidae No genomes available 
Spalacidae Nannospalax galilc S.galili_v1.0 Yes 
Calomyscidae No genomes available 
Nesomyidae Cricetomys gambianus CriGam_v1_BIUU No invasive species 
Cricetidae Microtus ochrogaster MicOch1.0 No 

Cricetulus barabensi griseusd CriGri_1.0 No 
Peromyscus maniculatus Pman_1.0 No invasive species 
Peromyscus leucopus UCI_PerLeu_2.1 No 
Mesocricetus auratus MesAur1.0 No 

Muridae Rattus norvegicus Rnor_6.0 No invasive species 
Rattus rattus Rrattus_CSIRO_v1 No invasive species 
Grammomys dolichurus 
surdastere 

NIH_TR_1.0 No 

Mus musculus GRCm39 No invasive species 
Mus caroli CAROLI_EIJ_v1.1 No 
Mastomys coucha UCSF_Mcou_1 No 
Mus pahari PAHARI_EIJ_v1.1 No 

Ctenodactylidae Ctenodactylus gundi CteGun_v1_BIUU Yes 
Diatomyidae No genomes available 
Hystricidae Hystrix cristata HysCri_v1_BIUU Yes 
Bathyergidae Fukomys damarensisf DMR_v1.0 Yes exon 6 yet unsequenced, 

remaining sequence has 
normal reading frame 

Heterocephalidae Heterocephalus glaber HetGla_female_1.
0 

Yes 

Petromuridae Petromus typicus PetTyp_v1_BIUU Yes 
Thryonomyidae Thryonomys swinderianus ThrSwi_v1_BIUU Yes 
Erethizontidae Erethizon dorsatus GSC_porc_1.0 Yes 
Caviidae Dolichotis patagonum DolPat_v1_BIUU No internal stop codons 

Hydrochoerus hydrochaeris HydHyd_v1_BIUU Yes 
Cavia porcellus Cavpor3.0 Yes invasive species 
Cavia tschudii CavTsc_v1_BIUU Yes 

Dasyproctidae Dasyprocta punctata DasPun_v1_BIUU Yes 
Cuniculidae Cuniculus paca CunPac_v1_BIUU Yes 
Chinchillidae Chinchilla lanigera ChiLan1.0 Yes 
Dinomyidae Dinomys branickii DinBra_v1_BIUU Yes 
Abrocomidae No genomes available Yes 
Echimyidae Capromys pilorides CapPil_v1_BIUU Yes 

Myocastor coypus MyoCoy_v1_BIUU Yes invasive species 
Octodontidae Octodon degus OctDeg1.0 Yes 
Ctenomyidae Ctenomys sociabilis CteSoc_v1_BIUU Yes 
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Families that include species with intact SCNN1D are colour coded in blue. Light blue colour 

indicates SCNN1D without exon fusion, dark blue colour indicates SCNN1D with exon fusion. 

Magenta labels families that include species without functional SCNN1D (pseudogene) and 

red labels families in which SCNN1D is completely absent. Families of which genetic 

information is absent are labelled in grey. aX. inaurus is assigned to a subgenus, Geosciurus 

inauris. bA. bullata is assigned to a subgenus, Orientallactaga bullata. cFor analysis of species 

distribution, the GBIF species Spalax ehrenbergi (a now outdated species complex) was used.  
dObservation data is also recorded as a seperate (now obsolete) species C. griseus in GBIF. 
eObservation data is also recorded as obsolete synonym Thamnomys surdaster surdaster in 

GBIF. fF. damarensis was previously named Cryptomys damarensis as recorded in GBIF 

(Kock et al. 2006). The species marked as invasive were excluded from the geographical and 

aridity analyses presented in Figure 9. 
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Table 2. Features of guinea pig SCNN1 genes. 

Gene GC-content 
(%) 

Size 
(bases) 

GC (cDNA) 
(%) 

GC3 
(%) 

Amino acids 

SCNN1A 50.9 23,116 59.5 80.2 1971 
SCNN1B 45.2 64,152 56.0 77.4 1926 
SCNN1G 45.2 26,612 52.1 68.2 1968 
SCNN1D 58.0 6,438 59.8 76.0 1740 

GC-content reflects percentage of G/C bases in the respective SCNN1 gene starting from the 

designated start codon towards the stop codon. GC (cDNA) reflects the overall G/C content in 

the coding region, GC3 the percentage of G/C in the third position of each codon. Amino acids 

depict the count of amino acids per SCNN1 family member. 
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Figure 1. Proposed nomenclature of SCNN1 genes and structural features of the human αβγ-
ENaC. A) The SCNN1 genes share a canonical organization in which the coding DNA is distributed 
over at least twelve exons (exon 2 to 13). Due to the high variability of exon 2, different predicted 
start codons located on alternative exons preceding exon 2 as well as the absence of a likely start 
codon on exon 2 in certain species, make an additional exon(-s) necessary and are therefore 
depicted in a dashed box. Structural features obtained from the cryo-EM-derived structure of 
human αβγ-ENaC were imposed to the respective encoding exons. All structural features are 
highlighted with coloured boxes. Only exon sizes and not intron sizes are drawn to scale. B) SCNN1 
proteins share an overall hand-like structure, including regions representing 'finger', 'thumb', 'palm', 
'wrist' and 'knuckle', holding a 'ball of β-sheets' (shown in magenta). Transmembrane regions are 
termed TM1 and TM2. The image shows the human ENaC α-subunit (Noreng et al. 2018). C) 
Surface model of the cryo-EM-derived structure of human αβγ-ENaC (Noreng et al. 2018). Gating 
Relief of Inhibition by Proteolysis (GRIP) domains are highlighted in darker colours. 
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Figure 2. Presence of SCNN1D in rodent families. Families marked in magenta include species 
which lost a functional SCNN1D, i.e. families with pseudogene versions of SCNN1D. SCNN1D is 
completely absent in the Heteromyidae marked in red. All families marked in blue maintained intact 
SCNN1D genes. Families highlighted in dark blue contain species in which exons 11 and 12 of 
SCNN1D are fused to a 'super-exon', whereas light blue families do not include species with 
SCNN1D exon fusion (w/o = without exon fusion). There is currently no available genomic 
information of species representing the families highlighted in grey. Note that the Caviidae family 
contains species with and without intact SCNN1D. A list of all species that were analysed is 
provided in Table 1. The classification of rodents into 35 families is based on D’Elía et al. (2019), 
the taxon Eumuroida was suggested by Steppan et al. (2004). 
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Figure 3. Genomic organisation and peptide sequences of guinea pig SCNN1D. A) All SCNN1 
family members are depicted relative to scale with the exception of an intron following SCNN1B 
exon 1, which is located roughly 41 kb upstream of SCNN1B exon 2. Blue boxes represent coding 
regions, grey boxes represent 3’UTR, i.e., sequences immediately downstream of the respective 
stop codons to the first poly-adenylation sequence motif. 5’RACE analyses encompass exon/exon 
junctions and resulted in 5’UTR sequence information depicted in magenta. This is reflected in 
either alternative exons upstream of SCNN1G (exon 1a and 1b) or alternative transcriptional start 
sites of SCNN1D formally lacking any upstream exon. The fusion of exon 11 and exon 12 to a 
'super-exon' 11* is depicted in black. B) Alignment of the amino acid sequences of the extracellular 
GRIP domains, based on Noreng et al. (2020), of human and guinea pig α- and δ-ENaC. 
Consensus sites for the protease furin are highlighted in bold letters. P1 to P4 strands of the Gating 
Relief of Inhibition by Proteolysis (GRIP) domains are highlighted in blue. C) Alignment of amino 
acid sequences that are part of the extracellular acidic cleft with the putative sodium coordination 
sites (Asp-338 in human α-ENaC) highlighted in magenta. D) Alignment of amino acid sequences 
close to the beginning of the second transmembrane domain (TM2) with the 'super-exon' 11* of 
guinea pig δ-ENaC highlighted in yellow. A full sequence alignment is provided in Supplemental 
Data 2. E) The region coded by exons 11 (blue) and 12 (red) are highlighted in the structure of the 
extracellular domain of the human ENaC α-subunit (Noreng et al. 2020). The magnification shows 
the region between Gln-509 and Ala-522 of the knuckle domain in yellow. This corresponds to the 
region of incorporated amino acids in guinea pig δ-ENaC due to exon fusion. F) Surface 
representation of the extracellular domain of human αβγ-ENaC, highlighting the presence of the 
region between Q509 and A522 in yellow at the protein surface. 
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Figure 4. Guinea pig δβγ-ENaC forms a functional channel when expressed in Xenopus 
oocytes. A) Transmembrane current (IM) traces of oocytes expressing guinea pig αβγ- and 
δβγ-ENaC as well as water-injected control oocytes at -60 mV holding potential. Application of 
100 µM amiloride is represented by black bars (a). B) Amiloride-sensitive current fractions 
(ΔIami) for guinea pig αβγ- and δβγ-ENaCs (Student’s unpaired t-test with Welch's correction). 
C) Amiloride IC50 values were determined from concentration-response experiments for guinea
pig αβγ- (black) and δβγ-ENaC (blue). D) Representative IM traces of oocytes expressing
human αβγ- and δβγ-ENaC at -60 mV holding potential. E) ΔIami for human αβγ- and δβγ-ENaC
(Student’s unpaired t-test). F) Amiloride IC50 values for human αβγ- (black) and δβγ-ENaC
(grey) as determined from concentration-response experiments. G) Representative current
traces of guinea pig αβγ- and δβγ-ENaC expressing oocytes from cell-attached patch-clamp
recordings at a holding potential of -100 mV (c = closed; 1-2, number of open channels). H)
Slope conductance (Gslope) of guinea pig αβγ- and δβγ-ENaC, derived from linear regression
of unitary channel conductance at holding potentials between -100 mV to -20 mV. Numbers in
parentheses indicate (n).
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Figure 5. Isoform-specific control of ENaC activity by proteases and sodium. A) 
Representative transmembrane current (IM) traces of human αβγ- and δβγ-ENaC expressing 
oocytes, showing the determination of amiloride-sensitive fractions of IM (ΔIami) before and after 
application of chymotrypsin (2 µg/ml, CT, grey bar) with amiloride (100 µM, a, black bar). B) ΔIami 
were calculated as the difference between IM at 3 min after wash-out of amiloride and the IM under 
subsequent presence of amiloride. The fold change (ΔIami after chymotrypsin / ΔIami before 
chymotrypsin) is shown for human αβγ- and δβγ-ENaC expressing oocytes that were exposed to 
chymotrypsin as shown in panel A, in comparison with identical control experiments without 
chymotrypsin (Student’s paired t-test). C and D) Data from experiments with guinea pig ENaC 
expressing oocytes that were identical to those shown in panels A and B.  Statistical analysis shown 
in panel D was performed with a Mann-Whitney U-test. E) Representative IM trace showing sodium 
self-inhibition of guinea pig αβγ- and δβγ-ENaC expressing oocytes. Application of amiloride is 
represented by black bars (a) and [Na+] is represented by white (90 mM) and grey (1 mM) bars. 
The perfusion was at a fast speed of 12 ml/min. F) The percentage of SSI is shown for guinea pig 
αβγ- and δβγ-ENaC (Student’s unpaired t-test). SSI was calculated as ((ΔIM peak – ΔIM 3min)/ ΔIM 
peak) x 100), where ΔIM peak = initial IM under 1 mM [Na+] – peak IM under 90 mM [Na+], and ΔIM 
after 3 min = initial IM under 1 mM [Na+] – IM after 3 minutes under 90 mM [Na+]. G and H) Data 
obtained from experiments using human αβγ- and δβγ-ENaC expressing oocytes. Experiments 
were identical to those shown in panels E and F. Statistical analysis of data shown in panel F was 
performed using a Student’s unpaired t-test with Welch's correction. Numbers in parentheses 
indicate (n). 
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Figure 6. Both human and guinea pig δβγ-ENaC have increased activity compared to αβγ-
ENaC at high extracellular Na+ concentrations. A) Representative transmembrane current (IM) 
traces for guinea pig αβγ- and δβγ-ENaC expressing oocytes as well as water-injected control 
oocytes. Boxes shaded in grey represent the different extracellular [Na+] in mM. B) The IM values 
of guinea pig ENaC expressing oocytes were plotted against the extracellular [Na+] and fitted to the 
Michaelis-Menten equation allowing the estimation of Vmax and the KM. C) The Vmax values and KM 
values of guinea pig αβγ- and δβγ-ENaC expressing oocytes (Mann-Whitney U-test). D – F) Similar 
to A – C except for oocytes expressing human ENaC orthologues and separate water-injected 
control oocytes. Data shown in panel F were statistically analysed with Student’s unpaired t-test 
with Welch's correction. Numbers in parentheses indicate (n). 
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Figure 7. Reduced sodium self-inhibition is pivotal to ENaC activity at high extracellular Na+ 
concentrations. A) Representative transmembrane current (IM) traces showing sodium self-
inhibition (SSI), determined with guinea pig αβγ-ENaC expressing oocytes, with and without prior 
incubation with chymotrypsin (2 µg/ml in NMDG-ORS for 5 minutes). Application of amiloride (100 
µM) is represented by black bars (a) and [Na+] is represented by white (90 mM) and grey (1 mM) 
bars. The perfusion speed was 12 ml/min. B) The percentage of SSI was plotted for guinea pig 
αβγ-ENaC with and without prior incubation with chymotrypsin (Student’s unpaired t-test). SSI was 
calculated as ((ΔIM peak – ΔIM 3min)/ ΔIM peak) x 100), where ΔIM peak = initial IM under 1 mM 
[Na+] – peak IM under 90 mM [Na+], and ΔIM after 3 min = initial IM under 1 mM [Na+] – IM after 3 
minutes under 90 mM [Na+].  C) Representative IM traces for guinea pig αβγ-ENaC expressing 
oocytes with and without prior incubation with chymotrypsin (2 µg/ml for 5 minutes) across a range 
of extracellular Na+ concentrations ([Na+]), grey shaded boxes). D) The IM from experiments shown 
in panel C were plotted against the extracellular [Na+] and fitted to the Michaelis-Menten equation 
allowing the estimation of the maximum IM (Vmax) and the [Na+] at which half of Vmax is reached 
(KM). E) The Vmax values of guinea pig αβγ-ENaC with and without prior incubation with 
chymotrypsin (Student’s unpaired t-test with Welch's correction). F) The KM values of guinea pig 
αβγ-ENaC with and without prior incubation with chymotrypsin (Mann-Whitney U-test). Numbers in 
parentheses indicate (n). 
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Figure 8. The reduced sodium self-inhibition of human and guinea pig δβγ-ENaC generates 
increased activity at high extracellular Na+ concentrations. A) Representative transmembrane 
current (IM) traces of guinea pig αβγ- and δβγ-ENaC at different extracellular Na+ concentrations 
([Na+]). Recordings of a given extracellular [Na+] were performed in individual oocytes. The 
perfusion speed was 16 ml/min. B and C) The percentage of sodium self-inhibition for guinea pig 
and human ENaC expressing oocytes plotted against logarithmic transformations of concentrations 
of extracellular [Na+]. SSI was calculated as ((ΔIM peak – ΔIM 3min)/ ΔIM peak) x 100), where ΔIM 
peak = initial IM under 1 mM [Na+] – peak IM under 90 mM [Na+], and ΔIM after 3 min = initial IM 
under 1 mM [Na+] – IM after 3 minutes under 90 mM [Na+]. Slopes (sl.) were derived from linear 
regressions and p-values, derived from ANCOVA, demonstrate the difference between slopes. 
Numbers in parentheses indicate (n). 
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Figure 9. The loss of SCNN1D does not generally correlate with habitat aridity. Geolocation 
data of the rodent species listed in Table 1 were extracted from the Global Biodiversity Information 
Facility (GBIF) and were used to plot the global distribution of non-invasive rodent species of the 
clades Sciuromorpha, Supramyomorpha and Hystricomorpha. Global distribution of individual 
species is provided in Supplemental Figures 2-5. Observations for the indicated species were also 
plotted with corresponding habitat aridity. Mixed effects models suggest that the absence or 
presence of functional SCNN1D in the investigated species does not explain any significant 
proportion variation in habitat aridity. The colours indicate absence or presence of functional 
SCNN1D:  Light blue = SCNN1D without exon fusion; Dark blue = SCNN1D with exon fusion; 
Magenta = species without functional SCNN1D (pseudogene and complete gene loss). 
Background colours differentiate habitats following the generalised climate classification scheme 
for aridity index values (Middleton and Thomas 1997). Species are ordered based on ascending 
median aridity within each clade. The numbers to the right of the plots indicate the number of GBIF 
observations that were extracted for each species.  


