
Tutorial

MDM Policy & Practice
1–7
� The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2381468320963068
journals.sagepub.com/home/mdm

How to Determine When SARS-CoV-2

Antibody Testing Is or Is Not Useful for
Population Screening: A Tutorial

Niklas Keller , and Mirjam A. Jenny

Abstract

Extensive testing lies at the heart of any strategy to effectively combat the SARS-COV-2 pandemic. In recent
months, the use of enzyme-linked immunosorbent assay–based antibody tests has gained a lot of attention. These
tests can potentially be used to assess SARS-COV-2 immunity status in individuals (e.g., essential health care per-
sonnel). They can also be used as a screening tool to identify people that had COVID-19 asymptomatically, thus
getting a better estimate of the true spread of the disease, gain important insights on disease severity, and to better
evaluate the effectiveness of policy measures implemented to combat the pandemic. But the usefulness of these
tests depends not only on the quality of the test but also, critically, on how far disease has already spread in the
population. For example, when only very few people in a population are infected, a positive test result has a high
chance of being a false positive. As a consequence, the spread of the disease in a population as well as individuals’
immunity status may be systematically misinterpreted. SARS-COV-2 infection rates vary greatly across both time
and space. In many places, the infection rates are very low but can quickly skyrocket when the virus spreads
unchecked. Here, we present two tools, natural frequency trees and positive and negative predictive value graphs,
that allow one to assess the usefulness of antibody testing for a specific context at a glance. These tools should be
used to support individual doctor-patient consultation for assessing individual immunity status as well as to
inform policy discussions on testing initiatives.
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ELISA-Based Antibody Tests Are Increasingly

Administered

Extensive testing lies at the heart of any strategy to effec-
tively combat the severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) pandemic. While the test for
acute infection by use of polymerase chain reaction
(PCR) has been at the forefront in the initial phases of
the pandemic, in recent months, the use of enzyme-linked
immunosorbent assay (ELISA)-based antibody tests has
gained a lot of attention with two primary goals in mind:
to identify persons who may be immune to the disease,
particularly those working in critical areas of infrastructure

(e.g., essential healthcare personnel),* and to assess the
number of people that have been infected in a particular
population including all those who have perhaps gone
through the infection with no or only mild symptoms.
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*Note that we currently do not know whether people who have recov-

ered from COVID-19 and have antibodies are protected from a second

infection and, if so, for how long.
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Knowing this would provide valuable insights on hospi-
talization and mortality rates, which is critical for esti-
mating the burden of the pandemic on the health care
system as well as assessing the effectiveness of policy
measures designed to curb the spread of the virus.
Subsequently, while PCR testing to identify acute infec-
tions and disrupt transmission chains remains central,
many nations and institutions are in the process of roll-
ing out antibody testing initiatives (e.g., China, the
United States, Spain, Switzerland).1-5

The Interpretation of These Test Results

Depends on the Specific Context

The attributes of a test (specifically, its sensitivity and
specificity) directly determine how well it is suited to pro-
vide a reliable immunity assessment at the individual
level as well as its usefulness for population-wide screen-
ing. The sensitivity (or true positive rate) of an antibody
test describes its ability to correctly identify persons that
have had the disease and now have antibodies against
that disease in their blood serum. Thus, if a test has a
90% sensitivity, out of 100 persons that have had a
SARS-CoV-2 infection, the test will correctly identify 90
of these, while 10 would be missed and receive a false
negative test result. The specificity (or true negative rate)
of a test describes its ability to correctly identify those
that have not had the disease. Thus, if a test has a 90%
specificity, out of 100 persons not having had the disease,
the test will correctly identify 90 of them as negative.
The other 10 persons will receive a false positive test
result.

But the number of infected and noninfected persons is
rarely the same. In most cases, the part of the population
that has not had SARS-COV-2 will greatly outnumber
the part of the population that has had it. Continuing
with the above example of a test with a 90% sensitivity
and 90% specificity, we can imagine a different popula-
tion in which 100 have had the disease and 10,000 had
not. As above, of those having had the disease, 90 would
test true positive, 10 false negative. Of those 10,000 who
were not infected, 9,000 would receive a true negative
test result, but a full 1,000 would receive a false positive

test result—10 times more than the entire infected popu-
lation. With regard to SARS-CoV-2, prevalence differs
between regions and population subgroups and depends
on the point in time of the pandemic. This variation
means that interpretation and usefulness of antibody
testing is context specific, an idea that is not intuitive to
many.6

Test Interpretation During a Pandemic

Several ELISA-based antibody tests for SARS-CoV-2
are currently being developed and the test characteristics,
that is, the sensitivity and specificity, vary. Ideally, only
tests should be employed for which independent valida-
tion studies with a sufficient sample size of participants
(at least 1000+ to achieve the required resolution) are
available. Prof. Drosten, a leading expert on SARS-CoV-
2 whose laboratory also developed the RT-PCR (real-time
polymerase chain reaction) test for acute SARS-CoV-2
infection,7 stated that he expects at least 2% false-positives
(i.e., a 98% specificity) for ELISA-based antibody tests.8

For the purpose of the argument made in this tutorial, let
us assume that current ELISA-based procedures have a
sensitivity of 80%, a value that has been shown for one
particular assay in a recent publication,9 and a specificity
of 98%.

At the same time, the SARS-CoV-2 prevalence can
vary greatly, both in time and in space. The R0 of SARS-
CoV-2 is estimated by the World Health Organization to
be between 2 and 2.5.10 R0 is one measure used to quan-
tify the contagiousness of a disease in the absence of any
countermeasures (such as social distancing) or mitigating
factors (such as herd immunity) and is an estimate of the
number of additional persons one infected patient will
infect. An R0 between 2 and 2.5 thus means that one per-
son infected with SARS-CoV-2 will, over the course of
their infection, infect between 2 and 2.5 additional peo-
ple. Figure 1 shows the spread of SARS-CoV-2 in a
hypothetical population of a million people in which no
countermeasures have been implemented, the R0 is 2.2,
and the number of initially infected persons is 100
(0.01% prevalence). If no countermeasures are imple-
mented, and the R0 does not change for other reasons,
the virus will have infected approximately 400,000 people
after 6 weeks (; 40% prevalence). We will now use this
hypothetical population to assess the utility of antibody
testing both from the perspective of the individual, as
well as its usefulness for population wide testing initia-
tives, using natural frequency trees and predictive value
graphs.
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Using Natural Frequency Trees to Assess the

Usefulness of Antibody Testing for Individual

Immunity Assessment: What Does a Positive

Antibody Test Result Mean for the Person

Tested?

Let us assume a person enters a clinic without having
had any symptoms or other known risk factors increasing
their likelihood of having had the disease and wishes to
be tested for SARS-CoV-2 ‘‘immunity’’ via antibody test-
ing at the beginning of the pandemic when the prevalence
is 0.01%. Another person wishes to be tested 6 weeks
later when the prevalence is ; 40% (see red arrows in
Figure 1). Both individuals test positive for SARS-CoV-2
antibodies. How certain can we be, that these individuals
had the disease? That is, given a positive test result, what
is the probability that the person really had the infection?
This probability is what is called a ‘‘positive predictive
value’’ and is calculated as the ratio of true positive test
results to all positive test results, both true and false.
Calculating such a ‘‘conditional probability’’ (i.e., the
probability of having the disease given a positive test
result) is difficult for doctors, patients, and policy makers
alike.11,12 But we can make the calculation more intuitive
using Natural Frequency Trees (see Figure 2).13

Natural frequency trees (NFTs) graphically represent
how a population (e.g., a million individuals) is sequen-
tially divided into subpopulations (e.g., individuals affected
or not affected by a disease). By using NFTs, one can

quickly and intuitively assess the ratio of true positive test
results to all (true and false) positive test results (red boxes
in Figure 2), that is, the positive predictive value (PPV) of
a diagnostic procedure. In the same fashion, the negative
predictive value (NPV) can be arrived at by assessing the
ratio of true negatives to all (true and false) negative test
results (green boxes in Figure 2). The NPV is the value we
are looking for when we wish to answer the question:
‘‘Given a negative test result, how likely is it, that that per-
son really has not undergone a SARS-CoV-2 infection?’’

Figure 2 shows that at the beginning of the pandemic,
the vast majority of positively tested cases will be false
positives. Only about 1 in 250 individuals tested positive
in this phase will have tested positive due to an actual
prior SARS-CoV-2 infection. The situation is very differ-
ent for the second person being tested 6 weeks later (see
Figure 3).

Six weeks later, the vast majority of positively tested
cases will be true positives. In this phase, roughly 24 out
of 25 positive test results will be due to a prior SARS-
CoV-2 infection.

When Should Antibody Testing Be Used

for Population-Based Screening?

NFTs present a simple and intuitive graphical format,
which can be used to explain a test’s predictive values to
individuals both prior to testing (‘‘does it make sense to
get tested?’’) as well as afterwards (‘‘what does the test

Figure 1 Number of people having undergone a SARS-CoV-2 infection in a hypothetical population of 1,000,000 persons given
R0 = 2.2 and with no mitigating measures implemented. Green bars represent the number of persons having undergone a
SARS-CoV-2 infection. Red arrows represent two hypothetical points in time for antibody testing during the pandemic.
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result imply?’’). However, they only allow calculation of
specific PPVs/NPVs given a specific prevalence. To decide
when the prevalence of the disease is high enough for anti-
body tests to become useful as a screening-tool, we can
use a PPV/NPV graph (Keller, Timiliotis, McDowell, and
Benz, 2020, unpublished data). A PPV/NPV graph shows
the likelihood of a true test result across the entire preva-
lence spectrum, given the specific test characteristics.

Figure 4 shows a PPV/NPV graph for antibody tests
given a sensitivity of 80% and a specificity of 98%.
From the graph it can be seen that population screening

for SARS-CoV-2 in situations of low prevalence is not
effective as the positive predictive value remains very low
(Figure 4). Only once we reach about 1% prevalence of
SARS-CoV-2 does the positive predictive value reach
double digits and only once we reach about 10% preva-
lence does the PPV reach a reasonable satisfactory
;82% while maintaining a high NPV of ;98%. Note
that the decision when to implement population-based
screening depends on the costs and harms attributed to the
test’s two possible errors: false positives as well as false
negatives.14,15

Figure 3 Natural frequency tree for antibody testing 6 weeks later with a SARS-CoV-2 prevalence of around 40%.

Figure 2 Natural frequency tree for antibody testing at the beginning of the pandemic with a SARS-CoV-2 prevalence of 0.01%.
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Implications for Using Antibody Testing for

Population-Wide SARS-CoV-2 Screening and

Individual-Level Immunity Testing

While estimates of the spread of SARS-CoV-2 differ by
country and region, it can be safely assumed to be in the
low single-digit range in most regions even when
accounting for a large number of unknown cases. For
example, in Germany, which tests more per capita than
any other European nation, ;198,000 persons have
tested positive for SARS-CoV-2 as of July 8, 2020, based
on PCR testing.16 This amounts to ;0.25% of the pop-
ulation. Even if the true number of SARS-CoV-2 infec-
tions were underestimated by a factor of 20, that is, the
true rate of infected would be at 5%, it would still put
the PPV of the antibody test at only about 50–50 (half of
the persons testing positive would be false positives) if
nationwide screening was implemented in Germany
today. Even in the United States, which leads the world
both in the number of daily tests per capita and the num-
ber of infected persons, only 1% of the population had
been infected as of the 8th of July.16

One consequence of this finding is that it is very
important that available ELISA-based antibody tests
continue to be validated and improved. In the current
situation, where prevalence is low in most places and
tested groups, the tests’ specificity is critical. For exam-
ple, if a test has a specificity of 98%, even if no one is
infected, the test would falsely indicate 2% of the per-
sons tested as positive. If the specificity is 99.9%, on the
other hand, the test would wrongly only show 0.1%

infected, that is, the number of false positives is much
lower and does no longer weigh into the equation so
heavily.* Furthermore, when using such tests to assess
the prevalence of SARS-CoV-2 in particular locations
(e.g., large hospitals), unless the results show a preva-
lence of �10% (below which the PPV drops rapidly), it
is important that results are adequately adjusted down-
wards to account for the proportionally high number of
false positives generated at low prevalence.

Put differently, at the early stages of a local outbreak
or a nationwide pandemic, antibody testing should either
be used only on subpopulations in which a high preva-
lence can be expected due to other, known factors or
only be used in combination with other diagnostics with
high specificity. This allows narrowing in on subpopula-
tions with a higher disease prevalence, the effect of which
is an increase in the probability with which a positive test
result can be assumed to be due to an actual SARS-CoV-
2 infection—a high PPV. Note that NFTs and PPV/NPV
Graphs can also be used to estimate the prevalence in
subgroups testing positive with other diagnostics. For
example, a clinical assessment based on symptoms may
act as a test for SARS-CoV-2 infection with its own sen-
sitivity and specificity. The NFT can be used to calculate
the positive and negative predictive values for this test,
given an estimated prevalence in the general population.

Figure 4 PPV/NPV graph for an antibody test with a sensitivity of 80% and specificity of 98% across the SARS-CoV-2
prevalence spectrum (from 0.01% to 90%). The x-axis is initially logarithmic (below 1%) and then continues linearly. The red
line indicates a prevalence at which positive and negative test results can be assumed to be reasonably diagnostic of SARS-CoV-2
infection.

*Readers are encouraged to experiment with the PPV/NPV Calculator

Supplemental Material. The Calculator produces PPV/NPV curves from

a given sensitivity and specificity as well as NFTs (where prevalence

must additionally be provided).
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The resulting PPV is nothing other than the prevalence
of the disease in the subpopulation of people with these
symptoms.

There is a seeming paradox here: When using anti-
body tests to estimate the true spread of SARS-CoV-2 in
the general population, one must know the prevalence
first. But it is possible to evaluate its usefulness for esti-
mating the overall infection rate in the population in light
of other, more robust indicators for the spread of the dis-
ease in a (sub)population such as the local SARS-CoV-2
hospitalization, intensive care unit admission, and mor-
tality rates. Ideally, antibody studies should include a
comparator region with low disease activity as indicated
by these measures. This allows a rough estimate of the
size of the over- or underdiagnosis of the prevalence
assessment in the region of interest. Note that this applies
similarly to assessing individuals. Comorbidities, expo-
sure at the workplace, and other factors may influence
the prior probability estimate of having had the disease
(which in a population-screening context is the preva-
lence). A clinician seeing a patient with, for example, a
high exposure workplace or past mild symptoms (with-
out a positive PCR result) may wish to use available evi-
dence or her clinical intuition to update the prior
probability of the patient presenting having had COVID-
19. The NFT or PPV/NPV graph can then be applied as
it is presented in this tutorial. However, in the individual
context, the behavioral consequences of test results need
careful consideration. There is a high potential to elicit
extremely risky behaviors from those who tested posi-
tively for immunity status, including those with false
positives. Such persons may be more likely to expose
themselves to SARS-CoV-2 infected persons, may prefer-
entially work with vulnerable groups, or reduce hygiene
and other protective measures, perhaps in order to save
equipment at their place of work, thus creating situations
of high SARS-CoV-2 transmission risk for themselves
and others.

Individuals as well as the larger public should be
informed about the possibilities and likelihood of false
positives of antibody testing given estimates of local dis-
ease prevalence. Similar calls have been made to inform
patients about the accuracy of PCR testing for acute
COVID-19 infection17 and the principles and tools dis-
cussed here apply to all diagnostic testing procedures.
To this end, we suggest using natural frequency trees
and PPV/NPV graphs to support both, doctor-patient
consultations as well as policy discussions and public
communication.

Authors’ Note
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