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8.11 Cylinder pressure reconstruction under the stationary operating condition

Z2 (1200 rpm, 120 Nm) using Algorithm 8.1. 129
8.12 Cylinder pressure reconstruction under the stationary operating condition

Z5 (2100 rpm, 120 Nm) using Algorithm 8.1. 130
8.13 Cylinder pressure reconstruction under the stationary operating condition

Z8 (3000 rpm, 120 Nm) using Algorithm 8.1. 130
8.14 Cylinder pressure peak location reconstruction under the operating condi-

tion Zt (just show 400 peak locations) using Algorithm 8.1. 131
8.15 Bode plot of the model Eo. 132
8.16 Bode plot of the model Ẽo with 5th order. 133
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Recursive Model-Based Virtual
In-Cylinder Pressure Sensing for

Internal Combustion Engines

by Runzhe Han
Department of Mathematics/Computer Science and Mechanical Engineering,

Clausthal University of Technology

Abstract

The in-cylinder pressure signal is a very useful indicator for modern high-performance
internal combustion engines. Unfortunately, direct measurements of the in-cylinder pres-
sure are impractical because installing cylinder pressure sensors is difficult and conditions
in internal combustion engine cylinders are adverse. Numerous methods (such as virtual
sensing methods) have been investigated to reconstruct the in-cylinder pressure from ex-
ternally measured signals, such as the engine block structural vibration signal and the
engine crank angular speed.

Many of the proposed methodologies have shown promising results. However, there
still exist some drawbacks, such as ill-conditioned inversion and the need of large number
of data to derive an inverse model by artificial neural networks. In this thesis, consid-
ering current in-cylinder pressure reconstruction problems, linear model-based, nonlinear
model-based, and inverse model-based in-cylinder pressure reconstruction methods, which
are alternative to existing cylinder pressure reconstruction methods, are proposed. All the
proposed methods are based on the recursive state reconstruction by using the Kalman
filter or observer such that a direct inversion can be avoided. Moreover, all the proposed
methods are recursively conducted in time domain, so they are suitable for real-time
implementations and they also do not have frequency-domain problems such as spec-
tral leakage. Additionally, all the proposed methods are model-based methods, and the
models are identified by using system identification techniques excluding artificial neural
networks, so the need of a large number of data is not necessary.

For system identification and the validation of the proposed methods, the datasets un-
der different engine operating conditions were acquired from a four-cylinder diesel engine.
Data acquired is from the operating condition 1200 rpm, 60 Nm to the operating condi-
tion 3000 rpm, 180 Nm. The reconstructed cylinder pressure curves and two combustion
metrics cylinder pressure peak and peak location were used for validating the proposed
cylinder pressure reconstruction methods. According to the cylinder pressure reconstruc-
tion results obtained based on using the proposed methods in this thesis, it can be found
that all the proposed methods can be used under both stationary and non-stationary op-
erating conditions, and the reconstructed cylinder pressure results are comparable among

xxi



existing cylinder pressure reconstruction methods. Furthermore, it can also be found
that there exist several factors affecting the pressure reconstruction accuracy, such as the
quality of the identified models, delay block and instantaneous engine cycle frequency.
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Chapter 1

Introduction

1.1 Importance of Cylinder Pressure

Nowadays, internal-combustion (IC) engines are still the main power source for automo-
biles despite a growing number of greener alternatives, such as electrical motors. In order
to fulfil rigorous ecological standards regarding the air pollution, more and more leading
automobile manufactures are investigating advanced IC engines by involving the newest
combustion control strategies. In-cylinder pressure-based engine combustion control is
one of the technologies to enhance the combustion efficiency of the engine, and simultane-
ously reduce harmful emissions [1]. In addition, knowledge of cylinder pressure traces can
also provide information for both misfire detection and knock detection. Thus obtaining
the instantaneous information of the cylinder pressure signal is of importance for engine
optimization and control. Cylinder pressure sensors are available for direct measurements
and are fitted routinely during engine development and also on some production motor-
sport engines such as in Formula One. In the following of this chapter, the methods
of cylinder pressure measurement and reconstruction are first reviewed, afterwards the
motivation, the objectives, and a brief introduction of the results, and outline of this
thesis about cylinder pressure reconstruction are given. Without confusion, the cylinder
pressure mentioned in this thesis is referred to the engine in-cylinder pressure.

1.2 State of the Art of Obtaining Cylinder Pressure
In this section, several direct methods of the cylinder pressure measurement are first
discussed, focusing on the particular installation arrangement including flush mounted
sensors and those integrated with the spark or glow plug. Then indirect methodologies
for pressure reconstruction are described.

1.2.1 Direct Measurement
Piezoelectric pressure transducers are widely used to measure the cylinder pressure for
research and development purposes because of their small size, light weight, fast response
time, and low sensitivity to environmental conditions. However laboratory-grade trans-
ducers are expensive, and require a high-cost charge amplifier to convert the transducer
output signal to a measurable voltage signal. Additionally, both transducers and ampli-
fiers need calibration. There are several kinds of installation forms for these transducers:

1



• Flush mounted
The pressure transducer is flush-mounted to the cylinder head such that a specially
machined bore is required to carry the transducer. However, on most engines this
kind of mounting can make positioning and sealing of the transducer difficult and
costly to achieve. In terms of advantages, because the transducer is flush with the
cylinder head, turbulence and cavitation effect can be avoided.

• Integrated into a spark plug or a glow plug
This kind pressure transducer is integrated into a spark plug (for gasoline engines)
or a glow plug (for diesel engines), so the installation is straightforward. However,
this kind of pressure transducer has a limited frequency response compared with
the flush-mounted pressure transducer [2]. Furthermore, for spark plugs with an
integrated pressure transducer require a small eccentricity of the electrode due to
the limited available space, so the eccentricity should be always chosen as small as
possible.

Additionally, optical measurement devices of the cylinder pressure have also been
reported. While they still present the general design difficulties of a straightforward
measurement sensor and have not been widely used even in the laboratory [2].

1.2.2 Indirect Cylinder Pressure Reconstruction
The reconstruction of the cylinder pressure using information available from other sen-
sors fitted to engines has been investigated by many researchers since the mid 1980s.
The indirect methodologies for the cylinder pressure reconstruction can be called virtual
sensing [3]. Three main approaches of virtual sensing of the cylinder pressure have been
investigated.

1.2.2.1 Engine structure vibrations/engine block acoustic emissions-based
reconstruction

The fast pressure change in a cylinder during combustion leads to both engine structure
vibrations and engine block acoustic emissions. The potential of engine block vibration
signals and engine block acoustic emissions to recover the cylinder pressure has been ex-
plored [4–7]. The results showed that engine block vibration signals and engine acoustic
emissions contain information related to the combustion process, and can easily be mea-
sured, normally on the cylinder head (or the engine block) and by using a microphone, re-
spectively. However, these signals also contain other non-combustion information because
the cylinder pressure is not the unique source causing vibrations and acoustic emissions.
Based on the frequency response function (FRF) between the cylinder pressure signal
and the vibration signal (or the acoustic signal), various methods have been investigated,
such as inverse filtering applying cepstrum techniques [4, 8, 9] or time domain smoothing
techniques [10], but also nonlinear methods like radial basis function (RBF) networks [11].

1.2.2.2 Crank angular speed-based reconstruction

The fluctuating waveform of engine speed versus crank angle also contains information
about the cylinder-by-cylinder combustion pressure [12]. How the speed fluctuation varies

2



with the cylinder pressure changes has been explored by many researchers. The paper
[13] used the FRF between the cylinder pressure and the crank angular speed signal
and applied an FRF mapping to improve the cylinder pressure reconstruction accuracy
under time-varying working points. The paper [14] modeled the cylinder pressure via the
crank angular speed from a statistical point of view. The papers [15] and [2] used the
extended sliding observer and the Kalman filter respectively based on an engine energy
model whereas artificial neural networks (ANNs) approaches have been investigated by
[16–19].

1.2.2.3 Combination of engine structure vibrations and crank angular
speed-based reconstruction

It has been shown that both vibration and crank angular speed signal contain information
about the cylinder pressure but mainly in different frequency regions [12]. In [12], a
complex RBF network was proposed for the reconstruction of the cylinder pressure using
both vibration and crank angular speed signal.

More cylinder pressure reconstruction methods can be found in [20].

1.3 Motivation, Thesis Objectives, and Results

1.3.1 Motivation
According to the descriptions of the direct measurement methods, it can be known that the
use of direct sensing is however still a major problem for volume-produced engines owing
to high sensor costs, limited durability, and design difficulties, which potentially creates
very expensive service costs. Moreover, positioning can also be problematic, namely the
process of finding sensor access on a crowed cylinder head, which is a particular problem for
smaller and compact engines. Thus indirect cylinder pressure reconstruction is preferred.

Many of indirect cylinder pressure reconstruction methods have shown promising re-
sults. However, there still exist a number of drawbacks in existing methods. For example,
for inverse FRF-based methods (with or without cepstrum techniques), the problems such
as spectrum leakage, ill-conditioned inversion (nonminimum-phase zeros), or FRF vari-
ations may occur. In addition, inverse FRF-based methods may encounter a difficulty
in multivariable systems. ANNs normally need large amounts of acquired data to train
the network. For engine energy model-based methods, the engine energy model has to
be known and needs to be calibrated first, which can be expensive and time-consuming
in practice especially when the model is used for different types of engines. Besides, a
majority of the researches of the cylinder pressure reconstruction have been performed
on one-cylinder or two-cylinder engines which are relatively small in size with low power
output.

Thus the motivation of this thesis is to handle the above-mentioned problems existing
in current reconstruction methods.

1.3.2 Thesis Objectives
Based on the motivation, the main objectives of this thesis are formulated as follows:
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• Use a four-cylinder diesel engine with a typical engine speed range and a typical en-
gine torque range to validate the proposed cylinder pressure reconstruction methods
in this thesis.

• Identify the model between four cylinder pressure signals and one vibration signal
by using state-space model identification methods such that large amounts of data
for training is not necessary, and first-principle model, i.e., energy model, is either
not needed.

• Based on the identified models, derive recursive time-domain cylinder pressure indi-
rect reconstruction methods such that they can be implemented recursively in digital
computers and avoid the spectrum leakage problem. Additionally, direct inversion
is not needed in the proposed methods such that the ill-conditioned inversion can
be avoided.

1.3.3 Results
On the basis of the thesis objectives, the results obtained in the thesis are briefly intro-
duced below:

• Both linear and nonlinear models between the cylinder pressure and the vibration
were identified for cylinder pressure reconstruction, and finally for linear model
identification, the final time-domain identified model was chosen as a model with
9th order, and the final frequency-domain identified model was chosen as a model
with 8th order. While for nonlinear model identification, a Wiener model structure
was involved, and finally a Wiener model with 9 poles and 7 zeros was chosen.

• There are totally four cylinder pressure reconstruction methods proposed in the
thesis, and among these methods there are three methods formulated based on
using a delay block bank, while the remained one method is based on inverse model
identification. The cylinder pressure reconstruction results can show that in some
engine operating ranges, the curves of the cylinder pressure were reconstructed well
besides the bottom part by using delay block-based methods, while for the inverse
model identification-based method, the curves of the cylinder pressure were not well
reconstructed, but the total method without delay blocks is more easily formulated.

1.4 Thesis Outline
On the basis of the thesis objectives, the thesis is organized as follows:

In Chapter 2, basic theories used in subsequent chapters are illustrated. Because all
the cylinder pressure reconstruction methods proposed in this thesis are formulated as
state reconstruction problem, the theories of observer and Kalman fitler are illustrated.
Moreover, the cylinder pressure signal is modeled based on the theory of order tracking,
so order tracking is discussed in detail. System identification techniques for both linear
models and nonlinear models are used for the identification of the model between the
cylinder pressure and vibration. To make this thesis fairly self-contained in the sense
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that all steps have to be carried out to implement identification algorithms, detailed
descriptions on the system identification algorithms used in this thesis are included.

In Chapter 3, a four-cylinder diesel engine with its control and measurement system
used for validating the proposed methods is first described. Afterwards, a systematic de-
sign process of the signal processing of the collect signals (including four cylinder pressure
signals, one engine structural vibration signal, and one crank angular speed signal) from
the engine test bench is given.

In Chapter 4, according to the system identification techniques introduced in Chapter
3, different models between four cylinder pressure signals and one vibration signal are
identified. The types of the identified models are time-domain identified linear model,
frequency-domain identified linear model, and nonlinear model. The models identified in
this chapter are used in the proposed cylinder pressure reconstruction methods in Chapter
5, Chapter 6, and Chapter 7.

In Chapter 5, based on using both engine structural vibration signal and engine speed
signal, a linear framework is proposed for the cylinder pressure reconstruction. Specifi-
cally, three delay blocks are involved to transform the identified linear models in into a
single-input single-output (SISO) linear model, afterwards an augmented model can be
obtained by augmenting the SISO model with the state of the cylinder No. 1 pressure
signal model, and finally the Kalman filter for the augmented model can be implemented
to sequentially estimate the cylinder No. 1 pressure signal, and simultaneously other three
cylinder pressure signals can also be reconstructed based on using the estimated cylinder
No. 1 pressure signal and delay blocks.

In Chapter 6, the instantaneous engine cycle frequency, which is necessary to formulate
the delay blocks, is estimated through the vibration signal rather than being calculated
in the proposed method introduced in Chapter 2. Thus the cylinder pressure estimation
method proposed in this chapter is able to merely use the vibration signal to estimate
four cylinder pressure signals.

In Chapter 7, a nonlinear framework, which can be seen as an extension of the linear
approach, is developed. The objective of nonlinear framework is to assess whether cylin-
der pressure reconstruction accuracy can be improved by using a nonlinear model between
cylinder pressure and vibration. The only difference between linear framework and non-
linear framework is that in the nonlinear method the identified nonlinear model between
four cylinder pressure signals and one vibration signal is used, and the corresponding
nonlinear Kalman filter is then implemented.

In Chapter 8, a cylinder pressure reconstruction method without delay blocks, which
is called inverse model-based method, is proposed.

Finally, the thesis closes in Chapter 9 with discussions and conclusions.
It should be noted that in this thesis all the proposed methods are implemented in

discrete-time domain, so all the basics introduced in Chapter 2 correspond to the discrete-
time domain.
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Chapter 2

Basic Theory

2.1 Introduction
This chapter reviews basic theories of linear state observer, linear and nonlinear Kalman
filtering, order tracking, and system identification which are used in the sequent chapters.
The outline of this chapter is described as follows. The theories of the linear observer
and linear Kalman filter are introduced in Section 2.2, followed by the introduction of the
theory of nonlinear Kalman filtering which is described in Section 2.3. Based on these
state reconstruction theories, in Section 2.4, the specific modeling and reconstruction of
the frequency-modulated signal are investigated, followed by three sections (from Section
2.5 to Section 2.7) describing system identification techniques. Finally, a summary is
given in Section 2.8.

2.2 State Reconstruction for Linear Systems
In this section, state reconstruction is introduced for linear discrete-time systems. Both
observer and Kalman filter for state reconstruction are depicted. In the introduction of
the Kalman filter, as basics the definitions of white noise process and innovation process
are first given. The stability of the Kalman filter and several practical problems of the
Kalman filter implementation are also discussed in the end of this section.

2.2.1 The Asymptotic Observer
Consider a linear time-invariant (LTI) modelx(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(2.1)

where u(k) ∈ Rm, y(k) ∈ Rp, and x(k) ∈ Rn represent the model input, output, and
state variable vector, respectively. The matrices A, B, C, and D are constant.

An observer for the reconstruction of the state x(k) of the model (2.1) can be denoted
as

x̂(k + 1) = Ax̂(k) +Bu(k) +L(y(k)−Cx̂(k)−Du(k)), (2.2)

where the symbol “ˆ” denotes the reconstructed or estimated value, and L is a gain
matrix.
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The difference x̃(k) between the reconstructed state x̂(k) and the real state x(k)
satisfies

x̃(k + 1) = (A−LC)x̃(k), (2.3)

and therefore, if L is chosen such that the state equation (2.3) is asymptotically stable,
the difference xe(k) goes to zero for k → +∞, i.e.,

lim
k→+∞

x̃(k) = lim
k→+∞

(x(k)− x̂(k)) = 0. (2.4)

According to the above analysis, the observer (2.2) can be called an asymptotic ob-
server when the value of gain matrix L is chosen suitably [21, 22]. In this thesis, the
observer for LTI systems is only considered.

2.2.2 The Kalman Filter
At the start of this section, the definitions of both white noise process and innovation
process are introduced.

Definition 2.1. [23] The scalar random process {X(k)} which satisfies two conditions:

(i) E [X(k)] = 0,

(ii) E [X(k)X(j)] = Q(k)δkj,

where E [·] denotes the statistical expected value, and δkj is the Kronecker Delta function,
and

δkj =

0, if k 6= j,

1, if k = j,
(2.5)

is said to be a white noise process. �

It is easy to generalize the above definition to the corresponding vector case, e.g.,
a vector white noise process satisfies: (i) E [X(k)] = 0 and (ii) E

[
X(k1)XT(k2)

]
=

Q(k1)δk1k2 , where the matrix Q(k1) ≥ 0 and the symbol “ T ” denotes the real-valued
matrix transpose. With the above definition, the introduction of the Kalman filter theory
is conducted as follows.

Given a linear time-variant (LTV) model with additive error:x(k + 1) = A(k)x(k) +B(k)u(k) +E(k)w(k),
y(k) = C(k)x(k) +D(k)u(k) + v(k),

(2.6)

where u(k) ∈ Rm, y(k) ∈ Rp, and x(k) ∈ Rn represent the model input, output, and
state variable vector, respectively. w(k) ∈ Rq and v(k) ∈ Rp, and {w(k)} and {v(k)} are
white noise processes, and w(k) and v(k) are uncorrelated with x(0) (a random variable
with constant mean x0 and constant variance P0) and with each other. The matrices
A(k), B(k), C(k), D(k), and E(k) are time-variant. The covariance matrices of {w(k)}
and {v(k)} are Q(k)δkj and R(k)δkj, respectively, i.e.,

E
[
w(k)wT(j)

]
= Q(k)δkj and E

[
v(k)vT(j)

]
= R(k)δkj.
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Prior to introducing the Kalman filter algorithm for the model (2.6), define at each
time k the a priori (before including the measurement y(k)) estimate

x̂−(k) = E [x(k)|y(1),y(2), . . . ,y(k − 1)] ,

where E [· | ·] denotes the conditional expectation, and error variance

P−(k) = E
[(
x(k)− x̂−(k)

) (
x(k)− x̂−(k)

)T
]
,

and the a posteriori (after including the measurement y(k)) estimate

x̂(k) = E [x(k)|y(1),y(2), . . . ,y(k)] ,

and error variance
P (k) = E

[
(x(k)− x̂(k)) (x(k)− x̂(k))T

]
,

and x̂−(k) is also called one-step-ahead prediction.
Based on the above descriptions, conventionally the Kalman filter algorithm for the

model (2.6) can be summarized as follows if the start time is set to zero [24]:

• Initialization
P (0) = P0 and x̂(0) = x0.

• Time update (effect of system dynamics)
Error variance

P−(k + 1) = A(k)P (k)AT(k) +E(k)Q(k)ET(k). (2.7)

Estimate
x̂−(k + 1) = A(k)x̂(k) +B(k)u(k). (2.8)

• Measurement update (effect of measurement y(k))
Gain calculation

K(k + 1) = P−(k + 1)CT(k + 1)
(
C(k + 1)P−(k + 1)CT(k + 1) +R(k + 1)

)−1
,

(2.9)
where K(k) is called the Kalman gain.
Error variance update

P (k + 1) = (In −K(k + 1)C(k + 1))P−(k + 1), (2.10)

where In denotes n× n identity matrix.
Estimate update

x̂(k + 1) = x̂−(k + 1) +K(k + 1)
(
y(k + 1)−C(k + 1)x̂−(k + 1)

−D(k + 1)u(k + 1)
)
. (2.11)

If Equation (2.11) in Equation (2.8) is either used, there results an alternative group
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of Kalman filter recursive equations (the a priori filter formulation) [24], i.e.,

P−(k + 1) = A(k)
(
P−(k)− P−(k)CT(k)

(
C(k)P−(k)CT(k)

+R(k)
)−1

C(k)P−(k)
)
AT +E(k)Q(k)ET(k), (2.12)

K(k) = P−(k)CT(k)
(
C(k)P−(k)CT(k) +R(k)

)−1
, (2.13)

and

x̂−(k + 1) = A(k) (In −K(k)C(k)) x̂−(k) +B(k)u(k) +A(k)K(k) (y(k)−D(k)u(k)) ,
(2.14)

where the initial values can be chosen as

P−(0) = P−0 and x̂−(0) = x−0 ,

where the random variable x−(0) is with constant mean x−0 and constant variance P−0 .

Remark 2.1. Equation (2.14) can be transformed into

x̂−(k + 1) = A(k)x̂−(k) +B(k)u(k) +A(k)K(k)
(
y(k)−C(k)x̂−(k)−D(k)u(k)

)
,

(2.15)
and by observation, Equation (2.15) is identical in structure to Equation (2.2), so Equation
(2.15), which can be used to design the deterministic state observer, is just a time-variant
version of Equation (2.2). �

2.2.3 Stability of the Kalman Filter
For the Kalman filter for the model (2.6), according to [25, 26], if (A(k),C(k)) is uniformly
detectable, the Kalman filter error variance will be bounded.

When in the model (2.6) the matrices A(k) ≡ A, B(k) ≡ B, C(k) ≡ C, D(k) ≡D,
E(k) ≡ E, Q(k) ≡ Q, and R(k) ≡ R, where the matrices A, B, C, D, E, Q, and
R > 0 are constant, the above conclusion about the Kalman filter stability can either be
hold. Furthermore, if (A,C) is detectable and

(
A,E

√
Q
)

is reachable, then there will

be a steady-state Kalman gain K = P−CT
(
CP−CT +R

)−1
, where P− denotes the

unique positive definite limiting solution of Equation (2.12), which is independent of P0,
and the Kalman filter will be asymptotically stable, which can result in a steady-state
Kalman filter [24]. The existence of the steady-state Kalman gain can indicate how to
find a stabilized gain L in the asymptotic observer introduced in Section 2.2.1, i.e., L can
be chosen as AK based on the structure of Equation (2.15).

The definitions of controllability (for continuous-time systems), reachability (for discrete-
time systems), stabilizability, observability, and detectability can be referred to [27]. Ad-
ditionally, all of them correspond to all the states in the state space, e.g., if a system is
observable, it means that the system is completely observable.
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2.2.4 Implementation of the Kalman Filter
As for the linear Kalman filter implementation, a number of problems may occur, such
as the problem of mismodeling, the numerical precision problem, and the correlated noise
problem. So the standard Kalman filter as described above should be modified. Several
modified Kalman filters are illustrated below to solve the above problems.

2.2.4.1 Kalman filter with fading memory

The Kalman filter with fading memory is identical to the standard Kalman filter [28],
with the exception that the time-update equation for the computation of the a priori error
variance has a λ factor in its first term. This serves to handel the mismodeling problem,
which results in the filter giving more credence to the measurement. This is equivalent
to increasing Q(k), which also results in the filter giving relatively more credence to the
measurement. The fading-memory filter for the model (2.6) can be summarized as follows:

P−(k + 1) = 1
λ
A(k)P (k)AT(k) +E(k)Q(k)ET(k), (2.16)

x̂−(k + 1) = A(k)x̂(k) +B(k)u(k), (2.17)

K(k + 1) = P−(k + 1)CT(k + 1)
(
C(k + 1)P−(k + 1)CT(k + 1) +R(k + 1)

)−1
,

(2.18)
P (k + 1) = (In −K(k + 1)C(k + 1))P−(k + 1), (2.19)
x̂(k + 1) = x̂−(k + 1) +K(k + 1)

(
y(k + 1)−C(k + 1)x̂−(k + 1)−D(k + 1)u(k + 1)

)
,

(2.20)

where the forgetting factor λ ∈ R and 0 < λ < 1, and the initial values P (0) = P0 and
x̂(0) = x0.

If λ = 1 in Equation (2.16) then the fading-memory filter is equivalent to the standard
Kalman filter. In most applications, 1

λ
is only slightly greater than 1 (e.g., 1

λ
≈ 1.01).

2.2.4.2 Square-root Kalman filter

The square-root Kalman filter can mathematically increase the precision of the Kalman
filter when hardware precision is not available.

There exist several kinds of square-root Kalman filters [28], while this thesis focuses
on introducing the Potter’s algorithm [29]. But in Potter’s algorithm, w(k) should be
zero and the measurements should be scalar. So in the model (2.6), Q(k) should be set
to 0, and the output vector signal y(k) and the vector signal v(k) should be replaced
with y(k) ∈ R and v(k) ∈ R, respectively. The corresponding covariance function of the
white noise process {v(k)} is R(k)δkj. Suppose at each time k the a priori error variance
P−(k) = S−(k)(S−(k))T. Also, suppose that the a posteriori error variance P (k) =
S(k)ST(k). With the above descriptions, the specific square-root filtering algorithm is as
follows:

• Initialization
S(0) = S0 and x̂(0) = x0,

where the matrices S0 and x0 are constant.
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• Time update (effect of system dynamics)
Error variance

S−(k + 1) = A(k)S(k), (2.21)

Estimate
x̂−(k + 1) = A(k)x̂(k) +B(k)u(k). (2.22)

• Measurement update (effect of measurement y(k))
Gain calculation

F (k + 1) = S−(k + 1)CT(k + 1), (2.23)

α(k + 1) = 1
F T(k + 1)F (k + 1) +R(k + 1) , (2.24)

K(k + 1) = α(k + 1)S−(k + 1)F (k + 1), (2.25)

where F (k) and α(k) are the intermediate variables.
Error variance update

γ(k + 1) = 1
1 +

√
R(k + 1)

√
α(k + 1)

, (2.26)

S(k + 1) = S−(k + 1)− γ(k)K(k + 1)F T(k + 1), (2.27)

where γ(k) is an intermediate variable.
Estimate update

x̂(k + 1) = x̂−(k + 1) +K(k + 1)
(
y(k + 1)−C(k + 1)x̂−(k + 1)

−D(k + 1)u(k + 1)
)
. (2.28)

If necessary, the above square-root Kalman filter can also involve an forgetting factor
λ, and Equation (2.21) should be changed into

S−(k + 1) = 1
λ
A(k)S(k). (2.29)

2.2.4.3 Kalman filter for correlated noise systems

In the model (2.6), if the white noise processes {w(k)} and {v(k)} are also correlated
with each other, i.e.,

E
[(
w(k)
v(k)

)(
wT(j) vT(j)

)]
=
(
Q(k) MT(k)
M (k) R(k)

)
δkj,

where M (k) 6≡ 0, a modified Kalman filter for the model (2.6) should be implemented
[24, 28].

By modifying Equations (2.12) to (2.14), the Kalman filter for correlated noise systems
can be illustrated as follows:

P−(k + 1) = A(k)P−(k)AT(k)
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−K(k)
(
C(k)P−(k)CT(k) +R(k)

)
KT(k)

+E(k)Q(k)ET(k), (2.30)

K(k) =
(
AP−(k)CT(k) +E(k)MT(k)

) (
CP−(k)CT(k) +R(k)

)−1
, (2.31)

and

x̂−(k + 1) = A(k)x̂−(k) +B(k)u(k) +K(k)
(
y(k)−C(k)x̂−(k)−D(k)u(k)

)
. (2.32)

When M (k) ≡ 0 in Equation (2.31), the Kalman filter for correlated noise systems
can immediately be changed into the standard Kalman filter that is introduced in Section
2.2.2.

Remark 2.2. For the Kalman filter for correlated noise systems, in the model (2.6) if
the matrices A(k) ≡ A, B(k) ≡ B, C(k) ≡ C, D(k) ≡ D, E(k) ≡ E, Q(k) ≡ Q,
R(k) ≡ R, and M (k) ≡ M , where the matrices A, B, C, D, E, Q, R > 0, and M
are constant, and if (A,C) is observable and

(
A,E

√
Q
)

is reachable, then there will be

a steady-state Kalman gain K =
(
M +AP−CT

) (
CP−CT +R

)−1
, where P− denotes

the unique positive definite limiting solution of Equation (2.30), which is independent of
P0, and the Kalman filter will be asymptotically stable, which can result in a steady-state
Kalman filter [22, 30]. �

Remark 2.3. For the correlated case, even if M 6= 0, the conventional Kalman filter can
still be implemented, but the corresponding Kalman filter would be suboptimal in this
case [24]. �

2.3 Nonlinear Kalman Filtering for Nonlinear
Systems

As a counterpart of the linear Kalman filter, nonlinear Kalman filters are designed for
nonlinear systems. There are several kinds nonlinear Kalman filters such as the linearized
Kalman filter, extended Kalman filter (EKF), and second-order EKF [28, 31]. Because
in this thesis only EKF is of interest if nonlinear systems are encountered in the sequent
chapters, in this section only the specific introduction of EKF is illustrated.

Consider a nonlinear state-space model with additive error:x(k + 1) = g(x(k),u(k)) +w(k),
y(k) = h(x(k),u(k)) + v(k),

(2.33)

where u(k) ∈ Rm, y(k) ∈ Rp, and x(k) ∈ Rn represent the model input, output, and
state variable vector, respectively. w(k) ∈ Rn and v(k) ∈ Rp, and {w(k)} and {v(k)} are
white noise processes, and w(k) and v(k) are uncorrelated with x(0) (a random variable
with constant mean x0 and constant variance P0) and with each other. The functions
g(·) and h(·) are nonlinear vector-valued functions which are smooth. The covariance
matrices of {w(k)} and {v(k)} are Q(k)δkj and R(k)δkj, respectively, i.e.,

E
[
w(k)wT(j)

]
= Q(k)δkj and E

[
v(k)vT(j)

]
= R(k)δkj.
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The discrete-time EKF algorithm for the nonlinear model (2.33) can be summarized
as follows if the start time is set to zero [31]:
• Initialization

P (0) = P0 and x̂(0) = x0.

• Time update (effect of system dynamics)
Error variance

P−(k + 1) = AL(k)P (k)AT
L(k) +Q(k). (2.34)

Estimate
x̂−(k + 1) = g(x̂(k),u(k)). (2.35)

• Measurement update (effect of measurement y(k))
Gain update

K(k + 1) = P−(k + 1)CT
L (k + 1)

(
CL(k + 1)P−(k + 1)CT

L (k + 1) +R(k + 1)
)−1

,

(2.36)
where K(k) is called the Kalman gain.
Error variance

P (k + 1) = (In −K(k + 1)CL(k + 1))P−(k + 1). (2.37)

Estimate

x̂(k + 1) = x̂−(k + 1) +K(k + 1)
(
y(k + 1)− h(x̂−(k + 1),u(k + 1))

)
. (2.38)

• Jacobians

AL(k) ≈ ∂g(x(k),u(k))
∂xT(k)

∣∣∣∣∣
x(k)=x̂(k),u(k)=u(k)

, (2.39)

CL(k + 1) ≈ ∂h(x(k),u(k))
∂xT(k)

∣∣∣∣∣
x(k)=x̂−(k+1),u(k)=u(k+1)

, (2.40)

where ∂g(x(k),u(k))
∂x(k) denotes the partial derivative of the function g(x(k),u(k)) with respect

to the variable x(k).
Remark 2.4. By observing the EKF equations, it can be known that EKF can also be
transformed into a square-root form or a square-root form with a forgetting factor. �

2.4 Recursive Order Tracking

The problem of order tracking is usually encountered in rotating machines [32]. In rotating
machines, a single order ui(k) ∈ R may be mathematically defined by the time-variant
phasor described as [32]

ui(k) = Ai(k) sin
 k∑
j=0

2πfi(j)Ts + φi(0)
 , (2.41)
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where Ts denotes the sampling period, Ai(k) denotes the amplitude of the order ui(k),
φi(0) represents the initial phase of order ui(k) at the step k = 0, and fi(k) denotes
instantaneous frequency of order ui(k), and

fi(k) =

lifref(k), if i 6= 0,
0, if i = 0,

(2.42)

where li can be a fraction or an integer, and fref(k), which is called the reference frequency,
is the instantaneous frequency of a reference shaft in rotating machines.

Multiple orders are normally present in a dataset acquired from an operating machine.
The combination of orders may be described mathematically by a summation of time-
variant phasors. The combination with an error is expressed as

u(k) =
nu∑
i=0

ui(k) + e(k), (2.43)

where u(k) ∈ R, and the number nu stands for the total order number in the collected
signal u(k), especially, u0(k) denotes the DC offset corresponding to the frequency f0(k) =
0 Hz.

The objective of the order tracking problem is to reconstruct each order ui(k) based on
using the summed signal u(k) which is known. Below, three subsections are used to formu-
late the order tracking problem. In Section 2.4.1, the order tracking with time-invariant
amplitude is introduced while in Section 2.4.2, the order tracking with time-variant am-
plitude is illustrated. In Section 2.4.3, the order tracking with unknown instantaneous
frequency is depicted.

2.4.1 Order Tracking with Time-Invariant Amplitude
Based on the fact that

2ui(k + 1) = Ai(k + 1) sin(ϕi(k + 1)− ϕi(k) + ϕi(k))
= Ai(k + 1) (sin(ϕi(k + 1)− ϕi(k)) cos(ϕi(k))

+ cos(ϕi(k + 1)− ϕi(k)) sin(ϕi(k)))
= Ai(k + 1) (sin (2πfi(k)Ts) cos(ϕi(k)) + cos (2πfi(k)Ts) sin(ϕi(k))) , (2.44)

where ϕi(k + 1) = ∑k+1
j=0 2πfi(j)Ts + φi(0), and when the amplitude of the order ui(k) is

time-invariant, i.e., Ai(k + 1) = Ai(k), it can be obtained that(
ui(k + 1)

Ai(k + 1) cos(ϕi(k + 1))

)
=
(

cos (2πfi(k)Ts) sin (2πfi(k)Ts)
− sin (2πfi(k)Ts) cos (2πfi(k)Ts)

)(
ui(k)

Ai(k) cos(ϕi(k))

)
,

(2.45)
based on Equation (2.45), it is obvious that when the amplitude Ai(k) is time-invariant
and the reference frequencyfref(k) is constant or time-variant, the signal u(k) in Equation
(2.43) can be expressed as the output of a linear state-space model in time domain [33, 34],
i.e., x(k + 1) = A(fref(k))x(k),

u(k) = Cx(k) + e(k).
(2.46)
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The matrices A(fref(k)) and C are given as

A(fref(k)) =


1 0 · · · 0

0 A1(fref(k)) . . . ...
... . . . . . . 0
0 · · · 0 Anu(fref(k))

 (2.47)

and
C =

(
1 C1 · · · Cnu

)
, (2.48)

respectively.
The individual block entries in the matrices A(k) and C are

Ai(fref(k)) =
(

cos (2πlifref(k)Ts) sin (2πlifref(k)Ts)
− sin (2πlifref(k)Ts) cos (2πlifref(k)Ts)

)
(2.49)

and
Ci =

(
1 0

)
, (2.50)

respectively.
The state vector of the model (2.46) is expressed as

x(k) =
(
xT

0 (k) xT
1 (k) · · · xT

nu(k)
)T
. (2.51)

Based on the model (2.46) and the known signal u(k), the order ui(k) can be recon-
structed under different assumptions on the term e(k):

(i) When {e(k)} is a white noise process, and the state x(0) is a random variable
with constant mean and constant variance, and e(k) is uncorrelated with x(0),
Equations (2.7) to (2.11) (Kalman filter recursion equations) can be used directly
for the model (2.46), then with the estimated state x̂(k), the reconstructed orders
ûi(k) = Cix̂i(k) for i = 1, 2, . . . , nu.

(ii) When e(k) ≡ 0 and the frequency fref(k) is constant, the conventional observer
introduced in Section 2.2.1 can be implemented such that the orders ui(k), i =
1, 2, . . . , nu can be reconstructed.

2.4.2 Order Tracking with Time-Variant Amplitude
According to the model (2.46), when the amplitude A0(k) is time-variant, the model
(2.46) can still hold. However, besides the amplitude A0(k) if the amplitude Ai(k) is
time-variant, it is not suitable for us to use the state-space model (2.46) to represent the
signal u(k), and the reason is that for the modeling of the signal u(k), the transition
equation x(k + 1) = A(fref(k))x(k) will not be accurate enough if Ai(k) is time-variant,
and the corresponding reason can be found according to Equations (2.44) and (2.45).
Furthermore, if {e(k)} is a white noise process, and x(0) is a random variable with
constant mean and constant variance, and e(k) is uncorrelated with x(0), the Kalman
filer with fading memory introduced in Section 2.2.4.1 can be used to handle the equivalent
mismodeling problem. Furthermore, if the numerical precision problem simultaneously
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occurs, the square-root Kalman filter with fading memory as depicted in Section 2.2.4.2
should be implemented.

2.4.3 Order Tracking with Unknown Instantaneous Frequency
The above cases of order tracking are based on the assumption that the instantaneous fre-
quency fi(k) is known, however, sometimes the information of the instantaneous frequency
is not available, thus an approach to handle the order tracking problem with unknown in-
stantaneous frequency is necessary. Based on the frequency tracker investigated in [33], the
order tracking problem without knowing the information of the instantaneous frequency
can still be handled. The idea behind the order tracking without known instantaneous
frequency is depicted below.

Regard the unknown reference frequency fref(k) as a state variable xf(k), and augment
it with the state of the model (2.46) in which {e(k)} is still assumed to be a white noise
process, then 

(
x(k + 1)
xf(k + 1)

)
=
(
A(fref(k)) 0

0 1

)(
x(k)
xf(k)

)
,

u(k) =
(
C 0

)(x(k)
xf(k)

)
+ e(k).

(2.52)

According to Equation (2.47) and Equation (2.49), it can be known that the matrix
A(fref(k)) is a function of the frequency fref(k), as a result the model (2.52) is a nonlinear
model, the EKF introduced in Section 2.3 can be used to track both order ui(k) and
frequency fref(k). If necessary, for implementation the form of EKF should be modified,
e.g., when the amplitude Ai(k) (except of A0(k)) is time-variant. The stability analysis
of the EKF used for the order tracking can be referred to [35].

2.5 Linear System Identification in Time Domain
State-space models are good models for modern control and estimation techniques, more-
over many industrial processes can be described very accurately by this type of models
[36]. Subspace identification techniques are effective for identifying state-space models.
Based on the points mentioned above, in this section, time-domain subspace identification
methods [22, 36–40] for discrete-time LTI state-space models are reviewed.

Given the following discrete-time causal state-space model with unknown parameters:x(k + 1,θ∗s ) = A(θ∗s )x(k,θ∗s ) +B(θ∗s )u(k) +w(k),
y(k) = C(θ∗s )x(k,θ∗s ) +D(θ∗s )u(k) + v(k),

(2.53)

where x(k,θ∗s ) ∈ Rnm , u(k) ∈ Rm, and y(k) ∈ Rp represent the state vector, input signal,
and output signal, respectively. The parameter vector θ∗s represents unknown parameters
in the state-space model, and the parameter vector θ∗s ∈ Ωs is formed by stacking the
unknown parameters which represent the total elements in the state-space matrices of the
model (2.53), and Ωs denotes the specified parameter set which constraints the parameter
vector. {w(k)} and {v(k)} are white noise processes, and w(k) and v(k) are uncorrelated
with x(0,θ∗s ) (a random variable with constant mean and constant variance) and with each

16



other. u(k) is uncorrelated withw(k) and v(k). The covariance matrix of {w(k)} and the
covariance function of {v(k)} are Qδkj and Rδkj, respectively. E

[
w(k)vT(j)

]
= Mδkj.

Q, R, and M are constant and unknown. The matrix pair (A(θ∗s ),C(θ∗s )) is observable,
and the matrix pair (A(θ∗s ),B(θ∗s )) and the matrix pair

(
A(θ∗s ),

√
Q
)

are reachable. The
state equation is asymptotically stable.

Suppose that the initial time is in the infinitely remote past, and the model (2.53)
satisfies the condition of obtaining the steady-state Kalman filter introduced in Section
2.2.4.3. So the optimal one-step-ahead predictor of y(k) in the model (2.53) can be given
by x̂

−(k + 1,θs) = A(θs)x̂−(k,θs) +B(θs)u(k) +K(θs)ε(k,θs),
ŷ−((k,θs) = C(θs)x̂−(k,θs) +D(θs)u(k),

(2.54)

where the parameter vector θs is formed by stacking the unknown parameters which
represent the total elements in the state-space matrices of the model (2.54), and

ε(k,θs) = y(k)−C(θs)x̂−(k,θs)−D(θs)u(k), (2.55)

and the steady-state Kalman gain K(θs) is given by

K(θs) =
(
M +A(θs)P−(θs)CT(θs)

) (
C(θs)P−(θs)CT(θs) +R

)−1
, (2.56)

where P−(θs) is the solution of the algebraic Riccati equation

P−(θs) = A(θs)P−(θs)AT(θs)
−K(θs)

(
C(θs)P−(θs)CT(θs) +R

)
KT(θs)

+E(θs)QET(θs). (2.57)

Based on the predictor (2.54), an alternative form can be used to represent the state-
space model (2.53), so our identification problem can be transform into the problem of
the identification of the modelx̂

−(k + 1,θs) = A(θs)x̂−(k,θs) +B(θs)u(k) +K(θs)ε(k,θs),
y(k) = C(θs)x̂−(k,θs) +D(θs)u(k) + ε(k,θs),

(2.58)

which is called the innovation form of the model (2.53) [22, 37].
From the model (2.53) (without displaying the symbol “ θs ”), the following equation

can be obtained:
Yr(k) = Orx(k) + SrUr(k) + Vr(k), (2.59)

where

Yr(k) =


y(k)

y(k + 1)
...

y(k + r − 1)

 , (2.60)
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Ur(k) =


u(k)

u(k + 1)
...

u(k + r − 1)

 , (2.61)

Or =


C

CA
...

CAr−1

 , (2.62)

and

Sr =


D 0 · · · 0 0
CB D · · · 0 0

... ... . . . ... ...
CAr−2B CAr−3B · · · CB D

 , (2.63)

and the ith block component of Vr(k)

V (i)
r (k) = CAi−2w(k) +CAi−3w(k + 1) + . . .+Cw(k + i− 2) + v(k + i− 1), (2.64)

and r ≥ nm.
Based on the input-output (IO) data of the model (2.53), i.e., (u(k))N−1

k=0 and (y(k))N−1
k=0 ,

introduce the following equations

Y =
(
Yr(sm) Yr(sm + 1) · · · Yr(sm +M − 1)

)
, (2.65)

X =
(
x(sm) x(sm + 1) · · · x(sm +M − 1)

)
, (2.66)

U =
(
Ur(sm) Ur(sm + 1) · · · Ur(sm +M − 1)

)
, (2.67)

V =
(
Vr(sm) Vr(sm + 1) · · · Vr(sm +M − 1)

)
, (2.68)

where sm is chosen as the largest value of s1 and s2 which are involved in the instrumental-
variable matrix in Equation (2.73).

With Equations (2.65) to (2.68), Equation (2.59) can be rewritten as

Y = OrX + SrU + V . (2.69)

According to the condition that the matrix pair (A,C) is observable, an analysis of
the rank of Y − SrU + V would directly provide the rank of X, because rank (OrX) =
rank (Y − SrU + V ), provided thatOr has full (column) rank [41], where rank (·) denotes
the rank of a matrix. Therefore the order of the model (2.53) to be identified can be
determined when M ≥ r ≥ nm. The value of −SrU + V is unknown, but if the effect of
U and V can be eliminated, the model order can still be determined.

Eliminating the influence of U and V can be done by the orthogonal projection tech-
nique and the instrumental variable method, respectively [37]. By involving an orthogonal
matrix and an instrumental-variable matrix in Equation (2.69), the following equation can
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be obtained:

1
M
OrXΠ⊥

UTZT + 1
M
VΠ⊥

UTZT = Or
1
M
XΠ⊥

UTZT + 1
M
VΠ⊥

UTZT = 1
M
YΠ⊥

UTZT,

(2.70)
where

Π⊥
UT = IM −UT

(
UUT

)−1
U , (2.71)

if UUT is nonsingular, and the matrix Π⊥
UT performs projection, orthogonal to the matrix

U (see the books [22, 36] for the specific definition and properties (e.g., orthogonality) of
orthogonal projection), i.e.,

UΠ⊥
UT = U −UUT

(
UUT

)−1
U = 0. (2.72)

The matrix Z ∈ Rs×M is denoted as

Z =
(
Z(0) Z(1) · · · Z(M−1)

)
, (2.73)

and the ith element in Z can be represented as

Z(i) =



u(i)
...

u(i+ s2 − 1)
y(i)

...
y(i+ s1 − 1)


. (2.74)

Remark 2.5. Z is called an instrumental-variable matrix [22, 37]. �

According to the properties of the instrumental-variable matrix Z [22], the following
equations can be derived:

lim
M→+∞

1
M
VΠ⊥

UTZT = 0, (2.75)

rank
(

lim
M→+∞

1
M
XΠ⊥

UTZT
)

= nm, (2.76)

and furthermore with the assumption that the matrix Or has full rank, it can be obtained
that

rank
(

lim
M→+∞

1
M
YΠ⊥

UTZT
)

= nm (2.77)

of which the derivation can be found in [22].
As mentioned above, rank (OrX) = rank (Y − SrU + V ) when Or has full rank,

thus in Equation (2.70) it can be known that based on checking the rank of the matrix
limM→+∞

1
M
YΠ⊥

UTZT or the rank of the matrix Or (if the matrix Or can be calculated),
then the number n (i.e., the order of the model (2.53)) can immediately be determined.

Furthermore, based on the matrix Or in Equation (2.62), the following two equations
can be used for deriving the matrices A and C:

Ĉ = Or(1 : p, 1 : nm), (2.78)
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Or(p+ 1 : pr, 1 : nm) = Or(1 : p(r − 1), 1 : nm)Â, (2.79)

where the notation Or(1 : p, 1 : nm) denotes the matrix obtained by extracting the rows
1, 2, . . . , p and the columns 1, 2, . . . , nm from the matrix Or.

Therefore the value of the matrix Or is necessary to be known for both model order
determination and the calculation of the matrices A and C. The strategy for calculating
the matrix Or is illustrated as follow.

According to Equations (2.70) and (2.75), the following equation can be obtained:

lim
M→+∞

(
Or

1
M
XΠ⊥

UTZT + 1
M
VΠ⊥

UTZT
)

= lim
M→+∞

(
Or

1
M
XΠ⊥

UTZT
)

= lim
M→+∞

( 1
M
YΠ⊥

UTZT
)

= Ψ. (2.80)

Remark 2.6. It should be mentioned that for the calculation of Ψ in Equation (2.80),
one efficient numerical calculation is to apply the RQ factorization [42] of the data matrix

(
UT ZT Y T

)T
= RdQd, (2.81)

where Rd is here a lower triangular, pr+mr+s square matrix, while Qd is an orthogonal
(pr +mr + s)×M matrix. Specifically, first perform the RQ factorization on the matrix


U

Z

Y

 =


R11 0 0 0
R21 R22 0 0
R31 R32 R33 0



Q1

Q2

Q3

Q4

 (2.82)

with the orthogonality of the matrix
(
QT

1 QT
2 QT

3 QT
4

)T
[22], i.e.,

QiQ
T
j = 0, if i 6= j,

QiQ
T
i = I,

(2.83)

where I denotes the identity matrix without the dimension index, then it can be obtained
that

YΠ⊥
UTZT = R32R

T
22. (2.84)

�

By performing the singular value decomposition (SVD) [42] of the matrix Ψ which is
equal to limM→+∞

(
1
M
R32R

T
22

)
, it can be obtained that

Ψ = UsSsV
T

s

=
(
U1 U2

)(S1 0
0 0

)(
V T

1
V T

2

)
= U1S1V

T
1 , (2.85)

where the rank of the square matrix S1 is nm (which is the model order).
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By observing Equations (2.80) and (2.85), the matrix Or can be calculated as

Or = U1T , (2.86)

where a similarity transformation T , is introduced to make the recovered observability
matrix Or, e.g., the similarity transformation T can be chosen as an identity matrix or
be set to S

1
2
1 , because it is not necessary to recover number-wise the original matrices A,

B, C, and D from which the IO data was generated [36, 37].
In practice, the value of M is finite, but the calculation of the matrix Or can still be

conducted according to the above equations. Based on calculation of the matrix Or in
Equation (2.86), the model order can be determined, and the matrices A and C can be
calculated based on Equations (2.78) and (2.79). The stability of the calculated matrix
Â can be enforced by reflecting unstable poles into the unit disk [43].

Remark 2.7. In practice, the model order should be chosen according to the obvious
gap in the singular value spectrum [44], specifically, the n most significant values of the
singular values in the matrix Ss are kept and the remaining ones are set to zeros. �

The calculation of the matrix K can be based on Equation (2.56) [36], however, as
seen in Equation (2.56), besides the values of the matrices A and C, the values of the
matrices Q, R, and M are also necessary. The values of Q, R, and M can be obtained
by implementing a robust identification algorithm (see the chapter six in [36] or the paper
[45]), thus the calculated value of the matrix K can be obtained based on Equation (2.56)
and the estimates Â, Ĉ, Q̂, R̂, and M̂ . It should be noted that in the implementation
of the robust identification algorithm, the RQ factorization technique is involved.

The above steps are based on an infinite-length IO data, however for implementation of
the above steps in practice, the finite-length IO data should be substituted into Equation
(2.65) and Equation (2.67), respectively, and then the value of matrixOr can be calculated
(see Equation (2.86)), afterwards the calculated A, C, and K can be obtained.

Based on the IO data (u(k))N−1
k=0 and (y(k))N−1

k=0 and the calculated matrices Â, Ĉ,
and K̂ from the IO data, the matrices B and D in the innovation model (2.58) can be
estimated below, and there are two different kinds of cost functions for the estimation
[37, 46]:

• Prediction focus
For the prediction focus, the matrices B and D can be estimated from the following
linear regression problem [36]

min
B,D,x−(0)

1
N

N−1∑
k=0
‖ y(k)− Ĉ

(
qInm − Â+ K̂C

)−1 (
B − K̂D

)
u(k)−Du(k)

−Ĉ
(
qInm − Â+ K̂C

)−1
K̂y(k)− Ĉ

(
qInm − Â+ K̂C

)−1
x−(0)δ(k) ‖2

2,

(2.87)

where ‖ · ‖2 denotes the 2-norm of a vector, q denotes the one-step forward-shift
operator [37], and the matrix D and the initial state x−(0) can easily be excluded
or included if necessary, e.g., they can be set to zero or regarded as an independent
parameter to be estimated.
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• Simulation focus
As a counterpart of prediction focus, without the weighting (i.e., the noise model
H(q−1,θp)), for the simulation focus, the matrices B and D can be estimated from
the linear regression problem [36]

min
B,D,x−(0)

1
N

N−1∑
k=0
‖ y(k)− Ĉ

(
qInm − Â

)−1
Bu(k)−Du(k)

−Ĉ
(
qInm − Â

)−1
x−(0)δ(k) ‖2

2, (2.88)

where the matrix D and the initial state x−(0) can easily be excluded or included
if necessary.

For implementation purpose, the optimization problems (2.87) and (2.88) can be
rewritten as the forms without shift operator q, which can be referred to [36]. It should
also be noted that the optimization problems (2.87) and (2.88) are obviously convex op-
timization problems.

Remark 2.8. As introduced in [37, 40], by adding two weighting matrices W1 and W2

in Equation (2.85), a weighted matrix ΨW can be obtained, i.e.,

ΨW = W1ΨW2, (2.89)

then different weightings can lead to different subspace identification methods, which can
be illustrated as follows:

• Equation (2.85): W1 = Ir, W2 = Ir.

• MOESP [22, 47]: W1 = Ir, W2 =
(

1
M
ZΠ⊥

UTZT
)−1

ZΠ⊥
UT .

• N4SID [36]: W1 = Ir, W2 =
(

1
M
ZΠ⊥

UTZT
)−1

Z.

• CVA [48]: W1 =
(

1
M
YΠ⊥

UTY
)−1

2 , W2 =
(

1
M
ZΠ⊥

UTZT
)−1

2 .

As a result different subspace identification methods can be cast in one unified framework
based on using the weighting matrices W1 and W2. �

Subspace identification methods (e.g., N4SID, MOESP, and CVA) have proven to be
very successful for identification of multivariable, linear black-box state-space models.
These methods are associated with a number of design variables [37], or user choices.
These include prediction horizons (i.e., the values of r, s1, and s2), weighting matrices
(i.e., W1 and W2), and identification focuses (i.e., simulation focus and prediction focus).
It is known that these choices may have a big influence on the model quality while there
is no comprehensive theory for rational decision making [46].

Finally, a procedure of the time-domain subspace identification for estimating the
matrices A, B, C, D based on using the IO data (u(k))N−1

k=0 and (y(k))N−1
k=0 is illustrated

in Algorithm 2.1.

Remark 2.9. In Algorithm 2.1, there is also an additional option of enforcing stability,
as aforementioned. Algorithm 2.1 has been implemented in the Matlab function n4sid.m
in [49]. �
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Algorithm 2.1: Time-domain subspace identification.
1 Choose the values of r, s1, and s2 (i.e., prediction horizons), and then formulate

the matrices U and Y , and the instrumental matrix Z using Equation (2.65),
Equation (2.67), and Equation (2.73), respectively.

2 With the matrices U , Y , and Z, use RQ factorization to calculate the matrix Ψ.
3 Choose weighting matrices W1 and W2, and then calculate ΨW in Equation

(2.89).
4 Replace Ψ with ΨW in Equation (2.85), and obtain U1, and then calculate the

extended observability matrix Or using Equation (2.86).
5 Determine the model order according to the matrix S1 in Equation (2.85), and

compute the estimates of A and C using Equation (2.78) and Equation (2.79),
respectively.

6 Estimate the matrices Q, R, and M , and then calculate the steady-state
Kalman gain K.

7 Estimate B, D, and x−(0) using either the prediction option (2.87) or simulation
option (2.88) as per requirements.

2.6 Linear System Identification in Frequency
Domain

In this section, it is assumed that the input signal and output signal of the model (2.53) are
periodic signals, thus it is natural to use frequency-domain system identification methods
because the spectrum leakage can be avoided for the fast Fourier transform (FFT) of
periodic signals with integer number of periods [22, 50, 51]. Based on using the discrete
Fourier transform (DFT) of a discrete-time signal with finite length, the DFT of both
input sequence (u(k))N−1

k=0 and output sequence (y(k))N−1
k=0 of the model (2.53) can be

obtained, and the DFT values of the input and output sequences are denoted as U(n)
and Y (n) at the frequency nfs/N (in Hz), respectively. The definition of discrete Fourier
transform (DFT) is introduced as follows:

Definition 2.2. [52] The DFT of a finite discrete-time sequence (u(k))N−1
k=0 can be defined

as
U(n) = 1√

N

N−1∑
k=0

u(k)e−j2πnk/N , (2.90)

where j2 = −1, the index n ∈ N points to the frequency nfs/N , and u(k) ∈ R satisfies the
condition for DFT [51]. Some pitfalls such as the spectrum leakage in the computation
of DFT can be referred to [51]. �

In frequency-domain system identification, with the DFT values of both input sequence
(u(k))N−1

k=0 and output sequence (y(k))N−1
k=0 at the frequencies of interest, the model be-

tween u(k) and y(k) in either transfer function form [53] or state-space model form [50, 54]
can be identified. In this section, a frequency-domain system identification method is in-
troduced to identify the model in state-space form, specifically, the so-called local polyno-
mial method (LPM) [55, 56] is first used to calculate the FRF values at the frequencies of
interest, and then based on the FRF points the frequency-domain subspace identification
method proposed in [57] is implemented, but the noise variance is not included here. For
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more about subspace identification in frequency domain, refer to [50, 58]. Based on the
above simplified introduction, below two steps are used to illustrate the total frequency-
domain system identification method.

2.6.1 Step I: LPM
The model (2.53) is equivalent to the model (2.58), and convert the model (2.58) to the
following the transfer function form:

y(k) = G(q−1,θp)u(k) +H(q−1,θp)e(k), (2.91)

where the parameter vector θp is formed by stacking the unknown parameters which
represent the coefficients of the transfer functions in the model (2.91), and q−1 is the
one-step backwards-shift operator, and

e(k) = ε(k,θs), (2.92)
G(q−1,θp) = D(θs) +C(θs) (qIn −A(θs))−1B(θs), (2.93)
H(q−1,θp) = Ip +C(θs) (qIn −A(θs))−1K(θs). (2.94)

If the model uncertainty which is denoted as ys(k) is involved into the model (2.91),
the following model can be obtained:

y(k) = G(q−1,θp)u(k) + ys(k) +H(q−1,θp)e(k). (2.95)

Furthermore, for practical identification purpose, because the length of the IO data is
finite for identification, i.e., (u(k))N−1

k=0 and (y(k))N−1
k=0 , the model (2.95) must be extended

with the initial conditions, i.e., the transient terms tG(k) and tH(k) caused by the dy-
namics of the model G (corresponding to G(q−1,θp)) and the model H (corresponding
to H(q−1,θp)), respectively, should be involved [55], i.e.,

y(k) = G(q−1,θp)u(k) + tG(k) + tH(k) + ys(k) +H(q−1,θp)e(k)
= G(q−1,θp)u(k) + tGH(k) + ys(k) +H(q−1,θp)e(k), (2.96)

where tGH(k) = tG(k) + tH(k).
By conducting DFT (2.90) on the two sides of Equation (2.96) at the frequency Ωn,

the following equation without displaying the parameter vector θp can be obtained:

Y (n) = G(Ωn)U(n) + TG(Ωn) + TH(Ωn) + Ys(n) +H(Ωn)E(n)
= G(Ωn)U(n) + TGH(Ωn) + Ys(n) +H(Ωn)E(n), (2.97)

where Ωn = ejwnTs , and wn = 2πfn, G(Ωn) and H(Ωn) represent the FRF values of the
model G and the model H at the specified frequency fn, the terms TG(Ωn), TH(Ωn), and
TGH(Ωn), which are DFTs of tG(k), tH(k), and tGH(k) at the frequency Ωn, stand for the
leakage error in the frequency domain, and TGH(Ωn) = TG(Ωn) + TH(Ωn), and the terms
E(n) and Ys(n) are DFTs of e(k) and ys(k) at the frequency Ωn, respectively.

Remark 2.10. If an integer number of periods of the steady-state response to a periodic
excitation is measured, then the leakage error TG(Ωn) in Equation (2.97) is zero. Note,
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however, that the leakage term TH(Ωn) corresponding to the noise e(k) (which is non-
periodic) still remains different from zero [50]. �

The estimation of the value of G(Ωn) using LPM is based on the assumption that the
FRF G(w) and the leakage TGH(w) are smooth functions of frequency w ∈ R in rad/s.
Thus, they can be approximated by complex polynomials within a narrow frequency
band. The polynomial approximations at frequencies wn+l (l = 0,±1,±2, . . .) of G(w)
and TGH(w) of the order η and centered around frequency wn are respectively given as

G(Ωn+l) = G(Ωn) +
η∑
s=1
gs(n)ls +O

( l

N

)(η+1)
 (2.98)

and

TGH(Ωn+l) = TGH(Ωn) +
η∑
s=1
ts(n)ls + 1√

N
O

( l

N

)(η+1)
 , (2.99)

where gs(n) and ts(n) are the Taylor coefficients of G(w) and TGH(w), respectively. The
value of M can be chosen by users, but usually η is set to 2 in the literature. The notation
O (·) is called “ ordo ” in Taylor’s formula with remainder [59].

Substituting Equations (2.98) and (2.99) into Equation (2.97) at frequency wn+l, it
can be obtained that

Y (n+ l) = (G(Ωn) +
η∑
s=1
gs(n)ls)U (n+ l)

+(TGH(Ωn) +
η∑
s=1
ts(n)ls) + V (n+ l)

= ΘK(n+ l) + V (n+ l), (2.100)

where the term V (n+ l) = Ys(n+ l) +H(wn+l)E(n+ l), Θ is the matrix of the unknown
complex parameters, namely the Taylor coefficients of G(w) and TGH(w) at the frequency
wn, i.e.,

Θ =
(
G(Ωn) g1(n) g2(n) · · · gη(n) TGH(Ωn) t1(n) t2(n) · · · tη(n)

)
, (2.101)

and K(n+ l) contains the input data

K(n+ l) =
(
K1(l)⊗U (n+ l)

K1(l)

)
(2.102)

with K1(l) =
(
1 l · · · lη

)T
and “ ⊗ ” denoting the Kronecker product [42].

Collecting Equation (2.100) for the 2q + 1 neighbours of frequency wn (l = −q,−q +
1, . . . , 0, . . . , q − 1, q) gives the following equation

Yq = ΘKq + Vq, (2.103)

where Yq, Kq, and Vq are matrices with the forms

Yq =
(
Y (n− q) Y (n− q + 1) · · · Y (q) · · · Y (n+ q)

)
, (2.104)
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Kq =
(
K(n− q) K(n− q + 1) · · · K(q) · · · K(n+ q)

)
, (2.105)

and
Vq =

(
V (n− q) V (n− q + 1) · · · V (q) · · · V (n+ q)

)
, (2.106)

respectively.
It should be noted that q is a parameter of LPM that has to be chosen by users under

the constraint 2q + 1 ≥ (η + 1)(m+ 1), with m being the number of the input signals of
the model G. The constraint ensures that Equation (2.103) is an over-determined set of
equations for the unknown Θ that is to be solved in a least-squares sense

min
Θ

2q+1∑
i=1
‖Yq(1 : p, i)−ΘKq(1 : p, i)‖2

2, (2.107)

where p denotes the number of the output signals of the modelG. The notation Yq(1 : p, i)
denotes the elements in the ith column of the matrix Yq.

Remark 2.11. For the left and right borders of the frequency band of interest, the 2q+1
neighbouring frequencies cannot be centered around the frequency wn, but have to be
shifted to the left or to the left as mentioned in [55]. Additionally, the choice of q is a
trade-off between an effective noise reduction (big q) and a low interpolation error (small
q) [55]. �

Actually the solution of Equation (2.107) can be directly obtained as

Θ̂ = YqK
†
q , (2.108)

where the symbol “ † ” denotes the Moore-Penrose inverse [42].
According to Equation (2.101) and the estimated value Θ̂ which is the solution of the

optimization problem (2.107), the estimated FRF at the frequency wn can be obtained
using

Ĝ(Ωn) = Θ̂
(
Im
0

)
. (2.109)

The steps above are repeated for every frequency of interest, and finally an estimated
sequence

(
Ĝ(Ωn)

)
n∈T

can be obtained, where T denotes the set of the frequencies of
interest.

2.6.2 Step II: Frequency-Domain Subspace Identification
According to the model (2.53), the model G can be represented by using the following
state-space model without explicitly displaying the unknown parameter vector θ∗s in the
state-space matrices: xG(k + 1) = AxG(k) +BuG(k),

yG(k) = CxG(k) +DuG(k),
(2.110)

where the state vector xG(k), the input uG(k), and the output yG(k) correspond to the
model G. xG(k), uG(k), and yG(k) are different with x(k), u(k), and y(k) in the model
(2.53), respectively.
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With the model (2.110) and the estimated FRF points
(
Ĝ(Ωn)

)
n∈T

, in the following
the specific frequency-domain subspace identification method proposed in [57] is intro-
duced, and for more details it can also be referred to [50, 58].

First recall the definition of the one-sided z-transform:

Definition 2.3. [52] The one-sided z-transform (or say unilateral z-transform), X(z), of
the sequence (x(k))+∞

k=0 is given by

X(z) =
+∞∑
k=0

z−kx(k). (2.111)

for all z such that the result of the summation is well defined, denoted by the region of
convergence (ROC). �

The following shift property of the one-sided z-transform is critical, and not hard to
establish. Suppose that x(k) z←→ X(z) and g(k) z←→ G(z). Then if g(k) = x(k + 1),
it can be obtained that G(z) = z (X(z)− x(0)). The z-transform can also be used for
multidimensional functions.

With the above definition of the one-sided z-transform and the corresponding shift
property, perform the one-sided z-transform on both sides of the state-space model (2.110)
[60] zXG(z)− zxG(0) = AXG(z) +BUG(z),

YG(z) = CXG(z) +DUG(z),
(2.112)

where z = e(σre+jw)Ts , and σre + jw ∈ C is a complex value with the real part σre and the
imaginary part w.

By assuming the initial value xG(0) = 0 and setting σre = 0, it can be obtained thatΩnXG(n) = AXG(n) +BUG(n),
YG(n) = CXG(n) +DUG(n),

(2.113)

at the frequency wn, and UG(n), YG(n), and XG(n) denote the DFTs of (uG(k))N−1
k=0 ,

(yG(k))N−1
k=0 , and (xG(k))N−1

k=0 in the model (2.110) at the frequency wn.
Because G(Ωn)Im = G(Ωn), in the model (2.113) UG(n), YG(n), and XG(n) can be

replaced with Im, G(Ωn), and Xa
G(n), respectively, where Xa

G(n) ∈ Cnm×m (which is a
DFT value at the frequency wn) denotes the state of the following state-space modelΩnX

a
G(n) = AXa

G(n) +BIm,
G(Ωn) = CXa

G(n) +DIm,
(2.114)

i.e., ΩnX
a
G(n) = AXa

G(n) +B,
G(Ωn) = CXa

G(n) +D.
(2.115)

Multiply the second equation of (2.115) by Ω l
n, and elaborate it by repeatedly substi-

tuting Ω l
nX

a
G(n) with the first equation of (2.115), i.e.,

Ω l
nX

a
G(n) = Ω l−1

n (CΩnX
a
G(n) + ΩnD)
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= Ω l−1
n (CAXa

G(n) +CB + ΩnD)
= Ω l−2

n

(
CA2Xa

G(n) +CAB + ΩnCB + Ω2
nD

)
= . . .

= CAlXa
G(n) +

(
CAl−1B + ΩnCA

l−2B + . . .+ Ω l−1
n CB + Ω l

nD
)
. (2.116)

Write down Equation (2.116) for l = 0, . . . , r − 1 with r ≥ nm:

G(Ωn) = CXa
G(n) +D, (2.117)

ΩnG(Ωn) = CAXa
G(n) +CB + ΩnD, (2.118)

. . .

Ωr−1
n G(Ωn) = CAr−1Xa

G(n) +CAr−2B + . . .+ Ωr−2
n CB + Ωr−1

n D. (2.119)

Define
Wr(n) =

(
1 Ωn · · · Ωr−1

n

)T
, (2.120)

and then apply Equations (2.62), (2.63) and (2.120) to the r equations from Equation
(2.117) to Equation (2.119), and do this for every element in the sequence (G(Ωn))M−1

n=0
(n ∈ T, and here the set T contains all the natural numbers in the range [0,M − 1]),
afterwards the following relation can be obtained:

GM = OrXM + SrIM , (2.121)

where Or is defined in Equation (2.62), the matrices GM , XM , and WM are respectively
defined as

GM =
(
Wr(1)⊗G(w1) Wr(2)⊗G(w2) · · · Wr(M)⊗G(wM)

)
, (2.122)

XM =
(
Xa

G(1) Xa
G(2) · · · Xa

G(M)
)
, (2.123)

and
WM =

(
Wr(1)⊗ Im Wr(2)⊗ Im · · · Wr(M)⊗ Im

)
. (2.124)

The complex data equation in now converted into a real equation

Gre
M = OrX

re
M + SrW re

M . (2.125)

Remark 2.12. As seen in Equation (2.125), there is no noise-related term, thus it is not
necessary to make the value of M be infinite in order to realize some asymptotic properties
as discussed in [50], which is different with the frequency-domain system identification
method introduced in [58]. �

In Equation (2.125), Gre
M =

(
Re (GM) Im (GM)

)
, Xre

M =
(
Re (XM) Im (XM)

)
, and

W re
N =

(
Re (WM) Im (WM)

)
, and Re (·) and Im (·) respectively represent the real part

value and the imaginary part value of a complex data [61].
Equation (2.125) is similar to Equation (2.69), i.e., the orthogonal projection technique

can be used to eliminate the effect from the term SrW
re
N , then the value of Or can be

calculated in Equation (2.125). Here the RQ factorization technique as introduced in
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Remark 2.6 is implemented to calculate the matrix Or.
Two steps, which are used for describing the calculation of the matrix Or, are illus-

trated as follows:

• Step A: RQ factorization
Perform the RQ factorization method:

(
W re

M

Gre
M

)
=
(
R11 0 0
R21 R22 0

)
Q1

Q2

Q3

 , (2.126)

then
Gre
M = R21Q1 +R22Q2, (2.127)

furthermore, according to the definition of the orthogonal projection matrix (see
Equation (2.71)) and the orthogonality of the matrix

(
QT

1 QT
2 QT

3

)T
[22], the

orthogonal projection matrix Π⊥
W re
M

of the matrix W re
M (which is equal to R11Q1)

can be obtained:

Π⊥
W re
M

= I − (W re
M)T

(
W re

M(W re
M)T

)−1
W re

M

= I −QT
1R

T
11

(
R11Q1Q

T
1R11

)−1
R11Q1

= I −QT
1Q1

= QT
2Q2 +QT

3Q3, (2.128)

and therefore

Gre
MΠ⊥

W re
M

= OrX
re
MΠ⊥

W re
M

= R21Q1Q
T
2Q2 +R22Q2Q

T
2Q2 +R21Q1Q

T
3Q3 +R22Q2Q

T
3Q3

= R22Q2

, RQ. (2.129)

If the estimated FRF points
(
Ĝ(Ωn)

)M−1

n=0
are substituted into the above equations,

the estimate R̂Q can be obained.

• Step B: Calculation of Or

Similar to Equation (2.80), perform SVD of the matrix R̂Q in Equation (2.129), i.e.,

R̂Q = UfSfV
T

f , (2.130)

where as illustrated in Remark 2.7 the matrix Sf can also be used to determine the
model order, i.e., the number of the most significant values of the singular values in
the matrix Sf can approximately be seen as the model order nm.
Here it should be noted that because range (R22) = range

(
R̂Q

)
[47], in Equation

(2.130) the matrix R̂Q can be replaced with the matrix R̂22.
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Then by observing Equation (2.130), set

Ôr = Uf(1 : r, 1 : nm)Tf , (2.131)

where Ôr denotes the estimate of Or, and Tf represents a similarity transformation,
and the reason why it is included in Equation (2.131) can be referred to the involved
matrix T in Equation (2.86).
If Tf is set to I, it can be obtained that

Ôr = Uf(1 : r, 1 : nm), (2.132)

then the matrices A and C of the model G (i.e., the model (2.110)) can be derived
using Equations (2.78) and (2.79). If necessary, the stability of A can be guaranteed
using the methods (e.g., reflection) mentioned in the introduction of time-domain
system identification.
With the estimated matrices Â and Ĉ, the estimation of the matrices B and D of
the model G can be derived by minimizing the following cost function:

JM(θs) = 1
M

M−1∑
n=0

εH
f (Ωn, Â,B, Ĉ,D)εf(Ωn, Â,B, Ĉ,D), (2.133)

where the symbol “ H ” denotes the complex-valued matrix transposition, and

εf(Ωn, Â,B, Ĉ,D) = vec
(
G(Ωn, Â,B, Ĉ,D)− Ĝ(Ωn)

)
, (2.134)

where the symbol vec (·) denotes a column vector formed by stacking the columns
of a matrix on top of each other, and

G(Ωn,A,B,C,D) = C (ΩnInm −A)−1B +D. (2.135)

The minimization problem of the cost function corresponding to the matricesB and
D is a linear regression problem. With the above steps, the values of the matrices
A, B, C, and D of the model G can be calculated, i.e., the identified model Ĝ in
state-space form of G can be obtained.

With the above two steps (i.e., Step I: LPM and Step II: Frequency-domain subspace
identification), the introduction for frequency-domain system identification is thus fin-
ished. Additionally, JM(θs) can be minimized with respect to all the matrices A, B, C,
and D, and the specific method for dealing with complex data can be referred to [58].
Additionally, the nonlinear problem (2.133) can be solved using the Levenberg-Marquardt
(LM) algorithm [58]. Thus if necessary, the LM algorithm can then be implemented for
refining with the initialization of the frequency-domain subspace identification introduced
above.

According to the above introduction of the frequency-domain system identification, it
can be found that there are several tunable parameters which are η (see Equation (2.98)),
q (see Equation (2.103)) and r (see Or). A summary of the frequency-domain system
identification for the model G based on using the IO data (u(k))N−1

k=0 and (y(k))N−1
k=0 is
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made, and the summary is illustrated in Algorithm 2.2.

Algorithm 2.2: Frequency-domain system identification for the model G.
1 Use LPM in Section 2.6.2 to estimate the FRF points

(
Ĝ(Ωn)

)
n∈T

.
2 Calculate the extended observability matrix Or using Equation (2.131).
3 Compute estimates of A and C using Equation (2.78) and Equation (2.79),

respectively.
4 Estimate B and D by solving the optimization problem (2.133).

Remark 2.13. In Algorithm 2.2, there is also an additional option of enforcing stabil-
ity by using reflection as mentioned in Algorithm 2.1. Additionally, if necessary, LM
algorithm can be used for refining the identified model from Algorithm 2.2. �

2.7 Nonlinear System Identification in Time
Domain

Wiener and Hammerstein models the most known and the most widely implemented
members of the class of block-oriented nonlinear models which can include complex models
[62]. Because Wiener models have the ability to approximate almost any nonlinear systems
[63]. In this thesis, only discrete-time Wiener model identification is used, and in this
section the Wiener model identification is introduced. The Wiener model structure with
output error is illustrated in Figure 2.1.

+Output 
Nonlinearity

Linear Block

Figure 2.1: Wiener model with additive error.

As displayed in Figure 2.1, the nonlinear model contains both nonlinear part and
linear part. The linear block may be parametric or nonparametric while the nonlinear
elements may be memory or memoryless. The discrete-time nonlinear model considered
in this section is in the form ofuo(k) = fL(k) ∗ u(k),

y(k) = fN(uo(k)) + e(k),
(2.136)

where the symbol “ ∗ ” denotes the convolution, fL(k) represents the impulse response
function of the linear block denoted as FL, and fN(·) denotes the output nonlinearity. As
aforementioned, u(k) ∈ Rm denotes the input signal, and y(k) ∈ Rp denotes the output
signal. The term e(k) denotes the output error.

Several assumptions on the nonlinear model (2.136) are made as follows:
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(i) {e(k)} denotes a white noise process, and E
[
e(k)eT(j)

]
= Rδkj.

(ii) The input signal u(k) is uncorrelated with e(k).

(iii) Perform one-sided z-transform on fL(k), i.e., fL(k) z←→ FL(z−1), where

FL(z−1) = CL (zI −AL)−1BL +DL (2.137)

represents the discrete-time transfer function of the linear block, and the transfer
function FL(z−1) is rational, asymptotically stable, and causal. The element in the
ith row and jth column in the p×m matrix FL(z−1) is denoted as

F ij
L (z−1) = Bij(z−1)

Aij(z−1) =
bij1 + bij2 z

−1 + bij3 z
−2 + . . .+ bijnb

z−nb+1

1 + aij1 z
−1 + aij2 z

−2 + . . .+ aijnaz−na
. (2.138)

Based on FL(z−1), the following relation can be obtained:

uo(k) = FL(q−1)u(k), (2.139)

where FL(q−1) denotes the transfer operator of FL.

(iv) The element in the ith row of the nonlinear function fN(·) is a single-variable poly-
nomial function, i.e., f iN(x) = ci1x

n + ci2x
n−1 + . . . + cinx + cin+1, where x denotes

the argument of the function f iN(·), and cij, j = 1, 2, . . . , n + 1, and n denote the
coefficients and degree of the polynomial function, respectively.

Based on Equations (2.136) and (2.139), the simulated output can be obtained given
the input u(k):

ŷ(k,θp) = fN
(
FL(q−1,θp)u(k),θp

)
+ yt(k,θp), (2.140)

where the parameter vector θp contains all the unknown parameters cij, i = 1, 2, . . . , p,
j = 1, 2, . . . , n+ 1, bij1 , bij2 , bij3 , . . . , bijnb

, i = 1, 2, . . . , p, j = 1, 2, . . . ,m, and aij1 , a
ij
2 , . . . , a

ij
na ,

i = 1, 2, . . . , p, j = 1, 2, . . . ,m in the model (2.136), and yt(k,θp) denotes represents a
transient term caused by the dynamics of the model FL.

As seen in Equation (2.140), the transient term yt(k,θp) is included, however, in the
process of nonlinear system identification it is neglected, i.e.,

ŷ(k,θp) = fN
(
FL(q−1,θp)u(k),θp

)
. (2.141)

Given the IO data (u(k))N−1
k=0 and (y(k))N−1

k=0 , the identification of the linear model FL

and the nonlinear function fN(·) can be summarized in Algorithm 2.3.

Remark 2.14. The optimization problem (2.142) should also be reformulated as a dif-
ference equation for implementation, and iterative optimization methods such as Gauss-
Newton algorithm can be used for solving the optimization problem [64, 65]. The identi-
fication algorithm can be realized by the Matlab function nlhw.m in [49]. �
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Algorithm 2.3: Nonlinear model identification algorithm.
1 Specify the number of poles and zeros of the linear model FL.
2 Specify the number of the coefficients of the nonlinear function fN(·).
3 Minimize the quadratic error criterion

JN(θp) = 1
N

N−1∑
k=0
‖ y(k)− ŷ(k,θp) ‖2

2 (2.142)

to estimate the parameter vector θp.

2.8 Summary
In this chapter, the techniques of the linear observer, linear Kalman filter, nonlinear
Kalman filtering, the recursive model-based order tracking problem, and system iden-
tification are briefly introduced. To see more details about the observer, refer to [66],
while more aspects of the linear Kalman filter such as the initialization (i.e., choice of
initial values of P0 and x0, and their forgetting effects on the Kalman filter under certain
conditions), stability, statistical properties, Kalman filter derivations, and practical con-
siderations when using the Kalman filter can be referred to [24, 26, 26, 28, 31, 67–69]. For
more details about nonlinear Kalman filters (e.g., the stability and optimality of nonlinear
Kalman filtering), refer to [24, 26, 26, 28, 31, 67, 68], and it should be pointed out that non-
linear Kalman filtering is a complex problem, and it still needs more investigations. In the
order tracking problem, under different cases such as the case of time-variant amplitude
Ai(k), several suggestions on how to implement the observer or Kalman filtering are given.
Several kinds of system identification techniques are depicted. Some other aspects such
as asymptotic analysis (i.e., asymptotic distribution of parameter estimates) under some
assumptions (e.g., some assumptions on noise statistics), iterative optimization methods
in identification (e.g., Gauss-Newton algorithm) are not depicted in detail. Additionally,
some open problems in system identification are also not mentioned. These aspects and
more details about system identification can be found in [37, 70] (time-series model iden-
tification), [22, 36–40, 71] (state-space model identification and subspace identification in
time domain), [50] (subspace identification in frequency domain), [72, 73] (recursive sys-
tem identification), [37, 70, 74] (non-parametric model identification, such as correlation
analysis and spectral analysis), and [75] (errors-in-variables system identification). While
for nonlinear system identification, refer to [37, 62, 63, 73, 76].
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Chapter 3

Test Bench and Signal Processing

3.1 Introduction
This chapter introduces a diesel test bench and illustrates how the collected signals from
the test bench are processed. After signal processing, the collected signals can then be
used for system identification and validating the proposed cylinder pressure reconstruction
methods. Below, in Section 3.2, a full description on the engine test bench is given
including some key parameters of the engine. Signal processing of the collected data is
depicted in Section 3.3. Finally, a summary is made in Section 3.4.

3.2 Test Bench and Data Acquisition

Figure 3.1 shows an image of the test bench1, which consists of the control and measure-
ment systems and the four-stroke diesel engine. Three necessary parameters for validating
the proposed methods can be acquired from the test bench. Specifically, over different
operating ranges, the piezoelectric transducer (integrated in the glow plug), the accelerom-
eter, and the flywheel angular velocity sensor can be respectively used for synchronously
measuring the cylinder pressure signal, the vibration signal of the engine block, and the
engine crank angular speed signal. The accelerometer was mounted on the engine surface.
The sampling frequency of the measurement system was chosen as 100 kHz. In this paper,
the raw instantaneous engine speed, the engine vibration, and the cylinder pressure signal
are called the measured signals. The main characteristics of the engine are displayed in
the following Table 3.1.

Table 3.1: Engine main characteristics.

Parameter Value

Combustion Compression ignited
Stroke (S) 95.5 mm
Bore (D) 81 mm
Length of the connecting rod 144.11 mm
Crank radius (S/2) 47.75 mm
Number of cylinders 4

1The engine test bench was developed by Clausthal University of Technology.
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1 2

Figure 3.1: Test bench instrumentation (1: control and measurement systems; 2: Volk-
swagen 2.0 TDI diesel engine with four cylinders).

It is necessary to mention that the acceleration sensor was exactly mounted on the
outer wall of the IC engine of the test bench.

3.3 Signal Processing
The collected signals from the test bench need to be processed for the purposes of system
identification and the implementation of the proposed methods. Prior to introducing
the signal processing for measurements, without confusion, the definition of the operating
condition should be clarified. Engine operating condition means that the engine is running
under a group of parameter settings, such as the instantaneous engine speed and load
settings. Operating condition can be categorized into stationary operating condition
and non-stationary operating condition. In this thesis, for ease of description, only the
instantaneous engine speed (in rpm) and load (in Nm) are used to specify a stationary
operating condition without including other parameters.

The collected measurements from the test bench over various operating conditions
were used for identifying both linear models and nonlinear models (between four cylinder
pressure signals and one engine vibration signal) and validating the proposed methods.
To be more specific, for time-domain system identification, two datasets, A and B were
respectively given for model validation and model identification. Both dataset A and
dataset B contain the collected cylinder pressure, engine vibration, and instantaneous en-
gine speed signal which are synchronized. The operating condition ranges of the datasets
A and B are described in Table 3.2.
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Table 3.2: Datasets for identification and vali-
dation.

Dataset Content

Dataset A Z1 · · ·Z2 · · ·Z3

Dataset B Z4 · · ·Z5 · · ·Z6 · · ·Z7 · · ·Z8 · · ·Z9

Specifically, in Table 3.2, the numbers Z1, Z2, and Z3 represent the stationary operat-
ing conditions 1200 rpm, 60 Nm, 1200 rpm, 120 Nm, and 1200 rpm, 180 Nm, respectively.
While Z4, Z5, and Z6 represent the stationary operating conditions 2100 rpm, 60 Nm,
2100 rpm, 120 Nm, and 2100 rpm, 180 Nm, respectively. The numbers Z7, Z8, and Z9

represent the stationary operating conditions 3000 rpm, 60 Nm, 3000 rpm, 120 Nm, and
3000 rpm, 180 Nm, respectively. The symbol “ · · · ” denotes the transient process be-
tween two stationary operating conditions. Between the operating condition Z3 and the
operating condition Z4, there is either a transient process, which is not illustrated in the
table.

While for frequency-domain system identification, three stationary operating condi-
tions Z2, Z5, and Z7 are used for model identification, and Zt (which is a part of the
transient process between the stationary operating condition Z3 and the stationary oper-
ating condition Z4, i.e., Z3 and Z4 are not included) is used for model validation.

The datasets displayed in Table 3.2 are also used for validating the effectiveness of the
proposed cylinder pressure reconstruction methods. Specifically, nine stationary operating
conditions Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, and Z9, and three non-stationary operating
conditions Zt, Z̃t (which is a part of the transient process between the stationary operating
condition Z6 and the stationary operating condition Z7, i.e., Z6 and Z7 are not included),
and Z̆t (which is from Z6 to Z7, i.e., Z6 and Z7 are included) are used for validating the
reconstruction methods.

In the following of this section, signal processing for the measurements (cylinder pres-
sure signal, vibration signal, and instantaneous engine speed signal) is executed which
includes a downsampling process (i.e., first choose an anti-aliasing filter, and then de-
crease the sampling frequency of the measurements) in Section 3.3.1, a cylinder pressure
calibration process in Section 3.3.2, and an instantaneous engine speed calculation pro-
cess in Section 3.3.3. The instantaneous engine speed calculation is necessary for the
proposed cylinder pressure reconstruction methods in Chapter 5 and Chapter 7, therefore
the accuracy of the calculation of the instantaneous engine speed should be guaranteed.

3.3.1 Low-Pass Filters and Downsampling
The aim of downsampling is to decrease the sampling frequency in the cylinder pressure
reconstruction process. In the downsampling process, an anti-aliasing filter is necessary,
and because the high frequencies of the cylinder pressure are not of interest, a low-pass
filter is chosen as the anti-aliasing filter. An introduction of low-pass filters is first given
before downsampling. According to the length of the impulse response of a filter, impulse
response (IIR) filters and finite impulse response (FIR) filters are illustrated below.
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3.3.1.1 IIR filters

A SISO discrete-time IIR system can be described by

N∑
k=0

aky(n− k) =
M∑
r=0

bru(n− r), (3.1)

where u(k) ∈ R and y(k) ∈ R denote the input and output of the system (3.1). ak ∈ R,
k = 0, 1, . . . , N and br ∈ R, r = 0, 1, . . . ,M are constant coefficients.

By suitably choosing the values of ak, k = 0, 1, . . . , N and br, r = 0, 1, . . . ,M , four
kinds of discrete-time IIR filters, which are IIR low-pass filters, IIR high-pass filters, IIR
band-pass filters, and IIR band-stop filters, can be obtained. Other three kinds of IIR
filters can be derived based on low-pass filters, and an IIR low-pass filter can be derived
based on the bilinear transformation of prototype analog filters such as Butterworth,
Chebyshev, and elliptic function filters [77].

3.3.1.2 FIR filters

Modify Equation (3.1) by normalizing the coefficient of y(n) to be unity (i.e., a0 = 1),
and the rearranged SISO discrete-time IIR system is of the form

y(n) +
N∑
k=1

aky(n− k) =
M∑
r=0

bru(n− r). (3.2)

If all ak coefficients are set to zero, then Equation (3.2) reduces to

y(n) =
M∑
r=0

bru(n− r). (3.3)

Thus Equation (3.3) can be used to describe an FIR system, i.e., the impulse response
of FIR system can be represented as

h(n) =
M∑
r=0

brδ(n− r), (3.4)

where δ(n) denotes the unit impulse [52], i.e.,

δ(n) =

0, if n 6= 0,
1, if n = 0.

(3.5)

There are mainly three methods for the design of FIR filters [51]: a) impulse response
truncation (windowing method), b) frequency sampling, and c) optimal method.

Compared with FIR filters, the major advantages of IIR filters is that for the same
frequency characteristics, they require fewer coefficients than FIR filters. This leads to
fewer operations, thus being able to achieve higher throughput. Meanwhile, IIR filters
require the smallest storage requirement, since they need a least number of coefficients
for achieving specified characteristics. In addition, the filtering of the collected data from
the engine test bench does not need to result in a linear-phase characteristic, therefore
finally an IIR low-pass filter (a Butterworth filter) was used for processing the collected
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data.

3.3.1.3 Downsampling

a

b

c

d

100 kHz

20 kHz

A

B

Final Processed Signals

Cylinder 
Pressure

Flywheel 
Speed

Vibration

Figure 3.2: Collection and downsampling (a: low-pass filter; b: sampling; c: 7-th order
Butterworth low-pass filter with cutoff frequency 1 kHz; d: sampling; A: data collection
in the hardware (ETAS unit); B: downsampling).

All the data were collected from ETAS (a measurement device) illustrated in the part
I of Figure 3.2, and the sampling frequency was 100 kHz. This preliminary sampling
frequency is enough, i.e., the effective maximum frequency of the cylinder pressure signal
can be kept without spectrum aliasing [52]. The downsampling process, which consists of
a low-pass filter and a resampling process, is depicted in the part II of Figure 3.2. With the
downsampling process shown in the part II of Figure 3.2, the sampling frequency for all
the measurements were changed into 20 kHz. The sampling frequency after downsampling
shown in Figure 3.2 is denoted as fs which is equal to 20 kHz.

As aforementioned, the low-pass filtering is necessary before the downsampling process
(from 100 kHz to 20 kHz), several 7th-order SISO Butterworth low-pass filters with differ-
ent cutoff frequencies were used to determine a suitable cutoff frequency for the cylinder
pressure signal under the stationary operating condition 3000 rpm, 120 Nm. Obviously, as
shown in Figure 3.32, The frequency 1 kHz can be specified as the cutoff frequency. After
the cutoff frequency checking procedure like above for several other stationary operating
conditions, the cutoff frequencies of both cylinder pressure signal and engine vibration

2The unit of the horizontal axis is degree which is transformed from the unit seconds.
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signal were finally chosen as 1 kHz. While the low-pass filter is not used for the instanta-
neous engine speed signal collected from ETAS, and the reason is that for the calculation
of the instantaneous engine speed signal as illustrated in Section 3.3.3, just the pulse
number is counted.
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Figure 3.3: Butterworth low-pass filter for the cylinder No. 1 pressure signal under the
stationary operating condition 3000 rpm, 120 Nm. (f1, f2, . . . , f6 denote six different
cutoff frequencies.)

3.3.2 Cylinder Pressure Calibration
The second part of signal processing is to calibrate the cylinder pressure signal after
downsampling. The reason why the calibration is necessary is that rapid temperature
changes in both piezoelectric transducer housing and the quartz sensing element could
change the direct current (DC) voltage of the transducer output. Based on the engine
parameters given in Table 3.1, the least-squares method studied in [78] was used for the
cylinder pressure calibration. One point should be noted that the pressure samples under
one stationary operating condition used for the calibration method must be collected
between intake valve closing and the start of injection [78]. After calibration, the sensor
DC offset can be improved while the original sensor gain was still used. As an example,
the calibration result for the stationary operating condition 3000 rpm, 120 Nm is displayed
in Figure 3.4.

3.3.3 Engine Speed Calculation
The final part in signal processing is about the instantaneous engine speed calculation.
Because the collected flywheel angular speed signal is a square pulse signal, the pulse signal
should be transformed into the instantaneous angular speed (IAS) in rad/s. Accurately
speaking, IAS denotes the instantaneous engine crank angular speed.
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Figure 3.4: Cylinder pressure calibration.

The principle the calculation for the IAS ω̃ of the engine, which is shown in Figure
3.5. Specifically, use ith ∆θp (i.e., ∆θp

i ) as an example, by using the flywheel angular
position signal from the Hall-effect sensor, then the IAS signal ω̃(θp

i ) can approximately
be computed as

ω̃(θp
i ) ≈ ∆θp

i

τ̃(θp
i ) , (3.6)

where θp
i denotes the angle obtained by the flywheel angular position sensor, ∆θp

i denotes
the angle between two consecutive falling edges, and ∆θp

i is 6◦ (and 12◦ for the reference
marker), and τ̃(θp

i ) denotes the value to approximate the elapsed time τ(θp
i ) between two

consecutive falling edges. Additionally, it can be referred to [79] for more details about
several factors affecting the precision of the calculation of IAS.

The relationship used in this paper between ω̃(k) and ω̃(θp
i ) is

ω̃(k) = ω̃(θp
i ) for k = θp

i−1
TA

s
, . . . ,

θp
i

TA
s
, (3.7)

where θp
i an integer multiple of TA

s .
In this thesis, the instantaneous engine cycle frequency f(k) in Hz (here one engine

cycle consists of four engine strokes, i.e., 720◦ per cycle), which is half of the instantaneous
engine angular speed frequency, is needed. In order to simulate the real-time situations,
the frequency f(k) can approximately be calculated as

f(k) ≈ ω̃d(k)
4π , (3.8)

where ω̃d(k) denotes the delayed version of the IAS ω̃(k). The sampling frequency for
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Figure 3.5: IAS calculation (t: time; θ: crank angle; i: integral number; The wider pulse
of the sensor signal: the reference marker of the engine flywheel; The sampling period
TA

s : 100 kHz).

both f(k) and ω̃d(k) is 20 kHz.
The speed ω̃d(k) can be calculated as

ω̃d(k) = ω̃(θp
i ) for k = ts(k), . . . , te(k), (3.9)

where ts(k) = find(t(k) ≥ t(θp
i−1), 1)+1, and te(k) = find(t(k) ≥ t(θp

i ), 1). “ find ” denotes
the function in Matlab. The sampling frequency for t(k) is 20 kHz.

It should be noted that in the calculation process of IAS, there are two sampling
frequencies, i.e., 100 kHz (corresponding to the sampling period TA

s ) and 20 kHz (i.e.,
fs), the frequency 100 kHz is used for increasing the precision of the calculation of the
instantaneous engine speed, and the lower frequency 20 kHz is used for the purpose of
implementability.

Remark 3.1. In Section 3.3.1, the low-pass filtering process can be regarded as prefilter-
ing process in system identification [37] which will be discussed in Chapter 4. �

3.4 Summary
In this chapter, signal processing for the collected data from the engine test bench is
conducted. In the downsampling process, a 7th-order Butterworth low-pass filter with the
cutoff frequency 1 kHz was used as the anti-filter. Afterwards, a process for calibrating the
cylinder pressure signal is described, and the difference between the calibrated cylinder
pressure signal and the cylinder pressure signal without calibration is obviously shown in
Figure 3.4. The instantaneous engine cycle frequency f(k) in Hz is also calculated, and in
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this thesis, the method of calculating the frequency f(k) is used in several cylinder pressure
reconstruction methods where the instantaneous engine speed is needed. All the processed
data discussed in Section 3.3 is ready for the purposes of system identification (in both
time domain and frequency domain) and validating the cylinder pressure reconstruction
in the sequent chapters.
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Chapter 4

Identification of the Model Between
Cylinder Pressure and Engine
Structural Vibration

4.1 Introduction
In this chapter, the objective is to identify an open-loop black-box model between four
inputs (cylinder pressure signal) and one output (engine structural vibration signal) based
on using the system identification methods introduced in Chapter 2. Because of the com-
plex relationship between the cylinder pressure and the vibration, besides linear mod-
els, nonlinear models are identified either in this chapter. All the identified models are
discrete-time models. Below, the system-identification cycle in practice is first introduced
in Section 4.1. In Section 4.3, both time-domain identified model and frequency-domain
identified model are derived. Then in Section 4.4, a nonlinear relationship between four
cylinder pressure signals and one vibration signal is built. In the end of this chapter, a
summary is given.

4.2 The System-Identification Cycle
In this section, a summary for the use of the identification methods introduced in Chapter
2 is made. Specifically, Figure 4.1 is first used to illustrate the system-identification cycle
and then some related descriptions are made for Figure 4.1.

As shown in Figure 4.1, there are several key elements in the system-identification
cycle:

• Experiment
The identification of the model between four cylinder pressure signals and one vi-
bration signal needs the collected cylinder pressure signal and vibration signal from
the test bench. In order to make sure that the identified model can be used in
practice, when do experiments the IO data should be collected for identification in
typical engine operating ranges. Additionally, to be able to estimate a model (linear
or nonlinear) from the IO data, the data should contain enough information, i.e.,
the condition of persistent excitation should be satisfied [22, 37]. As an example
of the persistent excitation in time-domain subspace identification, at least the col-
lected input sequence should satisfy the persistent excitation condition such that
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Figure 4.1: A schematic view of the key elements in the system-identification cycle.
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the matrix UUT is nonsingular in Equation (2.71), but it should be noted that this
persistency of excitation of the input signal may be not sufficient. The reader can
refer to see more about persistent excitation in subspace identification in the book
[22]. Moreover, it is deserved to say that different identification methods may need
different persistent excitation conditions.

• Data preprocessing
In Chapter 3, signal processing for the collected IO data is illustrated in Figure
3.2, and both downsampling and low-pass filtering are involved. For linear system
identification, the functions and effects of the prefiltering is also illustrated in Re-
mark 4.1, while for nonlinear system identification, the functions and effects of the
prefiltering are more complex, and they are not considered in this thesis.

• Model identification
In Section 2.5 and Section 2.6, time-domain system identification (Algorithm 2.1)
and frequency-domain system identification (Algorithm 2.2) are introduced. In Sec-
tion 2.7, nonlinear system identification is described (Algorithm 2.3). For all the
identification methods introduced in the above, the parameters related to the noise
are regarded as tunable parameters in the cylinder pressure reconstruction methods
in the thesis, and the tuning is specifically illustrated in the proposed reconstruction
methods.

• Model validation
As shown in Table 3.2, two datasets are used for identifying the model between
four cylinder pressure signals and one vibration signal. One dataset is used for
identification and self model validation, and the other dataset is used for cross
model validation. Both self model validation and cross model validation use the
following fitness criterion to measure the quality of identified models:

fitness = 100
(

1− ‖ Y (k)− Ŷ (k) ‖2
‖ Y (k)− average (Y (k))ĨN ‖2

)
, (4.1)

where Y (k) =
(
yT(0) yT(1) · · · yT(N − 1)

)T
, and Ŷ (k) represents vector of

which the elements are the simulated output of the identified model, and average (·)
represent the average value of all the elements in a vector, ĨN denotes the unit
vector with N rows, and the fraction denotes the normalized root-mean-square error
(NRMSE).

In Figure 4.1, several feedback loops which can be used to improve the identified
results can be found. For example, when the identified model is not acceptable, one
possible reason is that the model identification method is not chosen suitably, so in this
case, the model identification method should be improved or changed.

4.3 Results of Linear System Identification
Based on the system-identification cycle illustrated in Section 4.2, the identification of
the model between the cylinder pressure and the vibration is conducted in this section,
and the corresponding results are obtained either.
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Suppose there exists a relationship between four cylinder pressure signals and one
vibration signal, and it can be represented as

y(k) = G(q−1,θp)u(k) +H(q−1,θp)e(k), (4.2)

where u(k) =
(
P1(k) P3(k) P4(k) P2(k)

)T
∈ R4, Pi(k) denotes the cylinder No. i

pressure signal after signal processing in Chapter 3. y(k) ∈ R denotes the engine vibra-
tion signal after signal processing. {e(k)} denotes a scalar white noise process, of which
the covariance function is σ2δkj, i.e., E

[
e(k)eT(j)

]
= σ2δkj, and the value of σ2 is pos-

itive, constant and unknown. The parameter vector θp ∈ Ωp is formed by stacking all
the scalar parameters to be identified in G(q−1,θp) and H(q−1,θp), and Ωp denotes the
specified parameter set which constraints the parameter vector [22], e.g., a stability con-
straint. G(q−1,θp) and H(q−1,θp) denote the transfer functions (or operators) of two LTI
models (one deterministic sub-model G and one stochastic sub-model H, respectively).
G(q−1,θp) and H−1(q−1,θp) are rational, asymptotically stable, and causal. The product
H(q−1,θp)e(k) represent a result induced by the disturbance and measurement noise. The
input vector signal u(k) is assumed to be noiseless.

Remark 4.1. As mentioned in Remark 3.1 in Chapter 3, the input-output (IO) data and
the noise term in the system (4.2) are prefiltered by using the same Butterworth low-pass
filter with 7th order (which is denoted as Lf(q−1) here), and prefiltering does not change
the IO relation for the linear system (4.2), which can be illustrated as follows:

Lf(q−1)yo(k) = G(q−1,θp)Lf(q−1)uo(k) + Lf(q−1)H(q−1,θp)eo(k), (4.3)

where yo(k) and uo(k) denote the original signals with the sampling frequency 100 kHz col-
lected from ETAS. {eo(k)} represents the assumed white noise process in the original sys-
tem without low-pass filtering. The output Lf(q−1)yo(k) = y(k), the inputLf(q−1)uo(k) =
u(k), and the noise part Lf(q−1)H(q−1,θp)eo(k) = H(q−1,θp)e(k). Lf(q−1) is defined as
Lf(q−1)I4.

The prefilter Lf(q−1), which is a low-pass filter, can affect the bias distribution of the
resulting model and can also be to remove disturbances of high frequencies not of interest
in the modeling [22, 37]. As a conclusion, the prefilter Lf(q−1) is good for the modeling
of the system (4.2) where low frequencies (smaller than 1 kHz) are of interest. �

Without considering the stochastic sub-model, in this section linear system identifi-
cation techniques introduced in Chapter 2 are implemented to identify the deterministic
sub-model of the model (4.2), and the objective of system identification is to parameterize
the transfer functionsG(q−1,θp), which can be denoted by the mappingM1 : Ωp 7→ R1×4

nm ,
where R1×4

nm denotes the set of all 1× 4 (four-input one-output) asymptotically stable and
causal rational transfer functions with nmth order. According to the properties of the map-
ping such as surjective, injective, and bijective, it can be determined whether a unique
model can be identified or not. However, in practice, often the main objective is to find a
model that describes IO data, and uniqueness is not needed [22]. The above problem of
uniqueness refers to the concept identifiability which is introduced in [37, 40, 70].
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4.3.1 Results of System Identification in Time Domain
Based on two datasets (dataset A and dataset B) introduced in Chapter 3, Algorithm
2.1 was used for the identification of the model G. In the implementation process of
Algorithm 2.1, the stability of the identified models was forced by reflecting unstable poles
into the unit disk [43], and the feedthrough term D in the model G was not involved, and
the prediction horizons were determined by using the Akaike information criterion (AIC)
[46]. The identification results are shown in Table 4.1. The different models correspond to
subspace estimates with CVA and MOESP weightings, with prediction focus or simulation
focus (CVA(s) and MOESP(s) for simulation focus). The measure (4.1) is used in the
table.

Table 4.1: Identification results of the model G using Algorithm 2.1.

Model order CVA MOESP CVA(s) MOESP(s)

4 49.10 (33.82) 23.58 (12.75) 66.80 (62.92) 53.14 (41.34)
5 59.96 (48.80) 40.17 (37.36) 61.20 (62.71) 56.33 (55.96)
6 61.92 (46.81) 37.17 (18.70) 65.56 (68.15) 59.53 (44.58)
7 61.52 (51.72) 52.01 (52.38) 66.10 (56.18) 72.31 (63.55)
8 69.94 (60.27) 62.39 (47.89) 71.17 (66.09) 70.92 (60.39)
9 67.49 (59.62) 66.72 (60.38) 73.42 (63.25) 73.69 (65.52)
10 69.22 (62.74) 64.43 (25.18) 70.39 (67.02) 71.30 (66.12)

Note: The fitness in bracket denotes the cross-validation fitness while the
fitness without bracket denotes the self-validation fitness.

By observing the identification results in Table 4.1 the model with 9th order and
MOESP(s) was finally chosen as the modelG used for the cylinder pressure reconstruction.
The reasons why the above model was chosen are as follows:

(i) In this thesis, the derivation and formulation of the methods of cylinder pressure
reconstruction are emphasized, while the best model is not necessary.

(ii) In practice the best model among the identified models is difficult to find.

In the sequent sections of this chapter, the model selection criterion will be also based
on the above reasons. Besides, according to the identification results, it can also be found
that in general the identification results with simulation focus are better than the results
with prediction focus.

The Bode plot, pole-zero map, and impulse response of the chosen model are il-
lustrated in Figure 4.2, Figure 4.3, and Figure 4.4, respectively. In these figures, Gi,
i = 1, 2, . . . , 4, denote four sub-models of the model G, i.e., the transfer function G(z) =(
G1(z) G2(z) G3(z) G4(z)

)
.

As seen in Figure 4.2, the Bode magnitude curves of the four sub-models are similar
while the Bode phase curves of the four sub-models are totally different with each other.
Figure 4.3 shows that all the sub-models are stable, and simultaneously shows the poles of
the sub-models have similar coordinates. Figure 4.4 illustrates the decays of the impulse
responses of the sub-models.
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Figure 4.2: Bode plot with phase wrapping.
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Figure 4.3: Pole-zero map.
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Figure 4.4: Impulse response.
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4.3.2 Results of System Identification in Frequency Domain
In the first step of frequency-domain system identification, LPM was used to estimate the
FRF points of the model G at the specified frequencies. As introduced in Chapter 3, the
stationary operating conditions Z2 (1200 rpm, 120 Nm), Z5 (2100 rpm, 120 Nm), and Z8

(3000 rpm, 120 Nm) are used for model identification. But prior to system identification,
the frequencies of interest need to be specified. Figure 4.5, Figure 4.6, and Figure 4.7
(three semilog plots) display the FFT results of the cylinder No. 1 pressure signal and
the vibration signal under the above three stationary operating conditions. These figures
indicate that under stationary operating conditions both cylinder pressure signal and
vibration signal can approximately be seen as a periodic signal. Therefore the frequencies
for identification can be specified by finding the corresponding peaks in the spectrums.
Based on the spectrums, finally 40 consecutive peaks (i.e., the red circles in the figures)
were selected for each stationary operating condition. It should also be noted that the
selected frequencies in the spectrums of the cylinder No. 1 pressure signal are the same as
the ones of the other three pressure signals. The specific peak number selection procedure
is illustrated in Algorithm 4.1.

Algorithm 4.1: Peak number selection procedure.
1 Choose the cutoff frequency fc in Hz for the collected signals from ETAS (see

Section 3.3.1.3 and Figure 3.3).
2 Calculate the selected peak number np as the greatest integer less than or equal

to fc
fb

, where fb denotes the basic frequency of the cylinder pressure under the
engine speed 3000 rpm (i.e., fb = 25 Hz).
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Figure 4.5: FFT magnitudes of the cylinder No. 1 pressure signal (upper figure) and
vibration signal (lower figure) under the stationary operating condition 1200 rpm, 120
Nm.
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Figure 4.6: FFT magnitudes of the cylinder No. 1 pressure signal (upper figure) and
vibration signal (lower figure) under the stationary operating condition 2100 rpm, 120
Nm.

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

10-5

100

F
F

T
 M

a
g

n
it
u

d
e

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

10-5

100

F
F

T
 M

a
g

n
it
u

d
e

Figure 4.7: FFT magnitudes of the cylinder No. 1 pressure signal (upper figure) and
vibration signal (lower figure) under the stationary operating condition 3000 rpm, 120
Nm.
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With the total specified 120 frequencies and corresponding FFT magnitudes derived
from Z1, Z2, and Z3, Algorithm 2.2 was implemented to identify the model G. In the
first step of Algorithm 2.2, η was set to 2 in Equation (2.98), and in Equation (2.103)
q was set to 15. The subspace algorithm was looped over different model orders (nm

was chosen from 4 to 10) and different block rows (r was chosen from nm + 1 to 30) of
the extended observability matrix. The stability of the identified models was forced by
reflecting unstable poles into the unit disk [43]. The LM algorithm was carried out to
optimize the model parameters obtained with the subspace algorithm.

The final identification results of frequency-domain system identification are displayed
in Table 4.2. The measure (4.1) is used in the table. It can be seen that in the table,
except the model with 8th order, other models are identified as well as validated based
on detrended IO data. The reason why the detrended IO data is used is that in the
frequency-domain system identification process, the frequency components corresponding
to the DC offsets of both cylinder pressure and vibration were not used. However, for
the cylinder pressure reconstruction, if the model identified based on the detrended IO
data is used, the input (i.e., the vibration signal) of the cylinder pressure reconstructor
should be first detrended, so it is not convenient to reconstruct the cylinder pressure.
As mentioned above, the model with 8th order was also validated based on the IO data
without detrending, and the corresponding identification results are illustrated in Table
4.2 (the model order with rectangular box). While other models validated by using the
IO data without detrending have bad results which are not illustrated in the table.

Table 4.2: Identification results of the model G using Algorithm 2.2.

Model order Self validation Cross validation

4 13.96(Zd
2 ) 33.22(Zd

5 ) 40.90(Zd
8 ) 25.35(Zd

t )
5 −4.57(Zd

2 ) 23.19(Zd
5 ) 23.47(Zd

8 ) 14.59(Zd
t )

6 −4.22(Zd
2 ) 11.16(Zd

5 ) 16.76(Zd
8 ) 6.17(Zd

t )
7 12.18(Zd

2 ) 30.50(Zd
5 ) 30.30(Zd

8 ) 24.99(Zd
t )

8 53.42(Zd
2 ) 61.46(Zd

5 ) 63.53(Zd
8 ) 57.35(Zd

t )
8 52.96(Z2) 60.78(Z5) 62.21(Z8) 57.05(Zt)
9 17.44(Zd

2 ) 36.13(Zd
5 ) 38.44(Zd

8 ) 32.07(Zd
t )

10 −0.89(Zd
2 ) 11.89(Zd

5 ) 17.84(Zd
8 ) 7.65(Zd

t )

Note: The operating conditions in the bracket are used for model vali-
dation. Zd

2 denotes the operating condition Z2 with detrended cylinder
pressure and vibration signal.

By observing the identification results in Table 4.2, and based on the above discussions,
the model with 8th order was finally chosen as the model G which is used for the cylinder
pressure reconstruction. Additionally, the model with 8th order can be directly used for
cylinder pressure reconstruction without detrending.

The Bode plot, pole-zero map, and impulse response of the chosen model are illustrated
in Figure 4.8, Figure 4.9, and Figure 4.10, respectively. As displayed in Figure 4.8, both
Bode magnitude curves and Bode phase curves of the four sub-models are obviously
different with each other. The stability is shown in Figure 4.9, and the decays of the
impulse responses of the sub-models are also depicted in Figure 4.10.
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Figure 4.8: Bode plot with phase wrapping.
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Figure 4.9: Pole-zero map.
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Figure 4.10: Impulse response.

56



4.4 Results of Nonlinear System Identification
Suppose there exists a nonlinear model between four cylinder pressure signals and one
vibration signal, as displayed in Figure 2.1, the nonlinear model (denoted asGnon) contains
both nonlinear deterministic model and output error. Specifically, the nonlinear model
Gnon considered in this section is denoted asuo(k) = fL(k) ∗ u(k),

y(k) = fN(uo(k)) + enon(k),
(4.4)

where the symbol “ ∗ ” denotes the convolution, fL(k) represents the impulse response
function of the linear block denoted as FL, and fN(·) denotes the output nonlinearity.
The linear block and the output nonlinearity are concatenated to form the nonlinear
deterministic model which is denoted as Gd

non. As aforementioned, u(k) ∈ R4 denotes a
vector consist of four cylinder pressure signals, and y(k) ∈ R denotes the engine vibration
signal. The term enon(k) denotes the output error.

Based on dataset B introduced in Chapter 3, Algorithm 2.3 was used for identifying
the nonlinear model Gd

non. Dataset A was used for model validation. The degree of the
polynomial function fN(·) was set to 2 to capture complexity. The identification results
are illustrated in Table 4.3. The specified poles and zeros number are also involved. The
measure (4.1) is used.

Table 4.3: Identification results of the model Gd
non using Algorithm

2.3.

Poles number Zeros number Self validation Cross validation

4 2 3.42 2.13
5 3 37.52 33.43
6 4 27.64 25.75
7 5 63.70 56.55
8 6 75.53 57.16
9 7 76.70 70.38
10 8 78.10 64.24

Finally, by observing the identification results in Table 4.3 the model with 9th order
was chosen as the model Gd

non used for the cylinder pressure reconstruction.

4.5 Summary
In this chapter, based on the identification algorithms introduced in Chapter 2, three kinds
of models are finally identified, i.e., the time-domain identified model, frequency-domain
identified model, and nonlinear model. All of them will be used in cylinder pressure
reconstruction methods in the sequent chapters. It should be mentioned again that in
this thesis the derivation and illustration of cylinder pressure reconstruction methods are
the main points, so the best identified model is not pursued.
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Chapter 5

Linear Model-Based Cylinder
Pressure Estimation Using Both
Engine Structural Vibration and
Engine Speed Signal

5.1 Introduction
In this chapter, a discrete-time method for the linear model-based cylinder pressure es-
timation using both engine structural vibration and instantaneous engine speed signal is
explored [80, 81]. The specific algorithm is illustrated in Section 5.2, followed by the cylin-
der pressure estimation results shown in Section 5.3 and Section 5.4, more specifically, in
Section 5.3, the cylinder pressure estimation results are based on the time-domain identi-
fied model, while in Section 5.4, the estimation results are based on the frequency-domain
identified model. In Section 5.5, based on a so-called ideal model, the proposed cylinder
pressure estimation method is further validated. Finally, a summary is given.

5.2 Cylinder Pressure Estimation Algorithm
In this section, a method of cylinder pressure estimation by using both engine structural
vibration and instantaneous engine speed signal is proposed. As illustrated in Figure 5.1,
the total framework contains two parts, i.e., part A and part B.

Part A can be seen as an offline design procedure, which contains three components:

(i) Identify the model (4.2) between four (processed) cylinder pressure signals and
one (processed) vibration signal. As aforementioned, the deterministic sub-model
in the model (4.2) is denoted as G, of which the transfer function is G(z) =
C (zInm −A)−1B +D (see Equation (2.110) without showing θp). el(k) denotes
the scalar output error.

(ii) Regard other three cylinder pressure signals as the delay versions of the cylinder
No. 1 pressure signal. The reason why the delay block model G̃a

d can be involved is
that according to the mechanism of the engine the phase difference is 180◦ between
every two consecutive engine strokes and the pressure signal shapes corresponding to
different cylinders are nearly the same in every engine cycle, and the delay in angle
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Figure 5.1: Cylinder pressure estimation using both engine vibration and speed signal (1:
the cylinder No. 1; 2: the engine block of the engine test bench; Gn: the model between
four noiseless cylinder pressure signals and one noiseless vibration signal).
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domain can be transformed to the delay in time domain. As a result, by combing
three delay systems with the model G, a SISO model can be obtained as shown in
part A of Figure 5.1. Furthermore, the reason why a SISO model is required is that
the observability the augmented model described below should be guaranteed.

(iii) Augment the cylinder pressure signal model with the model G and three delay
systems (i.e., state augmentation), then the augmented model Ga can be obtained.
The cylinder pressure signal modeling can be referred to the order modeling as
introduced in Section 2.4.

Part B can be regarded as an implementation procedure. With the augmented model
Ga, a linear Kalman filter for it can be obtained, and then by using the vibration signal
as the input of the Kalman filter, the state estimate of the augmented model can be
sequentially obtained, and based on the estimated state of the augmented model, the
estimated value of the cylinder No. 1 pressure signal can be recursively obtained, and
simultaneously other three cylinder pressure signals can also be obtained recursively based
on the delay block bank which contains three delay blocks.

Below, both part A and part B are described in detail, i.e., the following aspects
such as cylinder pressure signal modeling, delay block, model augmentation, and cylinder
pressure estimation are illustrated.

5.2.1 Cylinder Pressure Signal Modeling
In a four-cylinder engine, each cylinder fires once every one engine cycle (i.e., 720◦ crank
angle). Thus under stationary operating conditions, the cylinder pressure signal of each
cylinder is approximately periodic with a period 4π rad such that in discrete-angle domain
the cylinder pressure signal can be approximately written as a Fourier series [52] with
constant amplitudes a(0) and a(i) and phases α(i), i.e.,

Pm(ϕ(k)) ≈ a(0) +
np∑
i=1

a(i) sin
(1

2iϕ(k) + α(i)
)
, (5.1)

where Pm(ϕ(k)) denotes the cylinder No. m pressure signal, the variable np stands for
the considered harmonic number, and ϕ(k) denotes the engine crank angle in rad, and

ϕ(k) =
k∑
0

2πf(k)Ts, (5.2)

where f(k) denotes the instantaneous engine cycle frequency, the sampling period Ts = 1
fs

,
and the sampling frequency fs is equal to 20 kHz.

According to Equation (5.1) and the order tracking introduced in Section 2.4, the
cylinder pressure signal Pm(ϕ(k)) can be expressed as the output of a state-space model
in time domain, i.e., xPm(k + 1) = APm(f(k))xPm(k),

Pm(k) = CPmxPm(k) + ePm(k),
(5.3)

where the state vector xPm(k) ∈ R2np+1, and ePm(k) denotes the error term which could
be induced by the modeling error when using a state-space model to represent the cylinder
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pressure signal.
The occurrence of the modeling error is also the reason why the approximation symbol

“≈ ” should be involved in Equation (5.1). But in the model (4.2), the input u(k) is
assumed to be noiseless for simplifying system identification.

The matrices APm(f(k)) and CPm are respectively given as

APm(f(k)) =


1 0 · · · 0

0 A1(f(k)) . . . ...
... . . . . . . 0
0 · · · 0 Anp(f(k))

 (5.4)

and
CPm =

(
1 C1 · · · Cnp

)
. (5.5)

The individual block entries in these block matrices follow from the state-space rep-
resentation of a frequency-modulated sine wave as

Ai(f(k)) =
(

cos(2πif(k)Ts) sin(2πif(k)Ts)
− sin(2πif(k)Ts) cos(2πif(k)Ts)

)
(5.6)

and
Ci =

(
1 0

)
. (5.7)

Remark 5.1. The number “ 1 ” in both (5.4) and (5.5) corresponds to the DC offset of
Pm(k). It should also be noted that the form of the state-space model (5.3) is hold if
the amplitude a(i) is constant. While for time-variant amplitude a(i) (i.e., under non-
stationary conditions), a forgetting factor introduced in Section 2.2.4.1 can be involved
in the Kalman filter for the model Ga shown in Figure 5.1. �

5.2.2 Delay Block
For the four-cylinder engine test bench shown in Figure 3.1, as aforementioned, every two
consecutive cylinder pressure signals have nearly the same curve and have a fixed phase
difference 180◦ (π rad), i.e., 

P3(ϕ(k)) ≈ P1(ϕ(k) + π),
P4(ϕ(k)) ≈ P3(ϕ(k) + π),
P2(ϕ(k)) ≈ P4(ϕ(k) + π).

(5.8)

If fs
4f(k) is an integer at each step k, in (5.8) (f(k) 6= 0 when the engine is in working

mode), the phase delay π in discrete-time domain can be equivalently expressed as fs
4f(k) ,

i.e., 

P3(k) ≈ P1

(
k + fs

4f(k)

)
,

P4(k) ≈ P3

(
k + fs

4f(k)

)
,

P2(k) ≈ P4

(
k + fs

4f(k)

)
.

(5.9)
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Figure 5.2: Delay block evolution flow.

However, if the sampling frequency fs is too large, fs
4f(k) , which denotes the discrete

steps corresponding to the conceptual time-varying delay block transfer function z−N(k)

with N(k) = fs
4f(k) , could then be too large for practical implementations. The above

analysis is just a rough evaluation because N(k) may be a non-integer number, but it
can give us a sense how the number discrete steps can change. In order to avoid the
large number of the steps, in the remainder of this section, a strategy is proposed, and
the rough idea behind the strategy is that first equivalently transform the phase delay π
into the delay 1

4f(t) (f(t) 6= 0) in continuous-time domain corresponding to the conceptual
time-varying delay block transfer function Gd(s, f(t)), afterwards discretize Gd(s, f(t))
such that the above large step problem can be avoided and simultaneously a discrete-
time model, which can be directly involved in cylinder pressure reconstruction, can be
obtained.

Below, three parts (from Section 5.2.2.1 to Section 5.2.2.3) are used to illustrate the
specific strategy, and the total process is shown in Figure 5.2.

5.2.2.1 Conceptual time-varying delay block transfer function

As mentioned above, the function Gd(s, f(t)) is called the conceptual time-varying delay
block (TVDB) transfer function, because the transfer function is only defined for LTI
systems. When the frequency f(t) is constant, i.e., f(t) = c with c a constant, the func-
tion Gd(s, f(t)) turns to be a normal transfer function. The conceptual TVDB transfer
function can be expressed as

Gd(s, f(t)) = e−
1
4c s, (5.10)

however, when the frequency f(t) is time-variant, Equation 5.10 will not be hold, which
will be illustrated in the next section, in which an approximation of Gd(s, f(t)) with
time-variant frequency f(t) will be obtained.

5.2.2.2 Delay block transfer function approximation

The time-varying dead time 1
4f(t) can bring some additional terms to the conceptual TVDB

transfer function [82], which can lead to a more complex form of the conceptual TVDB
transfer function. Fortunately, Proposition 5.1 can help us to avoid the effects of the
additional terms as well as get a compact form of the conceptual TVDB transfer function
by using an approximation method.
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Proposition 5.1. The conceptual TVDB transfer function Gd(s, f(t)) can be approxi-
mately denoted as

Gd(s, f(t)) ≈ e−
1

4fa(t) s, (5.11)

where fa(t) denotes the zero-order hold [60] for the discrete-time frequency f(k) with the
sampling period Ts. �

Proof. See Appendix A. �

Remark 5.2. fa(t) can approximate f(t) better if the sampling period Ts is smaller. �

With the conclusion in Proposition 5.1, the Padé approximation technique can be
involved to transform the approximation of Gd(s, f(t)) into a stable and causal rational
transfer function [83] under the time-varying frequency f(t), i.e.,

Gd(s, f(t)) ≈ e−Td(t)s

≈
ω+ν∑
i=0

(−1)i (Td(t)s)i
i!

=
∑ω
i=0 gis

i∑ν
i=0 his

i

= Ga
d(s, Td(t)), (5.12)

where Td(t) denotes the approximated dead time, and Td(t) = 1
4fa(t) . gi and hi are

respectively the coefficients of the numerator and denominator polynomials [83], and they
are respectively given as

gi = (−1)i (ω + ν − i)!ω!
(ω + ν)! i! (ω − i)!(Td(t))i (5.13)

and
hi = (ω + ν − i)! ν!

(ω + ν)! i! (ν − i)!(Td(t))i, (5.14)

where m and n are integers.

Remark 5.3. According to the Padé approximation in [83] the author recommended
the approximation Ga

d(s, Td(t)) where the numerator’s degree is one less than that of the
denominator. Thus here, set ω = ν − 1, i.e., Ga

d(s, Td(t)) is strictly proper. �

A controllable realization [27] of the approximated TVDB transfer functionGa
d(s, Td(t))

in Equation (5.12)) can be represented asẋd(t) = Ad(Td(t))xd(t) +Bdud(t),
yd(t) = Cd(Td(t))xd(t),

(5.15)

where xd(t) ∈ Rv, ud(t) ∈ R, and yd(t) ∈ R denote the state vector, the input, and the
output, respectively.
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The matrices Ad(Td(t)), Bd, and Cd(Td(t)) are respectively expressed as

Ad(Td(t)) =



−hν−1
hν

−hν−2
hν

· · · −h1
hν
−h0
hν

1 0 · · · 0 0
0 1 . . . ... 0
... . . . . . . 0 ...
0 · · · 0 1 0


, (5.16)

Bd =
(

1
0

)
, (5.17)

and
Cd(Td(t)) =

(
gω
hν

gω−1
hν

· · · g1
hν

g0
hν

)
, (5.18)

where hν 6= 0.

5.2.2.3 Delay block discretization

In this section, the discretization process of the approximated conceptual TVDB transfer
function Ga

d(s, Td(t)) (i.e., the model (5.15)) is illustrated. As shown in Figure 5.2, the
discretization of the model (5.15) is conducted after obtaining the function Ga

d(s, Td(t)),
i.e., the process from Ga

d(s, Td(t)) to G̃a
d(z, f(k)). However, without any strategy, directly

discretizing the model (5.15) is non-trivial because of the complex form of the time-
varying matrices Ad(Td(t)) and Cd(Td(t)) of which the argument is the dead time Td(t)
illustrated in the above. Below, a method for handling the non-trivial discretization
problem is derived. The main idea behind the method contains three parts:

(i) Substitute the value Td(t) = 1 into the model (5.15) which is a LTI model.

(ii) Parameterize the matrices Ad(Td(t)) and Cd(Td(t)) based on the LTI model ob-
tained in (i) such that a model depending on Td(t) can be obtained (see Figure
5.3).

(iii) Discretize the model obtained in (ii).

Below, the above three parts are described in more detail one by one.
By substituting Td(t) = 1 into the model (5.15), a LTI state-space model can be

obtained: ẋd(t) = Ad(Td(t))|Td(t)=1 xd(t) +Bdud(t),
yd(t) = Cd(Td(t))|Td(t)=1 xd(t),

(5.19)

where the matrices Ad(Td(t))|Td(t)=1 and Cd(Td(t))|Td(t)=1 are time-invariant.
Based on the model (5.19), the matrices Ad(Td(t)) and Cd(Td(t)) can be parameter-

ized. Proposition 5.2 can explain how to get these parameterized matrices.

Proposition 5.2. Based on the transfer function of the model (5.19), the conceptual
time-varying transfer function of the model (5.15) can be obtained as

Ga
d(s, Td(t)) =

Cd(Td(t))|Td(t)=1

Td(t)

(
sIν −

Ad(Td(t))|Td(t)=1

Td(t)

)−1

Bd. (5.20)
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+

Figure 5.3: Model depending on Td(t).

�

Proof. See Appendix B. �

On the basis of Proposition 5.2 the matrices Ad(Td(t)) and Cd(Td(t)) of the model
(5.15), which are functions of the variable Td(t), can be respectively represented as

Ad(Td(t)) =
Ad(Td(t))|Td(t)=1

Td(t) (5.21)

and
Cd(Td(t)) =

Cd(Td(t))|Td(t)=1

Td(t) . (5.22)

Based on Equations (5.21) and (5.22), the zero-order-hold discretization of the model
(5.15) can be represented asxd(k + 1) = Gd(Td(k))xd(t) +Hd(Td(k))ud(k),

yd(k) = Cd(Td(k))xd(k),
(5.23)

where Td(k) = 1
4fa(k) .

The matrices Gd(Td(k)) and Hd(Td(k)) are respectively given as

Gd(Td(k)) = Φ ((k + 1)Ts, kTs) (5.24)

and
Hd(Td(k)) =

∫ (k+1)Ts

kTs
Φ ((k + 1)Ts, β)Bd dβ, (5.25)

where Φ(·, ·) denotes the state transition matrix of the model (5.23).
However, it is difficult to analytically calculate the values of Gd(Td(k)) and Hd(Td(k))

in Equation (5.24) and Equation (5.25), respectively. Thus the numerical calculation is
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necessary. Here, the same method as derived in the paper [84] is used when numerically
calculating the matrix Gd(Td(k)), and an alternative method is used to numerically cal-
culate the matrix Hd(Td(k)). The numerical results for Gd(Td(k)) and Hd(Td(k)) are
respectively given as

Gd(Td(k)) ≈ Iν + 4Tsfa(k) Ad(Td(t))|Td(t)=1 + 1
2!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)2

+ . . .+ 1
la!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)la
= Ga

d(f(k)), (5.26)

and

Hd(Td(k)) ≈ Ts

(
Iν + 1

2!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)
+ . . .+ 1

la!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)la−1
)
Bd

= Ha
d(f(k)), (5.27)

where fa(k) = f(k) (see Proposition 5.1), and la and la−1 respectively denote the largest
exponent number for numerical approximations of Gd(Td(k)) and Hd(Td(k)).

The specific derivations for the above numerical results can be found in Appendix
C. Below, an example is given to illustrate the effectiveness of the above two numerical
approximations.

Based on the above numerical approximations for the matrixGd(Td(k)) and the matrix
Hd(Td(k)), the numerically discretized version of the approximated TVDB model (5.15)
can be obtained, and the discretized model can be represented asx

a
d(k + 1) = Ga

d(f(k))xa
d(t) +Ha

d(f(k))ud(k),
ya

d(k) = Cd(f(k))xa
d(k),

(5.28)

where xa
d(k) ∈ Rv, ud(k) ∈ R, and ya

d(k) ∈ R denote the state vector, the input, and the
output, respectively, and Cd(f(k)) = 4fa(k) Cd(Td(t))|Td(t)=1 (see Equation (5.22)).

The conceptual time-varying transfer function of the model (5.28) is represented as
G̃a

d(z, f(k)), and based on the above process which is from (5.8) to (5.28) and which is also
called delay block evolution illustrated in Figure 5.2, the phase delay π can be transformed
from Gd(s, f(t)) to G̃a

d(z, f(k)). The obtained model G̃a
d (i.e., the model (5.28)) is finally

is used for the cylinder pressure reconstrusction as illustrated in Figure 5.1.
It should be pointed out that there still exist two problems in the above delay block

discretization process:

(i) As aforementioned, the model (5.15) is in controllable canonical form, however, the
observability cannot be guaranteed.

(ii) As seen in Equation (5.16), the expression form of the matrix Ad(Td(t)) is prone to
numerical problems.

A balanced realization of the model (5.15), which can handle the above two problems
simultaneously, can be involved in the discretization process. The specific realization and
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corresponding results can be referred to Appendix D. In this thesis, balanced realization
is involved, and based on one conclusion from Appendix D that the balanced realization
problem of the model (5.15) can be transformed into the balanced realization problem of
the model (5.19), and the total discretization procedure of the model (5.15) as introduced
at the start of this section should be modified as follows:

(i) Substitute the value Td(t) = 1 into the model (5.15) which is a LTI model.

(ii) Make a balanced realization of the LTI model obtained in (i) such that a minimally-
realized LTI model can be obtained.

(iii) Parameterize the matrices Ad(Td(t)) and Cd(Td(t)) based on the minimally-realized
LTI model obtained in (ii) such that a model depending on Td(t) can be obtained
(see Figure 5.3).

(iv) Discretize the model obtained in (iii).

Because the final discretized model (5.28) will be used for cylinder pressure recon-
struction, the reachability and observability of the model (5.28) should be still verified
after numerical approximation even though the model (5.15) is minimally realized after
balanced realization. The corresponding verifications can be found in Appendix E.

In the remainder of this section, two examples related to the discretized model (5.28)
will be given, and based on the examples some conclusions will be obtained either.
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Figure 5.4: Bode plot of the discretized TVDB models with different model orders.

Example 5.1. In the model (5.28), fix the value of f(k) to 10 Hz, and set la to 10 and
set Ts to 1× 10−4 seconds for the numerical approximations of Gd(Td(k)) and Hd(Td(k))
(see Equations (5.26) and (5.27)), then three discretized TVDB models can be obtained
by selecting three different model orders (ν = 15, ν = 25, and ν = 35) for the model
(5.28). The Bode plots of three discretized TVDB models with different model orders are
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illustrated in Figure 5.4. By observing Figure 5.4, it can be known that under fixed la,
fixed sampling period, and fixed dead time, the passband cutoff frequencies [51] of the
discretized TVDB becomes smaller as ν decreases. Moreover, by comparing with the ideal
delay block (i.e., z−

1
4f(k)Ts ), the effectiveness of the discretization of TVDB is verified. �

Example 5.2. Given two angle-domain periodic signals, one signal u(k) = sin(ϕ(k)) +
sin (2ϕ(k))+sin (3ϕ(k)) and the other signal ud(k) = sin

(
ϕ(k)− π

2

)
+sin

(
2
(
ϕ(k)− π

2

))
+

sin
(
3
(
ϕ(k)− π

2

))
, where the signal ud(k) is the delay of the signal u(k), ϕ(k)−ϕ(k−1) =

2πf ∗(k)T ∗s , and the initial angle value ϕ(0) = 2πf ∗(0)T ∗s . The curve of the instantaneous
frequency f ∗(k) is shown in Figure 5.5, and the sampling period T ∗s is equal to 1× 10−4

seconds.
According to the above information it can be known that u(k) and ud(k) have the

same curve but different phases. The delay between these two signals in angle domain is
π
2 , thus in continuous-time domain, the delay becomes 1

4f∗(t) , and in discrete-time domain,
the corresponding delay changes to 1

4f∗(k) .
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Figure 5.5: Curve of instantaneous frequency f ∗(k) (upper figure) and simulated output
of the discretized TVDB model (lower figure).

Use the signal u(k) as the input of the model (5.28) with ν = 35 and la = 10, as shown
in Figure 5.5 the simulated output ûd(k) is nearly the same as the signal ud(k), which
can illustrate the effectiveness of the delay block discretization method proposed in this
section. �

5.2.3 Model Augmentation
As shown in Figure 5.1, the SISO model with an additive error can be represented asxs(k + 1) = As(f(k))xs(k) +Bs(f(k))P1(k),

y(k) = Cs(f(k))xs(k) +DsP1(k) + el(k),
(5.29)
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where xs(k) ∈ Rns , and the output error el(k) is induced by the measurement noise,
the disturbance on the model G, the cylinder-to-cylinder difference, and the error in the
formulation process of the TVDB model (5.28).

The matrices As(f(k)), Bs(f(k)), Cs(f(k)), Ds, and the state vector xs(k) are re-
spectively given as

As(f(k)) =



A B


0 0 0

Cd(f(k)) 0 0
0 Cd(f(k)) 0
0 0 Cd(f(k))



0


Ga

d(f(k)) 0 0
Ha

d(f(k))Cd(f(k)) Ga
d(f(k)) 0

0 Ha
d(f(k))Cd(f(k)) Ga

d(f(k))




, (5.30)

Bs(f(k)) =
((

1 0 0 0
)
BT (Ha

d(f(k)))T 0
)T
, (5.31)

Cs(f(k)) =

C D


0 0 0

Cd(f(k)) 0 0
0 Cd(f(k)) 0
0 0 Cd(f(k))


 , (5.32)

Ds = D


1
0
0
0

 , (5.33)

and
xs(k) =

(
xT(k) xT

1 (k) xT
2 (k) xT

3 (k)
)T
, (5.34)

where x1(k), x2(k), and x3(k) denote the state vectors of three delay block models shown
in Figure 5.1, respectively.

By augmenting the model (5.29) with the state of the model of the cylinder No. 1
pressure signal (i.e., the model (5.3)), an augmented model Ga can be obtainedxa(k + 1) = Aa(f(k))xa(k),

y(k) = Ca(f(k))xa(k)) + ea(k),
(5.35)

where the state vector xa(k) ∈ Rna , and the term ea(k) denotes the output error which is
induced by el(k) and eP1(k).

The matrices Aa(f(k)), Ca(f(k)), and the state vector xa(k) are respectively given as

Aa(f(k)) =
(
As(f(k)) Bs(f(k))CP1

0 AP1(f(k))

)
, (5.36)

Ca(f(k)) =
(
Cs(f(k)) DsCP1

)
, (5.37)

and
xa(k) =

(
xT

s (k) xT
P1(k)

)T
. (5.38)

69



5.2.4 Cylinder Pressure Estimation
Based on the cylinder pressure estimation framework displayed in Figure 5.1 and the
above analysis, briefly speaking, by using the Kalman filter for the augmented model
(5.35), the state of the augmented model can be estimated, and then the cylinder No.
1 pressure signal can be estimated based on the model (5.3), simultaneously other three
cylinder pressure signals can be obtained either by using delay blocks.

Algorithm 5.1: Cylinder pressure estimation algorithm using the square-root
Kalman filter with a forgetting factor.

Initialization: S(0) = 100Ina , x̂a(0) = 0
1 for k = 1→ N − 1 do

/* Square-root Kalman filter with a forgetting factor */
2 S−(k) = 1

λ
Aa(f(k − 1))S(k − 1) // λ denotes the forgetting factor

3 x̂−a (k) = Aa(f(k − 1))x̂a(k − 1)
4 F (k) = S−(k)CT

a (f(k))
5 α(k) = 1

FT(k)F (k)+σ2
a

6 K(k) = α(k)S−(k)F (k)
7 γ(k) = 1

1+
√
σ2

a
√
α(k)

8 S(k) = S−(k)− γ(k)K(k)F T(k)
9 x̂a(k) = x̂−a (k) +K(k) (y(k)−Ca(f(k))x̂−a (k))

/* Cylinder pressure estimation */
10 P̂1(k) =

(
0 CP1

)
x̂a(k)

11 P̂3(k) = G̃a
d(q−1, f(k))P̂1(k) // G̃a

d(q−1, f(k)) denotes the conceptual
time-varying transfer operator of the model (5.28) (i.e., G̃a

d)
12 P̂4(k) = G̃a

d(q−1, f(k))P̂3(k)
13 P̂2(k) = G̃a

d(q−1, f(k))P̂4(k)

In the model (5.35), {ea(k)} is assumed to be a scalar white noise process, of which
the covariance function is σ2

aδkj, and the value of σ2
a is tunable. Additionally, ea(k) is also

assumed to be uncorrelated with xa(0) which is assumed to be a random variable with
constant mean and variance. Thus the specific cylinder pressure estimation algorithm can
be summarized in Algorithm 5.1. In the algorithm, the square-root Kalman filter with
a forgetting factor is used for handling the numerical and non-stationary problem (see
Section 2.4.2) and the mismodeling problems of TVDB and G.

In order to make sure that the square-root Kalman filter used in Algorithm 5.1 is
convergent, the observability of the augmented model (5.35) should be guaranteed. In
Appendix F, the specific verification of the observability of the augmented model (5.35)
is given. According to the verification, it can be known that the augmented model (5.35)
is uniformly observable under certain conditions, and as a result the square-root Kalman
filter with a forgetting factor for the augmented model is convergent. The reason why
the stability of the square-root Kalman filter can be guaranteed under the observability
condition is that the square-root Kalman filter with a forgetting factor can be directly
derived from the normal Kalman filter [28], and the normal Kalman filter for the model
(5.35) is stable under the condition that the model (5.35) uniformly observable (see Section
2.2.3), as a result the stability of the square-root Kalman filter with a forgetting for the
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model (5.35) can also be guaranteed.

5.3 Cylinder Pressure Estimation Results Based on
Time-Domain Identified Model

For the cylinder pressure estimation in Algorithm 5.1, there are a number of tunable
parameters, and the parameters used is displayed in Table 5.1.

Table 5.1: Tunable parameters.

Parameter Value

ν 35
la 10
np 40
σ2

a 2.3× 10−5

λ 0.9995
Ĝ 9th order and MOESP(s)

In Table 5.1, the values of σ2
a and λ were chosen according to empirical analysis, while

the model Ĝ was chosen based on the identification results in Section 4.3.1. The specific
selection methods of the values of ν, la, and np = 40 are described as follows:

(i) The values of ν and la were chosen based on the performance of the discretized
TVDB model (5.28) under three stationary operating conditions Z2 (1200 rpm, 120
Nm), Z5 (2100 rpm, 120 Nm), and Z8 (3000 rpm, 120 Nm).

(ii) The value np was selected based on Algorithm 4.1.

As for the first item mentioned above, the TVDB performance for the cylinder pressure
estimation is validated based on the strategy depicted in Figure 5.6. Specifically, first use
the cylinder No. 1 pressure as the input of the delay bank which consists of three tunable
TVDBs, and then simulated cylinder pressure outputs can be obtained, and finally a
specified TVDB can be selected based on comparing the outputs of the tunable TVDBs.

Figure 5.6: TVDB validation strategy.
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Figure 5.7: The difference between P3 and P d
3 under Z2 (upper figure), Z5 (middle figure),

and Z8 (lower figure).
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Figure 5.9: Bode plots of TVDB with three different values of ν, the same frequency f(k)
which is 10 Hz (i.e., exact 1200 rpm), and the same la which is 10.

0 200 400 600 800 1000 1200
-6

-4

-2

0

2

M
a

g
n

it
u

d
e

 (
d

B
)

ν = 30

ν = 35

ν = 40

Frequency  (Hz)

0 200 400 600 800 1000 1200
-4320

-2880

-1440

0

1440

P
h

a
s
e

 (
d

e
g

)

Frequency  (Hz)

Figure 5.10: Bode plots of TVDB with three different values of ν, the same frequency
f(k) which is 25 Hz (i.e., exact 3000 rpm), and the same la which is 10.
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The validation results are shown in Figure 5.7 and Figure 5.8. In the figures, e1, e2,
and e3 denote the differences between P3 (the cylinder No. 3 pressure signal) and P d

3 (the
delayed version of the cylinder No. 3 pressure signal) under the operating conditions Z2,
Z5, and Z8, respectively, are illustrated. Specifically, in Figure 5.7, the value of la is set
to 10, and three different values of ν are specified, and according to the results it can be
known that the performance of the TVDB with ν = 35 and the performance of the TVDB
with ν = 40 are nearly the same, and both of them are better than the performance of the
TVDB with ν = 30. While in Figure 5.8, the value of ν is set to 35, and three different
values of la are specified, and the corresponding results show that the values of la do not
affect much on the performance of TVDB. In both figures, the absolute values of the
errors e1, e2, and e3 do not exceed 2 bar in general. Additionally, in the figures, only the
cylinder No. 3 pressure signal is considered to validate the performance of TVDB.

Finally, the reasons why ν and la were respectively chosen as 35 and 10 are as follows:

(i) The TVDB performance under ν = 35 is almost the same as the TVDB performance
under ν = 40.

(ii) The performance of the TVDB with three different values of la is almost the same.

(iii) As shown in Figure 5.9 and Figure 5.10, the passband cutoff frequency of the TVDB
with ν = 35 is enough even though it is smaller than the passband cutoff frequency
of the TVDB with ν = 40.

After the validation of the TVDB performance for the cylinder pressure estimation,
Algorithm 5.1 was implemented to estimate four cylinder pressure signals. From Figure
5.11 to Figure 5.19, the estimated curves of four cylinder pressure signals under nine
stationary operating conditions are displayed.
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Figure 5.11: Cylinder pressure estimation under the stationary operating condition Z1
(1200 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.12: Cylinder pressure estimation under the stationary operating condition Z2
(1200 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.13: Cylinder pressure estimation under the stationary operating condition Z3
(1200 rpm, 180 Nm) using Algorithm 5.1.
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Figure 5.14: Cylinder pressure estimation under the stationary operating condition Z4
(2100 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.15: Cylinder pressure estimation under the stationary operating condition Z5
(2100 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.16: Cylinder pressure estimation under the stationary operating condition Z6
(2100 rpm, 180 Nm) using Algorithm 5.1.
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Figure 5.17: Cylinder pressure estimation under the stationary operating condition Z7
(3000 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.18: Cylinder pressure estimation under the stationary operating condition Z8
(3000 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.19: Cylinder pressure estimation under the stationary operating condition Z9
(3000 rpm, 180 Nm) using Algorithm 5.1.
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Table 5.2: Cylinder No. 1 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −4.29% 2.09% 13.40% 2.02% −3.30% −4.30% 21.89% 13.25% 13.63%
σ(ePmax) 1.19% 1.31% 3.52% 1.65% 1.65% 1.31% 2.08% 2.62% 1.71%
µ(ePloc) −0.62◦ −1.91◦ −1.83◦ −5.13◦ −0.90◦ −1.22◦ −3.13◦ −0.03◦ 1.01◦
σ(ePloc) 1.56◦ 0.40◦ 0.44◦ 4.11◦ 0.44◦ 0.50◦ 1.86◦ 0.91◦ 0.63◦
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Figure 5.20: Cylinder No. 1 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.

To validate the effectiveness of the proposed cylinder pressure estimation method,
two characteristic parameters, which are the relative error of pressure peak Pmax and the
absolute error of peak location Ploc, were used to evaluate estimation results. At mth
peak, the two characteristic parameters can be represented as

emPmax = Pm
max − P̂m

max
Pm

max
(5.39)

and
emPloc

= Pm
loc − P̂m

loc, (5.40)

respectively.
Under nine stationary operating conditions, the average and standard deviation of the

characteristic parameters are illustrated in Table 5.2. Specifically, µ(ePmax) and σ(ePmax)
represent the average and the standard deviation of the relative error of pressure peak
corresponding to 50 engine cycles, respectively. While µ(ePloc) and σ(ePloc) respectively
denote the average and standard deviation of absolute error of peak location corresponding
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to 50 engine cycles. But Table 5.2 is only for the cylinder No. 1, for other cylinders, see
Table G.1, Table G.2, and Table G.3 in Appendix G.

According to the results summarized in the above tables, the value of µ(ePmax) varies
from −9.40% to 21.89%, but in general the absolute value of µ(ePmax) is less than 14%.
Additionally, in general the value of σ(ePmax) is less than 2%. For the peak location
estimation, most of the absolute values of µ(ePloc) do not exceed 2.5◦, and almost all the
values of σ(ePloc) are less than 2◦.

While for non-stationary operating conditions (i.e., the transient process Zt
1 and the

transient process Z̃t
2), the pressure peak and peak location estimation results for cylinder

No. 1 is illustrated in Figure 5.20, and for other cylinders, see the figures from Figure
G.1 to Figure G.3 in Appendix G. According to the results in the figures, it can be found
that for lower instantaneous engine speeds (i.e., under the condition Zt), in general, the
absolute values of ePmax do not exceed 10%, and the absolute values of ePloc are smaller
than 5◦. As a comparison, for higher instantaneous engine speeds (i.e., under the condition
Z̃t), generally the absolute values of ePmax are less than 15%, while the absolute values of
ePloc do not exceed 5◦.

5.4 Cylinder Pressure Estimation Results Based on
Frequency-Domain Identified Model

In Section 5.3, the cylinder pressure estimation results based on the time-domain identified
model are displayed. While, in this section, the estimation results based on the frequency-
domain identified model are shown. Algorithm 5.1 was still used, however, the time-
domain identified model was replaced with the frequency-domain identified model. The
frequency-domain identified model is with 8th order and identified by using the IO data
without detrending (see Section 4.3.2). Thus, for this case, the tunable parameters in
Algorithm 5.1 are depicted in Table 5.3.

Table 5.3: Tunable parameters.

Parameter Value

ν 35
la 10
np 40
σ2

a 2.3× 10−5

λ 0.9995
Ĝ frequency-domain identified model with 8th order

From Figure 5.21 to Figure 5.29, the curves of the estimated cylinder pressure are
shown under nine different stationary operating conditions, i.e., from the operating con-
dition Z1 to the operating condition Z9.

1Zt is a part of the transient process between the stationary operating condition Z3 and the stationary
operating condition Z4, i.e., Z3 and Z4 are not included.

2Z̃t is a part of the transient process between the stationary operating condition Z6 and the stationary
operating condition Z7, i.e., Z6 and Z7 are not included.
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Figure 5.21: Cylinder pressure estimation under the stationary operating condition Z1
(1200 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.22: Cylinder pressure estimation under the stationary operating condition Z2
(1200 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.23: Cylinder pressure estimation under the stationary operating condition Z3
(1200 rpm, 180 Nm) using Algorithm 5.1.
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Figure 5.24: Cylinder pressure estimation under the stationary operating condition Z4
(2100 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.25: Cylinder pressure estimation under the stationary operating condition Z5
(2100 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.26: Cylinder pressure estimation under the stationary operating condition Z6
(2100 rpm, 180 Nm) using Algorithm 5.1.
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Figure 5.27: Cylinder pressure estimation under the stationary operating condition Z7
(3000 rpm, 60 Nm) using Algorithm 5.1.
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Figure 5.28: Cylinder pressure estimation under the stationary operating condition Z8
(3000 rpm, 120 Nm) using Algorithm 5.1.
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Figure 5.29: Cylinder pressure estimation under the stationary operating condition Z9
(3000 rpm, 180 Nm) using Algorithm 5.1.

Table 5.4: Cylinder No. 1 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −6.32% 1.61% 8.15% −10.73% −9.19% −8.53% 2.88% −0.76% 3.47%
σ(ePmax) 0.77% 1.04% 2.55% 0.41% 0.56% 0.55% 0.38% 0.39% 0.40%
µ(ePloc) 1.23◦ −0.41◦ −1.36◦ −0.60◦ 0.98◦ 1.66◦ 1.15◦ 3.06◦ 3.34◦
σ(ePloc) 1.37◦ 1.63◦ 2.03◦ 4.20◦ 0.79◦ 0.96◦ 0.60◦ 0.59◦ 0.56◦

Note: mean(ePmax) denotes the average value of 50 cylinder pressure peak values.
Under nine stationary operating conditions, the mean value and standard deviation of

the characteristic parameters are illustrated in Table 5.4 for the cylinder No. 1 pressure
signal, and for other cylinders, see the tables from Table G.4 to Table G.6 in Appendix
G. In the tables, generally, the absolute values of µ(ePmax) do not exceed 10%, while most
of the absolute values of µ(ePloc) are smaller than 2◦. Furthermore, most of the standard
deviation values of ePmax are smaller than 1%, while for peak location, almost all the
values of ePloc do not exceed 1.5◦.

Under non-stationary operating conditions (i.e., the transient processes Zt and Z̃t),
as shown in Figure 5.30 (for the cylinder No. 1 pressure signal) and the figures from
Figure G.4 to Figure G.6 in Appendix G (for other cylinders), at lower instantaneous
engine speeds (i.e., under the condition Zt), in general the absolute value of ePmax varies
from 0% to 10%, while for higher instantaneous engine speeds (i.e., under the condition
Z̃t, generally most of the absolute values of ePmax are smaller than 5%. For peak location
estimation, generally most of the absolute values of ePloc at both lower instantaneous
engine speeds and higher instantaneous engine speeds are smaller than 5◦.
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Figure 5.30: Cylinder No. 1 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.

By comparing the cylinder pressure estimation results in this section with the cylin-
der pressure estimation results in Section 5.3, it can be known that based on using the
frequency-domain identified model, the combustion metrics pressure peak and peak loca-
tion are better estimated in general, but the estimated cylinder pressure curves become
worse, i.e., the estimated cylinder pressure curves based on using the frequency-domain
identified model have bigger fluctuations at the bottom.

5.5 An Ideal Model-Based Cylinder Pressure
Estimation

According to the cylinder pressure estimation results illustrated in Section 5.3 and Section
5.4, it can be known that the model quality can affect the estimation precision of the
cylinder pressure signal, even though it is obvious that the Kalman filter performance
can be affected by the model quality. So in this section, the performance of the cylinder
pressure estimation method proposed in Section 5.2 is explored when the model G is
ideal. The idea is depicted in Figure 5.31. Specifically, first use the collected input
signal u(k) =

(
P1(k) P3(k) P4(k) P2(k)

)T
as the input of the time-domain identified

model Ĝ, and then the corresponding simulated output signal ys(k) can be obtained.
Additionally, in Figure 5.31, the output noise sequence {es(k)} denotes a scalar white
noise process, of which the covariance function is σ2

s δkj with σ2
s known. Finally, with

the simulated output ys(k), four cylinder pressure signal can be recursively estimated.
According to the description of the above idea, in the total process illustrated in Figure
5.31 the time-domain identified model Ĝ can be seen as an ideal model, i.e., no model
identification error.
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Figure 5.31: An ideal model-based method validation.

Based on the above process, the simulated output signals can be obtained under three
stationary operating conditions Z2 (1200 rpm, 120 Nm), Z5 (2100 rpm, 120 Nm), and
Z8 (3000 rpm, 120 Nm), then with the simulated outputs, by implementing Algorithm
5.1 the estimated cylinder pressure signals can be obtained. The tunable parameters in
Algorithm 5.1 for this case is given in Table 5.5.

Table 5.5: Tunable parameters.

Parameter Value
ν 35
la 10
np 40
σ2

a 1× 10−5

λ 0.9995
Ĝ 9th order and MOESP(s)

The final cylinder pressure estimation results under three stationary operating condi-
tions are shown in Figure 5.32 and Table 5.6. According to the results, it can be known
that under the three stationary operating conditions, the values of µ(ePmax) are around
10%, and the values of µ(ePloc) are around 2◦. The standard deviation values σ(ePmax)
and σ(ePloc) are smaller than 2.6% and 1.6◦, respectively. Generally, the cylinder pressure
curves estimated based on the ideal model are better than the curves estimated based on
the time-domain identified model, especially at the bottom. The results in Table 5.6 can
indicate that the quality of the model G is not the unique factor which can affect the
cylinder pressure estimation precision.
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Figure 5.32: Cylinder No. 1 pressure estimation results under the conditions Z2 (1200
rpm, 120 Nm), Z5 (2100 rpm, 120 Nm), and Z8 (3000 rpm, 120 Nm) using Algorithm
5.1 with an ideal model (the doted lines correspond to estimated results based on the
time-domain identified model which are illustrated in Section 5.3).
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Table 5.6: Cylinder No. 1 pressure estimation results evaluation
based on Algorithm 5.1 (50 engine cycles for each operating con-
dition).

Z2 Z5 Z8

µ(ePmax) 12.91% (2.09%) 7.01% (−3.30%) 9.44% (13.25%)
σ(ePmax) 2.17% (1.31%) 1.48% (1.65%) 2.52% (2.62%)
µ(ePloc) −2.77◦ (−1.91◦) 0.44◦ (−0.90◦) 1.75◦ (−0.03◦)
σ(ePloc) 0.33◦ (0.40◦) 1.02◦ (0.44◦) 1.58◦ (0.91◦)

5.6 Summary
In this chapter, the cylinder pressure estimation results based on the time-domain iden-
tified model, the frequency-domain identified model, and the so-called ideal model are
illustrated. It indicates that the model quality can affect the cylinder pressure estimation
results. Generally, the estimated combustion metrics (pressure peak and peak location)
based on the frequency-domain identified model are better than the ones estimated based
on the time-domain identified model. But the estimated curves of the cylinder pressure
signals are worse based on the frequency-domain identified model.

As mentioned in Section 5.5, there should be several kinds factors that affect the
cylinder pressure estimation algorithm proposed in this chapter. The main factors are
introduced as follows:

• Modeling
Obviously, according to the results shown in the above sections, the identification
accuracy of the modelG has a big effect on the cylinder pressure estimation. Several
factors can determine the model quality:

(i) Inaccurate measurements, e.g., cylinder pressure transducers can be affected
by the high temperature in cylinders.

(ii) Inaccurate input or output number, i.e., the cylinder pressure is not the only
one source causing engine structural vibration.

(iii) Inaccurate model structure assumption, e.g., the linear assumption on G may
lead to some errors if nonlinearity is severe.

• TVDB
The use of the conceptual TVDB is based on the assumption that the shapes of
the pressure signals of the four cylinders are the same in every engine cycle which
is not strictly true because of some factors such as cylinder-to-cylinder injection
and air-EGR dispersions, so this assumption can lead to some errors in estimation.
Furthermore, the Padé approximation and numerical discretization of the conceptual
continuous-time TVDB can also bring some additional errors (see Equation (5.28)).

• Instantaneous engine cycle frequency calculation
The instantaneous engine cycle frequency is used to calculate the time-variant dead
time of TVDB, so the calculation of the instantaneous engine cycle frequency has
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an effect on the cylinder pressure estimation. It should be noted that in the cylin-
der pressure estimation process based on the frequency-domain identified model,
the engine cycle frequency f(k) was assumed to be constant in a big angle range
(around 540◦, which was chosen based on practical situation), the reason for using
the big angle range rather than using 6◦ (and 12◦ for the reference marker) in the
estimation process based on the time-domain identified model is that in LPM, for
each stationary operating condition, only one fundamental frequency is used, which
is not true in practice, so a more smooth curve of calculated instantaneous engine
speed is needed. In this thesis, only for the cylinder pressure estimation based on
the frequency-domain identified model a big angle range was used, for other cases
6◦ (and 12◦ for the reference marker) are used in the calculation process of the
frequency f(k).
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Chapter 6

Linear Model-Based Cylinder
Pressure Estimation Merely Using
Engine Structural Vibration Signal

6.1 Introduction
In Chapter 5, the cylinder pressure estimation is based on the known IAS, however,
sometimes the engine crank angular speed information maybe unknown. Considering the
above problem, in this chapter, the problem when only vibration signal is available for
the cylinder pressure estimation is handled [85]. Thus different with the cylinder pressure
estimation method proposed in the previous chapter, the cylinder pressure reconstruction
by merely using vibration signal is proposed in this chapter. This chapter is organized as
follows. In Section 6.2, the proposed cylinder pressure estimation algorithm is illustrated,
and then the corresponding cylinder pressure estimation results are shown in Section 6.3,
and finally, in Section 6.4, a summary is given.

6.2 Cylinder Pressure Estimation Algorithm
In this section, the proposed method of cylinder pressure estimation by merely using
engine structural vibration is illustrated, and in Figure 6.1 the idea behind the proposed
method is depicted. Compared with the cylinder pressure estimation framework in Figure
5.1, the vibration signal and an estimator Ef are first used to estimate the instantaneous
engine cycle frequency f(k) instead of using a crank angular speed sensor to determine the
instantaneous engine cycle frequency. Then with the vibration signal and the estimated
instantaneous engine cycle frequency f̂(k), the same cylinder pressure estimation method
proposed in Chapter 5 can be used to reconstruct the cylinder pressure signals. Below,
the problem of the estimation of the instantaneous engine cycle frequency f(k) by using
the vibration signal is firstly formulated, and afterwards the derivation of the cylinder
pressure estimation algorithm using merely engine vibration signal is given.

6.2.1 Estimation of Instantaneous Engine Cycle Frequency
The vibration signal y(k) is mainly induced by the cylinder pressure which can be consid-
ered as a combination of the DC offset A0(k), a certain number of order (or say spectral)

92



Kalman filter 
for Model 

Estimator  

Figure 6.1: Cylinder pressure estimation merely using engine vibration signal.

components yi(k), i = 1, 2, · · · , ny (see [52]) and an error term ey(k), i.e.,

y(k) = A0(k) +
ny∑
i=1

yi(k) + ey(k),

= A0(k) +
ny∑
i=1

Ai(k)Θi(k) + ey(k), (6.1)

where ny is the number of the order components of interest. Ai(k) refers to the amplitude
envelope of the lith order component, and Θi(k) denotes the carrier signal [33], which can
be represented as

Θi(k) = sin(ϕi(k)) = sin(li
k∑
j=0

2πf(j)Ts + ϕi(0)), (6.2)

where ϕi(k) denotes the instantaneous phase and ϕi(0) is the initial phase of the lith
order component.

Similar to the cylinder pressure signal modeling as illustrated in Equation (5.3), the
vibration signal y(k) in Equation (6.1) can also be denoted as the output of a state-space
model when Ai(k) is constant, i.e.,xy(k + 1) = Ay(f(k))xy(k),

y(k) = Cyxy(k) + ey(k),
(6.3)

where the state vector xy(k) ∈ R2ny+1.
The matrices Ay(k) and Cy are given as

Ay(f(k)) =


1 0 · · · 0

0 A1(f(k)) . . . ...
... . . . . . . 0
0 · · · 0 Any(f(k))

 , (6.4)

and
Cy =

(
1 C1 · · · Cny

)
, (6.5)

respectively.
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The individual block entries in these block matrices follow from the state-space rep-
resentation of a frequency-modulated sine wave as

Ai(f(k)) =
(

cos(2πif(k)Ts) sin(2πif(k)Ts)
− sin(2πif(k)Ts) cos(2πif(k)Ts)

)
(6.6)

and
Ci =

(
1 0

)
. (6.7)

When the frequency f(k) is unknown, the remainder of this section is used to illus-
trated how to estimate the instantaneous engine cycle frequency f(k). But firstly both the
amplitudes Ai, i = 1, 2, · · · , ny and the frequency f(k) are assumed to be time-invariant.

According to the frequency tracker introduced in [33], the unknown frequency f(k)
can be regarded as a state variable xf(k), and then it can be augmented with the state of
the model (6.3), afterwards the following model can be derived:

(
xy(k + 1)
xf(k + 1)

)
=
(
Ay(xf(k)) 0

0 1

)(
xy(k)
xf(k)

)
,

y(k) =
(
Cy 0

)(xy(k)
xf(k)

)
+ ey(k).

(6.8)

The model (6.8) is a nonlinear model, so nonlinear Kalman filters can be used for the
estimation of the frequency f(k) (i.e., xf(k)). But for the frequency estimation purpose,
only knowing the first order of the signal y(k) is enough for us to track the frequency.
Thus a band-pass filter can be used for filtering out the orders not of interest in the
signal y(k), and the signal y(k) after filtering is denoted as yb(k). For the design of
the band-pass filter, the linear phase is not necessary because the objective is to merely
estimate the frequency f(k), therefore IIR filters can be used instead of using FIR filters
to avoid big dimensional problem. An IIR filter such as the Butterworth bandpass filter
can be included. The lowest engine speed and the highest engine speed used for the
cylinder pressure reconstruction study in this thesis are around 1200 rpm and around
3000 rpm, respectively, so the lower cutoff frequency and the higher cutoff frequency of
the Butterworth bandpass filter were respectively set to 10 Hz and 25 Hz. As can be seen,
the highest cutoff frequency is more than two times as large as the lowest cutoff frequency,
so the filtered signal yb(k) can be represented as the output of the following state-space
model with an output error: xb(k + 1) = Ab(f(k))xb(k),

yb(k) = Cbxb(k) + eb(k),
(6.9)

where Ab(f(k)) and Cb are respectively denoted as

Ab(f(k)) =
(
A1(f(k)) 0

0 A2(f(k))

)
, (6.10)

Cb =
(
C1 C2

)
, (6.11)

and eb(k) represents the output error after band-pass filtering.
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Similar to the model (6.8), augmenting the state variable xf(k) with the state of
the model (6.9) and replacing f(k) with the state variable xf(k) result in the following
augmented state-space model: xe(k + 1) = fe(xe(k)),

yb(k) = Cexe(k) + eb(k).
(6.12)

In the model (6.12), the expressions of xe(k), fe(xe(k)), and Ce are

xe(k) =
(
xb(k)
xf(k)

)
, (6.13)

fe(xe(k)) =
(
Ab(xf(k)) 0

0 1

)
, (6.14)

and
Ce =

(
Cb 0

)
, (6.15)

respectively.
The model (6.12) is a nonlinear model, so the EKF introduced in Section 2.4.3 can be

used for the estimation of the frequency f(k) (i.e., the state variable xf(k)).
However, the formulation of the model (6.12) is based on the assumption that the

amplitude A1 of the first order in the signal yb(k) and the frequency f(k) are time-
invariant. When the amplitude A1(k) and the frequency f(k) are time-variant, there will
be a mismodeling problem for the modeling of the model (6.12), thus the term Q(k)
should be included in EKF, and increasing Q(k) can handle the problem of mismodeling,
which is illustrated in Section 2.2.4.1. Here, the term Q(k) is involved and denote it as
Qb in the EKF for the model (6.12), and the value of Qb is tunable. Furthermore, in
the model (6.12), {eb(k)} is assumed to be a scalar white noise process, of which the
covariance function is Rbδkj, and the value of Rb is tunable. eb(k) is also assumed to be
uncorrelated with xe(0) which is assumed to be a random variable with constant mean
and variance.

The above frequency tracking process can be represented by a frequency estimator Ef

which consists of EKF and a band-pass filter. The frequency estimator Ef is depicted in
Figure 6.2.

    EKF for 
Model

Bandpass Filter

(6.12)

Figure 6.2: Proposed estimator Ef for frequency tracking.

There is an initialization problem for the EKF for the instantaneous engine cycle
frequency estimation, because in the matrix Ab(xf(k)) in (6.14) there are two blocks
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A1(xf(k)) and A2(xf(k)) corresponding to f(k) and 2f(k), respectively, so the initial
value of the frequency f(k) in EKF should be near the tracked frequency, if not there will
be an initialization problem. As an example, if the instantaneous engine cycle frequency
to be estimated is 25 Hz, and if the initial value of the frequency is set to 10 Hz, EKF
will finally obtain the value around 12.5 Hz as the estimated instantaneous engine cycle
frequency. So in the instantaneous engine cycle frequency estimation algorithm a strategy
for solving the initialization problem should be included.

Above all, the instantaneous engine cycle frequency estimation algorithm is summa-
rized in Algorithm 6.1.

Algorithm 6.1: Instantaneous engine cycle frequency estimation.

Initialization: Pe(0) = 10I5, x̂e(0) = 10
(

0
1

)
1 for k = 1→ N − 1 do

/* Extended Kalman filter */
2 P−e (k) = Ae(k − 1)Pe(k − 1)AT

e (k − 1) +Qb // Ae(k) ≈ ∂fe(xe(k))
∂xe(k)

∣∣∣
xe(k)=x̂e(k)

3 x̂−e (k) = fe(x̂e(k − 1))
4 Ke(k) = P−e (k)CT

e

(
CeP

−
e (k)CT

e +Rb
)−1

5 Pe(k) = (I5 −Ke(k)Ce)P−e (k)
6 x̂e(k) = x̂−e (k) +Ke(k) (yb(k)−Cex̂

−
e (k))

/* Instantaneous engine cycle frequency estimation */
7 R(k) = yb(k)−

(
0 0 1 0 0

)
xe(k)

8 if k ≥ k1 then
9 if σ(R) ≤ h // σ(R) denotes the standard deviation of the

sequence (R(k))k1−1
k=1 , and h represent a threshold

10 then
11 f̂(k) = 2x̂f(k)
12 else
13 f̂(k) = x̂f(k)
14 end
15 end
16 end

As seen in the algorithm, the threshold h can be set based on observing the FFT
spectrums of the vibration signal under different stationary operating conditions and the
value of R(k). For example, if the instantaneous engine cycle frequency to be estimated
is 25 Hz, and if the initial value of the frequency is set to 10 Hz, without any strategy
EKF will obtain the value around 12.5 Hz as the estimated instantaneous engine cycle
frequency, and in this case R(k) should be very small because the main part of yb(k)
corresponds to the frequency 25 Hz. Given another example, if the instantaneous engine
cycle frequency to be estimated is 10 Hz, and if the initial value of the frequency is set
to 10 Hz, without any strategy EKF will obtain the value around 10 Hz as the estimated
instantaneous engine cycle frequency, and for this case, the main part of yb(k) corresponds
to 10 Hz such that the value of R(k) is larger. So based on setting the threshold h, the
initialization problem of the EKF in Algorithm 6.1 can be handled.
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6.2.2 Cylinder Pressure Estimation

Replacing the estimated instantaneous engine cycle frequency f̂(k) with the calculated
frequency f(k) in the model (5.35) results in the following model:xa(k + 1) = Aa(f̂(k))xa(k),

y(k) = Ca(f̂(k))xa(k)) + ee(k),
(6.16)

where the output error ee(k) is induced by ea(k) and the difference between f(k) and
f̂(k).

In the model (6.16), {ee(k)} is assumed to be a scalar white noise process, of which
the covariance function is σ2

aδkj, and the value of σ2
a is tunable. Additionally, ee(k) is also

assumed to be uncorrelated with xa(0) which is assumed to be a random variable with
constant mean and variance. Then the square-root Kalman filter with a forgetting factor
for the model (6.16) can be used to estimate the cylinder pressure signals as illustrated
in Algorithm 5.1. As a summary, for the cylinder pressure estimation by merely using
the engine vibration signal, Algorithm 6.1 is firstly used to estimate the frequency f(k),
and then Algorithm 5.1 is implemented. The cylinder pressure reconstruction method by
merely using the engine structural vibration signal is summarized in Algorithm 6.2.

Algorithm 6.2: Cylinder pressure estimation algorithm merely using engine
structural vibration signal.

Initialization: S(0) = 100Ina , x̂a(0) = 0
1 for k = 1→ N − 1 do

/* Instantaneous engine cycle frequency estimation */
2 x̂f(k)→ f̂(k) // See Algorithm 6.1 for the estimation of xf(k)

/* Square-root Kalman filter with a forgetting factor */
3 S−(k) = 1

λ
Aa(f̂(k − 1))S(k − 1) // λ denotes the forgetting factor

4 x̂−a (k) = Aa(f̂(k − 1))x̂a(k − 1)
5 F (k) = S−(k)CT

a (f̂(k))
6 α(k) = 1

FT(k)F (k)+σ2
e

7 K(k) = α(k)S−(k)F (k)
8 γ(k) = 1

1+
√
σ2

e
√
α(k)

9 S(k) = S−(k)− γ(k)K(k)F T(k)
10 x̂a(k) = x̂−a (k) +K(k)

(
y(k)−Ca(f̂(k))x̂−a (k)

)
/* Cylinder pressure estimation */

11 P̂1(k) =
(
0 CP1

)
x̂a(k)

12 P̂3(k) = G̃a
d(q−1, f̂(k))P̂1(k)

13 P̂4(k) = G̃a
d(q−1, f̂(k))P̂3(k)

14 P̂2(k) = G̃a
d(q−1, f̂(k))P̂4(k)

15 end

The stability analysis of the square-root Kalman filter in Algorithm 6.2 is the same as
the stability analysis in Algorithm 5.1.
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6.3 Cylinder Pressure Estimation Results
In this section, the cylinder pressure estimation is conducted based on using Algorithm
6.2. As seen in Algorithm 6.2, the instantaneous engine cycle frequency f(k) is estimated
rather than being calculated. Below, the effectiveness of the estimation of the instan-
taneous engine cycle frequency f(k) is first illustrated, and then the cylinder pressure
estimation results related to pressure peak and peak location are given under nine sta-
tionary operating condition. Additionally, the results related to pressure peak and peak
location are also given under two non-stationary operating conditions.
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Figure 6.3: Estimated instantaneous engine cycle frequency.

In Figure 6.3, the effectiveness of the proposed frequency estimator Ef shown in Figure
6.2 can be validated, the estimated frequency has the same tendency of the corresponding
calculated frequency f(k) under the operating condition Z̆t. Furthermore, the estimated
frequency f̂(k) is more smooth than the calculated frequency f(k). As a comparison, the
spectrogram of the vibration signal y(k) is also given for displaying the variations of the
first order based on the short-time Fourier transform [51]. The results indicate that the
estimator Ef can track time-variant frequency well. The parameters used in the frequency
estimator are displayed in Table 6.1.

Table 6.1: Tunable parameters.

Parameter Value

lower cutoff frequency 10 Hz
higher cutoff frequency 25 Hz
Qb I5

Rb 50
h 0.002
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In Table 6.1, the lower cutoff frequency and the higher cutoff frequency are the fre-
quencies specified for the band-pass filter in Figure 6.2.

With the estimated frequency f̂(k), based on using Algorithm 6.2 the cylinder pres-
sure estimation results are given below. There are a number of tunable parameters in
Algorithm 6.2 which are displayed in Table 6.2.

Table 6.2: Tunable parameters.

Parameter Value

ν 35
la 10
np 40
σ2

a 2.3× 10−5

λ 0.9995
Ĝ 9th order and MOESP(s) (time-domain identified model)

From Figure 6.4 to Figure 6.12, the curves of the estimated cylinder pressure are shown
under nine different stationary operating conditions. Under nine stationary operating
conditions, the mean value and standard deviation of the characteristic parameters are
illustrated in Table 6.3 for the cylinder No. 1. For other cylinders, see tables from Table
G.7 to Table G.9. In the tables, generally, the absolute values of µ(ePmax) do not exceed
20%, while most of the absolute values of µ(ePloc) are smaller than 3◦. Furthermore, most
of the standard deviation values of µ(ePmax) are smaller than 1%, while for peak location,
almost all the values of σ(ePloc) do not exceed 1.5◦.
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Figure 6.4: Cylinder pressure estimation under the stationary operating condition Z1
(1200 rpm, 60 Nm) using Algorithm 6.2.
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Figure 6.5: Cylinder pressure estimation under the stationary operating condition Z2
(1200 rpm, 120 Nm) using Algorithm 6.2.
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Figure 6.6: Cylinder pressure estimation under the stationary operating condition Z3
(1200 rpm, 180 Nm) using Algorithm 6.2.
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Figure 6.7: Cylinder pressure estimation under the stationary operating condition Z4
(2100 rpm, 60 Nm) using Algorithm 6.2.
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Figure 6.8: Cylinder pressure estimation under the stationary operating condition Z5
(2100 rpm, 120 Nm) using Algorithm 6.2.
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Figure 6.9: Cylinder pressure estimation under the stationary operating condition Z6
(2100 rpm, 180 Nm) using Algorithm 6.2.
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Figure 6.10: Cylinder pressure estimation under the stationary operating condition Z7
(3000 rpm, 60 Nm) using Algorithm 6.2.
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Figure 6.11: Cylinder pressure estimation under the stationary operating condition Z8
(3000 rpm, 120 Nm) using Algorithm 6.2.
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Figure 6.12: Cylinder pressure estimation under the stationary operating condition Z9
(3000 rpm, 180 Nm) using Algorithm 6.2.
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Table 6.3: Cylinder No. 1 pressure estimation results evaluation based on Algorithm
6.2 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −18.10% 15.45% −10.93% −2.62% −6.68% −5.93% 11.82% 4.25% 6.63%
σ(ePmax) 1.12% 0.68% 3.52% 0.33% 0.50% 0.50% 0.33% 0.43% 0.41%
µ(ePloc) −0.64◦ −1.48◦ −1.46◦ −4.47◦ 0.29◦ −0.05◦ −3.75◦ 0.90◦ 1.02◦
σ(ePloc) 0.74◦ 0.49◦ 4.66◦ 4.17◦ 0.71◦ 0.49◦ 1.11◦ 1.05◦ 1.47◦

Note: mean(ePmax) denotes the average value of 50 cylinder pressure peak values.

For the case of cylinder pressure estimation based on Algorithm 6.2, in general the
estimation results (including the estimated curves and the estimated combustion metrics
Pmax and Ploc) under the stationary operating conditions Z7, Z8, and Z9 are better than the
estimation results under the stationary operating conditions Z1, Z2, and Z3. Compared
with the cylinder pressure estimation results in Section 5.3, generally the estimation results
in this section become better under the stationary operating conditions Z7, Z8, and Z9.

0 20 40 60 80 100 120 140 160 180 200
-20

0

20

e
P
m
a
x
(%

)

0 20 40 60 80 100 120 140 160 180 200
-20

0

20

e
P
lo
c
(◦
)

0 20 40 60 80 100 120 140 160 180 200
-10

0

10

e
P
m
a
x
(%

)

0 20 40 60 80 100 120 140 160 180 200

Engine Cycle Number

-10

0

10

e
P
lo
c
(◦
)

Figure 6.13: Cylinder No. 1 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 6.2.

Under non-stationary operating conditions, the characteristic parameters ePmax and
ePmax are illustrated in the figures from Figure 6.13 and the figures from Figure G.7 to
Figure G.9. According to the results, it can be found that in general, the absolute values
of ePmax do not exceed 20%, and the absolute values of ePloc are smaller than 10◦.

The estimated cylinder pressure peak Pmax and peak location Ploc under the operating
condition Z̃t are better than the results under the operating condition Zt. Additionally,
by a comparison with the values of ePmax and ePloc under the non-stationary operating
conditions in Section 5.3, the curves of the ePmax and ePloc displayed in Figure 6.13 and
the figures from Figure G.7 to Figure G.9 fluctuate more greatly.
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6.4 Summary
In this chapter, the cylinder pressure is estimated based on the estimation method which
merely uses the engine structural vibration signal. According to the estimated results
under both stationary operating conditions and non-stationary operating conditions, they
can show that even though both Algorithm 5.1 and Algorithm 6.2 are conducted based
on the same model Ĝ (i.e., 9th order and MOESP(s)), the cylinder pressure estimation
results in this section become different with the estimation results in Section 5.3. Thus
the conclusion of the calculation of the instantaneous engine cycle frequency can affect
the cylinder pressure estimation in Chapter 5 is validated.
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Chapter 7

Nonlinear Model-Based Cylinder
Pressure Estimation

7.1 Introduction
In Chapter 5 and Chapter 6, cylinder pressure estimation is conducted in a linear frame-
work. However, as aforementioned, in practice the relationship between four cylinder
pressure signals and one vibration signal is complex, and the model accuracy can affect
cylinder pressure estimation results. Therefore a nonlinear model between four cylinder
pressure signals and one vibration signal has an advantage to describe the complexity.
Additionally, as investigated in Section 5.5 even though based on using an ideal model,
the cylinder pressure reconstruction results cannot be improved much, it is still mean-
ingful to check the cylinder pressure estimation results based on using a nonlinear model
because the ideal model cannot be obtained in practice. In this chapter, based on the
nonlinear model Ĝnon identified in Chapter 4, a nonlinear model-based cylinder pressure
estimation framework is developed. This chapter is organized as follows. In Section 7.2,
the specific nonlinear cylinder pressure estimation algorithm is first illustrated, followed
by Section 7.3, in which the corresponding cylinder pressure estimation results are given.
Finally, in Section 7.3, a summary of this chapter is given.

7.2 Nonlinear Cylinder Pressure Estimation
Algorithm

The total nonlinear cylinder pressure estimation algorithm is illustrated in Figure 7.1.
The total framework contains two parts, i.e., part A and part B.

Part A can be seen as an offline design procedure, which contains three components,
and they are described as follows:

(i) Identify the nonlinear model (2.136) between four (processed) cylinder pressure
signals and one (processed) vibration signal. As aforementioned, the deterministic
sub-model in the model (2.136) is denoted as Gd

non. en(k) denotes the scalar output
error.

(ii) Regard other three cylinder pressure signals as the delay versions of the cylinder No.
1 pressure signal. As a result, by combing three delay systems with the identified
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Figure 7.1: Nonlinear cylinder pressure estimation framework.

model Ĝd
non, a SISO model can be finally obtained as displayed in part A of Figure

7.1.

(iii) Augment the cylinder pressure signal model with the identified model Ĝd
non and

three delay systems (i.e., state augmentation), then the augmented model Ga can
be obtained. The cylinder pressure signal modeling can be referred to the order
modeling as introduced in Section 5.2.1.

Part B can be regarded as an implementation procedure. With the nonlinear aug-
mented model Ga, a nonlinear Kalman filter for it can be derived, and then by using
the vibration signal as the input of the nonlinear Kalman filter (e.g., EKF), the state
of the augmented model can be recursively estimated, and with the estimated state, the
estimated value of the cylinder No. 1 pressure signal can be recursively obtained, and
simultaneously other three cylinder pressure signals can also be obtained based on the
delay block bank which contains three delay blocks.

Below, the model augmentation and nonlinear cylinder pressure estimation algorithm
are described in Section 7.2.1 and Section 7.2.2, respectively.
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7.2.1 Model Augmentation
With the TVDB model (5.28), the SISO model with additive error shown in Figure 7.1
can be represented asxs(k + 1) = As(f(k))xs(k) +Bs(f(k))P1(k),

y(k) = fN (Cs(f(k))xs(k)) + en(k),
(7.1)

where the state vector xs(k) ∈ Rns , and the output error en(k) is induced by the mea-
surement noise, the disturbance on the model Gd

non, the cylinder-to-cylinder difference,
and the error in the formulation process of TVDB model (5.28).

The matrices As(f(k)), Bs(f(k)), Cs(f(k)), Ds, and the state vector xs(k) are re-
spectively given as

As(f(k)) =



AL BL


0 0 0

Cd(f(k)) 0 0
0 Cd(f(k)) 0
0 0 Cd(f(k))



0


Ga

d(f(k)) 0 0
Ha

d(f(k))Cd(f(k)) Ga
d(f(k)) 0

0 Ha
d(f(k))Cd(f(k)) Ga

d(f(k))




, (7.2)

Bs(f(k)) =
((

1 0 0 0
)
BT

L (Ha
d(f(k)))T 0

)T
, (7.3)

Cs(f(k)) =

CL DL


0 0 0

Cd(f(k)) 0 0
0 Cd(f(k)) 0
0 0 Cd(f(k))


 , (7.4)

Ds = DL


1
0
0
0

 , (7.5)

and
xs(k) =

(
xT(k) xT

1 (k) xT
2 (k) xT

3 (k)
)T
, (7.6)

where x1(k), x2(k), and x3(k) denote the state vectors of three delay block models shown
in Figure 7.1, respectively.

By augmenting the model (7.1) with the state of the model of the cylinder No. 1
pressure signal (see the model (5.3)), the following augmented model Ga can be obtained:xa(k + 1) = Aa(f(k))xa(k),

y(k) = fN (Cs(f(k))Caxa(k)) + ea(k),
(7.7)

where the state vector xa(k) ∈ Rna , and the term ea(k) denotes the output error which is
induced by en(k) and eP1(k).
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The matrices Aa(f(k)) and Ca(f(k)), and the state vector xa(k) are given as

Aa(f(k)) =
(
As(f(k)) Bs(f(k))CP1

0 AP1(f(k))

)
, (7.8)

Ca =
(
Ins 0

)
, (7.9)

and
xa(k) =

(
xT

s (k) xT
P1(k)

)T
, (7.10)

respectively.

7.2.2 Nonlinear Cylinder Pressure Estimation
Based on the nonlinear cylinder pressure estimation framework displayed in Figure 7.1
and the above analysis, four cylinder pressure signals can be recursively estimated. In the
implementation process, the nonlinear square-root Kalman filter with a forgetting factor is
used for handling the numerical problem, the non-stationary problem, and the mismodling
problem (see Section 5.3). Prior to introducing the specific reconstruction method, the
sequence {ea(k)} is assumed to be a scalar white noise process, of which the covariance
function is σ2

aδkj, i.e., E
[
ea(k)eT

a (j)
]

= σ2
aδkj, and the value of σ2

a is tunable. ea(k) is
also assumed to be uncorrelated with xa(0) which is assumed to be a random variable
with constant mean and variance. The specific nonlinear cylinder pressure estimation
procedure is given in Algorithm 7.1.

Algorithm 7.1: Nonlinear cylinder pressure estimation algorithm using the
square-root Kalman filter with a forgetting factor.

Initialization: S(0) = 10Ina , x̂a(0) = Ina

1 for k = 1→ N − 1 do
/* Nonlinear square-root Kalman filter with a forgetting factor

*/
2 S−(k) = 1

λ
Aa(f(k − 1))S(k − 1) // λ denotes the forgetting factor,

see Remark 2.4
3 x̂−a (k) = Aa(f(k − 1))x̂a(k − 1)
4 F (k) = S−(k)CT

aL(k) // CaL(k) ≈ ∂fN(Cs(f(k))Caxa(k))
∂xT

a (k)

∣∣∣
xa(k)=x̂−

a (k)
5 α(k) = 1

FT(k)F (k)+σ2
a

6 K(k) = α(k)S−(k)F (k)
7 γ(k) = 1

1+
√
σ2

a
√
α(k)

8 S(k) = S−(k)− γ(k)K(k)F T(k)
9 x̂a(k) = x̂−a (k) +K(k) (y(k)−CaL(k)x̂−a (k))

/* Cylinder pressure estimation */
10 P̂1(k) =

(
0 CP1

)
x̂a(k)

11 P̂3(k) = G̃a
d(q−1, f(k))P̂1(k) // G̃a

d(q−1, f(k)) denotes the conceptual
time-varying transfer operator of the model (5.28) (i.e., G̃a

d)
12 P̂4(k) = G̃a

d(q−1, f(k))P̂3(k)
13 P̂2(k) = G̃a

d(q−1, f(k))P̂4(k)
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The stability of the nonlinear square-root Kalman filter in Algorithm 7.1 is not em-
phasized in this thesis, and it can be referred to [26].

7.3 Nonlinear Cylinder Pressure Estimation Results
Algorithm 7.1 was implemented to estimate four cylinder pressure signals. From figure 7.2
to Figure 7.10, the estimated curves of four cylinder pressure signals under nine stationary
operating conditions are displayed.

For cylinder pressure estimation in Algorithm 7.1, there are a number of tunable
parameters, and the tunable parameters used here are displayed in Table 7.1. Specifically,
besides the identified model, other parameters in Algorithm 7.1 are chosen as the same as
the parameters used in the linear cylinder pressure estimation framework in Section 5.3.

Table 7.1: Tunable parameters.

Parameter Value

ν 35
la 10
np 40
σ2

a 2.3× 10−5

λ 0.9995
Ĝd

non 9th order (nonlinear model)
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Figure 7.2: Cylinder pressure estimation under the stationary operating condition Z1
(1200 rpm, 60 Nm) using Algorithm 7.1.
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Figure 7.3: Cylinder pressure estimation under the stationary operating condition Z2
(1200 rpm, 120 Nm) using Algorithm 7.1.

6000 6100 6200 6300 6400 6500 6600 6700 6800 6900

Crank Angle (deg)

-40

-20

0

20

40

60

80

100

120

A
m

p
lit

u
d

e
 (

b
a

r)

P̂1

P̂3

P̂4

P̂2

P1

P3

P4

P2

Figure 7.4: Cylinder pressure estimation under the stationary operating condition Z3
(1200 rpm, 180 Nm) using Algorithm 7.1.
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Figure 7.5: Cylinder pressure estimation under the stationary operating condition Z4
(2100 rpm, 60 Nm) using Algorithm 6.2.
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Figure 7.6: Cylinder pressure estimation under the stationary operating condition Z5
(2100 rpm, 120 Nm) using Algorithm 7.1.

112



6000 6100 6200 6300 6400 6500 6600 6700 6800

Crank Angle (deg)

-50

0

50

100

150

200

A
m

p
lit

u
d

e
 (

b
a

r)

P̂1

P̂3

P̂4

P̂2

P1

P3

P4

P2

Figure 7.7: Cylinder pressure estimation under the stationary operating condition Z6
(2100 rpm, 180 Nm) using Algorithm 7.1.
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Figure 7.8: Cylinder pressure estimation under the stationary operating condition Z7
(3000 rpm, 60 Nm) using Algorithm 7.1.
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Figure 7.9: Cylinder pressure estimation under the stationary operating condition Z8
(3000 rpm, 120 Nm) using Algorithm 7.1.
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Figure 7.10: Cylinder pressure estimation under the stationary operating condition Z9
(3000 rpm, 180 Nm) using Algorithm 7.1.
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Corresponding to the figures from Figure 7.2 to Figure 7.10, Table 7.2 and the tables
from Table G.10 to Table G.12 display the cylinder pressure estimation results (i.e., the
average values µ(ePmax) and µ(ePloc) and standard deviation values σ(ePmax) and σ(ePloc) in-
troduced in Chapter 5) under nine stationary operating conditions. The values of µ(ePmax)
vary from −65.14% to 8.44%, but most of the absolute values of µ(ePmax) are less than
30%. Additionally, most of values of σ(ePmax) are less than 2.5%. For the peak location
estimation, most of the absolute values of µ(ePloc) do not exceed 5◦, while most of values
of σ(ePloc) are less than 1◦.

For the case of cylinder pressure estimation based on the nonlinear model Ĝd
non, in

general the estimation results (including the estimated curves and the estimated combus-
tion metrics Pmax and Ploc) under the stationary operating conditions Z1, Z2, and Z3 are
better than the estimation results under other stationary operating conditions. Compared
with the cylinder pressure estimation results in Section 5.3, the estimation results based
on the nonlinear model are worse in general.

Table 7.2: Cylinder No. 1 pressure estimation results evaluation based on Algorithm
7.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax)−11.30% 7.81% 1.03%−11.44%−61.24%−51.50%−23.64%−28.41%−25.54%
σ(ePmax) 1.45% 0.97% 1.64% 0.95% 2.03% 1.27% 0.97% 0.95% 1.10%
µ(ePloc) 1.67◦ −0.77◦−0.51◦ −0.68◦ 6.09◦ 5.45◦ 4.28◦ 5.74◦ 4.59◦
σ(ePloc) 0.55◦ 0.24◦ 0.45◦ 4.17◦ 0.38◦ 0.38◦ 0.71◦ 0.77◦ 0.55◦

Note: mean(ePmax) denotes the average value of 50 cylinder pressure peak values.
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Figure 7.11: Cylinder No. 1 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 7.1.
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For non-stationary operating conditions (i.e., the transient process Zt and the transient
process Z̃t, the pressure peak and peak location estimation results are illustrated in Figure
7.11 and the figures from Figure G.10 to Figure G.12. According to the results, it can be
found that for lower engine speeds (i.e., under the condition Zt), in general, the absolute
values of ePmax do not exceed 20%, and the absolute values of ePloc are smaller than 10◦.
As a comparison, for higher engine speeds (i.e., under the condition Z̃t), generally the
absolute values of ePmax are less than 50%, while the absolute values of ePloc do not exceed
10◦.

The cylinder pressure estimation results (i.e., the pressure peak and peak location)
under the operating condition Zt are better than the results under the operating condition
Z̃t. With the estimation results under both stationary operating conditions and non-
stationary operating conditions, it can be known that the cylinder pressure estimation is
especially effective at low engine speeds. Additionally, by a comparison with the cylinder
pressure estimation results under non-stationary operating conditions in Section 5.3 and
Section 5.4, the estimation results become worse generally.

7.4 Summary
In this chapter, the cylinder pressure estimation is conducted by using the nonlinear frame-
work as illustrated in Figure 7.1. The nonlinear estimation framework was validated under
both stationary operating conditions and non-stationary operating conditions. Compared
with the estimation results in the linear framework proposed in Chapter 5, under the non-
linear framework the estimation results do not become better even though the nonlinear
model Ĝd

non has higher fitness, which also indicates that the model quality is not the
unique factor which can affect the cylinder pressure estimation.
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Chapter 8

Inverse Model-Based Cylinder
Pressure Reconstruction

8.1 Introduction
Given an LTI system model, the inversion of the model has numerous practical implemen-
tations including but not limited to input reconstruction [86, 87] and inverse model-based
feedforward control [88, 89]. For nonminimum-phase systems1 or strictly proper systems,
such inversion is not always straightforward. In addition, multivariable systems and un-
stable systems impose additional complications. System inversion has received significant
attention, also from a theoretical perspective [90]. Comparing with the methods proposed
in Chapter 5, Chapter 6, and Chapter 7, in this chapter, an inverse identification-based
cylinder pressure reconstruction method, which can avoid the inverse problems which are
encountered in nonminimum-phase systems or strictly proper systems, is proposed. The
proposed method does not need delay blocks and the calculation of the engine speed. The
outline of the subsequent sections of this chapter is depicted as follows. In Section 8.2, the
main algorithm of inverse model-based cylinder pressure reconstruction is first illustrated,
and then in Section 8.3 and Section 8.4, the corresponding reconstruction results and a
numerical example are shown. At last, a summary of this chapter is given.

8.2 Cylinder Pressure Reconstruction by Using
Inverse Model Identification

Write the model (4.2) a little more explicitly, and then the following equation can be
obtained:

y(k) =
(
G1(q−1,θp) G3(q−1,θp) G4(q−1,θp) G2(q−1,θp)

)
u(k) +H(q−1,θp)e(k),

(8.1)
where

(
G1(q−1,θp) G3(q−1,θp) G4(q−1,θp) G2(q−1,θp)

)
= G(q−1,θp), and then if

four transfer functions in G(q−1,θp) are the same and equal to Gs(q−1,θp), a SISO model
with additive error can be obtained:

y(k) = Gs(q−1,θp)u(k) +H(q−1,θp)e(k), (8.2)
1A causal LTI system is referred to as stable (minimum-phase) if and only if all poles (zeros) are inside

the unit circle, otherwise the system is referred to as unstable (nonminimum-phase).
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where u(k) = ∑4
i=1 Pi(k) ∈ R which denotes the summation of four cylinder pressure

signals, and the number of the poles in Gs(q−1,θp) is ns.
The object of this chapter is to reconstruct the curve of the sum of four cylinder

pressure signals by merely using the vibration signal y(k).
Denote the transfer function of the discrete-time modelGs (corresponding toGs(q−1,θp))

as
Gs(z) = Cs (zIns −As)−1Bs +Ds ,

(
As Bs

Cs Ds

)
, (8.3)

and also denote the transfer operator of the model Gs as Gs(q−1) without displaying the
parameter vector θp.

The problem of cylinder pressure reconstruction can be transformed into the prob-
lem of the input reconstruction of the model Gs. The input reconstruction problem is
illustrated in Figure 8.1. In the figure, v(k) = H(q−1,θp)e(k).

+

�

Figure 8.1: Input reconstruction problem.

The difference between u(k) and its reconstructed value û(k) is represented as

es(k) = u(k)− û(k)
= u(k)− Fs(q−1)

(
Gs(q−1)u(k) + v(k)

)
=
(
1− Fs(q−1)Gs(q−1)

)
u(k)− Fs(q−1)v(k), (8.4)

where Fs(q−1) denotes the transfer operator of the model Fs.
According to Equation (8.4), it can be found that when

Fs(z) = G†s(z), (8.5)

where Fs(z) is the transfer function of the model Fs, the contribution of es(k) induced by
the input u(k) can be eliminated, and the remained error −Fs(q−1)v(k) can be suppressed
by enhancing both model quality of the model (8.2) and measurement accuracy of the
signal y(k). In this chapter, given the nominal model (8.2), our objective is to realize high-
accuracy reconstruction of the sum u(k) of four cylinder pressure signals by eliminating
the error in es(k) induced by the input signal u(k).

Based on [91], the inverse G†s(z) can be represented as

G†s(z) ,
(
As −BsD

†
sC −BsD

†
s

D†sCs D†s

)
. (8.6)
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At least two challenges are associated with the direct use of (8.6):

(i) D†s does not exist.

(ii) Nonminimum-phase zeros in Gs(z).

Below, with the objective of this chapter mentioned above, a method is proposed to
find the inverse model Fs such that Fs(z) = G†s(z) and the above two challenges can be
handled. As a result, based on the obtained inverse model and the signal y(k), the sum
u(k) of four cylinder pressure signals can be reconstructed. The specific cylinder pressure
reconstruction algorithm is described using three parts:

(i) Derive an observer-based multisine signal reconstructor.

(ii) Based on the observer-based reconstructor, use the frequency-domain subspace iden-
tification method to identify the inverse model Fs.

(iii) Use the vibration signal y(k) as the input of the identified inverse model F̂s to
obtain the corresponding response, i.e., the reconstructed sum û(k) of four cylinder
pressure signals.

The above three parts are depicted one by one in the sequent sections.

8.2.1 Observer-Based Multisine Signal Reconstructor
In this section, the observer-based multisine signal reconstructor is first derived, and then
several properties of the reconstructor is illustrated.

8.2.1.1 Formulation of observer-based multisine signal reconstructor

As illustrated in Chapter 5, under stationary operating conditions the cylinder pressure
signal can be modeled as the output of a state-space model (see the model (5.3)), so
the sum u(k) of four cylinder pressure signals can also be modeled as the output of a
state-space model which is denoted as Gu, i.e.,xu(k + 1) = Au(f(k))xu(k),

u(k) = Cuxu(k) + eu(k),
(8.7)

where the state vector xu(k) ∈ R2nu+1, and eu(k) denotes the error term.
The matrices Au(f(k)) and Cu are respectively given as

Au(f(k)) =


1 0 · · · 0

0 A1(f(k)) . . . ...
... . . . . . . 0
0 · · · 0 Anu(f(k))

 (8.8)

and
Cu =

(
1 C1 · · · Cnu

)
. (8.9)
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The individual block entries in these block matrices follow from the state-space rep-
resentation of a frequency-modulated sine wave as

Ai(f(k)) =
(

cos(2πif(k)Ts) sin(2πif(k)Ts)
− sin(2πif(k)Ts) cos(2πif(k)Ts)

)
(8.10)

and
Ci =

(
1 0

)
. (8.11)

+ Kalman Filter
for Model 

Figure 8.2: Kalman filter-based estimator Ef .

As seen in Figure 8.2, by augmenting the model (8.2) with the state of the model
(8.7), an augmented model Ga can be finally obtained:xa(k + 1) = Aa(f(k))xa(k),

y(k) = Caxa(k)) + ea(k),
(8.12)

where the state vector xa(k) ∈ Rna , and the term ea(k) denotes the output error which is
induced by v(k) and eu(k).

The matrices Aa(f(k)) and Ca are given as

Aa(f(k)) =
(
As BsCu

0 Au(f(k))

)
(8.13)

and
Ca =

(
Cs DsCu

)
, (8.14)

respectively.
The state vector of the model (8.12) is given as

xa(k) =
(
xT

s (k) xT
u (k)

)T
. (8.15)

where xs(k) ∈ Rns denotes the state vector of the model Gs.
Under stationary operating conditions, with knowing the signal y(k), the linear Kalman

filter for the augmented model (8.12) is first implemented, then the state estimate x̂a(k)
can be obtained, and finally û(k) = Cfx̂a(k), where Cf =

(
0 Cu

)
. The above estima-

tion process for the signal u(k) is illustrated in Figure 8.2, and the Kalman filter-based
estimator is denoted as Ef .
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If only a number of frequency components in the signal u(k) are of interest, e.g., at
constant frequencies 0, fb, 2fb, . . . , (M−1)fb, and meanwhile if the sum of these frequency
components are denoted as ub(k), similar to the signal u(k), the signal ub(k) can be
represented as the output of the following model Gb:xb(k + 1) = Abxb(k),

ub(k) = Cbxb(k)),
(8.16)

where the state vector xb(k) ∈ R2(M−1)+1.
The matrices Ab and Cb are respectively given as

Ab =


1 0 · · · 0

0 A1
. . . ...

... . . . . . . 0
0 · · · 0 AM−1

 (8.17)

and
Cb =

(
1 C1 · · · CM−1

)
. (8.18)

The individual block entries in these block matrices follow from the state-space rep-
resentation of a frequency-modulated sine wave as

Ai =
(

cos(2πifbTs) sin(2πifbTs)
− sin(2πifbTs) cos(2πifbTs)

)
(8.19)

and
Ci =

(
1 0

)
. (8.20)

With the signal model (8.16), the signal ub can be reconstructed by using the recon-
structor Eo displayed in Figure 8.3.

+ Observer for
Model

Figure 8.3: Observer-based reconstructor Eo.

As seen in Figure 8.3, by augmenting the model (8.2) with the state of the model
(8.16), an augmented model G̃a can be finally obtained:x̃a(k + 1) = Ãax̃a(k),

y(k) = C̃ax̃a(k) + v(k),
(8.21)
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where the state vector x̃a(k) ∈ Rña .
Suppose that the error term v(k) can be represented asxv(k + 1) = Ãaxv(k) +m(k),

v(k) = C̃axv(k) + n(k)
(8.22)

where the state vector xv(k) ∈ Rña , and {m(k)} and {n(k)} are white noise processes
uncorrelated with x̃a(0) (a random variable with constant mean x̃0 and constant variance
P̃0). The covariance matrices of {m(k)} and {n(k)} are Qδkj and Rδkj, respectively.
Furthermore the values of both Q and R are assumed to be tunable.

The matrices Ãa and C̃a are respectively given as

Ãa =
(
As BsCb

0 Ab

)
(8.23)

and
C̃a =

(
Cs DsCb

)
. (8.24)

The state vector of the model (8.21) is given as

x̃a(k) =
(
xT

s (k) xT
b (k)

)T
. (8.25)

In Figure 8.3, an observer-based reconstructor Eo is used to reconstruct the signal
ub(k). In the reconstructor, the observer (which is actually a steady-state Kalman filter)
is used for the stochastic model G̃a. The reason why the observer is used rather than using
the Kalman filter with time-variant Kalman gain is that a time-invariant reconstructor
Eo is necessary in the proposed cylinder pressure reconstruction method.

The observer-based reconstructor Eo can be represented as ˆ̃xa(k + 1) =
(
Ãa −LoC̃a

)
ˆ̃xa(k) +Loy(k),

ûb(k) = Co ˆ̃xa(k),
(8.26)

where Co =
(
0 Cb

)
.

As illustrated in Section 2.2.2 (see Remark 2.1), the stabilized gain Lo can be derived
based on using the steady-state Kalman gain of the steady-state Kalman filter for the
augmented model G̃a. Specifically, choose the observer gain Lo such that Ãa − LoC̃a

can be guaranteed to be asymptotically stable, which requires specifying Q and R and
solving an algebraic Riccati equation associated with the optimal filtering problem [68].
The existence of a unique stabilized solution of the algebraic Riccati equation can be
realized under certain conditions which are illustrated in Section 2.2.3:

(i) Q ≥ 0 and R > 0.

(ii) (Ãa,
√
Q) is reachable.

(iii) (Ãa, C̃a) is detectable.
By tuning the values of Q and R, the first two conditions can easily be satisfied, and

for the third condition, (Ãa, C̃a) can be guaranteed to be observable if the signal model
is observable (see Appendix 5E).
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Because the signal ub(k) is a multisine signal, the above formulated reconstructor Eo

is called observer-based multisine signal reconstructor.

8.2.1.2 Properties of the observer-based reconstructor

The existence of the FRF of the reconstructor Eo can be guaranteed because the recon-
structor Eo can be guaranteed to be asymptotically stable by choosing a stabilized gain
Lo.

Under the condition of the existence of the FRF of the reconstructor Eo, several
properties of the reconstructor are illustrated as follows:

(i) The reconstructor is asymptotically optimal (i.e., as k tends to +∞, the reconstruc-
tor is optimal) for the reconstruction of the signal ub if the assumptions on the
model G̃a are satisfied, the model Gs is identified perfectly, the values of Q and R

are true, and the reconstructor Eo is asymptotically stable.

(ii) The FRF values of the reconstructor are only observable at the frequencies specified
in the matrix Ab.

The above properties are obvious. In the following example (i.e., Example 8.1), the
second property of the reconstructor is illustrated.

Example 8.1. Given a SISO model G shown in Figure 8.4, the input signal u(k) =∑8
i=1 sin(2πifkTs), and the transfer function G(z) = z+0.5

z2−1.5z+0.7 , where Ts = 0.001 seconds
and f = 10 Hz.

Reconstructor

Figure 8.4: Reconstruction of u(k).

Formulate the observer-based reconstructor Eo shown in Figure 8.4 for the signal u(k)
according to the reconstructor formulation steps described in Section 8.2.1.2. For the for-
mulation of the reconstructor, set Q = 0.25I18 and R = 0.25 such that an asymptotically
stable reconstructor Eo can be obtained, and the Bode plot of the reconstructor Eo is
illustrated in Figure 8.5.

With the response of the SISO model G and the formulated reconstructor Eo, the
reconstruction result of the signal u(k) can be obtained. Specifically, as shown in Figure
8.5, use the response y(k) as the input of the reconstructor Eo, and then the output is
the reconstructed value of u(k). The reconstruction result of u(k) is displayed in Figure
8.6.

According to the reconstruction result of u(k) in Figure 8.6, it can be known that the
proposed reconstructor of the input signal u(k) of the SISO model G is effective. It can
also be seen that a direct inversion of the model G is avodied for the input reconstruction
purpose.

Based on the above formulated reconstructor Eo, in the remained part of this example,
the second property of the reconstructor is explained and validated.
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Figure 8.5: Bode plot the reconstructor Eo.
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Figure 8.6: Reconstruction of u(k).
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Figure 8.7: Reconstruction of sin(2πf1kTs).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

u2(k)
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Figure 8.8: Reconstruction of sin(2πf2kTs).
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Given two signals u1(k) = sin(2πf1kTs) and u2(k) = sin(2πf2kTs), where f1 = 10 Hz
and f2 = 15 Hz, use the two signals as the input of the SISO model G, respectively,
then two output responses y1(k) and y2(k) can be obtained, respectively. Based on y1(k),
y2(k), and the reconstructor Eo, the reconstructed values of u1(k) and u2(k) can be
obtained. As seen in Figure 8.7 and Figure 8.8, the reconstruction of u2(k) is worse than
the reconstruction of u1(k), which can give a validation of the second property of the
reconstructor Eo. The frequency 10 Hz is included in the model of the signal u(k) while
the frequency 15 Hz is not included. The magnitudes and phases of the FRF values at
frequencies 10 Hz and 15 Hz are shown in Figure 8.5. In summary, the unobservability
of the FRF value at 15 Hz is caused by the unobservability of the state of signal model
of u(k) corresponding to the frequency 15 Hz not specified in the signal u(k). Thus the
concept of the so-called observability of the FRF value is explained and simultaneously
the observability property is validated. �

8.2.2 Inverse Model Identification
As shown in Section 8.2.1.1, the formulation of the reconstructor Eo only depends on
the model Gs, the frequency components in the signal ub, Q, and R, among which the
frequency components are manually specified. The formulation indicates that the IO data
of the model Gs is not used to formulate the reconstructor, therefore if only a number of
frequency components of the sum u(k) of four cylinder pressure signals are of interest, just
specify the frequencies of these frequency components, and then involve these frequencies
in the model of the reconstructor Eo. The FRF points of the Eo at the specified frequencies
can be involved into a sequence which can be denoted as

(Eo(Ωn))M−1
n=0 , (8.27)

where Ωn = ejwnTs with j2 = −1 and wn = 2πnfb.
Actually, for the cylinder pressure reconstruction, an infinite number of frequency

components need to be involved, i.e., a frequency range (or say an engine speed range)
is of interest. However, including an infinite number of frequency components is not
possible. But a finite number of frequencies from the frequency range of interest can
be specified, then a finite number of observable FRF points of the reconstructor Eo can
be obtained, finally a frequency-domain curve fitting can be implemented such that the
identified model can be used as an inverse model in the frequency range of interest.
The above process is called inverse model identification. Frequency-domain subspace
identification introduced in Section 2.6.2 can be used for the curving fitting purpose given
the sequence (Eo(Ωn))M−1

n=0 .

8.2.3 Cylinder Pressure Reconstruction Algorithm
Based on the identified model from inverse model identification method illustrated in
Section 8.2.2, the inverse model can be identified, and then given the engine structural
vibration signal as the input of the inverse model, the sum u(k) of four cylinder pressure
signals can be recursively reconstructed. Below, the specific cylinder pressure reconstruc-
tion algorithm is summarized in Algorithm 8.1.
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Algorithm 8.1: Inverse model-based cylinder pressure reconstruction.
1 Identify the SISO model Gs use the time-domain subspace identification method

illustrated in Chapter 4.
2 Specify a finite number of frequencies in the frequency range of interest, so we

can obtain the sequence (nfb)M−1
n=0 .

3 Formulate the reconstructor Eo depicted in Section 8.2.1.1.
4 Collect the FRF points of Eo at specified frequencies such that a sequence

(Eo(Ωn))M−1
n=0 can be obtained.

5 Based on the sequence (Eo(Ωn))M−1
n=0 , implement the frequency-domain subspace

identification method, and finally we can obtain an identified model Ẽo with
model order nE.

6 û(k) = Ẽo(q−1)y(k). // Ẽo(q−1) denotes the transfer operator of Ẽo

8.3 Cylinder Pressure Reconstruction Results
According to the cylinder pressure reconstruction algorithm introduced in Section 8.2.3,
the SISO model Gs was first identified by using the subspace identification method illus-
trated in Chapter 4, and two datasets (dataset A and dataset B) introduced in Chapter
3 were used for the identification and validation purposes, and the identification results
are shown in Table 8.1. The measure (4.1) is used in the table.

Table 8.1: Identification results of the model Gs.

Model order CVA MOESP CVA(s) MOESP(s)

4 20.17 (9.41) −2.67 (−9.69) 38.93 (42.97) 39.12 (40.45)
5 30.64 (26.26) −26.00 (−89.66) 39.69 (42.15) 39.50 (42.38)
6 30.97 (20.96) −1.25 (−3.40) 39.74 (43.15) 39.63 (42.84)
7 32.15 (26.90) 25.34 (25.23) 39.78 (42.75) 39.63 (41.78)
8 37.66 (35.17) 32.90 (24.15) 39.77 (43.35) 39.87 (25.83)
9 36.32 (34.58) 34.62 (33.98) 38.27 (35.61) 38.37 (36.36)
10 36.21 (36.89) 32.20 (9.79) 40.04 (40.28) 39.88 (42.65)

Note: The meanings of the abbreviations in the first row of this table can be
referred to Section 4.3.1. The fitness in bracket denotes the cross-validation fit-
ness while the fitness without bracket denotes the self-validation fitness.

According to the system identification results displayed in Table 8.1, the model with
6th order and CVA(s) was finally chosen as the model Gs used for the cylinder pressure
reconstruction.

According to the cutoff frequency mentioned in Chapter 3, a finite number of frequen-
cies in the frequency range of interest were specified, as a result the sequence (nfb)150

n=1 was
obtained, where fb = 6 Hz. Then based on the identified SISO model, the specified fre-
quencies, and the specified Q (equal to 0.25I306) and R (equal to 0.25), the corresponding
reconstructor Eo depicted in Section 8.2.1.1 was derived. The Bode plot of the obtained
reconstructor Eo is shown in Figure 8.9.
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Based on the derived reconstructor Eo, the sequence (Eo(Ωn))150
n=1 was obtained, where

Ωn = ej2πnfbTs . Based on the sequence (Eo(Ωn))150
n=1, the frequency-domain subspace iden-

tification method introduced in Section 4.3.2 was implemented. Specifically, the subspace
algorithm was looped over different model orders (nE was chosen from 4 to 10) and dif-
ferent block rows (r was chosen from nE + 1 to 30) of the extended observability matrix.
The stability of the identified models was forced by reflecting unstable poles into the unit
disk [43]. The LM algorithm was carried out to optimize the model parameters obtained
with the subspace algorithm. Finally, according to the cylinder pressure reconstruction
results, the identified model with 8th order was used as the model Ẽo. The Bode plot of
Ẽo is illustrated in Figure 8.10.
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Figure 8.9: Bode plot of the obtained reconstructor Eo.
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Figure 8.10: Bode plot of the model Ẽo.
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Figure 8.11: Cylinder pressure reconstruction under the stationary operating condition
Z2 (1200 rpm, 120 Nm) using Algorithm 8.1.
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Figure 8.12: Cylinder pressure reconstruction under the stationary operating condition
Z5 (2100 rpm, 120 Nm) using Algorithm 8.1.
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Figure 8.13: Cylinder pressure reconstruction under the stationary operating condition
Z8 (3000 rpm, 120 Nm) using Algorithm 8.1.
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Figure 8.14: Cylinder pressure peak location reconstruction under the operating condition
Zt (just show 400 peak locations) using Algorithm 8.1.

With the identified model Ẽo and corresponding output vibration signal, the cylinder
pressure signal reconstruction results can be obtained under three different stationary
operating conditions. The results are displayed in Figure 8.11, Figure 8.12, and Figure
8.13. According to the cylinder pressure reconstruction results, it can be known that the
reconstruction quality is not good in general, especially the pressure peak (Pmax) is not
reconstructed well, while the reconstruction of the peak location (Ploc) is better. From
the results, it can also be known that the proposed inverse model-based cylinder pressure
reconstruction method at least can work even though the reconstruction precision is not
good.

As an example, merely reconstructing the peak location under the operating condition
Zt is displayed in Figure 8.14. The reconstruction results in Figure 8.14 indicate that in
practical applications, if the peak location is of interest only, and if the requirement
of the accuracy of the reconstructed peak location is not high, the inverse model-based
cylinder pressure reconstruction method proposed in this chapter can be chosen because
this method can easily be realized.

In the end of this section, it should be noted that the cylinder pressure reconstruction
results shown in the figures are not original results because 60 bar were added into them,
i.e., the original DC offset is not accurate. Two possible reasons why the DC offset is not
accurate are as follows:

(i) In the frequency-domain subspace identification method (see Algorithm 2.2), the
FRF point value at the frequency 0 Hz was not well estimated.

(ii) The SISO model Gs was not identified well.
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8.4 A Numerical Example for Validation

Because the identified SISO model Ĝs does not have a good quality. The practical example
in the above cannot sufficiently show that effectiveness of the inverse model-based input
reconstruction. Here a numerical example is used to illustrate the effectiveness of the
proposed input reconstruction method without the effect from the inaccurate SISO model.

Example 8.2. Given a transfer function model described by G(z) = z
z2−1.5z+0.7 . The

input signal to be reconstructed is u(k) = sin(2πf1kTs) + sin(2πf2kTs) + sin(2πf3kTs) +
sin(2πf4kTs), where f1 = 100 Hz, f2 = 200 Hz, f3 = 300 Hz, and f4 = 400 Hz, and the
sampling period Ts is 1× 10−5 seconds.

By observing the input signal u(k), a finite number of frequencies were specified in the
frequency range of interest, as a result the sequence (nfb)80

n=1 was obtained, where fb = 6
Hz. Set Q = 0.25I162 and R = 0.25. Then the estimator Eo can be constructed, and the
Bode plot the reconstructor Eo is illustrated in Figure 8.15. Afterwards, the FRF points
of Eo at the specified frequencies can be obtained.

Based on the sequence (Eo(Ωn))80
n=1, the frequency-domain subspace identification

method introduced in Section 4.3.2 was implemented to obtain the model Ẽo. Specif-
ically, the subspace algorithm was looped over different model orders (nE was chosen
from 2 to 8) and different block rows (r was chosen from nE + 1 to 30) of the extended
observability matrix. The stability of the identified models was forced by reflecting un-
stable poles into the unit disk [43]. The LM algorithm was carried out to optimize the
model parameters obtained with the subspace algorithm. The Bode plot the identified
model Ẽo with 5th order is shown in Figure 8.16.
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Figure 8.15: Bode plot of the model Eo.
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Figure 8.16: Bode plot of the model Ẽo with 5th order.
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Figure 8.17: Input reconstruction.
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Figure 8.18: Bode plot of the model G̃.

By using the input signal u(k) and the model G(z), the simulated output was ob-
tained, afterwards with the simulated output and the so-called inverse model Ẽo, the
reconstruction result of the input signal u(k) is illustrated in Figure 8.17.

Furthermore, as shown in Figure 8.18, the bode plot of the model G̃ (G̃(q−1) =
G(q−1)Ẽo(q−1)) can indicate that the inverse model Ẽo is effective in the frequency range
from 0 Hz to 500 Hz. �

Example 8.2 demonstrates the applicability of the proposed inversion method for
nonminimum-phase systems. Moreover, it also indicates that if the model G(z) is ac-
curate, the final input reconstruction result can be good.

8.5 Summary
The inverse model-based input reconstruction method proposed in this chapter can han-
dle the problems (as depicted in Section 8.2) brought by direct inversion methods. From
the formulation of the reconstructor Eo to the inverse model identification, the proper-
ties of the reconstructor Eo are illustrated while the asymptotic property of the inverse
model identification is not analyzed. As seen in Section 8.2, actually the results of the
identification of the inverse model can be validated by observing the quality of the input
reconstruction results. According to the cylinder pressure reconstruction results, it can
be known that at least the reconstructed pressure peak location can be used for some
applications even though the reconstructed pressure peak is bad. Furthermore, according
to the cylinder pressure reconstruction results in Section 8.3 and the numerical example
illustrated in Section 8.4, the model quality can largely affect the effectiveness of the
observer-based reconstructor.
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Chapter 9

Discussion, Conclusions, and Future
Research

9.1 Discussion and Conclusions
IC engine fuel economy, CO2, and harmful emissions can all benefit from the use of
closed-loop combustion control [1]. Additionally, misfire/knock detection systems can also
monitor the health and performance of IC engines. But to be successful, both engine com-
bustion control and misfire/knock detection systems require sensing of the instantaneous
pressure signals on all cylinders. Cylinder pressure sensors are available for direct mea-
surement and are fitted routinely during engine development and also on some production
engines. However, the use of direct sensing is still a major problem for volume-produced
engines owing to high sensor cost and limited lifetime. In addition, installing issues can
either be problematic.

In order to avoid the drawbacks of the direct sensing of the cylinder pressure, nu-
merous attempts have been made to find indirect ways to reconstruct cylinder pressure
using information from other sensors fitted to engines. This process is also called virtual
sensing process [3] and involves construction or identification of an inverse mathematical
model linking the alternative sensor signal to cylinder pressure. The main types of alter-
native sensor signals have been the use of the engine speed signal or the engine structural
vibration signal. The aim being that when a well-constructed or well-identified inverse
model is supplied with the alternative sensor signal as an input, it gives an instantaneous
reconstruction of the cylinder pressure as the output which can then be used for feedback
combustion control or misfire detection or knock detection. However, there exist a number
of difficulties in current cylinder pressure reconstruction methods, such as ill-conditioned
inverse problems (brought from inverse model-based methods), spectrum leakage prob-
lems (caused by FRF-based methods), and the requirement of large number of IO data
(when using ANNs).

With the objective which is to handle the existing problems in current cylinder pres-
sure reconstruction methods, in this thesis, based on the identified models between four
cylinder pressure signals and one engine structural vibration signal, the linear model-
based, nonlinear model-based, and inverse model-based cylinder pressure reconstruction
method are proposed. These methods are time-domain methods and are alternative to
current existing cylinder pressure reconstruction methods. All the proposed methods can
be cast in one unified framework which can be called input reconstruction. Below the
reason why they can be cast in one unified framework is illustrated.
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Prior to giving the reason, a summary of the system identification in Chapter 4 is
briefly made. Both linear models and nonlinear models between four cylinder pressure
signals and one vibration signal were identified based on using the collected data from the
engine test bench shown in Figure 3.1. Linear models were obtained based on using both
time-domain system identification and frequency-domain system identification. For the
model identification, just the deterministic sub-models are of interest, and the second-
order statistics of the noise process are regarded as tunable parameters.

With the identified models, the proposed cylinder pressure reconstruction methods
can be conducted. Both linear model-based and nonlinear model-based cylinder pressure
reconstruction methods are based on the conceptual time-varying transfer functions de-
rived based on linear and nonlinear Kalman filtering. The calculated instantaneous engine
cycle frequency is the time-variant parameter of the corresponding time-variant models.
Actually, these time-variant models can be seen as inverse models of which the input is the
engine structural vibration signal. One difficulty in the formulations of these time-variant
models is the derivation of the approximated TVDB. While the inverse model-based cylin-
der pressure reconstruction method is based on a time-invariant transfer function which is
derived based on the theory of observer and frequency-domain system identification. This
method can build the relation between four cylinder pressure signals and one vibration
signal and can avoid using the calculated instantaneous engine cycle frequency and the
approximated TVDB. Generally, with the above analysis all the proposed cylinder pres-
sure reconstruction methods can be cast in one unified framework which uses the output
vibration signal to reconstruct the input cylinder pressure signals. The unified framework
is illustrated in Figure 9.1.

Inverse Model

Nonlinear Time-Variant 
Model

Linear Time-Variant 
Model

A

B

C

Figure 9.1: The framework of input reconstruction (A: cylinder pressure estimation meth-
ods in Chapter 5 and Chapter 6; B: cylinder pressure estimation method in Chapter 7;
C: cylinder pressure reconstruction method in Chapter 8).

There are a number of factors affecting the cylinder pressure reconstruction precision,
such as the approximated TVDB, the precision of the calculation of the instantaneous
engine cycle frequency, and the quality of the identified model between four cylinder

136



pressure signals and one engine structural vibration signal. Most other researches have
obtained ePmax within the range of 5% ∼ 10% and ePloc within the range of −5◦ ∼ +5◦
[19], thus the estimated combustion metrics cylinder pressure peak and peak location in
Chapter 5, Chapter 6, and Chapter 7 are comparable at some engine operating ranges. It
should be noted that even though among all the proposed cylinder pressure reconstruction
methods the estimated cylinder pressure curves are the worst based on the inverse model-
based method, it is still possible for us to use inverse model-based cylinder pressure
reconstruction method when high accuracy of the cylinder pressure reconstruction is not
required because the inverse model-based method proposed in Chapter 8 can be easily
realized.

Finally, a clarification should be made that in this thesis deriving alternative cylinder
pressure reconstruction algorithms which can avoid the drawbacks in existing methods
is the main objective, and the comparisons between the proposed methods in this thesis
and other methods have not been made, and the enhancement of the accuracy of the
reconstructed cylinder pressure using a specific cylinder pressure reconstruction method
is not investigated.

9.2 Future Research
In the future, enhancing the precision of the proposed cylinder pressure reconstruction
methods can be seen as the unified objective of all possible extensions of this thesis.
Several possible extensions for the objective are illustrated as follows:

(i) As seen from the cylinder pressure reconstruction results, it can be known that the
quality of the model between four cylinder pressure signals and one vibration signal
can affect the cylinder pressure reconstruction accuracy. Other kinds of nonlinear
model structures can be explored.

(ii) The effects of the tunable parameters on the cylinder pressure reconstruction in the
chapters from Chapter 5 to Chapter 7 can be investigated. Additionally, the effects
of the calculated/estimated instantaneous engine cycle frequency on the cylinder
pressure reconstruction should also be explored.

(iii) Strategies for decreasing the fluctuations at the bottom of the reconstructed cylinder
pressure curves displayed in the chapters from Chapter 5 to Chapter 7 should be
studied.

(iv) For the nonlinear framework in Chapter 7, the coefficients of the nonlinearity could
be included as states in the model used for EKF. Then, the coefficients could be
estimated online so that the linear part of the model would remain constant whereas
the nonlinear part would be adapted. Alternatively, because the Wiener model
consists of a linear model and an output nonlinearity, the output of the linear model
could be obtained by entering the vibration signal through the inverse nonlinearity.
This would remove the nonlinearity and a linear Kalman filter could be used.

(v) The proposed inverse model-based cylinder pressure reconstruction method in Chap-
ter 8 can only be used for SISO models. However, according to the system identifi-
cation results, it is obvious that the identified SISO models do not have good fitness.
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As a result the potential of the proposed inverse model-based cylinder pressure re-
construction method cannot be sufficiently reached. Therefore it is necessary to
generalize the inverse model-based method so that it can be used for multiple-input
single-output models.

(vi) According to the paper [5], the installing position of the accelerometer can affect the
correlation between the cylinder pressure and vibration signal. Thus the cylinder
pressure reconstruction with different installed positions of the accelerometer can
be studied.
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Appendix

A Proof of Proposition 5.1
Prior to giving the proof of Proposition 5.1, the definition of one-sided Laplace transform
is given below.

Definition .1. [52] The one-sided Laplace transform (or say unilateral Laplace transform)
of the signal l(t) is given by

L(l(t)) =
∫ +∞

0−
l(t)e−st dt. (A.1)

for all s such that the result of the integration is well defined, denoted by the region of
convergence (ROC). �

By using one-sided Laplace transform and its inverse, the constant time delay opera-
tion can be represented as

g(t− τ) = L−1(e−τsL(g(t)))

= L−1
((

1 + (−τs) + 1
2 (−τs)2 + . . .

)
L(g(t))

)
= e−τ(

d
dt)g(t), (A.2)

where d
dt

denotes the first order differential operator with respect to time t. τ is a fixed
dead time. g(t− τ) denotes the delay of g(t), and g(t) = 0 for t < 0.

If the dead time τ is time-varying, i.e., a time-dependent dead time τ(t), according to
[82] and Equation (A.2), the following equation can be obtained:

g(t− τ(t)) = 1
1− d

dt
τ(t)

(
g(t)− d

dt
(T (t)g(t)) + 1

2
d2

dt2
(T (t)g(t))∓ . . .

)
, (A.3)

where d2

dt2
denotes the second order differential operator with respect to the time t, and

T (t) represents an intermediate variable.
fa(t) can be seen as an approximation of f(t) because fa(t) is the zero-order hold of

f(k). Additionally, it is obvious that fa(t) is a staircase signal, of which the function is
regarded as a right-continuous function. Then come back to our problem, as aforemen-
tioned, the delay between every two consecutive cylinder pressure signals in time domain
can be represented as τ(t) = 1

4f(t) , thus τ(t) ≈ 1
4fa(t) . The dead time 1

4fa(t) is approximately
used as the delay between every two consecutive cylinder pressure signals.

Finally, based on the above analysis and Equation (A.3), if g(t) denotes the cylinder
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No. 1 cylinder pressure signal and g(t−τ(t)) denotes the cylinder No. 3 cylinder pressure
signal, g(t− τ(t)) ≈ e−

1
4fa(t)( d

dt)g(t) without the additional terms d
dt
τ(t) and T (t). So the

TVDB transfer function can be approximately denoted as e−
1

4fa(t) s.

B Proof of Proposition 5.2

The transfer function of the model (5.19) can be represented as

Ha
d(s) = Cd(Td(t))|Td(t)=1

(
sIν − Ad(Td(t))|Td(t)=1

)−1
Bd, (B.1)

and by substituting Td(t)s into s in Equation (B.1), the transfer function of the model
(5.15) can be obtained as

Ga
d(s, Td(t)) =

Cd(Td(t))|Td(t)=1

Td(t)

(
sIν −

Ad(Td(t))|Td(t)=1

Td(t)

)−1

Bd. (B.2)

C Numerical Approximations

The state transition matrix of the model (5.15) can be represented as

Φ(t, t0) = Iν +
∫ t

t0
Ad(Td(h1)) dh1 +

∫ t

t0

∫ h1

t0
Ad(Td(h1))Ad(Td(h2)) dh2dh1 + . . . , (C.1)

furthermore, Ad(Td(t)) and
∫ t
t0
Ad(Td(h1)) dh1 commute (see Appendix 5B), i.e.,

Ad(Td(t))
∫ t

t0
Ad(Td(h1)) dh1 =

∫ t

t0
Ad(Td(h1)) dh1Ad(Td(t)), (C.2)

then based on Equation (C.2), the series in Equation (C.1) can be rewritten as

Φ(t, t0) =
+∞∑
i=0

1
i!

(∫ t

t0
Ad(Td(h1)) dh1

)i
. (C.3)

Based on Equation (C.3), it is obvious that Φ(t, t0) = e
∫ t
t0
Ad(Td(h1)) dh1 . Perform the

rectangle integration [28] on the right side of Equation (C.3) with t0 = kTs, t = (k+ 1)Ts,
and the maximum value of i chosen as la, the following formula can be obtained:

Gd(Td(k)) = Φ ((k + 1)Ts, kTs)

≈ Iν + 4Tsfa(k) Ad(Td(t))|Td(t)=1 + 1
2!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)2

+ . . .+ 1
la!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)la
. (C.4)

The numerical calculation for the matrix Hd(Td(k)) is illustrated as follows:

Hd(Td(k)) =
∫ (k+1)Ts

kTs
Φ ((k + 1)Ts, β)Bd dβ
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≈
∫ (k+1)Ts

kTs

Iν +
(∫ (k+1)Ts

β
4f(t) dt

)
Ad(Td(t))|Td(t)=1

+ 1
2!

((∫ (k+1)Ts

β
4f(t) dt

)
Ad(Td(t))|Td(t)=1

)2

+ . . .+ 1
la!

((∫ (k+1)Ts

β
4f(t) dt

)
Ad(Td(t))|Td(t)=1

)laBd dβ

≈
∫ (k+1)Ts

kTs

(
Iν + 4fa (β)((k + 1)Ts − β) Ad(Td(t))|Td(t)=1

+ 1
2!
(
4fa(β) ((k + 1)Ts − β) Ad(Td(t))|Td(t)=1

)2

+ . . .+ 1
la!
(
4fa(β) ((k + 1)Ts − β) Ad(Td(t))|Td(t)=1

)la)
Bd dβ

=
(
TsIν +

( 1
2!4fa (β)((k + 1)Ts − β)2 Ad(Td(t))|Td(t)=1

)∣∣∣∣(k+1)Ts

kTs

+
( 1

3!4fa(β) ((k + 1)Ts − β)3 Ad(Td(t))|Td(t)=1

)∣∣∣∣(k+1)Ts

kTs

+ . . .+
( 1
la!4fa (β)((k + 1)Ts − β)la Ad(Td(t))|Td(t)=1

)∣∣∣∣(k+1)Ts

kTs

)
Bd

= Ts

(
Iν + 1

2!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)
+ . . .+ 1

la!
(
4Tsfa(k) Ad(Td(t))|Td(t)=1

)la−1
)
Bd. (C.5)

It should be noted that for the second-time approximation in Equation (C.5), the
rectangle integration is also implemented.

D Balanced Realization

As introduced in Proposition 5.1, fa(t) is right-continuous, so according to Td(t) = 1
4fa(t) ,

it can be found that Td(t) is also right-continuous, i.e., in every sampling period Ts, the
value of Td(t) is constant. So in the model (5.15) the matrices Ad(Td(t)) and Cd(Td(t)),
which depend on Td(t), are constant in every sampling period Ts.

For the balanced realization of an LTV model, the balanced transformation matrix is
time-variant [92]. Denote the balanced transformation matrix of the model (5.15) as Tb(t),
because the matrices Ad(Td(t)), Bd, and Cd(Td(t)) are constant in every sampling period,
the matrix Tb(t) is constant in every sampling period either. The balanced realization of
the model (5.15) can be represented asẋd(t) = T−1

b (t)Ad(Td(t))Tb(t)xd(t)− T−1
b (t)Ṫb(t)xd(t) + T−1

b (t)Bdud(t),
yd(t) = Cd(Td(t))Tb(t)xd(t).

(D.1)

The functions of Tb(t), Ad(Td(t)), and Cd(Td(t)) can be regarded as right-continuous
functions. Define the break point between one sampling period and its consecutive period
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as tb, then

ẋd(tb) = lim
t→t+b

ẋd(t),

= T−1
b (t+b )Ad(Td(t+b ))Tb(t+b )xd(t+b )− T−1

b (t+b )Ṫb(t+b )xd(t+b ) + T−1
b (t+b )Bdud(t+b ),

= T−1
b (t+b )Ad(Td(t+b ))Tb(t+b )xd(t+b ) + T−1

b (t+b )Bdud(t+b ), (D.2)

where t+b denotes the time t tends to tb from right, and Ṫb(t+b ) = 0, and

yd(tb) = lim
t→t+b

yd(t),

= Cd(Td(t+b ))Tb(t+b )xd(t+b ). (D.3)

According to Equations (D.2) and (D.3), it can be known that in every sampling period
Ts the balanced realization of the model (5.15) is the same as the balanced realization of
LTI models.

Based on Equations (5.21) and (5.22), Equations (D.2) and (D.3) can be transformed
into 

ẋd(tb) = T−1
b (t+b )

Ad(Td(t))|Td(t)=1

Td(t+b ) Tb(t+b )xd(t+b ) + T−1
b (t+b )Bdud(t+b ),

yd(tb) =
Cd(Td(t))|Td(t)=1

Td(t+b ) Tb(t+b )xd(t+b ).
(D.4)

By observing (D.4), the problem of the balanced realization of the model (5.15) can
be transformed into the problem of the balanced realization of the model (5.19).

E Reachability and Observability of the TVDB
Model

According to the calculation of the instantaneous engine cycle frequency f(k) in Figure
3.5, in each ∆θp, the model (5.15) is a LTI model, and then it is minimally-realized in
every ∆θp. According to the preservation of reachability and observability under sampling
with a zero-order hold [27], it can be known that in every ∆θp, a controllable, observable,
continuous-time, time-invariant linear model (5.15) with input that passes through a
period-Ts sampler and zero-order hold yields a reachable, observable, discrete-time, time-
invariant linear model (5.23) if

λk − λi 6=
2πqj
Ts

, q = ±1,±2, . . . , (E.1)

where j2 = −1, for every pair of eigenvalues of λk and λj of the matrix Ad(Td(t)).
Based on Equation (E.1), it can be known that in every ∆θp, by choosing a suitable

sampling period Ts, both reachability and observability can be preserved, i.e., the model
(5.23) is both reachable and observable, thus the reachability and observability of the
model (5.28) can be hold if a suitable la is selected. Finally, based on the above analysis,
the LTV model (5.28) is uniformly reachable and uniformly observable. One possible way
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to choose the values of Ts and la is that make the sampling period Ts smaller while make
the value of la larger.

F Observability of the Augmented Model

The observability of the time-variant augmented model (5.35) (i.e., the model Ga) can
be verified by observing the observability of the augmented model in every angle ∆θp,
and the reason is that in every angle ∆θp the augmented model is a LTI model, and then
if the observability of the augmented model can be guaranteed in every angle ∆θp, the
time-variant augmented model (5.35) will be uniformly observable. Below, the specific
observability verification of the augmented model in every angle ∆θp is illustrated.

From the paper [93], it can be known that the stochastic augmented model (5.35)
is observable if and only if its deterministic sub-model is observable. Therefore, the
observability of (Aa(f(k)),Ca(f(k))) can be verify just in every angle ∆θp. Use ith ∆θp

(i.e., ∆θp
i ) as an example, and in this angle duration, according to the SISO model (5.29),

suppose the following equations can be obtained:

xs(1) = As(f(k))xs(0) +Bs(f(k))CP1xP1(0), (F.1)
xs(2) = As(f(k))xs(1) +Bs(f(k))CP1AP1(f(k))xP1(0), (F.2)
. . .

xs(nu) = As(f(k))xs(2np) +Bs(f(k))CP1A
2np
P1 (f(k))xP1(0), (F.3)

then the following equation can be obtained:

OxP1(0) = J (F.4)

with

O =


BCP1

BCP1AP1(f(k))
...

BCP1A
2np
P1 (f(k))

 (F.5)

and

J =


xs(1)−As(f(k))xs(0)
xs(2)−As(f(k))xs(1)

...
xs(2np + 1)−As(f(k))xs(2np)

 . (F.6)

By choosing suitable values of Ts and la, as illustrated in Appendix 5D the SISO
model (5.29) can be guaranteed to be observable in every ∆θp, therefore the initial state
vector xs(0) of the SISO model (5.29) can always be determined by the response sequence
(y(k))2np

k=0, as a result the state xs(k) for k ≥ 1 can either be determined by using the
state transition equation, as a result, the value matrix J can be obtained by using the
response sequence (y(k))2np

k=0. Additionally, if the signal model (5.3) is observable, it can
be found that the matrix O has a Moore-Penrose inverse, as a result,

xP1(0) = O†J . (F.7)
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Based on the above analysis, in every ∆θp the observability problem of the augmented
model (5.35) can be transformed into the one of the signal model (5.3). If the matrix
AP1(f(k)) has different eigenvalues, the observability of the signal model (5.3) can be
guaranteed. So in order to guarantee the observability, different frequency components
can be included in the input signal P1(k) to make sure that Am(f(k)) 6= An(f(k)) in
AP1(f(k)), where m 6= n. Thus in every angle ∆θp, (Aa(f(k)),Ca(f(k))) can be guar-
anteed to be observable under certain conditions (i.e., suitable values of Ts and la, and
different frequency components involved in P1(k)). As a result, under certain conditions
the time-variant augmented model (5.35) can be guaranteed to be uniformly observable.

G Cylinder Pressure Reconstruction Results
In this section, cylinder pressure reconstruction results obtained in Chapter 5, Chapter
6, and Chapter 7 are illustrated. There are two types of results to be shown in this
section. The first type of the results displays the mean and standard deviation of the
two characteristic parameters ePmax and ePloc under stationary operating conditions, while
the second type of the results shows the curves of the two characteristic parameters ePmax

and ePloc under non-stationary operating conditions. It should be mentioned that the
tables from Table G.1 to Table G.3 correspond to the cylinder pressure estimation results
based on the time-domain identified model while the tables from Table G.4 to Table G.6
correspond to the cylinder pressure estimation results based on the frequency-domain
identified model. Furthermore, the figures from Figure G.1 to Figure G.3 correspond to
the cylinder pressure estimation results based on the time-domain identified model while
the figures from Figure G.4 to Figure G.6 correspond to the cylinder pressure estimation
results based on the frequency-domain identified model.

Table G.1: Cylinder No. 3 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −7.10% 2.46% 10.29% −0.39% −3.02% −2.06% 20.10% 14.29% 16.13%
σ(ePmax) 1.39% 1.38% 10.45% 1.89% 1.84% 1.70% 2.27% 2.65% 1.76%
µ(ePloc) −0.66◦ −2.14◦ −1.51◦ 0.47◦ −1.13◦ −1.53◦ −2.59◦ −0.65◦ 0.68◦
σ(ePloc) 0.77◦ 0.27◦ 0.88◦ 2.35◦ 0.61◦ 0.63◦ 3.21◦ 1.88◦ 0.72◦

Table G.2: Cylinder No. 4 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −8.62% 2.23% 9.24% −1.53% −5.62% −4.79% 18.46% 10.99% 12.96%
σ(ePmax) 1.39% 1.32% 12.04% 1.98% 1.81% 1.62% 2.37% 2.79% 2.07%
µ(ePloc) −0.90◦ −2.22◦ −1.61◦ 0.38◦ −1.07◦ −2.04◦ −3.45◦ −0.50◦ 0.46◦
σ(ePloc) 0.65◦ 0.31◦ 0.70◦ 1.45◦ 0.75◦ 1.93◦ 3.64◦ 1.26◦ 0.81◦
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Table G.3: Cylinder No. 2 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −9.40% 2.08% 12.33% 0.98% −2.05% −1.61% 21.17% 14.88% 15.85%
σ(ePmax) 1.21% 1.54% 5.52% 1.86% 1.71% 1.50% 2.11% 2.80% 1.95%
µ(ePloc) −1.34◦ −2.41◦ −2.33◦ −0.72◦ −1.72◦ −3.31◦ −3.22◦ −1.24◦ 0.10◦
σ(ePloc) 0.68◦ 0.36◦ 1.02◦ 3.26◦ 0.72◦ 1.82◦ 2.71◦ 1.25◦ 1.44◦

Table G.4: Cylinder No. 3 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −7.25% 1.58% 7.85% −12.20% −8.42% −6.21% 2.02% 1.52% 6.48%
σ(ePmax) 0.83% 1.01% 4.69% 0.68% 0.52% 0.60% 0.36% 0.45% 0.44%
µ(ePloc) 0.43◦ −1.82◦ −1.01◦ 5.12◦ 0.07◦ 0.67◦ 1.44◦ 2.50◦ 2.98◦
σ(ePloc) 1.31◦ 1.79◦ 3.76◦ 1.62◦ 0.78◦ 0.96◦ 0.47◦ 0.45◦ 0.61◦

Table G.5: Cylinder No. 4 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −9.29% 0.95% 7.04% −13.47% −11.33% −9.44% −0.18% −2.10% 3.32%
σ(ePmax) 0.89% 0.74% 4.39% 0.58% 0.53% 0.59% 0.38% 0.37% 0.36%
µ(ePloc) −0.05◦ −0.65◦ −0.85◦ 5.32◦ 0.22◦ 1.06◦ 1.23◦ 2.98◦ 3.18◦
σ(ePloc) 1.37◦ 2.12◦ 4.23◦ 1.06◦ 0.82◦ 1.03◦ 0.59◦ 0.50◦ 0.56◦

Table G.6: Cylinder No. 2 pressure estimation results evaluation based on Algorithm
5.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −10.08% 2.20% 9.47% −10.59% −7.66% −6.00% 3.45% 2.26% 6.56%
σ(ePmax) 0.87% 1.18% 2.51% 0.59% 0.46% 0.60% 0.42% 0.43% 0.48%
µ(ePloc) −0.68◦ 0.14◦ −1.90◦ 4.15◦ −0.08◦ 1.17◦ 0.67◦ 2.03◦ 2.51◦
σ(ePloc) 1.46◦ 2.18◦ 3.82◦ 3.03◦ 0.84◦ 1.05◦ 0.52◦ 0.51◦ 0.57◦

Table G.7: Cylinder No. 3 pressure estimation results evaluation based on Algorithm
6.2 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −18.42% 14.75% −10.73% −4.24% −5.70% −3.55% 10.80% 6.47% 9.54%
σ(ePmax) 0.98% 0.71% 4.32% 0.45% 0.42% 0.50% 0.33% 0.46% 0.44%
µ(ePloc) −1.68◦ −3.09◦ −1.76◦ 1.38◦ −0.61◦ −0.97◦ −3.63◦ 0.45◦ 0.82◦
σ(ePloc) 0.73◦ 0.59◦ 5.15◦ 0.72◦ 0.79◦ 0.58◦ 1.04◦ 1.13◦ 1.48◦
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Table G.8: Cylinder No. 4 pressure estimation results evaluation based on Algorithm
6.2 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −20.85% 16.13% −11.93% −5.60% −8.54% −6.62% 8.94% 3.05% 6.42%
σ(ePmax) 1.12% 0.80% 5.33% 0.35% 0.47% 0.56% 0.35% 0.50% 0.45%
µ(ePloc) −2.67◦ −2.93◦ −2.48◦ 1.50◦ −0.41◦ −0.62◦ −3.63◦ 0.87◦ 0.92◦
σ(ePloc) 0.73◦ 0.58◦ 4.48◦ 0.66◦ 0.81◦ 0.61◦ 1.19◦ 1.16◦ 1.62◦

Table G.9: Cylinder No. 2 pressure estimation results evaluation based on Algorithm
6.2 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax) −22.43% 14.93% −10.80% −1.26% −4.73% −3.20% 12.19% 7.20% 9.65%
σ(ePmax) 0.82% 0.91% 5.28% 4.00% 0.51% 0.53% 0.31% 0.49% 0.49%
µ(ePloc) −2.88◦ −2.01◦ −3.62◦ −1.66◦ −0.55◦ −0.47◦ −4.26◦ 0.02◦ 0.29◦
σ(ePloc) 0.85◦ 0.67◦ 6.44◦ 6.92◦ 0.94◦ 0.63◦ 1.25◦ 1.25◦ 1.67◦

Table G.10: Cylinder No. 3 pressure estimation results evaluation based on Algorithm
7.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax)−14.29% 8.44%−3.16%−14.55%−60.97%−49.12%−26.94%−27.03%−21.91%
σ(ePmax) 1.43% 1.15% 11.22% 1.20% 2.13% 1.47% 1.32% 2.25% 1.80%
µ(ePloc) 0.33◦ −1.35◦ −0.57◦ 5.25◦ 5.44◦ 4.97◦ 4.53◦ 5.17◦ 4.41◦
σ(ePloc) 0.80◦ 0.42◦ 0.76◦ 0.83◦ 0.46◦ 0.44◦ 0.79◦ 1.79◦ 1.33◦

Table G.11: Cylinder No. 4 pressure estimation results evaluation based on Algorithm
7.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax)−16.10% 7.91%−4.17%−15.36%−65.14%−52.66%−29.04%−31.27%−26.20%
σ(ePmax) 1.78% 1.14% 12.36% 1.40% 2.32% 1.75% 2.08% 2.80% 1.77%
µ(ePloc) −0.37◦ −1.35◦ −0.44◦ 5.42◦ 5.60◦ 5.52◦ 4.45◦ 5.60◦ 4.16◦
σ(ePloc) 0.54◦ 0.27◦ 0.63◦ 0.73◦ 0.60◦ 1.27◦ 0.82◦ 1.90◦ 0.77◦

Table G.12: Cylinder No. 2 pressure estimation results evaluation based on Algorithm
7.1 (50 engine cycles for each operating condition).

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

µ(ePmax)−16.88% 7.05%−0.49%−12.69%−59.28%−46.32%−24.90%−25.93%−22.47%
σ(ePmax) 1.47% 1.32% 3.75% 1.40% 2.22% 8.41% 1.17% 2.42% 2.18%
µ(ePloc) −0.49◦ −1.32◦ −1.08◦ 3.33◦ 5.44◦ 7.25◦ 4.21◦ 4.49◦ 3.38◦
σ(ePloc) 0.43◦ 0.20◦ 0.49◦ 3.45◦ 0.71◦ 3.41◦ 1.42◦ 0.63◦ 1.13◦
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Figure G.1: Cylinder No. 3 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.2: Cylinder No. 4 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.3: Cylinder No. 2 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.4: Cylinder No. 3 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.5: Cylinder No. 4 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.6: Cylinder No. 2 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 5.1.
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Figure G.7: Cylinder No. 3 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 6.2.
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Figure G.8: Cylinder No. 4 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 6.2.
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Figure G.9: Cylinder No. 2 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 6.2.
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Figure G.10: Cylinder No. 3 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 7.1.
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Figure G.11: Cylinder No. 4 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 7.1.
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Figure G.12: Cylinder No. 2 pressure estimation results evaluation under the operating
conditions Zt (upper two subfigures) and Z̃t (lower two subfigures) using Algorithm 7.1.
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