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A B S T R A C T

Within the framework of the supersymmetric quantum mechanics, the energy spectrum of the six-parameter
exponential-type potential model was obtained. The partition function for this energy has been calculated in a
closed and compact form and was used to obtain an expression for the ro-vibrational mean free energy F T( ),
mean free energy U T( ), entropy S T( ), and the specific heat capacity C T( ). The thermodynamic functions ob-
tained were then applied to study the behaviour of the zinc-blende BN crystal structure and the results obtained
show fair agreement with reported experimental data for the specific heat capacity.

Introduction

There has been a growing interest in investigating the analytical
solutions of wave equations for some typical potential models in the
area of quantum mechanics. This could be because the analytical so-
lution has some useful information that can describe any quantum
system under consideration. A quantum system under nonrelativistic
wave equation in a strong potential field is usually described by the
Schrödinger wave equation. Over the years, various physical potential
models have been studied with the Schrödinger wave equation by dif-
ferent researchers. For instance, Falaye et al. [1], studied bound state
solution of the Schrödinger equation with Manning-Rosen potential,
Hassanabadi et al. [2], obtained approximate analytical solutions to the
generalized-Pöschl-Teller potential in D-Dimensions, Gu et al. [3], ob-
tained energy spectra for modified Rosen-Morse potential solved by the
exact quantization rule, Ikhdair and Abu-Hasna [4], in their study de-
duced quantization rule solution to the Hulthẻn potential in arbitrary
dimension with a new approximation scheme for the centrifugal term,
Bayrak et al. [5], studied exact analytical solutions to the Kratzer po-
tential by the asymptotic iteration method. Gao [6], in his studies,
obtained solutions of the Schrödinger equation for an attractive po-
tential. Onate et al [7] studied the approximate solutions of the
Schrödinger equation with hyperbolical potential in the framework of
supersymmetric quantum mechanics approach, Scott and Shertzer [8],
studied the solution of logarithmic Schrödinger equation with a Cou-
lomb potential. The analytical bound states solution of the five-

parameter exponential-type potential model was proposed by Jia et al.
[9]. The results obtained by using the five- parameter potential model
gave rise to other useful potentials of interest that can be applied to
diverse areas of physics. Recently, these potential models have found
useful applications to molecular physics [10–15]. For example, owing
to the simplicity of this exponential-type potential, Jia and co-workers
obtained the thermodynamic properties of the lithium and sodium
dimer molecules respectively by using the improved Manning-Rosen
potential mode [10,11]. Also, the improved Pӧschl–Teller potential
energy model for diatomic molecules has also been studied by Jia et al.
[13]. The expression for the partition function in this case have been
used by various authors to describe the detail vibrational mean energy,
vibrational specific heat capacity, vibrational mean free energy, and
vibrational entropy for various diatomic molecular systems [10–20].

Motivated by the usefulness and the simplicity of the multiple
parameter exponential-type potential, we proposed a q-deformed six-
parameter exponential-type potential model for applications in mole-
cular and condensed matter physics. The q-deformed six-parameter
exponential-type potential model proposed is of the form
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where Qi, =i 1, 2, 3, and 4, are the adjustable potential parameters. In
this work, the deformed parameter will be taken as unity in all the
computation of numerical results. The results of this potential can
produce the result for constant potential, Coulomb potential, Hulthén
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potential, Yukawa potential, inversely quadratic Yukawa potential,
Hellmann potential and others as we will see in the special cases later.

The Ro-vibrational energy spectrum for q-deformed six-parameter
exponential-type potential

To obtain the solution of the Schrödinger equation in the presence
of the q-deformed six-parameter exponential-type potential given in Eq.
(1), we first consider the original Schrödinger equation given by
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Setting the wave function =ψ r( ) R Y θ ϕ
r

( , )n mℓ ℓ and then consider the
radial part of the Schrödinger equation, Eq. (2) reduces to the form

− + + = −ħ
μ

d R r
dr

ħ
μ r

R r E V r R r
2

( )
2

ℓ(ℓ 1) ( ) ( ( )) ( ),n
n n n

2 2
ℓ
2

2

2 ℓ ℓ ℓ
(3)

It is noted that Eq. (3) cannot be solved for ≠ℓ 0 due to the pre-
sence of the centrifugal term. To address this issue, we must approx-
imate the centrifugal term. For short potential range, the following
formula is suitable for the approximation of the centrifugal term

+ ≈ +
− −r

α
e

ℓ(ℓ 1) ℓ(ℓ 1)
(1 )αr2

2

2 (4)

Substituting Eqs. (1) and (4) into Eq. (3), we have a second-order
differential equation of the form

= +
−

+
+

−

−

−

− −

−
d R r

dr
V R r

V e
qe

R r
V e V e

qe
R r( ) ( )

1
( )

(1 )
( ),n

T n
T

αr

αr n
T

αr
T

αr

αr n
2

ℓ
2 ℓ

2

2 ℓ

2 4

2 2 ℓ0
1 2 3

(5)
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To solve Eq. (5) using the elegant supersymmetric approach [21],
we propose a superpotential function of the form
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whose ground state wave function is written as

∫= −( )R r W r dr( ) exp ( ) .0,ℓ (11)

Eq. (10) is a solution to the differential equation of Eq. (5). But the
manifestation of its reality can been seen only if the values of the two
parameters ω0 and ω1 are known. However, in this bound state solution,
the radial part of the wave function must satisfy the boundary condi-
tions that R r r( )/n,ℓ becomes zero as → ∞r , and R r r( )/n,ℓ is finite at

→r 0. Proceeding further, the non-linear Riccati equation relates to the
solution of Eq. (5) as
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Comparing Eq. (12) to Eq. (5), we have the values of the parameters
in Eq. (10) as follows:
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Using the superpotential function given in Eq. (10), we can now
construct a pair of partner potentials ±V r( ) in the form
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Eqs. (16) and (17) are shape-invariant via mapping of → +ω ω α21 1

as = = +a f a a α( ) 21 0 0 , where =a ω0 1. Here, a0 is an old set of para-
meters and a1 is a new set of parameters uniquely determined from a0.
Establishing a recurrence relation for these two sets of parameters, we
have: = +a a α42 0 , = +a a α63 0 , = +a a α84 0 and consequently,

= +a a nα2n 0 . The two-partner potentials are related by a simple for-
mula

= ++ −V a r V a r R a( , ) ( , ) ( ),0 1 1 (18)

where R a( )1 is a remainder term that is independent of the variable r . In
terms of the parameters of the system, Eq. (18) can be recast in the
following forms
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The energy eigenvalue equation can now be written as

∑ ⎜ ⎟= =⎛
⎝

− − − ⎞
⎠=

−

−
E R a

V V V a
a

( )
2

.n
k

k
T T T n

n
ℓ

1

1
2

1

2
3 2 1

(23)

This finally gives a complete non-relativistic energy equation for the
six-parameter exponential-type potential for arbitrary value of the ro-
vibrational quantum numbers n and ℓ as
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where,
=n n0, 1, 2, ........., ,max = +δ q (ℓ 1), with ℓ being the rotational
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Partition function and thermodynamic properties

The contribution of the energy to the ro-vibrational partition func-
tion for a diatomic molecule at a temperature T is given by
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where =β kT
1 with k as the Botzmann constant and En,ℓ is the ro-

vibrational energy spectrum for the system. Substitution Eq. (24) into
Eq. (25), we obtain
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where
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To evaluate Eq. (26) we use the Poison summation formula given by
[11,22–26]
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For a lower order approximation, Eq. (28) reduces to [16–19]
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By using Eq. (29) we can write Eq. (26) as
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On evaluating the

integral of Eq. (30), we obtained the ro-vibrational partition function
for the molecular q-deformed six-parameter exponential-type potential
model as follows
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and the error function (erf x( )) is the imaginary error function which is
of the sigmoid shape given by [11,22–26].

∫= − =erf x ierf ix
π

e dt( ) ( ) 2 .
x

t

0

2

(33)

From the solution obtained for the vibrational partition function of
Eq. (31), other thermodynamic properties of interest can now be
computed as follows
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b. Vibrational mean free energy F
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c. Vibrational specific heat capacity C
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d. Vibrational entropy S

= −S k Z β kβ U Zln ( ) ( ). (39)

Discussion

The six-parameter exponential-type potential model has been ob-
tained in the non-relativistic regime. The following parameters

= = = = =q Q Q Q Q1, 2, 3,1 2 1 3 4 have been chosen arbitrary for the
computation of the ro-vibrational energy spectrum. As we can see from
the plot of the deformed parameter against the energy, it clearly shows
the attractive nature of the potential (Figs. 1 and 2). There is a
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Fig. 1. The ro-vibrational energy spectrum for the six-parameter exponential-
type potential against the deformed parameter.
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formation of bands between the energy levels at various quantum
states. Other molecular exponential-type potentials have also been ob-
tained. For instance, if =Q 0,1 a class of the Yukawa potential is ob-
tained as we can see in Fig. 3. Also in Fig. 4, if = =Q Q 0,1 4 we obtained
Hellman potential, = = =Q Q Q 0,1 2 4 we obtained Yukawa potential,

= = =Q Q Q 0,1 4 3 we obtained Coulomb potential, and
= = =Q Q Q 0,1 2 3 the inverse quadratic Yukawa potential is also ob-

tained as we can see in Figs. 5–7 respectively.
Furthermore, the thermodynamics properties of the Zinc-Blende

crystal structure were also computed using Maple 16. For brevity we
have used the effective mass listed for the zinc-blende boron nitride
(BN) on ref. [27] as =μ m0.752 ,0 where m0 is the mass of free electron.
The results obtained for the partition function (Fig. 8) shows con-
vergence at =T K2 before increasing gradually with an increase in the
temperature, similar behaviour was also obtained for the harmonic
oscillator [28]. At high temperature, more energy levels are expected to
be populated with a higher value of the upper bound vibrational
quantum number nmax. The rotational contribution to the partition
function Z T( ) shows peak at a particular value of nmax and then a slight

increase as the value of Z T( ) converges at about 47 K. A monotonic
decrease in the free energy with temperature is seen in Fig. 9. As we can
see from the plot, the vibrational quantum numbers show some level of
dissociation starting at the point T = 0.08 K. A monotonic decrease in
the mean energyU T( ) with an increase inT is also noticed in Fig. 10. At
a temperature of about 0.2 K, there is a strong dissociation as the
temperature and the ro-vibrational quantum numbers decreases. In
Fig. 11, the entropy obtained shows a disordered decrease with an in-
creasing parameter T . The range of values obtained for the specific heat
capacity at a low temperature range shows a monotonic increase with
an increasing temperature. The values obtained in our research are at
variance with the − −Jg k0.6 1 1 reported in the experimental observation in
ref. [27]. The internal energy at this point is being contributed by the
maximum vibrational quantum number nmax and gave rise to the spe-
cific heat capacity of the crystal as shown in Fig. 12.

Concluding remarks

The ro-vibrational energy spectrum of the six-parameter
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Fig. 2. The ro-vibrational energy spectrum against Q2 for the six-parameter
exponential-type potential model.

-2 0 2 4 6 8 10
-8

-7

-6

-5

-4

-3

-2

-1

0

1

Q
2

E
n1

n=1

n=2

n=3
n=4

n=5

Fig. 3. The class of Yukawa potential obtained from the potential parameter
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exponential-type molecular potential has been obtained using the su-
persymmetric quantum mechanics approach. The potential clearly
shows attractive nature as results of other molecular potentials have
also be deduced from the potential parameters. The partition function
in a closed form has also been obtained and applied to calculate the
thermodynamic properties of the ro-vibrational mean free energy F T( ),
mean free energy U T( ), entropy S T( ), and the specific heat capacity
C T( ). We have plotted also the thermodynamic function against the
temperatureT at the upper bound vibrational quantum number nmax for
the BN zinc-blende crystal structure. The result obtained for the specific
heat capacity is in fair agreement with the experimental data reported
on ref. [27] for the same crystalline BN. This study has many applica-
tions in the synthesis of materials [29].
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Fig. 6. Coulomb potential obtained from the potential parameter when
= = =Q Q Q 01 4 3 .

Fig. 7. The Inversely Quadratic Yukawa potential obtained from the potential
parameter when = = =Q Q Q 01 2 3 .

Fig. 8. The ro-vibrational partition function against temperature for zinc-
blende BN using Eq. (31).

Fig. 9. The ro-vibrational free energy against temperature for zinc-blende BN
using Eq. (36).

Fig. 10. The ro-vibrational mean energy against temperature for zinc-blende
BN using Eq. (34).
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