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Abstract: This paper considers investment problems in real options with non-homogeneous
two-factor uncertainty. We derive some analytical properties of the resulting optimal stopping
problem and present a finite difference algorithm to approximate the firm’s value function and
optimal exercise boundary. An important message of our paper is that the frequently applied
quasi-analytical approach underestimates the impact of uncertainty. This is caused by the fact
that the quasi-analytical solution does not satisfy the partial differential equation that governs
the value function. As a result, the quasi-analytical approach may wrongly advise to invest in a
substantial part of the state space.

Keywords: Investment analysis; Optimal stopping time problem; Two-factor uncertainty.

1. Introduction

Since the seminal works of Dixit and Pindyck (1994) and Trigeorgis (1996), it has
become clear that real investments should be valued using a real options approach
when decision makers are exposed to a significant amount of uncertainty. In these
cases, application of the standard net present value decision rule can lead to investment
decisions that are significantly sub-optimal, as is extensively demonstrated in the above
books. Since firm investment decisions lie at the basis of economic growth, it is crucial
to take these decisions in the right way. From this perspective it is clear that it is of main
importance to work on the development of the theory of real options.

In the basic analysis the real options model consists of a single firm having the
opportunity to invest in a project of given size, with revenue that is subject to uncertainty
that is governed by a single stochastic process. Several authors have extended this
framework in different directions. Smets (1991) is the first to consider a scenario where
two firms can invest in the same market. The revenue in this market is still governed by
one stochastic process, also after both firms have already invested and thus are active in
this market. The assumption "project of given size" is relaxed in Bar-Ilan and Strange
(1999) and Dangl (1999), in which the firm not only needs to decide about the time,
but also about the size of the investment. Huisman and Kort (2015) combine the two
extensions by considering a duopoly market where both firms also have to determine
the investment size.

Most of the real options literature uses a single (one-dimensional) stochastic process
to model the evolution of random shocks affecting the investment’s value. This can be
a major shortcoming, especially when analysing problems with, e.g., multiple firms or
products. Such investment problems are especially common in the field of energy and
environmental economics (Agaton and Collera 2022; Deeney et al. 2021; Li and Cao
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2022; Zhang et al. 2021). The transition to a circular and low-carbon, bio-based economy
requires firms to shift to the use of renewable resources, to cooperate with firms in other
markets, and to valorize their waste streams (The European Commission 2019 2021).
These decisions expose firms to different types of risks, creating the need for models that
account for multiple sources of uncertainty. Therefore, in this paper we consider a real
options problem with multiple uncertain factors, which is an important extension to the
basic real options analysis, especially from a practical perspective.

The first real options model with two-factor uncertainty occurs in McDonald and
Siegel (1986). Their value function is homogenous of degree one, and the two stochastic
processes are the output price and the investment cost. In such cases, the investment
threshold level can be determined for the price-to-cost ratio. This allows to reformulate
the problem in terms of the relative price, and to reduce the number of stochastic
variables to one. In this way a standard one-factor real options model is obtained
for which a closed-form solution exists. The result of this analysis is, however, not a
threshold point but a threshold boundary at which it is optimal to invest (Nunes and
Pimentel 2017). Hu and @ksendal (1998) generalize this solution to the n-dimensional
case. Armada et al. (2013) consider a problem where the output price and quantity are
stochastic. Here the dimension of the state space can be reduced to a one-dimensional
space, because the only relevant payoff variable is revenue (price times quantity). The
problem then reduces to finding an optimal revenue threshold that makes investment
optimal.

Several authors have tried to use this dimension-reduction approach to cases char-
acterized by multiple stochastic processes and a constant sunk cost. Huisman et al. (2013)
and Compernolle et al. (2017) consider price and cost uncertainty and determine the
investment threshold level for the price-to-cost ratio. However, there are some problems
with this approach. In the presence of a constant sunk cost investment, homogeneity
does not hold. For this reason, the state space cannot be reduced to a one-dimensional
one. This is also revealed in these papers, because two processes (price/cost and cost)
remain present in the equations.

For problems of this kind, Adkins and Paxson (2011b) propose a quasi-analytical
approach that results in a set of equations to determine the optimal investment boundary.
They solve this set of equations simultaneously while keeping one of the stochastic
threshold variables fixed. The present paper shows that this methodology can lead to sub-
optimal solutions. In fact, the results of the quasi-analytical approach will generically-
speaking be incorrect and there is no guarantee that it converges in any meaningful sense
to the correct solution. To put it succinctly, the main problem is that Adkins and Paxson (
2011b) use a “local” approach to solve a “global” problem, which can lead to misleading
results. Consequently, while the method is intuitively appealing and relatively easy
to implement, we argue that care is required in checking that the results conform to
economic intuition.

In this paper we provide numerical examples for which the quasi-analytical ap-
proach violates certain properties of the optimal boundary that can be analytically
established. The point is, in a nutshell, that when solving the partial differential equation
that governs the value function, two power parameters turn out to be a function of the
state variables, where the quasi-analytical approach starts with the assumption that
these parameters are constant.

Our contribution to the literature is three-fold. Firstly, we alert the research com-
munity to potential pitfalls in a regularly-used numerical method. In the literature, we
find several papers concerning investment problems where the uncertainty is driven
by multi-dimensional stochastic processes, and where no analytical solution can be
derived. In such cases, the authors propose ways to circumvent the problem and come
out with an approximation of the solution. For instance, we refer to Kauppinen et al. (
2018), where the model proposed by Adkins and Paxson (2011b) is extended, by adding
time to build to the investment problem. In the context of replacement options, Adkins
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and Paxson (2013a) examine premature and postponed replacement in the presence
of technological progress, where revenue and operating costs are treated as geometric
Brownian motions. Adkins and Paxson (2017b) use a general replacement model to
investigate when it is optimal to replace an asset whose operating cost and salvage value
deteriorate stochastically.

The need to take into account multi-sources of uncertainty is also present in prob-
lems related with investments in the energy sector. For example, Adkins and Paxson (
2011a) solve a switching model for two alternative energy inputs with fixed switching
costs. Boomsma and Linnerud (2015) examine investment in a renewable energy project
under both market and policy uncertainty. Fleten et al. (2016) study investment deci-
sions in the renewable energy sector, where the revenue comes from selling electricity
and from receiving subsidies, both stochastic. Adkins and Paxson (2016) consider the
optimal investment policy for an energy facility with price and quantity uncertainty
under different subsidy schemes. Store et al. (2018) determine the optimal timing to
switch from oil to gas production in the tail production phase, with the price of oil and
gas following (correlated) Geometric Brownian motions. Finally, we refer to Heydari
et al. (2012), who extend the quasi-analytical approach proposed in Adkins and Paxson
(2011b) to a three-factor model, which is employed to value the choice between two
emissions-reduction technologies assuming that the value of each option depends on
fuel, electricity and CO, prices, all following (correlated) Geometric Brownian motions.

Secondly, while it could, a priori, be the case that the approximation obtained by
the quasi-analytical approach is close enough to the true solution to be of practical
value, we show that for the models under consideration in much of the literature this is
not necessarily the case. For example, in the model with two uncertain revenue flows
we find that in some situations the investment boundary is decreasing in uncertainty
environment. This violates one of the major qualitative result from real options theory:
“an increase in uncertainty leads to an increase in project value”. We formally prove that
this feature also holds for the model under consideration.

Thirdly, we develop a numerical algorithm which is based on a finite difference
scheme and we apply this algorithm to a model with two stochastic revenue streams.
We determine the optimal timing of investment in the presence of a constant sunk
investment cost. Note that this model is different from the one analysed in Adkins and
Paxson (2011b), who analyse a stochastic revenue and a (possibly correlated) stochastic
cost. Importantly, our finite difference scheme does exhibit the expected behavior in
relation to an increase in uncertainty.

In the literature most finite-difference schemes have been developed to solve models
with a one-dimensional stochastic process and a finite time horizon. This method
typically employs a backward induction argument in the time dimension to approximate
the optimal exercise boundary and value function in a step-by-step fashion; see, e.g., (
Dixit and Pindyck 1994, Appendix 10.A). For a two-dimensional problem this approach
does not work, because both processes can move up or down in any time step. Therefore,
we suggest a finite difference scheme that starts with a hypothesized boundary, after
which the value function is approximated at all points in the two-dimensional finite grid
at once. A discretized smooth pasting condition (in two dimensions) can then be used
to judge the quality of the hypothesized boundary. This procedure is repeated until an
acceptable approximation to the optimal boundary is found.

Note that to solve multidimensional optimal stopping problems, also other numeri-
cal approaches could be applied. Among the relevant contributions is Lange et al. (2020).
In this paper, the authors consider that the decision to stop can only be taken at specific
times, generated by an exogenous Poisson process with intensity rate A. This means that
the set of admissible stopping times for the optimization problem is the set of events of a
Poisson process, independent of the filtration generated by the state variables. In this
setting, the optimization problem may be written as a fixed-point problem, for which
the authors propose a numerical scheme, providing proof and rate of convergence.
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In our paper, we prove some analytical properties of the optimal boundary, notably
we prove that is convex, non-increasing and continuous in R*. In Dammann and
Ferrari (2021) we may find similar results, but using different arguments, that rely on a
probabilistic representation of the Value Function. Moreover, the authors show that the
boundary is the unique solution of an integral condition. By use of this integral equation,
they prove monotonicty of the value function with respect to drift and volatility of the
involved parameters. Finally, they propose a numerical approach to find the boundary,
based on the integral equation using Monte-Carlo simulation.

The remainder of this paper is organized as follows. Section 2 introduces a non-
homogeneous investment problem characterized by two uncertain revenue flows. Sec-
tion 3 applies the methodological approach in Adkins and Paxson (2011b) to solve the
model presented in Section 2, and highlights the mathematical problems with the solu-
tion. Section 4 proposes an alternative numerical approach to solve the model. Section 5
concludes. Proofs of propositions are presented in Appendix A.

2. Investment decision given two uncertain revenue flows

Consider a profit-maximizing, risk-neutral firm that has the opportunity to invest in
a production plant by paying a constant investment cost, I. The plant can produce two
different products, the prices of which are stochastic and follow correlated geometric
Brownian motions X and Y, i.e.,

dXy =  Xedt + 1 XedWyx y,  dYy = apYydt + UzYtdWy,t 1

with
Xo=x,Yo=y ()

being the initial values of the processes X and Y, respectively. We note that in Equation
(1), a1 (a2) denotes the drift of the process X (Y), whereas 01 (07) is the volatility of X
(Y). Following the usual notation, we let {W;,t > 0} denote a standard two-dimensional
Brownian motion, which we index by X and Y, respectively. We allow these processes
to be correlated, so that E[dWx ;dWy ;] = pdt for some p € (—1,1), where p > 0 (p < 0)
means that Wx and Wy are positively (negatively) correlated.

At any instant, if the prices of the two products are x and y, respectively, then the
instantaneous profit of the firm is given by:

7T(x/]/) = le + sz/ (3)

where Q1 and Q> denote the quantities of the products produced. Moreover, at that
instant the firm’s value is equal to the perpetual revenue flow from selling two products:!

F(x’y) - :[E(xr.‘/) |:~/O e*”tn(th Yt)dt —1| = T + Tz —1, (4)

with §; :==r —a;,i € {1,2}, and r being the discount rate. To ensure finite integrals, we
assume that r > max{0, a1, ap }. Equation (4) gives the expected value of the discounted
stream of profits that result from operating the production process forever, given current
prices x and y. That is, [E(, ) denotes the expectation operator, conditional on the initial
state being (Xo, Yo) = (x,v).

The firm needs to determine the optimal time to undertake the investment, and,
thus, solves the following optimal stopping problem

V(X:,Y;) = sup ]E(Xt,Y[) [e—r(r—l‘)F(XT, YT)} (5)

>t

1

E(y,,) denotes the expectation conditional on (Xp, Yp) = (x,¥).
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where the supremum is taken over all stopping times T with respect to the filtration
generated by the joint process (Wx, Wy ). That is, we are looking for the optimal time to
invest in the production plant, given the current values for the price of each one of the
two types of product, such that we maximize the expected value of the overall profit.
By maximizing over stopping times we recognize that the optimal time to invest may
depend on the stochastic evolution of the product prices.

Using standard calculations from optimal stopping theory (see, e.g., Oksendal and
Sulem (2007)), we derive the following Hamilton-Jacobi-Bellman (HJB) equation for this
problem:

min{rV(x,y) — LV (x,y),V(x,y) —F(x,y)} =0, V(x,y) € Ry x R,. (6)

Here £ denotes the infinitesimal generator of the process (X, Y):

110 7

which is given by (Jksendal and Sulem (2007)):

1,28V(xy) 1 ,,08°V(x, 2V (x,
LV(vy) = ot % + 203 a<y2y) +Wl(w/ax(ayy)
V(xy) oV (x,y)
+ lexT—FOézyT. (7)

This equation should be understood as follows: before the investment takes place, and
assuming that the current prices of the products are x and y, the value of the firm,
V(x,y),is such that V(x,y) > F(x,y) (and thus investment is not yet optimal) and that
optimality of the function V requires that ¥V (x,y) — LV (x,y) = 0. The latter equation
essentially states that the investment’s value today is equal to the discounted expected
value of the investment a short amount of time later. Then, as soon as investment is
optimal, it holds that V(x,y) = F(x,y) and that the value of immediate investment
exceeds the discounted expected value of the investment a short amount of time later,
ie.rV(x,y) — LV(x,y) > 0.

Moreover, we let the set D := {(x,y) € ®%|V(x,y) > F(x,y)} denote the contin-
uation region, and S := R%2 \ D = {(x,y) € R |V(x,y) = F(x,y)} denote the stopping
region. Following the general theory of optimal stopping, it then follows that 7%, the
time at which the investment should be undertaken, is given by the first exit time of the
continuation region, i.e.,

™ = inf{t >0; (Xt, Yt) ¢ D}. (8)

Therefore, T* is the first time that the value function is equal to the expected value from
immediately investing in the production plant.
In view of the equation (6), it follows that

rV(x,y) — LV(x,y) >0 A V(x,y) > F(x,y), ¥ (x,y) € R.
Moreover,
rV(x,y) — LV(x,y) =0 A V(x,y) > F(x,y), V (x,y) € D, )

whereas
rF(x,y) — LF(x,y) >0 A V(x,y) = F(x,y), V (x,y) € S. (10)

The solution of the HJB equation, V, must satisfy the following boundary condition:

V(0+,0+) =0, (11)
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197

which reflects the fact that the value of the firm will be zero if the prices are zero. Also
the following value-matching and smooth-fit conditions should hold (see Pham (1997),
Tankov (2003) and Larbi and Kyprianou (2005)):

V(x,y) =F(x,y) and VV(x,y)=VF(x,y), for(x,y)ecdD. (12)

Here 9D denotes the boundary of D, which we call critical boundary, and V is the gradient
operator. Therefore, the solution of the problem is continuous at the critical boundary,
not only for itself but also for its derivatives. The resulting threshold is a curve separating
the two regions (the continuation and the stopping regions).

Note that x = 0 and y = 0 are absorbing barriers. Consequently, at these boundaries,
the firm only receives revenues from one product and only one stochastic process is in
use. Therefore, the threshold at these points corresponds to the standard solution for a
one-dimensional problem. It follows that the investment triggers at the y and x axis are

Xt = ﬁlﬁi -0 if y=0, and y' = mﬂi =621, if x =0, (13)
respectively. We refer, for instance, to Dixit and Pindyck (1994) for derivation of these
values.

These thresholds can be interpreted as follows. If y = 0, then the firm should still
invest in this plant as soon as the price of the other product reaches the value x*. The
intuition is analogous for x = 0 and y*. The parameters f; > 1 and 5; > 1 are the
positive roots of the quadratic equations

1 1
SO1B(B=1) +ap—r=0, and Sopy(y—1)+ay—r=0,

respectively.

Solving problem (5) means, in particular, that we need to derive the set of values
for x and y where stopping is optimal, i.e., where investment should take place. In
particular, we want to derive the boundary between D and S, as crossing this boundary
means that investment should be undertaken right away. We call it the threshold boundary.
As we have two state variables, we may define this threshold boundary as a surface in
RR?, as follows: given that the price of one product is x € R*, the firm should undertake
the investment if the price of the other product is larger or equal to b(x). If it is smaller,
than the firm should wait before investment. The next theorem derives some qualitative
features of the threshold boundary for the problem defined in (5).

Theorem 1. The boundary between D and S can be described by a mapping x — b(x), where:
b(x) =sup{y € R4 | V(x,y) > F(x,y) } forall x € (0,x*);

b is non-increasing on (0, x*);

b is convex on (0, x*);

b is continuous;

b(x) < y*on (0,x*),and b(x) = 0 on [x*,00).

In addition, the stopping set S is:

1.  closed;
2. convex.

G L=

Finally, the value function V satisfies:

2 .
1. 'V > Oon 7,
2. V is convex;
3. V is continuous;
4. Visincreasing in x and y.

Remark 1. Theorem 1 leads to the following observations.
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229

1. We can write

D:{(x,y)eﬂ?‘i‘y<b(x)}, and S:{(x,y)eﬂ%i’yZb(x)}.

2. The optimal stopping boundary can never lie below the Net Present Value boundary b, i.e.

b(x) > b(x):=6(I —x/61), allx € (0,61).

Thus in order to solve (5) we need to find V and, at the same time, b(x) for x < x*,
such that the properties enumerated in Theorem 1 hold. In particular for V, conditions
usually known in the literature as fit conditions are checked: the value matching condition
(for the continuity of the value function) and smooth-pasting (for the smoothness of the
value function).

3. The quasi-analytical approach

Following the approach in Adkins and Paxson (2011b), we start by postulating a
solution to equation (6) of the following form:

o(x,y) = AxPy, (14)

where A, §, and 7 are constants. Simple calculations lead to the conclusion that for (14)
to be a solution to (7) it must hold that § and 7 are the roots of the characteristic root
equation:

OB, ) = 503n(n —1) + 303 B(B— 1) + poroaPry + s+ ey —r =0, (15)

The set of solutions to (15) defines an ellipse that intersects all quadrants of 2, with
B () on the horizontal (vertical) axis.

Adkins and Paxson (2011b) hypothesize that the boundary between the continuation
and stopping regions is of the form x — b(x). As Theorem 1 shows, this is correct. In
order to find this boundary, Adkins and Paxson (2011b) try to extend the standard
value-matching and smooth-pasting conditions to a two-dimensional setting. The way
this is done is as follows: on the boundary it should hold for every £ € (0, x*), with x*
as given in Equation (13):

~r—m r—m I (value matching) (16)
80(83;, y) =t ymb(8) = rc—g%xl (smooth pasting in x-direction) (17)
9v(x,y) = Q2 (smooth pasting in y-direction). (18)

W emgy-b(z) T
Now, if the value function is of the form?

v(x,y) = Axﬁy”,

2 Note that Adkins and Paxson (2011b) assume this is the case.
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then it should hold that B, > 0 since the boundary conditions lim, o v(x,y) =
limy o v(x,y) = 0 should be satisfied. Therefore, for every £ € (0,x*) we can solve
the system of non-linear equations

A#Bp(z)1 = DX Qb(3) (19)
r—uq r— oy

BAZP1b(£)" = - ?1“1 (20)

nALPH(2)171 = r?";xz (21)

Q(B,1m) =0, (22)

2 in b, A, B, and %, under the condition that 8,7 > 0.
232 Using the approach presented in Store et al. (2018) to solve this system, we find the
233 explicit solution for the boundary?:

; 7 (x)(r — az)Q
b =X, 23
) B0 (r—11)Q2 @)

23s  Where
2
0?20 +C* (x) (2ap+03) 02201 +C*(x) (2ap+072) r—

‘B(x) == 2(1712+¢722C*(x)2) = \/( ' 2(17]2+022C*(x)2) ? > +20f+0220é2*(x)’ (24)
n(x) =1—p(x)C"(x), (25)
Cr(x) =1- gl (26)

s In the previous equations we use f(x) and 7(x) instead of § and # to emphasize the
236 dependency on the state variable x.

237 Therefore, solving (20)-(22) leads to values of  and # that do depend on the value of
28 x and, thus, cannot be treated as fixed parameters. This is also the case for the problem
23 in Adkins and Paxson (2011b), as illustrated by their Figure 3.* The same holds for A

220 and b.
201 Letu = [B(x) n(x) A(x) b(x)]" denote the vector of solutions resulting from
202 (20)-(22). Then at b(x), the value of the firm can be written as

o(x,b(x)) = A(x)xﬁ(x)gﬂ(x)(x). (27)
243 Note that from (9) the partial differential equation rV(x,y) — LV (x,y) = 0 must

a2 also hold along the threshold boundary, implying that

1,5, 0%v(x, b) Kl 0v(x,b) Ju 0 E)v(x,l;)aiu lezazv(x,E)
2‘71x< a2 Toul ar Jax Tax| aw ax))t2%"

ov(x,b)  9v(x,b) du Aav(x,lAJ)_ A
+1x1x< gy + a Ox + ayb % ro(x,b) =0. (28)

For simplicity, henceforth we assume that p = 0.

4 The same holds for (Adkins and Paxson 2011a), see Table 2; Adkins and Paxson (2017a), see Table of Figure 1; Heydari et al. (2012), see equation (19);
Adkins and Paxson (2013a), see equation (9); Adkins and Paxson (2013b), see Figure 2; Fleten et al. (2016), see equation (17); Stere et al. (2018), see
equation (18); and Adkins and Paxson (2017b), see Table 3.
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246

265

Using (27) we can rewrite (28) as

1220 ov(x,b) du 3 dv(x,b) du o dv(x,b) du
271 ou ox Jx  ox Ju Oox ! Ju OJx

~ (1 1
+AxXPDY (20511(17 — 1)+ 50B(B—1) +mp+ oy — r) =0, (29)

The first two terms in (29) represent the contributions of the partial derivatives of
b, A, B and 5 with respect to x, whereas the last term is equal to AxPb7Q(B, 7). If the
solution proposed in (14) is correct, then the latter should be equal to zero, and we can
still use the system (19)-(22) to determine the threshold boundary. In what follows we
verify whether the contribution of the partial derivatives is negligible for the numerical
example in Table 1.

a

£  Contribution of partial derivatives

10 -10841.14
20 -54 856.60
30 -9040.40

Table 1: The value of the first two terms of equation (29) for the following set of the
parameter values: ¢y = 0.2, 0o = 0.6, 1 = 0.02, ap = 0.02,r =0.1,p =0, Q; =5,
Q2 =10, and I = 2000.

For £ = 10, and the set of parameter values in Table 1, F(%, b(%)) = 7281.23. There-
fore, we conclude that the contribution of the partial derivatives cannot be neglected. As
a result, substitution of the solution (27) in (7) leads to the conclusion that the condition
for 17 and B is no longer (15). In fact, (15) needs to be modified to incorporate terms
involving ' (x), ' (x), B"(x), " (x), A'(x), A”(x), ' (x) and b (x). The implication is
that solving the system (19)-(22) for different values of £ does not result in a correct
threshold boundary.

3.1. Results of the quasi-analytical approach

After having shown that the boundary b, as determined by the quasi-analytical
approach, is not the true boundary b, it could still be the case that b is a good approxima-
tion of b. This section, however, provides an argument that this is not the case, at least
for the problem in Section 2.

We start out by presenting the following proposition.

Proposition 1. The value function, V, is monotonically increasing in both oy and o».

Proof. The result follows from Proposition 3 in Olsen and Stensland (1992) using the
fact that the optimal value function is convex, as stated in our Theorem 1. [

In the following, we study the behaviour of the investment boundary as a function
of the volatilities of the involved processes, o7 and 0. Thus we let b(c1, 02; x) denote the
boundary, given that the current price of the first product is x, and that the volatilities
are 01 (for X) and o» (for Y).

Corollary 1. Let b(0y, 03; x) denote the optimal investment threshold boundary for a given level
of x. Then it holds that b(cq, 02; x) is increasing in both oy and 0.

Proof. We prove the result by contradiction. Without loss of generality we only consider
a change in 0. Consider two different values of o7, such that o7 > 71, and b(61,02; x) <
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are b(07,09; x) for some x. Let V (01, 09; x, ) denote the optimal value function for a given
22z level of x. Then,

F(x,y) f b(G1,02; %),
V(a.ll 0.2, x,y) — > (x y) Ory < ((Z-l 0'2 x) (30)
=F(x,y) fory > b(y, 09 %),
F 7 f b 0 7 ; 7
V(a_llo_z;x,y) — > (x y) Ory < (_1 0'2 x) (31)
=F(x,y) fory > b(dy,00;x).
278 If b(0y,09;x) < b(07,02;x), then for y € (b(01,02;x),b(51,02;x)), it holds that
a0 V(01,02 x,y) > F(x,y) = V(61,02 x,y), which contradicts Proposition 1. [
280 Figure 1 illustrates the quasi-analytical threshold boundaries for different values of

281 ().

6o}

50F

40t

30F

Figure 1. The threshold boundaries, b, for the following set of parameter values: o; = 0.2,
w1 =0.02,0p =0.02,r =0.1,0 =0, Q1 =5, Q2 = 10, I = 2000, and different values of 05.

282 Evidently, the numerical example violates Corollary 1, since the threshold bound-
2e3  aries intersect. Moreover, this result does not correspond to what we would expect
:ea  from real options theory, i.e. that the firm invests for a larger threshold level in a more
2es uncertain environment. In fact, for x > 32, the quasi-analytical approach suggests that
206 the firm should invest for a lower threshold level when 05 is larger. This clearly leads
2e7  to a sub-optimal decision, so the quasi-analytical solution falls short in being a useful
288 approximation to the optimal solution in this case.

200 4. Numerical Solution

200 This section develops a finite difference algorithm to solve the optimal stopping
201 problem in (5). The results of the numerical approach are different from the results
202 Obtained by the analytical approach and in line with Theorem 1 and Proposition 1.
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We start by generating a discrete grid over the domain of the partial differential
equation in (7). Thus we assume that the intervals (0, x*] and (0, x*] are divided in
Ny + 1 and Ny + 1 equally spaced subintervals, respectively, and we let

. . X
xj=ih  i=0,1,2,.,Ny, h:NQ (32)
y=jg  i=012.N, g=1, (33)
Y

where x* and y* are the optimal investment triggers in case the other state variable
is zero and, thus, are the natural end points of the grid. Moreover, we consider the
following notation: V; ; denotes the value of the firm at the grid points (x;,y;):

Viij) = V(xi, Yi)
203 with V defined in Equation (5). Finally we let v be vector of unknown grid points, which
204 can be ordered in the following way

Vo0
Voa

(34)

VoN;

LVNiN ]
Then we are able to derive a linear system of equations that allows to solve for the discrete
grid points simultaneously, as follows. We discretize the partial differential equation
using a weighted sum of the function values at the neighboring point approximations to
the partial derivatives. This yields

15 ,Viej—=2Vij+ Vi 1 5 5 Vijp1 —2Vii+ Vi Vieri —Vij Vijt1—Vij
571P1 2 572P2 2 +agx 7 + apy
Vierjr1 = Vigrj-1 — Vicr i + Vie1, 1
+po102xY L an 4hg i i rVi;j=0.
(35)
Rearranging the terms, gives
272 2 272 )
(22 , 2jh jh 2 (1 5k jh
‘/1,](—(7'11 —Dc1lh—(72?—062?—1’h +‘/l,]+1 5(72? +1X2? +
155 . 1 ,j°h? 152
Vit (2011 + lX]lh) +Viji1 (202 ? + Vi, 5011 +

ijh
+P01U21§(W+l,j+1 —Vitrj1— Vi1 +Vicgj1) =0 (36)

205 Then the partial differential equation (35) can be represented as a system of linear
206 equations

Bv =0, (37)

207 Where B is the matrix of coefficients resulting from (36).

208 This system can be solved by applying appropriate boundary conditions. We use
200 the fact that the value at (x*,0) and (0,y*) must equal the value of the immediate
00 investment. In addition, if either x; or y; is equal to zero the problem is reduced to
s0  one-dimension, and the grid points together with the threshold boundary can be found
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analytically. Given a candidate threshold function, the system (37) in combination with
the boundary conditions in zero and final nodes, yield a solution for the unknown grid
points. To determine the optimal threshold we implement the following procedure. First,
we propose a shape of the exercise boundary. For example, the results that we present
in Figure 2 are based on the quadratic function, i.e. y = a + bx + cx?. The unknown
parameters, a and b can be determined using the analytical threshold boundaries when
either x; or y; is zero. In order to find ¢, we compute the derivative of the option value
at the candidate threshold boundary at each node, and compare it with the derivatives
resulting from the smooth pasting conditions. Next, we compute the sum squared error
of the differences and minimize it with respect to unknown parameter ¢, which allows
to determine the optimal threshold in such a way that the smooth pasting condition is
satisfied.

We now replicate Figure 1 using our finite difference scheme and depict it in Figure
2.

70

601

40t

Figure 2. The numerical threshold boundary for the following set of parameter values: oy = 0.2,
a1 =0.02,0p =0.02,r =0.1,0 =0, Q1 =5, Q2 = 10, I = 2000, and different values of 05.

This numerical example results in a more intuitive shape of thresholds boundaries
and represent a standard result from the real options theory. Namely, an increase in
volatility leads to an increase of the optimal investment threshold.

In addition, finite difference also allows for the calculation of an approximation to
the value function that is implied by the quasi-analytical boundary b. This can be done
by solving (37) for the boundary in (23). Figure 3 illustrates the comparison between the
implied value function and the numerical solution represented by quadratic boundary
for a fixed level of x and different values of y.
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2000

Quasi-analytical solution

1800 Numerical solution

1600

1400

1200

1000

800

Figure 3. The numerical threshold boundary for the following set of parameter values: x = 40.52,
01 =02,0p =0.6,07 =0.02,0p =0.02, 7 =0.1,p =0, Q1 =5, Qx = 10, I = 2000, and different
values of y.

From Figure 3 it is evident that the value function implied by the quasi-analytical
solution has a kink at the boundary point y24 = 5(40.52) = 2.49, violating the smooth-
pasting condition. Consequently, the quasi-analytical approach underestimates the true
value function, which leads to a sub-optimal investment decision rule for large values of
x. Note that the quasi-analytical approach suggests a much lower trigger than our finite
difference scheme. For x = 40.52, the numerical procedure based on the finite-difference
algorithm gives the boundary point y4 = 10.26, such that the smooth-pasting condition
holds. Figure 4 illustrates the value function for different values of x and y, as well as
the threshold boundary.
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Figure 4. The numerical value function and threshold boundary (solid black curve) for the
following set of parameter values: 07 = 0.2, 05 = 0.6, a1 = 0.02, ap = 0.02,r =0.1,0=0,Q; =5,
Q2 =10, I = 2000, and different values of x and y.

As can be seen, the value appears to be smooth for different values of x and y in the
grid. The average squared error resulting from the numerical procedure is equal to 0.44,
which corresponds to 0.17% of the true value of total derivative of the value function.
Therefore, we conclude that the proposed numerical method is a good approximation
for the true value function and optimal threshold.

Lastly, in order to give an indication how often a firm would make a poorly timed
investment decision, we simulate the passage time for the processes X; and Y; to reach
the quasi-analytical boundary. We then run the procedure 5000 times for a specific set
of starting values (xo, o), and calculate the percentage of cases of the threshold being
reached within the next 5 years. We perform a similar procedure, to determine the
investment probabilities for our numerical solution. The results for the different starting
points are presented in Table 2.

(x0,Y0) ‘ 5 10 15 (x0,Y0) ‘ 5 10 15
10 10.06% 23.97% 39.03% 10 540% 5.56% 5.51%
15 21.69% 42.87% 61.69% 15 557% 5.41% 5.57%
20 40.32% 68.34% 90.21% 20 543% 5.24% 5.59%

(a) Quasi-analytical boundary (b) Numerical boundary

Table 2: Percentage of cases when a firm undertakes an investment within the next 5
years for the set of parameter values: 07 = 0.2, 0o = 0.6, a1 = 0.02, a; = 0.02, 7 = 0.1,
p=0,0Q1 =5 Q2 =10,1=2000.

Table 2b shows that, for example, for the starting values (15,10) the firm should
invest in 5.41% of the cases. According to the quasi-analytical approach however, the
firm invests in 42.87% of the cases, implying that many times the firm invests while it is
in fact not optimal to do so.
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349

5. Conclusion

This paper develops an easy-to-implement finite difference algorithm to solve real
options models with two-factor uncertainty. The proposed framework is, thus, highly
relevant for the evaluation of business opportunities involving multiple end-products, a
switch in feed-stock or end-product, a cooperation between firms that are operative in
different markets, and investments in new technologies incentivized by market-based
policy instruments.

We apply it to a particular investment problem, where after investment the firm
is able to produce two different products. The output prices of these products follow
two geometric Brownian motion processes, possibly correlated. The investment cost is
constant and sunk. We contrast our solution approach to the quasi-analytical approach
developed by Adkins and Paxson (2011b) to address such problems. The latter has
already been adopted by several other authors, as the overview in Section 1 shows. This
paper argues, however, that this quasi-analytical method does not always result in the
correct investment decision rule.

From the analysis of this two-factor real options problem we obtain that the quasi-
analytical investment decision rule in some cases also fails to be a reasonable approxima-
tion to the optimal decision. In particular, we find that the quasi-analytical solution does
not comply with the (analytical) result that the investment threshold boundary must be
monotonically increasing in the volatility parameters of both stochastic processes.

The ultimate conclusion is that non-homogenous real options problems with two-
factor uncertainty should be solved using a different numerical procedure. Or at the
very least, the quality of the quasi-analytical approximation should be discussed. Note,
however, that if our two-factor uncertainty problem is homogenous, then a standard (cf.
McDonald and Siegel (1986)) reduction in dimensionality can be obtained, leading to an
analytical solution.

Appendix A

Proof of Theorem 1.
Throughout the proof, we will denote the unique solution to (1) for given starting point
(X0, Yo) € R2 \ {0} by (X*, Y¥). Note that (X*,Y¥) = (xX!,yY1).

1. (V > 0on R%,) On S the result is trivial. Let (x,y) € DNR%,. Consider the
stopping time
T = inf{t > 0|F(X¢, Y7) > 0}.

Since e ""F(Xr,Yr) = 0 on {1t = oo} (since r > max{ay,az}) and P(T < o0) > 0, it
holds that
V(x,y) > E[e”""F(X¢, Y7)] > 0.

2. (Convexity of V) On S the result is trivial. Take (x/,y'), (x”,y"”) € Dand A € (0,1).
Define (x,y) := A(x",y') + (1 — A)(x”,y"). It then holds that

V(x,y) =supE[e ""F(x',y)]
T

[ XL oyyl
=supE e”(x T+ T—I)]
| 5o s
_ [ (A + (1 =M)")X: | W+ =-A)y")Y:
_sgplE _e ( 5 + 5 I
r /X1 /v1 //Xl 111
=sup £ Ae‘”(XT NALES 1) + (1 —A)e‘”(x c YT 1)}
v L 0 ) 5 5,

<AsupE[e "F(x,y")] + (1 —A)supE[e "F(x",y")]
T T

=AV(x,y) + (1 -V (", y").
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3. (Continuity of V) This property follows from the general theory of stochastic processes,
see, e.g., (Krylov 1980, Theorem 3.1.5).

4. (Monotonicity of V) We prove that V is (strictly) increasing in x. Again, the re-
sult is trivial on S. Take (x,y) € D and let ¢ > 0 be such that (x 4+ ¢,y) € D (such ¢ exists
since D is open; see below). Take any stopping time 7. It then holds that

Ele ™ 7(X+S)X%+LY%—I >E|e " X—X%—l—yﬂ—l ,
1 53 01 5

with equality only when {7 = co} a.s.. Note that T with {T = oo} a.s. is never optimal.
Take ™ = inf{t > 0|Y; > 6,1+ 1}. Then P(t* < c0) > 0 and, thus, we have that

E {e_”*F(Xx YY )} > 0.] Therefore, V(x +¢,y) > V(x,y).

T*[ T*
5. (Closedness of D) Take a sequence (x(),y("),y in S with limit (x,y). Then
V(x™,ymy = F(x,yM) for all n € R. Since lim,_eo F(x",y™) = F(x,y) and
V is continuous, it holds that V(x,y) = F(x,y). This implies that (x,y) € S.

6. (Convexity of D) Suppose there exists (x,y'), (x",y") € Sand A € (0,1) such
that (x,y) := A(x,y') + (1 — A)(x",y") € D. It then holds that

V(x,y) > F(x,y) = AF(x ) + (1= DE(",y") = AV, y) + (1 =)V (", "),
This contradicts convexity of V.

7. (b(x) can be written as a sup) Take (x,y) € D. The there exists a stopping time
7* such that (X¢+, Y¢+) € D, a.s.. Hence,

V(x,y) =supE[e”""F(X¢, Yo)| > E[e—rr*p(xr*,YT*)} > F(x,y).
T
Now take ¢ € (0,y). Then

V(x,y—¢) >E [e‘rT*F(XT*,YT*)}

_E | xXL N (y—e)Yy |
&1 )

[ * xXl* Yl* | * SYl*
:IE —rT T T I _ IE —rT T

QI 1 1 |
>TE err'<xxr +yYT —I> _i

) )

61 62

- 1 1
SE|e™ (xXT* + L —1> > F(x,y) > F(x,y —e),

where () follows from the fact that e~ "'Y; is a supermartingale. Therefore, (x,y —¢) € D.

8. (b is non-increasing) This follows from the fact that for all (x,y) € D and all ¢ € (0, x)
it holds that (x —¢,y) € D. This can be proved using a similar argument as above.

9. (b is convex) Convexity of b follows from the fact that its epigraph is the convex
set S.

10. (b is continuous) Continuity of b on (0,0) is immediate, because it is a convex
function on an open convex set (see, for example, Berge 1963, Theorem 8.5.7). Continuity
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;s at x = 0 follows from the fact that the stopping set is closed.

;e 11. (boundedness of b) The boundedness properties follow from continuity and x*
;e and y* being the solutions of the optimal stopping problem on £, x {0} and {0} x R,
390 respectively. O
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