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Abstract: This paper considers investment problems in real options with non-homogeneous1

two-factor uncertainty. We derive some analytical properties of the resulting optimal stopping2

problem and present a finite difference algorithm to approximate the firm’s value function and3

optimal exercise boundary. An important message of our paper is that the frequently applied4

quasi-analytical approach underestimates the impact of uncertainty. This is caused by the fact5

that the quasi-analytical solution does not satisfy the partial differential equation that governs6

the value function. As a result, the quasi-analytical approach may wrongly advise to invest in a7

substantial part of the state space.8

Keywords: Investment analysis; Optimal stopping time problem; Two-factor uncertainty.9

1. Introduction10

Since the seminal works of Dixit and Pindyck (1994) and Trigeorgis (1996), it has11

become clear that real investments should be valued using a real options approach12

when decision makers are exposed to a significant amount of uncertainty. In these13

cases, application of the standard net present value decision rule can lead to investment14

decisions that are significantly sub-optimal, as is extensively demonstrated in the above15

books. Since firm investment decisions lie at the basis of economic growth, it is crucial16

to take these decisions in the right way. From this perspective it is clear that it is of main17

importance to work on the development of the theory of real options.18

In the basic analysis the real options model consists of a single firm having the19

opportunity to invest in a project of given size, with revenue that is subject to uncertainty20

that is governed by a single stochastic process. Several authors have extended this21

framework in different directions. Smets (1991) is the first to consider a scenario where22

two firms can invest in the same market. The revenue in this market is still governed by23

one stochastic process, also after both firms have already invested and thus are active in24

this market. The assumption "project of given size" is relaxed in Bar-Ilan and Strange25

(1999) and Dangl (1999), in which the firm not only needs to decide about the time,26

but also about the size of the investment. Huisman and Kort (2015) combine the two27

extensions by considering a duopoly market where both firms also have to determine28

the investment size.29

Most of the real options literature uses a single (one-dimensional) stochastic process30

to model the evolution of random shocks affecting the investment’s value. This can be31

a major shortcoming, especially when analysing problems with, e.g., multiple firms or32

products. Such investment problems are especially common in the field of energy and33

environmental economics (Agaton and Collera 2022; Deeney et al. 2021; Li and Cao34
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2022; Zhang et al. 2021). The transition to a circular and low-carbon, bio-based economy35

requires firms to shift to the use of renewable resources, to cooperate with firms in other36

markets, and to valorize their waste streams (The European Commission 2019 2021).37

These decisions expose firms to different types of risks, creating the need for models that38

account for multiple sources of uncertainty. Therefore, in this paper we consider a real39

options problem with multiple uncertain factors, which is an important extension to the40

basic real options analysis, especially from a practical perspective.41

The first real options model with two-factor uncertainty occurs in McDonald and42

Siegel (1986). Their value function is homogenous of degree one, and the two stochastic43

processes are the output price and the investment cost. In such cases, the investment44

threshold level can be determined for the price-to-cost ratio. This allows to reformulate45

the problem in terms of the relative price, and to reduce the number of stochastic46

variables to one. In this way a standard one-factor real options model is obtained47

for which a closed-form solution exists. The result of this analysis is, however, not a48

threshold point but a threshold boundary at which it is optimal to invest (Nunes and49

Pimentel 2017). Hu and Øksendal (1998) generalize this solution to the n-dimensional50

case. Armada et al. (2013) consider a problem where the output price and quantity are51

stochastic. Here the dimension of the state space can be reduced to a one-dimensional52

space, because the only relevant payoff variable is revenue (price times quantity). The53

problem then reduces to finding an optimal revenue threshold that makes investment54

optimal.55

Several authors have tried to use this dimension-reduction approach to cases char-56

acterized by multiple stochastic processes and a constant sunk cost. Huisman et al. (2013)57

and Compernolle et al. (2017) consider price and cost uncertainty and determine the58

investment threshold level for the price-to-cost ratio. However, there are some problems59

with this approach. In the presence of a constant sunk cost investment, homogeneity60

does not hold. For this reason, the state space cannot be reduced to a one-dimensional61

one. This is also revealed in these papers, because two processes (price/cost and cost)62

remain present in the equations.63

For problems of this kind, Adkins and Paxson (2011b) propose a quasi-analytical64

approach that results in a set of equations to determine the optimal investment boundary.65

They solve this set of equations simultaneously while keeping one of the stochastic66

threshold variables fixed. The present paper shows that this methodology can lead to sub-67

optimal solutions. In fact, the results of the quasi-analytical approach will generically-68

speaking be incorrect and there is no guarantee that it converges in any meaningful sense69

to the correct solution. To put it succinctly, the main problem is that Adkins and Paxson (70

2011b) use a “local” approach to solve a “global” problem, which can lead to misleading71

results. Consequently, while the method is intuitively appealing and relatively easy72

to implement, we argue that care is required in checking that the results conform to73

economic intuition.74

In this paper we provide numerical examples for which the quasi-analytical ap-75

proach violates certain properties of the optimal boundary that can be analytically76

established. The point is, in a nutshell, that when solving the partial differential equation77

that governs the value function, two power parameters turn out to be a function of the78

state variables, where the quasi-analytical approach starts with the assumption that79

these parameters are constant.80

Our contribution to the literature is three-fold. Firstly, we alert the research com-81

munity to potential pitfalls in a regularly-used numerical method. In the literature, we82

find several papers concerning investment problems where the uncertainty is driven83

by multi-dimensional stochastic processes, and where no analytical solution can be84

derived. In such cases, the authors propose ways to circumvent the problem and come85

out with an approximation of the solution. For instance, we refer to Kauppinen et al. (86

2018), where the model proposed by Adkins and Paxson (2011b) is extended, by adding87

time to build to the investment problem. In the context of replacement options, Adkins88



Version November 2, 2021 submitted to J. Risk Financial Manag. 3 of 18

and Paxson (2013a) examine premature and postponed replacement in the presence89

of technological progress, where revenue and operating costs are treated as geometric90

Brownian motions. Adkins and Paxson (2017b) use a general replacement model to91

investigate when it is optimal to replace an asset whose operating cost and salvage value92

deteriorate stochastically.93

The need to take into account multi-sources of uncertainty is also present in prob-94

lems related with investments in the energy sector. For example, Adkins and Paxson (95

2011a) solve a switching model for two alternative energy inputs with fixed switching96

costs. Boomsma and Linnerud (2015) examine investment in a renewable energy project97

under both market and policy uncertainty. Fleten et al. (2016) study investment deci-98

sions in the renewable energy sector, where the revenue comes from selling electricity99

and from receiving subsidies, both stochastic. Adkins and Paxson (2016) consider the100

optimal investment policy for an energy facility with price and quantity uncertainty101

under different subsidy schemes. Støre et al. (2018) determine the optimal timing to102

switch from oil to gas production in the tail production phase, with the price of oil and103

gas following (correlated) Geometric Brownian motions. Finally, we refer to Heydari104

et al. (2012), who extend the quasi-analytical approach proposed in Adkins and Paxson105

(2011b) to a three-factor model, which is employed to value the choice between two106

emissions-reduction technologies assuming that the value of each option depends on107

fuel, electricity and CO2 prices, all following (correlated) Geometric Brownian motions.108

Secondly, while it could, a priori, be the case that the approximation obtained by109

the quasi-analytical approach is close enough to the true solution to be of practical110

value, we show that for the models under consideration in much of the literature this is111

not necessarily the case. For example, in the model with two uncertain revenue flows112

we find that in some situations the investment boundary is decreasing in uncertainty113

environment. This violates one of the major qualitative result from real options theory:114

“an increase in uncertainty leads to an increase in project value”. We formally prove that115

this feature also holds for the model under consideration.116

Thirdly, we develop a numerical algorithm which is based on a finite difference117

scheme and we apply this algorithm to a model with two stochastic revenue streams.118

We determine the optimal timing of investment in the presence of a constant sunk119

investment cost. Note that this model is different from the one analysed in Adkins and120

Paxson (2011b), who analyse a stochastic revenue and a (possibly correlated) stochastic121

cost. Importantly, our finite difference scheme does exhibit the expected behavior in122

relation to an increase in uncertainty.123

In the literature most finite-difference schemes have been developed to solve models124

with a one-dimensional stochastic process and a finite time horizon. This method125

typically employs a backward induction argument in the time dimension to approximate126

the optimal exercise boundary and value function in a step-by-step fashion; see, e.g., (127

Dixit and Pindyck 1994, Appendix 10.A). For a two-dimensional problem this approach128

does not work, because both processes can move up or down in any time step. Therefore,129

we suggest a finite difference scheme that starts with a hypothesized boundary, after130

which the value function is approximated at all points in the two-dimensional finite grid131

at once. A discretized smooth pasting condition (in two dimensions) can then be used132

to judge the quality of the hypothesized boundary. This procedure is repeated until an133

acceptable approximation to the optimal boundary is found.134

Note that to solve multidimensional optimal stopping problems, also other numeri-135

cal approaches could be applied. Among the relevant contributions is Lange et al. (2020).136

In this paper, the authors consider that the decision to stop can only be taken at specific137

times, generated by an exogenous Poisson process with intensity rate λ. This means that138

the set of admissible stopping times for the optimization problem is the set of events of a139

Poisson process, independent of the filtration generated by the state variables. In this140

setting, the optimization problem may be written as a fixed-point problem, for which141

the authors propose a numerical scheme, providing proof and rate of convergence.142
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In our paper, we prove some analytical properties of the optimal boundary, notably143

we prove that is convex, non-increasing and continuous in R
+. In Dammann and144

Ferrari (2021) we may find similar results, but using different arguments, that rely on a145

probabilistic representation of the Value Function. Moreover, the authors show that the146

boundary is the unique solution of an integral condition. By use of this integral equation,147

they prove monotonicty of the value function with respect to drift and volatility of the148

involved parameters. Finally, they propose a numerical approach to find the boundary,149

based on the integral equation using Monte-Carlo simulation.150

The remainder of this paper is organized as follows. Section 2 introduces a non-151

homogeneous investment problem characterized by two uncertain revenue flows. Sec-152

tion 3 applies the methodological approach in Adkins and Paxson (2011b) to solve the153

model presented in Section 2, and highlights the mathematical problems with the solu-154

tion. Section 4 proposes an alternative numerical approach to solve the model. Section 5155

concludes. Proofs of propositions are presented in Appendix A.156

2. Investment decision given two uncertain revenue flows157

Consider a profit-maximizing, risk-neutral firm that has the opportunity to invest in
a production plant by paying a constant investment cost, I. The plant can produce two
different products, the prices of which are stochastic and follow correlated geometric
Brownian motions X and Y, i.e.,

dXt = α1Xtdt + σ1XtdWX,t, dYt = α2Ytdt + σ2YtdWY,t (1)

with
X0 = x, Y0 = y (2)

being the initial values of the processes X and Y, respectively. We note that in Equation158

(1), α1 (α2) denotes the drift of the process X (Y), whereas σ1 (σ2) is the volatility of X159

(Y). Following the usual notation, we let {Wt, t ≥ 0} denote a standard two-dimensional160

Brownian motion, which we index by X and Y, respectively. We allow these processes161

to be correlated, so that ❊[dWX,tdWY,t] = ρdt for some ρ ∈ (−1, 1), where ρ > 0 (ρ < 0)162

means that WX and WY are positively (negatively) correlated.163

At any instant, if the prices of the two products are x and y, respectively, then the
instantaneous profit of the firm is given by:

π(x, y) = Q1x + Q2y, (3)

where Q1 and Q2 denote the quantities of the products produced. Moreover, at that
instant the firm’s value is equal to the perpetual revenue flow from selling two products:1

F(x, y) = ❊(x,y)

[

∫

∞

0
e−rtπ(Xt, Yt)dt − I

]

=
Q1x

δ1
+

Q2y

δ2
− I, (4)

with δi := r − αi, i ∈ {1, 2}, and r being the discount rate. To ensure finite integrals, we164

assume that r > max{0, α1, α2}. Equation (4) gives the expected value of the discounted165

stream of profits that result from operating the production process forever, given current166

prices x and y. That is, ❊(x,y) denotes the expectation operator, conditional on the initial167

state being (X0, Y0) = (x, y).168

The firm needs to determine the optimal time to undertake the investment, and,
thus, solves the following optimal stopping problem

V(Xt, Yt) = sup
τ≥t

❊(Xt ,Yt)

[

e−r(τ−t)F(Xτ , Yτ)
]

(5)

1
❊(x,y) denotes the expectation conditional on (X0, Y0) = (x, y).
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where the supremum is taken over all stopping times τ with respect to the filtration169

generated by the joint process (WX , WY). That is, we are looking for the optimal time to170

invest in the production plant, given the current values for the price of each one of the171

two types of product, such that we maximize the expected value of the overall profit.172

By maximizing over stopping times we recognize that the optimal time to invest may173

depend on the stochastic evolution of the product prices.174

Using standard calculations from optimal stopping theory (see, e.g., Øksendal and
Sulem (2007)), we derive the following Hamilton-Jacobi-Bellman (HJB) equation for this
problem:

min{rV(x, y)−LV(x, y), V(x, y)− F(x, y)} = 0, ∀ (x, y) ∈ ℜ+ ×ℜ+. (6)

Here L denotes the infinitesimal generator of the process (X, Y):

LV(x, y) = lim
h↓0

E[V(x + h, y + h)]− V(x, y)

h

which is given by (Øksendal and Sulem (2007)):175

LV(x, y) =
1

2
σ2

1 x2 ∂2V(x, y)

∂x2
+

1

2
σ2

2 y2 ∂2V(x, y)

∂y2
+ ρσ1σ2xy

∂2V(x, y)

∂x∂y

+ α1x
∂V(x, y)

∂x
+ α2y

∂V(x, y)

∂y
. (7)

This equation should be understood as follows: before the investment takes place, and176

assuming that the current prices of the products are x and y, the value of the firm,177

V(x, y), is such that V(x, y) > F(x, y) (and thus investment is not yet optimal) and that178

optimality of the function V requires that rV(x, y)−LV(x, y) = 0. The latter equation179

essentially states that the investment’s value today is equal to the discounted expected180

value of the investment a short amount of time later. Then, as soon as investment is181

optimal, it holds that V(x, y) = F(x, y) and that the value of immediate investment182

exceeds the discounted expected value of the investment a short amount of time later,183

i.e. rV(x, y)−LV(x, y) > 0.184

Moreover, we let the set D := {(x, y) ∈ ℜ2
+|V(x, y) > F(x, y)} denote the contin-185

uation region, and S := ℜ2
+ \ D = {(x, y) ∈ ℜ2

+|V(x, y) = F(x, y)} denote the stopping186

region. Following the general theory of optimal stopping, it then follows that τ∗, the187

time at which the investment should be undertaken, is given by the first exit time of the188

continuation region, i.e.,189

τ∗ = inf{t ≥ 0; (Xt, Yt) /∈ D}. (8)

Therefore, τ∗ is the first time that the value function is equal to the expected value from190

immediately investing in the production plant.191

In view of the equation (6), it follows that

rV(x, y)−LV(x, y) ≥ 0 ∧ V(x, y) ≥ F(x, y), ∀ (x, y) ∈ ℜ2
+.

Moreover,

rV(x, y)−LV(x, y) = 0 ∧ V(x, y) ≥ F(x, y), ∀ (x, y) ∈ D, (9)

whereas
rF(x, y)−LF(x, y) ≥ 0 ∧ V(x, y) = F(x, y), ∀ (x, y) ∈ S. (10)

The solution of the HJB equation, V, must satisfy the following boundary condition:

V(0+, 0+) = 0, (11)
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which reflects the fact that the value of the firm will be zero if the prices are zero. Also
the following value-matching and smooth-fit conditions should hold (see Pham (1997),
Tankov (2003) and Larbi and Kyprianou (2005)):

V(x, y) = F(x, y) and ∇V(x, y) = ∇F(x, y), for (x, y) ∈ ∂D. (12)

Here ∂D denotes the boundary of D, which we call critical boundary, and ∇ is the gradient192

operator. Therefore, the solution of the problem is continuous at the critical boundary,193

not only for itself but also for its derivatives. The resulting threshold is a curve separating194

the two regions (the continuation and the stopping regions).195

Note that x = 0 and y = 0 are absorbing barriers. Consequently, at these boundaries,
the firm only receives revenues from one product and only one stochastic process is in
use. Therefore, the threshold at these points corresponds to the standard solution for a
one-dimensional problem. It follows that the investment triggers at the y and x axis are

x∗ =
β1

β1 − 1
δ1 I, if y = 0, and y∗ =

η1

η1 − 1
δ2 I, if x = 0, (13)

respectively. We refer, for instance, to Dixit and Pindyck (1994) for derivation of these196

values.197

These thresholds can be interpreted as follows. If y = 0, then the firm should still
invest in this plant as soon as the price of the other product reaches the value x∗. The
intuition is analogous for x = 0 and y∗. The parameters β1 > 1 and η1 > 1 are the
positive roots of the quadratic equations

1

2
σ1β(β − 1) + α1β − r = 0, and

1

2
σ2η(η − 1) + α2η − r = 0,

respectively.198

Solving problem (5) means, in particular, that we need to derive the set of values199

for x and y where stopping is optimal, i.e., where investment should take place. In200

particular, we want to derive the boundary between D and S, as crossing this boundary201

means that investment should be undertaken right away. We call it the threshold boundary.202

As we have two state variables, we may define this threshold boundary as a surface in203

R
2, as follows: given that the price of one product is x ∈ R

+, the firm should undertake204

the investment if the price of the other product is larger or equal to b(x). If it is smaller,205

than the firm should wait before investment. The next theorem derives some qualitative206

features of the threshold boundary for the problem defined in (5).207

Theorem 1. The boundary between D and S can be described by a mapping x 7→ b(x), where:208

1. b(x) = sup{ y ∈ ℜ+ | V(x, y) > F(x, y) } for all x ∈ (0, x∗);209

2. b is non-increasing on (0, x∗);210

3. b is convex on (0, x∗);211

4. b is continuous;212

5. b(x) < y∗ on (0, x∗), and b(x) = 0 on [x∗, ∞).213

In addition, the stopping set S is:214

1. closed;215

2. convex.216

Finally, the value function V satisfies:217

1. V > 0 on ℜ2
++;218

2. V is convex;219

3. V is continuous;220

4. V is increasing in x and y.221

Remark 1. Theorem 1 leads to the following observations.222
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1. We can write

D =
{

(x, y) ∈ ℜ2
+

∣

∣

∣
y < b(x)

}

, and S =
{

(x, y) ∈ ℜ2
+

∣

∣

∣
y ≥ b(x)

}

.

2. The optimal stopping boundary can never lie below the Net Present Value boundary b̄, i.e.

b(x) > b̄(x) := δ2(I − x/δ1), all x ∈ (0, δ1 I).

Thus in order to solve (5) we need to find V and, at the same time, b(x) for x ≤ x∗,223

such that the properties enumerated in Theorem 1 hold. In particular for V, conditions224

usually known in the literature as fit conditions are checked: the value matching condition225

(for the continuity of the value function) and smooth-pasting (for the smoothness of the226

value function).227

3. The quasi-analytical approach228

Following the approach in Adkins and Paxson (2011b), we start by postulating a
solution to equation (6) of the following form:

v(x, y) = Axβyη , (14)

where A, β, and η are constants. Simple calculations lead to the conclusion that for (14)
to be a solution to (7) it must hold that β and η are the roots of the characteristic root
equation:

Q(β, η) =
1

2
σ2

2 η(η − 1) +
1

2
σ2

1 β(β − 1) + ρσ1σ2βη + α1β + α2η − r = 0. (15)

The set of solutions to (15) defines an ellipse that intersects all quadrants of ℜ2, with229

β (η) on the horizontal (vertical) axis.230

Adkins and Paxson (2011b) hypothesize that the boundary between the continuation
and stopping regions is of the form x 7→ b(x). As Theorem 1 shows, this is correct. In
order to find this boundary, Adkins and Paxson (2011b) try to extend the standard
value-matching and smooth-pasting conditions to a two-dimensional setting. The way
this is done is as follows: on the boundary it should hold for every x̂ ∈ (0, x∗), with x∗

as given in Equation (13):

v(x̂, b(x̂)) =
Q1 x̂

r − α1
+

Q2b(x̂)

r − α2
− I (value matching) (16)

∂v(x, y)

∂x |x=x̂,y=b(x̂)
=

Q1

r − α1
(smooth pasting in x-direction) (17)

∂v(x, y)

∂y |x=x̂,y=b(x̂)

=
Q2

r − α2
(smooth pasting in y-direction). (18)

Now, if the value function is of the form2

v(x, y) = Axβyη ,

2 Note that Adkins and Paxson (2011b) assume this is the case.
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then it should hold that β, η > 0 since the boundary conditions limx↓0 v(x, y) =
limy↓0 v(x, y) = 0 should be satisfied. Therefore, for every x̂ ∈ (0, x∗) we can solve
the system of non-linear equations

Ax̂βb(x̂)η =
Q1 x̂

r − α1
+

Q2b(x̂)

r − α2
− I (19)

βAx̂β−1b(x̂)η =
Q1

r − α1
(20)

ηAx̂βb(x̂)η−1 =
Q2

r − α2
(21)

Q(β, η) = 0, (22)

in b, A, β, and η, under the condition that β, η > 0.231

Using the approach presented in Støre et al. (2018) to solve this system, we find the232

explicit solution for the boundary3:233

b̂(x) = x
η(x)(r − α2)Q1

β(x)(r − α1)Q2
, (23)

where234

β(x) =
σ2

1−2α1+C∗(x)(2α2+σ2
2 )

2(σ2
1+σ2

2 C∗(x))
+

√

(

σ2
1−2α1+C∗(x)(2α2+σ2

2 )

2(σ2
1+σ2

2 C∗(x))

)2

+ 2 r−α2

σ2
1+σ2

2 C∗(x)
, (24)

η(x) = 1 − β(x)C∗(x), (25)

C∗(x) = 1 − (r−α1)I
xQ1

. (26)

In the previous equations we use β(x) and η(x) instead of β and η to emphasize the235

dependency on the state variable x.236

Therefore, solving (20)-(22) leads to values of β and η that do depend on the value of237

x and, thus, cannot be treated as fixed parameters. This is also the case for the problem238

in Adkins and Paxson (2011b), as illustrated by their Figure 3.4 The same holds for A239

and b.240

Let u = [ β(x) η(x) A(x) b̂(x) ]T denote the vector of solutions resulting from241

(20)-(22). Then at b̂(x), the value of the firm can be written as242

v(x, b̂(x)) = A(x)xβ(x) b̂
η(x)

(x). (27)

Note that from (9) the partial differential equation rV(x, y)− LV(x, y) = 0 must243

also hold along the threshold boundary, implying that244

1

2
σ2

1 x2

(

∂2v(x, b̂)

∂x2
+

∂

∂u

(

∂v(x, b̂)

∂x

)

∂u

∂x
+

∂

∂x

(

∂v(x, b̂)

∂u

∂u

∂x

))

+
1

2
σ2

2 b̂
2 ∂2v(x, b̂)

∂b̂2

+α1x

(

∂v(x, b̂)

∂x
+

∂v(x, b̂)

∂u

∂u

∂x

)

+ α2b̂
∂v(x, b̂)

∂b̂
− rv(x, b̂) = 0. (28)

3 For simplicity, henceforth we assume that ρ = 0.
4 The same holds for (Adkins and Paxson 2011a), see Table 2; Adkins and Paxson (2017a), see Table of Figure 1; Heydari et al. (2012), see equation (19);

Adkins and Paxson (2013a), see equation (9); Adkins and Paxson (2013b), see Figure 2; Fleten et al. (2016), see equation (17); Støre et al. (2018), see
equation (18); and Adkins and Paxson (2017b), see Table 3.
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Using (27) we can rewrite (28) as245

1

2
σ2

1 x2

(

∂

∂u

(

∂v(x, b̂)

∂x

)

∂u

∂x
+

∂

∂x

(

∂v(x, b̂)

∂u

∂u

∂x

))

+ α1x

(

∂v(x, b̂)

∂u

∂u

∂x

)

+Axβ b̂η

(

1

2
σ2

2 η(η − 1) +
1

2
σ2

1 β(β − 1) + α1β + α2η − r

)

= 0, (29)

The first two terms in (29) represent the contributions of the partial derivatives of246

b̂, A, β and η with respect to x, whereas the last term is equal to Axβ b̂ηQ(β, η). If the247

solution proposed in (14) is correct, then the latter should be equal to zero, and we can248

still use the system (19)-(22) to determine the threshold boundary. In what follows we249

verify whether the contribution of the partial derivatives is negligible for the numerical250

example in Table 1.251

x̂ Contribution of partial derivatives
10 -10841.14
20 -54 856.60
30 -9040.40

Table 1: The value of the first two terms of equation (29) for the following set of the
parameter values: σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5,
Q2 = 10, and I = 2000.

For x̂ = 10, and the set of parameter values in Table 1, F(x̂, b̂(x̂)) = 7281.23. There-252

fore, we conclude that the contribution of the partial derivatives cannot be neglected. As253

a result, substitution of the solution (27) in (7) leads to the conclusion that the condition254

for η and β is no longer (15). In fact, (15) needs to be modified to incorporate terms255

involving β′(x), η′(x), β′′(x), η′′(x), A′(x), A′′(x), b̂′(x) and b̂′′(x). The implication is256

that solving the system (19)-(22) for different values of x̂ does not result in a correct257

threshold boundary.258

3.1. Results of the quasi-analytical approach259

After having shown that the boundary b̂, as determined by the quasi-analytical260

approach, is not the true boundary b, it could still be the case that b̂ is a good approxima-261

tion of b. This section, however, provides an argument that this is not the case, at least262

for the problem in Section 2.263

We start out by presenting the following proposition.264

Proposition 1. The value function, V, is monotonically increasing in both σ1 and σ2.265

Proof. The result follows from Proposition 3 in Olsen and Stensland (1992) using the266

fact that the optimal value function is convex, as stated in our Theorem 1.267

In the following, we study the behaviour of the investment boundary as a function268

of the volatilities of the involved processes, σ1 and σ2. Thus we let b(σ1, σ2; x) denote the269

boundary, given that the current price of the first product is x, and that the volatilities270

are σ1 (for X) and σ2 (for Y).271

Corollary 1. Let b(σ1, σ2; x) denote the optimal investment threshold boundary for a given level272

of x. Then it holds that b(σ1, σ2; x) is increasing in both σ1 and σ2.273

Proof. We prove the result by contradiction. Without loss of generality we only consider274

a change in σ1. Consider two different values of σ1, such that σ̂1 > σ̄1, and b(σ̂1, σ2; x) <275
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b(σ̄1, σ2; x) for some x. Let V(σ1, σ2; x, y) denote the optimal value function for a given276

level of x. Then,277

V(σ̂1, σ2; x, y) =

{

> F(x, y) for y < b(σ̂1, σ2; x),

= F(x, y) for y ≥ b(σ̂1, σ2; x),
(30)

V(σ̄1, σ2; x, y) =

{

> F(x, y) for y < b(σ̄1, σ2; x),

= F(x, y) for y ≥ b(σ̄1, σ2; x).
(31)

If b(σ̂1, σ2; x) < b(σ̄1, σ2; x), then for y ∈ (b(σ̂1, σ2; x), b(σ̄1, σ2; x)), it holds that278

V(σ̄1, σ2; x, y) > F(x, y) = V(σ̂1, σ2; x, y), which contradicts Proposition 1.279

Figure 1 illustrates the quasi-analytical threshold boundaries for different values of280

σ2.281

σ2=0.1

σ2=0.2

σ2=0.4

σ2=0.6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x

y

Figure 1. The threshold boundaries, b̂, for the following set of parameter values: σ1 = 0.2,

α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different values of σ2.

Evidently, the numerical example violates Corollary 1, since the threshold bound-282

aries intersect. Moreover, this result does not correspond to what we would expect283

from real options theory, i.e. that the firm invests for a larger threshold level in a more284

uncertain environment. In fact, for x > 32, the quasi-analytical approach suggests that285

the firm should invest for a lower threshold level when σ2 is larger. This clearly leads286

to a sub-optimal decision, so the quasi-analytical solution falls short in being a useful287

approximation to the optimal solution in this case.288

4. Numerical Solution289

This section develops a finite difference algorithm to solve the optimal stopping290

problem in (5). The results of the numerical approach are different from the results291

obtained by the analytical approach and in line with Theorem 1 and Proposition 1.292
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We start by generating a discrete grid over the domain of the partial differential
equation in (7). Thus we assume that the intervals (0, x∗] and (0, x∗] are divided in
Nx + 1 and Ny + 1 equally spaced subintervals, respectively, and we let

xi = ih i = 0, 1, 2, .., Nx, h =
x∗

Nx
, (32)

yj = jg i = 0, 1, 2, .., Ny, g =
y∗

Ny
, (33)

where x∗ and y∗ are the optimal investment triggers in case the other state variable
is zero and, thus, are the natural end points of the grid. Moreover, we consider the
following notation: Vi,j denotes the value of the firm at the grid points (xi, yj):

V(i,j) = V(xi, Yi)

with V defined in Equation (5). Finally we let v be vector of unknown grid points, which293

can be ordered in the following way294

v =























V0,0

V0,1
...

V0,Nj

...
VNi ,Nj























(34)

Then we are able to derive a linear system of equations that allows to solve for the discrete
grid points simultaneously, as follows. We discretize the partial differential equation
using a weighted sum of the function values at the neighboring point approximations to
the partial derivatives. This yields

1

2
σ2

1 p2
1

Vi+1,j − 2Vi,j + Vi−1,j

h2
+

1

2
σ2

2 p2
2

Vi,j+1 − 2Vi,j + Vi,j−1

g2
+ α1x

Vi+1,j − Vi,j

h
+ α2y

Vi,j+1 − Vi,j

g

+ρσ1σ2xy
Vi+1,j+1 − Vi+1,j−1 − Vi−1,j+1 + Vi−1,j−1

4hg
− rVi,j = 0.

(35)

Rearranging the terms, gives

Vi,j

(

−σ2
1 i2 − α1ih − σ2

2
j2h2

g2
− α2

jh2

g
− rh2

)

+ Vi,j+1

(

1

2
σ2

2
j2h2

g2
+ α2

jh2

g

)

+

Vi+1,j

(

1

2
σ2

1 i2 + α1ih

)

+ Vi,j−1

(

1

2
σ2

2
j2h2

g2

)

+ Vi−1,j

(

1

2
σ2

1 i2
)

+

+ρσ1σ2
ijh

4g
(Vi+1,j+1 − Vi+1,j−1 − Vi−1,j+1 + Vi−1,j−1) = 0. (36)

Then the partial differential equation (35) can be represented as a system of linear295

equations296

Bv = 0, (37)

where B is the matrix of coefficients resulting from (36).297

This system can be solved by applying appropriate boundary conditions. We use298

the fact that the value at (x∗, 0) and (0, y∗) must equal the value of the immediate299

investment. In addition, if either xi or yj is equal to zero the problem is reduced to300

one-dimension, and the grid points together with the threshold boundary can be found301
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analytically. Given a candidate threshold function, the system (37) in combination with302

the boundary conditions in zero and final nodes, yield a solution for the unknown grid303

points. To determine the optimal threshold we implement the following procedure. First,304

we propose a shape of the exercise boundary. For example, the results that we present305

in Figure 2 are based on the quadratic function, i.e. y = a + bx + cx2. The unknown306

parameters, a and b can be determined using the analytical threshold boundaries when307

either xi or yj is zero. In order to find c, we compute the derivative of the option value308

at the candidate threshold boundary at each node, and compare it with the derivatives309

resulting from the smooth pasting conditions. Next, we compute the sum squared error310

of the differences and minimize it with respect to unknown parameter c, which allows311

to determine the optimal threshold in such a way that the smooth pasting condition is312

satisfied.313

We now replicate Figure 1 using our finite difference scheme and depict it in Figure314

2.315

σ2=0.1

σ2=0.2

σ2=0.4

σ2=0.6

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

x

y

Figure 2. The numerical threshold boundary for the following set of parameter values: σ1 = 0.2,

α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different values of σ2.

This numerical example results in a more intuitive shape of thresholds boundaries316

and represent a standard result from the real options theory. Namely, an increase in317

volatility leads to an increase of the optimal investment threshold.318

In addition, finite difference also allows for the calculation of an approximation to319

the value function that is implied by the quasi-analytical boundary b̂. This can be done320

by solving (37) for the boundary in (23). Figure 3 illustrates the comparison between the321

implied value function and the numerical solution represented by quadratic boundary322

for a fixed level of x and different values of y.323



Version November 2, 2021 submitted to J. Risk Financial Manag. 13 of 18

Quasi-analytical solution

Numerical solution

0 yN2 6 8yQA

800

1000

1200

1400

1600

1800

2000

y

V

Figure 3. The numerical threshold boundary for the following set of parameter values: x = 40.52,

σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5, Q2 = 10, I = 2000, and different

values of y.

From Figure 3 it is evident that the value function implied by the quasi-analytical324

solution has a kink at the boundary point yQA = b̂(40.52) = 2.49, violating the smooth-325

pasting condition. Consequently, the quasi-analytical approach underestimates the true326

value function, which leads to a sub-optimal investment decision rule for large values of327

x. Note that the quasi-analytical approach suggests a much lower trigger than our finite328

difference scheme. For x = 40.52, the numerical procedure based on the finite-difference329

algorithm gives the boundary point yQA = 10.26, such that the smooth-pasting condition330

holds. Figure 4 illustrates the value function for different values of x and y, as well as331

the threshold boundary.332
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Figure 4. The numerical value function and threshold boundary (solid black curve) for the

following set of parameter values: σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1, ρ = 0, Q1 = 5,

Q2 = 10, I = 2000, and different values of x and y.

As can be seen, the value appears to be smooth for different values of x and y in the333

grid. The average squared error resulting from the numerical procedure is equal to 0.44,334

which corresponds to 0.17% of the true value of total derivative of the value function.335

Therefore, we conclude that the proposed numerical method is a good approximation336

for the true value function and optimal threshold.337

Lastly, in order to give an indication how often a firm would make a poorly timed338

investment decision, we simulate the passage time for the processes Xt and Yt to reach339

the quasi-analytical boundary. We then run the procedure 5000 times for a specific set340

of starting values (x0, y0), and calculate the percentage of cases of the threshold being341

reached within the next 5 years. We perform a similar procedure, to determine the342

investment probabilities for our numerical solution. The results for the different starting343

points are presented in Table 2.344

(x0, y0) 5 10 15
10 10.06% 23.97% 39.03%
15 21.69% 42.87% 61.69%
20 40.32% 68.34% 90.21%

(a) Quasi-analytical boundary

(x0, y0) 5 10 15
10 5.40% 5.56% 5.51%
15 5.57% 5.41% 5.57%
20 5.43% 5.24% 5.59%

(b) Numerical boundary

Table 2: Percentage of cases when a firm undertakes an investment within the next 5
years for the set of parameter values: σ1 = 0.2, σ2 = 0.6, α1 = 0.02, α2 = 0.02, r = 0.1,
ρ = 0, Q1 = 5, Q2 = 10, I = 2000.

Table 2b shows that, for example, for the starting values (15,10) the firm should345

invest in 5.41% of the cases. According to the quasi-analytical approach however, the346

firm invests in 42.87% of the cases, implying that many times the firm invests while it is347

in fact not optimal to do so.348
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5. Conclusion349

This paper develops an easy-to-implement finite difference algorithm to solve real350

options models with two-factor uncertainty. The proposed framework is, thus, highly351

relevant for the evaluation of business opportunities involving multiple end-products, a352

switch in feed-stock or end-product, a cooperation between firms that are operative in353

different markets, and investments in new technologies incentivized by market-based354

policy instruments.355

We apply it to a particular investment problem, where after investment the firm356

is able to produce two different products. The output prices of these products follow357

two geometric Brownian motion processes, possibly correlated. The investment cost is358

constant and sunk. We contrast our solution approach to the quasi-analytical approach359

developed by Adkins and Paxson (2011b) to address such problems. The latter has360

already been adopted by several other authors, as the overview in Section 1 shows. This361

paper argues, however, that this quasi-analytical method does not always result in the362

correct investment decision rule.363

From the analysis of this two-factor real options problem we obtain that the quasi-364

analytical investment decision rule in some cases also fails to be a reasonable approxima-365

tion to the optimal decision. In particular, we find that the quasi-analytical solution does366

not comply with the (analytical) result that the investment threshold boundary must be367

monotonically increasing in the volatility parameters of both stochastic processes.368

The ultimate conclusion is that non-homogenous real options problems with two-369

factor uncertainty should be solved using a different numerical procedure. Or at the370

very least, the quality of the quasi-analytical approximation should be discussed. Note,371

however, that if our two-factor uncertainty problem is homogenous, then a standard (cf.372

McDonald and Siegel (1986)) reduction in dimensionality can be obtained, leading to an373

analytical solution.374

Appendix A375

Proof of Theorem 1.

Throughout the proof, we will denote the unique solution to (1) for given starting point
(X0, Y0) ∈ ℜ2

+ \ {0} by (Xx, Yy). Note that (Xx, Yy) = (xX1, yY1).

1. (V > 0 on ℜ2
++) On S the result is trivial. Let (x, y) ∈ D ∩ ℜ2

++. Consider the
stopping time

τ = inf{t ≥ 0|F(Xτ , Yτ) > 0}.

Since e−rτ F(Xτ , Yτ) = 0 on {τ = ∞} (since r > max{α1, α2}) and P(τ < ∞) > 0, it
holds that

V(x, y) ≥ ❊
[

e−rτ F(Xτ , Yτ)
]

> 0.

2. (Convexity of V) On S the result is trivial. Take (x′, y′), (x′′, y′′) ∈ D and λ ∈ (0, 1).
Define (x, y) := λ(x′, y′) + (1 − λ)(x′′, y′′). It then holds that

V(x, y) = sup
τ
❊
[

e−rτ F(x′, y′)
]

= sup
τ
❊

[

e−rτ

(

xX1
τ

δ1
+

yY1
τ

δ2
− I

)]

= sup
τ
❊

[

e−rτ

(

(λx′ + (1 − λ)x′′)X1
τ

δ1
+

(λy′ + (1 − λ)y′′)Y1
τ

δ2
− I

)]

= sup
τ
❊

[

λe−rτ

(

x′X1
τ

δ1
+

y′Y1
τ

δ2
− I

)

+ (1 − λ)e−rτ

(

x′′X1
τ

δ1
+

y′′Y1
τ

δ2
− I

)]

≤λ sup
τ
❊
[

e−rτ F(x′, y′)
]

+ (1 − λ) sup
τ
❊
[

e−rτ F(x′′, y′′)
]

=λV(x′, y′) + (1 − λ)V(x′′, y′′).
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3. (Continuity of V) This property follows from the general theory of stochastic processes,
see, e.g., (Krylov 1980, Theorem 3.1.5).

4. (Monotonicity of V) We prove that V is (strictly) increasing in x. Again, the re-
sult is trivial on S. Take (x, y) ∈ D and let ε > 0 be such that (x + ε, y) ∈ D (such ε exists
since D is open; see below). Take any stopping time τ. It then holds that

❊

[

e−rτ

(

(x + ε)X1
τ

δ1
+

yY1
τ

δ2
− I

)]

≥ ❊

[

e−rτ

(

xX1
τ

δ1
+

yY1
τ

δ2
− I

)]

,

with equality only when {τ = ∞} a.s.. Note that τ with {τ = ∞} a.s. is never optimal.
Take τ∗ = inf{t ≥ 0|Yt ≥ δ1 I + 1}. Then P(τ∗

< ∞) > 0 and, thus, we have that

❊

[

e−rτ∗ F(Xx
τ∗ , Y

y
τ∗)
]

> 0.] Therefore, V(x + ε, y) > V(x, y).

5. (Closedness of D) Take a sequence (x(n), y(n))n∈ℵ in S with limit (x, y). Then
V(x(n), y(n)) = F(x(n), y(n)) for all n ∈ ℵ. Since limn→∞ F(x(n), y(n)) = F(x, y) and
V is continuous, it holds that V(x, y) = F(x, y). This implies that (x, y) ∈ S.

6. (Convexity of D) Suppose there exists (x′, y′), (x′′, y′′) ∈ S and λ ∈ (0, 1) such
that (x, y) := λ(x′, y′) + (1 − λ)(x′′, y′′) ∈ D. It then holds that

V(x, y) > F(x, y) = λF(x′, y′) + (1 − λ)F(x′′, y′′) = λV(x′, y′) + (1 − λ)V(x′′, y′′).

This contradicts convexity of V.

7. (b(x) can be written as a sup) Take (x, y) ∈ D. The there exists a stopping time
τ∗ such that (Xτ∗ , Yτ∗) ∈ D, a.s.. Hence,

V(x, y) = sup
τ
❊
[

e−rτ F(Xτ , Yτ)
]

≥ ❊
[

e−rτ∗ F(Xτ∗ , Yτ∗)
]

> F(x, y).

Now take ε ∈ (0, y). Then

V(x, y − ε) ≥❊
[

e−rτ∗ F(Xτ∗ , Yτ∗)
]

=❊

[

e−rτ∗

(

xX1
τ∗

δ1
+

(y − ε)Y1
τ∗

δ2
− I

)]

=❊

[

e−rτ∗

(

xX1
τ∗

δ1
+

yY1
τ∗

δ2
− I

)]

−❊

[

e−rτ∗ εY1
τ∗

δ2

]

(∗)
≥❊

[

e−rτ∗

(

xX1
τ∗

δ1
+

yY1
τ∗

δ2
− I

)]

−
ε

δ2

>❊

[

e−rτ∗

(

xX1
τ∗

δ1
+

yY1
τ∗

δ2
− I

)]

> F(x, y) > F(x, y − ε),

where (∗) follows from the fact that e−rtYt is a supermartingale. Therefore, (x, y− ε) ∈ D.376

377

8. (b is non-increasing) This follows from the fact that for all (x, y) ∈ D and all ε ∈ (0, x)378

it holds that (x − ε, y) ∈ D. This can be proved using a similar argument as above.379

380

9. (b is convex) Convexity of b follows from the fact that its epigraph is the convex381

set S.382

383

10. (b is continuous) Continuity of b on (0, ∞) is immediate, because it is a convex384

function on an open convex set (see, for example, Berge 1963, Theorem 8.5.7). Continuity385
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at x = 0 follows from the fact that the stopping set is closed.386

387

11. (boundedness of b) The boundedness properties follow from continuity and x∗388

and y∗ being the solutions of the optimal stopping problem on ℜ+ × {0} and {0} × ℜ+,389

respectively.390
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