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Abstract: Cyanidiophyceae are polyextremophilic red algae adapted to live in geothermal and 

volcanic sites with a high concentration of heavy and rare metals and can mobilize and adsorb 

metals selectively. In this work, we assessed the capacity of 3 strains of Galdieria (G. maxima, G. 

sulphuraria, G. phlegrea) and one strain of Cyanidium caldarium to tolerate different concentrations of 

rare metal as Cl4K2Pd and AuCl4K by monitoring algal growth in cultures exposed to the metals 

and investigating algae potential oxidative stress induced by them. 
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1. Introduction 

In the last decade, there was a remarkable and growing demand for recovering el-

ements and energetic resources from waste streams [1]. In particular, high levels of con-

cern were directed towards Rare Earth Elements (REEs) due to their extensive use in 

superconductors, catalysts, and the electronic industry. Conversely, the discharge in the 

environment and the suitability of recycling REE from e-waste are relevant topics be-

cause of their hazard for the environment and health, besides their economic value. 

These issues become evident to both governments and electronic industries, which are 

increasingly prone to develop new methods to remove REEs from the environment and 

possibly recycle them back into a “closed-loop economy” production cycle [2–6] while 

simultaneously achieving energy optimization goals [7,8]. Recently, biological methods 

were developed to ensure the recovery of small quantities of these metals from 

wastewater systems [5], using mainly bacteria [9–12] or plants known for their ability to 

immobilize heavy metals in the cell wall and compartmentalization in vacuoles [13]. In-

terestingly, polyextremophilic algae have intrinsic properties that make them capable of 

selective removal and concentration of metals, thanks to their adaptation to live in geo-

thermal and volcanic sites [14–17]. Geothermal fluids leach out of the hot volcanic rocks 

and are enriched by enormous amounts of minerals and metals, including lithium, sul-

phur, boric acid, and precious metals such as gold, platinum, palladium, and silver [18]. 

Cyanidiophyceae, unicellular red algae, survive in extreme conditions, very low pH 

(0.0–3.0) and high temperatures (37–55 °C), and colonize acid and hydrothermal sites 

but also rocks and muddy soil around hot ponds [19]. They are divided into 3 genera: 

Cyanidioschyzon, Cyanidium and Galdieria, which differ in size, cellular shape, and growth 

conditions. Cyanidioschyzon merolae, the only species belonging to the Cyanidioschyzon 
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genus, differs from the other two taxa in the lack of a cell wall and division by binary 

fission [20]. Cyanidioschyzon, Cyanidium and Galdieria can grow both on ammonia and ni-

trate. Cyanidioschyzon and Cyanidium species are obligatory autotrophs, while Galdieria 

ones can grow auto-, mixo-, and heterotrophically and tolerate high concentrations of 

salts [21], thus making Galdieria more suitable for biotechnological applications [14]. The 

ability of Galdieria sulphuraria of recovering REEs was already assessed [5,22] and con-

firmed by an approved patent [23]. In this report, we focused in deep for the first time 

on the ability of different Galdieria species (Galdieria maxima, Galdieria sulphuraria, 

Galdieria phlegrea) and Cyanidium caldarium to tolerate different concentrations of REEs 

(such as palladium-Cl4K2Pd and gold-AuCl4K). We also investigated the metabolic re-

sponse and possible oxidative stress induced by these metals by monitoring superoxide 

dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activities. 

2. Results 

Polyextremophilic microalgae, such as Cyanidiophyceae, have a high intrinsic 

capacity to uptake metals, involving active and passive mechanisms [5]. Heavy, rare, or 

precious metals can influence algae physiology in various ways, likely inhibiting 

different physiological processes. To evaluate the suitability of Cyanidiophyceae other 

than G. sulphuraria for biotechnological application to recover REEs effectively, we tested 

the tolerance to Cl4K2Pd and AuCl4K by monitoring the growth and metabolic response 

of 4 different taxa, exposed to each of these metals at a concentration in the range 1–10 

g/L. As more deeply discussed in Section 4, the growth was evaluated after 4 days (96 h) 

since the single metal exposure. The results were expressed in the form of Maximum 

Growth Rate (MGR). 

As shown in Figure 1, the presence of AuCl4K significantly reduced cellular dupli-

cation in G. maxima at all the concentrations tested; Cl4K2Pd did not negatively affect 

cell growth, and no statistical difference was recorded between MGR in control and tests 

(Figure 1A). Regarding G. phlegrea, both metals induced a trend of reduction in growth 

rate at both concentrations (Figure 1B). Viceversa, in G. sulphuraria, AuCl4K reduced cell 

growth at the maximum concentration, while the MGR appeared not affected by 

Cl4K2Pd, as shown by the MGR values at 10 g/L comparable to control. A decrease in 

growth rate was recorded at lower concentration (1 g/L); presumably, the highest 

amount of palladium was beneficial for the growth of this strain, or even the 

improvement of the cell duplication should be interpreted as a defence of the algal 

strain. Finally, C. caldarium showed a high tolerance to Cl4K2Pd, whereas AuCl4K signif-

icantly inhibited cell duplication as metal concentration increased (Figure 1D). The 

highest concentration of palladium (10 g/L) improved the growth, and in G. maxima and 

G. sulphuraria, the MGR values outperformed the controls.Subsequently, it was decided 

to evaluate the ROS scavenging activities of SOD, CAT and APX in all algae tested in the 

presence of Cl4K2Pd and AuCl4K at a concentration of 1 g/L, after an incubation period of 

24 h. The reason behind this choice was that the antioxidant activity could be considered 

a measure of the cell effectiveness in responding to the impact of metals, increasing their 

tolerance as a protective mechanism necessary to remove ROS before they can damage 

sensitive parts of the cellular machinery. In particular, the SOD, which catalyses the 

dismutation of O2− (singlet oxygen) to O2 and H2O2, was defined as the first cellular de-

fence against ROS production. Meanwhile, CAT catalyses the production of H2O from 

the degradation of H2O2 and ROOH, respectively. Finally, APX reduces H2O2 to H2O 

using the ascorbate as an electron donor. The strain/metal-specific metabolic responses 

were quite diverse, as shown in Figure 2. Indeed, APX activity significantly increased 

only in G. maxima in response to Cl4K2Pd, while in the presence of AuCl4K, all the enzy-

matic activities appeared reduced (Figure 2A). Concerning the other strains, in G. 

phlegrea, all the enzymes tested activity decreased in the presence of Cl4K2Pd and in-

creased in the presence of AuCl4K (Figure 2B); in G. sulphuraria, both metals induced an 
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enzymatic activity decrease (Figure 2C). Finally, we observed a significant increase of all 

the enzymes in C. caldarium in the presence of Cl4K2Pd, but not in AuCl4K (Figure 2D). 

 

Figure 1. Evaluation of metal tolerance through MGR monitoring after 4 days (96 h). Maximum 

growth rate in presence of different concentrations of palladium (Cl4K2Pd-orange-left panel) and 

gold (AuCl4K-blue-right panel), for the species G. maxima (A), G. phlegrea (B), G. sulphuraria (C) 

and C. caldarium (D). Error bars represent standard deviation of three replicates; (*) = p-value ≤ 

0.000000001 calculated by T-test. 
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Figure 2. Evaluation of enzymatic activities after metals exposure. Relative units represent: enzymatic activity as units/g 

of dry weight (SOD); enzymatic activity as nmol H2O2/g of fresh weight (CAT); enzymatic activity as µmol ascorbate/g 

of fresh weight (APX). Enzymatic activities were monitored in G. maxima (A), G. phlegrea (B), G. sulphuraria (C) and C. 

caldarium (D), treated with 1 g/L of palladium (Cl4K2Pd—orange bars) and gold (AuCl4K—blue bars) after 96 h. Mean (± 

SD) was calculated from three replicates. (*) = p-value ≤ 0.05 calculated by T-test. 
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3. Discussion 

A significant increase of the enzyme compared to the control suggests a high scav-

enging activity of the singlet oxygen in peroxide of hydrogen, which can be expressed as 

an evident tolerance of these algae to the metal under examination. An increase in the 

activity of both antioxidant enzymes is necessary to reduce the concentrations of both 

singlet oxygen and hydrogen peroxide, minimizing the risks. In general, the modulation 

of antioxidant enzymes is an essential adaptive response to counteract adverse condi-

tions; in fact, maintaining a high antioxidant capacity in the cells can be correlated with 

increased tolerance against different types of environmental stress [24]. 

Our results indicate that rare and precious metals can be tolerated by all the strains 

tested, even if there is a clear higher tolerance to Cl4K2Pd vs. AuCl4K considering growth 

rates. Comparing the growth rate in the presence of the different concentrations of the 

metals, it seems clear that the growth and the metabolism of G. phlegrea appear to be 

more affected by the presence of both metals, showing a decrease of both growth and 

metabolic responses. The contribution to the oxidative equilibrium of the examined ex-

tremophile microalgae and the induction of antioxidant enzymes could result from the 

adaptation of the cell to the development of intracellular ROS. However, there is no clear 

correlation between any enzymatic activity and the better performing growth of the 

other 3 strains tested. 

Although metals generally induce inhibition in microalgal growth, several reports 

also suggest their positive roles. It is known that metals at small concentrations are use-

ful for microalgal metabolism since they participate in the synthesis of proteins involved 

in photosynthesis, nitrogen assimilation, phosphorous acquisition, CO2 fixation and 

DNA transcription [25]. Algae can develop efficient defence mechanisms to counteract 

the toxicity and improve their survival, even at high metal concentrations [26]. One of 

the defence strategies is the accumulation of the metals, which consists of the metal ad-

sorption on the cell surface (biosorption), followed by their entry into the cell protoplast 

(bioaccumulation). When metals are accumulated inside the cell, the algae activate mo-

lecular mechanisms as other defence strategies to reduce their toxicity [26]. G. sulphuraria 

can survive in harsh environments rich in heavy and rare metals by detoxifying and 

transforming them into less toxic derivatives [27]. The defence strategies developed by 

algae to prevent the toxic effect of some metals represent a good opportunity for bio-

technological purposes. The study from Ju et al. (2016) showed the ability of G. sulphu-

raria to recover both Cl4K2Pd and AuCl4K inefficiently [5]. However, the authors did not 

test this strain’s tolerance to growth in the presence of these metals. In contrast, we con-

sider that tolerance and growth capacity is an essential parameter to take in account for 

the biotechnological application, such as REEs recovering. 

4. Materials and Methods 

4.1. Strains Cultivation 

The algal strains used in this study belong to the algal collection of the University of 

Campania “L. Vanvitelli” derived from the University of Naples (www.acuf.net), name-

ly ACUF 3.4.5 (G. maxima), ACUF 7.6.21 (G. phlegrea), ACUF 9.2.11 (G. sulphuraria) and 

ACUF 626 (C. caldarium). All the strains were inoculated in Allen medium containing 

(NH4)2SO4 as nitrogen source, at pH 1.5 by adding H2SO4 [28] and cultivated at 37 °C, 

kept mixed on an orbital shaker under a photon irradiance of 150 µmol photons m−2 s−1 

with 16/8-light/dark cycle provided by cool-light fluorescent lamps (Philips TLD30w/55). 

Cell densities of the algal cultures were assessed, recording the Optical Density (OD) at 

750 nm with a spectrophotometer (Bausch & Lomb Spectronic 20). 

4.2. Experimental Procedure 

Microalgal cultures at exponential phase were inoculated into fresh Allen medium 

enriched with Cl4K2Pd and AuCl4K at concentrations ranging from 1 to 10 g/L. Growth 
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rates were calculated within 96h using spectrophotometric measurements of the optical 

density (OD 550 nm, Bausch & Lomb Spectronic 20), which were then used in the fol-

lowing equation for the Maximum Growth Rate (MGR): 

MGR (1/d) = (Ln(Nt) − Ln(N0))/((t − t0))  

where:  

Nt is the optical density at the final time 

N0 is the optical density at the initial time 

T is the final time (days) 

T0 is the initial time (days) 

All analyses were performed in triplicates. 

4.3. Enzyme Extraction and Assays 

Algal cultures grown in the presence of the minimal dose of palladium and gold (1 

g/L) were harvested by centrifugation at 14,000 rpm for 10 min after 96 h of exposure. 

The algal pellets were washed using KH2PO4 (0.1 M pH7.8) followed by centrifugation at 

12,000 rpm for 4 min at 4 °C, twice. Proteins were extracted, homogenizing the sample 

with liquid nitrogen using a mortar and a pestle. The obtained powder was resuspended 

in 3 mL of Lysis Buffer (KH2PO4 0.5 M pH7.8, DTT 2 mM, EDTA 1 mM, PMSF 1 mM, 

PEG 1.25 mM) and centrifuged at 14,000rpm for 20 min at 4 °C. The supernatant was 

used for measurement after Bradford quantification. 

SOD (EC 1.15.1.1) activity was assayed by the photochemical inhibition nitroblue 

tetrazolium (NBT) method [6]. The reaction mixture contained 50 mM sodium phos-

phate buffer (pH 7.8), 13 mM methionine, 75 mM NBT, 0.1 mM EDTA and 30 µL of en-

zyme extract and 2 mM riboflavin. The reaction was started by switching on the light 

(two 15 W fluorescent lamps) for 15 min, and the absorbance was measured at 560 nm. 

Two samples without the enzymatic extract and illumination were used as controls. One 

SOD unit was defined as the amount of enzyme corresponding to 50% inhibition of the 

NBT reduction. The enzyme activity was expressed as units per 1 mg of protein (U mg−1 

protein). 

CAT (EC 1.11.1.6) activity was assayed according to Aebi (1984) [29], with minor 

modifications. The H2O2 decrease was determined after the reaction of the extract in the 

presence of 50 mM potassium phosphate buffer (pH 7.0) containing 20 mM H2O2. The 

reaction was monitored, measuring the decrease in the absorbance at 240 nm for 100 s. 

The CAT activity was calculated according to the molar extinction coefficient of H2O2 

(39.4 mM−1 cm−1) and expressed as nmol H2O2 min−1 mg−1 protein. 

APX (EC 1.11.1.1) activity was assayed according to Nakano and Asada (1981) [30]. 

The ascorbate oxidation was determined using the reaction mixture containing 50 mM 

potassium phosphate buffer (pH 7.0), 0.1 mM EDTA-Na2, 0.5 mM ascorbic acid and 100 

µL of crude enzyme extract. The reaction started by adding 0.1 mM H2O2, monitoring 

the decreasing absorbance at 290 nm for 100 s. The APX activity was calculated accord-

ing to the molar extinction coefficient of ascorbate (2.8 mM−1 cm−1) and is expressed as 

nmol di H2O2 min−1 mg−1 protein. 

Each condition for each experimental approach was tested 3 times independently. 

5. Conclusions 

Our observations strongly suggest that other strains than G. sulphuraria can be used 

to recover REEs due to their high tolerance to precious and heavy metals. Nevertheless, 

further studies will be necessary to clarify the biological mechanisms underlying the 

tolerance capacity of Cyanidiophyceae and their strategies to respond to metal toxicity for 

future biotechnological applications. 
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