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Abstract: Theoretical investigation of electro-absorption modulators in the mid-infrared range (>~2μm) is performed, 
using asymmetric intra-step quantum wells based on Ge1-η1Snη1/ Ge1-η2Snη2 heterostructures, with SiGeSn outer barriers. 
After exploring the parameter space of the Sn content difference, and width ratio of the intra-layers, a linear and much 
larger Stark shift is realized, compared to that of a square quantum well, without an increase of the total structure width. A 
modulator based on optimized intra-step quantum well structure with a total well width of 12nm is theoretically predicted 
to have both a larger peak shift per unit applied field and a larger absorption change than a 12 nm square quantum well 
device. By analyzing the device performance based on the two figures of merit: (1) Absorption change per applied field 
and (2) absorption change per applied field squared, and taking 10dB extinction ratio a 44% higher bandwidth per volt 
and 46% lower power consumption per bit are achieved in intra-step than in a square well. Although the swing voltage for 
a square quantum well can be reduced by using a larger on-set applied field, and performance could be improved, we 
found that the intra-step quantum well using zero on-set still retains its advantages when compared to the square quantum 
well which uses a 0.5V on-set voltage. 

Keywords: SiGeSn/GeSn, electroabsorption modulator, k.p method, intra-step quantum well 
 

I. Introduction 

Silicon-based electronic-photonic integrated circuits (EPICs) are developing fast. Light sources based on Si, Ge, Sn 
and their alloys have been demonstrated in the past few years [1][2][3]. Different from the standard telecommunication 
optical wavelength range (1310nm-1550nm), where optical fibers have low transmission loss and signal distortion, the 
GeSn lasers emit longer wavelengths, typically over 2μm (the first electrically pumped GeSn laser had a wavelength of 
2300nm at 100K [3], and a SiGeSn/GeSn multi-quantum-well (MQW) optically pumped laser operated around 2500nm at 
90K [4]). Early research on silicon-based electoabsorption modulators, both theoretical (e.g. [5][6][7][8]) and experimental 
(e.g. [9][10][11]), was focused on the 1310nm-1550nm wavelength range, and mostly used Ge as the optically active 
material. However, GeSn has recently attracted considerable attention as a material for modulators, in order to expand the 
wavelength range into the mid-infrared (MIR), both for modulators and other on-chip devices [12][13][14][15]. 

QWs based on Group-IV materials were shown to offer high speed modulation and low power consumption [16]. 
Attempts to optimize the performance of the Group-IV QW modulators have been conducted from several aspects. For 
example, J. Gao, et al.[8] used an 18.5nm wide QW to achieve a low driving voltage, because wider QWs have a stronger 
quantum-confined Stark Effect (QCSE). However, a poor absorption change or extinction ratio should be expected for 
wider QWs, because of larger separation of electron and hole wavefunctions when electric field is applied. T. Fujisawa, et 
al. [17] found that a strain-compensated structure will enhance the absorption under an applied electric field because of 
stronger carrier confinement in such structures, but they also argued that large carrier confinement will affect the 
high-speed characteristics. So, for conventional square (symmetric) QWs, there are tradeoffs between the extinction ratio, 
power consumption and modulation speed. 

Another design direction, that was not frequently used in Group-IV structures (in contrast to the conventional 
structures based on III-V materials such as AlGaAs/GaAs or InP/InGaAsP) is to use QW profiles other than the simple 
square QWs. An intra-step QW may have a faster absorption peak shift than a square QW [18][19], or may delay the onset 
of the Stark effect redshift to higher electric fields, followed by a larger change of absorption [20][21]. In this work we 
focus on the former, aiming to obtain a larger absorption peak shift, which would enable on-chip devices with CMOS 
compatibility and low driving bias. It has been observed that the advantages of a stepped quantum well structure can be 
accompanied by a reduced extinction ratio [22], indicating that careful optimization is required to obtain practical device 
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improvements. In this paper, we systematically investigate the performance of the SiGeSn/Ge1-η1Snη1/Ge1-η2Snη2/SiGeSn 
intra-step QW in terms of typical figures of merit: the quantum confined stark shift ∆𝐸𝑄𝐶𝑆𝐸, the absorption intensity 

change -∆𝛼, ∆𝛼/𝐹 and ∆𝛼/𝐹2.  
The alloy compositions and strain of the QW structures are chosen so that the modulators can work in the MIR 

region. Therefore, the parameter space for the Sn content is limited to around ~6%-12% for the well layers, the Si 
composition in the barrier is ~10% to maintain a good carrier confinement and the strain is balanced by a relaxed buffer 
layer so that the compressive strain in the well and tensile strain in the barrier will be below ~1%. 

The Sn compositions of the left and right step are 𝜂1 and 𝜂2. To form an intra-step, we let 𝜂1 ≤ 𝜂2, then the left 
layer will have higher potential for the conduction band and lower potential for the valence band. Another variable 
parameter is the width ratio of the two layers 𝑅𝑤 = 𝑤1 𝑤2⁄  (𝑤1-left, 𝑤2-right), and we assume the total geometry 
length (𝑤1 + 𝑤2) to be the same as for the square QW (e.g. 120Å). Then, by searching through the parameter space, we 
found an optimal choice that has the maximum figure of merit -∆𝛼/𝐹, and also has good results for other performance 
criteria. This structure will have a faster peak shift in the range 0-100kV/cm and also slightly improved absorption 
difference, compared to the square QW with the same width. Thus, a lower power consumption and higher bandwidth 
can be expected when a minimum requirement for the extinction ratio is fulfilled. 

II. Theoretical Modeling 

A. Bandstructure 

We use the 8-band k.p method to calculate the band structure and optical properties. This approach offers a good 
balance between speed and accuracy, showing good agreement with experimental results, e.g. [8], [23]. The 
single-particle subbands and the wavefunctions in an intra-step QW structure are calculated by solving the total 
Hamiltonian using matrix finite difference method: 
 𝐇𝟖×𝟖 = 𝐇(𝐤) + 𝐃(𝐤) + 𝐃𝐬𝐨 + 𝑞𝑒𝐹𝑧 (1)   
where 𝐇(𝐤) is the unstrained Hamiltonian, 𝐃(𝐤) is the strain part of the Hamiltonian and 𝐃𝐬𝐨 is the spin-orbit 
Hamiltonian, 𝑞𝑒 is the electron charge, 𝐹 the applied field intensity, 𝑧 the coordinate. The detailed eight-by-eight 
matrix form of the three parts of the Hamiltonian, the basis functions, and the implementation of FDM are described in 
detail in [24]. 

B. Exciton effects 

The excitonic effects are calculated using the variational method [25]. Although there are other methods which 
naturally include excitonic effects, such as many-body theory [17] and the Green’s function formalism [26], the 
variational method also gives a good agreement with experiments, after careful calibration, and is easy to be integrated 
into the 8-band k.p framework. Here we only consider the 1s state, because the 2s and 2p states are very weak and can 
hardly be observed in experiment [27]. The 1s state wave function is denoted as 𝜙(𝛒): 
 𝜙(𝛒) = √2𝜋 1𝜆 exp⁡ (−𝜌𝜆 ) (2)   

where 𝜌 is the in-plane separation between electron and hole, and 𝜆 is the variational parameter (effective Bohr 
radius), this can be found by minimizing the exciton binding energy [27]: 
 

 

𝐸𝑒𝑥(𝜆) = ⟨𝜙|− ℏ22𝑚𝑟 ∇𝜌2 − 𝑉(𝜌)|𝜙⟩ = ℏ22𝑚𝑟𝜆2 − 𝑞𝑒24𝜋𝜀𝑠 ∫ 𝑑𝑧𝑒∞
−∞ ∫ 𝑑𝑧ℎ∞

−∞ |𝑓𝑛(𝑧𝑒)|2|𝑔𝑚(𝑧ℎ)|2 (2𝜆)𝐺 (2|𝑧𝑒 − 𝑧ℎ|𝜆 ) 
(3)   

where 𝑚𝑟 is the reduced in-plane effective mass, given by 1/𝑚𝑟 = 1/𝑚𝑒∗ + 1/𝑚ℎ∥∗ . The in-plane heavy and light hole 
effective masses are obtained from Luttinger parameters 1/𝑚ℎ∥∗ = (1/𝑚0)(𝛾1 ± 𝛾2) (‘+’ corresponds to heavy holes, 
and ‘-’ to light holes). The split-off effective mass is given by 1/𝑚𝑠𝑜∗ = (1/𝑚0){𝛾1 − 𝐸𝑝∆𝑠𝑜/[3𝐸𝑔(𝐸𝑔 + ∆𝑠𝑜)]}. The 

values of effective masses used in Eq. (3) are the averages across the whole structure, calculated according to the fraction 
of wavefunction in each layer. 𝑉(𝜌) is the interaction potential, 𝜀𝑠 is the permittivity of the semiconductor, 𝑧𝑒 and 𝑧ℎ 
are the coordinate of the electron and hole. 𝑓𝑛 and 𝑔𝑚 are the n-th and m-th state wavefunctions in the conduction band 
and valence band. The square of the wavefunction is obtained by summing up the eight components of the normalized 
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envelope wavefunction at the Brillouin zone centre. 𝐺(𝑥) is defined in the Appendix. To simplify the calculation we use 
a polynomial approximation for 𝐺(𝑥) [25]. The detailed expression is shown in the Appendix A. The shape of 𝐸𝑒𝑥(𝜆) 
is shown in Fig.1a. It is a function which has only one minimum and it can be easily found numerically, by searching for 
zero of its first derivative. Next, in Fig.1b the absolute value of binding energy and Bohr radius dependence on the 
electric field is shown for the first heavy-hole exciton state. With increasing electric field the absolute value of exciton 
binding energy decreases and the Bohr radius increases, because the electron and hole wavefunctions move towards 
opposite sides of the QW, the binding becomes weaker, and the average in-plane extension increases. 

 

Fig.1. Exciton states in a 10nm Si0.15Ge0.85/Ge QW: (a) Exciton binding energy of the first electron and heavy 
hole state dependence on the variational parameter without electric field; (b) Absolute value of exciton 
binding energy of first electron-heavy hole state and effective Bohr radius versus the electric field in the 

range 0-70kV/cm. 

C. Optical absorption calculation 

The optical absorption has three contributions in our model. The first is the absorption resulting in generation of the 
1s exciton state. This can be obtained after solving the exciton problem described in the previous section. By summing 
up the absorption due to each pair of electron and hole subbands, the contribution of this process is [27]: 

 𝛼1𝑠(ℏ𝜔) = 𝜋𝑞𝑒2𝑛𝑟𝑐𝜖0𝑚02𝜔 1𝐿𝑧∑( 2𝜋𝜆𝑛𝑚2) |⟨Ψ𝑒𝑛𝐤=0|𝐩𝛔|Ψℎ𝑚𝐤=0⟩|2𝒱(ℏ𝜔 − 𝐸𝑥𝑛𝑚, Γ𝐿, Γ𝐺)𝑛,𝑚  (4)   

where 𝑛𝑟 is the refractive index, 𝑐 is the speed of light, 𝜖0 is the vacuum permittivity, 𝑚0 is the free electron mass, 𝐿𝑧 is the length of the period (the sum of well and barrier widths), 𝑛 and 𝑚 denote the n-th conduction band and m-th 
valence band. Note that in the 8-band k.p method the spin is already included, so the two degenerate bands with the same 
energy but opposite spin will have different values of 𝑛 or 𝑚; |⟨Ψ𝑒𝑛𝐤=0|𝐩𝛔|Ψℎ𝑚𝐤=0⟩| is the momentum matrix element 
(MME) and the wave functions are taken at the center of the Brillouin zone. 𝐸𝑥𝑛𝑚 = 𝐸𝑘=0𝑛𝑚 + 𝐸𝑒𝑥 is the exciton transition 
energy between n-th conduction band and m-th valence band. The broadening in this model is described by the Voigt 
profile 𝒱(ℏ𝜔 − 𝐸𝑥𝑛𝑚, Γ𝐿, Γ𝐺) [7]. It includes two types of broadening. One is the homogeneous broadening, depending 
on the Γ-valley lifetime. A Lorentzian function is usually employed for this type of broadening [7],[28]. The half width at 
half maximum of the Lorentzian function is denoted as Γ𝐿. For this lifetime we use the data for Ge because there are not 
sufficient data for GeSn. We assume that a small amount of Sn will not dramatically influence this parameter. As 
indicated in [29], the dependence on temperature is rather weak. Here a constant half width at half maximum of Γ𝐿=3meV is used, corresponding to a carrier lifetime of 110fs [7]. Another component of broadening is inhomogeneous 
broadening, described by a Gaussian function. The half width at half maximum of the Gaussian function is denoted as Γ𝐺. This is influenced by the structural fluctuations, and depends on the conditions of epitaxial growth. In general it will 
also have some dependence on the electric field, which we include by assuming a linear variation of the HWHM Γ𝐺 
between 3.32meV and 5meV from 0kV/cm to 160kV/cm [25]. Lastly, to reduce the computation time, the Voigt profile 
is handled by the method described in [30]. 

The continuous contribution to absorption, with exciton effects, was calculated from [27]: 

 𝑎𝑐(ℏ𝜔) = 𝜋𝑞𝑒2𝑛𝑟𝑐𝜖0𝑚02𝜔 1𝐿𝑧∑∬𝑑𝑘𝑥𝑑𝑘𝑦(2𝜋)2 𝑆(𝐸)|⟨Ψ𝑒𝑛|𝐩𝛔|Ψℎ𝑚⟩|2𝒱(ℏ𝜔 − 𝐸ℎ𝑚𝑒𝑛 (𝒌), Γ𝐿, Γ𝐺)𝑛,𝑚  (5)   

where 𝑘𝑥 and 𝑘𝑦 are the in-plane wave vectors, and 𝐸ℎ𝑚𝑒𝑛 (𝒌) is the transition energy between the conduction and 
valence subbands in the momentum space, obtained from k.p calculation. 𝑆(𝐸)  is the Coulomb (Sommerfeld) 
enhancement factor. For a pure 2D exciton, this factor is: 
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 𝑆(𝐸) = ⁡ 𝑠01 + exp(−2𝜋/√𝐸𝑡(𝐤)/𝑅𝑦) (6)   

where 𝐸𝑡(𝐤) = (ℏ𝑘)2/(2𝑚𝑟), and 𝑅𝑦 is the exciton Rydberg energy. For a pure 2D exciton 𝑠0 = 2. This is a function 

which is equal to 2 at the band-edge and approaches to 1 when energy tends to infinity. However, it would be 
inappropriate to use this formula here, because a quantum well has an effective dimensionality between 2D and 3D. It 
has been previously argued in [26] that the pure 2D enhancement factor will overestimate the continuous spectrum by 
about 50% in a 10nm GaAs QW. We assume that this overestimation is similar in our case and take 𝑆(𝐸) = 1.33 as a 
constant. In Fig.2, the dashed line is the experimentally measured absorption spectrum of a 10nm Si0.15Ge0.85/Ge MQW 
for 0V applied voltage [9]. For the same structure, we found that using 1.33 as the enhancement factor provides better 
agreement with the experimental results than would be the case with the pure 2D expression. If Eq. (6) is used, the 
continuous part is too large and the first exciton peak cannot be clearly resolved even at 0V bias. 

 

Fig.2. Comparison of absorption spectra when using Eq.(6) (red) and 1.33 (blue) as the Coulomb 
enhancement factor with the experimental result for a 10nm Ge QW at 0V [9]. 

The indirect absorption is calculated using a Ge bulk model, as in [31],[32]: 

 𝛼𝑖𝑛𝑑(ℏ𝜔) = 𝐴𝑜𝑏𝑠 [ 11 − exp (− 𝐸𝑝ℎ𝑘𝑏𝑇)(ℏ𝜔 − 𝐸𝑔
𝐿 − 𝐸𝑝ℎℏ𝜔 )2 + 11 − exp (𝐸𝑝ℎ𝑘𝑏𝑇)(ℏ𝜔 − 𝐸𝑔

𝐿 + 𝐸𝑝ℎℏ𝜔 )2] (7)   

where 𝐴𝑜𝑏𝑠 is a temperature-independent constant. 𝐴𝑜𝑏𝑠 value is taken as 1150cm-1, because the indirect absorption of 
Ge calculated by Eq.(7) then best fits the experimental results [32]; 𝑘𝑏 is the Boltzmann constant; 𝑇 is the temperature 
in K; 𝐸𝑝ℎ = 27.8meV is the optical phonon energy in Ge; 𝐸𝑔𝐿 is the bandgap towards the L-valley. The bulk model will 

give smaller indirect absorption compared to a QW, but since the incorporation of Sn in the alloy will bring its 
band-structure closer to that of a direct-gap semiconductor, thus reducing the indirect absorption, this approximation is 
acceptable. This component will add some insertion loss for photon energies lower than the band gap. The total 
absorption spectra is calculated by summing 𝛼1𝑠, 𝑎𝑐 and 𝛼𝑖𝑛𝑑. 

D. Parameters 

The parameters of Si, Ge, Sn and their alloys used in 8-band k.p and absorption modelling can be calculated from 
Vegard’s law: 

 𝐺𝑆𝑖𝐺𝑒𝑆𝑛 = 𝜂𝑆𝑖𝐺𝑆𝑖 + 𝜂𝐺𝑒𝐺𝐺𝑒 + 𝜂𝑆𝑛𝐺𝑆𝑛 − 𝜂𝑆𝑖𝜂𝐺𝑒𝐵𝑆𝑖𝐺𝑒 − 𝜂𝑆𝑖𝜂𝑆𝑛𝐵𝑆𝑖𝑆𝑛 − 𝜂𝐺𝑒𝜂𝑆𝑛𝐵𝐺𝑒𝑆𝑛 (8)   

where 𝐺 is the parameter of a pure element, 𝜂 represents the concentration of that element, 𝐵 is the bowing parameter 
for the binary alloy. The parameters used in Eq. (8) are given in Table I. Note that for the parameters which do not have 
bowing parameters we have used linear interpolation. The bowing parameters of SiSn are not shown because these data 
are not available. Although some research has indicated the existence of bowing of the Γ-bandgap and L-bandgap 
[41],[42], the Si and Sn contents are rather small compared to Ge content, so the overall difference caused by this bowing 
in SiGeSn will be much smaller than it would be in binary SiSn. Additionally, some other parameters were not calculated 
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using Eq.(8), because the experiments and calculations were not conducted across the full parameter space of 
compositions, i.e. the Sn content is limited below ~15% in these cases, and the results may not be so accurate when Sn 
content exceeds this value. These parameters are then given by fitted quadratic interpolation. As shown in Table II, to 
calculate some parameter of the ternary SixGe1-x-ySny, we first considered the GeSn part separately, and calculated its 
value by using interpolation with bowing. Si and GeSn were then linearly combined to obtain the final parameter value 
for the specific ternary alloy composition. It should also be noted that here we introduced the bowing of Luttinger 
parameters of SiGe using the method described [24]. 
 

Table I. The parameters of Si, Ge, Sn and bowing parameters for SiGe and GeSn 

Parameter Si Ge Sn 𝐵𝑆𝑖𝐺𝑒  𝐵𝐺𝑒𝑆𝑛  

Lattice constant, 𝑎𝑙𝑎𝑡(Å) 5.4307a 5.6579 a 6.489 a 0.026 a -0.041 a 

Split-off energy, Δ𝑠𝑜(eV) 0.044 a 0.297 a 0.8 a   

Bandgap (Γ-valley), 𝐸𝑔Γ(eV) 4.185 a 0.8981b -0.38 a  3.02c 

Bandgap (L-valley), 𝐸𝑔L(eV) 2.716 a 0.74 a 0.1 a  1.23c 

Bandgap (Γ25-Γ15), 𝐸𝑔′ (eV) 3.4 b 3.124 b /   

MME (Γ25-Γ15), 𝐸𝑃′ (eV) 14.4 b 17.5 b /   

Valence band offset, 𝐸𝑣(eV) -1.17 d -0.69 d 0 d   

Deformation Potential (CB), 𝑎𝑐(eV) -10.06 a -8.24 a -6 a   

Deformation Potential (VB), 𝑎𝑣(eV 2.46 a 1.24 a 1.58 a   

Deformation Potential, 𝑏(eV) -2.1 a -2.9 a -2.7 a   

Deformation Potential, 𝑑(eV) -5.3 e -4.8 e -4.1 e   

Deformation Potential (L), 𝑎𝐿(eV) -0.66 a -1.54 a -2.14 a   

Stiffness constant, 𝐶11(GPa) 165.77 a 128.53 a 69 a   

Stiffness constant, 𝐶12(GPa) 63.93 a 48.26 a 29.3 a   

Refractive index, 𝑛𝑟(4.1µm) 3.41 f 3.93 f 6.18 g   

Varshni, 𝑎𝑣𝑠ℎ𝑛𝑖Γ (eV/K) 3.91×10-4 a 5.82×10-4 a 0 a   

Varshni, 𝑏𝑣𝑠ℎ𝑛𝑖Γ (K) 125 a 296 a 0 a   

Varshni, 𝑎𝑣𝑠ℎ𝑛𝑖L (eV/K) 4.774×10-4 a 4.774×10-4 a 0 a   

Varshni, 𝑏𝑣𝑠ℎ𝑛𝑖L (K) 235 a 235 a 0 a   

Permittivity, 𝜖𝑟(𝜖0) 11.7 h 16.0 h 24.0 h   

a [33]; b [34]; c [35]; d [36]; e [37]; f [38]; g [39]; h [40] 

 
Table II. Parameters of SixGe1-x-ySny calculated by interpolation 

Parameter Si Interpolation-GeSn, y’=y/(1-x), y’<0.15 
Luttinger, 𝛾1  4.22a 11.11 + 28.53𝑦′ + 105.2𝑦′2 b 
Luttinger, 𝛾2  0.39a 3.252 + 13.95𝑦′ + 52.75𝑦′2 b 
Luttinger, 𝛾3  1.44a 4.689 + 14.37𝑦′ + 52.57𝑦′2 b 
MME, 𝐸𝑝(eV) 21.6 a 25.61 − 2.319𝑦′ + 0.2463𝑦′2 b 
Effective mass (Γ),⁡ 𝑚𝑒Γ(𝑚0) 0.241c 0.042 − 0.1436𝑦′ + 0.1026𝑦′2 b 

a [33]; b [43]; c [34]  

 
 

III. Results and discussion 

A. Comparison with experimental results 

We have first verified the accuracy of our model and the reliability of the material parameters by comparing our 
calculation with experimental results from [9]. The calculations were made for the range of parameters as follows: (1) 
The experimentally measured absorption is given for 0V-4V bias, and the field intensities used in calculations, 
corresponding to 0-4V bias voltage, were obtained from Fig.4 in [9], so the values are 15.03 kV/cm, 37.33 kV/cm, 58.95 
kV/cm, 80.81 kV/cm and 102.45 kV/cm; (2) The Si0.15Ge0.85/Ge QW structure was grown on a Si0.1Ge0.9 buffer, and it has 
been previously discussed that the buffer layer is not fully relaxed, and that some tensile strain exists because of the high 
temperature annealing process [44]. This, however, was not mentioned in [9]. We have assumed that the tensile strain in 
Si0.1Ge0.9 buffer is 0.15% (within the typical range from experiments as indicated in [7]), which gives good agreement 
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with experimental results. (3) The half width half maximum (HWHM) of the heavy hole exciton peak reported in [9] was 
~8meV, so for the purposes of this validation only, Γ𝐺 is not varying with the electric field as discussed previously (just 
in this case, for comparison purposes). Instead, Γ𝐺 was assigned a constant value of 5meV [7], together with Γ𝐿 = 3 
meV, the HWHM of the calculated exciton peak using Voigt profile is then similar to the experimentally measured result 
(~8meV). 

Fig.3a, shows the calculated absorption spectra compared alongside the experimental data. Fig.3b shows the 
measured exciton peak shift and calculated values, using the k.p method together with the resonant tunneling method [9]. 
Our work generally shows good agreement with experimental results, especially at low voltages. At 0V the measured 
experimental exciton peaks for HH1 and LH1 are at ~0.88eV and 0.91eV, respectively. Our calculated results are 0.88eV 
for HH1 and 0.911eV for LH1. The errors at 0V are 1meV. However for large electric fields, the calculated Stark shift is 
smaller than the experimental one. In Fig.3b, the peak shift has a difference of ~5meV at 5V (~100kV/cm) using our k.p 
model, which is, nevertheless, closer to the experimental data than the resonant tunneling method (TRM) calculation. The 
discrepancy may be due to additional non-uniform electric fields, caused by background doping, which have not been 
included in our model. Secondly, the absorption intensity at the exciton peak is smaller in our calculation. This has been 
discussed in [23], where the authors also reported such a difference between their results and the experiments, which they 
suggested is due to an increased probability of indirect absorption, because high electric fields will cause more heating in 
the structure, generating more phonons which can mediate the indirect process. But overall, the validation indicates that 
this model is good enough to analyze, predict and compare the modulation performance of square QWs and the intra-step 
QWs, especially since we are interested in low voltage applications. Additionally, the differences between experiment 
and theory described are relatively consistent across all cases considered, QW designs will not be inhibited by these 
effects. 

 

Fig.3. (a) The comparison of calculated and experimental TE absorption spectra at room temperature for 10 
nm Si0.15Ge0.85/Ge MQW grown on a Si0.1Ge0.9 virtual substrate with bias voltages in the range 0V-4V. The 
top figure is calculated in this work and the bottom figure is the experimental absorption derived from 
photocurrent spectra [9]; (b) Comparison of C1-HH1 exciton peak shift from measurement [9] (red 
square), tunneling resonance method [9] (dashed line) and from k.p calculations in this work (green solid 
line). 

 

B. Quantum confined Stark effect in intra-step quantum wells 

The QCSE behavior of the intra-step QWs is different from that of square QWs. In order to understand the 
difference between intra-step QW and square QW, we can qualitatively analyze it by perturbation theory, based on 
infinite QW. By treating 𝐻′ = 𝑞𝑒𝐹𝑧 as the perturbation, the state energy within the second-order perturbation theory is 
[27]: 
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𝐸 = 𝐸𝑛(0) + 𝐻𝑛𝑛′ + ∑ 𝐻𝑛𝑚′𝐸𝑛(0) − 𝐸𝑚(0)𝑚≠𝑛  

= 𝐸𝑛(0) + ⟨𝜓𝑛(0)|𝑞𝑒𝐹𝑧|𝜓𝑛(0)⟩ + 𝐶𝑛 (𝜋𝑞𝑒𝐹𝐿𝑒𝑓𝑓)22𝐸1(0)  

= 𝐸𝑛(0) + 〈𝑧̂〉𝑞𝑒𝐹 + 𝐶𝑛 (𝜋𝑞𝑒𝐹𝐿𝑒𝑓𝑓)22𝐸1(0)  

(9)   

in which the superscript ‘(0)’ represents the unperturbed solution (i.e. the wavefunction and energy when F=0kV/cm), 𝑛 
is the the subband index., 〈𝑧̂〉 is the average coordinate of the wavefunction, and 𝐿𝑒𝑓𝑓 is the effective well width. 𝐶𝑛 is 
the coefficient of the n-th subband. For the first subband 𝐶1 ≈ −2.19 × 10−3. Next, the transition energy between the 
first conduction and valence subband, with the applied field 𝐹, is then: 

 𝐸ℎ1𝑒1(𝐹) ≈ 𝐸ℎ1𝑒1(𝐹 = 0) − [(〈𝑧ℎ1̂〉 − 〈𝑧𝑒1̂〉)𝑞𝑒𝐹 + 2.19 × 10−3 (𝑚𝑒∗ +𝑚ℎ∗ )𝑞𝑒2𝐿𝑒𝑓𝑓4ℏ2 𝐹2] (10)   

For the convenience of explanation, the Stark shift within the square bracket is further simplified by a quadratic function 
of the electric field 𝐹: 

 ∆𝐸𝑄𝐶𝑆𝐸 ≈ (〈𝑧ℎ1̂〉 − 〈𝑧𝑒1̂〉)𝑞𝑒𝐹 + 2.19 × 10−3 (𝑚𝑒∗ +𝑚ℎ∗ )𝑞𝑒2𝐿𝑒𝑓𝑓4ℏ2 𝐹2 = 𝑆1(𝑞𝑒𝐹) + 𝑆2(𝑞𝑒𝐹)2 
(11)   

where 𝑆1 and 𝑆2 are the coefficients of the first and second order of the product of electric field 𝐹 and electron charge 𝑞𝑒. 𝑆1 is simply the difference between the average coordinates of the electron and hole wavefunctions. The unperturbed 
wavefunctions of the intra-step QW and square QW are shown in Fig.4. For a square QW (Fig.4b) the average 
coordinates of both electron and hole wavefunctions located at the center of the QW, so 𝑆1 = 0, and the Stark shift 
depends only on 𝑆2 which is proportional to 𝐿𝑒𝑓𝑓4. The coefficient 𝑆2 also contains the sum of the effective masses (𝑚𝑒∗ +𝑚ℎ∗ ), and higher Sn content material has smaller effective masses, but the Sn content in the well layer varies 
within a very limited range, and the Stark shift is therefore less sensitive to the effective mass than to the well width 𝐿𝑒𝑓𝑓. Fig.5 shows the Stark shift of 10-14nm square QWs with Sn content of 8.25% - 10.25% in the well. As can be seen, 

2% change of the Sn content doesn’t have much influence on the Stark shift, but a significant difference can be seen 
when varying the well width from 12 to 14nm. Therefore, to obtain a larger Stark shift in square wells, a larger well 
width is usually used, but at the same time a smaller absorption change is expected, because carriers are easier to separate 
to the opposite sides in a wider QW. 
 

 

Fig.4. The first conduction band and valence band envelope wavefunctions (offset by energy levels) of (a) 
infinite intra-step QW; (b) infinite square QW. Th
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Fig.5. Stark shift versus electric field in square QW with different well widths and Sn contents in the well. 
The influence of effective mass to the QCSE is much smaller than that of well width. 

Since holes have a larger effective mass than electrons, the first hole subband in an intra-step QW has the wave 
function more confined in the deeper intra-well, while the first electron subband may be above the deeper well, and thus 
have a less confined wavefunction. Therefore,⁡𝑆1 is usually not zero for the intra-step QW, consequently, the Stark shift 
will be more linear compared to the square QW case. Although there is no analytical expression for 𝑆1, it can be 
engineered by adjusting the ratio of widths of the shallower and deeper well layers 𝑤1/𝑤2, and by changing the depth of 
the deeper intra-well by controlling the alloy composition of the two intra-layers. 

 
 
 
 
 

 

Fig.6. Conduction band and heavy hole band potential profiles and subband energies of structures A-F, 
Note that the HH1 of structure D, E and F is located just at the edge of the intra-QW. 
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Table III. Well widths and Sn contents of the intra-layers of structures C, E, A and B 
 𝑤1  𝑤2  𝜂1𝑆𝑛  𝜂2𝑆𝑛  
structure A 14 nm / 9% / 

structure B 7 nm 7 nm 8% 10.2% 

structure C 13 nm  1 nm 8% 10.2 % 

structure D 11 nm 3 nm 8% 10.2% 

structure E 9.5 nm 4.5 nm 8% 9.2 % 

structure F 12 nm 2 nm 8% 12% 

 
 
 
 

 
Fig.7. Comparison of quantum confined stark shift versus the electric field between (a) structures A, B, C 

and D; (b) structures A, D, E and F. 

In this section, without considering any optical performance feature, we only focus on the QCSE. Six typical 
structures are used as examples to illustrate how a larger Stark shift (within the range of 0-100 kV/cm) can be achieved 
by intra-step QW without changing the total geometry width. All the structures, with the total width of 14nm, use 
Si0.1Ge0.835Sn0.065 as barriers, and Si0.1Ge0.82Sn0.08 as the substrate. The potential profiles and energy levels of these 
structures are shown in Fig.6 and the corresponding values of well widths and Sn content in the two intra layers are 
shown in Table III. The Stark shift versus the applied field dependence for these structures are compared in Fig.7. 

An intra-step QW does not guarantee a larger Stark shift than a square QW. Comparing structure A and B, as is 
shown in Fig.7a, structure B has a larger Stark shift than structure A from 0kV/cm to 60kV/cm, but this becomes smaller 
beyond 60kV/cm. Although the asymmetric intra-step QW has a none-zero first-order perturbation term, the Stark shift is 
also determined by the coefficient 𝑆2. Note that the coefficient 𝑆2 in Eq. (11) is derived for an infinite square QW. 
According to the calculations, the fitted 𝑆2 is usually smaller for an intra-step QW than for a square QW of the same 
size when 𝐹 > 0. We didn’t derive the exact expression for 𝑆2 for an intra-step QW, but this is likely to correspond to 
taking a smaller effective width 𝐿𝑒𝑓𝑓 in Eq.(11). So, for an intra-step QW, if the first-order coefficient 𝑆1 is not large 

enough, we can only see a larger Stark shift for low applied fields, but for larger fields it will be smaller than for the 
square QW. 

For some Sn contents in the two intra-layers the largest Stark shift (for the applied field below 100kV/cm) can be 
found by adjusting the width ratio only. With the same Sn contents in the two intra-layers, as in structure B, by increasing 
the width ratio the largest QCSE was found when the width ratio reaches 𝑅𝑤 ≈ 11/3. We denote this as structure D, the 
QCSE curve is plotted as the lowest curve (yellow solid line) in Fig.7a. Keeping the width ratio increasing will reduce 
the QCSE, because for width ratio larger than (11/3), a narrower intra-QW is formed. Then the HH1 is above the edge of 
the deeper intra-well, and the structure starts to behave more like a square QW. To show this trend, we use structure C, 
with its intra-QW 1nm wide. Its wave function (see Fig.6) looks very similar to the wave function of the square QW, the 
first order coefficient of structure C is only 𝑆1 = 0.7nm, compared with 2.4nm for structure D. As can be seen in Fig.7a, 
Stark shift of structure C is reduced because of a smaller first order perturbation term.  

Although structure D has the highest QCSE for the fixed Sn content combination of 8% and 10.2%, it is still not the 
largest if we allow the Sn content to be varied. So, by using different Sn content in the intra-QW we next tested the 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
67

80
3



 

 

structures with deeper and shallower intra-layer than in structure D, the corresponding width ratio with the largest Stark 
shift can be found by repeating the procedure of finding structure D. The width ratio for the largest Stark shift with a 
particular Sn contents combination is denoted as 𝑅𝑤′ . Structure E and F are the examples shown here, with a shallower 
and deeper intra-QW respectively. From Table III and Fig.6, we can see that for deeper intra-well (structure F) 𝑅𝑤′  was 
found to be larger. In contrast, shallower intra-well (structure E) will have a smaller 𝑅𝑤′ . By comparing the Stark shift of 
structure D, E and F in Fig.7b, the narrower and deeper intra-well have a larger Stark shift. From this trend, we can 
deduce that if the constraints on the parameters are relaxed, an even larger Stark shift can be obtained by forming an even 
narrower and deeper intra-well. However, it is easy to see that such improvement is limited by the total structure width. 
As the first-order perturbation term 𝑆1 = 〈𝑧ℎ1̂〉 − 〈𝑧𝑒1̂〉 cannot exceed (𝑤1 +𝑤2)/2, we expect that a very limited 
improvement can be obtained by using more “extreme” cases. So we do not expect that very narrow and deep intra well 
would be used in realistic structures, because of the fabrication difficulties coming from growing a thin layer with large 
alloy content variation. It is worth mentioning that, by looking at the subband and potential profiles in Fig.6, an 
interesting pattern for both D, E and F can be observed, that their HH1 states are located just at the edge of the intra-QW. 
For some other combinations of Sn content, this pattern also exists. Although we currently do not have theoretical 
explanation for this, it could be a potential criteria pointing when the largest Stark shift for some combination of Sn 
contents is achieved. 

The Stark shift behavior of the square QW is independent of the electric field direction. However this is not the case 
for intra-step QW. This phenomenon is also simulated using our model. For the case shown in Fig.4a, 〈𝑧ℎ1̂〉 − 〈𝑧𝑒1̂〉 has 
a positive value. So, if a forward bias is applied (i.e. 𝐹 > 0), 𝑆1 and 𝑆2 will have the same sign, and a larger Stark shift 
near 𝐹 = 0 can be expected. If 𝐹 < 0, then 𝑆1 and 𝑆2 will have opposite sign, and in this case the transition energy 
will initially have a blue shift, but this will convert to red shift at some point, as can be seen from the green dashed line 
(structure B, F<0) in Fig.7a, the red shift starts at ~38kV/cm. This particular feature of delaying the red shift allows a 
higher onset voltage, and this has been used for high-optical power modulation [20],[21]. However, this is not the topic 
of this work, it will not be further discussed here. 

C. Figures of merit and device performance 

In this section we compare and discuss the general performance of the square QW and step QW, in terms of various 
figures of merit – the exciton peak shift ∆𝐸𝑥, absorption intensity change ∆𝛼, ∆𝛼/𝐹, and ∆𝛼/∆𝐹2[27],[45],[46]. Here 
we set the total structure width as 12nm. As a control variable, the sum of the Sn contents in two intra-layers is 18% (i.e. 𝜂1𝑆𝑛 + 𝜂2𝑆𝑛 = 18%). The buffer layer is Si0.1Ge0.82Sn0.08, and is assumed to be fully relaxed. The barrier width is taken as 
10nm Si0.1Ge0.835Sn0.065. In this case the barrier will have 2.28% tensile strain and the GeSn well region will have a 
compressive strain (6% for Ge0.91Sn0.09). By searching the parameter space for the well width ratio 𝑤1/𝑤2 and the 
difference between Sn compositions of the two intra-layers ∆𝜂𝑆𝑛 = 𝜂2𝑆𝑛 − 𝜂1𝑆𝑛, we find structures which have better 
performance, in terms of all four above mentioned figures of merit, compared to the square QW with 9% Sn in the well. 
Note that we set the boundaries of the Sn content in the well layer as 6%~12%, in order to keep the operating region 
within the MIR band, and to maintain good carrier confinement for the given barrier height.  

 

 

Fig.8. The absorption coefficient of a GeSn quantum well modulator at two different biases: 0 and F0. 

For different intra-step structures the transition energy e1-hh1 for zero bias field is different, and to test different 
structures we compared the change of absorption at the exciton transition energy when the same peak shift, ∆𝐸𝑥 =𝐸𝑥(0) − 𝐸𝑥(𝐹0), is achieved by applying appropriate bias 𝐹0. (Note that the definition of the exciton peak shift ∆𝐸𝑥 is 
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slightly different from the Stark shift ∆𝐸𝑄𝐶𝑆𝐸 mentioned in the previous section, but since the change of exciton binding 
energy 𝐸𝑒𝑥 is only ~1meV for fields in the range 0-100kV/cm, and it is much smaller than the change of the transition 
energy, we can take ∆𝐸𝑄𝐶𝑆𝐸 = ∆𝐸𝑥). Although the absorption peak is not located exactly at the calculated exciton 
transition energy 𝐸𝑥, the real peak is very close to 𝐸𝑥, and it is proportional to the absorption at 𝐸𝑥. When a reasonably 
large Stark shift is achieved we can take the detuning energy ∆𝐸𝑑 to be the same as the Stark shift energy (i.e. the 
operating photon energy ℏ𝜔0 is equal to the exciton transition energy 𝐸𝑥 when a field of 𝐹0 is applied). Then the 
absorption intensity change is measured at 𝐸𝑥(𝐹0) as ∆𝛼 = 𝛼(𝐹0) − 𝛼(0). To make this clearer, the parameters 
mentioned above are denoted in Fig.8. 

For convenience, instead of varying ∆𝜂𝑆𝑛 and 𝑅𝑤 directly in the code, we vary the Sn content 𝜂2𝑆𝑛 and the width 𝑤2 of the intra-QW with steps of 0.25% and 0.5nm respectively. The Sn content and width of the intra-barrier are then 
calculated as: 𝜂1𝑆𝑛 = 18%− 𝜂2𝑆𝑛 and 𝑤1 = 12𝑛𝑚 − 𝑤2. The figures of merit of these structures, ∆𝛼, ∆𝛼/𝐹, and  ∆𝛼/∆𝐹2, are then plotted versus ∆𝐸𝑥, and QCSE is plotted against the electric field. Next, following the design principle 
of maximizing the figure of merit ∆𝛼/𝐹 [45], and to ensure the superiority of the other three figure of merit compared 
with the square QW at the same time, we checked these plots and found the optimum structure (structure II) which has Sn 
contents of 𝜂1𝑆𝑛 = 7.25% and 𝜂2𝑆𝑛 = 10.75%, and the widths of the intra-layers are 𝑤1 = 8.5𝑛𝑚 and 𝑤2 = 3.5𝑛𝑚. 
Although the figure of merit ∆𝛼/𝐹 can be further increased by using a narrower and deeper intra-well, because of a 
larger Stark shift in such a structures (similar to the method to obtain a larger Stark shift introduced in the previous 
section), the calculations show that only insignificant improvements can be achieved when using intra-well width less 
than 3.5nm, because a much smaller change of absorption, compared to the square QW case, is obtained if the intra-well 
width is less than ~3nm, and the improvement of the Stark shift is not so obvious in these thin-layer structures. Moreover, 
a larger change of the alloy composition in the two intra layers will increase the difficulty of growing such a structure. 
Hence, the structure II seems to be a more practical example, to be discussed further, than other extremely thin-layer 
cases. For convenience, to compare realistic performance of an intra-step QW and square QW at the same operating 
energy, we adjust the Sn content in the Square QW from 9% to 8.5% for the example shown here, so that this 12nm 
square QW (structure I) has the same transition energy at zero field as does the structure II. In the previous section we 
have shown how a larger Stark shift is realized by adjusting the parameter of the intra-step QW. But a larger QCSE does 
not necessarily have the best performance regarding different figures of merit. To investigate this argument, another 
intra-step QW (structure III), which has a larger QCSE than structure II, is also presented. This has the same Sn content 
in the two intra-layers as structure II (𝜂1𝑆𝑛 = 7.25%, 𝜂2𝑆𝑛 = 10.75%), but has a narrower intra-well (2nm). The TE 
absorption spectra for applied field in the range 0-100kV/cm are shown in Fig.9a,b,c. The TM absorption is not shown 
here because LH state is much higher in this case, and HH state does not contribute to the TM polarization absorption. 
Although structure III has a different transition energy at zero field from the other two, in order to compare them we can 
still assume their on-set exciton peak as the original point and plot the figures against the peak shift energy in one graph. 
Again, this is just for the convenience of comparison. To design a structure with similar performance and different 
transition energy, we can refer to the alloy composition difference and width ratio of the original structure, then shift the 
Sn content to achieve the required transition energy, because the geometry inside the well is the major aspect that affects 
the optical behavior of the structure, so it will remain the same if the shift of the Sn content is not very large. Fig.9d 
compares the absorptions at the exciton peak against the peak shift energy for electric field in the range 0-100kV/cm. The 
three curves in Fig.9d are very close to each other, but there are still some details that can be discussed. First, for both 
intra-step QWs the absorption at low electric field is smaller than for the square QW because the asymmetric structure 
reduces the overlap of the wavefunctions. But for structure II the absorption at exciton energy decreases more slowly 
against the exciton peak shift, compared to structure I. So, after a 10meV shift the structure II has a larger absorption 
peak. Secondly, the absorption edge of square QW doesn’t have a significant shift when small field is applied. However, 
for the step QWs the edges are changing more rapidly and more uniformly with increasing electric field. As explained 
previously, this is because the step QW will have a more linear Stark shift behavior, because asymmetric structures 
include the first-order perturbation term. Th
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Fig.9. Comparison of the TE absorption spectra (T=300K) for (a) structure I, (b) structure II, (c) structure III. 
Schematic QW band diagrams and wavefunctions are shown in the insets. The dashed line and dotted line 

represent the L-valley and LH respectively. (d) The absorption at exciton peak against the energy shift. 

In Fig.10, we compare the four figures of merit of structures I-III. Again, the exciton peak shift is the difference 
between the exciton transition energy at zero field and for finite field 𝐹 (0-100kV/cm), and the absorption change is 
measured at the exciton transition energy existing at any particular 𝐹, from the residual absorption at zero field. In 
Fig.10a, the Stark shift for the intra-step QW is larger than for the square QW, but it’s not the largest within the 
parameter space. Structure III has the largest Stark shift, but the smallest absorption change among these three structures. 
Structure II, compared to the square QW, maintains a larger absorption change and a larger peak shift at the same time. 
Hence, for ∆𝛼/𝐹 as the figure of merit, the structure II is much better than structure I and slightly better than structure 
III in the whole range of peak shifts. Additionally, we also give the data for another similar figure of merit, the absorption 
change per applied field square - ∆𝛼/∆𝐹2, which was used in [47]. Maximizing ∆𝛼/∆𝐹2 is equivalent to minimizing 
the drive power per bit when a certain contrast ratio of absorption is reached. The intra-step QWs again have better 
performance than the square QW, however the situation is different from ∆𝛼/𝐹: structure III is slightly better than II 
here, because this figure of merit is more sensitive to the change of applied field. We have magnified the tail of the 
curves in Fig.10d and, as can be seen, the improvement obtained over the square QW is as large as 50%, even for large 
peak shifts. In Fig.10b, the absorption changes for the three structures reach their peak when the peak shift is around 
~11meV. In Fig.10c, the maxima of ∆𝛼/∆𝐹 appear around ~8meV, and in Fig.10d, the maxima of ∆𝛼/∆𝐹2 appear at 
even smaller energy (<5 meV). Although the goal of the design is to maximize this figure of merit, the question of 
whether the detuning energy can be so small to maximize ∆𝛼/∆𝐹 or ∆𝛼/∆𝐹2 is further restricted by the requirement of 
the extinction ratio (ER) and insertion loss (IL). A very small detuning energy will bring about a large IL and a small ER. 
Here we take the photon energy as a relative parameter, but for a certain photon energy (operating wavelength), to have a 
proper detuning one has to change the material composition. The on-set transition energy is ideally away from the 
operating photon energy.  

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
67

80
3



 

 

 

Fig.10. Comparison of the figures of merit: (a) Peak shift against the electric field; (b) Absorption change-∆𝛼 
against the exciton peak shift; (c) ∆𝛼/∆𝐹 against exciton peak shift; (d) ∆𝛼/∆𝐹2 against peak shift for 

electric field in the range 0-100kV. 

Note that in Fig.10 we assume the on-set applied field to be 0kV/cm. For a square QW, the peak shift is very small 
near 0kV/cm, but larger for larger fields. A typical method used to reduce the swing voltage is to set the on-set voltage to 
some non-zero value. We found that for square QW (structure I), if we choose the on-set applied field for the square QW 
to be 40kV/cm, it will have the largest figure of merit ∆𝛼/𝐹, and it’s even slightly higher than that of the intra-step QW 
(structure II) with 0kV/cm on-set. Further increasing the on-set from 40kV/cm will not improve this figure of merit, 
because the peak shift is fairly linear in this range, and smaller absorption is expected for high applied field. For ∆𝛼/∆𝐹2, 
the improvement from using a larger on-set is more obvious, because this figure of merit is more sensitive to the shift rate 
and a much higher value can be reached if the on-set applied field is as high as 60kV/cm. Note that the peak shift here is 
defined as the shift of the exciton energy from its value at the non-zero on-set. These two figures of merit for the square 
QW (structure I) for 10meV exciton shift with different on-set applied field are shown in Fig.11. As can be seen, the 
intra-step QW using 0kV/cm on-set keeps its advantage for the ∆𝛼/∆𝐹 figure-of-merit almost always, except when the 
on-set for the square QW is chosen to be ~35-45kV/cm. For the ∆𝛼/∆𝐹2 figure-of-merit, the square QW using an on-set 
field higher than 20kV/cm can have a better figure of merit compared to the intra-step QW using zero on-set. Similarly, 
the figures of merit for intra-step QWs can also be improved by choosing a non-zero on-set field, but this is not what we 
want to achieve here, because in practical applications using a high voltage region for modulation may cause various 
problems such as current leakage and device breakdown. Since GeSn is still under development as a material for the 
active region of a modulator, it is presently uncertain what voltage can be tolerated in such structures. For intra-step QWs, 
because a linear Stark shift exists from the outset, any voltage region, starting from zero bias, can be used for modulation. 
The on-set voltage can be set to zero without wasting any swing voltage for modulation. This indicates that the intra-step 
QW is more suitable for low-voltage operation, which is a basic requirement for on-chip devices.  
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Fig.11. Figures of merit of the square QW at 10meV peak shift when using different on-set applied fields. (a) ∆𝛼/∆𝐹 (kV-1) (b) ∆𝛼/∆𝐹2 (kV-2cm). The figures of merit of the intra-step QW (structure II) with 0kV 
on-set are also shown (dashed blue lines) for comparison.  

The proposed optimum intra-step structure (structure II) based on zero on-set voltage does not include any built-in 
bias, so zero bias voltage implies zero field within the intrinsic region. The above analysis indicates that if a significant 
built-in bias existed, then a different geometry may be used to optimize the modulator performance. It is reasonable to 
assume that the performance can always be improved by considering a different potential profile of the QW. This does 
not necessarily have to be limited to an intra-step QW. In fact, in III-V material systems, attempts to search for 
broken-symmetry structures in order to achieve a particular functionality have already been made by applying genetic 
algorithms [48]. This demonstrates that the QW profile engineering can be a promising way to optimize optoelectronic 
properties for different device requirements.  

Finally, we estimate the device performance at a photon energy of 0.53eV (corresponding to a wavelength of 
~2340nm) using a typical waveguide design for the modulator. The schematic diagram of such a structure is shown in 
Fig.12. The 10×multi-quantum well layers with 12nm wells and 10nm barriers have a total thickness of 230nm and are 
sandwiched between two 50nm intrinsic spacer layers. The total length of the intrinsic region 𝑑𝑖 is therefore 330nm. We 
will not perform a detailed analysis of the length of p-doped buffer layer and n-doped layer, as this will influence the 
optical confinement factor, which is not calculated here: instead we use the value from [7]. The p-doped buffer layer is 
0.5μm and the n-doped layer is 0.1μm thick. The optical confinement factor Γ𝑐 is set to 0.36, which is achieved in [49] 
using an MQW active layer with a similar thickness (210nm). The width of the waveguide-𝑤𝑔 is 2μm. Load resistance 𝑅𝐿 is set to 100Ω. The extinction ratio (ER, ℛ𝐸𝑅) is treated as a requirement parameter. The cavity length 𝐿𝑔 is then set 

to satisfy the minimum requirement of 10dB ER: 
 𝐿𝑔 = ln(ℛ𝐸𝑅) /(Γ𝑐Δ𝛼) (12)   

Two important practical properties describing the performance of the modulator can be linked to the figures of merit 
discussed above. The first is the ratio of maximum bandwidth to the swing voltage [45]. Assuming the maximum 
bandwidth is only related to the time constant 𝑅𝐿𝐶, we have Δ𝑓 = 1/(2𝜋𝑅𝐿𝐶) = ⁡𝑑𝑖/(𝜖𝑠𝜋𝑅𝑤𝑔𝐿𝑔). The voltage applied 
to the intrinsic region is 𝑉𝑖 = 𝐹𝑑𝑖. Then, using Eq.(12), we obtain the expression independent on the cavity length: 

 
Δ𝑓Δ𝑉 = Γ𝑐𝜖𝑠𝜋𝑅𝐿𝑤𝑔 ln(ℛ𝐸𝑅) (Δ𝛼Δ𝐹) (13)   

The second important parameter is the switching power per bit 𝑃𝑎𝑐/𝑁𝐵.[47] Combining with Eq.(12), 𝑃𝑎𝑐/𝑁𝐵 is: 

 
𝑃𝑎𝑐𝑁𝐵 = 12𝐶Δ𝑉2 = 12 𝜖𝑠𝑤𝑔𝐿𝑔𝑑𝑖∆𝐹2 = ln(ℛ𝐸𝑅) 𝜖𝑠𝑤𝑔𝑑𝑖2Γ𝑐 ( Δ𝛼Δ𝐹2)−1 (14)   

It is clear from Eq.(13) and Eq.(14) that, with the same ER, increasing the figures of merit ∆𝛼/∆𝐹 and ∆𝛼/∆𝐹2 is 
equivalent to increasing the bandwidth per volt and decreasing the drive power per bit. Th
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Fig.12. Schematic diagram of the waveguide design. The layer with 10 MQWs is using either square QWs 
(structure I) or intra-step QWs (structure II), and they have the same total thickness.  

The absorption spectra and figures of merit for structure I and II are shown in Fig.13. The maximum absorption 
change and figures of merit at 2340nm are achieved at 65kV/cm and 50kV/cm for square QW and intra-step QW 
respectively. For the square QW, the absorption coefficient in the “on transmitting state” (0kV/cm) is 342cm-1 and in “off 
absorbing state” (65kV/cm) it is 1760cm-1. For the intra-step QW the corresponding values are 336cm-1 in the on state 
and 1900 cm-1 in the off state. Therefore, the absorption change after including the optical confinement factor, Γ𝑐Δ𝛼, is 
510 cm-1 for the square QW and 563 cm-1 for the intra-step QW. For the square QW, we also present the result when a 
moderate, 15kV/cm, on-set applied field is used, the on-set voltage will then be 0.5V. The swing voltage is then reduced, 
to the same value as in the intra-step QW, with a fairly small increase in residual absorption. In this case both figures of 
merit of the square QW increase, but still remain smaller than for the intra-step QW. The comparison of some practical 
parameters of structure I, structure II with 0kV/cm on-set, and structure I with 15kV/cm on-set are shown in Table IV. 
For the intra-step QW with zero on-set voltage, the bandwidth per unit applied voltage is 44% higher than for the square 
QW also with zero on-set voltage, and 21% higher than if the on-set is 0.5V. The power consumption of the intra-step 
QW is reduced by 46% and 12% when the on-set of the square QW is 0V and 0.5V, respectively. In summary, even 
when restricting the on-set of the intra-step QW to be zero, it can still outperform the square QW, which makes the 
intra-step QW more suitable for low voltage operations. 

 
Table IV. Practical parameters of the modulator design using structure I with 0kV/cm and 15kV/cm on-set, and structure 

II with only 0kV/cm on-set. 

MQW Type 
𝐿𝑔 a 
(μm) 

𝑉𝑖𝑜𝑛  
(V) 

Δ𝑉  
(V) 

ILb 

(dB) 

Maximum 
Bandwidthb 

(GHz) 

Δ𝑓/Δ𝑉 b 
(GHz/V) 

𝑃𝑎𝑐/𝑁𝐵⁡ b 
(fJ/bit) 

Square QW (I) 45.1 0 2.15 2.4 41.1 19.1 89 

Square QW (I) 46.3 0.5 1.65 2.7 39.9 24.2 54.2 

Intra-step QW (II) 40.8 0 1.65 2.1 45.3 27.5 47.8 

aCalculated by Eq.(12) to achieve a 10dB ER. 
bCalculated according to the cavity length and assuming the load resistance is 100Ω. 
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Fig.13. (a) Absorption spectra of structure I at 0kV/cm, 15kV/cm and 65kV/cm, structure II at 0kV/cm and 
50kV/cm. The maximum absorption change is achieved at 65kV/cm and 50kV/cm for structures I and II, 
respectively. (b) Figure of merit ∆𝛼/∆𝐹 corresponding to (a). (c) Figure of merit ∆𝛼/∆𝐹2 corresponding 

to (a). 

IV. Conclusion 

In this work we have used 8-band k.p theory combined with variational method to calculate the optical properties of 
MQWs based on Group-IV materials. The methodology provides good agreement with experimental results after some 
calibration of the input parameters. We have used this model to study intra-step QW structures. The alloy compositions 
of such structures were limited so that their transition energies lay in the MIR spectral region (wavelength larger than 
~2μm). By analysing the QCSE using perturbation method, we found that the Stark shift of the intra-step QW is not 
always larger than that of a square QW with the same size. The Stark shift behavior of the intra-step QW can be 
engineered by control of the potential profile. A much larger Stark shift is observed when the structure is designed so that 
the first heavy-hole state is at the top of the deeper intra-well (i.e. at the band edge of the shallower intra-layer). We 
expect that the largest Stark shift could be achieved by using extremely narrow and deep intra-well. However, the 
improvement obtained from this extreme case is limited by the total well width and this, together with difficulties in 
growing such structures, makes it hard to recommend it for real applications. Then we also compared the square QW and 
intra-step QW using two different figures of merit: ∆𝛼/∆𝐹 and ∆𝛼/∆𝐹2. These two figures of merit are directly related 
to the bandwidth per volt and power consumption per bit when considering a waveguide design with the same extinction 
ratio. The intra-step QW shows a significant advantage over a square QW when they both use zero on-set voltage, and 
the intra-step QW with zero on-set is still better in all aspects compared to the square QW with a 15kV/cm (0.5V) on-set. 
Using a high applied field region for modulation can help to reduce the swing voltage and this may make the figure of 
merit of square QW higher than for the intra-step QW using zero on-set. But the trend for EPIC primarily targets the low 
voltage operation, and an intra-step QW is then obviously a more suitable choice for EA modulators. This work only 
analyzed the performance of a simple asymmetric QW structure, but in general it is possible to design more complicated 
broken-symmetry structures to further improve the performance, albeit at the expense of greater complexity of epitaxial 
growth. 

Appendix: The polynomial expresion of the function G(x) 

The function 𝐺(𝑥) is defined as an integral: 

 𝐺(𝑥) = ∫ 𝑑𝑡 𝑒−𝑥𝑡(1 + 𝑡2)3/2∞
0  (15)   

In order to reduce the calculation time, the function 𝐺(𝑥) in Eq.(3) is using the polynomial expression from [25]. The 
maximum error of this expression is less than 1.5%. 

 𝐺(𝑥) =
{  
  1 − 0.89707𝑥 − 0.25262𝑥2 ln (𝑥2) + 0.22576𝑥2+3.2373 × 10−2𝑥3 − 4.1369 × 102𝑥4 ln (𝑥2)⁡,⁡⁡⁡⁡(0 < 𝑥 ≤ 6.8)1𝑥 − 3𝑥3 + 45𝑥5 − 1575𝑥7 ⁡,⁡⁡⁡⁡⁡⁡(𝑥 > 6.8)⁡

 (16)   
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N
ote that 𝐺(𝑥) is a sym

m
etric function, hence 𝐺 (𝑥 )=𝐺(−𝑥), and 𝐺 (0 )=1. 
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