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Abstract We present a dynamic microsimulation model for childhood policy analysis that models 

developmental, economic, social and health outcomes from birth to death for each child in the Millen-

nium Birth Cohort (MCS) in England, together with public costs and a summary wellbeing measure. 

The model is a discrete event simulation in discrete time (annual periods), implemented in R, which 

progresses 100,000 individuals through each year of their lives from birth in the year 2000 to death. 

From age 0 to 18 the model draws observational data from the MCS, with explicit modelling of only a 

few derived outcomes (mental health, conduct disorder, mortality, health- related quality of life, public 

costs and a general wellbeing metric). During adulthood, all outcomes are modelled dynamically 

using explicit networks of stochastic process equations, with separate networks for working age and 

retirement. Our equations are parameterised using effect estimates from existing studies combined 

with target outcome levels from up- to- date administrative and survey data. We present our baseline 

projections and a simple validation check against external data from the British Cohort Study 1970 

and Understanding Society survey.

DOI: https:// doi. org/ 10. 34196/ ijm. 00228

1. Introduction
Recent scientific advances have established beyond reasonable doubt that childhood programmes 

can have important effects on health and wellbeing many decades in the future, during working 

years and retirement (Conti et al., 2019; Heckman, 2012). Policy makers want quantitative informa-

tion about these long- term effects, and they also want information about distributional impacts on 

inequality in lifetime health and wellbeing, as well as inequality in current period health and wellbeing. 

While childhood policy analysis using randomised control trials and quasi- experiments is the gold 

standard in establishing cause and effect relationships, this is rarely possible when quantifying lifetime 

policy effects over many decades. Even when long- term follow- up data is available, such analysis 

yields insights about historical cohorts born many decades ago with questionable relevance to the 

current childhood policy context. Microsimulation offers a forward- looking alternative for childhood 

policy analysis, as it can extrapolate long- term outcomes for cohorts living in the present and project 

the effects of the policies that policymakers are considering today.

In this paper we introduce a dynamic childhood policy microsimulation model “LifeSim” which 

models the co- evolution of economic, social and health outcomes from birth to death for each child 

in a general population birth cohort of 100,000 English children born in year 2000- 1. In addition to 

modelling the individual outcomes, LifeSim also models the associated costs and savings to the public 

budget.
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The chosen life outcomes and the structure of our model are designed to address cross- sectoral 

childhood policy concerns and to align with the large body of theory and knowledge about human 

capital formation in childhood and later life economic and health outcomes. From age 0 to 18 we 

heavily rely on observed life outcomes from the Millennium Cohort Study (MCS), and only explicitly 

model three specific childhood outcomes - mental health, conduct disorder and mortality - which 

are then combined with MCS data to estimate public costs and a general wellbeing metric. During 

adulthood, however, we specify explicit networks of stochastic processes, with different networks 

for working years and retirement, and parameterise these using estimates from published studies of 

longitudinal data on earlier cohorts.

LifeSim has the following distinct features:

1. It jointly models the co- evolution of many economic, social and health outcomes, capturing 
how outcomes in multiple domains interact, compound and cluster over time, emphasising 
how early- life disadvantages can compound over life creating a spiral of multiple disadvantage;

2. It simulates long- run outcomes for a whole general population cohort of children, not just one 
specific subpopulation of trial participants, which allows the model to serve as a platform for 
many different kinds of informative policy analysis, including optimal policy targeting analysis, 
population- wide distributional impact analysis and assessment of the opportunity costs falling 
on the individuals not directly affected by the intervention;

3. It simulates individual- level outcomes for each heterogeneous child in the cohort, instead of 
only producing average- level outcomes, allowing us to produce multidimensional individual 
wellbeing measures, which have been discussed in the literature and have well- known advan-
tages over unweighted cost- benefit analysis (Adler and Fleurbaey, 2016);

4. It simulates outcomes over the whole lifecourse from birth to death, enabling policy analysis 
to adopt a broad lifetime perspective.

 We capture all of these features by combining many different sources of data, which requires 

strong assumptions. We make all of our assumptions explicit and subject to scrutiny by providing 

carefully labelled and fully referenced details of all modelling equations, parameters and data 

sources in the appendix, and by publishing our complete programming code. We use longitudinal 

data on children born in 2000 as our primary data source but supplement this with other sources 

of data including more up- to- date cross- sectional administrative and survey data as well as older 

sources of longitudinal data on children born in earlier decades. In choosing how many assump-

tions to make and how many sources of data to use, there are trade- offs between internal and 

external validity.1 Using a single source of experimental data with long- term follow- up over many 

decades would maximise internal validity, but is only possible for backward- looking evaluation of 

policy experiments many decades ago. Using assumptions and multiple sources of data is necessary 

to achieve external validity for forward- looking economic appraisal of current policy options in the 

current policy environment.

To our knowledge, LifeSim is the first microsimulation model that provides information on many 

developmental, economic, social, health, and public cost outcomes from birth to death for each indi-

vidual in a birth cohort. In the economics literature, there are dynamic microsimulation models of many 

co- evolving economic and social outcomes across the life- cycle (e.g. LINDA, a rational agent dynamic 

microsimulation based on dynamic programming, Van der Ven (2016)) and dynamic microsimulation 

models of childhood development (e.g. MELC, a discrete event simulation from age 0 to 13, Milne 

et  al. (2015)). And in the health literature there are dynamic microsimulation models of multiple 

co- evolving health and public cost outcomes (e.g. HealthPaths, Wolfson and Rowe (2014), POHEM, 

Hennessy et al. (2015) and IMPACT NCD, Kypridemos et al. (2016)). However, none of these cover 

developmental, economic, social, and health outcome domains and few provide information on the 

whole lifecourse from birth to death.2 Modelling the entire lifecourse allows us to examine how child-

1. Internal validity relates to claims about cause and effect within the study population, whereas external validity 
relates to how applicable the findings are to real world policy settings.
2. According to Statistics Canada, they developed a dynamic microsimulation model in the 1990s with a rich set 
of co- evolving economic, social and health outcomes, called LifePaths (Spelauer et al., 2013), which has subse-
quently been discontinued. However, this model seems to have had limited detail on developmental outcomes in 
childhood and we could not find detailed technical information or any published economic evaluations based on 
it.
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hood outcomes can lead to spirals of advantage and disadvantage in later life, whereby economic, 

social, and health outcomes interact, compound and cluster over time. For example, a young child 

with poor cognitive and social skills is at heightened risk of multiple adverse outcomes as they grow 

older – including unhealthy behaviour, mental illness, unemployment, low earnings imprisonment and 

physical illness – all of which can interact and compound in a spiral of disadvantage (Zucchelli et al., 

2012; Layard et al., 2014; Frijters et al., 2017). Modelling this also provides a platform for more 

informative long- term economic evaluation, targeting analysis and distributional analysis of childhood 

policies from a lifetime perspective, as we illustrate in a companion paper under review elsewhere 

(Skarda et al., 2021).

2. Methods

2.1. Model Structure
Our microsimulation model is a discrete event simulation in discrete time (annual periods), which 

progresses 100,000 individuals through each year of their lives from birth in the year 2000 to death. 

From ages 0 to 18 it closely follows observed Millennium Cohort Study (MCS) data, and there-

after predicts the annual evolution of each life outcome based on the current values of relevant 

Figure 1. Overview of Key Outcomes Over the Lifecourse
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characteristics and outcomes, which in term depend on lagged values.3 This kind of model can be 

seen as a pragmatic compromise between a simpler Markov model structure, which has no “memory” 

or dependence upon lagged values, and a more complicated agent- based model structure, which 

explicitly models interactions between individuals and how individual behaviour may depend upon 

the macro- level policy environment as well as the behaviour of others. Allowing dependence upon 

lagged values allows a rich analysis of the dynamic clustering and compounding of multiple outcomes 

over time, while setting aside agent- based interactions keeps the model tractable, even when model-

ling a relatively large number of outcomes.

The model links together a diverse set of individual- level life outcomes of interest to policymakers 

(Figure 1). By using rich observational data from the MCS, our model provides information on various 

aspects of human capital development in childhood - including social skills, cognitive skills, and health 

behaviour (teenage smoking) - and then extrapolates later life outcomes across economic, social, 

and health domains for the rest of the lifecourse. For simplicity and concreteness we focus on one 

important and readily measurable dimension of social skills - conduct problems - as proxied by two 

separate parent reported measures. Child conduct is related to self- control and regulation, which 

have been shown to matter in many aspects of life, including wellbeing, income, employment, crime 

and health outcomes (Goodman et al., 2015). We also model mental illness and health- related quality 

of life during childhood, using external datasets (Mental Health of Children and Young People Great 

Britain, and a dataset by Love- Koh et al. (2015)).

Let  i = 1, ..100, 000  index the individual children in the cohort. Let yearly time periods also corre-

sponding to the age of children be indexed as  age = 0, 1, ..18..T   where  age = 18  marks the end of 

childhood, and T   is the last time period in which there are any cohort members still alive (which we 

assume to be 100, since small number problems make predictions decreasingly reliable at older ages). 

Let  Xi  be the vector of initial conditions assumed to be constant for child   (e.g. individual and family 

characteristics at birth or other early time period – if data at birth on the condition is not available); let 

 θi,age  be an age- specific vector of child Strengths and Difficulties Questionnaire (SDQ) scores – multi- 

dimensional parent- reported score on child’s difficulties,  cdi,age  – an age- specific outcome of whether 

child develops a conduct disorder, and  cogi,age  – an age- specific child’s cognitive skills measure. Finally, 

let  Yi,age  be the age- specific vector of life- cycle outcomes (further, outcomes) for child i . These outcomes 

can be further classified as social, health and economic outcomes, i.e.  Yi,age ≡ {Si,age, Hi,age, Ei,age} , where 

 Si,age, Hi,age, Ei,age  are the vectors of social, health and economic outcomes respectively. It is allowed for 

the vector  Xi  to also contain elements of  {Si, Hi, Ei} .

At each age the individual probability of dying  pr.deadi,age  is modelled and defined over the 

closed interval from zero to one, i.e.  pr.deadi,age(Ei,age, Si,age, Hi,age) ∈ [0, 1] , which then determines the 

discrete outcome  deadi,age  – whether the individual at a certain age is dead ( deadi,age = 1 ) or alive 

 (deadi,age = 0).  More specifically, we can represent the outcome  ‘dead or alive’ by a function  l(.)  such 

that if in the previous year individual was alive then they can be either alive or dead in the following 

year, i.e.  deadi,age = l(pr.deadi,age, ζi,age | deadi,age−1 = 0) ∈ {0, 1}  (where  ζi,age  represents stochasticity); and 

if in the previous year individual was dead then, because death is an ‘absorbing state’, they can 

be only dead in the following year, i.e.  deadi,age = l(. | deadi,age−1 = 1) = 1 . Individual life span is then 

 Ti =
∑T

age=0

(

1 − deadi,age
)

 .

To describe the initial conditions (in vector  Xi ), we draw observations on each child, i.e. 100,000 

times in total to represent a cohort of 100,000 individuals, using re- sampling with replacement from 

the initial sweeps of MCS – a longitudinal survey of English children born in 2000- 2001 (see panels 

A- C of Table 1).

Similarly, we use MCS data from all of the sweeps (up to age 14) to collect data for the vector  θi,age  – 

information on child SDQ conduct problem subscale score and a further parent- reported “behavioural 

impact” score (see panel D of Table 1). Both of these scores range from 0- 10, with a higher score 

representing more conduct problems and a more severe impact of difficulties in child’s life. MCS data 

are reported at sweeps every 2 to 4 years, so we use the most recent MCS sweep data available to fill 

in the missing values in the time gaps, and for age 15- 18.

3. Because the MCS data was only available up to age 14 when our model was developed, we approximate the 
outcomes between ages 15- 18 using the MSC data for age 14; this can now be updated with the data from the 
latest MCS wave which has recently become available and at which children are 17 years old.
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Table 1. Summary of Child Characteristics and Family Conditions

Child’s characteristic / family condition Data used in modelling Source Mean SD Min Max

A: BASIC CHILD’S CHARACTERISTICS

Sex Indicator if child is male MCS1 0.49 0.50 0 1

Teenage smoking Indicator if child smokes at 14 MCS6 0.16 0.37 0 1

B: SOCIAL CONDITIONS

Parental income OECD equivalised household income after taxes and benefits, £ MCS1 32,004 19,972 1,445 128,246

Parental wealth Parental assets, £ MCS5 3,068 19,937 0 600,000

Parental socio- economic position Household income quintile MCS1 3.06 1.37 1 5

Childhood poverty Indicator if household income is below 60% median MCS1 0.27 0.45 0 1

C: PARENTAL CHARACTERISTICS

Parental education Indicator if parent has a university degree (NVQ 4 or above) MCS1 0.31 0.46 0 1

Parental depression at child’s birth Indicator if Rutter malaise inventory score is 4 or above MCS1 0.14 0.35 0 1

Parental depression severity at child’s birth 9- item Rutter malaise inventory score MCS1 1.66 1.68 0 9

Parental depression when child is 5 years old Indicator if Kessler psychological distress scale score is 13 or above MCS3 0.03 0.18 0 1

Parental depression severity when child is 5 years old 6- item Kessler psychological distress scale score MCS3 3.17 3.72 0 24

D: CHILD’S SOCIAL SKILLS

Conduct problems up to age 4 SDQ conduct problem score (see the note) MCS2 2.87 2.02 0 10

Conduct problems, ages 5- 6 SDQ conduct problem score MCS3 1.46 1.47 0 8

Conduct problems, ages 7- 10 SDQ conduct problem score MCS4 1.32 1.50 0 9

Conduct problems, ages 11- 13 SDQ conduct problem score MCS5 1.38 1.58 0 10

Conduct problems, age 14+ SDQ conduct problem score MCS6 1.42 1.68 0 10

Impact of problems up to age 4 SDQ impact supplement score MCS2 0.11 0.58 0 8

Impact of problems, ages 5- 6 SDQ impact supplement score MCS3 0.13 0.63 0 8

Continued
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We then use the reported SDQ score components to model 

whether or not a child develops conduct disorder, using a previ-

ously developed algorithm which predicts a child’s probability of 

developing conduct disorder as a function of SDQ score compo-

nents – the SDQ conduct problem score and the “behavioural 

impact” score. This provides a specific probability of conduct 

disorder based on a classification as either “possible” or “prob-

able” (Goodman et  al., 2003; Goodman et  al., 2000).4 This 

modelled probability is then combined with a random draw 

from a uniform distribution over 0- 1, which allows us to simu-

late the discrete outcome of whether or not a child develops 

conduct disorder. Formally, the age- specific conduct disorder 

outcome  cdi,age  can be represented using a function g(.) as:

 cdi,age = g(θi,age, ξi,age)  (1)

where  ξi,age  represents stochasticity.

We also use the MCS data from later sweeps (up to age 14) 

to build  cogi,age  – a single measure of each child’s cognitive skills 

at each age throughout their childhood up to age 18 (see panel 

E of Table 1). More specifically, our cognitive skills measure is an 

age- specific common factor extracted from the cognitive skills 

measures available in MCS, including the British Ability Scales II 

(for ages 3, 5, 7, 11), Bracken School Readiness Assessment (for 

age 3), National Foundation for Educational Research Progress 

in Maths (for age 7), Cambridge Neuropsychological Test Auto-

mated Battery tests (for ages 11 and 14) and Applied Psychology 

Unit (for age 14). We extract a common factor for each age where 

test results are available using principal component analysis, and 

standardise it to be with a mean of 1.00 and standard deviation 

of 0.15 (following Jones and Schoon (2008)). Similar to the SDQ 

score data, we use the most recent MCS sweep data available 

to fill in the missing values in the time gaps, and for age 15- 18.

During adulthood, child’s SDQ scores, conduct disorder 

outcomes and cognitive skills are assumed to stay fixed at the 

level achieved by the end of childhood, i.e.  θi,age = θi,18 ,  cdi,age = cdi,18  

and  cogi,age = cogi,18  for  age = 19..Ti .

Over the life- cycle ( age = 0..18..Ti ), the vector of other life- 

cycle outcomes  Yi,age  evolves as:

 
 Yi,age = kage(Yi,age, Yi,age−1, θi,18, cdi,18, cogi,18, Xi, ηi,age)  (2)

where  ηi,age  represents stochasticity. It should be noted 

that separate outcomes in the vector  Yi,age  can depend on a 

subset (and not necessarily all) of the outcomes in the vectors 

 Yi,age−1, Yi,age, θi,18, cdi,18, cogi,18, Xi,  which can be achieved by 

restricting coefficients. Also, a period- specific outcome in the 

vector  Yi,age  will generally not depend on itself, but can depend 

on other outcomes at that time period included in the vector 

 Yi,age .

4. More specifically, the algorithm allocates a probability of 0.61 for 
children with the SDQ conduct problem score of at least 5 combined 
with the impact score of at least 2; a probability of 0.31 for children with 
the conduct problem score equal to 4 (irrespective of the impact score) 
and a probability of 0.06 for all the other children with conduct problem 
scores below 4.
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The model structure specified by  kage(.)  changes as individuals progress through key life stages. 

In each life stage, the dependencies between the initial conditions and the life- course outcomes are 

represented by model structure diagrams in Figures 2 and 3, and are also summarised in Table 2. In 

the model structure diagram each solid arrow is modelled using equations (as we will explain in more 

detail in Section 2.3).

In choosing the model outcomes and formulating the model structure, we consulted with experts in 

childhood development and childhood policy, demography, epidemiology, human capital economics, 

and labour economics (see list of advisory group members in the acknowledgements) and were also 

guided by inter- disciplinary theory on human capital formation in childhood and how this influences 

educational attainment, earnings, physical illness, mental illness, mortality, and other outcomes with 

important impacts on individual wellbeing and public cost (Almond et al., 2018; Goodman et al., 

Figure 2. Model Structure for Key Life Stages in Childhood

Note: The solid arrows represent the stochastic processes that we model using modelling equations as described in Section 2.3; 
the dashed arrows represent implicit processes that we do not explicitly model, but that exist in the childhood dataset. The boxes 
represent life outcomes: the dashed boxes represent exogenous inputs into our model that are taken as given either from the 
childhood dataset or the previous life- stage, the thick boxes represent final outcomes that directly influence wellbeing or impose a 
cost to the public budget.
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2015; Nelson et al., 2020; Cunha and Heckman, 2010; Adler et al., 2010; O’Donnell et al., 2015;; 

Layard et al., 2014; Shonkoff, 2010; Black et al., 2017).

LifeSim also models variables relevant to the public budget (Figure 4). This includes modelling the 

public costs over time associated with certain life outcomes, such as conduct disorder, being in prison, 

mental illness, coronary heart disease, as well as cash benefits paid to people who are in poverty and/

or unemployed. This also includes modelling the taxes paid over time on individual earnings and 

financial gains. These can be aggregated, to assess the overall impact on the public budget as well as 

cost savings under different policy scenarios and over various time spans. Details of the evidence and 

assumptions about the unit costs of public services and our simple approach to modelling long- run 

taxes and benefits are found in Appendix A.

Figure 3. Model Structure for Key Life Stages in Adulthood

Note: The solid arrows represent the stochastic processes that we model using modelling equations as described in Section 2.3. 
The boxes represent life outcomes: the dashed boxes represent exogenous inputs into our model that are taken as given either 
from the childhood dataset or the previous life- stage, the thick boxes represent final outcomes that directly influence wellbeing or 
impose a cost to the public budget.
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Table 2. Determinants of the Modelled Outcomes

Outcomes (Y) Determinants (X)

Name Type

Other modelled 
outcomes (parameter 

source in brackets)

Exogenous variables

From childhood  
dataset (MCS) From target datasets

SOCIAL

Conduct disorder P, I

SDQ conduct problem 
score, SDQ impact score 
(both Goodman et al. 
(2015));

Education (university 
degree) P, I

Poverty at age 18 
(Goodman et al., 2015; 
Fletcher, 2010; Farahati 
et al., 2003);

Cognitive skills (age 14), 
SDQ conduct problem 
score (age 14) (both 
Goodman et al. (2015));

Estimated likelihood of 
a person participating in 
Higher Education by age 
30 (DE, 2016);

Unemployment 
(employment) P, I

L.prob. of employment; 
prison; age;

Cognitive skills (age 14) 
(Goodman et al. (2015)), 
SDQ conduct problem 
score (age 14) (both 
Goodman et al. (2015));

Employment rate in UK by 
age and sex (ONS, 2018);

Poverty I Consumption;

60% equivalised 
household income in UK 
(ONS, 2011);

Prison P, I

L.prob. of prison; conduct 
disorder at age 18 
(Fergusson et al., 2005); 
L.depression (Anderson 
et al., 2015);

Prison rates in England by 
age and sex ( MJ, 2017 and 
ONS, 2018);

Residential care P, I

L.prob. of residential care; 
L.depression (McDougall 
et al., 2007; Stewart et al., 
2014);

Rates of people aged 65+ 
in care home by sex in 
England (ONS, 2011).

HEALTH

Smoking P, I

L.prob. of smoking; 
education, poverty (both 
Jefferis et al. (2003)); 
depression (Lasser et al., 
2000), prison (Singleton 
et al., 2003);

Teenage smoking rates by 
sex (MCS, age 14) (param. 
from Jefferis et al. (2003)), 
smoking rate in England 
by age, sex and IMD 
quintile group (HSE, 2006);

Coronary heart 
disease (CHD) P, I

L.prob. of CHD; L.smoking 
(Bazzano et al., 2003; 
Critchley and Capewell, 
2003); L.poverty (Marmot 
et al., 1997);

CHD rates in England by 
age, sex and IMD quintile 
group (HSE, 2006);

Depression P, I

L.prob. of depression; 
L.conduct disorder (Luby 
et al., 2014); employment 
(Thomas et al., 2005); 
poverty (Weich and Lewis, 
1998);

Emotional disorder rates 
in England by age, sex 
and IMD quintile group 
(MHCYPGB, 2004), 
depression rates in 
England by age, sex and 
IMD quintile group (HSE, 
2014);

Mortality P, I

Depression (Chang et al., 
2010); CHD (estimated 
using HSE (2006) and ONS 
data);

Mortality rates in England 
by age, sex and IMD 
quintile group (ONS, 2011);

Continued
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2.2. Parameters
To model later life outcomes, we use equations parameterised using (i) cross- sectional target data 

which describe expected levels of and associations between variables at a point in time, usually based 

on up- to- date survey or administrative data, and (ii) effect estimates which attempt to draw inferences 

about the effect of one variable on another variable, either at the same time or a future point in time, 

usually based on statistical analysis of longitudinal data on historical cohorts.

Our target data comes from recent and nationally representative available surveys and administra-

tive records in England. Our effect estimates come from studies based on longitudinal data in a UK 

context, unless robust estimates are only available from other high- income countries.

Outcomes (Y) Determinants (X)

Name Type

Other modelled 
outcomes (parameter 

source in brackets)

Exogenous variables

From childhood  
dataset (MCS) From target datasets

ECONOMIC

Earnings from 
employment (gross), 
£ C

Education (Blundell et al., 
2000) ; employment; age;

Cognitive skills at age 14, 
SDQ conduct problem 
score at age 14 (both 
Goodman et al. (2015));

Full time annual gross 
pay in UK by age and sex 
(ONS, 2015);

Interest, £ C L.Wealth; Interest rates in UK;

Pension, £ C Years in employment; age;
Level of state pension in 
UK;

Savings, £ C

Earnings from 
employment; interest; 
taxes; L.consumption;

Wealth, £ C

L.Wealth; Earnings 
from employment; 
interest; pension; tax; 
consumption; residential 
care; age;

Parental wealth; parental 
income;

Taxes, £ C

Earnings from 
employment; interest; 
pension; Income tax brackets in UK;

Benefits, £ C

Earnings from 
employment; interest; 
pension; wealth; 
residential care; Parental income;

Conditions for claiming 
benefits in UK;

WELLBEING

Consumption, £ C

Earnings from 
employment; interest, 
pension; taxes; savings; 
residential care; 
L.consumption, L.wealth; Parental income;

Health quality, 
QALYs C

CHD, depression (both 
Sullivan et al. (2011));

Average health quality in 
England by age, sex and 
IMD quintile group (Love- 
Koh et al., 2015);

Wellbeing, 
wellbeing- QALYs C

Health quality, 
consumption (both 
Cookson et al. (2021)).

Note: Outcome types: P -- probability, I -- indicator, C -- continuous. Other abbreviations: prob. - probability, L. 
-- lagged (previous year), MCS -- Millennium Cohort Study, ONS -- Office for National Statistics, HSE -- Health 
Survey for England, MHCYPGB -- Mental Health of Children and Young People in Great Britain, IMD -- Index 
of Multiple Deprivation, DE -- Department of Education. Full references for the parameter sources are in the 
Appendix B.

Table 2. Continued



 

Research article
Dynamic microsimulation; Health

Skarda et al. International Journal of Microsimulation 2021; 14(1); 2–42 DOI: https:// doi. org/ 10. 34196/ ijm. 00228 12

Our effect estimates come from studies of longitudinal data which control for observed 

confounding factors and focus on plausible causal relationships for which there is a large body of 

theoretical and empirical evidence. Nevertheless, our estimates are subject to potential omitted 

variable bias and cohort bias. For example, we take the estimated effect of childhood SDQ score 

on earnings in young adulthood from a study of longitudinal data on children born in 1970, which 

controls for observed child- level, family- level, and neighbourhood- level factors. We interpret this 

as a causal estimate i.e. if you increase SDQ score you will increase adult earnings by this amount. 

However, this estimate may be too low or too high if there are unobserved variables which influence 

both SDQ score and earnings (”omitted variable bias”). It may also be biased if the underlying 

stochastic processes have changed since 1970, such that SDQ score is now a more or less powerful 

determinant of adult earnings (”cohort bias”). Using estimates based on past cohorts of individ-

uals thus relies on the assumption that micro- level causal effects do not change much over many 

decades (e.g. the proportional effect of social skills on earnings for an individual), even though the 

macro- level prevalence of each outcome within society may change dramatically (e.g. the average 

levels of social skills and earnings).

Table 2 summarises the dependencies between the modelled outcomes together with parameter 

sources for effects estimates, if applicable, as well as the dependencies of the modelled outcomes on 

the target datasets and the variables from the MCS childhood dataset. More details, as well as the full 

description of the target datasets are found in Appendix A.

2.3. Modelling Equations
Most of the equations modelling the outcomes can be described as one of the following: (i) simple 

level equations based on target data only; (ii) complex level equations based on target data supple-

mented with effect estimates; (iii) simple difference equations based on age associations observed in 

cross- sectional target data; (iv) complex difference equations based on age associations observed in 

cross- sectional target data supplemented with effect estimates. We illustrate each below in turn with a 

simple example. We also use equations that do not fit this taxonomy to model specific variables, such 

as savings behaviour and wealth accumulation over time, as well as public costs (more on this can be 

found in Appendix A).

Figure 4. Model Structure for Public Costs
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2.3.1. Level Equations
To model the individual probability of dying, the simplest approach is to use historical mortality rates:5

 pr.deadi,age = dead[agei, sexi, imdi]  (3)

where  dead[agei, sexi, imdi]  is the mean probability of dying conditional on age, sex and English 

index of multiple deprivation (IMD) quintile group, calculated using a target dataset such as the Office 

for National Statistics mortality data (see Table A2). We denote means from a target dataset using an 

overline.

We can also supplement equation (3) with effects estimates. For example, we may wish to model 

that coronary heart disease (CHD) increases one’s probability of dying by a certain proportion (denoted 

by  β
pr.dead
chd  ). In this case, we use:

 

pr.deadi,age = f( dead[...], chd[...], chdi,age, β
pr.dead
chd ) =

= max[0, min[1, dead[...] (1 + β
pr.dead
chd ( chdi,age − chd[...] ) ) ]]  (4)

where  chdi,age  is the simulated binary outcome of individual   having a CHD at a certain age, 

 chd[...] ≡ chd[agei, sexi, imdi]  is the mean CHD prevalence given age, sex and IMD quintile group from 

a target dataset and min, max restrict the probability to have a value from 0 to 1. Notice that we 

subtract the mean CHD prevalence from the simulated CHD outcome to avoid double counting, as 

the term  dead[...] ≡ dead[agei, sexi, imdi]  is not independent from CHD, but the variable CHD is not 

observable in the ONS mortality target dataset, so we cannot directly condition the target mortality 

mean on the CHD status. After multiplying each term in the brackets by the beta coefficient, it can be 

seen that our approach is equivalent to subtracting the ‘population attributable risk’ from the risk of 

the simulated individual (Webb et al., 2016).

2.3.2. Difference Equations
If a level of a variable is already known, we can proceed by modelling the evolution of a variable as a 

difference from a previous time period. For example, when the level of earnings has been established 

at age 19 (the start of ‘working years’ life stage), we can model the change in individual earnings 

during the subsequent periods as:

 △earningsi,age = trend.earnings[agei, sexi]  (5)

where  △earningsi,age = earningsi,age − earningsi,age−1  is the change in earnings from the previous year, 

and  trend.earnings[agei, sexi]  is a trend that governs the changes in earnings over time, calculated from 

a target dataset on earnings by age and sex.

Similar to level- equations, we can supplement equation (6) with an effect estimate. For example, to 

model that developing depression reduces earnings by a certain level represented by  β
earnings
depressed   we use:

 △earningsi,age = trend.earnings[agei, sexi] + β
earnings
depressed △depressedi,age  (6)

where  depressedi,age  is an indicator of an individual having a depression at a given age and 

 △depressedi,age = depressedi,age − depressedi,age−1 

2.4. Wellbeing Summary Measure
Conventional methods of unweighted benefit- cost analysis do not provide direct information about 

impacts on wellbeing and can be criticised on two important grounds. First, by focusing on unweighted 

consumption they ignore the well- established concept in economics of diminishing marginal value of 

consumption; second, they provide no information about the social distribution of costs and benefits 

and their impact on inequalities (see discussion in Cookson et al. (2021)). There is a large literature on 

5. This equation and other equations in this section are simplified examples of the actual equations that we use; 
see Appendix A for the full mortality equation and the other equations that we use.



 

Research article
Dynamic microsimulation; Health

Skarda et al. International Journal of Microsimulation 2021; 14(1); 2–42 DOI: https:// doi. org/ 10. 34196/ ijm. 00228 14

the theoretical and practical shortcomings of unweighted cost- benefit analysis and the advantages of 

alternative utilitarian and prioritarian approaches to economic evaluation based on explicit individual 

wellbeing and social welfare functions (Adler and Fleurbaey, 2016).

Our framework generates individual- level outcomes that could be used in many different ways to 

create summary indices of wellbeing for use in economic evaluation. In our illustrative evaluation we 

follow Cookson et al. (2021), who propose a simple approach based on the quality- adjusted life year 

(QALY) concept in health economics, but adjusting for consumption as well as health- related quality 

of life. Our approach could be used to construct many other multidimensional measures of wellbeing 

that have been proposed in the literature, including equivalent income measures and measured based 

on life satisfaction (Adler and Fleurbaey, 2016). Cookson et al. (2021) refer to their approach as an 

”equivalent life” approach (Canning, 2013), and the resulting wellbeing metric as ”years of good 

life” or ”wellbeing QALYs”. Following them, we represent individual wellbeing in year t  by a function 

 wt()  increasing in both consumption and health. More specifically,  w(..) = healthi,age + u(consumptioni,age)  
where  u(.)  is a standard isoelastic utility of income function defined as  u(.) = A − B × consumption1−η

i,age  . 

The parameter  η > 1  captures diminishing marginal value of income, and A  and B  are constants which 

depend on normative parameters:  η  (already mentioned), minimal consumption for a life worth living 

and standard consumption for a good life. In the current application we set minimal consumption 

at £1,000 (estimated amount required to buy basic food supplies in the UK for a year) and standard 

consumption at £24,000 (the mean consumption in the LifeSim simulated cohort), and  η = 1.26  (see 

Cookson et al. (2021)).

The interpretation is that a good year is a year lived enjoying full health and consuming the equiv-

alent of the average consumption in a rich country. The good- years measure is more informative than 

conventional monetary measures because it takes into account the notion that one pound of addi-

tional consumption is worth substantially more to a poor individual than a rich individual.

2.5. Computing Methods
LifeSim is implemented in software R (tested on R version 3.6.2) using object- oriented programming 

for R (requires R6 and tidyverse packages). The code and related data files are available on GitHub 

(https:// github. com/ ievask/ lifesim- simulator) and can be run on a high performance computing (HPC) 

cluster (Slurm Workload Manager).

When we split the simulation into 500 partitions, it takes 28 minutes to run it on the HPC cluster. 

The simulation can also be run on a standard PC, for any chosen number of individuals.

The code is written using an object- oriented approach built around individuals, capturing their initial 

endowments and the skills and assets they acquire through life as they undergo various experiences, 

the probability of which are influenced by their past histories. This allows us to simulate individual 

life histories in an intuitive manner and easily communicate and validate our modelling assumptions 

in discussion with domain experts in various stages of the life- course. The code is currently written in 

R allowing us to elegantly incorporate advanced statistical methods into our modelling. However, R 

being an interpreted language can be slow to run and if performance was a concern our code could 

easily be translated into a compiled object oriented programming language such as C++. There are 

also ways of re- writing the original R code in more compact ways, known as “vectorisation”, which are 

harder for non- specialists to follow but faster to run because they avoid conventional programming 

loops that require the same time- consuming interpretation operations to be applied repeatedly.

3. Baseline Results
In this section we show our baseline simulation results, and demonstrate some formats in which they 

can be analysed.

Table 3 provides key summary statistics for the simulated outcomes, including child outcomes, 

adult outcomes and final wellbeing outcomes. We show means, standard deviations, and the 

minimum and maximum value of an outcome in the total distribution of the simulated individuals in 

the baseline simulation, as well as means and standard errors for a bootstrap simulation, i.e. after 

running the simulation 100 times with a different random seed each time. Table 3 does not present 

the summary statistics of the the initial conditions, as well as the child’s cognitive skills and SDQ 

scores that we obtain from the childhood survey dataset (MCS), as these variables have already been 

summarised in Table 1.
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The baseline simulation means do not differ much from the bootstrap means, and the bootstap 

standard errors are small, implying that changing the random seed has a negligible effect on the simu-

lated outcome means with the simulation size that we use.

Approximately 9% of 18 year- old adults develop conduct disorder in the LifeSim simulation. This 

estimate fits within the range of 1- 10 %, commonly reported in the epidemiology literature on conduct 

disorder (see a review in Hinshaw and Lee (2003), also Patel et al. (2018)). Our estimate, however, 

slightly exceeds the 8% of young men and 5% of young women with conduct disorder estimated by 

Mental Health of Children and Young People in England survey in year 2017. This small difference 

may be caused by the fact that the algorithm that we use to simulate conduct disorder incidence is 

based and validated on child samples attending child mental health clinics (Goodman et al., 2000; 

Goodman et al., 2003), and therefore it may overestimate the actual conduct disorder prevalence 

in the general population. On the other hand, conduct disorder diagnosis in the clinic sample can be 

argued to be more precise and sensitive than in the survey data sample, because in the clinic sample 

Table 3. Summary Statistics of the Simulated Outcomes

Outcome

Baseline simulation
Bootstrap 
simulation

Mean SD Min Max Mean SE

CHILD OUTCOMES

Conduct disorder at age 5, % 8.63 28.08 0.00 100.00 8.59 0.10

Conduct disorder at age 18, % 9.09 28.74 0.00 100.00 9.00 0.08

ADULT OUTCOMES

Proportion of university graduates, % 38.51 48.66 0.00 100.00 38.51 0.15

Proportion of working years in unemployment, % 5.73 6.63 0.00 100.00 5.70 0.02

Proportion of lifetime in poverty, % 26.85 18.30 0.00 100.00 26.80 0.05

Proportion of working years in prison, % 1.62 5.12 0.00 75.00 1.60 0.01

Proportion of retirement in residential care, % 1.28 3.95 0.00 100.00 1.28 0.02

Proportion of adult years as a smoker, % 5.32 5.12 0.00 100.00 5.31 0.02

Proportion of adult years with CHD, % 6.16 4.07 0.00 33.33 6.15 0.01

Proportion of life years with mental illness, % 5.98 2.81 0.00 25.81 5.99 0.01

Years of life 78.78 13.04 0.00 100.00 78.80 0.04

Premature mortality rate (before age 75), % 28.13 44.96 28.04 0.14

Annual earnings (lifetime average), £ 29,655 7,638 4,792 67,879 29,659 23

Annual savings (lifetime average), £ 2,833 942 0 7,803 2,832 3

Annual interest (lifetime average), £ 402 234 0 3,321 402 1

FINAL WELLBEING OUTCOMES

Annual consumption (lifetime average), £ 24,114 6,648 10,000 113,817 24,115 22

Healthy years 68.28 9.99 0.87 88.16 68.30 0.03

Healthy years (discounted) 40.94 3.96 0.87 48.01 40.96 0.01

Good years 65.67 10.21 0.69 91.93 65.69 0.03

Good years (discounted) 39.80 4.89 0.69 52.18 39.82 0.01

Note: The baseline simulation mean, standard deviation (SD), minimum value (Min) and maximum value (Max) 
are calculated for the simulated population of 100,000 (for the lifetime aggregates, or yearly – for the annual 
variables). The bootstrap simulation mean and standard error (SE) are calculated for the distribution of the means 
of the 100 bootstrap simulations. The time periods for calculating life- stage proportions are as follows: ‘working 
years’ refer to the period between ages 19- 69; ‘retirement’ refers to the time period from age 70 up to death; 
adult years refer to the time period from age 19 up to death; lifetime refers to the entire period from birth to 
death. CHD – coronary heart disease. We use year 2015/16 prices and the annual discount rate of 1.5% (Paulden 
and Claxton, 2012).
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diagnosis was made by mental health specialists using detailed information on symptoms and resul-

tant impairments gathered from multiple informants, whereas in the specific survey sample diagnosis 

was based on a single specific tool – Development and Well- Being Assessment.

Figure 5 shows the simulated distributions of some core outcomes, which also include the distri-

bution of lifetime wellbeing (measured using the approach by Cookson et al. (2021) described in 

section 2.4.)

Table  4 shows the average costs to the public budget associated with certain outcomes, cash 

benefits paid to people who are in poverty or unemployed, as well as taxes on earnings and financial 

gains. These are calculated over various time intervals over the life- course, and separately for the 

general population, and then for people born in the lowest and top income quintile groups at birth.6

Table 5 provides two summary measures of inequality, based on differences in lifetime expected 

wellbeing between best off and worst off groups on the basis of the following early childhood circum-

stances – sex, parental income quintile group (poorest vs. richest 20%), parental mental health, 

parental education, and high baseline conduct problems (SDQ conduct problem score at age 5 equal 

to 7 or above). Our “extreme best off group” focuses on individuals in the top category of all four 

main markers of social disadvantage in early life (top 20% parental income, high parental education, 

no parental mental illness, high baseline conduct problems). Our “best off 20% group” focuses on the 

best off 20% of individuals in terms of predicted lifetime wellbeing based on all four main markers of 

social disadvantage in early life.

4. Comparison With Other Datasets

4.1. Comparison With 1970 Birth Cohort Study
Table 6 compares the LifeSim predictions with data from the 1970 Birth Cohort Study (BCS70) at 

ages 26, 29, 42 and 46, as a simple validation check. We list the number of observations, means 

and standard- deviations of the LifeSim variables for children born in the year 2000 and the BCS70 

variables for children born in the year 1970, representing the same outcomes. For each outcome, we 

quantify the difference between the LifeSim distribution and BCS70 distribution in terms of the abso-

lute difference in their means and standard deviations.

6. The total residential care cost figure does not include the substantial private costs of residential care, which 
we assume fall on individuals if they have sufficient savings, nor the public costs of residential care before the age 
of 60. It may be an underestimate of public costs, because we make simple and conservative assumptions about 
the need for residential care and eligibility for public funding - for example, we use simple sex- specific rates of 
care home use in people aged 65 and over (2% for men and 4% for women) but do not model the rapid age- 
related increase in risk which results in much higher rates for people surviving into their 80s and belyond.

Figure 5. Distributions of Core Outcomes

Note: Disposable income calculated net of taxes, and include earnings from employment, earnings from interest, earnings from 
pension during retirement years, and cash benefits.
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Table 4. Cumulative Costs Over Various Time Periods

Costs (Per Capita), £ Age 0- 10 Age 0- 15 Age 0- 20 Age 0- 25 Lifetime

GENERAL POPULATION COHORT

PUBLIC SERVICES

Conduct disorder
Prison
Residential care

1,100
0
0

1,700
0
0

1,800
930
0

1,800
3,200

0

1,800
17,000
1,200

HEALTHCARE

CHD
Depression
Other

0
740

9,300

0
1,900

14,000

0
3,600

20,000

0
4,900

27,000

1,400
14,000
88,000

Benefit payments 1,400 2,100 4,100 6,300 12,000

LOWEST INCOME QUINTILE GROUP AT BIRTH

PUBLIC SERVICES

Conduct disorder
Prison
Residential care

1,400
0
0

2,100
0
0

2,200
1,100

0

2,200
4,000

0

2,200
20,000
1,200

HEALTHCARE

CHD
Depression
Other

0
770

11,000

0
2,000

16,000

0
3,600

22,000

0
5,000

29,000

1,400
14,000
91,000

Benefit payments 8,600 12,000 17,000 19,000 22,000

TOP INCOME QUINTILE GROUP AT BIRTH

PUBLIC SERVICES

Conduct disorder
Prison
Residential care

880
0
0

1,300
0
0

1,500
800
0

1,500
2,700

0

1,500
14,000
1,100

HEALTHCARE

CHD
Depression
Other

0
710

8,400

0
1,900

13,000

0
3,500

18,000

0
4,900

25,000

1,400
14,000
85,000

Benefit payments 0 0 1,300 3,000 7,900

Note: All values are calculated per simulated individual in year 2015/16 prices, and discounted at 1.5% annual 
rate, and rounded to 2 significant figures. See details on cost sources in Table A6 in Appendix A.

Table 5. Whole Cohort Lifetime Inequality by Childhood Circumstance

Childhood 
circumstance

Number of 
children Annual consumption, £

Lifetime health, 
healthy years

Lifetime wellbeing, 
good years

Best off 20% 20,000 32,559 68.71 69.59

Worst off 20% 20,000 18,471 66.31 59.84

Difference 14,088 2.407 9.76

Extreme best off 20% 12,149 32,909 68.81 69.83

Extreme worst off 20% 26 16,808 62.16 54.51

Difference 16,101 6.66 15.32

Note: The average policy gains per cohort member for the subgroups of the simulated cohort of 100,000 
individuals.

7. Standard period estimates of gaps in healthy life expectancy by current socioeconomic status are substan-
tially larger than our cohort estimate of gaps by early childhood circumstance, due to dynamic interdependence 
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We would expect some adult outcomes to be similar (e.g. health) but others to be substantially 

different (e.g. earnings, rates of smoking and university education), and so this can be seen as a 

simple validation check to ensure that our model provides broadly similar findings in the same ballpark 

where appropriate, and substantially different findings where we know different generations had very 

different experiences e.g. smoking. Nevertheless, most variables do not deviate substantially from the 

same quantities characterising the cohort born in 1970.

Table 6. Comparison with the British Cohort 1970

Outcome

N Mean
Difference
in means

SD Difference

LifeSim BCS70 LifeSim BCS70 LifeSim BCS70 in SDs

AGE 26

Male (indicator) 99,402 9,003 0.48 0.46 0.03 0.50 0.50 0.00

University Degree (indicator) 99,402 8,399 0.39 0.25 0.13 0.49 0.43 0.05

Employed (indicator) 99402 9003 0.95 0.96 -0.01 0.23 0.20 0.02

Earnings (in year 2015 £) 99,402 6,642 19,736 14,279 5,457 5,882 7,110 -1,228

Depression (indicator) 99402 9003 0.07 0.10 -0.03 0.25 0.30 -0.05

Smoking (indicator) 99,402 8,892 0.06 0.27 -0.20 0.25 0.44 -0.20

AGE 29

Male (indicator) 99,267 11,261 0.48 0.49 -0.00 0.50 0.50 -0.00

University Degree (indicator) 99,267 11,211 0.39 0.27 0.11 0.49 0.44 0.04

Employed (indicator) 99,267 9,506 0.94 0.96 -0.02 0.23 0.19 0.04

Earnings (in year 2015 £) 99,267 8,102 22,400 20,796 1,604 6,682 68,798 -62,115

Depression (indicator) 99,267 11,261 0.07 0.10 -0.03 0.25 0.30 -0.05

Smoking (indicator) 99,267 11,205 0.06 0.29 -0.23 0.24 0.45 -0.22

AGE 42

Male (indicator) 98,149 9,841 0.48 0.48 0.00 0.50 0.50 0.00

University Degree (indicator) 98,149 9,841 0.39 0.34 0.05 0.49 0.47 0.01

Employed (indicator) 98,149 8,594 0.95 0.97 -0.02 0.21 0.16 0.05

Earnings (in year 2015 £) 98,149 2,158 29,327 22,107 7,220 9,604 15,567 -5,963

Depression (indicator) 98,149 9,756 0.07 0.11 -0.04 0.26 0.31 -0.05

Smoking (indicator) 98,149 9,801 0.06 0.20 -0.14 0.24 0.40 -0.17

AGE 46

Male (indicator) 97,532 8,581 0.48 0.48 -0.00 0.50 0.50 -0.00

University Degree (indicator) 97,532 8,444 0.39 0.34 0.04 0.49 0.47 0.01

Employed (indicator) 97,532 5,038 0.95 0.99 -0.03 0.21 0.12 0.09

Earnings (in year 2015 £) 97,532 358 28,558 22,538 6,020 9,978 31,559 -21,581

CHD (indicator) 97,532 8,353 0.02 0.00 0.02 0.15 0.05 0.10

Depression (indicator) 97,532 8,486 0.06 0.14 -0.08 0.23 0.35 -0.12

Smoking (indicator) 97,532 8,578 0.05 0.15 -0.10 0.23 0.36 -0.13

Note: N – number of observations, SD – standard- deviation. We quantify the difference between the LifeSim 
distribution and BCS70 distribution in terms of the absolute difference in their means and standard deviations. 
Earnings is the net pay from employment.

between health and social status over the lifecourse. Adult- onset illness that is unrelated to early childhood 
circumstances may cause downward social mobility, and deterioration of social and economic outcomes that is 
unrelated to early childhood circumstances may cause deteriorating health.
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One exception already mentioned is smoking, which is expected and can be explained by the 

change in smoking rates over time. Another exception is education – the proportion of people with a 

degree under 30 years old – which is much higher in the LifeSim cohort. This can be explained by the 

change in higher education participation rates over time, and increased equality between the genders 

in the cohort born in 2000. Over time the 1970s cohort partially catches up with the LifeSim cohort 

by obtaining qualifications at a later age – at the age 46 the proportion of people with a university 

degree is more similar in both samples than at the age 26. Finally, the LifeSim earnings at all ages on 

average exceed the 1970s cohort earnings. This can be explained by cohort effects, such as general 

differences in economy, society, culture and politics experienced by the two cohorts.

4.2. Comparison With Recent Cross-Sectional Data
To avoid such general cohort effects which arise when comparing two generations born 30 years apart, 

we also carry out a simple validity check using more recent cross- sectional datasets. More specifically, 

we compare our age- specific LifeSim outcomes with age- specific outcomes in cross- sectional data.

Figure 6 compares the age- earnings profile for males and females in the LifeSim simulation with 

our target dataset – ONS Annual Survey of Hours and Earnings in year 2015, and in the Understanding 

Society survey in year 2015. The concave trend with age, initially increasing and then – decreasing 

earnings, is very similar in the tree datasets.

Figure 7 compares the earnings distributions by sex and different age groups in the LifeSim cohort 

and the Understanding Society data. Both distributions have similar medians for the different sex- age 

groups, and also become more uniform with increasing age. One issue left to be addressed as part of 

future work is modelling of the relatively longer right hand side tail which can be observed for the Under-

standing Society data and not for the LifeSim data. This tail represents the highest- earning people in the 

distribution. The LifeSim earnings output does not have this tail, as we do not model the outcome of 

being employed in extremely- high earning jobs. Addressing this feature in LifeSim would require model-

ling the link with variables in early life that would lead to such extremely- high earning states.

In Figure 8, we compare the prevalence of the different discrete outcomes in LifeSim cohort, and 

in our corresponding target datasets, which include Health Survey for England for the health- related 

Figure 6. Earnings: Comparison with Other Data Sources

Note: Target data is the annual full- time gross pay data from Annual Survey of Hours and Earnings, ONS, 2015. See more details 
in Table A2. The Understanding Society data is the estimated annual full- time gross pay data from wave 7 (started in year 2015), 
calculated for individuals in full- time employment as usual gross pay times the frequency of pay per year. All earnings are in year 2015 £.
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outcomes, ONS Labour Force Survey for unemployment and Department for Education estimates for 

participation in higher education.

The simulated outcomes matches the target data well, but there is some small discrepancy with the 

Understanding Society data, which can be explained by differences how data on similar outcomes is 

collected across different surveys.

5. Discussion
Microsimulation offers a forward- looking alternative to conventional approaches to long- term childhood 

policy analysis, which have often relied on long- term follow- up of high- profile historical childhood policy 

experiments that took place decades ago – such as the US Abecedarian experiment (Garcia et al., 

2020) – and are of questionable relevance to current policy decisions. We present LifeSim – a proof of 

concept microsimulation model for analysing the full long- term consequences of childhood policies from 

a lifetime perspective. LifeSim is capable of modelling a rich set of developmental, social, economic, 

and health outcomes from birth to death for each child in a general population birth cohort of 100,000 

English children born in the year 2000- 1, together with public costs and summary wellbeing metrics.

Since our model is designed for the purpose of partial equilibrium policy analysis rather than fore-

casting of macro- level trends, the most important criteria for model credibility arguably relate to 

the quality of the underlying conceptual framework and data sources rather than ability to predict 

Figure 7. Other Outcomes: Comparison with Understanding Society

Note: Data is the estimated annual full- time gross pay data from Understanding Society ]wave 7 (started in year 2015), calculated 
for individuals in full- time employment as usual gross pay times the frequency of pay per year. All earnings in year 2015 £. The 
black lines denote medians.
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population- level trends (Kopec et al., 2010). Nevertheless, we provide a simple comparison of our 

simulation with external data on population- level trends. First, we provide a comparison with data from 

the 1970 Birth Cohort Study up to age 46. We find that our simulation is broadly consistent with the 

external data and substantially divergent when appropriate – for example, our simulation for people 

born in 2000 has a much lower proportion of people smoking than the 1970 cohort, reflecting the 

reduction in smoking rates in the UK since the 1970s. Also, our simulation for people born in 2000 has a 

much larger proportion with young people having obtained a university degree at age 26 than the 1970 

cohort at that age, reflecting the massive expansion in university provision in the UK since the 1970s.

We also provide a comparison with a recent external cross- sectional dataset – Understanding Society 

(in the year 2016). Our simulated earnings outcome replicates reasonably well the sex- age specific distri-

butions observed in the Understanding Society data. Also, for our simulated key discrete outcomes – 

including health- related outcomes and unemployment – the sex specific prevalence trends against age are 

not too deviant from the trends observed in the Understanding Society data. Any minor discrepancies can 

be explained by differences in data collection methods for Understanding Society and our target datasets.

Finally, we provide an additional check of LifeSim output against the various target datasets that 

we directly use to calibrate our equations, such as Health Survey for England, and Office for National 

Statistics datasets. As expected, our simulated outcomes match very well the trends and patterns 

Figure 8. Earnings: Comparison with Other Data Sources

Note: Target data for the outcomes is as follows. Depression – Health Survey for England, 2014; CHD – Health Survey for 
England, 2006; smoking– Health Survey for England, 2006; employment – Labour Force Survey, ONS, 2018; university degree – 
Department for Education, 2016.
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observed in the target data. Because our model is flexible and can be used together with many data 

sources, if needed, one can easily substitute our target datasets with alternative datasets, to match 

the trends and patterns observed in these alternative sources.

The main strength of our model is that it captures the dynamic individual- level interaction between 

many outcomes across the social, economic and health domains over the entire lifecourse. Previous 

models have modelled either two or three of these domains or only a part of the lifecourse. Simultane-

ously analysing many outcomes allows us to capture how many early life disadvantages can compound 

over the lifecourse creating a spiral of multiple disadvantage.

Another strength of LifeSim is that it simulates the long- run outcomes for a whole general popu-

lation cohort of children, not just analysing the outcomes of a narrow group of trial participants. This 

allows carrying out more complex and policy- relevant analysis, including assessment of the distri-

butional impacts and policy opportunity costs on the general population, and exploring options for 

targeting the policy to different subgroups of the population.

LifeSim also generates long- term individual- level data, which makes it compatible with applying new 

multidimensional summary indices of wellbeing recently proposed in the theoretical literature (Cookson 

et al., 2021; O’Donnell et al., 2014; Fleurbaey et al., 2013; Fleurbaey and Schokkaert, 2013). These 

indices are more informative than conventional monetary valuation based on aggregate outcomes, as 

they allow to account for the diminishing marginal value of consumption and other sources of hetero-

geneity in the marginal value of different life outcomes to different individuals. However, application of 

these indices in practice requires individual level long- term time series data on many outcomes across 

the health, social and economic outcome domains. Such rich long- term data is difficult to obtain from 

existing datasets, especially if we are interested in analysing cohorts living in present rather than histor-

ical cohorts of people born decades ago. Models such as LifeSim can compile the many data sources 

together to extrapolate the required individual- level long term outcomes.

Perhaps the most important limitation of our modelling approach is the assumption that micro- 

level causal pathways are invariant to social trends and policy intervention. LifeSim can readily accom-

modate macro- level social trends, such as changes in average earnings and educational attainment, 

by using up- to- date target data. However, some social trends do raise potential threats to our funda-

mental assumption of causal pathway invariance. For example, the massive expansion in higher educa-

tion participation since the early 1990s means that the ”signalling” value of a university degree has 

diminished as a way of helping employers to identify job candidates with exceptional ability. The 

proportional effect of obtaining a university degree on adult earnings for the 2000 cohort graduating 

in the early 2020s is thus likely to be smaller than the effect estimated in the 1970 cohort graduating 

in the early 1990s. We do not take into account potentially measurable biases of this kind in the effect 

estimates used in the present version of LifeSim, which are based on existing published analysis of 

longitudinal data on historical cohorts of children. However, this limitation could be addressed in 

future work by identifying the most important potential biases in effect estimates from longitudinal 

data on historical cohorts and making appropriate adjustments through careful synthesis of evidence 

and elicitation of expert opinion. Relatedly, specific transition pathway estimates could also be modi-

fied in specific cases to strengthen external validity for specific populations. For example, estimates 

based on long- term outcomes for mostly white children born in the 1970s may not be applicable to 

Asian British populations. Using external data sources to estimate long- run health effects for Asian 

British populations would produce more applicable estimates for those populations.

Further, in principle, using up- to- date cross- sectional target data as well as effect estimates is a 

methodological strength of our approach to parameterisation, which can help to improve the external 

validity of the model by correcting for omitted variable and cohort biases in our effect estimates and 

ensure that our predictions are calibrated in line with current population- level outomes. However, 

the current version of our model relies more heavily on cross- sectional target data than effect esti-

mates, which is a limitatation from the perspective of internal validity and causal inference. This is 

an important limitation, given the intended use of the model for the purpose of policy analysis and 

evaluation. Future work in developing a version of the model for routine policy analysis could aim to 

reverse this balance, placing more emphasis on credible effect estimates to improve internal validity 

while maintaining a role for target data to ensure external validity.

LifeSim can also be extended to incorporate additional features. One extension would be to incor-

porate more outcomes. Our model includes many different categories of human capital (e.g. cogni-

tive skills, social skills, educational attainment, health, employment) but within each category, more 
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nuanced distinctions could be made. Health outcomes are modelled using just three binary variables 

– mental illness (depression), physical illness (CHD), and mortality – educational outcomes focus only 

on gaining a university degree; employment outcomes focus only on unemployment not precarious 

employment; and our modelling of the tax and benefit system and retirement savings is extremely 

stylised. Similarly, more individual- level factors could be included (e.g. ethnicity), more family- level 

factors (e.g. child abuse) and it would also be possible to add neighbourhood- level factors (e.g. 

neighbourhood- level deprivation in childhood, as well as family- level income). Also, our tax benefit 

modelling is highly stylised and could be improved by incorporating a standard static tax benefit 

calculator, such as Euromod (Sutherland and Figari, 2013).

LifeSim also currently does not model many important outcomes during childhood, such as cogni-

tive skills, but rather takes them as given from the MCS. Future work could undertake formal dynamic 

modelling of all the relevant outcomes during childhood and adolescence, based on structural equa-

tion modelling and mediation analysis of MCS data that estimates all the relevant parameters in a 

single, integrated longitudinal data analysis.

Next, LifeSim parameters that govern the evolution of lifecourse outcomes during different stages 

of childhood and adulthood are currently estimated separately using different studies based on 

different datasets, specifications and estimation methods. This increases the parameter uncertainty, 

which compounds over time when modelling lifecourse trajectories. Future childhood policy model-

ling could adopt a more joined- up and systematic approach to estimate these parameters simulta-

neously by linking together data on different stages of the lifecourse from successive cohort studies 

(Hughes et al., 2021). This would make the model more ready for prime time policy analysis, and 

also allow a formal analysis of parameter uncertainty by bootstrapping parameters using an estimated 

variance- covariance matrix.

Another extension would be to re- calibrate our model to other populations – e.g. the UK in 2025, 

or England or Scotland, or a sub- national area of England – by updating the initial conditions of the 

birth population and the external macro target data on average population level outcomes and asso-

ciations within that birth population in subsequent years.

Furthermore, LifeSim currently does not model interactions between individuals, and an important 

extension would be to model interactions, such as the dynamics of family formation and dissolu-

tion and spillover effects on other family members. Building an interactive model would also allow 

modeling the effects of infectious disease transmission, as well as the non- communicable mental and 

physical illnesses that are currently the focus of the model.

Our model structure could also be extended in more fundamental ways – for example, to model the 

all- age population rather than just a birth cohort, and to model parental investment choices and other 

behavioural responses that may depend on social trends, changes in the policy environment, and/or 

the behaviour of other individuals. It should be acknowledged that considering any extensions involves 

making trade- offs between model complexity and tractability, and in some cases it may be preferable to 

use other more specialist models and combine the findings from different models, rather than expand 

an existing model. For example, as already mentioned – our model could be combined with Euromod 

(Sutherland and Figari, 2013) – the tax and benefit microsimulation model, to generate more compre-

hensive output on taxes and benefits for the assessment of the consequences to the public budget.

Overall, LifeSim is a flexible childhood policy model which serves as proof of concept in demon-

strating the potential added value of lifecourse microsimulation in long- term childhood policy anal-

ysis. It sets a foundation for the development of a long- term childhood policy model which can be 

routinely used to carry out prime time policy analysis.
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Appendix A Modelling Equations

This appendix summarises the principles that we follow and data that we use to build our 
modelling equations.

A.1. Functional Forms

The functional form of each modelling equation is chosen depending on (a) the type of 
variable that we model (continuous quantity vs. indicator); and (b) the format in which the 
parameter estimate is reported (e.g. coefficient estimates from a linear regression, odds 
ratios from a logistic regression, percentage changes, etc.).

A.1.1. Modelling A Continuous Quantity
Literature on continuous quantities (e.g. earnings, IQ scores, age at death) most often report 
parameter estimates in the form of beta coefficients from a linear regression, that represent 
either (i) absolute change in the dependent variable (Y) as a result of a unit change in the 
independent variable (X); or (ii) relative (or percentage) change in Y, as a result of a unit 
change in X. Following this, we model the effects on Y either as absolute or relative changes.

Absolute Change. Assume that we want to model  β
earn
cog  – the linear effect of individual 

cognitive ability at age 18  (denoted cogi,18)  on individual earnings at age 19  (denoted earni,19) . 
The linear specification is:

 earni,19 = αi,19 + βearn
cog cogi,18 + errori,19  (1)

where  αi,19  captures the constant, as well as the effects of other observable and 

unobservable variables not explicitly specified in equation (1));  errori,19  is random noise with a 

zero mean.

Equation (1) does not explicitly account for all the possible variables which may drive  

the term  αi,19 , for example, it does not explicitly model economic conditions, social networks 

and many other characteristics of the modelled individual i . To overcome this problem, we 

assume that the modelled individual   is ‘average’ in terms of all of the outcomes that we 

do not explicitly account for, i.e. for all  i = 1, ..N   it is assumed that  αi,19 = 1
N
∑N

i=1 αi,19 ≡ α[19] , 
where  N   is the number of 19 year- old individuals in the representative population. The term 

 α[19]  can also be expressed from an averaged equation (1) as  α[19] = earn[19] − βearn
cog cog[18]  

and then substituted for  αi,19  in equation (1), to get:

 earni,19 = earn[19] + βearn
cog

(

cogi,18 − cog[18]
)

+ errori,19  (2)

We approximate the average values, such as  earn[age] ,  cog[age]  by averages of survey data 

representative of the cohort that we model (i.e. what we call ‘target data’, see Section 2.3 in 

the main paper and Table A2 in this Appendix).

Relative Change. Assume that a standard deviation increase in the cognitive skills at age 

14 is estimated to cause an k % increase in the earnings at age 19. It can be shown that in this 

case using the procedure described above will yield:

 
earni,19 = earn[19] exp

(

(1 + k
100 )

(

cogi,19 − cog[14]
)

+ errori,19

)

  
(3)

A.1.2. Modelling A Discrete Event
Sometimes we wish to model a discrete event – e.g. whether a person obtains a degree, 
smokes or not, is employed or not, etc. In this case, we first model the individual age- specific 
probability of event occurring, and then – determine whether the event actually occurs by 
comparing the modelled probability with a random draw from a uniform distribution over a 
closed interval from zero to one. Literature researching discrete events most often reports 
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estimates from a probabilistic regression, that represent either (i) average absolute change 
(percentage- point change) in the probability of the event occurring as a result of a unit 
change in the independent variable; or (ii) odds ratio.

Percentage Point Change. Assume that we wish to model the effect of cognitive ability 

at age 18 (denoted  cogi,18 ) on whether an individual obtains university degree (denoted edui). 

Also, assume that it is known that a standard deviation change in the cognitive ability at age 

18 increases the probability of obtaining a degree by  g  percentage points. For example, 

Goodman et al. (2015) reports such estimates as average marginal effects from a probit 

regression model.1 In a crude way, we can model the probability of obtaining a degree 

( pr.edui ) as:

 pr.edui = edu[sex] + g
100

(

cogi,18 − cog[18, sex]
)

+ errori,19  (4)

Odds- Ratio. When the effect estimates are obtained from a logistic probability regression 

model, they are often reported as odds ratios. For example, to assess the effect of 

depression on smoking, literature may report estimates of the following equation:

 
ln
(

pr.smi,age
1−pr.smi,age

)

= αi,age + β
pr.sm
dep depi,age + error

  (5)

where  depi,age  is an indicator of individual- depression;  β
pr.sm
dep   is the natural logarithm 

of the reported odds ratio. Again, we can average equation (5), and as long as 

 
ln
(

pr.sm[..]
1−pr.sm[..]

)

 
 is a good approximation of 

 
1
NΣ

N
i {ln

(

pr.smi,age
1−pr.smi,age

)

}
 
, we can assume 

that 
 
ln
(

pr.sm[..]
1−pr.sm[..]

)

= α[age, sex] + β
pr.sm
dep dep[..]

 
, where  pr.sm[..] ≡ pr.sm[age, sex],  and 

 dep[..] ≡ dep[age, sex] . We can express  α[age, sex]  from this expression, and again assume that 

 αage,i = α[age, sex]  and substitute  α[age, sex]  in (5), then rearrange to get:

 
pr.smi,age =

(

1
pr.sm[..]

1−pr.sm[..] exp
(

β
pr.sm
dep

(

depi,age−dep[..]
)) + 1

)−1

  (6)

A.2. Parameter Sources

Table A1 explains the notation that we use to specify the modelling equations throughout 
the rest of the Table A2 summarises the target data; Table A3 lists the literature sources 
of the parameter estimates used in parameterising the modelling equations; Table A4 
summarises what other variables these literature sources control for. We then provide full 
detailed specifications of the modelling equations to model each of the lifecourse outcomes, 
as well as full details on modelling taxes, cash benefits and costs associated with costly 
outcomes, in the next subsection.

Table A1.  Notation

Notation Explanation

SIMULATED VARIABLES

 rec Recipient for the parent- training programme (indicator);

 cp Conduct problem measure;

 ip Impact of problems;

1. It should be noted that the average marginal effect is not always a good approximation of the true 
effect, as the actual individual marginal effect is not constant across individuals. So this method is a crude 
way of modelling the effect.

Continued
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Notation Explanation

 cd  Childhood conduct disorder (indicator);

 cog Cognitive skills;

 edu University degree (indicator);

 sm Smokes (indicator);

 dep Mental illness (indicator);

 chd  Coronary heart disease (CHD) (indicator);

 dead  Dead (indicator);

 pris In prison (indicator);

 care In residential care (indicator);

 empl Employed (indicator);

 earn Annual earnings, £;

 wealth Lifetime accumulated wealth;

 cons Annual consumption level, £;

 pov In poverty (indicator);

 tax Annual amount of taxes paid;

 benef  Annual amount of benefits received;

 sav Savings rate;

 min.cons 
Minimum consumption level, which government subsidises if it cannot be 
sustained by an individual;

 sex Male (indicator);

 sep Socio- economic position (quintile group);

 sdq.cp.MCSj SDQ conduct problem score reported in MCS sweep j (j = 2; 3; 4; 5; 6);

 sdq.ip.MCSj SDQ impact score reported in MCS sweepj;

 cog.MCSj 

Extracted factor using principal component analysis based on cognitive skills 
tests reported in MCS sweep j, standardised with a mean of 1.00 and standard 
deviation of 0.15 following Jones and Schoon (2008);

OTHER NOTATION

prefix pr. Probability, i.e.  pr.sm  denotes probability of smoking;

line over variable (—)
Mean calculated from a target dataset, i.e.  sm[age, sex]  is proportion of people 
smoking in a particular age and sex group;

prefix trend.

Modelled time trend, i.e. the mean increase in variable over time, estimated 
from a target dataset, i.e. during working years expected earnings increase as 
people get past their youth, as they gain work experience, climb the career 
ladder, etc.;

prefix sd.
Modelled variation in some variable, i.e. standard deviation in the variable, 
estimated from a target dataset;

 β
y
x  

Parameter representing the effect of some outcome  β
pr.chd
sm   denotes the effect 

of smoking on CHD risk. Depending on the context, we use it to represent 
coefficients from a linear regression, odds- ratios, etc. See full list of parameters, 
and their sources in Table A3;

 SMRx 
Standard mortality ratio given condition x, i.e. the probability of dying from 
condition x divided by the probability of dying in the general population.

Note: MCS – Millennium Cohort Study.

Table A1. Continued
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Table A2.  Target Data

Parameter Description Source

 dead[age, sex, sep] 
Mortality rates (by age, sex and the English IMD 
quintile group); ONS, 2011;

 dep[age, sex, sep] 

Ages 5- 18: proportion of children with any 
emotional disorder (by age, sex, and IMD quintile 
group); age 18+: depression diagnosed by a 
doctor and present or being treated within the 
past 12 months in England (by age, sex, and 
English IMD quintile group);

For age 5- 18: Mental Health of 
Children and Young People Great 
Britain, 2004; age 18+: Health 
Survey for England, 2014;

 chd[age, sex, sep] 
Proportion of people with CHD in England (by 
age, sex, and English IMD quintile group); Health Survey for England, 2006;

 earn[age, sex] 
Mean full time annual gross pay in UK (by age and 
sex);

Annual Survey of Hours and 
Earnings, ONS, 2015;

 empl[age, sex] 

Seasonally adjusted employment rate, expressed 
as a proportion of the economically active 
population (by age and sex); Labour Force Survey, ONS, 2018;

 sdq.cp[age, sex] 
Mean SDQ conduct problem score (by age and 
sex); MCS, 2000–2014;

 cog[age, sex] Mean cognitive measure (by age and sex); MCS, 2000–2014;

 edu[19] 

Higher Education Initial Participation Rate in 
2015/2016 (estimate of the likelihood of a person 
participating in Higher Education by age 30, 
based on current participation rates, adjusted by 
the probability of dropping out); Department for Education, 2016;

 sm[14, sex] 
Proportion of 14- year- old children smoking (by 
sex); MCS, 2014;

 sm[19, sex] 
Proportion of daily smokers in England (by age, 
sex and English IMD quintile group) in England; Health Survey for England, 2006;

 pov[sex] 
Proportion of households below 60% median 
income by sex in UK;

Family Resources Survey, 
Department for Work & Pensions, 
2016/2017;

 cd[4, sex] 
Proportion of 4- year- old children with conduct 
disorder (by age, sex);

Mental Health of Children and 
Young People Great Britain, 2004;

 pris[age, sex] 

Average proportion of people in prison (by age 
and sex) in England and Wales over 31 March 
2017 - 31 March 2018 (calculated using population 
estimates in mid- 2017);

Offender Management Statistics, 
Ministry of Justice, 2017- 2018; 
Population Estimates for UK, 
England and Wales, Scotland and 
Northern Ireland Mid- 2017, ONS;

 care[70, sex] 
Proportion of people aged 65+ in resident care 
homes (by sex) in England and Wales, 2011;

“Changes in the older resident 
care home population between 
2001 and 2011” 2014, ONS.

Note: MCS – Millennium Cohort Study, ONS – Office for National Statistics, IMD – Index of Multiple 
Deprivation. Our notation uses an overline to denote averages from a target dataset.

Table A3.  Parameters

Parameter Value Source Notes

 SMRdep 

3.21 among 15- 44 year 
olds, 1.75 – 45- 64 year 
olds and 1.18 for 65+ Chang et al. (2010)

Age standardised mortality ratios 
in southeast London 2007–2009, 
for people with depressive episode 
against the general population of 
England and Wales in 2008;

 β
pr.dead
chd  See Table A5

Health survey for England 
(2006); the 20th Century 
Mortality Files, ONS; Mid- 
year population estimates for 
England and Wales, ONS

Estimated probability of dying from 
CHD among those who have a CHD, 
in England and Wales, 2008 using 
CHD prevalence rates of 2006;

Continued
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Parameter Value Source Notes

 β
earn
sdq.cond ln 1.004/SDsdq.cp Goodman et al. (2015) social

0.4% increase in gross wage 
with standard deviation increase 
in externalising subscale 
(conduct+peer); SDsdq.cp – standard 
deviation of SDQ conduct problem 
score in the relevant age- sex 
subgroup of our simulation.

 β
earn
cog  ln 1.072/SDcog Goodman et al. (2015) social

7.2% increase in gross wage with 
standard deviation increase in IQ 
score; SDcog – standard deviation of 
cognitive skills in the relevant age- sex 
subgroup of our simulation.

 β
earn
edu  

ln 1.17
if male;ln 1.37if female Blundell et al. (2000)

17% increase in hourly wage from 
having undergraduate degree for 
males, 37% for females;

 β
pr.edu
cog   0.12/SDcog(19) Goodman et al. (2015) social

standard deviation increase in 
cognitive ability associated with 12% 
point increase in prob. obtaining a 
degree;

 β
pr.edu
sdq.cp   0.02/SDsdq.cp(19) Goodman et al. (2015) social

standard deviation decrease in 
Rutter externalising score associated 
with 2.2% point increase in prob. 
obtaining a degree;

 β
pr.edu
dep  -0.04

Goodman et al. (2015) social; 
Fletcher (2010) adolescent; 
Farahati et al. (2003) effects

goodman2015social 
fletcher2010adolescent find no 
statistically significant effect; but 
fletcher2010adolescent finds that 
being depressed increases the 
probability of dropping out of high 
school by around 2.4% points, and 
decreases the probability of college 
enrolment by 2.7–7.2 percentage 
points. farahati2003effects find that 
parent’s depression increases child’s 
probability of dropout by over 3% 
points for females. In the light of 
these findings, the current model 
specification sets the parameter at 
4% points;

 β
pr.sm
teen.sm  

ln 3.38 if male; ln 3.68 if 
female Jefferis et al. (2003) cigarette

Estimates obtained using logistic 
regression;

 β
pr.sm
pov  

ln 1.91 if male;ln 1.81if 
female Jefferis et al. (2003) cigarette

Estimates obtained using logistic 
regression;

 β
pr.sm
edu  

ln 3.32
if male;ln 3.26if female Jefferis et al. (2003) cigarette

Estimates obtained using logistic 
regression;

 β
pr.sm
dep  ln 2.7 Lasser et al. (2000) smoking

Estimates obtained using logistic 
regression;

 β
pr.sm
pris  

0.07 if male and 0.06 if 
female

Singleton et al. (2003) 
substance

Calculated using the prevalence 
rates in a population before and 
after imprisonment, does not take 
into account the contribution of 
this increase because of mental 
illness, poverty and potentially other 
variables;

 β
pr.dep
cd  ln 3.63 Luby et al. (2014) trajectories

Including the effect that occurs 
via non- supportive parenting (see 
discussion below); estimated using 
logistic regression;

Table A3. Continued
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Parameter Value Source Notes

 β
pr.dep
unempl  

ln 2.05 if male;
ln 1.72if female

Thomas et al. (2005) 
employment

Estimated using logistic regression; 
the effect on psychological problems 
measured by general health 
questionnaire;

 β
pr.dep
empl  

ln 0.87 if male; ln 0.79 if 
female

Thomas et al. (2005) 
employment

Estimated using logistic regression; 
the effect on psychological problems 
measured by general health 
questionnaire;

 β
pr.dep
pov  ln 1.24

Weich and Lewis (1998) 
material

Estimated using logistic regression; 
the effect on psychological problems 
measured by general health 
questionnaire;

 β
pr.chd
pov  

ln 1.49 if male;ln 1.18if 
female

Marmot et al. (1997) 
contribution

Calculated using logistic regression 
controlling for age and CHD risk 
factors (incl. smoking), social 
support and job control. Using the 
parameters depends on assuming 
poverty correlates with low 
employment grade;

 β
pr.chd
sm  ln 2

Bazzano et al. (2003) 
relationship, Critchley and 
Capewell (2003) mortality

Based on estimates of odds ratios 
reported in the cited sources (see 
discussion in section A.1.2);

 β
pr.pris
cd  0.18 Fergusson et al. (2005) show

Estimated using rates of arrests/
convictions among people with 
different levels of conduct problems;

 β
pr.pris
dep  0.015 Anderson et al. (2015) youth

 β
pr.care
dep  0.18

McDougall et al. (2007) 
prevalence; Stewart et al. 
(2014) current

Calculated using depression 
prevalence rates;

 β
pr.empl
sdq.cp   0.016β1/SDsdq.cp Goodman et al. (2015) social

Standard deviation increase in 
externalising subscale of SDQ raises 
probability being employed by 
1.6%; SDsdq.cp – standard deviation of 
SDQ conduct problem score in the 
relevant age- sex subgroup of our 
simulation;

 β
pr.empl
cog   0.021β1/SDcog Goodman et al. (2015) social

Standard deviation increase in IQ 
test score raises probability being 
employed by 2.1%;SDcog – standard 
deviation of the cognitive skills 
measure in the relevant age- sex 
subgroup of our simulation.

Table A3. Continued
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 Table A4.  Modelled Variables and Controls

Y
Effect 

parameter Method
Parameter 
reported Explanatory variables (X) in the modelling equation

Cond. 
prob. CD

Cog. 
skills Education Smoking

Teen. 
smoking Depression CHD Employment Prison

Res. 
care Poverty Income Age Sex

SOCIAL

Education

Conduct 
problems Probit; AME; √ √ ✵ (√) (√) (√)

Cognitive skills Probit; AME; √ √ ✵ (√) (√) (√)

Depression Probit; AME; ✵ √ √ (√) (√) (√) (√)

Unemployment

Conduct 
problems Probit; AME; √ √ ✵ (√) (√) (√)

Cognitive skills Probit; AME; √ √ ✵ (√) (√) (√)

Prison

CD

Compare 
prevalence 
rates across 
subgroups, 
test the 
significance of 
relationships 
using logit;

Average rates 
of being 
arrested/
convicted 
among the 
different 
subgroups; (√) √ (√) ✵ (√) (√)

Depression

OLS 
(robustness 
checks with 
probit and 
logit yield 
similar results);

Regression 
coefficient;

√(control 
for drug, 

alcohol and 
marijuana 

use, ADHD, 
bad temper 
and anxiety 

during 
adolescence) (√) (√) √ (√) (√) (√) (√) (√)

Residential  
care Depression

Compare 
prevalence 
rates across 
subgroups;

Age and sex 
adjusted 
difference 
between 
subgroups; √ (√) (√)

HEALTH

Smoking

Education Logit; OR; √ √ ✵ ✵ ✵ (√)

Teenage 
smoking Logit; OR; ✵ √ ✵ ✵

√(manual 
social class) (√)

Poverty Logit; OR; ✵ √ ✵ ✵ √ (√)

Depression Logit; OR; ✵ ✵ √ ✵ ✵ (√) (√)

Prison

Comparison 
of smoking 
status pre 
and post 
imprisonment;

Increase in 
smoking 
rate post 
imprisonment; ✵ ✵ ✵ √ ✵ (√)

Continued
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Y
Effect 

parameter Method
Parameter 
reported Explanatory variables (X) in the modelling equation

Cond. 
prob. CD

Cog. 
skills Education Smoking

Teen. 
smoking Depression CHD Employment Prison

Res. 
care Poverty Income Age Sex

Depressed

CD Logit; OR; √

√(family 
income- to- 
needs ratio) (√)

Unemployment Logit; OR; ✵

√(prior 
mental 
illness) √ ✵ (√) (√)

Poverty Logit; OR; ✵ (√) √ √ (√) (√) (√)

CHD

Smoking Logit; OR; √ ✵ (√) (√)

Poverty Logit; OR; √

√(low 
employment 

grade) (√) (√)

Mortality

Depression

Estimation of 
standardised 
mortality 
ratios;

Age 
standardised 
mortality ratio; √ ✵ (√) (√)

CHD

Estimation 
of dying 
probability 
from CHD;

Probability of 
dying from 
CHD; ✵ √ (√) (√)

ECONOMIC

Earnings

Conduct 
problems Probit; AME; √ √ ✵ (√) (√) (√)

Cognitive skills Probit; AME; √ √ ✵ (√) (√) (√)

Education Regression 
based linear 
matching;

Regression 
coefficient;

✵ √ ✵ √ √ (√)

Note: √– variable X is included in the modelling equation for Y, as well as was controlled for in the literature; (√) – variable X is not included in the modelling equation for Y, but indirectly influences Y through the 
other LifeSim equations, as well as was controlled for in the literature; ✵– variable X is included in the modelling equation for Y, but was not controlled for in the literature; AME – average marginal effects; OLS 
– ordinary least squares. Other abbreviations: AME – average marginal effects, OR – odds ratio, cond. prob. – conduct problems, CD- conduct disorder, teen. smoking – teenage smoking, CHD – coronary heart 
disease, res. care – residential care.

Table A4. Continued
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Table A5.  Mortality from Coronary Heart Disease

Sex Age band

16–24 25–34 35–44 45–54 55–64 65–74 75+

Mortality, %

male 0.19 1.24 2.81 1.83 1.61 2.07 5.31

female 0.06 0.49 1.26 1.13 1.43 1.95 8.82

Note: Estimated mortality from coronary heart disease (CHD) among people diagnosed with CHD. These 

estimates are used to model the parameter  β
pr.dead
chd   in equation (18) and Table A3.

A.3. Specification

We present the full specification of the modelling equations which follows the structure 
outlines in Table 2 in the main text. This material should be used together with Table A1, 
which clarifies the notation, as well as Table A2 in the main text, which specifies the target 
data sources, and Table A3 and Table A4, which specify the parameters, and details about 
their sources.

A.3.1. Skills Outcomes
Conduct Problems. Modelled using SDQ conduct problems scale data from the MCS.

 































































cpi,age = sdq.cp.MCS2i if age ≤ 4;

cpi,age = sdq.cp.MCS3i if age ∈ [5, 6];

cpi,age = sdq.cp.MCS4i if age ∈ [7, 10];

cpi,age = sdq.cp.MCS5i if age ∈ [11, 13];

cpi,age = sdq.cp.MCS6i if age ∈ [14, 18];

cpi,age = n/a if age ≥ 19.   (7)

Impact of Problems. Modelled using SDQ impact supplement data from the MCS.

 



































ipi,age = sdq.ip.MCS2i if age ≤ 4;

ipi,age = sdq.ip.MCS3i if age ∈ [5, 6];

ipi,age = sdq.ip.MCS4i if age ∈ [7, 18];

ipi,age = n/a if age ≥ 19.   (8)

Cognitive Skills. Modelled using principal component analysis to extract a common factor 

from the various cognitive skills measures disseminated by the MCS, following Jones and 

Schoon (2008) standardised with a mean of 1.00 and standard deviation of 0.15.

 































































cogi,age = cog.MCS2i if age ≤ 4;

cogi,age = cog.MCS3i if age ∈ [5, 6];

cogi,age = cog.MCS4i if age ∈ [7, 10];

cogi,age = cog.MCS5i if age ∈ [11, 13];

cogi,age = cog.MCS6i if age ∈ [14, 18];

cogi,age = n/a if age ≥ 19.   

(9)
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A.3.2. Social Outcomes
Childhood Conduct Disorder. Modelled using the predictive algorithm by Goodman et al. 
(2003) and Goodman et al. (2000).

 



































pr.cdi,age = 0.61 if age ∈ [5, 18] & cpi,age ≥ 5 & ipi,age ≥ 2

pr.cdi,age = 0.31 if age ∈ [5, 18] & cpi,age ≥ 4;

pr.cdi,age = 0.06 if age ∈ [5, 18] & cpi,age < 4;

pr.cdi,age = n/a if age ∈ [0, 4] or age > 18.   

(10)

Education (University Degree). We model the probability of obtaining a university 

degree at age 19:2

 



































pr.edui,age = max[0, min[1, edu[.] + βpr.edu
cog

(

cogi,age−1 − cog[.]
)

+

+βpr.edu
cp

(

10 − cpi,age−1 + cp[.]
)

+

+βpr.edu
dep

(

depi,age−1 − dep[.]
)

] ] if age = 19;

pr.edui,age = n/a if age ̸= 19.   

(11)

where 

 

edu[..] ≡ edu[agei, sexi],  cog[.] ≡ cog[agei − 1, sexi] , cp[.] ≡ cp[agei − 1, sex] , 
dep[.] ≡ dep[agei − 1, sex]

Unemployment/Employment. During ‘working years’ we model the individual probability 

of being employed; if individual is in prison, he/she is not employed by definition and this 

probability is zero.

 















































































pr.empli,age = n/a if age ∈ [0, 18] or age ≥ 70;

pr.empli,age = 0 if prisi,age = 1;

pr.empli,age = max[0, min[1, empl[.]+

+βpr.employ
cp

(

cpi,age−1 − cp[.]
)

+

+βpr.empl
cog

(

cogi,age−1 − cog[.]
)

] ] if age = 19;

pr.empli,age = max[0, min[1, pr.empli,age−1 + trend.empl[.] ]]

if age ∈ [20, 69].
  (12)

where  empl[.] ≡ empl[agei, sexi]  , cp[.] ≡ cp[agei − 1, sex] ,  cog[.] ≡ cog[agei − 1, sexi] .
Poverty. We model poverty as an indicator when individual consumption level falls below 

the absolute poverty line, 60% median equivalised household income in the UK in year 2011, 

which we set at £14,637 (Office for National Statistics).

Prison. During ‘working years’, individuals can go to prison, so we model the probability 

of being in prison. Imprisoned individuals are assumed to be unemployed and do not 

receive any salary; they are assumed to consume at a level equivalent to the state- subsidised 

minimum, which is subsidised by their own wealth (if sufficiently wealthy) or the state.

2. We assume that whether an individual obtains a university degree is determined at age 19.
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pr.prisi,age = n/a if age ∈ [0, 18] or age ≥ 70;

pr.prisi,age = max[0, min[1, pris[.]+

+βpr.pris
cd

(

cdi,age−1 − cd[.]
)

+ β
pr.pris
dep

(

depi,age−1 − dep[.]
)

]]

if age = 19;

pr.prisi,age = max[0, min[1,

pr.prisi,age−1 + β
pr.pris
dep △ depi,age−1]] if age ∈ [20, 69].   

(13)

where  pris[.] ≡ pris[agei, sexi] ,  cd[.] ≡ cd[agei − 1, sexi]  and  dep[.] ≡ dep[agei − 1, sexi] .
Residential Care. During ‘retirement’, individuals can live in residential care home, so 

we model the probability of living in a care home. We assume that individuals cover their 

care home cost (denoted  care.cost , see Table A6), if they have sufficient resources to do so; 

otherwise, the state subsidises their care home cost.

 



















































pr.carei,age = n/a if age ≤ 69;

pr.carei,age = max[0, min[1, care[.]+

+βpr.care
dep

(

depi,age − dep[.]
)

]] if age = 70;

pr.carei,age = max[0, min[1, pr.carei,age−1 + β
pr.care
dep i,age]]

if age > 70.
  

(14)

where  care[.] ≡ care[agei, sexi]  and  dep[.] ≡ dep[agei, sexi] .

A.3.3. Health Outcomes
Smoking.

 











































































































































pr.smi,age = n/a if age ∈ [0, 18];

pr.smi,age = max[0, min[1,
(

(

sm[.]
(1−sm[.]) expΦ

)−1
+ 1

)−1
+

+βpr.sm
pris

(

prisi,age − pris[.]
)

] ] if age = 19 ;

pr.smi,age = max[0, min[1,
(

1
pr.smi,age−1

(1−pr.smi,age−1) exp
(

β
pr.sm
pov △povi,age+βpr.sm

dep △depi,age

) + 1
)−1

+

+βpr.sm
pris △prisi,age + trend.sm[.] ] ] if age ∈ [19, 69];

pr.smi,age = max[0, min[1,
(

1
pr.smi,age−1

(1−pr.smi,age−1) exp
(

β
pr.sm
pov △povi,age+βpr.sm

dep △depi,age

) + 1
)−1

+

+trend.sm[.]]]

if age ≥ 70.   (15)

where 

 Φ = β
pr.sm
teen.sm

(

smi,14 − sm[14, sex]
)

+ βpr.sm
pov

(

povi,age−1 − pov[.]
)

+ β
pr.sm
edu

(

edui,age − edu[.]
)

+ β
pr.sm
dep

(

depi,age−1 − dep[.]
)

,  

and  sm[.] ≡ sm[age, sex] ,  pris[.] ≡ pris[age, sex] ,  pov[.] ≡ pov[age − 1, sex] , edu[.] ≡ edu[age, sex],
  dep[.] ≡ dep[age − 1, sex] 
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Depression.

 











































































































































































pr.depi,age = n/a if age ≤ 4;

pr.depi,age = max[0, min[1,
(

1
dep[age,sex]

1−dep[age,sex] exp
(

β
pr.dep
cd

(

cdi,age−1−cd[age−1,sex]
)) + 1

)−1

]]

if age = 5;

pr.depi,age = max[0, min[1,
(

1
pr.depi,age−1

1−pr.depi,age−1
β

pr.dep
cd exp

(

β
pr.dep
cd △cdi,age−1

) + 1
)−1

+ trend.dep[age, sex]]]

if age ∈ [6, 18];

pr.depi,age = max[0, min[1,
(

1
pr.depi,age−1

1−pr.depi,age−1
exp

(

−β
pr.dep
unempl△empli,age−1+βpr.dep

pov △povi,age−1
) + 1

)−1

+

+trend.dep[age, sex]]]

if age ∈ [19, 69]

pr.depi,age = pr.depi,age−1 if age ≥ 70.   

(16)

Coronary Heart Disease.

 































































































pr.chdi,age = n/a if age ∈ [0, 18];

pr.chdi,age = max[0, min[1,
(

1
chd[.]

1−chd[.] exp
(

β
pr.chd
sm

(

smi,age−1−sm[.]
)

+βpr.chd
pov

(

povi,age−1−pov[.]
)

) + 1
)−1

]]

if age = 19;

pr.chdi,age = max[0, min[1,
(

1
pr.chdi,age−1

1−pr.chdi,age−1
exp

(

β
pr.chd
sm △smi,age+βpr.chd

pov i,age

) + 1
)−1

]]+

+trend.chd[.] if age ≥ 20.
  (17)

where  chd[.] ≡ chd[agei, sexi]  ,

 sm[.] ≡ sm[agei − 1, sex] 

, pov[.] ≡ pov[agei − 1, sexi] 
Mortality.

 



















































pr.deadi,age = dead[.] if age ∈ [0, 4];

pr.deadi,age = max[0, min[1, dead[.]
(

1 + (smrdep − 1)depi,age
)

]]

if age ∈ [5, 18];

pr.deadi,age = max[0, min[1, dead[.]
(

1 + (smrdep − 1)depi,age
)

+

+βpr.dead
chd

(

chdi,age − chd[.]
)

] ] if age > 18.
  

(18)

where  dead[.] ≡ dead[agei, sexi, sepi]  and  chd[.] ≡ chd[agei, sexi, sepi] .
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A.3.4. Economic Outcomes
Earnings from Employment. We model the gross annual salary for people who are 
employed.

 



























































































earni,age = n/a if age ∈ [0, 18] or age ≥ 70;

earni,age = 0 if age ∈ [19, 70] & empli,age = 0 ;

earni,19 = max[0,

(earn[.] + sd.earn[.]) exp(βearn
cp (10 − cpi,age−1 + cp[.])+

+βearn
cog (cogi,age−1 − cog[.]) + βearn

edu (edui,age − edu[.])) ]

if age = 19 & employi,19 = 1;

earni,age = max[0, earni,age−h + trend.earn[.] ]

if age ∈ [20, 69] & empli,age = 1.   

(19)

where ‘h ’ is years since individual   was last employed, or  age − 19 , if individual 

was never employed (in this case we use the value of individual’s potential earnings 

at 19);  earn[.] ≡ earn[agei, sexi] , cp[.] ≡ cp[agei − 1, sexi] ,  cog[.] ≡ cog[agei − 1, sexi]  and 

 edu[.] ≡ edu[agei, sexi] .
Earnings from Interest (Interest). See details in the section below on modelling 

“Wealth”.

Pension. Individuals are assumed to receive equivalent to the new basic UK state pension, 

if they have been employed for at least 10 years.3

Savings. During ‘working- years’, some individuals save part of their annual net income 

(i.e. earnings from employment and interest, net of tax). It is assumed that individuals save 

as much as they can, given that (a) they can sustain at least the previous year’s consumption 

level and (b) their total annual savings do not exceed 16% of their annual net income.4 

This means that individuals who experience a negative income shock, reduce their savings 

relative to previous year to sustain their consumption level; individuals who experience a 

positive income shock and can afford to consume at least the level of government subsidised 

minimum ‘ min.cons ’ – save a positive amount up to 16% net income;5 finally, individuals who 

experience a high positive income shock, and who could potentially afford saving above 16% 

while still sustaining previous year’s consumption – consume anything excess of 16% of their 

net disposable income (instead of saving it).

 



































savi,age = 0 if age ∈ [0, 18] or age ≥ 70;

savi,age = max[0, min[ 0.16 × (earni,age + inti,age − taxi,age),

earni,age + inti,age − taxi,age − consi,age−1 ] ]

if age ∈ [19, 69].   

(20)

Family Wealth. At the age 19, individuals are assumed to inherit wealth from parents. 

Wealth generates annual interest, i.e.  inti,age = wealthi,age−1 × (1 + r) , where r  is the annual 

interest rate, which we set at 1%. During their ‘working years’ individuals accumulate 

additional wealth by saving, if they can afford to save. If individuals experience a negative 

income shock, they use their wealth to subsidise their consumption.

3. See details on UK new State Pension at https://www.gov.uk/new-state-pension.
4. This threshold is chosen as a maximum, informing from historical UK households savings ratios report-
ed by ONS: https://www.ons.gov.uk/economy/grossdomesticproductgdp/timeseries/dgd8/ukea.
5. See the paragraph below about “Consumption” in Section A.3.5.
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wealthi,age = max[0, par.wealthi,age−1 + inti,age+

+ min[0, par.inci − consi,age]] if age ≤ 18;

wealthi,age = max[0, wealthi,age−1+

+ min[savi,age, earni,age + inti,age − taxi,age − consi,age]]

if age ∈ [19, 69];

wealthi,age = max[0, wealthi,age−1 + inti,age + pensi,age−

−consi,age − taxi,age − carei,age × care.cost]

if age ≥ 70.   

(21)

where  par.wealth  – parental wealth and  par.inc  – parental income, as given in the 

childhood dataset.

Taxes. Individuals pay annual taxes on their income, i.e. earnings from employment and 

interest, as well as pension. The individual tax rate is set according to the corresponding UK 

tax bracket.6

Benefits. Individuals receive benefits subsidised by the public budget ( benefi,age ) to sustain 

the minimum consumption level of £10,000, whenever they cannot afford it from their own 

net income (parental income and interest during ‘pre- school years’ and ‘school years’, salary 

and interest during ‘working years’, and pension and interest during ‘retirement’) and wealth. 

During ‘retirement’, individuals also receive benefits when in care to cover the care home 

costs, when they do not have sufficient own resources to cover them.

A.3.5. Wellbeing Outcomes
Consumption. It is assumed that government subsidises consumption level of at least 
‘ min.cons ’ (the state- subsidised minimum), in the case when individual cannot afford it given 
their income or wealth. We set   min. cons = £ 10,000.

Up to age 18, individuals are assumed to consume the level of their household equivalised 

income ( par.inc ) as given in the childhood dataset, or the state- subsidised minimum.

During ‘working years’ individuals consume what is left of their income from employment 

and interest after tax and savings, or an amount equal to the state- subsidised minimum (this 

may be subsidised by state or own wealth, depending on whether individual has positive 

wealth). For more details, read about the savings equation above.

During ‘retirement’, individuals try to sustain their previous year’s consumption level if 

they can afford it given their resources (i.e. net income from interest, state pension, their 

wealth and minus residential care home cost, if in care); if individuals cannot afford sustaining 

previous year’s consumption level, then they consume the maximum amount that they can 

afford given their resources, or the state- subsidised minimum.

 































































consi,age = max[min.cons, par.inci] if age ≤ 18;

consi,age = max[min.cons, earni,age + inti,age − taxi,age−

−savi,age] if age ∈ [19, 69];

consi,age = max[min.cons, min[consi,age−1, wealthi,age−1+

+inti,age − taxi,age + pensi,age − carei,age × care.cost] ]

if age ≥ 70.   

(22)

6. See UK income tax rates at https://www.gov.uk/income-tax-rates. We use the year 2018/19 rates, con-
verted to year 2015/16 prices.
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Health Quality. Health quality depends on the two health outcomes that we model – 

mental illness (depression) and physical illness (CHD) – as well as the aggregate health quality 

in England. More specifically,  healthi,age = h(chdi,age, depi,age) , where  h(.)  is a function decreasing 

in negative health experiences, and with a maximum of 1 when individual is in full health and 

anchored at 0 when individual is dead or in a health state as bad as death. More specifically, 

we assume

 h(..) = min[1, max[0, health[age, sex, sep] −
(

d(chd) × chdi,age + d(dep) × depi,age
)

]]  

where  health[age, sex, sep]  is the average health quality in England by age, sex, and English 

IMD quantile group (Love- Koh et al., 2015),  d(x)  represents the excess reduced health 

quality from the health condition x  (we use data for health quality with affective disorders 

and coronary atherosclerosis from Sullivan et al. (2011)).

A.3.6. Public Costs and Revenues
We model the costs associated with different outcomes, as summarised in table A6. We 
assume that the following outcomes incur costs to the public service: CHD, depression, other 
healthcare, conduct disorder, prison, residential care.

Table A6.  Public Service Costs

Cost type Components of the cost
Annual cost per 

person, £ Source

Healthcare: coronary 
heart disease14

Direct health care cost;
Informal care cost;

840;
1,173; Liu et al. (2002) economic;

Healthcare: depression

Costs to the National Health 
Service, the Accident and 
Emergency department, other 
support services (average);

5,260;
McCrone et al. (2008) 
paying;

Other healthcare

Average English National 
Health Service healthcare 
spending in the financial year 
2011/12 by age, sex and English 
neighbourhood deprivation 
quintile group;

see Asaria (2017);

Asaria (2017);

Conduct disorder
Cost to the National Health 
Service;

1,243 (age 5- 10), 113 
(age 11+);

Edwards et al. (2007) 
parenting; Scott et al. 
(2001) financial, cited by 
Bonin et al. (2011);

Cost to the Social Services 
Department;

175 (age 5- 10), 70 
(age 11+);

Edwards et al. (2007) 
parenting; Romeo et al. 
(2006) economic, cited by 
Bonin et al. (2011);

Cost to the Department for 
Education;

985 (age 5- 10), 
1,3402 (age 11- 16), 0 

(age 17+);

Edwards et al. (2007) 
parenting; Scott et al. 
(2001) financial, cited by 
Bonin et al. (2011);

Cost to the voluntary Sector;
26;

Edwards et al. (2007) 
parenting, cited by Bonin 
et al. (2011);

Prison
Unit annual costs of custody (per 
year);

31,925;

Unit costs of police (per record 
crime);

553;
Dubourg et al. (2005);

7. We use the average of the direct and informal care cost, to quantify the annual cost of a person with 
CHD.

Continued



 

Research article
Dynamic microsimulation; Health

Skarda et al. International Journal of Microsimulation 2021; 14(1); 2–42 DOI: https:// doi. org/ 10. 34196/ ijm. 00228 42

Cost type Components of the cost
Annual cost per 

person, £ Source

Unit costs of courts (per court 
event);

7,103;

Residential care Cost of residential home; 29,934; Curtis and Burns (2017).

Note: We uprate all the costs to year 2015/16 prices.

Table A6. Continued
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