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CNN Confidence Estimation for Rejection-based

Hand Gesture Classification in Myoelectric Control
Tianzhe Bao, Syed Ali Raza Zaidi, Member, IEEE, Shane Q. Xie, Senior Member, IEEE, Pengfei

Yang, Member, IEEE, and Zhi-Qiang Zhang, Member, IEEE

Abstract—Convolutional neural networks (CNNs) have been
widely utilized to identify hand gestures from surface electromyo-
graphy (sEMG) signals. However, due to the nonstationary char-
acteristics of sEMG, the classification accuracy usually degrades
significantly in the daily living environment involving complex
hand movements. To further improve the reliability of a classifier,
unconfident classifications are expected to be identified and
rejected. In this study, we propose a novel approach to estimate
the probability of correctness for each classification. Specifically, a
confidence estimation model is established to generate confidence
scores (ConfScore) based on posterior probabilities of CNN, and
an objective function is designed to train the parameters of this
model. In addition, a comprehensive metric that combines the
true acceptance rate and the true rejection rate is proposed to
evaluate the rejection performance of ConfScore, so that the
trade-off between system security and control lag could be fully
considered. The effectiveness of ConfScore is verified using data
from public databases and our online platform. The experimental
results illustrate that ConfScore can better reflect the correctness
of CNN classifications than traditional confidence features, i.e.,
maximum posterior probability and entropy of the probability
vector. Moreover, the rejection performance is observed to be less
sensitive to variations in rejection thresholds.

Index Terms—CNN, sEMG, Hand Gesture Classification,
Model Confidence, Rejection Strategy.

I. INTRODUCTION

S
URFACE electromyography (sEMG) is the electrical man-

ifestation of neuro-muscular activities collected by surface

electrodes [1]. Thus far, sEMG signals have been widely inves-

tigated for upper-limb myoelectric control [2]–[4], and pattern

recognition (PR) approaches have been used extensively to

identify hand or wrist gestures. Various methods focusing on

signal decomposition [5], feature extraction [6], dimension

reduction [7], channel optimization [8], classifier design [9],

and post-processing [10], etc., have been proposed to improve

recognition accuracy.
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Although promising accuracy has been achieved in labo-

ratory settings, the accuracy tends to degrade significantly

when hand movements are performed in the daily living

environment [11] [12] because there are significant variations

between training and testing data due to the transient nature

of sEMG. These variations can be caused by muscle fatigue,

electrode shift, and impedance changes in the electrode-skin

interface [12]–[15], etc. However, for most PR approaches

such as linear discriminant analysis (LDA) or artificial neural

network (ANN), the classifier could only output one of the

predefined gestures even though sEMG inputs have varied

dramatically from training samples [16]. This issue results in

large uncertainties in classification and can cause meaningless

or unwanted outcomes. Therefore, the reliability of PR-based

myoelectric control is still very limited.

To enhance the PR approaches in prosthetic control using

sEMG, confidence estimations are now being investigated

for quantitative evaluation of classification uncertainties. A

rejection process can be cascaded with the classifier to refuse

unconfident classification results, thus improving the reliability

of myoelectric control systems by reducing erroneous move-

ments. Numerous confidence estimation methods have been

proposed in the past decade. For instance, Scheme et al. [17]

calculated the maximum posterior probability of LDA as the

confidence metric. Estimated hand motions would be reverted

to no movement when the associated confidence was below

a given rejection threshold. Sebastian et al. [18] combined

the maximum posterior probability of LDA and the root

mean square (RMS) of sEMG as confidence features, based

on which a cascaded ANN was trained to detect potentially

erroneous decisions of LDA. Scheme et al. [19] examined the

confidence characteristics of several conventional classifiers,

whilst Robertson et al. [16] verified the optimal rejection

threshold for myoelectric control driven by support vector

machine (SVM). However, these studies exploited mainly

the confidence characteristics of traditional machine learning

(ML) methods, where both the classification accuracy and

rejection performances depend heavily on the design/selection

of hand-crafted features (feature engineering); therefore, it is

more desirable to develop learning algorithms that can extract

representative features from raw data [20].

Currently, deep learning (DL) techniques, particularly con-

volutional neural networks (CNNs), are becoming popular in

hand gesture recognition due to their strong capability of

deriving data-dependent features automatically from sEMG

[1], and better performance of CNN over traditional ML

methods has been reported in previous studies [21]–[26].
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Recently, many researchers have started to link the class

probability distribution to the confidence of CNN classification

accuracy. For example, Ranjan et al. [27] predicted the task

labels through the HyperFace network and recognized regions

as faces when the maximum probability was above a certain

threshold. Zhang et al. [28] utilized the probability distribution

of CNN as its confidence feature and designed a decision

fusion rule for remotely sensed image classification. Wang et

al. [29] proposed the “I Don’t Know“ (IDK) prediction cas-

cades framework leveraging the entropy of CNN likelihoods.

Wan et al. [30] designed a Confidence Network (ConfNet)

on the basis of probability distribution to generate confidence

features and evaluate classification correctness. However, all

these studies were conducted for computer vision tasks. To our

best knowledge, the CNN confidence estimation and rejection

analysis have yet to be investigated in myoelectric control.

In this study, we propose a novel approach to estimate the

probability of correctness for each output of the classifier.

The main contributions of the paper include: 1) a confidence

estimation model established to generate confidence scores

(ConfScore) based on posterior probabilities of CNN, and

an objective function designed to train parameters on this

model; and 2) a comprehensive metric which combines the

true acceptance rate and the true rejection rate proposed to

evaluate rejection performances so that the trade-off between

system security and control lag could be fully considered.

Effectiveness of ConfScore was verified using data from

public databases and our online platform. Experimental results

illustrate that ConfScore can better reflect the correctness of

CNN classifications than traditional confidence features, i.e.,

maximum posterior probability and entropy of the probability

vector. Moreover, the rejection performances are observed to

be less sensitive to variations of rejection thresholds.

The reminder of the paper is organized as follows. Section

II first introduces the framework of the confidence-based

rejection for hand gesture recognition. Section II then presents

the proposed CNN classifier, the confidence estimation model,

the rejection rule, and the comprehensive evaluation metric.

Section III introduces the setups of public databases and the

online experiment. Section IV demonstrates the experiment

results. Section V presents the analysis of ConfScore in both

confidence estimation and rejection evaluation. In Section VI,

conclusions are drawn, and the future work is presented.

II. METHODOLOGY

A. CNN-based Confidence Estimation and Rejection

As illustrated in Fig. 1, when a new classification is made by

CNN, the posterior probability vector p = [p1, p2, · · · pm] is

produced in the softmax layer, where m represents the number

of hand gestures to be classified. Utilizing this probability

vector, the confidence estimation model can generate confi-

dence scores to indicate the probability of correctness for each

classification. Based on confidence scores, a threshold-based

rejection process can be implemented to decide either to accept

the estimated class or to revert the unconfident prediction to

a no motion state. This rejection rule can be regarded as a

flexible binary classifier cascaded to CNN [29] and has been

Fig. 1: The framework for rejection-based hand gesture classification using
CNN confidence.

widely adopted in myoelectric control systems [16], [17], [19]

and computer vision tasks [27], [29]–[31].

B. CNN Classifier

Since CNN is a neural network originally designed for

processing data in the form of multiple arrays such as im-

ages, we need to construct a matrix X from sEMG signals.

Specifically, a sliding window method is utilized to obtain X

from a segment of multichannel signals, thus X is designed

as a 1 × L × C matrix, where L denotes the window length

and C represents the number of sensor channels. This one-

dimensional (1D) multichannel format [32] is utilized since

spatial correlations of all sEMG channels can be efficiently

exploited via convolution operations. The sEMG matrix X is

finally obtained by applying fast Fourier transform (FFT) to

signals of each channel, as the spectrum of sEMG is observed

to be less noisy and thereby more distinguishable than sEMG

data in the temporal domain.

Under myoelectric control X is normally a small-scale

input for CNN, thus architectures based on LeNet-5 [33] are

still dominant [34]–[36]. In this study, we adopted a single

stream CNN for the trade-off between classification accuracy

and computational efficiency. As illustrated in Table I, the

CNN presented consists of two convolutional layers, one fully

connected layer and a softmax layer. After each convolutional

layer, a batch normalization layer (for model robustness by

reducing covariate shifts in intermediate representations af-

ter convolutional operations [37]), a ReLU layer (for non-

linearization), a max-pooling layer (for subsampling) and a

dropout layer (for regularization) are attached subsequently.
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TABLE I: Layers configuration of implemented CNN

Input: 1× L× C sEMG matrix after FFT

1D Convolution, 32 kernels in size of 3

Batch Normalization

ReLU

MaxPooling

Dropout

1D Convolution, 64 kernels in size of 3

Batch Normalization

ReLU

MaxPooling, pool size of 3

Dropout

Fully Connected Layer

Softmax Layer

Actually, our CNN classifier can be regarded as a simplifica-

tion of the network proposed in [36]. We empirically observed

that our simplified network can also work efficiently on these

public datasets but with less training time.

As mentioned above, CNN can produce a posterior proba-

bility vector p = [p1, p2, · · · pm] for each classification. Herein

we denote G as the hand gesture, and pk (k = 1, ...,m and∑m

1
pk = 1) corresponds to the probability of the kth gesture

P (Gk|X). The gesture-owning maximum probability is taken

as the final prediction:

Ĝ = argmax
Gk

{P (Gk|X)}k=1,...,m (1)

Ideally p is expected to be a one-hot vector for a correct

prediction, whilst a uniform distribution is reported when CNN

becomes quite uncertain [30]. Thus p can be utilized to exploit

confidence features for CNN.

C. Confidence Estimation

To indicate how confident the CNN classifier is about its

prediction, a confidence estimation model is proposed by

applying a zero-order smooth-step function to the weighted

posterior probability distribution of CNN. The mathematical

expression of this confidence model is

ConfScore (p∗,β) =





0 p∗βT ≤ γ1

p∗βT − γ1
γ2 − γ1

γ1 < p∗βT < γ2

1 p∗βT ≥ γ2

.

(2)

where p∗ = [p∗
1
, p∗

2
, · · · p∗m] is obtained by sorting the posterior

probability vector p in a descending order. The element p∗
1

is

the largest posterior probability in p and p∗m is the smallest.

β = [β1, β2, · · ·βm] is a coefficient vector, γ1 and γ2 are

user-defined hyper-parameters to decide left and right edges.

Similar to Confnet proposed in [30], ConfScore (p∗,β) can be

regarded as a feed-forward neural network cascaded with the

softmax layer of CNN. Due to characteristics of the smooth-

step function, outputs of ConfScore (p∗,β) are mapped be-

tween [0, 1]. In the following part, we use ConfScore to denote

estimations of ConfScore (p∗,β).
In this study, β is designed as a learnable parameter that

can be tuned in a supervised manner. Given a group of classi-

fication results Tr =
{(

p∗

1
, Ĝ1, G̃1

)
, · · · ,

(
p∗

N , ĜN , G̃N

)}

as the training data of ConfScore (p∗,β), where Ĝj is the

estimated class obtained by Eq. (1), G̃j (j = 1, ..., N ) denotes

the ground truth gesture for the jth classification, and we then

relabel Tr using lj by

lj =

{
1 Ĝj = G̃j

−1 Ĝj ̸= G̃j

(3)

where a relabelled dataset T = {(p∗

1
, l1) , · · · , (p

∗

N , lN )} can

be obtained to provide ground-truth labels for the supervised

learning of ConfScore (p∗,β). Specifically, the ground truth

of ConfScore (p∗,β) is +1 for correct CNN outcomes or

-1 for erroneous ones. To tune parameter β effectively, a

metric should be determined to evaluate the performance of

ConfScore (p∗,β) in T . Considering that higher scores should

be correlated with more accurate predictions, Wan et al. [30]

defined the mean effective confidence (MEC) as follows:

MEC =
1

N

∑

j∈T

ConfScore
(
pdj ,β

)
∗ lj (4)

where MEC ∈ [−1, 1]. From Eq. (3) and Eq. (4) we can see

that a larger MEC can be obtained when correct classifications

have the higher ConfScore results whilst erroneous decisions

are with the lower scores. In other words, when a better con-

fidence estimation is conducted for T , the separation between

correct and erroneous CNN predictions is expected to be more

distinguishable [19].

However, as shown in Eq. (4), MEC averages the confidence

features of all samples in T . Thus MEC is sensitive to an

unbalanced T which is composed of either too many correct

or erroneous classifications. To solve this problem, we further

define the Balanced MEC (BMEC) as

BMEC =
1

N1

∑

i∈TC

ConfScore (p∗

i ,β) ∗ li

+
1

N2

∑

j∈TE

ConfScore
(
p∗

j ,β
)
∗ lj

(5)

where BMEC ∈ [−1, 1], TC is only composed of correct

classifications (l = 1) whilst TE only consists of erroneous

classifications (l = −1). The number of samples in TC and

TE is defined as N1 and N2, respectively. Compared with

MEC, BMEC is more robust to the imbalance of TC and TE .

Based on Eq. (5), the optimization of β can be defined as

β̂ = argmax
β

BMEC (6)

Since Eq. (6) works as the objective function and is non-

differentiable, heuristic methods can be adopted to find obtain

the local optimal β̂. Herein, we apply the genetic algorithm

(GA) in which solutions evolve efficiently over generations.

GA is one of the most widely applied evolution algorithms

in the optimization of intricate problems in different fields.

Compared with many other heuristic algorithms, it is believed

to own better global searching capability [38]. The whole

process can be summarized in Algorithm 1.
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Algorithm 1: The Proposed ConfScore (p∗,β).

Input: A group of CNN outcomes Tr, hyper-parameters

γ1 and γ2.

Output: Optimal weights β̂

1: Construct the relabelled dataset T from Tr.

2: Initialize β.

3: Use GA to search β̂:

4: Based on Eq. (2), calculate ConfScore (p∗,β) for

each sample in T .

5: Based on Eq. (5), calculate BMEC using outputs

of the obtained ConfScore (p∗,β) together with corre-

sponding labels l in T .

6: Update β using GA operators, where BMEC works

as the objective function.

7: Until GA is converged.

8: Return β̂ to obtain the final confidence model.

D. Rejection Rule

In the rejection process, CNN classifications whose ConfS-

core is smaller than a user-defined threshold α ∈ (0, 1) should

be rejected to no motion states. Thus, the rejection function

can be formulated as

R(p∗, α) =

{
accept ConfScore

(
p∗, β̂

)
≥ α

reject otherwise
. (7)

As illustrated in Fig. 1, once β̂ is calculated and α is

determined, these parameters can be applied in the rejection

framework to decrease erroneous movements and thereby

enhance model reliability in myoelectric control systems.

E. Rejection Analysis

Since R(p∗, α) works as a binary classifier to further

identify CNN predictions, the rejection results can be divided

into true acceptance (TA) cases, false acceptance (FA) cases,

false rejection (FR) cases and true rejection (TR) cases. De-

scriptions of TA/FA/FR/TR are listed in Table II. Based on

these cases, the true acceptance rate (TAR) can be calculated

to denote the proportion of correct CNN estimations to be

accepted by R(p∗, α), whereas the true rejection rate (TRR)

is the rejection ratio of erroneous classifications:

TAR =

∑
TA∑

TA+
∑

FR

TRR =

∑
TR∑

TR+
∑

FA

(8)

TRR represents the rejection efficiency whilst TAR corre-

sponds to the cost. According to previous work [19], a trade-

off between TRR and TAR is essential to the evaluation of

αbecause a small α can result in the acceptance of too many

erroneous classifications, whilst a large one may reject too

many correct decisions. In this study, a novel evaluation metric

Fit is proposed to consider both TRR and TAR:

Fit = TAR+ TRR− 1 (9)

From Table II and Eq. (8) we can see that TRR and TAR
correspond to specificity and sensitivity in binary classifica-

tion, respectively. Thus Fit in Eq. (9) is equivalent to the

Youden’s J statistic, a commonly used measure of overall

differentiation effectiveness in disease diagnoses [39], [40].

The error rate (Err) is related to user security in myoelectric

control systems, hence it is also of great concern in rejection.

For a CNN, Err can be simply equal to 1−Acc, where Acc
denotes the classification accuracy [23]:

Acc =
number of correct classifications

number of test samples
× 100% (10)

When R(p∗, α) is applied, part of the erroneous classifica-

tions will be rejected as no motion states, thus only those that

are wrongly accepted by R(p∗, α) will be counted as errors.

Referring to Table II, Err is revised as

Err =





1−Acc CNN∑
FA∑

TA+
∑

FR +
∑

FA +
∑

TR
CNN+Reject

.

(11)

F. Baseline Methods

To evaluate the effectiveness of the ConfScore model,

two popular confidence features, i.e., the maximum posterior

probability (MaxProb) and the entropy of the probability dis-

tribution [29], [30], are utilized as the baseline. In accordance

with [30], MaxProb is normalized from
[
1

k
, 1
]

to [0, 1] for a

fair comparison, where k is the number of classes. Considering

that entropy is in general negatively related to classification

accuracy, the inverse entropy (IEntropy) is defined as

IEntropy =
log

2
m+

∑m

k=1
pk log2 pk

log
2
m

(12)

III. EXPERIMENT SETUP

A. Public Datasets

To evaluate the confidence estimation and rejection perfor-

mance, six datasets of the NinaPro database (denoted as DB1-

DB6, respectively) were utilized. DB1 was recorded using 10

Otto Bock 13-E200 electrodes . DB2, DB3 and DB6 were

recorded using a Delsys Trigno wireless system. DB4 was

recorded with a Cometa Wave Wireless sEMG system using

Dormo SX-30 ECG electrodes. DB5 utilized the two Thalmic

Myo armbands which is a low-cost device. More details can

be found in Table III and [41], [42]. The sampling rates are

100 Hz for DB1, 200 Hz for DB5 and 2000 Hz for the other

databases. These datasets have been widely applied in pilot

studies for sEMG-based hand gesture classification [21]–[23],

[36]. In terms of experiment protocols, DB1, DB2, DB4 and

DB5 include more than 50 different hand or wrist movements

of intact subjects. For example, 49 movements relevant to the

activities of daily living are present in the DB2, including

8 isometric and isotonic hand configurations, 9 basic wrist

movements, 23 grasping and functional movements and 9 force

patterns. Different from these datasets, DB3 is composed of
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TABLE II: Descriptions of TA/FA/FR/TR cases in rejection process.

CNN Classifications

Correct Erroneous

R(p∗, α)
Accept TA: accepted correct CNN estimations FA: accepted erroneous CNN estimations

Reject FR: rejected correct CNN estimations TR: rejected erroneous CNN estimations

Fig. 2: Online testing using the customized platform

data collected from upper limb amputees, whilst the data of

DB6 were recorded from 10 intact subjects repeating 7 grasps

twice a day for 5 consecutive days [42].

B. Online Verification

To validate the effectiveness of ConfScore in real-time

applications, a customized online platform was developed

based on Shimmer wearable sensors and the Shimmer MAT-

LAB Instrument Driver [43]. The platform was composed

of several main modules: sEMG collection and streaming,

data processing and plotting, CNN training, ConfScore (p∗,β)
tuning, online classification and rejection analysis. The ex-

periment involved six basic wrist/hand gestures: wrist flex-

ion, wrist extension, supination, pronation, palm open, and

palm close. Approved by the MaPS and Engineering joint

Faculty Research Ethics Committee of University of Leeds,

UK (reference MEEC 18-006), four healthy subjects (three

male and one female, aged 20-55) took part in the experiment.

As shown in Fig. 2, the participants were asked to perform

predefined gestures following instructions given by the system.

The ground-truth labels were created by requiring the user to

hold each gesture for five seconds. Twelve bipolar electrodes

were placed on the proximal portion of the left forearm to

collect sEMG signals in six channels. The sampling rate of

sEMG was set as 1024 Hz.

C. Data Pre-processing

DB1 provides a bandpass-filtered and Root-Mean-Square

(RMS) rectified version of sEMG. DB4 was processed by a

10-Hz high-pass filter and a 1000 Hz low-pass filter. A Hampel

filter was adopted to clean 50 Hz power-line interference from

sEMG collected by the Delsys and Cometa sensors, i.e., DB2,

DB3, DB4 and DB6. For DB5, Thalmic Myo incorporated a

notch filter at 50 Hz. Based on filtered sEMG, a min–max

normalization was implemented for each subject individually

[44]. This normalization method was adopted since it can keep

the original distribution of sEMG. To construct sEMG matrices

for CNN, the window length was set as 300 ms with a 50 ms

step for DB1 and DB5. By contrast, we empirically set 150

ms/50 ms for other databases. Herein the window length of

DB1 and DB5 is comparatively larger because the sampling

rates of these two databases are quite low (100 Hz and 200 Hz,

respectively), thus the matrices constructed from shorter time

windows could not support CNN. In the online platform, we

adopted the 3rd order Butterworth band pass filter (20-450 Hz)

and a 50 Hz notch filter for noise reduction. To construct the

sEMG matrix for CNN, the window length and segmentation

step were set as 150 ms and 25 ms, respectively.

D. Data Split

Following previous work, [21], [23], [36], [45], approx-

imately two-thirds of the gesture trials in each subject of

DB1-DB5 were utilized to train CNN and tune ConfScore

subsequently. The remaining trials of the participant worked

as the testing set to analyse confidence/rejection performances.

Specifically, we set repetitions 2, 5 and 7 as the testing set in

DB1; in DB2-DB5, we used repetitions 2 and 5 for testing.

Since DB6 consists of data from multiple days, we trained

CNN using data on the first day (Day 1), tuned ConfScore on

Day 2, and tested the performances on Days 3-5.

E. Training of CNN

Hyper-parameters of CNN were first identified according

to [23], [36] and then tuned empirically. Specifically, the

network was trained in a 128-sized minibatch using stochastic

gradient descent with momentum (SDGM). The momentum

rate of SDGM was set as 0.9. The dynamic learning rate

was initialized to be 0.0005. The dropout rate was 0.1 after

every 10 epochs. The L2 regularization rate was set to be

0.01. We adopted 30 epochs for data training in DB1-DB5

and our online platform. The training data were shuffled in

every epoch. To reduce overfitting, the dropout rate was set as

0.2 for DB1-DB5. We adopted fewer epochs (20) and a higher

dropout rate (0.5) for DB6 due to the domain variation among

training and testing sessions in different days.

F. Training of ConfScore

In ConfScore (p∗,β) we can define left and right edges

of our activation function flexibly by adjusting γ1 and γ2.

Empirically, we find that an explicit tuning of γ1 and γ2
for each dataset can further optimize confidence estimation.

For the sake of simplicity and generalization, in this study

we kept γ1 and γ2 fixed as {γ1 = 0, γ2 = 1} for all trials

in six databases and the online platform. In addition, the

GA was utilized to search β̂ by exploiting reproduction,

crossover, and mutation operators. In our implementation, an

elitist strategy was further incorporated in this algorithm to

enhance convergence.
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TABLE III: Specifications of the public databases used in this paper.

Database
No. of

gestures
Major gestures

Upper limb

amputation

No. of

channels
Devices

DB1 52 finger/wrist/grasping movements healthy 10 10 Otto Bock 13-E200, 100Hz

DB2 49
finger/wrist/grasping movements

force patterns
healthy 12 Delsys Trigno wireless system, 2000Hz

DB3 49
finger/wrist/grasping movements

force patterns
amputated 12 Delsys Trigno wireless system, 2000Hz

DB4 52 finger/wrist/grasping movements healthy 12 Cometa Wave Wireless sEMG system, 2000Hz

DB5 52 finger/wrist/grasping movements healthy 16 Thalmic Myo armbands, 200Hz

DB6 7 grasping movements healthy 16 Delsys Trigno wireless system, 2000Hz

G. Statistical Analysis

In this study, statistical analysis was performed using

the Statistics and Machine Learning Toolbox in MATLAB

R2012a. In particular, the assumption of data normality was

first checked via the Shapiro–Wilk test (the level was set to

be 0.05) [46]. If the assumption was satisfied, the one-way

analysis of variance (ANOVA) test was applied to verify the

differences in methods of confidence estimation and rejection

process; otherwise, its nonparametric equivalent, i.e., Kruskal–

Wallis (KW) test, was performed alternatively.

IV. RESULTS

A. Distribution of Confidence Features

As suggested in [30], distributions of confidence features

of a classifier are expected to be indicative of classification

accuracy, i.e., correct classifications are with high scores

(close to one) whereas wrong predictions result in lower

scores (close to zero). Fig. 3 visualizes the distributions of

correct and erroneous classifications following three different

confidence features. As we can see, correct classifications

are overwhelmingly gathering in the range of [0.95, 1] when

ConfScore is utilized. In opposite, erroneous classifications are

gathering mainly in bins of smaller ConfScore. Differently,

distributions between correct and erroneous classifications

tend to be less distinguishable when MaxProb or IEntropy

is utilized. Therefore, we infer that ConfScore can be more

relevant with CNN confidence in terms of the classification

accuracy. In the following sections we will explore how the

distribution differences further influence BMEC and Fit of

three confidence features.

B. BMEC of Confidence Features

Table IV lists BMEC of ConfScore, MaxProb and IEntropy

in six public databases. In summary, BMEC of ConfScore is

larger than MaxProb and IEntropy for most subjects in each

database. From Table IV we can also see that the average of

BMEC of all three confidence features in DB1, DB2, DB4

and DB5 are comparatively larger than the average of all

three confidence features in DB3, DB6 because confidence

distributions of correct and erroneous classifications are less

distinguishable in DB3 and DB6. The deterioration occurs

since the experimental protocols in DB3 and DB6 are more

challenging. In terms of DB3, it is hard for trans-radial

amputees to produce reliable ground truth because of the

Fig. 3: Distributions of correct and erroneous classifications in testing sets of
Subject 2-DB1. The width of a bin is 0.05 and the amplitude of each bin
denotes the number of samples (CNN outputs) whose confidence features are
located in the corresponding range.

inability to operate any sensor on the missing limbs [45].

In DB6, both CNN and ConfScore are trained and tested

in different days, where the electrode shift can have severe

impacts on model accuracies.

C. Analysis of Rejection Process

In this section we analyse the effect of R(p∗, α) on the

basis of ConfScore. Referring to Eq. (7) and Table II, given

a specific α, Err, TAR, TRR and Fit can be calculated

accordingly. Fig. 4 shows variations of these four metrics

following a changing α in the testing set of Subject 1-DB4.

The variation step for α is set to be 0.05. Fig. 4 shows that
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TABLE IV: BMEC of ConfScore, MaxProb and IEntropy for all subjects in six databases. SD denotes the standard deviation.

Database Confidence Feature S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean SD

DB1

ConfScore 0.39 0.41 0.36 0.34 0.29 0.34 0.3 0.38 0.28 0.35 0.34 0.04

MaxProb 0.31 0.34 0.3 0.3 0.23 0.27 0.26 0.3 0.22 0.29 0.28 0.04

IEntropy 0.27 0.3 0.25 0.25 0.2 0.23 0.22 0.27 0.19 0.25 0.24 0.03

DB2

ConfScore 0.47 0.43 0.31 0.29 0.29 0.33 0.22 0.5 0.38 0.37 0.36 0.09

MaxProb 0.34 0.3 0.21 0.22 0.21 0.24 0.17 0.36 0.25 0.23 0.25 0.06

IEntropy 0.27 0.24 0.16 0.18 0.15 0.18 0.13 0.3 0.2 0.18 0.2 0.05

DB3

ConfScore 0.22 0.31 0.69 0.14 0.08 0.12 0.03 0.31 0.33 0.09 0.23 0.19

MaxProb 0.16 0.22 0.56 0.12 0.06 0.09 0.04 0.24 0.23 0.07 0.18 0.15

IEntropy 0.13 0.15 0.55 0.1 0.05 0.06 0.01 0.19 0.17 0.06 0.15 0.15

DB4

ConfScore 0.57 0.42 0.22 0.66 0.63 0.42 0.69 0.65 0.48 0.47 0.52 0.15

MaxProb 0.43 0.3 0.18 0.46 0.46 0.32 0.5 0.48 0.37 0.36 0.39 0.10

IEntropy 0.4 0.23 0.13 0.42 0.42 0.26 0.47 0.45 0.31 0.32 0.34 0.11

DB5

ConfScore 0.62 0.6 0.64 0.64 0.62 0.58 0.61 0.57 0.64 0.62 0.61 0.04

MaxProb 0.52 0.47 0.5 0.53 0.47 0.46 0.48 0.42 0.45 0.56 0.49 0.04

IEntropy 0.47 0.4 0.48 0.48 0.45 0.43 0.45 0.37 0.41 0.51 0.44 0.04

DB6 (Day3)

ConfScore 0.28 0.03 0.22 -0.02 0.18 0.17 0.62 0.1 0.11 0.39 0.21 0.19

MaxProb 0.14 0.01 0.1 -0.05 0.06 0.16 0.41 0.07 0.1 0.22 0.12 0.13

IEntropy 0.11 0.03 0.07 -0.07 0.05 0.16 0.41 0.09 0.07 0.19 0.11 0.13

DB6 (Day4)

ConfScore 0.39 0.3 0.01 0.04 0.13 0.22 0.34 0.27 0.26 0.11 0.21 0.13

MaxProb 0.22 0.21 -0.01 0.02 0.06 0.14 0.19 0.19 0.17 0.06 0.13 0.08

IEntropy 0.21 0.19 -0.01 0 0.06 0.11 0.18 0.15 0.17 0.07 0.11 0.08

DB6 (Day5)

ConfScore 0.32 0.24 0.18 0.23 0.4 0.33 0.22 0.19 0.18 0.38 0.27 0.08

MaxProb 0.17 0.15 0.16 0.12 0.3 0.28 0.13 0.19 0.12 0.2 0.18 0.06

IEntropy 0.12 0.13 0.17 0.08 0.26 0.3 0.14 0.15 0.12 0.17 0.16 0.07

Fig. 4: Err, TAR, TRR and Fit for various rejection thresholds in testing
sets of Subject 1-DB4.

Err is decreasing monotonically along with α. When α = 0,

there is no rejection cascaded with CNN, thus Err = 1−Acc.

By contrast, Err becomes zero when α = 1, since all CNN

decisions are rejected in this case.

Since TAR decreases monotonically and TRR increases

inversely, a concave downward curve of Fit is thus ob-

tained. More specifically, Fit increases continuously when α
is comparatively smaller, and there comes a turning point (the

aubergine circles in Fig. 4) when α becomes larger. Hence,

focusing on Err or TRR alone can result in an decreased

TAR, verifying the necessity of Fit for the trade-off between

TRR and TAR in rejection analysis. When the rejection

is conducted around the turning point shown in Fig. 4, we

can obtain a smaller Err (1.2% for Subject 1-DB4) with an

acceptable TAR (80.5%).

To further illustrate the effectiveness of Fit in rejection,

Fig. 5: Statistical analysis of Err for testing sets with and without rejection
in all databases (***p-value < 0.001, **p-value < 0.01, *p-value < 0.05).

we apply the optimal α of training sets to the corresponding

testing sets in each subject. Fig. 5 compares Err with and

without rejection for testing sets in all databases. Moreover,

Fig. 6 shows statistical results of TAR and TRR in Fit
of all databases. In this study, we conducted ANOVA/KW

for statistical analysis. The feature factor has two levels

(Rejection/NoRejection for Fig. 5, TAR/TRR for Fig. 6), and

subjects of each database work as the random variable. From

Fig. 5 we can see that in each database Err is reduced signif-

icantly by rejecting low confidence classifications. Moreover,

since Fit attempts to compromise TAR and TRR, these two

metrics can be close to each other in most databases. Taking

DB5 as example, the mean value of TAR is 0.83 whilst

TRR reaches 0.9 on average, indicating that the majority of

erroneous classifications can be rejected whilst causing small

loss on correct classifications, indicating a promising trade-off

between system security and rejection cost.
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Fig. 6: Statistical analysis of TAR and TRR for testing sets in all databases
(***p-value < 0.001, **p-value < 0.01, *p-value < 0.05).

Fig. 7: Fit values for various rejection thresholds when three confidence
features are used in testing sets of Subject1-DB4 and Subject 5-DB6.

D. Comparison of Confidence Features in Rejection

Fig. 7 shows Fit values for various rejection thresholds in

testing sets of Subject1-DB4 and Subject 5-DB6. Recall that

Fit can be smaller than zero, in which case R(p∗, α) either

accepts too many erroneous CNN decisions or rejects too

many correct ones. From this figure, several interesting results

can be observed. First, for each confidence feature the Fit of

α in Subject1-DB4 are in general much higher than in Subject

5-DB6. This observation will be further discussed in Section

V.B. Second, although the maximal Fit of three confidence

features can be close in some cases (such as Subject1-DB4),

the Fit curves of ConfScore are always much wider and

more flattened than the curves of two other features. This

characteristic means that when adopting ConfScore as a CNN

confidence feature, Fit is less sensitive to variations of α in

the rejection process, which contributes to a wider range for

threshold selection. In the following part, this characteristic is

denoted as the rejection robustness for Fit.
To further quantify the rejection robustness, we calculate the

integral of Fit curves (denoted as FitInt) using the trapezoidal

method. Fig. 8 illustrates the mean and standard deviations of

Fig. 8: Statistical analysis of FitInt values of rejection in all databases when
three confidence features are adopted (***p-value < 0.001, **p-value <
0.01, *p-value < 0.05).

TABLE V: BMEC of ConfScore, MaxProb and IEntropy in online testing.

Confidence Feature S1 S2 S3 S4 Mean SD

ConfScore 0.45 0.53 0.38 0.28 0.41 0.11

MaxProb 0.22 0.26 0.12 0.13 0.18 0.06

IEntropy 0.18 0.20 0.05 0.07 0.13 0.08

FitInt for all subjects in each database. As we can see, FitInt
of ConfScore is much larger than FitInt of MaxProb and

IEntropy in most databases. Thus, the rejection performance

can be less sensitive to threshold variations when ConfScore is

used as the confidence feature. In addition, we can also observe

that FitInt values of three confidence features in DB3 and

DB6 are with smaller means but larger standard deviations.

These degradations are consistent with BMEC performance

shown in Table IV.

E. Online Results

Table V and Table VI list the BMEC and FitInt of three

confidence features in online testing. These tables show that

ConfScore outperforms MaxProb and IEntropy significantly in

both confidence distribution and rejection robustness (as for

BMEC, the p-value of ConfScore versus MaxProb/IEntropy

is 0.011/0.005; as for FitInt, the p-value is 0.003/0.002).

These outcomes are consistent with results of offline analysis

(Table IV and Fig. 8). Moreover, since the confidence-based

rejection can be regarded as a post-processing method, we

also compare the performance of our approach with a widely

applied smoothing strategy, i.e. Majority Vote (MV) [47].

Table VII lists the Err of CNN, CNN+MV and CNN+Rejection

for four subjects in online testing. Specifically, the ConfScore

works as the confidence feature in rejection, whilst MV makes

the final decision using the current classification result along

with six previous results. As shown in Table VII, although

MV can further reduce Err in classification, its performance

is evidently worse than the performance of the confidence-

based rejection because the final result of MV is still an active

motion rather than a no-motion state. Compared with MV, the

rejection method is more useful when the control security is

crucial, particularly in human-machine interface.
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TABLE VI: FitInt of ConfScore, MaxProb and IEntropy in online testing.

Confidence Feature S1 S2 S3 S4 Mean SD

ConfScore 40.35 49.76 39.92 29.66 39.92 8.21

MaxProb 18.95 23.93 13.82 13.65 17.59 4.89

IEntropy 14.81 18.52 5.37 6.62 11.33 6.36

TABLE VII: Err of CNN, CNN+MV and CNN+Rejection in online testing.
The ConfScore works as the confidence feature in rejection.

Method S1 S2 S3 S4 Mean SD

CNN 0.26 0.28 0.32 0.37 0.31 0.05

CNN+MV 0.24 0.25 0.31 0.34 0.29 0.05

CNN+Rejection 0.07 0.07 0.10 0.15 0.10 0.04

V. DISCUSSION

In real-time applications, a deep network normally performs

well in its trained datasets but tends to fail in unseen ones

[48]. In this study, a preliminary research was conducted

to estimate model confidence for CNN-based hand gesture

recognition, which helps to improve the reliability of myo-

electric control. To be specific, we propose a novel confidence

estimation model ConfScore (p∗,β) to generate confidence

scores based on posterior probabilities of CNN. Following

a threshold-based rejection rule, unconfident classifications

can be identified and rejected. In addition, although the main

target of rejection is to refuse erroneous classifications and

improve system security, focusing on this target alone may

result in a serious control lag by setting overlarge rejection

thresholds arbitrarily. To address this issue, we propose Fit

which combines TAR and TRR, so that both system security

and control lag can be fully considered in threshold selection

or rejection analysis.

A. Design of ConfScore (p∗,β)

In the design of ConfScore (p∗,β), we utilized the zero-

order smooth-step function to map posterior likelihood of

CNN to associated confidence features. A main advantage

is that we can define left and right edges of the activation

function flexibly by adjusting γ1 and γ2. Table VIII lists

the average BMEC of subjects in six databases when four

different pairs of γ1 and γ2 are utilized. As we can see, an

explicit tuning of γ1 and γ2 can further optimize confidence

distributions in each database. Another novel design is the

BMEC-based objective function to train ConfScore (p∗,β) in

a supervised way. As discussed in [30], the confidence feature

is expected to be closer to one when CNN is certain about

the decision (i.e., the classification is prone to be correct) and

to be near zero when CNNs are making uncertain decisions.

As summarized in Table IV, for most cases of six datasets,

BMEC values of ConfScore are comparatively larger than the

values of MaxProb and IEntropy. Therefore, we infer that the

proposed ConfScore can better reflect correctness of CNN

classifications.

B. Design of Fit and FitInt

As illustrated in Fig. 1, given the ConfScore of classifi-

cation results, a threshold-based rejection can be utilized to

TABLE VIII: Average BMEC of ConfScore in each database using different
pairs of γ1 and γ2.

Parameter Pairs DB1 DB2 DB3 DB4 DB5 DB6

γ1=0, γ2=0.2 0.45 0.45 0.32 0.58 0.72 0.22

γ1=0, γ2=0.4 0.44 0.44 0.33 0.58 0.71 0.23

γ1=0, γ2=0.6 0.41 0.41 0.28 0.56 0.69 0.26

γ1=0, γ2=0.8 0.34 0.35 0.23 0.53 0.67 0.24

improve the control reliability. To illustrate this process, Fig.

9 compares the confusion matrix without/with rejection. As we

can see, in the conventional classification without rejection, a

high error rate is obtained in the case presented. Differently, by

identifying classifications whose ConfScore values are smaller

than a predetermined threshold, a large number of erroneous

classifications can be identified and rejected. This is how

ConfScore can help to improve the robustness of gesture

classification. However, from Fig. 9 we can also observe that

some of the correct classifications (those in the diagonal of the

confusion matrix without rejection) are rejected mistakenly.

These mistakes should be regarded as the cost of the rejection

process. Therefore, as illustrated in Eq. (9) and Table II,

we have proposed Fit to conduct a quantitative evaluation

of rejection performance. From Fig. 4 we can see that Fit
compromises TAR and TRR to achieve a good balance

between control continuity and system security.

In this study we also compare the rejection robustness of

different confidence features (see Fig. 8). Our concern are: 1)

as shown in Fig. 7, the selection of the rejection threshold

can affect the Fit value; 2) the threshold determination is

usually made empirically based on previous datasets, and this

strategy can be affected by the inconsistency of Fit curves

between datasets. Fig. 10 lists the optimal thresholds for

three confidence features using data of DB6 (Day4) and DB6

(Day5). Apparently, for most subjects the optimal thresholds

in Day4 and Day5 are very different; and the thresholds

determined based on previous datasets may result in a poor Fit

for the target dataset. Based on these observations, we infer

that it is important to compare robustness, i.e. FitInt, which

can help to indicate how the Fit value is robust to variations

of threshold. As shown in Fig. 8, FitInt of ConfScore is

much larger than the FitInt of MaxProb and IEntropy in

most databases. Similarly, previous research [16], [19] also

suggested that a desirable confidence characteristic should

leave a wider range for threshold adjustment.

As mentioned in Section IV.D, an interesting observation

in Fig. 7 is the difference of Fit curves among datasets.

Specifically, for each confidence feature, Fit curve of Subject1-

DB4 is always higher than the Fit curve of Subject 5-

DB6, which indicates a better rejection performance of the

former participant. According to Table IV, BMEC values of

three confidence features in Subject 5-DB6 are smaller than

the BMEC values of three confidence features in Subject1-

DB4. Based on Eq. (5), we know that the distributions of

correct/erroneous classifications in Subject 5-DB6 are less

distinguishable. A main reason is that the CNN classifier is

trained and tested using data of different days in DB6, thus

the confidence features could become less qualified due to the
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Fig. 9: Confusion matrix without/with rejection based on ConfScore. The presented cased is Subject 1 of DB6. The optimal rejection threshold is pre-determined
based on the training data. The error rate of conventional classification is high since training and testing datasets are from different days of a subject. The Fit
of the rejection performance is 0.36.

Fig. 10: Optimal thresholds for Fit curves of three confidence features in
Day4 and Day5 of DB6.

degradation of CNN accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a preliminary attempt to esti-

mate CNN confidence for rejection-based hand gesture classi-

fication in myoelectric control systems. By analysing posterior

likelihood of softmax layer, the proposed confidence model

can provide scores (ConfScore) highly related to correctness

of CNN predictions. The superiority of ConfScore to two

commonly utilized confidence features is fully verified via

analysis of BMEC and rejection robustness using data from

public databases and our online experiments. With help of

confidence-based rejection, the error rate of CNN can be

reduced significantly with small loss of correct classifications,

thereby enhancing the model reliability in sEMG-based ges-

ture recognition.

Since this study was preliminary research on CNN confi-

dence estimation and its application in rejection, there remain

some interesting and open questions which deserve further

investigation. For instance, TARs in DB6 are observed to

be bigger than in TRR, but this trend is inverted in other

databases. We guess that the reason for the specialty of DB6

could be domain shift, since training and testing data are from

different days of a subject. Thus, more variety of datasets

should be involved for further verification. In addition, only

conventional gesture recognition is involved. In the future

work, we anticipate conducting further investigations involving

various tasks, such as the Box and Blocks Task, Cups Relo-

cation Task, and Block Turn Task, etc. Furthermore, we will

also investigate the model confidence of regression approaches

which are fundamental for simultaneous and proportional

estimation of joint kinematics.
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