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Abstract 36 

Self-contamination during doffing of personal protective equipment (PPE) is a 37 

concern for healthcare workers (HCW) following SARS-CoV-2 positive patient care. 38 

Staff may subconsciously become contaminated through improper glove removal, 39 

so quantifying this exposure is critical for safe working procedures. HCW surface 40 

contact sequences on a respiratory ward were modelled using a discrete-time 41 

Markov chain for: IV-drip care, blood pressure monitoring and doctors’ rounds. 42 

Accretion of viral RNA on gloves during care was modelled using a stochastic 43 

recurrence relation. In the simulation, the HCW then doffed PPE and contaminated 44 

themselves in a fraction of cases based on increasing case load.  A parametric 45 

study was conducted to analyse the effect of: 1a) increasing patient numbers on 46 

the ward, 1b) the proportion of COVID-19 cases, 2) the length of a shift and 3) the 47 

probability of touching contaminated PPE. The driving factors for exposure  were 48 

surface contamination and number of surface contacts. Results simulate generally 49 

low viral exposures in most of the scenarios considered including on 100% COVID-19 50 

positive wards although this is where the highest self-inoculated dose is likely to 51 

occur with median 0.0305 viruses (95% CI=0-0.6 viruses). Dose correlates highly with 52 

surface contamination showing that this can be a determining factor for exposure. 53 

The infection risk resulting from exposure is challenging to estimate as it will be 54 

influenced by factors such as virus variant and vaccination rates. 55 

 56 

Keywords: SARS CoV-2; COVID-19; PPE; surface contact transmission; quantitative 57 

microbial risk assessment (QMRA); hospital infection model 58 
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 59 

Practical Implications 60 

Infection risk from self-contamination during doffing PPE is an important concern in 61 

healthcare settings, especially on a COVID-19 ward. Fatigue during high workload 62 

shifts may result in increased frequency of mistakes and hence risk of exposure. 63 

Length of staff shift and number of COVID-19 patients on a ward correlate positively 64 

with the risk to staff through self-contamination after doffing. Cleaning of far-patient 65 

surfaces is equally important as cleaning traditional “high-touch surfaces”, given 66 

that there is an additional risk from bioaerosol deposition outside the patient zone.  67 

  68 
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Introduction 69 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped 70 

virus which has infected in excess of 200 million people to date and caused more 71 

than four million deaths worldwide according to Johns Hopkins University’s COVID-19 72 

Dashboard (1). Inanimate objects known as fomites may host pathogens and have 73 

the potential to contribute to transmission in healthcare environments. This occurs in 74 

viral contamination spread (2–4) including SARS-CoV-2 (5, 6). However, it should be 75 

noted that there are uncertainties as to the relationship between molecularly 76 

detected virus and infectious virus. In terms of persistence, there appears to be 77 

similarity between SARS-CoV-1 and 2 on surfaces, where initial concentrations of 103.7 78 

Median Tissue Culture Infectious Dose (TCID50)/mL (SARS-CoV-2) and of 103.4 79 

TCID50/mL (SARS-1) reduced to 100.6 TCID50/mL (SARS-CoV-2) and 100.7 TCID50/mL 80 

(SARS-1) respectively due to decay of viability of the virus after 72 hours on plastic 81 

surfaces (7). Persistence on the scale of days under heavy contamination conditions 82 

allows an opportunity for exposure through hand-to-fomite contacts. Although 83 

personal protective equipment (PPE) such as gloves, gowns, and masks are worn to 84 

protect both patient and healthcare worker (HCW) from exposure, self-85 

contamination during PPE doffing processes (8, 9) poses risks to HCW and enables 86 

spread from one patient to another during multiple care episodes. SARS-CoV-2 has 87 

been detected on healthcare worker PPE (10) and in the environment of rooms 88 

where doffing occurs, demonstrating that errors in doffing could facilitate COVID-19 89 

exposure and transmission.  90 

While SARS-CoV-2 has been detected on PPE and patient surfaces, the 91 

relationship between viral RNA concentrations and risk of infection is still 92 
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unknown(11). Bullard et al. (2020) presents TCID50 and cycle threshold values relative 93 

to days since symptom onset, but these may not be translatable to concentrations 94 

on fomites due to the potential for more SARS-CoV-2 genetic material 95 

corresponding to inactivated viruses resulting from incomplete surface disinfection 96 

practices (12). Quantitative microbial risk assessments (QMRA) involve the use of 97 

mathematical models to estimate doses of a pathogen and subsequent infection 98 

risk probabilities. Quantifying infection exposure and risk for any given dose can be 99 

used to guide intervention decision-making and have been used in other public 100 

health contexts, such as in setting water quality standards (13). These typically rely 101 

on experimental doses of a microorganism inoculated into healthy participants or 102 

mice models in a known quantity. Whether they develop the infection can then be 103 

recorded(13). QMRA modelling and surface contact models have been used to 104 

evaluate multiple transmission pathways. The role of care-specific behaviours in 105 

environmental microbial spread (14) includes the effect of glove use in bacterial 106 

spread from one surface to another (15) and evaluating risk reductions through 107 

hand hygiene or surface disinfection interventions (16–18). While a strength of QMRA 108 

is relating environmental monitoring data to health outcomes, a common limitation 109 

has been a lack of specific human behaviour data such as hand-to-face or hand-110 

to-surface contact sequences that result in dose exposures (18, 19). The use of the 111 

QMRA modelling framework incorporating care type surface contact patterns 112 

before potential self-contamination via PPE doffing will offer insight into viral 113 

exposure  per shift. 114 

The objective of this study is to relate SARS-CoV-2 concentrations on surfaces to 115 

predicted  exposure ¡for a single healthcare worker over an 8-hour shift and estimate 116 
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the effects of doffing mistakes and number of care episodes per shift on inoculated 117 

dose per shift. 118 

Methodology 119 

This approach combines human behaviour and fomite-mediated exposure 120 

models for 19 hospital scenarios, for which concentrations of SARS-CoV-2 on hands 121 

and infection risk for a single shift are estimated for a registered nurse, an auxiliary 122 

nurse and a doctor. A control scenario was defined as a single episode of care with 123 

a SARS-CoV-2 positive individual with an assumed 80% probability of self-124 

contamination during doffing: a “worst case scenario.” Eighteen other scenarios 125 

covered 3 likelihoods of self-contamination: 10%, 50%, and 80%, x 2 case load 126 

conditions: 7 patients (low) vs. 14 patients (high) x 3 probabilities of any given patient 127 

being COVID-19 positive: low (5%), medium(50%), and a 100% COVID-19 positive 128 

ward. These rates of self-contamination during doffing were assumed due to 129 

uncertainty as to how workload and stress, especially under pandemic conditions, 130 

would influence doffing. Exploring probabilities of self-contamination as low as 5% 131 

and as high as 80% allows for exploration of optimistic and worse case scenarios.  132 

During low case load conditions, it was assumed that the number of care 133 

episodes per shift would be less (7)  than for high load conditions (14). The assumed 134 

number of patient care episodes when PPE is worn per shift for low and high case 135 

load scenarios were 7 and 14, respectively, based on a respiratory ward in a 136 

university teaching hospital in the UK. The low case load estimate was based on 137 

communication with a UK NHS consultant, who tracked the number of gowns used 138 

by healthcare workers over a week on a mixed COVID-19 8-bed respiratory ward. All 139 

model parameters are described and reported in Table 1. Per scenario, three 140 
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simulations were run where sequences of hand-surface contacts per care episode 141 

were care-specific (IV care, observational care, or doctors’ rounds).  142 

Table 1. Model parameters and their distributions/point values 143 

Parameter Distribution/Point Value Reference 

Surface contamination (!!"#) 

(RNA/ swabbed surface area) 

For infected patient scenarios 

 

Surfaces: 

Triangular (min=3.3 x 103, mid=2.8 x 104, max=6.6 x 104) 

 

Patient: 

Point estimate: 3.3 x 103 

 

(20) 

Area of any given 

surface("$%&'()*) 

(cm2) 

Triangular (min=5, max=195, mid=100) Assumed 

Fraction of RNA(infective)  

assumed to be infectious 
Uniform (min=0.001, max=0.1) Assumed 

Finger-to-surface transfer 

efficiency (β) 

(fraction) 

Normal (mean=0.118, sd=0.088) 

Left- and right-truncated at 0 and 1, respectively 
(4) 

Surface-to-finger transfer 

efficiency (λ) 

(fraction) 

Normal (mean=0.123, sd=0.068) 

Left- and right-truncated at 0 and 1, respectively 
(4) 

Finger-to-mouth transfer 

efficiency ($%+®-) 

(fraction) 

Normal (mean=0.339, sd=0.1318) 

Left- and right-truncated at 0 and 1, respectively 
(21) 

Glove doffing self-

contamination transfer 

efficiency 

Uniform (min=3 x 10-7, max=0.1) (8) 

T99 on Hands 

 (hours) used for calculating 

inactivation constants 

Uniform 

(min=1, max=8) 
(22, 23) 

T50 on surfaces 

(hours) used for calculating 

inactivation constants 

Uniform 

(min=4.59, max=8.17) 
(7) 

Hand hygiene efficacy: 

alcohol gel (log10 reduction) 
Uniform (min=2, max=4) (24) 

Hand hygiene efficacy: soap 

and water (log10 reduction) 

Normal (mean=1.62, sd=0.12) 

Left-and right-truncated at 0 and 4, respectively 
(25) 

Fraction of total hand surface 

area for hand-to-mouth or 

hand-to-surface contacts 

(&.and &/) 

For in/out events: 

Uniform (min=0.10, max=0.17) 

 

For patient contacts: 

Uniform (min=0.04, max=0.25) 

 

For other surface contacts: 

Uniform (min=0.008, max=0.25) 

 

For hand-to-face contacts: 

(26) 
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Uniform (min=0.008, max=0.012) 

 

Total hand surface area ("/) 

(cm2) 
Uniform (min=445, max=535) (19, 27) 

Dose response curve 

parameter* α 

0.36 ± 0.25 

0.12, 19.6 

(28); This 

study 

Dose response curve 

parameter* β 

5.94 ± 11.4 

0.27, 802.1 

(28); This 

study 

 144 
*Dose response curve parameters are to be used in bootstrapped pairs. Mean ± SD 145 

and minimum and maximum are provided to offer context as to the magnitude of 146 
these parameters.  147 

 148 

Healthcare Worker Surface Contact Behaviour Sequences 149 

Fifty episodes of mock patient care were recorded overtly using videography in 150 

a respiratory ward side room at St James’ Hospital, Leeds. Mock care was 151 

undertaken by doctors and nurses with a volunteer from the research team to 152 

represent the patient.  While these observations were carried out prior to COVID-19, 153 

it is assumed that patient care would be similar for any infected patient, including a 154 

COVID-19 patient.  Ethical approval for the study was given by the NHS Health 155 

Research Authority Research Ethics Committee (London - Queen Square Research 156 

Ethics Committee), REF: 19/LO/0301. Sequences of surface contacts were recorded 157 

for three specific care types: IV drip insertion and subsequent care (IV, n=17) 158 

conducted by registered nurses (RN); blood pressure, temperature and oxygen 159 

saturation measurement (Observations, n=20) conducted by auxiliary nurses; and 160 

doctors’ rounds (Rounds, n=13).  Data from care were used to generate 161 

representative contact patterns to model possible sequences of surface contacts 162 

by HCWs in a single patient room. Discrete Markov chains were used, because 163 

HCWs were found to touch surfaces in a non-random manner, insofar that 164 

transitional probabilities fit to observed behaviours from moving from one surface 165 

category were not all equal. By assigning each surface category a numerical value 166 
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from 1 to 5, where Equipment = 1, Patient = 2, Hygiene areas = 3, Near-bed 167 

surfaces = 4, and Far-bed surfaces = 5, HCW sequential contact of surfaces can be 168 

modelled in terms of weighted probabilities(14). More information regarding the 169 

observation of these behaviours and analysis of sequences of events can be seen in 170 

King et al. (2020) (29). 171 

The transition of a HCW between surface contacts is modelled using a discrete-172 

time Markov chain approach (14). Using defined weighted probabilities based on 173 

observation of patient care, surface contact by HCW can be simulated based on 174 

the property that, given the present state, the future and past surfaces touched are 175 

independent. This is termed the Markov property (eq 1): 176 

"($!"# = &|$! = ()      (1) 177 

Where $! represents the surface contacted in the *$% event, & and ( are two 178 

surfaces, and " represents a conditional probability. This is then denoted "&→( for 179 

ease of notation. For example, the probability if the HCW is currently touching the 180 

table that they will next touch the chair is "$)*+,→-%)(. and can be worked out by 181 

counting the number of times this happens during care divided by the number of 182 

times any surface is touched after the table(30).  183 

Discrete-time Markov chains were fitted to observed care contact sequences 184 

using the “markovchainFit” function from the R package markovchain (version 185 

0.7.0). Separate Markov chains were fitted to IV care, doctors’ rounds and 186 

observational care sequences. States included “in” (entrance to the patient room), 187 

“out” (exit from the patient room), contact with a far-patient surface, contact with a 188 

near-patient surface, contact with a hygiene surface (e.g. tap, sink, soap or alcohol 189 

dispenser), and contact with equipment. For each episode of care, the first event 190 
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was entrance into the patient room. It was assumed in the simulation that all HCWs 191 

wore a gown, gloves, mask and face shield when entering the room in that hand-to-192 

face contacts were not modeled during episodes of care, and hand hygiene 193 

moments only occurred after doffing in between care episodes. The episode of care 194 

ended when an “out” event occurred.  195 

Exposure Model 196 

Accretion of microorganism on hands from surface contacts has been 197 

demonstrated (14) to respond to a recurrence relationship with the concentration 198 

on hands after the nth contact, +!%, with the concentration on hands, +!/#
% , and on 199 

the surface involved, +!/#
0 , before the contact. See eq. 2. 200 

                           +!% = +!/#
% ,/1!2$ − .%/0+!/#

% ,/1!2$ − 1+!/#
0 ,/1"2$2    (2) 201 

This is an adaptation of the pathogen accretion model (PAM) from King et al. 202 

(2015) (14) and a gradient transfer model by Julian et al. (2009) (31). Here, the 203 

concentration on hands for contact n is equal to the previous concentration on the 204 

hand (+!/#
% ) after adjusting for inactivation for the virus on the hand (3%) and surface 205 

30, minus the removal from the hand due to hand-to-surface transfer plus the gain to 206 

the hand due to surface-to-hand transfer. Δ5 is the time taken for an episode of 207 

patient care and sampled from a uniform distribution of range 2-20minutes(32). 208 

Here, 0 and 1 represent hand-to-surface and surface-to-hand transfer efficiencies 209 

respectively. The fraction of the total hand surface area (.%) is used to estimate how 210 

much virus is available for transfer given a concentration of number of viral 211 

particles/cm2 on the gloved hand and surface. 212 

Estimating Inactivation on the Hand 213 
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Sizun et al. (2000) evaluated the survival of human coronaviruses (HCoV) strains 214 

OC43 and 229E on latex glove material after drying. Within six hours, there was a 215 

reduction in viral infectivity for HCoV-229E that we assume is equal to 99% (22). For 216 

HCV-OC43, a reduction of approximately 99% in viral infectivity occurred within an 217 

hour (22). Harbourt et al. measured SARS CoV-2 inactivation on pig skin with virus 218 

remaining viable for up to 8 hours at 37ºC (33). We therefore used a uniform 219 

distribution with a minimum of 1 hour and a maximum of 8 hours to estimate a 220 

distribution of 3% inactivation rates.  221 

Estimating Inactivation on Surfaces 222 

The decay of the virus causing COVID-19 has been shown to vary under both 223 

humidity and temperature but in contrast with previous findings(7), it appears that 224 

surface material may not have as large of an impact on decay rate(34). We 225 

therefore use one distribution of inactivation rates regardless of surface type by 226 

taking a conservative approach and using an averaged half-life 6 estimate for 227 

stainless steel and plastic-coated surfaces at 21-23°C(7) at 40% relative humidity; 228 

which are 5.63h (95%CI=4.59-6.86h), and 6.81h (95%CI=5.62-8.17h), respectively. We 229 

assume a first order decay (eq 3) to estimate inactivation constant	3 which we use 230 

here for brevity instead of 30 and 3% in equation 2. 231 

 232 

+(5) = +3,/1	$	            (3) 233 

Surface viral concentration C at any given time t then depends uniquely on initial 234 

concentration+3 . Where the half-life 6, is related to k by: 30 = log(2) /	6. Since hospital 235 

rooms are made up of a combination of stainless steel and plastic surfaces, we have 236 

taken the widest confidence interval as bounds when sampling from a uniform 237 
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distribution for inactivation rate 30. Inactivation on gloves is assumed to be minimal 238 

for the time-scale of a care episode (2-20minutes)(32). 239 

Fractional Surface Area 240 

For contacts with the door handle during “in” or “out” behaviors, a fractional 241 

surface area was randomly sampled from a uniform distribution with a minimum of 242 

0.10 and a maximum of 0.17 for open hand grip hand-to-object contacts (26). For 243 

contacts with the patient, a fractional surface area was randomly sampled from a 244 

uniform distribution with a minimum of 0.04 and a maximum of 0.25, for front partial 245 

finger or full front palm with finger contact configurations (26). For contacts with 246 

other surfaces, fractional surface areas were randomly sampled from a uniform 247 

distribution with a minimum of 0.008 and a maximum of 0.25, spanning multiple 248 

contact and grip types from a single fingertip up to a full palm contact (26). 249 

 250 

Transfer Efficiencies 251 

All transfer efficiencies used in this model are unitless fractions ranging from 0 to 252 

1, representing the fraction of viruses available for transfer that transfer from one 253 

surface to another upon contact. For contacts with surfaces other than the patient, 254 

a truncated normal distribution with a mean of 0.123 and a standard deviation of 255 

0.068 with maximum 1 and minimum 0 was randomly sampled for surface-to-256 

finger(0) transfer efficiencies based on aggregated averages of influenza, rhinovirus 257 

and norovirus(4). For patient contacts, transfer efficiencies were randomly sampled 258 

from a normal distribution with a mean of 0.056 and a standard deviation of 0.032, 259 

left- and right-truncated at 0 and 1, respectively. The mean and standard deviation 260 

were informed by transfer efficiencies for rhinovirus measured for direct skin to skin 261 
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contact (35). Transfer efficiencies from fingers to surfaces (1)are assumed to be 262 

normally distributed with mean 0.118 and standard deviation 0.088(4). 263 

Surface Concentrations 264 

If the patient was assumed to be infected, surface contamination levels (RNA/ 265 

swab surface area) were sampled from a triangular distribution where the minimum 266 

and maximum were informed by minimum and maximum contamination levels 267 

reported for surfaces in an intensive care unit ward (20). The median of these was 268 

used to inform the midpoint of the triangular distribution (20). For patient contacts, 269 

the concentration of virus detected on a patient mask was used as a point value 270 

(3.3 x 103RNA/swab surface area) (20). When a patient was not infected, it was 271 

assumed contacts with surfaces and with the patient would not contribute to 272 

additional accretion of virus on gloved hands. 273 

Surface areas for relating concentrations of RNA/swabbed surface area 274 

reported by Guo et al. (2020) to RNA/cm2 were not provided. While a typical 275 

sampling size is 100 cm2, it may be as small as 10-25 cm2 (36–39) and in real-world 276 

scenarios, sampling surface areas may be larger or smaller than these depending 277 

upon available surface area, ease of access and the contamination magnitude 278 

expected.  Since the surface areas of these surfaces were not provided, a triangular 279 

distribution (min=5, max=195, mid=100) describing the surface area (cm2) of surfaces 280 

sampled was used to estimate RNA/cm2. Not all detected RNA was assumed to 281 

represent infectious viral particles. This is a conservative risk approach when utilizing 282 

molecular concentration data in QMRA (40). Therefore, concentrations on surfaces 283 

+5 (viable viral particles/cm2) were estimated by eq 4, 284 

+5 = 6#$%

7"&'()*+
∙ &*>,?5&@,    (4) 285 
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where +897 is the RNA/swabbed surface area, A0:.;)-, is the surface area (cm2) of 286 

the surface, and &*>,?5&@, is the fraction of RNA that relates to infective viral particles 287 

(uniform(min=0.001, max=0.1)). This overlaps with a range used by Jones (2020) for 288 

COVID-19 modeling. While data from Bullard et al. (2020) exist for relating 289 

molecularly detected SARS-CoV-2 to culturable SARS-CoV-2 for patient samples, 290 

these ratios do not translate to fomite scenarios where surface disinfection likely 291 

results in more molecularly detectable virus that does not translate to infectivity. 292 

Therefore, we did not use these data to inform our assumptions about viral infectivity 293 

for molecularly detected SARS-CoV-2 on surfaces. 294 

Estimating Exposure Dose 295 

For all scenarios, it was assumed the starting concentration on gloved hands for 296 

the first episode of care was equal to 0 viral particles/cm2. If gloves were doffed and 297 

a new pair was donned in between care episodes, it was assumed the next episode 298 

of care began with a concentration of 0 viral particles/cm2 on the gloved hands. 299 

After each care episode, a number was randomly sampled from a uniform 300 

distribution with a minimum of 0 and a maximum of 1. If this value was less than or 301 

equal to the set probability of self-contamination during doffing, self-contamination 302 

occurred, where the fraction of total virus transferred from the outer glove surface to 303 

the hands was assumed to be uniformly distributed between 3 x 10-5 % and 10%  (8). 304 

There was then a 50/50 chance that either hands were washed or sanitized using 305 

alcohol gel due to lack of available data describing proportions of hand hygiene 306 

attributable to these two methods occurring after care episodes. If they washed 307 

their hands, a log10 reduction was randomly sampled from a normal distribution with 308 

a mean of 1.62 and a standard deviation of 0.12, (min=0 and max=6) (25). While 309 
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these are not coronavirus-specific hand washing efficacies they allow for a 310 

conservative estimate. If hand sanitizer was used, a log10 reduction was randomly 311 

sampled from a uniform distribution with a minimum of 2 and a maximum of 4 (24). 312 

To estimate a dose, an expected concentration on the hands after doffing and 313 

hand hygiene was estimated, followed by an expected transfer to a facial mucosal 314 

membrane during a single hand-to-nose contact after each patient care episode 315 

(eq. 5).  316 

B = +% ⋅ DE<= ⋅ .> ⋅ A% ⋅ ,/1!?$                                 (5) 317 

There was a 50/50 chance that either the right or left hand was used for this 318 

hand-to-face contact, as contact patterns between right and left hands have been 319 

shown to lack statistically significant differences (41). Here, the transfer efficiency 320 

(TH®M) of the hand-to-nose contact was randomly sampled from a normal 321 

distribution with a mean of 33.90%, and a standard deviation of 13.18% based on a 322 

viral surrogate(42). These simulated nose contacts were assumed to be with the 323 

mucosal membrane as opposed to other parts of the nose, such as the bridge of the 324 

nose, that would not result in a dose. The fractional surface area of contact (.>) was 325 

assumed to equal one fingertip. To estimate this surface area, the minimum and 326 

maximum front partial fingertip fractional surface areas were divided by 5 to inform 327 

the minimum and maximum values of a uniform distribution (22). The surface area of 328 

a hand (A%) was randomly sampled from a uniform distribution with a minimum of 329 

445 cm2 and a maximum of 535 cm2 (19) and is informed by values from the 330 

Environmental Protection Agency, USA’s Exposure Factors Handbook (27). The 331 

expected inactivation of virus during this contact assumed a single second contact, 332 

and the final 3% value used in the care episode simulation was used. F5 represents 333 
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the time between doffing and touching the mucosa. 10,000 parameter 334 

combinations are obtained for each care type scenario in a Monte Carlo 335 

framework. 336 

Dose-Response 337 

Due to lack of dose-response curve data for SARS-CoV-2, an exact beta-338 

Poisson dose-response curve (43) was fitted to pooled data for SARS-CoV-1 and 339 

HCoV 229E, assuming the infectivity of SARS-CoV-2 lies between the infectivity for 340 

these two organisms. In eq 6., 1F1(G, G + 1,−J) is the “Kummer confluent 341 

hypergeometric function” and  "(J) is the probability of infection risk given dose: 342 

J	(eq. 6)	(43). 343 

             "(J) = 1 −1F1(G, G + 1,−J)           (6) 344 

Ten-thousand bootstrapped pairs of G and 1 were produced based on a maximum 345 

likelihood estimation fit. For each estimated dose, an G and 1 pair were randomly 346 

sampled, and an infection risk was estimated with eq. 6. The infectious dose for 50% 347 

of infections to occur was between 5 and 100 infectious viral particles with a mean 348 

of 30; the dose-response curve can be seen in Figure 1. We use this dose-response 349 

curve within the discussion section as a comparator against the curve for HCoV229E 350 

also given in (43), which is considered a similar but more infectious virus.  351 
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 352 

Figure 1 Dose-response risk curve for averaged SARS CoV-1 and Coronavirus 229E response. 353 

 354 

Sensitivity Analysis 355 

Spearman correlation coefficients were used to quantify monotonic 356 

relationships between input variables and viral exposure. This method has been used 357 

in other QMRA studies to evaluate the relationship between model inputs and 358 

outputs (31, 44, 45).  359 

Results 360 

Surface contact pattern predictions varied by care type. IV care resulted in the 361 

highest number of surface contacts (mean=23, sd=10) per episode, whilst 362 

observational care and doctors’ rounds had on average 14 (sd=7) and 20 (sd=6) 363 

contacts, respectively. A stair plot showing an example HCW surface contact 364 

pattern derived from the Markov chain prediction can be seen in Error! Reference 365 

source not found.. 366 
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 367 

Figure 2 Stair plot of example HCW surface contacts during care, where “patient” is a hand-to-patient 368 
contact; “out” and “in” are exit and entrance into the patient room, respectively; “FarPatient” is a 369 
hand-to-far patient surface contact; and “Equipment” is a hand-to-equipment surface contact. 370 

  371 

Estimated Dose  372 

Dose values in Table 2 and Figure 3 are given in number of virus plaque forming 373 

units (PFU), where we also include all fractional values since these would correspond 374 

to multiple viruses for a higher surface load relating to different SARS CoV2 variants.  375 

Table 2 PFU doses to for each care type 376 

QUANTILE IV CARE OBSERVATIONS DRS' ROUNDS 

0% 0 0 0 
25% 0 0 0 

50% 0.00184 0.0021 0.00127 
75% 0.0751 0.0651 0.0409 
95% 0.506 0.421 0.234 

 377 

Median PFU values for each care type were within the same order of magnitude 378 

(see Table 2), whilst maximum values for IV drip were 47% higher than for 379 
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observations and 68% than for Drs’ rounds which can be explained by the number of 380 

surface contacts (IV-drip care: 23±10, Doctors’ rounds: 14±7 and Observational care: 381 

20±6).  Doubling patient load, regardless of COVID-19 prevalence, probability of self 382 

inoculation or care type, caused median viral dose to increase by an order of 383 

magnitude from 0.0004PFUs to 0.0069PFUs (95%CI= 0 to 0.501PFU). Figure 3 shows a 384 

bar chart with standard deviations for care type, COVID-19 prevalence on the ward 385 

and chance of self-contamination. 386 
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 388 

Figure 3: Bar chart showing viral dose (PFU) per shift for IV, Observations and doctors’ rounds for 389 

different COVID patient loads. Errorbars represent standard deviation of the mean. 390 

 A linear regression of dose on all predictor variables conducted in R (version 391 

4.0.1) shows that dose does not track linearly with COVID-19 prevalence (p<0.001); 392 

where the median dose received during 100% COVID-19 prevalence was an order 393 

of magnitude higher than at 50% (0.008 PFU vs 0.031PFU) and 0PFU after care with a 394 

ward of 5% COVID-19 patients. 395 
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 Spearman correlation coefficients for input parameters vs viral dose received 396 

are given in Table2. In terms of most important factors determining exposure,  397 

surface cleanliness was found to be the single most important, with hand-to-398 

mouth/eyes/nose transfer efficiency only half as important (correlation coefficient P 399 

= 0.29 vs P = 0.12, respectively) (see Table 3). Surface concentration relates to 400 

cleaning frequency and hence the control case was run for half the surface 401 

bioburden.  402 

Table 3. Spearman correlation coefficients of input parameters with viral dose 403 

Parameter Spearman Correlation Coefficient 

Concentration on surfaces  

(viral particles/cm2) 
0.27 

Transfer efficiency to 
 mouth, eyes, or nose** 

0.08 

Transfer efficiency  
surface to hand 

0.03 

Transfer efficiency  
Hand to surface 

0.01 

Inactivation constant for surfaces -0.02 

Fraction of total hand surface area 

in contact 
-0.02 

Fraction of RNA relating to infectious 
particles* 

0.04 

Fraction of total hand surface area 
used in hand-to-face contact** 

0.03 

Total hand surface area** 0.02 

Inactivation constant for hands 0.02 

 404 

*The spearman correlation coefficient represents instances where contacts with 405 
surfaces that had non-zero concentrations were made 406 
**The spearman correlation coefficient represents instances in which these 407 
parameters were used in a simulation where a contaminated hand-to-face contact 408 
was made after doffing 409 
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Discussion 411 

Key Findings and Generalizability 412 

The model developed in this study indicates that exposure from mistakes after 413 

doffing PPE is likely to be low for a single shift, even for nurses on 100% patient 414 

COVID-19 positive wards. Exposure doses vary by care type as greater frequencies 415 

of surface contacts directly impact on viral loading on gloves and subsequent self-416 

contamination exposures. The dose increases further if error rates in doffing are high 417 

and a high proportion of patients are COVID-19 positive (Figure 3) which highlights 418 

the importance of optimal hand hygiene, especially after PPE doffing. 419 

Surface cleanliness was the most important factor in predicting dose regardless 420 

of doffing mistake likelihood, highlighting the relevance of frequency of cleaning 421 

regimes for managing risk. Halving the surface viral concentration decreased the 422 

exposure 2-fold.  Studies have shown that microorganisms can be readily transferred 423 

between touch sites in a healthcare environment by routine activities(46). Dispersion 424 

of respiratory droplets and aerosols may contaminate less frequently touched 425 

surfaces as well, particularly where the patient is undergoing treatment that 426 

generates aerosols such as continuous positive airway (CPAP) ventilation. Sampling 427 

in COVID-19 wards suggests aerosol deposition is a contributor to surface 428 

contamination, as one study has reported deposition at a distance of 3m from the 429 

patient(11). Previous experimental work aerosolising a bacteria in an air-conditioned 430 

hospital room test-chamber showed that surfaces well outside the patient zone can 431 

become contaminated with infectious material (47, 48). Since the observational 432 

study underlying the Markov chains reveals that at least 10% of staff contacts impact 433 

on such surfaces (excluding door handles), then current lists of high-touch 434 
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surfaces(49) that had historically been prioritised for cleaning, may need to be 435 

revised. 436 

A dose-response curve for SARS-CoV-2 is not yet available, and furthermore the 437 

contribution of each dose (i.e., upper respiratory vs lower respiratory route) to 438 

individual infection risk may still be unclear even if and when it is obtained (28). 439 

Consequently, we have analysed the results from the contact model based on 440 

relative exposures and qualitative trends to try and understand the effect of key 441 

parameters and mitigation strategies. In Figure 4 we plot the risk [0-1] for each of the 442 

doses that the nurses receive. We compare the prediction between the Beta 443 

Poisson dose-response curve presented above against that for HCoV229E. We also 444 

follow the approach from Lei et al. and assume that the dose required for infection 445 

from the upper respiratory tract relating to a mucosal contact is 100 times higher 446 

than a dose reaching the lower respiratory tract. 447 

 448 

Figure 4 Boxplot showing Infection risk (i.e., individual probability of infection for each predicted 449 

dose), using the Beta-Poisson and HCoV-229E exponential dose-response curve (28). Triangles 450 

represent mean values. 451 
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In general, the mean risk is higher than the upper quartile alluding to the 452 

hypothesis that a few nurses may become infected which relates to opportunistic or 453 

rare events under these circumstances. Using a Bernoulli distribution with either a 1 or 454 

a 0 response, representing an infection or not from each one of the predicted 455 

exposure doses and corresponding individual infection risk probabilities, we can 456 

predict the number of nurses infected per 100 nurses. 457 

From the individual risks predicted using the Beta-Poisson curve and under a 458 

baseline assumption of 5% COVID-19 positive patients, 14 care episodes, 10% 459 

chance of self-inoculation we see that 1 nurse is likely to become infected with 460 

another 1 possible based on the mean and standard deviations obtained from 100 461 

Bernoulli simulation runs. Under the worst case scenario which could be roughly 462 

interpreted as an out-of-control epidemic in the community (100% COVID-19 463 

patients, 14 care episodes, 80% chance of self-inoculation), this mean increases to 4 464 

per 100 with a standard deviation of 4 infections.   465 

The results in Figure 4 are illustrative to demonstrate the potential variability in 466 

infection risk that could result from exposures during a shift, but it is important to 467 

recognise that, analysis of infection risk also needs to be interpreted in the context of 468 

the current status of the pandemic within a particular country or region. Emergence 469 

of more transmissible variants are already changing the exposure-risk relationships, 470 

and it is likely that dose-response will be specific to a particular variant. The risk of 471 

infection will also be substantially impacted by the vaccination status within a 472 

community. At the time of writing, 45 million people had received the first vaccine 473 

dose and 34 million the second dose in the UK, which will substantially reduce the 474 

likelihood of infection further than those illustrated here. 475 
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 476 

Regardless of the number of COVID-19 positive patients on a ward, notable 477 

decreases in predicted infection risk were associated with less self-contamination 478 

during doffing. For example, for scenarios involving all COVID-19 patients, the mean 479 

infection risk for 10% probability of self-contamination while doffing was 0.4%, while 480 

the mean infection risk for an 80% probability of self-contamination while doffing was 481 

more than a 420% increase at 2.1%. This emphasizes the importance of adequate 482 

training for PPE use. Less risk of self-contamination will decrease transmission risks, 483 

potentially through sanitizing gloves with alcohol gel before doffing. PPE can be an 484 

effective strategy for mitigating exposure if proper doffing techniques are used. In 485 

addition to training, improvements in PPE design that enhance safety and 486 

expediency of doffing may lower self-contamination rates and therefore improve 487 

PPE as a mitigation strategy (50). For example, fasteners or ties on gowns/masks were 488 

identified as “doffing barriers,” because it was unclear whether these were to be 489 

untied and there were difficulties in reaching these ties. Self-contamination due to 490 

gowns and masks were not specifically addressed in this model. It is possible that 491 

self-contamination during doffing of items other than gloves could increase 492 

potential risks due to incorrect doffing. Shortages of PPE have changed normal 493 

practice where PPE is worn on a sessional basis rather than renewed for each 494 

patient. This means less doffing and potentially less auto-contamination but may 495 

increase the risk of virus transfer within the unit. 496 

 In addition to the importance of safe and proper doffing, the results from this 497 

computational study also emphasize the importance of surface decontamination 498 

and environmental monitoring strategies. The concentration of virus on surfaces was 499 
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the most influential parameter on dose, which is consistent with other surface 500 

exposure studies (31). Whilst SARS-CoV-2 RNA has been detected on surfaces, one 501 

limitation to a molecular approach is the lack of information regarding infectivity. In 502 

a recent study by Zhou et al. (2020), no surface samples demonstrated infectivity. 503 

However, it was noted that the concentrations of SARS-CoV-2 on surfaces were 504 

below the current detection limits for culture methodologies (39). While there are 505 

known relationships between cycle threshold values and probabilities of detecting 506 

viable virus in a sample (12, 51), it is necessary to know what fraction of detected 507 

genome copies relate to viral particles for QMRAs. More data are needed to better 508 

understand how molecular concentrations, even concentrations below detection 509 

limits, relate to infectivity and subsequent infection risk. 510 

Model Uncertainties 511 

The model in this study only evaluates a surface transmission route while in 512 

reality, risks posed to healthcare workers are due combined exposure pathways: air, 513 

droplet, person-to-person, and surface transmission. As the model only evaluates 514 

surface transmission, these infection risks are likely to be an underestimate of the 515 

total risk incurred by healthcare workers over an entire shift. In a study of healthcare 516 

workers in a facility in Wuhan, China, 1.1% (110/9684) were COVID-19 positive (52). 517 

According to CDC, from February 12 – April 9, 2020, 19% (9,282/49,370) of COVID-19 518 

U.S. cases for which healthcare professional status was available, were healthcare 519 

workers (53). However, it is not known how many shifts were associated with these 520 

infection rates. Additionally, we assumed that wards with non-COVID-19 patients did 521 

not have SARS-CoV-2 contamination on surfaces, due to lack of data on SARS-CoV-522 

2 surface contamination beyond COVID-19 wards or patient rooms. There is 523 
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potential for asymptomatically infected healthcare workers to contribute 524 

environmental contamination, especially when considering the relatively long 525 

shedding durations for asymptomatic infections (54). Infected healthcare workers 526 

and environmental contamination could be considered in future extensions of this 527 

model. 528 

The fact that the proportions of healthcare workers with COVID-19 discussed 529 

above are much larger than the infection risks estimated suggest that other 530 

transmission routes could drive additional HCW cases. This would include more 531 

transmission through airborne routes, or HCW to HCW transmission by asymptomatic 532 

cases outside the COVID-19 care environment (55). However, while there continues 533 

to be disagreement over the contribution of each route to overall risk, transmission 534 

routes influence each other, making them all significant in healthcare environments. 535 

For example, surfaces can become contaminated due to deposition of aerosolized 536 

virus. Viruses can later be resuspended from surfaces, contributing to air 537 

contamination. Future work should extend current models with a multi-exposure 538 

pathway approach. This will advance not only our understanding of SARS-CoV-2 539 

transmission but the transmission of pathogens in built environments as a whole.  540 

 541 

It should be noted that there is still a large variation in gowns and masks and 542 

that there is the possibility of double gloving, hence potentially reducing the risk of 543 

self-contamination and the type of material and the design will also to an extent, 544 

determine the contamination risk. 545 

 546 

Finally, a dose-response curve informed by SARS-CoV-1 and HCoV-229E data 547 

was utilized, due to lack of SARS-CoV-2-specific dose-response data. Despite 548 
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limitations related to dose-response, the conclusions from the estimated doses were 549 

consistent with insights from infection risk estimates. Increases in probability of 550 

contamination between care episodes related to increases in dose and most 551 

notably, for scenarios in which more than 5% of patients had COVID-19 (Figure 3).  552 

Conclusion 553 

We propose a model for predicting exposure to healthcare workers from self-554 

contamination during doffing of personal protective equipment over a single shift. 555 

The model estimates the quantity of SARS-CoV-2 virus accretion on gloved hands for 556 

three types of non-aerosol-generating procedures: IV-care, observations and 557 

doctors’ rounds. Once doffing was in progress, staff self-contaminated a fraction of 558 

the times based on patient-load fatigue. Three COVID-19 positive patient scenarios 559 

(5%, 50% and 100% COVID-19 patients) were investigated amounting to a total of 560 

30,000 parameter combinations allowing us to conduct a “what-if” parametric study 561 

and sensitivity analysis. Surface viral concentration was found to be more than twice 562 

as important as any other factor whereby highlighting the importance of time-563 

appropriate cleaning. Transfer efficiency from finger to nose was of secondary 564 

importance, although hand hygiene following doffing is still highly recommended. 565 

Whilst exposure from this type of self-contamination is low per healthcare worker 566 

shift, this highlights that the procedures, if carried out correctly, are generally safe. It 567 

is accepted that other routes of transmission will play a significant role in infection 568 

propagation. 569 
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Tables: 755 
Table 1. Model parameters and their distributions/point values 756 

Parameter Distribution/Point Value Reference 

Surface contamination (!!"#) 

(RNA/ swabbed surface area) 

For infected patient scenarios 

 

Surfaces: 

Triangular (min=3.3 x 103, mid=2.8 x 104, max=6.6 x 104) 

(20) 



  
 

35 
 

 
 

 

Patient: 

Point estimate: 3.3 x 103 

 

Area of any given 

surface("$%&'()*) 

(cm2) 

Triangular (min=5, max=195, mid=100) Assumed 

Fraction of RNA(infective)  

assumed to be infectious 
Uniform (min=0.001, max=0.1) Assumed 

Finger-to-surface transfer 

efficiency (β) 

(fraction) 

Normal (mean=0.118, sd=0.088) 

Left- and right-truncated at 0 and 1, respectively 
(4) 

Surface-to-finger transfer 

efficiency (λ) 

(fraction) 

Normal (mean=0.123, sd=0.068) 

Left- and right-truncated at 0 and 1, respectively 
(4) 

Finger-to-mouth transfer 

efficiency ($%+®-) 

(fraction) 

Normal (mean=0.339, sd=0.1318) 

Left- and right-truncated at 0 and 1, respectively 
(21) 

Glove doffing self-

contamination transfer 

efficiency 

Uniform (min=3 x 10-7, max=0.1) (8) 

T99 on Hands 

 (hours) used for calculating 

inactivation constants 

Uniform 

(min=1, max=8) 
(22, 23) 

T50 on surfaces 

(hours) used for calculating 

inactivation constants 

Uniform 

(min=4.59, max=8.17) 
(7) 

Hand hygiene efficacy: 

alcohol gel (log10 reduction) 
Uniform (min=2, max=4) (24) 

Hand hygiene efficacy: soap 

and water (log10 reduction) 

Normal (mean=1.62, sd=0.12) 

Left-and right-truncated at 0 and 4, respectively 
(25) 

Fraction of total hand surface 

area for hand-to-mouth or 

hand-to-surface contacts 

(&.and &/) 

For in/out events: 

Uniform (min=0.10, max=0.17) 

 

For patient contacts: 

Uniform (min=0.04, max=0.25) 

 

For other surface contacts: 

Uniform (min=0.008, max=0.25) 

 

For hand-to-face contacts: 

Uniform (min=0.008, max=0.012) 

 

(26) 

Total hand surface area ("/) 

(cm2) 
Uniform (min=445, max=535) (19, 27) 

Dose response curve 

parameter* α 

0.36 ± 0.25 

0.12, 19.6 

(28); This 

study 

Dose response curve 

parameter* β 

5.94 ± 11.4 

0.27, 802.1 

(28); This 

study 

 757 
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*Dose response curve parameters are to be used in bootstrapped pairs. Mean ± SD 758 
and minimum and maximum are provided to offer context as to the magnitude of 759 
these parameters.  760 
 761 

  762 
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Table 2 PFU doses to for each care type 763 

QUANTILE IV CARE OBSERVATIONS DRS ROUNDS 

0% 0 0 0 
25% 0 0 0 
50% 0.00184 0.0021 0.00127 
75% 0.0751 0.0651 0.0409 
95% 0.506 0.421 0.234 

 764 

  765 



  
 

38 
 

 
 

 766 

Table 3. Spearman correlation coefficients of input parameters with infection risk 767 

Parameter Spearman Correlation Coefficient 

Concentration on surfaces  
(viral particles/cm2) 

0.27 

Transfer efficiency to 
 mouth, eyes, or nose** 

0.08 

Transfer efficiency  
surface to hand 

0.03 

Transfer efficiency  
Hand to surface 

0.01 

Inactivation constant for surfaces -0.02 

Fraction of total hand surface area 
in contact 

-0.02 

Fraction of RNA relating to infectious 
particles* 

0.04 

Fraction of total hand surface area 
used in hand-to-face contact** 

0.03 

Total hand surface area** 0.02 

Inactivation constant for hands 0.02 

 768 
*The spearman correlation coefficient represents instances where contacts with 769 
surfaces that had non-zero concentrations were made 770 
**The spearman correlation coefficient represents instances in which these 771 
parameters were used in a simulation where a contaminated hand-to-face contact 772 
was made after doffing 773 
 774 
 775 

 776 

 777 

  778 
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Figure captions 779 

 780 

Figure 5 Dose-response risk curve for averaged SARS CoV-1 and Coronavirus 229E response. 781 

Figure 6 Stair plot of example HCW surface contacts during care, where “patient” is a hand-to-patient 782 

contact; “out” and “in” are exit and entrance into the patient room, respectively; “FarPatient” is a 783 

hand-to-far patient surface contact; and “Equipment” is a hand-to-equipment surface contact. 784 

Figure 7: Bar chart showing dose per shift for IV, Observations and doctors’ rounds for different COVID 785 

patient loads. Errorbars represent standard deviation of the mean. 786 

Figure 8 Boxplot showing Infection risk (i.e., individual probability of infection for each predicted 787 

dose), using the Beta-Poisson and HCoV-229E exponential dose-response curve (28). Triangles 788 

represent mean values. 789 

 790 
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