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Abstract
We shed light on how the price explosivity characterising Bitcoin and other major cryp-
tocurrencies is triggered, by employing the Quantile Self-Exciting Threshold Autoregressive
(QSETAR) model. Our results for Bitcoin, Ripple, and Stellar reveal that the explosive
behaviour originates from the extreme upper tails of the return distributions following a
price increase in the preceding day. We do not find evidence of explositivity in the price of
Litecoin.
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1 Introduction

Much has been written about Bitcoin—and other cryptocurrencies—since its inception in
2008. As the related markets keep developing and maturing, it is important to delve more
deeply into the dynamics characterising their functioning (Katsiampa et al. 2019a). For
instance, despite the fact that Bitcoin and other cryptocurrencies have become increasingly
popular, their price behaviour—still extremely volatile—does not seem to have been entirely
comprehended as of yet (King and Koutmos 2021).
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Fig. 1 Time series of prices of Bitcoin, Litecoin, Ripple, and Stellar. This figure plots the time series of prices
of Bitcoin, Litecoin, Ripple, and Stellar. To ensure the readability and informativeness of the chart, we scale
the prices, in a similar fashion to Borri (2019), as follows: we divide Bitcoin by 1,000, and Litecoin by 10;
whereas we multiple both Ripple and Stellar by 10. The sample for each of the sampled cryptocurrencies starts
from the first available daily observation (i.e., 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, for Bitcoin,
Litecoin, Ripple, and Stellar, respectively), until 19/09/2019

During the past three years, cryptocurrency enthusiasts witnessed a number of strong
rallies in the Bitcoin markets. For example, the first rally started sometime in the beginning
of October 2017 when the price of Bitcoin per US dollar (BTC/USD) rose sharply from
around $4,000 to about $20,000 in mid-December—an increase of approximately 400% in
a space of two and a half months. After the spectacular rise, BTC/USD steadily marched
downward to reach its lowest point of just above $3,200. Around the end of March 2019, the
currency unexpectedly staged a comeback. The BTC/USD soared to about $12,000 around
August from approximately $4,000—an increase of roughly 200%. During the periods of
these two powerful market rallies, the Bitcoin market saw no fewer than 10 days of very large
positive price jumps: daily returns of 20.34% realised on 7th December 2017 and 16.72%
observed on 2nd April 2019, for example.1 The “bubble-like” and “explosive” behaviour
of BTC/USD, clearly illustrated in Fig. 1, might be ascribed to the relative newness of the
cryptocurrency markets and the consequent appeal that this generates on speculators (Bouri
et al. 2019).

Originally designed to be an innovative and decentralised method of payment free from
central banks’ intervention, the excitement which Bitcoin sparked triggered off debates on
whether it should be considered as a speculative vehicle (Baur et al. 2018) or an asset class to
hold for hedging or diversification purposes (Panagiotidis et al. 2019). Besides that, scholars
have also devoted particular attention to research on a number of other themes regarding
Bitcoin and cryptocurrencies in general, such as volatility (Katsiampa 2017; Baur andDimpfl
2018), volatility spillovers (Ji et al. 2019; Koutmos 2018; Corbet et al. 2018b), price jump
risk (Chaim and Laurini 2018; Scaillet et al. 2018; Gronwald 2019), tail risk (Gkillas and

1 It is worth noting that our sample ends in September 2019, which is when we started working on this project.
At the time of writing, we were aware of the most recent and still ongoing rallies in the Bitcoin markets. These
rallies had started approximately in December 2020 and had pushed BTC/USD up to just over $40,000 in
January 2021, which is the all-time high. This period is not included in our analysis.
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Katsiampa 2018; Borri 2019), technical trading (Hudson and Urquhart 2021), herding and
feedback trading (King and Koutmos 2021), price efficiency (Urquhart 2016; Nadarajah and
Chu 2017; Bariviera 2017; Khuntia and Pattanayak 2018) and, more broadly, the importance
of information in market activity (Katsiampa et al. 2019b). While much has been written on
the inefficiency and on the exuberance of the cryptocurrency markets, more investigations
are needed to study how observed “bubble-like” behaviours are brought about.

A number of scholars have looked into the explosivity theme characterizing the exuber-
ance in cryptocurrency prices. More specifically, Corbet et al. (2018a) analyse the underline
fundamentals (i.e., blockchain position, hashrate, and liquidity) that can significantly thrive
price growth, and then employ such measures to detect and datestamp Bitcoin and Ethereum
bubbles. The authors observe the existence of short periods inwhich each fundamental clearly
impacts on the price formation, and nevertheless highlight that such effects vanish rapidly.
Fry (2018) corroborates the existence of bubbles in the Bitcoin and Ethereum markets, and
warns that booms and bust can occur even in the absence of a clear bubble. The presence of
bubbles in the Bitcoin market is further supported by Cretarola and Figà-Talamanca (2021)
who attribute their existence to the correlation between market attention (as proxied by the
Google Search Volume Index) and Bitcoin returns. Cagli (2019) widens his sample and
includes some more altcoins in order to detect potential price explosivity and pairwise co-
movements in their explosive behaviour. He finds all cryptocurrencies, except one, to show
explosivity, as well as a number of co-explosive relationships in some altcoins pairs. Bouri
et al. (2019) take a step further and observe that the explosivity in one cryptocurrency is likely
due to the existence of explosive dynamics in other cryptocurrencies. They demonstrate that
co-explosivity is not necessarily driven by the size of the cryptocurrencies. Finally, a recent
paper by Gronwald (2019) reveals overwhelming evidence that cryptocurrency prices are
characterised by (temporary) explosiveness and confirms that some cryptocurrency prices
are explosive even if expressed in terms of Bitcoin and not, as conventionally, in USD. Over-
all, while in general scholars and experts confirm evidence of price explosivity (Corbet et al.
2018a; Fry 2018; Bouri et al. 2019; Cagli 2019), none of them however shed light on how
the behaviour is brought about.

In this article, using the Quantile Self-Exciting Threshold Autoregressive (QSETAR)
model, we characterise the bubble-like behaviour in the prices of Bitcoin and three other
major cryptocurrencies: Litecoin, Ripple,2 and Stellar.3 The QSETAR model of Cai and
Stander (2008) specifies the cryptocurrency return at the different quantiles of the return
distribution to follow different autoregressive processes according to the pre-defined thresh-
olds. Specifically, our framework examines how the cryptocurrency markets react to past
price information when returns are located at the different quantiles with added flexibility
that allows the reaction to vary depending on the state in which the markets were previously.
The technique captures a more realistic trading behaviour: cryptocurrency traders enter the
markets after the market direction has become clear. Evidence of price explosivity uncovered
in this paper goes beyond the findings documented in Corbet et al. (2018a), Fry (2018), Cagli
(2019).

Our empirical results for Bitcoin, Ripple, and Stellar show that the explosive behaviour
originates only from the extreme right tail of the return distribution following a price increase
in the preceding day. Taking Bitcoin as an example, we find that when the return is located
at the 95th percentile after the return on Bitcoin turns positive on the preceding day, a rise of

2 In this paper, for ease of readability, we use the term ‘Ripple’ (i.e., the name of a technology company) to
refer to the cryptocurrency named ‘XRP’. Indeed, ‘XRP’ is Ripple’s cryptocurrency.
3 The term ‘Stellar’ is commonly used to identify Stellar’s cryptocurrency, whose symbol is ‘XLM’.
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1% in the return is estimated to push the price up by a further 1.30%.We do not find evidence
of explosivity in the price of Litecoin, however.

In the following section, we present an exposition of the QSETAR model of Cai and
Stander (2008). Sections 3 and 4 discuss our sample and the empirical results, respectively.
Section 5 concludes.

2 Methodology

A general quantile self-exciting threshold autogressive (QSETAR) time series model (Cai
and Stander 2008) is defined by

qτ
rt |r t−1

=
m+1∑

i=1

(βτ
i0 + βτ

i1rt−1 + . . . + βτ
i prt−p)I[rt−dτ ∈�i ] (1)

where �i = (wi−1, wi ], i = 1, . . . ,m, and �m+1 = (wm, wm+1), where m ≥ 0 and
−∞ = w0 < w1 < · · · < wm+1 = ∞ are thresholds, p is the order of the model, r t−1 =
(rt−1, rt−2, . . . , r0)T , βτ

i j for j = 0, 1, . . . , p and dτ are model parameters depending on
τ . Moreover, τ ∈ (0, 1) is the probability such that P(rt < qτ

rt |r t−1
|r t−1) = τ and dτ is

the delay parameter of the model. Therefore, qτ
rt |r t−1

is the τ th conditional quantile of the
distribution of rt .

Let βτ = (βτ
10, . . . , β

τ
1p, . . . , β

τ
m+10, . . . , β

τ
m+1p, d

τ )T . Then βτ may be estimated by
solving the following minimisation problem (Koenker 2005):

min
βτ

n∑

k+1

ρτ (ut ) (2)

where ρτ (ut ) = ut (τ − I[ut<0]), and

ut = rt − qτ
rt |rt−1

= rt −
m+1∑

i=1

(
βτ
i0 + βτ

i1rt−1 + · · · + βτ
i prt−p

)
I[rt−dτ ∈�i ] ,

in which k = max{p, dmax} and dmax is the maximum value of the delay parameter that
one would like to consider. It is worth noting that Yu et al. (2010) suggest that for threshold
GARCH models, dmax = 3 would be a reasonable choice. In this paper, we let dmax = 5 to
cover a wider range of possible values of the delay parameter.

Since the delay parameter dτ is an integer, it is not straightforward to solve the minimi-
sation problem on the parameter space. However, it is worth noting that minimizing Eq. (2)
is equivalent to maximising

�(rk+1, . . . , rn | βτ , rk) = τ n−k(1 − τ)n−ke−∑n
t=k+1 ρτ (ut ) . (3)

This expression can be viewed as the likelihood function of rk+1, rk+2, . . . , rn given rk
= (rk, rk−1, . . . , r0)� if we assume that rt follows the threshold model

rt =
m+1∑

i=1

(
βτ
i0 + βτ

i1rt−1 + · · · + βτ
i prt−p + ετ

t

)
I[rt−dτ ∈�i ] ,

where ετ
t are iid asymmetric Laplace random variables with density function f (ε) =

τ(1− τ)e−ρτ (ε) . Therefore, the parameter estimates obtained by maximising the likelihood
function, shown in Eq. (3), are the same as those obtained by minimising Eq. (2).
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Note that the involvement of the delay parameter dτ will also make it difficult to solve
the maximisation problem on the parameter space straightforward. We therefore adopt the
Bayesian approach of Cai and Stander (2008) for the parameter estimation, whereby the
posterior density function is given by

π(βτ |r) ∝ �(rk+1, . . . , rn |βτ , rk)π(βτ ) = τ n−k(1 − τ)n−ke−∑n
t=k+1 ρτ (ut )π(βτ )

where π(βτ ) is the prior density function.
The prior density functionπ(βτ ) allows us tomake use of possible prior information about

the parameters when estimating parameters. Cai and Stander (2008) showed that the posterior
density function is well defined on the parameter space for any prior density function. This
is important because it guarantees that a Markov chain Monte Carlo (MCMC) method can
be used for parameter estimation.

Following the work of Cai and Stander (2008), we employ a flat prior for the parameters
and hence no prior information about the parameters is used for the parameter estimation.
This is in fact one of the advantages of their method as in reality we usually do not have any
information on the parameters. The basic idea of this method is as follows. First, given τ and
the current parameter value βτ , the next possible parameter value, denoted by β ′, is proposed
in which the delay parameter d ′ is simulated from a uniform distribution on {1, . . . , dmax },
and any other element in β ′ is simulated from a normal distribution, centered at its current
value given in βτ . Then, the proposed value β ′ is accepted as the next parameter value with a

probability given by min
{

π(β ′|r)
π(βτ |r) , 1

}
. By repeating these steps multiple times, a sequence of

model parameters can be generated. TheMarkov chain theory guarantees that the equilibrium
distribution of the Markov chain is the posterior distribution defined by π(βτ |r).4

3 Data

This article focuses on four cryptocurrencies, currently actively traded in the markets: Bit-
coin, Litecoin, Ripple, and Stellar. In selecting the cryptocurrencies to be included in our
investigation, we adopt the following criteria. First, based on the data on coinmarketcap.com
as of 19/9/2019, we focus on the top ten most capitalised crytpocurrencies which cover about
89% of the entire crytpocurrency markets. Second, to ensure a sufficiently long time series,
we choose only the cryptocurrencies that have been actively traded during the last five years.
After the filtering process, we end up with four cryptocurrencies: Bitcoin, Litecoin, Ripple,
and Stellar.

Daily dollar returns on the cryptocurrencies are computed using price data collected either
from coinmarketcap.com or www.CryptoCompare.com. Specifically, we rely on coinmar-
ketcap.com to gather data for Litecoin, Ripple, and Stellar because this website provides
cryptocurrency prices as the volume weighted average of hundreds cross currency pairs con-
verted to USD (Wei 2018). The downside of it, however, is that prices are only available from
April 2013, which is not ideal for Bitcoin provided that this pioneer cryptocurrency started
being traded early in 2010. Therefore, limited to this case, we rely on www.CryptoCompare.
com as the website offers daily information starting from 17/7/2010—that is when Bitcoin
was first traded. The sample for each of the cryptocurrencies thus starts from the first available
daily observation and ends on 19/9/2019.More specifically, our samples for Bitcoin, Litecoin,
Ripple, and Stellar start from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respectively.

4 See Brooks (1998), for example.
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Table 1 Summary statistics of cryptocurrency returns

Bitcoin Litecoin Ripple Stellar

N 3351 2335 2237 1871

Mean 0.0037 0.0012 0.0018 0.0019

Median 0.0019 −0.0003 −0.0027 −0.0035

Std. deviation 0.0665 0.0653 0.0740 0.0769

Skewness 2.9480 1.7170 2.0510 1.9870

Std. error of skewness 0.0420 0.0510 0.0520 0.0570

Kurtosis 94.3830 25.2090 29.0410 16.0710

Std. error of Kurtosis 0.0850 0.1010 0.1030 0.1130

Minimum −0.8488 −0.5139 −0.6163 −0.3664

Maximum 1.4744 0.8290 1.0274 0.7231

This table reports summary statistics for Bitcoin, Litecoin, Ripple, and Stellar. Our samples for Bitcoin,
Litecoin, Ripple, and Stellar start from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respectively. The time
series for all the cryptocurrencies in the sample ends on 19/9/2019

Table 2 Quantiles of
cryptocurrency returns

τ Bitcoin Litecoin Ripple Stellar

0.05 −0.0770 −0.0839 −0.0923 −0.1024

0.25 −0.0136 −0.0206 −0.0230 −0.0310

0.50 0.0019 −0.0003 −0.0027 −0.0035

0.75 0.0218 0.0194 0.0203 0.0267

0.95 0.0871 0.0912 0.1043 0.1166

This table reports the distributions of returns on Bitcoin, Litecoin, Rip-
ple, and Stellar. We report the return values at the 5th, 25th, 50th,
75th, and 95th quantiles. Our samples for Bitcoin, Litecoin, Ripple, and
Stellar start from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respec-
tively. The time series for all the cryptocurrencies in the sample ends on
19/9/2019

Table 1 shows the number of observations available for each of the sampled cryptocurrencies
along with some commonly used summary statistics. According to the reported statistics,
Bitcoin has the highest daily mean return of around 0.4% and is the only cryptocurrency
in the sample with positive median. The skewness and the kurtosis measures for all the
cryptocurrencies in the sample point to the return distributions that are right-skewed and fat-
tailed. Bitcoin, once again, has the highest values of both skewness and kurtosis as well as the
largest maximum and the smallest minimum values. Complementing the descriptive statistics
in Table 1, Table 2 reports the empirical distributions of returns, for each cryptocurrency, at
different quantiles.

4 Empirical analysis and results

WeestimateEq. (1), settingm = 1, p = 1, . . . , 7,dmax = 5, τ = 0.05, 0.25, 0.50, 0.75, 0.95.
We fixm = 1 because we are only interested in the conditional quantile function of the cryp-
tocurrency return processwhen, subject to the delay parameter, the past return is located either
above or below a pre-defined threshold. For each cryptocurrency, we employ two threshold
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Table 3 AIC statistics when the threshold is w1 = 0

Bitcoin

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.502108 7.629882 7.567755 7.982147 7.212924

2 8.516421 9.367684 9.568465 9.864459 9.198823

3 10.739352 11.322411 11.569194 11.858959 11.324587

4 12.599169 13.288983 13.588904 13.699591 13.119390

5 14.579397 15.343937 15.574193 15.739112 15.371966

6 16.498389 17.269221 17.575322 17.725333 17.965440

7 18.643327 19.343978 19.667224 19.781388 19.299285

Litecoin

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.309759 7.177583 7.400427 7.570019 7.029870

2 8.554905 9.103804 9.420087 9.561237 9.343828

3 10.343398 11.113302 11.380647 11.572815 11.497163

4 12.357591 13.088285 13.391061 13.562340 13.110089

5 14.312543 15.135724 15.383583 15.479943 15.243180

6 16.395870 17.121087 17.395170 17.521574 17.428193

7 18.336617 19.099428 19.396694 19.622497 18.999818

Ripple

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.265001 7.203146 7.404664 7.265546 6.544424

2 8.464208 9.069515 9.474161 9.556994 8.581126

3 10.204962 11.175128 11.490708 11.265592 10.597363

4 12.345551 13.077693 13.416451 13.805275 12.715281

5 14.159573 15.114419 15.572170 15.636419 15.634413

6 16.255371 17.217220 17.392986 17.523048 17.328143

7 18.858845 19.083811 19.387955 19.563025 19.472317

Stellar

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.183000 7.056618 7.401042 7.527477 6.734905

2 8.616877 9.045981 9.405205 9.512064 8.667104

3 10.722696 11.076436 11.437971 11.750134 11.187539

4 12.044138 13.079619 13.430794 13.514415 13.465772

5 14.067955 15.092446 15.612555 16.075160 15.087909

6 16.089324 17.158386 17.434216 17.486799 17.358809

7 18.406601 19.038180 19.400287 19.580555 19.544746

This table shows the AIC statistics—for each quantile τ and p = 1, ..., 7—when the threshold value is w1 = 0
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Table 4 AIC statistics when the threshold is the median return

Bitcoin

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.558470 7.401306 7.616606 7.811130 7.237105

2 8.712559 9.377810 9.610050 9.769683 9.469767

3 10.616625 11.374364 11.609519 11.836909 11.562212

4 12.759651 13.365491 13.637782 13.894548 13.662482

5 14.537339 15.315875 15.617206 15.774277 15.434152

6 16.534188 17.319596 17.637874 17.830242 17.402648

7 18.694055 19.332562 19.608678 19.787000 19.311141

Litecoin

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.287696 7.068629 7.438560 7.557180 6.984493

2 8.493792 9.070666 9.356818 9.613444 9.924253

3 10.146881 11.050838 11.356131 11.752736 11.710226

4 12.154898 13.143162 13.355349 13.527987 13.620087

5 14.151685 15.123064 15.401824 15.480751 15.616061

6 16.095184 17.138353 17.359025 17.520704 17.356802

7 18.546042 19.076425 19.369570 19.526664 19.432512

Ripple

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.112647 7.021669 7.350633 7.645379 6.497065

2 8.174058 9.047064 9.397760 9.506547 9.251517

3 10.278312 11.019051 11.348291 11.513425 11.406681

4 12.830842 13.078399 13.350471 13.505912 13.777331

5 14.187123 15.006143 15.373361 15.517410 15.169858

6 16.114265 17.008317 17.344003 17.534641 17.712271

7 18.230105 19.025180 19.526577 19.517259 19.315860

Stellar

p\τ 0.05 0.25 0.50 0.75 0.95

1 6.079600 7.056956 7.356917 7.557868 6.925788

2 8.107468 9.048540 9.409459 9.485658 8.623965

3 9.911982 10.981165 11.357618 11.588873 11.567617

4 11.984077 13.016580 13.357567 13.706924 13.672293

5 14.085852 15.004719 15.436294 15.524615 15.305201

6 16.028472 16.988928 17.352968 17.619626 17.016013

7 18.137357 18.978120 19.447552 19.498815 20.011219

This table shows the AIC statistics—for each quantile τ and p = 1, ..., 7—when the threshold value w1 is the
median return
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values in our analysis:w1 = 0 and the cryptocurrency’s median return. The threshold of zero
allows the empirical analysis to mimic the real-world trading behaviour where cryptocur-
rency traders pay attention to whether or not the markets were positive or negative in the
previous day.5 In addition, we also experiment with the cryptocurrency’s median return as a
threshold because it is conventional for researchers employing the quantile regression tech-
nique to estimate the response of the dependent variable to the covariates when the dependent
variable is located at the median.

For each value of p, and each quantile level τ , where τ = 0.05, 0.25, 0.50, 0.75, 0.95,
we run—for each cryptocurrency—the MCMC estimation method from which we obtain, in
total, 140 estimated models. For each estimated model, we collect 250 posterior samples for
each parameter after a burn-in period. Then, for the delay parameter, we estimate its value by
using the mode of its posterior samples and, for other parameters, we estimate their values
by using the mean of the respective posterior samples. We also calculate the corresponding
95% credible interval using the 2.5% and 97.5% quantiles of these posterior samples. The
credible interval is an interval within which the model parameter falls with a 0.95 probability.
Hence, if the interval contains number 0, then we can say that the parameter is not significant.
Moreover, for each estimated model, we also obtain the AIC statistics, according to which
we find that the best fitted models—for both thresholds and for all the cryptocurrencies
investigated—are the ones with p = 1 (see, in this regard, Tables 3 and 4). This preliminary
check, therefore, leads us to formalize the following model specification:

qτ
rt |rt−1

=
2∑

i=1

(
βτ
i0 + βτ

i1rt−1
)
I[rt−dτ ∈�i ]. (4)

We examine the model fit by employing the following procedures. Using the fitted models,
we obtained the estimated quantiles at levels τ = 0.05, 0.25, 0.5, 0.75, 0.95. In Fig. 2, we
present the observed return of the cryptocurrency, along with the estimated quantiles at the
5% and the 95% levels in black, green, and yellow, respectively. It can be seen that these
quantile curves reflect the evolution of each cryptocurrency in our sample. In particular, Fig.
2 demonstrates that 5% of the return realisation for each cryptocurrency in the sample, as
represented by the black line, are expected to be higher than the yellow line and 5% of them
are expected to be lower than the green line.

To test this, we calculate the percentages of the observed cryptocurrency that are under
each of the five estimated quantile curves. We then calculate the mean squared errors (MSE)
to measure the differences between these percentages and the actual τ value. We find that
the MSE values are given by 0.00036, 0.00094, 0.00148 and 0.00265 for Bitcoin, Litecoin,
Ripple and Stellar, respectively—suggesting that these models explain the data well.

We report our estimation results in Tables 5, 6, and 7. For each τ value, the means of
the posterior samples of β11 and β21 are reported in the top row, and the associated 95%
credible intervals are reported in the corresponding second and third rows. According to the
results reported in Tables 5 and 6, we find no evidence of the explosive price behaviour in
the Litecoin market while the evidence exists in the markets of the other cryptocurrencies,
depending on the value of w1. When w1 = 0, the means of the posterior distributions of β11

and β21 for Bitcoin and Ripple, seen in Table 5, indicate that the explosive price behaviour is
triggered when the rally, following the previous day’s price increase, is strong enough for the
returns to reach the 95th quantile. As an example, the value of β21 of 1.2916 for Bitcoin at

5 This approach has earlier been adopted by Cai and Stander (2008) who investigate the time series property
of the USGNP using the QSETARmodel, also settingm = 1. In their application, the US economy is assumed
to behave in a different manner after contraction and expansion.
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Fig. 2 Estimated quantile curves at the 5% and the 95%Quantiles. Estimated quantile curves at the 5% (green)
and 95% (yellow) levels for each cryptocurrency, where the black curves are the observed cryptocurrency
—5% of which are expected to be above the yellow line, and 5% of which are expected to be below the green
line

τ = 0.95, reported in Table 5, indicates that one day after the return on Bitcoin turns positive,
an increase of 1% in the return—when the return is located at the 95th percentile—results in
a further increase in return of around 1.30%.6 When the threshold is the median return, the
findings reported in Table 6 suggest that only Ripple and Stellar exhibit the explosive price
behaviour at the 95th quantile one day after the previous day’s return crosses the median
return from below.We find no evidence of explosivity in the Bitcoin nor the Litecoin markets
when the value of w1 is set to be the cryptocurrency’s median return.

Our empirical analysis complements and confirms previous research on price explosiv-
ity and co-explosivity by Bouri et al. (2019), Cagli (2019), and Gronwald (2021). While

6 The estimated value of β21 is statistically significant because the credible interval for β21 does not contain
the value of 0. In other words, the probability for β21 taking positive values is 95%.
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Table 5 The QSETAR estimation results

τ Bitcoin Litecoin Ripple Stellar

β11 β21 β11 β21 β11 β21 β11 β21

0.05 0.9855 −0.6140 0.4085 −0.4334 0.4761 −0.7138 0.2939 −0.5502

−0.3503 −1.8599 −0.8130 −1.6651 −0.4759 −2.4586 −0.8247 −2.8612

2.7027 0.3126 2.2672 0.4692 2.5605 0.3373 2.2639 0.4234

0.25 0.2623 −0.1867 0.0700 −0.1081 0.0869 −0.1634 −0.0943 −0.1713

−0.3371 −0.7970 −0.5166 −0.5637 −0.4961 −0.6801 −0.6292 −0.7942

1.0691 0.2819 0.7971 0.3213 1.0846 0.3200 0.4969 0.3547

0.50 0.0064 0.0141 −0.0611 −0.0710 −0.0395 0.0087 −0.1284 −0.0594

−0.3996 −0.3174 −0.4470 −0.5079 −0.4890 −0.3332 −0.5955 −0.5000

0.4250 0.4661 0.3938 0.3846 0.3624 0.4690 0.3423 0.4446

0.75 −0.2447 0.3145 −0.2442 0.4009 −0.3373 0.6761 −0.1883 0.3748

−0.9714 −0.2530 −0.8415 −0.3302 −0.9310 −0.1877 −0.7581 −0.3782

0.2869 1.0992 0.4006 1.3946 0.2096 1.7699 0.3187 1.4293

0.95 −0.7315 1.2916 −0.6520 1.0852 −0.8664 1.7142 −0.5724 1.6340

−2.2899 0.0161 −2.2344 −0.3370 −2.5596 0.1047 −2.5536 −0.0525

0.1806 3.4924 0.6113 2.8898 0.4952 3.5153 0.8000 3.7254

This table reports the estimated parameter values for the QSETAR model shown in Eq. (4) where p = 1,
d = 1, and w1 = 0. For each value of τ , where τ = 0.05, 0.25, 0.50, 0.75, 0.95, we report the means of the
posterior distributions of parameters β11 and β21 (first row) along with the credible intervals which are shown
below the corresponding mean estimates (second and third rows). Bold font is used to highlight statistical
significance

Table 6 The QSETAR estimation results

τ Bitcoin Litecoin Ripple Stellar

β11 β21 β11 β21 β11 β21 β11 β21

0.05 0.8701 −0.5122 0.3414 −0.5104 0.4652 −0.5437 0.2950 −0.4006

−0.2267 −1.5665 −0.9416 −1.9766 −0.7190 −1.6411 −0.8194 −1.5886

2.3418 0.3224 1.9459 0.5003 2.0469 0.2439 2.8161 0.2792

0.25 0.1585 −0.1348 0.0752 −0.1505 0.0370 −0.1550 −0.0831 −0.1703

−0.4028 −0.5866 −0.4801 −0.7362 −0.5007 −0.6360 −0.6592 −0.7836

0.9300 0.2508 0.9163 0.2512 0.7249 0.3089 0.4746 0.3413

0.50 0.0030 −0.0180 −0.0552 −0.0520 −0.0260 −0.0282 −0.1206 −0.0901

−0.4085 −0.4304 −0.4654 −0.5033 −0.4120 −0.4120 −0.6023 −0.5318

0.4114 0.4456 0.3995 0.4097 0.3969 0.3854 0.4409 0.3946

0.75 −0.2447 0.3123 −0.2498 0.3718 −0.2208 0.4323 −0.2096 0.3782

−0.8362 −0.2455 −0.9202 −0.3446 −0.8281 −0.2272 −0.9726 −0.2552

0.3237 0.7988 0.3299 1.1334 0.3664 1.4876 0.3977 1.5732

0.95 −0.8230 1.1721 −0.8410 1.2731 −0.8513 1.7145 −0.8104 1.6691

−2.3601 −0.0422 −3.6114 −0.1570 −2.5309 0.3175 −2.6314 0.1740

0.2966 3.2214 0.4896 3.4577 0.3208 3.6196 0.7097 3.7097

This table reports the estimated parameter values for the QSETAR model shown in Eq. (4) where p = 1,
d = 1, and w1 is the median of the cryptocurrency return distribution. For each value of τ , where τ =
0.05, 0.25, 0.50, 0.75, 0.95, we report the means of the posterior distributions of parameters β11 and β21 (first
row) alongwith the corresponding credible intervals which are shown below the correspondingmean estimates
(second and third rows). Bold font is used to highlight statistical significance
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both Bouri et al. (2019) and Cagli (2019) report the existence of price explosivity and co-
explovisivity among major cryptocurrencies, their papers stop short of examining the trigger
behind the explosive behaviour. Our QSETAR estimation results show that the explosive
behaviour is prompted by strong conviction by the market participants. Following previous
day’s price increase, the prices of Bitcoin and Ripple become explosive when their returns
reach 8.71% and 10.43%, respectively. As for Stellar, the explosive behaviour is triggered
only when the return reaches 11.66% and the previous day’s return cross the median value
of around −0.35% from below.

The evidence shows that the explosive price behaviour was triggered in a number of
occasions. To provide a number of examples, we can report that Bitcoin experienced a burst
of explosivity on 22nd and 23rd November 2011, that is one day after the previous day’s
return crossed the threshold of zero (i.e., moving from negative to positive) from −4.8%
on 20th November to 5.8% on 21st November. During the two days between 22nd and
23rd November 2011, the returns on Bitcoin jumped by around 34%, having reached 15.2%
on 22nd November and then rallied a further 18.7% on 23rd November. Similarly, Ripple
showed explosive behaviour from 24th November 2013, namely one day after the previous
day’s return crossed the w1 = 0 threshold, gaining approximately 112% during the three-
day period between 24th and 26th November 2013. The explosive behaviour of Stellar was
triggered on 4th May 2017 when a sharp market rally occurred one day after the previous
day’s return crossed the median return from below, leading to four consecutive days of price
advance which resulted in the holding-period return of over 200%. All of the explosive
episodes described share a common trait: it is triggered when the return reaches the 95th
quantile of the return distribution one day after the return crosses the threshold from below.

Table 7 shows that the delay parameter varies according to the quantile level. Our results
highlight, as well, that the delay parameters are almost identical either when the threshold
is w1 = 0 or the median return. Moreover, when τ = 0.95, we find dτ = 1 for all returns,
which suggests the following: it takes one day after the cryptocurrency return crosses the
threshold (i.e., 0 and themedian return, depending on the specification) for the autoregressive
coefficient (i.e,. the market reaction to the previous day’s price information) to switch from
β11 to β21 if the return crosses the threshold from below and from β21 to β11 if the return
crosses the threshold from above.

To demonstrate the superior performance of the QSETARmodel, we compare its coverage
probabilities of the estimated quantiles with those calculated using the conventional SETAR
model whose focus is on the mean return. A good model is expected to deliver the estimated
coverage probabilities of the quantile estimates that are closer to the actual quantile level
τ . We estimate the SETAR model with the same specification as the QSETAR in Eq. (4) as
follows:

rt =
2∑

i=1

(βi0 + βi1rt−1 + hiεt ) I[rt−1∈�i ] (5)

where εt ∼ N (0, 1) and h2i is the conditional variance of rt in the i th regime.
We report the coverage probabilities of the estimated quantiles for both the QSETAR and

the SETAR models in Table 8.7 Our results reveal that the QSETAR model performs better
than the SETAR model according to the the coverage probabilities—especially at the 25th

7 The coverage probability is estimated as follows. Let q
τi
rt |rt−1

be the τi th conditional quantile of rt , where

t = 1, ..., n. Let n
τi
1 = ∑n

t=1 I [rt ≤ q
τi
rt |rt−1

], where I [.] is the indicator function. Then the coverage

probability of the τi th quantile estimates is estimated by n
τi
1 /n.
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Table 7 Estimated values of the
delay parameter d

w1 = 0

τ Bitcoin Litecoin Ripple Stellar

0.05 1 2 2 2

0.25 2 3 2 3

0.50 3 3 3 3

0.75 2 2 1 2

0.95 1 1 1 1

w1 = median return

τ Bitcoin Litecoin Ripple Stellar

0.05 1 2 2 2

0.25 2 3 2 3

0.50 3 3 3 3

0.75 2 2 2 2

0.95 1 1 1 1

This table shows the estimated values of d—when the threshold value is
either w1 = 0 (top panel) or the median return (bottom panel)—for the
best estimated models according to the AIC

Table 8 Coverage probabilities
for the quantile estimates from
QSETAR and SETAR

τ 0.05 0.25 0.50 0.75 0.95 RMSE

QSETAR

Bitcoin 0.0358 0.2181 0.5127 0.7660 0.9624 0.0423

Litecoin 0.0313 0.2266 0.5032 0.7807 0.9670 0.0463

Ripple 0.0304 0.2226 0.5150 0.7836 0.9660 0.0524

Stellar 0.0283 0.2261 0.5131 0.7686 0.9679 0.0434

SETAR

Bitcoin 0.0355 0.1197 0.5066 0.8821 0.9660 0.1869

Litecoin 0.0343 0.1422 0.5107 0.8732 0.9649 0.1654

Ripple 0.0322 0.1346 0.5407 0.8703 0.9566 0.1726

Stellar 0.0380 0.1626 0.5257 0.8455 0.9535 0.1326

This table reports the coverage probabilities for the quantile estimates
from QSETAR and SETAR, where the coverage probability is estimated
as follows. Let q

τi
rt |rt−1

be the τi th conditional quantile of rt , where t =
1, ..., n. Let n

τi
1 = ∑n

t=1 I [rt ≤ q
τi
rt |rt−1

], where I [.] is the indicator

function. Then the coverage probability of the τi th quantile estimates is
estimated by n

τi
1 /n

and the 75th quantiles—and the root-mean-square error (RMSE). Specifically, the RMSE
results also suggest that the QSETAR model outperforms the SETAR model and therefore
better suits the examination of price explosivity in the cryptocurrency markets.
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5 Concluding remarks

In this paper, we characterise the bubble-like behaviour of prices of four major cryptocur-
rencies using the QSETAR model of Cai and Stander (2008). The technique is capable of
characterising the behaviour of nonstationary time series with very large, but not necessar-
ily symmetric, variations. We experiment with two threshold values: the cryptocurrencies’
median returns and zero.Models for each cryptocurrency in the sample are subject to rigorous
diagnostic tests. The results show that the QSETAR models fit the data very well and that
they outperform the conventional SETAR model.

Our empirical analysis reveals that the explosive behaviour in the markets for Bitcoin,
Ripple, and Stellar originates from the extreme upper tails of the return distributions. Specif-
ically, our results suggest that one day following a price increase, explosivity is triggered
when the market rallies are sufficiently strong, putting the cryptocurrency returns in the 95th
quantile of the return distributions. We find no evidence of price explosivity in the markets
for Litecoin.

The findings in this article echo concerns raised by researchers such as Gandal et al.
(2018) that cryptocurrency markets appear to be prone to excessive speculation and price
manipulation. The extreme price moves frequently observed in the markets seem to suggest
that market participants behave irrationally, reacting strongly to unanticipated information,
thereby causing unwarranted, sustained periods of strong market rallies. The existence of
price explosivity is perhaps the alluring quality of cryptocurrencies which have attracted
investors’ attention. As rising prices become evident, more cryptocurrency traders joins the
rallies, putting upward pressure on prices, leading to frothy markets.
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