
sensors

Article

An Energy-Friendly Scheduler for Edge Computing Systems

Alejandro Llorens-Carrodeguas 1 , Stefanos G. Sagkriotis 2 , Cristina Cervelló-Pastor 1,*
and Dimitrios P. Pezaros 2

����������
�������

Citation: Llorens-Carrodeguas, A.;

Sagkriotis, S.G.; Cervelló-Pastor, C.;

Pezaros, D.P. An Energy-Friendly

Scheduler for Edge Computing

Systems. Sensors 2021, 21, 7151.

https://doi.org/10.3390/s21217151

Academic Editor: Jiankun Hu

Received: 7 October 2021

Accepted: 26 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), 08860 Castelldefels, Spain;
alejandro.llorens@entel.upc.edu

2 School of Computing Science, University of Glasgow (UoG), Glasgow G12 8QQ, UK;
s.sagkriotis.1@research.gla.ac.uk (S.G.S.); Dimitrios.Pezaros@glasgow.ac.uk (D.P.P.)

* Correspondence: cristina@entel.upc.edu

Abstract: The deployment of modern applications, like massive Internet of Things (IoT), poses a
combination of challenges that service providers need to overcome: high availability of the offered
services, low latency, and low energy consumption. To overcome these challenges, service providers
have been placing computing infrastructure close to the end users, at the edge of the network. In this
vein, single board computer (SBC) clusters have gained attention due to their low cost, low energy
consumption, and easy programmability. A subset of IoT applications requires the deployment
of battery-powered SBCs, or clusters thereof. More recently, the deployment of services on SBC
clusters has been automated through the use of containers. The management of these containers
is performed by orchestration platforms, like Kubernetes. However, orchestration platforms do
not consider remaining energy levels for their placement decisions and therefore are not optimized
for energy-constrained environments. In this study, we propose a scheduler that is optimised for
energy-constrained SBC clusters and operates within Kubernetes. Through comparison with the
available schedulers we achieved 23% fewer event rejections, 83% less deadline violations, and
approximately a 59% reduction of the consumed energy throughout the cluster.

Keywords: fog computing; IoT; resilience; scheduling; single board computer; state of charge

1. Introduction

Modern services, such as the Internet of Things (IoT), cooperative sensing, augmented
reality, and Industry 4.0 have stringent requirements in terms of latency, availability,
resilience and scalability [1]. To accommodate the latency requirements, the processing for
these services is placed near the end users, at the edge of fog networks [2]. To satisfy the
requirements for availability, resilience, and scalability, several nodes that inter-operate
formulate clusters that enable failure-recovery and accumulative processing capacity.

Efficient management of the deployed clusters and seamless scalability is achieved
by coupling network paradigms like edge computing (EC) and fog computing (FC) with
containerization technologies and network function virtualization (NFV) [3]. Containers
allow light virtualization by enclosing only the necessary code dependencies for the
execution of a program. By using NFV, the various network functions (NFs), e.g., a firewall
or a traffic control module, are deployed in a virtualized manner and can therefore be
executed in a heterogeneous set of nodes. By using virtualization for the running NFs and
the deployed services, the cluster of nodes becomes more versatile, and the deployment of
services is simplified and therefore accelerated. Additionally, future migration to newer
generations of hardware becomes significantly less time-consuming [4].

Single-board computers (SBCs) have become a mainstream choice for IoT environ-
ments [5]. In the past few years, the hardware capabilities of SBCs have improved sig-
nificantly. Raspberry Pi 1 Model B launched in 2012 with a 700 MHz single core central
processing unit (CPU). The current generation of Raspberry Pi has a 1.5 GHz quad-core

Sensors 2021, 21, 7151. https://doi.org/10.3390/s21217151 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4329-7962
https://orcid.org/0000-0001-9438-3636
https://orcid.org/0000-0002-8056-0774
https://orcid.org/0000-0003-0939-378X
https://doi.org/10.3390/s21217151
https://doi.org/10.3390/s21217151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217151
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217151?type=check_update&version=2

Sensors 2021, 21, 7151 2 of 25

CPU [6,7]. The available RAM has also grown from 512 MB to 8 GB. These changes have
increased the adoption rate of SBCs as edge nodes for FC and EC, either as standalone
devices or in clusters. This is evident by the variety of scenarios that utilize these devices:
low-latency cyber-physical systems, resource-constrained computing, and next-generation
data centers [8].

SBC clusters offer connectivity with a wide range of sensors and devices and therefore
present new opportunities for the deployment of modern applications and services (e.g.,
connected vehicles, smart grids and e-health monitoring systems). Many use cases require
location-specific measurements to meet latency-bound tasks, as the devices are co-located
with a control device or within a monitored environment [9]. Such use cases were not
easy to implement with previously available hardware, which would either provide good
connectivity and reduced computational resources, or vice versa. Moreover, the small
size of SBCs enables a higher density of devices, lower cost and higher energy efficiency
when covering huge areas [6]. However, developing for such devices should always take
into account the constraints in computational resources, which are not on par with more
expensive conventional CPUs and full-scale computers.

Deploying and managing several applications in a cluster can be a laborious and
error-prone task, even if the application is containerized. Therefore, a platform capable
of orchestrating, managing, and ensuring the life cycle of containers and applications
is necessary. One of the most prominent platforms for managing containers is Kuber-
netes [10]. Kubernetes encloses one or more containers within a different structure, called a
pod, which is integrated in the rest of the Kubernetes API. Originally designed for data
center environments, Kubernetes performs scheduling decisions based on key performance
resources, e.g., CPU and memory utilization. Using these metrics, it enables safe rollbacks
in case of failures and flexible scaling of the deployed pods. This, in turn, decreases the
management complexity for the administrator of the cluster.

Kubernetes’ scheduling process, being primarily designed for data center environ-
ments, does not integrate energy measurements of the participating devices in the place-
ment decisions. This can result in either under-utilizing the available energy resources or
attempting deployments that are bound to fail due to insufficient resources. Moreover, the
resources of the node that performs the scheduling decisions, known as the master node,
are not included in the pool of resources for pod deployment. This results in under-utilized
computational and energy capacity.

Given these shortcomings of a prominent orchestration platform, this paper proposes
a scheduler that improves the resource utilization of energy-constrained SBC clusters by
guaranteeing high levels of acceptance ratios, low overhead in the scheduling process, and
better utilization of the available resources. To achieve these, we contribute the following:

• A regression model able to establish the relationship between battery consumption
and used resources in an SBC cluster;

• A study of the impact of including the controller node in the scheduling process in an
energy-constrained SBC cluster;

• A scheduling algorithm that assigns events to cluster nodes based on expected battery
consumption and used resources;

• Real-world evaluation of the proposed scheduler on an energy-constrained SBC cluster.

The remainder of this paper is structured as follows. Section 2 describes the motivation
of this work and related work. In Section 3, we present the problem statement and the
notation and system model used in our approach. We introduce the proposed scheduling
algorithm and explain the functions of its blocks in Section 4. Finally, we discuss the
obtained results in Section 5.

2. Related Work and Motivation

This section provides a literature review of existing research works related to workflow
scheduling in cloud computing. We have focused our attention on papers that consider
energy as a primary factor in their solutions. In addition, our study analyzes several

Sensors 2021, 21, 7151 3 of 25

methods to estimate the state of charge (SOC) of battery-powered devices. This parameter
is crucial for automating service deployment and extending the lifetime of the cluster.

2.1. Energy Efficient Scheduling

Although workload scheduling is a well-studied field in cloud and fog computing,
there is a lack of practical implementation and prototypes in the reviewed literature. This
work addresses this gap by testing the suggested solutions against a testbed comprised of
representative SBC devices and batteries.

The authors of [11] have proposed a sleep schedule method based on compressive
sensing to monitor environment data and device operating status. The proposed method
arranges the working state of the nodes at different times to be in semi-sleep or sleep modes
and selects the semi-sleep nodes at random in each cycle. Then, according to the gathered
data by the active nodes, the data of the whole network can be reconstructed. However,
the authors do not conduct any study on battery consumption to include this information
in its scheduling decisions, which is a crucial parameter for WSN environments where
most nodes are battery powered.

In [12,13], the authors propose energy efficient scheduling algorithms in a cloud
computing environment to place tasks and reduce energy consumption. In both works,
tasks are assigned to the appropriate VMs, and hosts are selected based on characteristics
and current capacity. However, the authors of both papers use a simulation environment,
i.e., the Cloudsim Toolkit [14], to evaluate their proposals instead of using a private cloud
like Openstack [15] to demonstrate the effectiveness of their solutions in real scenarios.

A deep reinforcement learning (DRL) approach is used in [16] to address the task
scheduling problem in fog-based IoT applications. The main function of its scheduler is to
decide whether to process the task in a fog node or send it to the cloud data center. The
authors include an energy consumption model in the scheduler’s proposal to guarantee
selection of the most appropriate VM in terms of power consumption. Likewise, the authors
of [17] have proposed a Q-learning algorithm to schedule tasks in an energy-efficient way.
Their approach aims to minimize the task response time and maximize the utilization of a
node’s CPU. By improving resource utilization, the authors reduce the energy consumption
of the whole cloud system.

In [18], Varasteh et al. propose a framework to solve the power-aware and delay-
constrained joint virtual network functions’ (VNFs) placement and routing (PD-VPR)
problem. In the framework’s first phase, a centrality-based ranking method maps the
VNFs to physical nodes. In a second stage, the delay budget between consecutive VNFs
is split, and the shortest path through the selected nodes is found using the Lagrange
relaxation-based aggregated cost (LARAC) algorithm.

Despite the plethora of papers addressing energy efficient scheduling algorithms
in cloud and fog computing, they lack a practical evaluation using real-world testbeds
comprised of resource-constrained nodes. All the approaches in the referenced works are
implemented and evaluated in simulation environments, which require great CPU and
memory capacity to execute and are therefore difficult to use and test.

To fill the identified gaps in literature, this paper proposes a scheduler which assigns
events to resource-constrained nodes while guaranteeing low energy consumption and
increasing resilience. The set of nodes that we used are off-the-shelf SBCs, typically found
in use cases like unmanned aerial vehicles (UAV) and WSN. The proposed scheduler takes
into account the controller node in the scheduling process, thus increasing the number of
scheduled events and the acceptance ratio of the system. In this vein, our solution makes
better use of the cluster’s available resources by considering not only the computing nodes
but also the controller node.

Sensors 2021, 21, 7151 4 of 25

2.2. State of Charge Estimation

In battery-powered devices, knowing the remaining battery capacity helps avoid
service disruption due to battery depletion. To this end, several works aim to estimate
battery SOC by using different methods.

In [19], Hu et al. present the extended Kalman filter (EKF) technique as a SOC
estimation algorithm. The researchers evaluate the proposed estimator using two types
of lithium-ion (Li-ion) batteries under different loading profiles and temperatures. The
optimal model parameters used in the EKF are obtained from generic functions for battery
modeling that combine several degrees of polynomials. Since the resulting model depends
on the training datasets, the update of model parameters due to changes in these datasets
may not be trivial in real-time scenarios.

The authors in [20] have proposed an enhanced coulomb counting method for esti-
mating the SOC and the state of health (SOH) of lithium-ion batteries. They improve the
estimation accuracy by considering the correction of the operating efficiency and the im-
pact in the SOH. The authors’ proposed method can be easily implemented in all portable
devices, such as SBCs, due to their simple calculation and low hardware requirements.
Sagkriotis et al. [21] have also developed an application based on the coulomb counting
method to monitor and reveal the energy profile of nodes that comprise an SBC cluster.
Their outcome indicates the low-energy consumption characteristic of these devices while
executing virtualized services. In [22], Pop et al. propose a new SOC algorithm by combin-
ing direct measurement of the electro-motive force (EMF) and Coulomb counting. They
demonstrate the effectiveness of their approach by improving the SOC and accuracy of the
remaining run time.

In contrast to the previous work, the authors of [23] have presented two methods for
the actual bias modeling of batteries. They have proposed a polynomial and Gaussian
process regression model using a typical battery circuit model to examine the bias modeling
and the SOC estimation. The results of their model show a significant improvement in
comparison with the baseline models (i.e., first- and second-order resistance-capacitance
(RC) models) while being able to maintain similar computational efficiency.

The aforementioned papers have proven the accuracy of SOC estimation algorithms
regarding battery capacity predictions. However, these papers use battery operation pa-
rameters such as current, voltage and temperature to make their estimations. The main
focus in this paper is to establish a relationship between previous SOC measurements and
utilization of resources (e.g., CPU) to train a regression model which predicts energy con-
sumption. By doing so, we further contribute towards automating the placement process
in such environments. By obtaining a model that is able to predict energy consumption,
network-wide placement decisions are enabled. Such decisions can improve the total
lifetime of the network and optimize the management of the available resources.

2.3. Single Board Computers

In the last years, the applicability of SBCs has increased and now covers a wide
range of use cases. In [8], Johnston et al. perform an in-depth analysis of the state-of-
the-art use cases for these devices. They explain the main characteristics of SBCs and
detail the different device models. In addition, the authors identify the broad domains
where the SBCs might be deployed. They emphasize how crucial these devices are as
not only edge and fog nodes, because of their power requirements and size, but also as
computational game changers that can bring computation closer to the data-generating
parts of the network.

To improve the resilience and performance of SBCs, the authors in [9,21,24] have used
SBC clusters. A cluster can be created either by coupling physical elements together or by
using the concept of platform-as-a-service (PaaS) to create and manage the cluster. In [9],
Bashford et al. present a new method for creating physical clusters of SBCs, called the
Pi Stack. This method minimizes the amount of cabling required to create a cluster by
reusing some elements of an SBC’s physical construction as a communication channel

Sensors 2021, 21, 7151 5 of 25

for both power and management. The researchers compare three different SBC clusters
using the proposed technique. The clusters are composed of nodes from several vendors.
Their results reinforce how important SBC clusters are as infrastructure for future IoT
deployments. In contrast, Sagkriotis et al. [21] have explored the feasibility of a virtualized
SBC cluster that can host scalable containerized applications. By using Kubernetes, they
achieve resilience of the deployed energy monitoring application. They also demonstrate
that an SBC cluster can host fog-oriented services. Likewise, Pahl et al. [24] have built an
SBC cluster using the PaaS paradigm. However, they deploy their own dedicated tool to
manage and configure the cluster rather than using a widely available platform, like Ku-
bernetes. The authors do not compare against other management platforms. Thus, further
evaluation must be done to demonstrate the feasibility and benefits of their approach.

Taking the PaaS concept and the above papers as a reference, we developed an SBC
cluster to deploy services and tasks while adhering to their requirements. We extend
the Kubernetes scheduler by including energy measurements and estimations to deploy
services and tasks. We improved the cluster’s resilience by extending its lifetime while
adapting Kubernetes energy-constrained devices.

3. Problem Statement and System Model

In this section, we formally present the problems we address as well as the notation
and system model of use.

3.1. System Architecture

To capture the aforementioned environment characteristics and formally define the
problems we investigate, we consider the reference architecture depicted in Figure 1. Under
this architecture, a controller node is deployed alongside a set of computing nodes (Nc) in a
commodity cluster of SBCs. Incoming event requests are scheduled and deployed according
to their deadline and resource requirements. The computing nodes are considered to be
energy-constrained devices, representative of edge nodes, and with a fixed amount of
computational resources. Thus, the scheduler must place events by taking into account
the remaining battery of each node with the ultimate goal of increasing the lifetime of the
cluster and therefore its resilience. The controller not only must be capable of coordinating
and managing the deployed services and tasks, but also of monitoring the battery status of
each node, including its own battery levels.

Controller node

Computing node Nc

Computing node 1

Orchestrator

Computing node 2

VNF 1

...

SERVICE 1

...

VNF F

VNF 1

...

SERVICE m
VNF F

TASK 1

TASK k

...
Scheduler

Event
Requests

Figure 1. Reference architecture formed by a controller node and multiple computing nodes.

3.2. Problem Modelling and Notation

We treat the cluster as a pool of available resources which has to be managed in a way
that does not violate deadlines or energy constraints. We consider two types of events that
are scheduled in the cluster: tasks and network services. The former is a set of instructions
that require a pre-defined and fixed amount of time for their execution. Examples of tasks
are: log rotation (the process of compressing log files that are older than a particular time
and deleting ancient ones) associated with a particular running service, processing rows

Sensors 2021, 21, 7151 6 of 25

from a service database table, backing up a service database before its deletion, etc. The
resources required for the execution of a task are released upon completion. A service
event is composed of a set of VNFs that can reserve resources for an arbitrary amount of
time that is not known in advance.

To include use cases that require fog-to-fog communication or other geo-distributed
applications, the event requests are considered to be distributed among computing nodes
that are geographically distant across multiple locations. An example use case would be
on-boarding a set of drones to enable emergency service communications like telco services,
such as IP telephony, between islands during a natural disaster (e.g., earthquake, fire, or
flood). In this situation, each drone would run different VNFs: an access point (AP) VNF, a
domain name system (DNS) VNF, and an access router VNF [25,26].

The incoming events are examined by the scheduler in an online manner, i.e., as
they arrive and by examining the current resource capacity of the cluster. The events are
scheduled to a set of deployable units within computing nodes (P). P represents all the
virtual nodes (p) (the virtual nodes (p) are equivalent to Kubernetes pods) created on all the
physical nodes where events can be scheduled (N). Each virtual node p ∈ P is identified
with an ID. The parameter pn

i indicates that virtual node pi is placed in physical node n,
where n ∈ N. Any given network service (S) is formed by a sequence of VNFs (F), where
each function f must be processed on a set of physical nodes. These functions must be
scheduled one after the other in a specified sequence. Each created virtual node p can only
process one function at a time. Similar to the network functions, any given task (T) will be
processed on the selected physical node where a virtual node p will be created to execute
the requested task. Each event has a demanded rate (re) that must be met by the selected
node. In addition, the processing capacity of the node (cn) has to cover the demanded rate
by the event (i.e., cn ≥ re).

All the network functions and tasks have a running time parameter (tr) that denotes
the amount of time that must pass before an event can be considered completed. When
tr > 0, the event runs during the specified time. In the case that this parameter is 0, or not
specified, the event will be executed during the whole life cycle of the system. Both types
of events also have a starting time (ts) and a completion time (tc). The former represents
the precise moment when the selected node starts processing the event. The latter specifies
when the network functions or the tasks finish execution of the events. Thus, we can
calculate the execution time (te) of an event through the following equation:

te = tc − ts (1)

In addition, the event’s time of arrival (ta) is registered to calculate the whole time
that an event is in the system (tt). Thus, the first parameter (ta) denotes the time when the
request for scheduling was received by the controller node. The second parameter (tt) is
defined as the total time starting from when an event arises until its completion, and it can
be calculated as follows:

tt = tc − ta (2)

As our system will receive event requests with an unknown arrival time, we introduce
a priority queue to the controller node. The events can have different priorities according
to user demands. The priority queue works as a centralized event allocation system to
coordinate several nodes. While the events are ordered in the queue according to certain
criteria, the scheduler takes the highest element in the list and chooses the best physical
node to deploy a virtual node that will run the event (task or network function). The
priority queue introduces a certain delay in the assignation node procedure, since the
controller node schedules events one by one. In the case of the arrival event rate becoming
higher than the scheduling rate, we define the waiting time (tw) of an event as the amount

Sensors 2021, 21, 7151 7 of 25

of time from its arrival until its execution is started. This parameter can be obtained from
the following equation:

tw =

{
ts − ta f=1 if the event is a service
ts − taT if the event is a task

(3)

From Equation (3), we obtain the waiting time for each event. In the case of a service,
we need the arrival time of the first network function, as this function represents the
beginning of the service. Both the waiting and total time parameters are considered
evaluation metrics that capture the performance of the scheduler.

Finally, a deadline (d) is defined for processing a given event. In the case of a network
service, the processing of its last function must be completed by this time. Otherwise, the
scheduler incurs a service level agreement (SLA) violation. A list of notations related to the
system model is provided in Table 1.

Table 1. System model notation.

Notation Description

P Set of deployable units of computing nodes
N Set of physical nodes where events can be scheduled
Nc Set of computing nodes (Nc ⊂ N)
S Network service request arriving at a controller node
F Sequence of VNFs compounding a network service request
T Task request arriving at a controller node
p Each virtual node created on the physical nodes to run the events
n Each physical node where virtual nodes are created
p fi

Indicates the virtual node where function fi is running
pT Indicates the virtual node where task T is running
fi Each network function forming part of a network service
re Demanded rate of each task and network function
cn Processing capacity of each physical node (n ∈ N)
tr Running time of an event before considering it completed
ts Starting time of an event when being processed in the selected node
tc Completion time of an event in the selected node
te Execution time of an event in the assigned node
ta Arrival time of an event request in the controller node
tt Total time of an event in the system
tw Waiting time of an event in the priority queue
d Deadline for processing a given event

4. Proposed Scheduling Solution

In this section, we propose our SOC and capacity-based scheduler (SOCCS). It pro-
cesses event requests and determines the best node in an SBC cluster to run them based on
the remaining battery estimations and CPU usage in the nodes. The proposed scheduler is
formed by three main elements: the SOC estimator, the monitor and the scheduler. The rela-
tion among these blocks and how they communicate with the orchestrator (represented by
blue lines) as well as the communication between the orchestrator and the cluster elements
(represented by green lines) is depicted in Figure 2. Please note that in this representation,
the set of nodes where events can be scheduled (N) comprises the controller node and the
computing nodes (N = Nc + 1, Nc ⊂ N). The functions of each block in the scheduling
module are explained in the following subsections.

Sensors 2021, 21, 7151 8 of 25

Node N: Controller
Node N-1: Compute Nc

Node 1: Compute 1

Orchestrator

Node 2: Compute 2

Scheduler
block

.

.

.

Events
Queue

Event
Requests

SOC estimator
block

Monitor
block

Scheduler
SOC

estimator
block

Figure 2. Scheduling module design and the relation among its different blocks.

4.1. SOC Estimator Block

This element acts as an agent since it runs in every node comprising the SBC cluster. Its
main functions are to receive the necessary information from the measurement equipment
and calculate the SOC using the coulomb counting method [20].

The SOC estimation can be dependent on certain characteristics of the batteries (e.g.,
state of health and model) by taking into account the used estimation model [27]. Such
factors are related to the battery hardware. Thus, the estimators have to be updated when
there is a change in the hardware. The battery hardware-dependent estimations are less
evident in the coulomb counting method, as it monitors the total electric charge that a
battery absorbs or releases during its charging or discharging phases.

The estimation of the SOC can be achieved by dividing the percentage of the released
electric charge in the battery by the one that entered it. Denoting the released capacity
when the battery is completely discharged as Qreleasable and the rated capacity as Qrated, the
SOC percentage can be obtained as follows:

SOC =
Qreleasable

Qrated
· 100% (4)

The proposed estimator block adopts the coulomb counting method because of its sim-
ple yet accurate approach. To get more accurate results, the Qrated term is obtained by
considering the actual electric charge that the battery can deliver over several charge-
discharge cycles. Following a similar methodology as the one proposed in [20], we can
find the coulombic efficiency (η) of the rated capacity. Additionally, we used the maximum
releasable capacity (Qmax). Thus, Equation (4) is adjusted to:

SOC =
Qmax

η ·Qrated
· 100% (5)

When the battery is fully charged, the SOC is given by Equation (5). However, during
a discharging phase, we should know the percentage of the capacity relative to the Qrated
term, denoted as the depth of discharge (DOD). The DOD is obtained from a measured
charging and discharging current (Ib) in an operating period τ and then subtracted from
the total SOC as shown the following equations:

∆DOD =
−
∫ t0+τ

t0
Ib(t) dt

η ·Qrated
· 100% (6)

DOD(t) = DOD(t0) + ∆DOD (7)

SOC(t) = 100%− DOD(t) (8)

Sensors 2021, 21, 7151 9 of 25

The DOD is an accumulated value as shown in Equation (7). We can estimate the
SOC of the battery through Equation (8) at any time. The estimation process is based on
the measured voltage and current. The SOC estimator block knows the battery operation
mode from the value and direction of the operating current. During the discharging phase,
the DOD adds up the drained charge until reaching the Qmax value when the battery is
exhausted (i.e., SOC = 0%). Meanwhile, the DOD counts down the accumulated charge in
the charging phase until the battery is fully charged (i.e., SOC = 100%).

The SOC estimator block uses the aforementioned procedure to estimate the SOC
battery in each node where it is running. Finally, it sends the estimated value to the
monitor block.

4.2. Monitor Block

This module is responsible for monitoring all the virtual nodes that have been created
and assigned an event request by the scheduling algorithm described in Section 4.3. It
also monitors the status and usage of the physical nodes by communicating with the
orchestrator. Specifically, the monitor module tracks the CPU and memory consumption of
each node, as summarised in Procedure 1.

Procedure 1: Update Nodes.
1 forall n ∈ N do
2 Update node usage by adding up the CPU and memory utilization of all the virtual

nodes placed in this node
3 if nusageCPU ≥ UsageCPUmax and nstatus is scheduled then
4 nstatus ← unscheduled

5 if nusageCPU < UsageCPUmax and nstatus is unscheduled then
6 nstatus ← scheduled

This procedure updates the resource utilization of each node within the SBC cluster. It
determines a node’s resource utilization by calculating the whole usage of its virtual nodes
in terms of CPU and memory (line 2). Considering all the cluster nodes as candidates to
place a created virtual node by default, this procedure checks if a current node’s utilization
has not reached its defined maximum capacity (line 3). If the maximum capacity has been
reached, the node’s status is marked as unscheduled, and it is excluded from the candidate
selection process in the scheduling algorithm (line 4). Line 5 checks for the opposite
condition. It verifies that the current node’s usage is below its maximum value. The node’s
status is set to scheduled in line 6 if it was previously marked as unscheduled. The updating
nodes procedure is used by the monitor block, and its behavior is described in Algorithm 1.

The monitor block’s procedure begins by initializing two parameters (lines 1–2) that
run during the whole lifetime of the system (line 3). It checks several parameters (e.g.,
pstatus, ptc , pd) for all the created virtual nodes (p ∈ P) to verify if certain conditions
have been satisfied. If a virtual node is running, the monitor block gathers its CPU and
memory usage from a metrics server (e.g., Prometheus) and records these values (lines 5–7).
Otherwise, the event is determined to be in one of two possible states: succeeded or failed. In
the case that an event has completed its execution, the virtual node where it was running
is marked as succeeded. If the event has been completed past its deadline (line 9), the
algorithm updates the amount of deadline violations in line 10. The other state is related to
the failed virtual nodes (line 11). When this condition is satisfied, the virtual nodes monitor
updates the amount of rejected events in line 12. Afterwards, the algorithm releases the
used resources and updates the respective parameters (lines 13–15). Finally, the algorithm
calls the updating nodes procedure in line 16. The rejected events and deadline violations
parameters are later used as evaluation metrics of the proposed scheduler. The metrics are
analyzed in detail in Section 5.

Finally, the monitoring block receives the SOC battery information sent by the SOC
estimator block in a parallel process to Algorithm 1. The received SOC information is saved

Sensors 2021, 21, 7151 10 of 25

in nusageSOC . As a result, the scheduling block is able to obtain the utilization of a node in
terms of CPU usage, memory usage and SOC by reading the stored values in nusage.

Algorithm 1: Monitor Process.
1 Eventrejected ← 0 (Amount of rejected events)
2 Eventviolations ← 0 (Amount of deadline violation in events)
3 while True do
4 forall p ∈ P do
5 if pstatus is Running then
6 Get CPU and Memory usage from metrics server
7 Save CPU and Memory values in pusage

8 else
9 if pstatus is Succeeded and ptc > pd then

10 Eventviolations = Eventviolations + 1

11 if pstatus is Failed then
12 Eventrejected = Eventrejected + 1

13 Delete the virtual node running the event to release it resources
14 Remove p from P
15 Remove S or T from lS or lT accordingly

16 Procedure 1: Update Nodes

4.3. Scheduler Block

This module determines the best node where an event can run according to the
SOC prediction. The scheduler block receives the event requests one after the other and
appends them to a priority queue. At the same time, it takes the events from the priority
queue one by one and determines the node where each event will run based on the
remaining battery estimations and CPU usage. The SOC prediction is determined through
a regression model [28] that is explained in Section 4.3.1, and Procedure 2 summarises the
SOC prediction methodology used by Algorithm 2.

Procedure 2: SOC prediction.

Input: p0, n
Output: SOCvalue

1 SOCvalue ← 0, data← ∅
2 if n is controller then
3 cpu← nusageCPU + p0

CPUreq

4 pktin ← npktin
+

npktin
∑

p∈P

5 pktout ← npktout +
npktout

∑
p∈P

6 data← cpu, pktin, pktout, n

7 else
8 cpu← nusageCPU + p0

CPUreq

9 data← cpu, n

10 SOCvalue ← SOCpredmodel
(data)

11 return SOCvalue

Procedure 2 uses a trained prediction model to forecast the SOC value that a node
would have if a specific virtual node that is running an event were assigned to it. The
procedure takes as input objects the current node and the virtual node to be scheduled.
Then, it extracts and determines the required information by the SOC regression model to
predict the SOC value. The first step in the SOC prediction procedure is to initialize the
output variable and create an empty set to store the data used by the prediction model
(line 1). Next, the procedure checks if the current node is the controller node, because
the data used by the model is determined by the node’s type (line 2). In Section 4.3.1,

Sensors 2021, 21, 7151 11 of 25

we explain why we make this differentiation in the input data to the model. Lines 3–6
determine and store in the data variable the values required by the model in the case of the
controller node. In line 3, the expected CPU usage of the node, if the virtual node were
deployed to it, is calculated by adding the current CPU usage and the required CPU of the
event running in the virtual node. Lines 4 and 5 determine the expected overall number
of exchanged packets between the controller and the computing nodes once the virtual
node is scheduled. The obtained values are then stored in the data set (line 6). In the case
of computing nodes, the procedure only factors in the expected CPU usage and saves this
value in the data set (lines 7–9). Finally, the prediction value is obtained from the SOC
regression model considering the stored data (line 10).

Algorithm 2 is executed during the whole lifetime of the scheduling algorithm while
there are existing elements in the priority queue (line 1). Before analyzing any possible
node to assign an event, the algorithm obtains the node’s capacity from the monitor block
(line 2). After gathering the usage of the nodes, the algorithm takes the first element in
lpriority and initializes the list of possible candidates to host the new virtual node (lines 3–5).
The purpose of the following steps in this algorithm is to define the potential candidate
SBCs where virtual nodes can be placed. Each physical node with a battery percentage
above a minimum predefined value and a scheduled status is added to lcandidate (lines 6–8).
After that, the algorithm removes the controller node from the lcandidate list if it is present in
the list and there is at least one computing node available (lines 9–10). Thus, the algorithm
increases the controller’s longevity and avoids associated extra processing for deploying
an event on it.

If the previous condition is not met (line 9), we analyze two possibilities with the
same outcome (line 11). The first possibility corresponds to the case when no node can
host a virtual node. The second possibility is more complex, since the only available
node is the controller and the event to schedule will run during the whole lifetime of the
system. For both cases the associated event (i.e., service or task) is rejected in lines 12–22,
and Eventrejected metric is updated. Accordingly, the created virtual node for that event
is removed to release its resources, and P, lS and lT are updated. In the case of a service
event, the algorithm checks each former network function. If the function has already been
deployed, it is deleted to release the associated resources. In the case that the function is
in the priority queue, it is also removed so as to not be considered by the scheduler and
save further resources. After not meeting the aforementioned conditions (lines 9 and 11),
we have at least one node in lcandidate (line 23). Notice that the controller node can be in
lcandidate when there are no more available computing nodes and the events to be placed
have a specified running time (tr > 0). In this way, our proposal scheduler reduces the
number of rejected events, as demonstrated in Section 5.

The process of Algorithm 2 continues, and in the next step the first element in lcandidate
is assumed as the best node (line 24). This node is then analyzed to determine if any
candidate node has a better score than this current best node (lines 25–32). In line 26,
the algorithm verifies if the SOC predictor model exists. If it does, the predictor model
calculates the SOC of the current candidate node using Procedure 2 (line 27).

The output of the SOC prediction procedure is used in Algorithm 2 to calculate
the node score through Equation (9) (line 28). With this equation, the algorithm tries to
maximize the node score by selecting the node with the highest SOC and the minimum
CPU usage.

nscore = α1 · (SOC/100) + (1− α1) · (1−ECPU /UsageCPUmax) (9)

In Equation (9), the value α1 is an adjustable positive weight with values between
0 and 1. The SOC term can correspond to either a predicted value (i.e., using the SOC
regression model) or a real measured value from the SOC estimator block. The expected
CPU usage (ECPU) represents the new CPU usage that the analyzed node would have if
a virtual node running an event were scheduled to it. This value is calculated by adding
the current CPU usage of the node and the required CPU usage of the event. The steps

Sensors 2021, 21, 7151 12 of 25

are similar to the one previously described, but the node score is calculated using the
current SOC of the node when the SOC predictor model is not available (lines 29–30).
After calculating nscore, Algorithm 2 checks if this value is higher than the best node score
(line 31). In the case that the value is higher, the current node is taken as the new best node
(line 32). Finally, the scheduler block communicates to the orchestrator to bind p0 in nbest

(line 33).

Algorithm 2: Event Scheduler.
1 while len(lpriority) > 0 do
2 Get nodes’ capacity information
3 p0 ← First element of lpriority
4 Update lpriority
5 lcandidate ← ∅
6 forall n ∈ N do
7 if nusageSOC > SOCminthreshold

and nstatus is scheduled then
8 lcandidate ← lcandidate + n

9 if lcandidate > 1 and ncontroller ∈ lcandidate then
10 Remove ncontroller from lcandidate

11 else if lcandidate == 0 or (lcandidate == 1 and ncontroller ∈ lcandidate and p0
tr
== 0) then

12 if p0
event is Service then

13 forall f ∈ F do
14 if p fi

is deployed then
15 Delete p fi

to release its resources

16 if p fi
∈ lpriority then

17 Remove p fi
from lpriority

18 else
19 Delete pT to release its resources

20 Remove p from P
21 Remove S or T from lS or lT accordingly
22 Eventrejected = Eventrejected + 1

23 else
24 nbest ← First element in lcandidate
25 forall n ∈ lcandidate do
26 if SOCpredmodel

6= ∅ then
27 nSOCpred ← Procedure 2: Predict SOC(p0, n)
28 Calculate nscore using Equation (9) with nSOCpred

29 else
30 Calculate nscore using Equation (9) with nusageSOC

31 if nscore > nbest
score then

32 nbest ← n

33 Bind p0 to nbest

Algorithm 3 represents the main process of the scheduler application which initializes
the other processes, i.e., the monitor process, the event scheduler and the regression model
handler (see Section 4.3.1) (lines 5–7). The algorithm begins by initializing the set of virtual
nodes, which can be updated by both the scheduler and monitor block, and the event
lists (lines 1–3). Additionally, it initializes the SOC prediction model used in Algorithm 2
and the data set to train the model in Algorithm 4 (line 4). The data_training variable is
updated in each cycle of the Algorithm 1. Algorithm 3 waits for any event request while
the scheduling application is running (line 8). When a request arrives, the algorithm adds
it to the corresponding list in line 9. Then, it creates a virtual node with the requirements
for the event and adds it to the set of virtual nodes (line 10). After creation of the virtual

Sensors 2021, 21, 7151 13 of 25

node, the events’ ranking in the priority queue (lpriority) (lines 11–13) is determined by a
process that considers two factors: delay(p) and waitqueue(p). The former represents the
amount of time that the scheduler can delay the execution of an event without missing
its deadline (see Equation (10)). The latter is the waiting time of the event before being
processed by the scheduler (see Equation (11)). In both equations, we denoted the current
system time as tnow. Note that the smaller the delay(p), the faster the created virtual node
will be executed.

delay(p) = pd − tnow − ptr (10)

waitqueue(p) = tnow − pta (11)

Based on the previous definitions, we calculate the ranking score for the virtual node
where an event runs, denoted by prank, as follows:

prank = β1 · delay(p)− (1− β1) · waitqueue(p), (12)

where β1 is an adjustable positive weight with values between 0 and 1. A virtual node
with the lowest ranking must be executed first. Thus, the algorithm updates the priority
list and sorts the queue by taking into account the calculated ranking of the virtual node
(lines 14–15).

Algorithm 3: Main process.
1 P← 0
2 lS ← 0 (List of running services)
3 lT ← 0 (List of running tasks)
4 SOCpredmodel

← ∅, data_training← ∅
5 Algorithm 1: Monitor Process
6 Algorithm 2: Event Scheduler
7 Algorithm 4: Regression Model Handler
8 while True do
9 Add S or T to lS or lT accordingly to the event request

10 Create p for S or T and add it to P
11 Determine maximum delay to process p through Equation (10)
12 Determine the time before putting p into priority queue through Equation (11)
13 Calculate prank using Equation (12)
14 Add p to lpriority
15 Sort lpriority by virtual node ranking

4.3.1. SOC Regression Model

In contrast to the described methodology in Section 4.1, which is under the umbrella of
direct calculation methods and model-based methods, data-driven methods do not require
an equivalent circuit or electrochemical mechanism model to describe battery behaviors.
Thus, the data-driven methods can estimate the battery SOC through sampled data by
finding a relation between the data and the SOC measurements. Methods of this kind
include autoregression moving average (ARMA), artificial neural network (ANN), support
vector machine (SVR) and others [29]. These methods can cause a large computational
burden when the training data is huge. Additionally, they must be trained in an initial state
before their hyper-parameters can be adjusted. Thus, these methods might not be feasible
for use cases where an SBC battery-powered cluster must also process service and task
requests.

In the case of regression models, the model coefficients are determined from available
training data by minimizing the root mean square error (RMSE) between the predicted
and real values. The RMSE represents the standard deviation of the prediction errors, thus
showing how concentrated the data is around the line of best fit [28]. In general, regression

Sensors 2021, 21, 7151 14 of 25

models can be classified into two types: polynomial and linear regression models. The
former may include higher powers of one or more predictor variables and is defined in
Equation (13). The latter may include the interaction effects of two or more variables
and represents an example of a multiple linear regression model. It is represented in
Equation (14) [28].

y = β0 + β1x + β2x2 + . . . + βkxk (13)

y = β0 + β1x1 + β2x2 + β12x1x2 + . . . + βmnxmxn (14)

In this paper, we adopt a regression model for SOC estimation, since the computational
characteristics of SBCs might not be capable of supporting complex algorithms, such as
ARMA, ANN and SVR. The regression model is trained with an initial dataset formed by
collected metrics during a defined period. To improve its accuracy, it is updated when the
RMSE metric is above a pre-defined threshold. The model coefficients are calculated and
updated through Algorithm 4.

Algorithm 4: Regression Model Handler.
1 while True do
2 Wait time to check regression model estimators
3 if SOCpredmodel

is ∅ then
4 SOCpredmodel

← train_model(data_training)
5 data_training← ∅
6 else
7 predictions← SOCpredmodel

(data_training)
8 Determine RMSE between predictions and SOCreal in data_training
9 if RMSE > errorthreshold then

10 SOCpredmodel
← update_model(data_training)

11 data_training← ∅

This algorithm checks the SOC regression model after waiting a pre-defined time
(line 2). After that, it verifies if the regression model has not been training (line 3). Then,
the model is trained with the existing training dataset (data_training), and this dataset is
initialized to gather new data for future model examinations (lines 4–5). If a model already
exists (line 6), the algorithm studies the model’s coefficients to determine if they must be
updated (lines 7–11). Using the existing gathered data, the algorithm makes several SOC
predictions from the trained model (line 7). Then, it determines the RMSE between the
predictions and the measured SOC in data_training (line 8). In line 9, the calculated RMSE
is checked to determine if it is above a pre-defined threshold. If this is the case, Algorithm 4
updates the SOC regression model using the existing dataset (line 10). After this process,
the training dataset is restarted, and newly gathered data is added through the monitoring
process (line 11).

5. Evaluation and Results

To evaluate the performance of our proposed scheduling algorithm, we have used
a testbed formed by a cluster of four Raspberry Pi 4 Model B units [7]. These devices
represent regular IoT devices that can connect with a variety sensors and offer edge
processing capabilities. The sensor device used to measure the power consumption of
each node was the UM24C module [30], which connects to the Raspberry Pi devices
via Bluetooth. The energy sources for the Pi devices are batteries with a capacity of
10,000 mAh. Figure 3 depicts the described testbed. We have deployed Kubernetes 20.04 as
the management framework for virtualized services and tasks. Services and tasks run as
docker containers within pods. The deployed events are placed into the devices and utilize
their available capacity according to predefined requirements. The proposed scheduling

Sensors 2021, 21, 7151 15 of 25

algorithm was implemented using Python 3.6.8 and deployed within Kubernetes, replacing
the baseline scheduler.

Kubernetes
Control Plane

Kubernetes
Worker 1

Kubernetes
Worker 2

Kubernetes
Worker 3

UM24C UM24C UM24C UM24C

Tecknet Batteries
10000 mAh

Babaka Batteries
10000 mAh

Figure 3. SBC cluster using Raspberry Pi devices with Kubernetes running on top of them.

In our evaluation scenarios, the services and tasks to be scheduled arrive one at a
time following a Poisson distribution. We explore different event arrival rates that range
from 2 to 12 events per time unit. The main parameters used for creating the services and
tasks are selected randomly from the list of values shown in Table 2 following a uniform
distribution. The evaluation parameters are defined based on typical workloads derived
from the literature. Notably, the CPU usage is measured in CPU units and is expressed as
an absolute quantity. Thus, 100 milliCPU and 0.1 CPU are the same amount of CPU usage
in a single-core, dual-core, or 48-core machine.

Table 2. Evaluation parameter ranges based on testbed.

Parameter Values

Number of VNFs in a service 5–10
Processing capacity per node (MIPS) 500–3000
CPU capacity per node (milliCPU) 4000
Memory capacity per node (Ki) 7,998,464
Required processing rate per event (MIPS) 100–500
Required CPU per event milliCPU) 150–250
Required memory per event (Ki) 200–500

5.1. Utilizing Unused Controller Resources

This section analyzes the impact of deploying selected events to the controller. Differ-
ent from previous works in cloud and edge computing ([13,31,32]), this work includes the
controller node in the scheduling process to deploy service and task requests. The reviewed
papers do not consider deploying events in the controller node because they speculate
that this will cause additional processing overhead in the controller and an increase of
the total time of the events in the system. However, by selecting events that have a fixed
execution time, we can reduce the negative effects of deploying them in the controller.
More specifically, the controller is able to host a new event using the released resources of
the previous event, therefore increasing the amount of overall scheduled events and the
overall acceptance ratio. Thus, our scheduler effectively uses all the available resources in
the cluster.

Sensors 2021, 21, 7151 16 of 25

To study the impact of this decision, we ran several experiments for both types
of scheduling (including/excluding the controller). The results are presented with a
confidence interval of 95%. Figure 4 depicts the average number of successfully scheduled
and rejected events as well as deadline violations for different event generation rates. We
considered successfully scheduled events those that did not exceed their deadlines. We
assume that surpassing a deadline would not lead to a task or service interruption, since
maintaining a required QoS is a desirable parameter but not mandatory [16].

30

19 54

42 93

51

55

114

142 147 149

15

22
21

60

32

76

55

114

139 145 149

N
ot D

eployed in C
ontroller

D
eployed in C

ontroller

 2 5 8 10 12

0

50

100

150

200

0

50

100

150

200

Events Generation Rate per Time Units

E
ve

nt
s

(V
N

Fs
+

Ta
sk

s)

Deadline violations
Successfully scheduled
Rejected

Figure 4. Number of deadline violations, rejected events and successfully scheduled events.

Notably, the number of successfully scheduled events was relatively similar for both
criteria, i.e., deploying and not deploying in the controller node, and all the event generation
rates. However, there is a noticeable difference in the number of rejections and deadline
violations for generation rates of 8, 10 and 12. For the case of services and tasks that are
assigned to the controller, we observe a reduction of 50%, 61% and 66% in the amount of
rejected events, respectively. These reductions are more significant than the increments in
the deadline violations, which can be up to 16%, 42% and 49% for the same generation rates.

Figure 5a shows the average waiting time of the events for both criteria. We notice that
the waiting time increased when the events were deployed to the controller (soft orange
line) with regards to the other criterion (strong red line), since they were placed one by
one using the resources released by the previous events. Consequently, no extra load was
added to the controller, and possible saturation in the system was thus avoided. Similar
results were obtained for the average total time of the events, which includes the waiting
time, as seen in Figure 5b.

250

500

750

1000

2 5 8 10 12
Events Generation Rate per Time Units

W
ai

ti
n
g
 t

im
e

Not Deployed in Controller
Deployed in Controller

(a) Waiting time.

400

800

1200

1600

2 5 8 10 12
Events Generation Rate per Time Units

T
o
ta

l
ti

m
e

Not Deployed in Controller
Deployed in Controller

(b) Total time.

Figure 5. Average metrics time while deploying or not deploying events in the controller node.

Sensors 2021, 21, 7151 17 of 25

By using the controller node to deploy selected services and tasks, we minimize
rejections and effectively utilize all available resources. In Figure 6, we show the average
acceptance ratio of events for both criteria. For a generation rate of 2 and 5 events per time
unit, both criteria have an acceptance rate of 100%. However, for generation rates greater
than 5 events per time unit, the performances were different. Specifically, when deploying
events in the controller node, the event acceptance ratio was increased by 11%, 28% and
30% for generation rates of 8, 10 and 12 events per time unit, respectively.

60

70

80

90

100

2 5 8 10 12
Events Generation Rate per Time Units

A
cc

ep
ta

nc
e

R
at

io
 (

%
)

Not Deployed in Controller
Deployed in Controller

Figure 6. Average event acceptance ratio with and without deploying events in the controller node.

Based upon these results, we can confirm that using the controller node to deploy
specific events guarantees a higher event acceptance ratio than using its resources solely
for scheduling tasks. The higher acceptance ratio was evidenced by a significant reduction
in the number of rejected events, although it was at the cost of greater deadline violations.
Overall, the advantages outweigh the drawbacks when deploying services and tasks in the
controller node in a resource-constrained environment. Thus, the proposed scheduler has
been implemented by taking these results into account.

5.2. SOC Regression Model

Before starting the training phase, several regression models were studied to choose
the one that best fit our case of study. Figure 7 shows three polynomial models of first,
second and third orders which use the CPU usage as a predictor to estimate the SOC in a
computing node. To describe the accuracy of the models, we included in the graphic the
adjusted R2 parameter which reflects the variation in the number of predictors. Addition-
ally, the adjusted R2 parameter does not automatically increase when more predictors are
added to the model. According to this metric, the best model was the third-order model,
which is represented by the blue line. Moreover, given the negligible accuracy difference of
the third-order model and the computation overload it requires, we used the second-order
polynomial to strike a balance between accuracy and computation cost.

0 500 1000 1500 2000 2500 3000 3500 4000
CPU usage(milliCPU)

65

70

75

80

85

So
C(

%
)

Poly n=1 R2=0.92
Poly n=2 R2=0.95
Poly n=3 R2=0.96
Measured value

Figure 7. Multiple regression models for the SOC estimation based on CPU usage for a computing node.

Sensors 2021, 21, 7151 18 of 25

The controller node has a different behavior with regards to the computing nodes,
since its main function is to schedule service and task requests. This does not demand as
much CPU usage as the deployment of services and tasks. Figure 8a depicts the controller’s
behavior when the CPU usage reaches its higher value of around 1900 milliCPU and starts
to decrease while the SOC begins to decline. From the adjusted R2 values, we can see that
none of the analyzed models, based on CPU usage, fit the data correctly because the values
were below 0.80. In response to this result, we analyzed another metric different from CPU
usage. The selected metric was the number of incoming packets in the controller node
since it receives user requests and worker messages. The studied polynomial models are
shown in Figure 8b. This figure shows that all the models perfectly fit the data, as their
adjusted R2 was 1.

1200140016001800
CPU usage(milliCPU)

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

So
C(

%
)

Poly n=1 R2=0.50
Poly n=2 R2=0.59
Poly n=3 R2=0.64
Measured value

(a) Model based on CPU usage.

0 20 40 60 80 100 120 140
Incoming packets

83

84

85

86

87

88

89

90

91

So
C(

%
)

Poly n=1 R2=1.00
Poly n=2 R2=1.00
Poly n=3 R2=1.00
Measured value

(b) Model based on incoming packets.

Figure 8. Multiple regression models of the SOC for the control plane node.

The CPU usage represents a boundary parameter for the SBCs, because when a
node reaches its maximum value, it cannot process new requests which would affect its
performance. As a result, we must also consider CPU usage in the regression model for the
controller node. In this regard, Figure 9 depicts a three-dimensional representation of the
regression model for the controller node based on incoming packets and CPU usage. When
we have two predictors, the least square regression line becomes a plane with two estimated
slope coefficients. The model’s coefficients are estimated by finding the minimum sum of
squared deviations between the blue plane and the measured values. With consideration
of the adjusted R2, this model fits our data, since it has the highest possible value.

CPU usage(milliCPU)
1100 1200 1300 1400 1500 1600 1700 1800

Incoming packets 0
20

40
60

80
100

120
140

SoC(%
)

83

84

85

86

87

88

89

90

91
Lineal 2 parameters R2=1.00

Measured
Predicted

Figure 9. Linear regression model with CPU usage and incoming packets as predictors for the
controller node.

Sensors 2021, 21, 7151 19 of 25

Finally, the SOC regression model for any node n in the SBC cluster (n ∈ N, where
N = Nc + 1) can be expressed as follows:

SOCpredmodel
= δ0 + δ1 · pktinn ·ctrl + δ2 ·cpun + ∑

∀i∈Nc

(δ3i ·computei) ·cpu2
i + δ4i ·computei (15)

The model coefficients (δ) were obtained from the available training dataset. We
introduced the categorical variables computei to represent each computing node in the
model (i ∈ Nc). These variables are binary. The node whose SOC is to be predicted
takes a value of 1 and the others take a value of 0 (e.g., compute1 = 1, compute2 = 0, . . . ,
computeNc = 0). Notice that in the case of the controller node (n = N), all the categorical
variables are 0 (e.g., compute1 = 0, compute2 = 0, . . . , computeNc = 0). Regarding the pktin
term, we added a binary indicator ctrl to distinguish if the node is a controller or not. Thus,
it takes a value of 1 when the controller’s SOC will be predicted, otherwise it will be 0.
Thus, our SOC regression model is transformed into a linear model with two predictors
(i.e., pktinn and cpun). In contrast, for the computing nodes, a second-order polynomial
model based on CPU usage was used, since the pktin term was discarded due to its low
value with regards to the CPU usage.

5.3. Comparison among Scheduling Algorithms

To the best of our knowledge, no other online scheduler is built for improving the
acceptance ratio of requested events in an energy-constrained SBC cluster. Therefore, we
compared our proposed scheduling algorithm, SOCCS, with the well-known greedy least
loaded scheduler (LLS) and the native Kubernetes scheduler (KS). The former algorithm
aims to allocate the different events to the node with the highest available buffer capacity.
Thus, the node with the least CPU usage is chosen. The latter algorithm ranks the feasible
nodes and selects the one with the highest-ranking score. In other words, the more
resources the services and tasks use in a node, the lower its ranking is. These algorithms
were analyzed through the following metrics: scheduled and rejected events, deadline
violations, waiting and total time, acceptance ratio and battery consumption. To ensure
the reliability of the results, we ran several experiments for each generation rate for all the
analyzed scheduling algorithms and show results with a confidence interval of 95%.

5.3.1. Average Number of Scheduled and Rejected Events

Figure 10 depicts the obtained results in terms of requested, scheduled and rejected
events, i.e., tasks and services. We can observe that all the schedulers, except for the KS,
achieved similar results when the generation rate was small (i.e., 2 and 5), since they
deployed all the requested services (rejected services were 0). The KS had around 2 rejected
services (red bar) for a generation rate of 5 events per unit time. We also note that for high
generation rates (i.e., 8, 10 and 12), KS rejected around 2 tasks (salmon bar). In contrast, the
other algorithms deployed all the requested tasks (mid blue bar).

Since the generated services are formed by several network functions (VNFs), Figure 11
shows the obtained results for their constituent VNFs. By analyzing the rejected VNFs
for low-value generation rates, we appreciate that KS rejected around 8 VNFs (apricot
bar) for 5 events per unit time. By contrast, the other schedulers were able to schedule
all the requested VNFs when the generation rates had low values. In terms of scheduled
VNFs (windows blue bar), our scheduler outperformed the LLS and KS algorithms by 19%
and 17%, 8% and 7%, and 5% and 2%, respectively, for the high-value generation rates.
Additionally, the SOCCS algorithm reduced the rejected VNFs with regards to LLS by 11%,
12% and 12% for 8, 10 and 12 events per unit time, respectively. For the same generation
rates, these reductions were higher in comparison with KS, demonstrated by values of up
to 16%, 23% and 18%.

Sensors 2021, 21, 7151 20 of 25

L
L

S
S

O
C

C
S

K
S

2 5 8 10 12

0

10
20
30
40

0
10
20
30
40

0

10
20
30
40

Events Generation Rate per Time Units

E
v
e

n
ts

Rejected_Services
Rejected_Tasks

Requested_Services
Requested_Tasks

Scheduled_Services
Scheduled_Tasks

Figure 10. Number of requested, scheduled and rejected events (i.e., services and tasks) for all the
scheduling algorithms.

L
L

S
S

O
C

C
S

K
S

2 5 8 10 12

0

100

200

300

0

100

200

300

0

100

200

300

Events Generation Rate per Time Units

E
v
e

n
ts

Rejected_VNFs Requested_VNFs Scheduled_VNFs

Figure 11. Number of requested, scheduled and rejected VNFs for all the scheduling algorithms.

5.3.2. Average Acceptance Ratio

The acceptance ratio represents the proportion between scheduled and requested
events. Figure 12 shows its average value for each generation rate. We can see that KS
had the worst performance for all the generation rates (e.g., its worst value is above 72%).
The other algorithms, LLS and SOCCS, had similar results for low-value generation rates.
However, their differences are apparent for arrival rates of 8 or more events per unit of
time. Our proposed algorithm increased the acceptance ratio by around 2% with regards to
LLS. Thus, SOCCS had the best performance.

Sensors 2021, 21, 7151 21 of 25

70

80

90

100

2 5 8 10 12
Events Generation Rate per Time Units

A
cc

ep
ta

nc
e

R
at

io
(%

)

LLS
SOCCS
Kube

Figure 12. Event acceptance ratio for each scheduling algorithm.

5.3.3. Average Number of Successfully Scheduled Events and Deadline Violations

Figure 13 illustrates a deeper insight into the number of scheduled events, since it
separates the events with deadline violations from the successful ones. In general, our
algorithm avoided more deadline violations than the others for all the generation rates. For
the highest generation rate (i.e., 12 events per unit time), SOCCS decreased the number
of deadline violations by 75% and 83% with regards to LLS and KS, respectively. The
exception was for 5 events per unit of time. In this case, LLS had the lowest value.

LLS
S

O
C

C
S

K
S

2 5 8 10 12

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Events Generation Rate per Time Units

E
ve

nt
s

(V
N

Fs
+

Ta
sk

s)

Deadline Violations
Successfully scheduled

Figure 13. Number of successfully scheduled events and deadline violations for each
scheduling algorithm.

5.3.4. Average Waiting and Total Time

As seen in Section 5.1, the values of the waiting and total times are higher when the
scheduler deploys events in the controller node. From Figure 14, we can affirm that SOCCS
had the lowest increment for both metrics. Our scheduler reduced the waiting time for
the highest generation rate by 42% and 53% with regards to LLS and KS, respectively
(see Figure 14a). Additionally, SOCCS also decreased the total time by 34% and 53% in
comparison with LLS and KS, respectively (see Figure 14b).

Sensors 2021, 21, 7151 22 of 25

50
0

10
00

1500

2000

2 5 8 10 12
Events Generation Rate per Time Units

W
ai

ti
n
g
 t

im
e

LLS
SOCCS
Kube

(a) Waiting time.

50
0

10
00

15
00

20
00

2 5 8 10 12
Events Generation Rate per Time Units

T
o
ta

l
ti

m
e

LLS
SOCCS
Kube

(b) Total time.

Figure 14. Time metrics for all the scheduling algorithms.

5.3.5. Average Battery Consumption

To obtain the battery consumption, we calculated the difference between the initial and
final measured SOC in each experiment. Figure 15 depicts the average battery consumption
for each node when running different scheduling algorithms to deploy events. In general,
the greater the event arrival rate, the higher the battery consumption. By comparing the
three algorithms, we can see that the KS had the highest battery consumption for all the
generation rates. In contrast, SOCCS guaranteed the lowest battery consumption, as it
always selected the node with the highest score to assign the requested event. Namely, it
chose the node with the maximum SOC and minimum CPU usage. Additionally, the previ-
ous subsection revealed that our scheduler performs faster than the baseline algorithms,
since the total time of the events in the system was notably reduced. Thus, our scheduler
reduced the cluster’s operation time to process the requested events, which indisputably
had a lower impact on battery consumption with regards to the other schedulers. By taking
a closer look at the highest generation rate, our scheduler is shown to have saved up to
39% and 59% of the battery consumption in the controller node with regards to LLS and
KS, respectively. Likewise, it decreased the consumption in Worker1 by 36% and 51%
in comparison with the same algorithms. Regarding the workers’ imbalance in terms of
battery consumption, we found that our proposed algorithm had the best performance.
For a generation rate of 12 events per time unit, SOCCS presented an imbalance of 0.25
between the maximum and minimum average battery consumption. This value was much
lower than the ones obtained in the LLS and KS algorithms (2.82 and 3.61, respectively).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

2 5 8 10 12
Events Generation Rate per Time Units

B
at

te
ry

 C
on

su
m

pt
io

n
(%

)

LLS SOCCS KS
Master
Worker1

Worker2
Worker3

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●●

●

● ●

●

●

● ●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

●●

●

● ●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

●●

●

●●

●

● ●

●

●

●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

●●

●

●●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●●●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ●

●

● ●

●

●●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ●

●

● ●

●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

●

●

● ●

● ●

●●

● ● ●

●●●●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ● ● ●

●

●●

● ● ●

●●●●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

Figure 15. Battery consumption for each node while running different scheduling algorithms.

Sensors 2021, 21, 7151 23 of 25

6. Conclusions

In this paper, we proposed a scheduling algorithm, SOCCS, that assigns events to
an SBC cluster by considering predicted battery consumption and used resources. The
predictions were obtained through a regression model that establishes the relation between
the SOC and the CPU usage. The proposed scheduler was implemented and evaluated in a
Raspberry Pi cluster running Kubernetes.

Additionally, we analyzed the case of using the unused controller resources to deploy
certain services and tasks. The obtained results confirmed that such consideration is a good
criterion in a resource-constrained environment. By deploying events in the controller
node, we increased the acceptance ratio by around 30% for the highest generation rate with
regards to not deploying requests. Similarly, the acceptance ratio increment was related to
a significant reduction in the rejected events, which could be up to 66% for a generation
rate of 12 events per unit of time. Thus, the proposed scheduler could make better use of
the available resources in the cluster.

The evaluation results revealed that the presented solution outperformed the base-
line algorithms with regards to analyzed metrics, such as rejected and scheduled events,
deadline violations in scheduled events and battery consumption. Specifically, the SOCCS
algorithm reduced the rejected VNFs for the highest event generation rate by around 23%,
which was evidenced by its high acceptance ratio values. Additionally, our proposed
algorithm decreased the number of deadline violations in the scheduled events by 83%.
This result was confirmed by the low values in the waiting and total time of the events
when the algorithm was used. Finally, our proposed scheduler saved around 59% of
battery consumption in the controller node and 51% in the computing nodes for the highest
generation rate.

In terms of future work, we intend to provide our proposed scheduler with a mecha-
nism to migrate events and functionalities to other nodes. This strategy would improve
the fault tolerance of the cluster, since we could reassign demanding events in critical
nodes to available ones in other clusters before the system shuts down due to battery
depletion. In this regard, we also need to provide our scheduler with a communication
channel to exchange information with other entities with a global network view, such as
SDN controllers.

Author Contributions: Conceptualization, A.L.-C., S.G.S., C.C.-P. and D.P.P.; methodology, C.C.-P.
and D.P.P.; software, A.L.-C. and S.G.S.; validation, A.L.-C., S.G.S., C.C.-P. and D.P.P.; Investigation,
A.L.-C., S.G.S., C.C.-P. and D.P.P.; formal analysis, A.L.-C., S.G.S., C.C.-P. and D.P.P.; writing–original
draft preparation, A.L.-C. and S.G.S.; Writing–review and editing, A.L.-C., S.G.S., C.C.-P. and D.P.P.;
Supervision, C.C. and D.P.P.; Resources, C.C.-P.; Funding Acquisition, C.C.-P.; Project administration,
C.C.-P. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Agencia Estatal de Investigación of Ministerio de Cien-
cia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/AEI/10.13039/501100011033.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the public repository is under
development.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Sensors 2021, 21, 7151 24 of 25

References
1. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
2. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the

First Edition of the MCC Workshop on Mobile Cloud Computing, MCC’12 , Helsinki, Finland, 17 August 2012; Association for
Computing Machinery: New York, NY, USA, 2012; pp. 13–16. [CrossRef]

3. Slamnik-Kriještorac, N.; Kremo, H.; Ruffini, M.; Marquez-Barja, J.M. Sharing distributed and heterogeneous resources toward
end-to-end 5G networks: A comprehensive survey and a taxonomy. IEEE Commun. Surv. Tutor. 2020, 22, 1592–1628. [CrossRef]

4. Abu-Lebdeh, M.; Naboulsi, D.; Glitho, R.; Tchouati, C.W. On the placement of VNF managers in large-scale and distributed NFV
systems. IEEE Trans. Netw. Serv. Manag. 2017, 14, 875–889. [CrossRef]

5. Álvarez, J.L.; Mozo, J.D.; Durán, E. Analysis of Single Board Architectures Integrating Sensors Technologies. Sensors 2021,
21, 6303. [CrossRef]

6. Upton, E.; Halfacree, G. Raspberry Pi User Guide; John Wiley & Sons: Hoboken, NJ, USA, 2016.
7. Raspberry Pi 4. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/ (accessed on 30 January 2021).
8. Johnston, S.J.; Basford, P.J.; Perkins, C.S.; Herry, H.; Tso, F.P.; Pezaros, D.; Mullins, R.D.; Yoneki, E.; Cox, S.J.; Singer, J. Commodity

single board computer clusters and their applications. Future Gener. Comput. Syst. 2018, 89, 201–212. [CrossRef]
9. Basford, P.J.; Johnston, S.J.; Perkins, C.S.; Garnock-Jones, T.; Tso, F.P.; Pezaros, D.; Mullins, R.D.; Yoneki, E.; Singer, J.; Cox, S.J.

Performance analysis of single board computer clusters. Future Gener. Comput. Syst. 2020, 102, 278–291. [CrossRef]
10. Kubernetes. Available online: https://www.kubernetes.io/ (accessed on 20 February 2020).
11. Wu, Y.; He, Y.; Shi, L. Energy-saving measurement in LoRaWAN-based wireless sensor networks by using compressed sensing.

IEEE Access 2020, 8, 49477–49486. [CrossRef]
12. Abd, S.K.; Al-Haddad, S.A.R.; Hashim, F.; Abdullah, A.B.; Yussof, S. An effective approach for managing power consumption in

cloud computing infrastructure. J. Comput. Sci. 2017, 21, 349–360. [CrossRef]
13. Marahatta, A.; Wang, Y.; Zhang, F.; Sangaiah, A.K.; Tyagi, S.K.S.; Liu, Z. Energy-aware fault-tolerant dynamic task scheduling

scheme for virtualized cloud data centers. Mob. Netw. Appl. 2019, 24, 1063–1077. [CrossRef]
14. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Software: Pract. Exp. 2011, 41, 23–50. [CrossRef]
15. Opentack. Available online: https://www.openstack.org/ (accessed on 20 February 2020).
16. Gazori, P.; Rahbari, D.; Nickray, M. Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement

learning approach. Future Gener. Comput. Syst. 2020, 110, 1098–1115. [CrossRef]
17. Ding, D.; Fan, X.; Zhao, Y.; Kang, K.; Yin, Q.; Zeng, J. Q-learning based dynamic task scheduling for energy-efficient cloud

computing. Future Gener. Comput. Syst. 2020, 108, 361–371. [CrossRef]
18. Varasteh, A.; Madiwalar, B.; Van Bemten, A.; Kellerer, W.; Mas-Machuca, C. Holu: Power-Aware and Delay-Constrained VNF

Placement and Chaining. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1524–1539. [CrossRef]
19. Hu, X.; Li, S.; Peng, H.; Sun, F. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries. J.

Power Sources 2012, 217, 209–219. [CrossRef]
20. Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health

of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [CrossRef]
21. Sagkriotis, S.; Anagnostopoulos, C.; Pezaros, D.P. Energy Usage Profiling for Virtualized Single Board Computer Clusters. In

Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019;
pp. 1–6.

22. Pop, V.; Bergveld, H.; Notten, P.; het Veld, J.O.; Regtien, P.P. Accuracy analysis of the State-of-Charge and remaining run-time
determination for lithium-ion batteries. Measurement 2009, 42, 1131–1138. [CrossRef]

23. Xi, Z.; Dahmardeh, M.; Xia, B.; Fu, Y.; Mi, C. Learning of battery model bias for effective state of charge estimation of lithium-ion
batteries. IEEE Trans. Veh. Technol. 2019, 68, 8613–8628. [CrossRef]

24. Pahl, C.; Helmer, S.; Miori, L.; Sanin, J.; Lee, B. A container-based edge cloud paas architecture based on raspberry pi clusters.
In Proceedings of the2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW),
Vienna, Austria, 22–24 August 2016; pp. 117–124.

25. Tipantuña, C.; Hesselbach, X.; Sánchez-Aguero, V.; Valera, F.; Vidal, I.; Nogales, B. An NFV-based energy scheduling algorithm
for a 5G enabled fleet of programmable unmanned aerial vehicles. Wirel. Commun. Mob. Comput. 2019, 2019, 63–82. [CrossRef]

26. Nogales, B.; Vidal, I.; Sanchez-Aguero, V.; Valera, F.; Gonzalez, L.; Azcorra, A. OSM PoC 10 Automated Deployment of an
IP Telephony Service on UAVs Using OSM. 2020. Available online: https://osm.etsi.org/wikipub/index.php/OSM_PoC_10
_Automated_Deployment_of_an_IP_Telephony_Service_on_UAVs_using_OSM (accessed on 23 April 2021).

27. Huet, F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries.
J. Power Sources 1998, 70, 59–69. [CrossRef]

28. Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression models. In Regression; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 21–72.

29. Deng, Z.; Hu, X.; Lin, X.; Che, Y.; Xu, L.; Guo, W. Data-driven state of charge estimation for lithium-ion battery packs based on
Gaussian process regression. Energy 2020, 205, 118000. [CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/COMST.2020.3003818
http://dx.doi.org/10.1109/TNSM.2017.2730199
http://dx.doi.org/10.3390/s21186303
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
http://dx.doi.org/10.1016/j.future.2018.06.048
http://dx.doi.org/10.1016/j.future.2019.07.040
https://www.kubernetes.io/
http://dx.doi.org/10.1109/ACCESS.2020.2974879
http://dx.doi.org/10.1016/j.jocs.2016.11.007
http://dx.doi.org/10.1007/s11036-018-1062-7
http://dx.doi.org/10.1002/spe.995
https://www.openstack.org/
http://dx.doi.org/10.1016/j.future.2019.09.060
http://dx.doi.org/10.1016/j.future.2020.02.018
http://dx.doi.org/10.1109/TNSM.2021.3055693
http://dx.doi.org/10.1016/j.jpowsour.2012.06.005
http://dx.doi.org/10.1016/j.apenergy.2008.11.021
http://dx.doi.org/10.1016/j.measurement.2008.03.009
http://dx.doi.org/10.1109/TVT.2019.2929197
http://dx.doi.org/10.1155/2019/4734821
https://osm.etsi.org/wikipub/index.php/OSM_PoC_10_Automated_Deployment_of_an_IP_Telephony_Service_on_UAVs_using_OSM
https://osm.etsi.org/wikipub/index.php/OSM_PoC_10_Automated_Deployment_of_an_IP_Telephony_Service_on_UAVs_using_OSM
http://dx.doi.org/10.1016/S0378-7753(97)02665-7
http://dx.doi.org/10.1016/j.energy.2020.118000

Sensors 2021, 21, 7151 25 of 25

30. UM24C. Available online: https://www.mediafire.com/folder/0jt6xx2cyn7jt (accessed on 30 January 2021).
31. Wang, L.; Gelenbe, E. Adaptive dispatching of tasks in the cloud. IEEE Trans. Cloud Comput. 2015, 6, 33–45. [CrossRef]
32. Sarvabhatla, M.; Konda, S.; Vorugunti, C.S.; Babu, M.N. A dynamic and energy efficient greedy scheduling algorithm for cloud

data centers. In Proceedings of the 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM),
Bangalore, India, 1–3 November 2017; pp. 47–52.

https://www.mediafire.com/folder/0jt6xx2cyn7jt
http://dx.doi.org/10.1109/TCC.2015.2474406

	Introduction
	Related Work and Motivation
	Energy Efficient Scheduling
	State of Charge Estimation
	Single Board Computers

	Problem Statement and System Model
	System Architecture
	Problem Modelling and Notation

	Proposed Scheduling Solution
	SOC Estimator Block
	Monitor Block
	Scheduler Block
	SOC Regression Model

	Evaluation and Results
	Utilizing Unused Controller Resources
	SOC Regression Model
	Comparison among Scheduling Algorithms
	Average Number of Scheduled and Rejected Events
	Average Acceptance Ratio
	Average Number of Successfully Scheduled Events and Deadline Violations
	Average Waiting and Total Time
	Average Battery Consumption

	Conclusions
	References

