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Abstract 

Almost everyone is susceptible to motion sickness, and around one in three people are known to be 
highly susceptible. It has been argued that the use of automated vehicles will increase motion sickness 
severity and onset frequency for those who already regularly suffer from it, as well as for those who are 
susceptible, but don’t regularly get motion sick in traditional vehicles. This is primarily due to the 
engagement with non-driving activities which cause sensory conflict, the relinquishing of control which 
prevents apprehension of current and upcoming motion, and the limited ability to self-mitigate due to 
potential vehicle designs and the inability to take control of the dynamic driving task in a fully 
automated vehicle. This research first contextualised the relationship between motion sickness and 
future automotive technologies – covering both research focused driving simulators as well as ‘real-
world’ use cases for on-road partially to fully automated vehicles. A framework for future research was 
developed and three core projects were established, positioned to cover the breadth of the field. 
Following this framework, the first project explored the impact of motion sickness on human 
performance, this was followed by the development of a method of reducing susceptibility to motion 
sickness and finally, objective measurements of motion sickness were explored.  

Motion sickness is a consideration for not only the day-to-day utility of future automated vehicles, but 
also within the development and simulator-based testing of such technology. Despite the myriad 
benefits of driving simulators for developing future technology, one significant side effect is simulator-
induced motion sickness or ‘simulation sickness’. The first project, using both simulator-based and real-
world experimentation, explored the effect of motion sickness on human performance – informing our 
understanding about transferability of simulator data to ‘real-world’ as well as providing insights into 
the relationship between motion sickness and productivity for future vehicles.   

The second research project proposes, develops, tests and validates a novel method of reducing motion 
sickness susceptibility by way of specific visual-cognitive training activities. Experimentation began using 
a high fidelity driving simulator where it was first shown how it is possible to increase visuospatial skills 
through a novel assimilation and application of a pen-and-paper training pack. Subsequently, this 
increased visuospatial skill reduced both subjective simulator sickness by 58%, and dropouts due to 
severe motion sickness by 60%. This simulator-based study was followed up with an on-road study 
where the visuospatial training pack was further validated for ‘real-world’ utility and was shown to be 
responsible for a reduction in motion sickness by 52% across the experimental group. Further to the 
core findings presented, an industry-focused workshop identified ways in which this new knowledge can 
be exploited for consumer-focused utility. This research also contributes to the fundamental 
understanding of the relationship between visuospatial ability and motion sickness susceptibility.  

Through extensive simulator-based and on-road motion sickness experimentation, the third research 
project pulls together physiological and subjective motion sickness data to explore concepts for 
objectively measuring and detecting motion sickness in real-time. Building upon literature from both 
motion sickness and machine learning fields, a wide range of data types, from demographics, to vehicle 
conditions, to occupant activity and route design are highlighted to be potentially useful in future 
objective motion sickness studies. Based on these sources of data, and many more, a new model is 
proposed through which motion sickness related data can be collected to aid in the objective 
measurement of motion sickness.  

The research conducted here provides a novel contribution in understanding motion sickness related 
human performance degradation and provides an interesting discussion about the impact this may have 
for both simulator trials, and automated vehicle utility. Through the design and validation of a novel 
training tool for reducing motion sickness susceptibility (in simulators and ‘real-world’) this research 
adds to the knowledge about our fundamental understanding of motion sickness and provides an 
innovative solution to address the issue of motion sickness. Further contributions are found within the 
research looking at objective measurements of motion sickness and among other various design 
recommendations. 
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1 SETTING THE SCENE – A BACKGROUND TO AUTOMOTIVE 

 

Over 100 years ago, in 1916, the American automaker Cadillac introduced the ‘Type 

53’ motor vehicle. This particular vehicle is of significance to the world of automotive 

human factors, where for the first time this car featured the controls of ignition, 

steering wheel, three pedals (brake, clutch, accelerator) and handbrake in the layout 

as is familiar in vehicles today. There has been great progress in many aspects of 

transportation since then and a host of new in-vehicle technologies have emerged. 

However, the fundamental concept of what it means to drive a vehicle has not 

changed – people are still fundamentally required to interact with vehicles in the same 

way in 2019 as they were in 1916. Just nine years after the launch of the Type 53, 

technology challenging this concept of ‘driving’, was already emerging in the form of 

‘driverless cars’. In 1925 the Houdina Radio Control company demonstrated a radio-

controlled Chandler automobile driving through the streets of New York City (USA) 

with no driver present - hence the term ‘driverless car’ was coined. This 

demonstration, although significantly abstract from our current understandings and 

objectives of automation in vehicles, stands as the first step in revolutionising the 

concept of driving a car. Since then, many significant steps have been made to 

progress automated technology where the overall goal is to remove the need for a 

human driver from a car and have the vehicle drive by itself. This concept, when 

requiring no human interaction at all is commonly referred to as autonomous driving, 

although the agreed definition is generally ‘fully automated’ (SAE International, 2018). 

To contextualise the envisaged future of the automotive industry, the four key factors 

of future automotive trends are believed to be of most significance as presented in a 

modified diagram by (McKinsey & Company, 2018) below in Figure 1: 

 

 

 

 

 

Figure 1 – Four Factors for the Automotive Revolution 

It is believed these four ‘factors’ are of the most significance for the future of the 

automotive industry, and society as a whole. Each of them bring their own benefits 

and challenges. However, this report will be focusing primarily on ‘autonomous 

driving’ as a consideration. With increasing automation comes many potential benefits 

to mobility including that of traffic management, access to mobility for the disabled 

and above all, safety. Technological developments including various Advanced Driver 
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Assistance Systems (ADAS) and vehicle crash protection systems can be associated 

with an increase in vehicle safety and a decline in road related injury and fatalities 

observed over the years. However, there are still an astonishing number of crashes, 

injuries and fatalities recorded every year. The chart below in Figure 2 illustrates the 

number of reported road casualties in Great Britain from 1950-2017: 

 

 

 

 

 

 

 

 

Figure 2  Reported Road Casualties by Severity and Motor Vehicle Traffic: Great Britain 1950 to 2017 

(Department for Transport, 2018) 

Figure 2 shows a general trend of a reduction in both injuries and fatalities over the 

recent years, despite an increase in traffic. However, with 144,369 people slightly 

injured, 24,831 seriously injured and 1,793 killed in 2017 on UK roads in 2018 

(Department for Transport, 2018), there is still great incentive to further increase road 

safety and bring these figures down. The goal of fully autonomous vehicles is to bring 

down road deaths to zero - it is not uncommon to see predictions for up to and beyond 

a 90% reduction in road traffic collisions (Fagnant & Kockelman, 2015). An 

independent research group at Morgan Stanley estimate the US economy would save 

US$488 billion per year due to the ability of fully autonomous vehicles to reduce road 

accidents (Morgan Stanley, 2013). 

Aside from safety, increasing levels of automation bring many more benefits from a 

consumer perspective. Almost as soon as these original ‘driverless car’ prototypes 

were conceived, people have been envisaging how they will spend their time whilst 

traveling on the road – given that they no longer need to engage in the dynamic 

driving task (DDT). In 1956, America’s Independent Electric Light And Power 

Companies published an automated vehicle concept as is shown below: 
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Figure 3  Automated Advertisement (America’s Independent Electric Light And Power Companies , 

1956) 

The advertisement in Figure 3 depicts a family scene playing a game together whilst 

the two front seats have rotated to create a communal space within the vehicle. In this 

image, no occupant is required to monitor the road or interact with the vehicle 

controls. Jumping forward to the modern day and it is interesting to see this concept of 

occupant activities has remained relatively consistent. In 2017 Mercedes-Benz 

released their concept of a highly automated vehicle (the model F 015) depicting a 

similar scene to that of the scene from 1956, although bringing in more modern 

technology such as display screens: 

 

 

 

 

 

 

 

Figure 4  The Mercedes-Benz F015 (Eliot, 2019) 

2019 is a pivotal point in time for the development of automated vehicles, where there 

is great support for the technology (evidenced by substantial financial investment from 

both the private and public sector) and a rapidly growing consumer desire for vehicles 

with various levels of automation. However, perhaps overshadowed by the potential 

safety benefits, there is still a great deal of uncertainty around the human as a 
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consideration in automated vehicles. There are a many challenges which face the 

automotive industry as drivers become vehicle occupants and relinquish control of the 

vehicle to automated systems. Some challenges are found within the subjects of 

information requirements, control handover, trust, acceptance etc. Many of these 

areas have had a significant research effort evidenced in the literature. However, one 

concern that has seen less attention is that of motion sickness. The US National Library 

of Medicine reports how one in three people are considered highly susceptible to 

motion sickness  (U.S. National Library of Medicine, 2019), and goes on to explain that 

almost everyone can become motion sick depending on the severity of the scenario. 

Motion sickness onset, frequency and severity is expected to increase significantly with 

the introduction of automated vehicles due to a number of factors including the loss of 

vehicle control (Rolnick, 1984), propensity to engage in non driving related activities 

(Diels C. , 2014) and vehicle design (Diels & Bos, 2015). There has been little motivation 

or incentive to develop an understanding of motion sickness thus far. However, this is 

no longer the case – increased automation is growing rapidly and consumer vehicles 

are already on the road with various automated features. Considering those with 

higher levels of autonomy it has been reported that Audi aims to have a highly 

automated car on the road by 2020, General Motors by 2020 or sooner and BMW by 

2021 (Driverless Future, 2017). If people are likely to get motion sick in automated 

vehicles, there is a pressing need to understand the impact, implications and 

mitigation strategies of this, to enable the successful rollout and adoption of 

automated vehicles. 

 

1.1  AIMS AND OBJECTIVES 

 

The aim of this research project is therefore to explore the relationship between 

motion sickness and future automotive technologies to gain an enhanced 

understanding of both the impact and management of motion sickness for the 

automotive industry. 

Objectives: 

1. To critically review the body of literature covering motion sickness with an 

emphasis on impact to automotive applications 

2. To explore the impact of motion sickness on human performance to inform 

transferability of simulator data to real-world 

3. To advise on the most appropriate way to conduct user trials for future 

simulator-based experimentation (including that of motion sickness 

management) to inform ‘best practice’ of vehicle simulator trials. 
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4. To consider the impact motion sickness may have on the utility of future 

automated vehicles 

5. To detail state of the art methods for managing motion sickness in vehicles 

6. Design, test and validate a method of reducing personal susceptibility to 

motion sickness 

7. Provide information on the ways through which a motion sickness 

management method could be implemented in production vehicles 

8. Explore methods for the measurement and detection of motion sickness 

9. Explore the feasibility of physiological data as objective measures of motion 

sickness and provide information about useful metrics through which motion 

sickness may be measured objectively.  

 

2 AN INTRODUCTION TO THE INNOVATION REPORT 

 

From September 2015 to September 2019 the British automotive manufacturer Jaguar 

Land Rover (JLR) sponsored this Engineering Doctorate (EngD) to help develop 

competency in human factors concerns related to future vehicles. This project sat 

within the RACeD project (Research for Advanced Concept Development) at the 

University of Warwick and was fully funded by JLR. As required by the University of 

Warwick’s EngD student handbook this Innovation Report will, along with presenting 

the research, discuss “the value and implication of the research work to the wider 

world” (WMG Reserach Degrees Office at the University of Warwick, 2018), and the 

sponsoring company. This report will therefore contain a summary of the work 

completed over this four-year period and pull out the key findings, impact to the 

sponsoring company, contributions to the field, and innovations.  

Considering the broad nature and size of the EngD as a project, an explanation is first 

given into how this Innovation Report is formed and what to expect from the various 

sections. To begin, an explanation of the portfolio plan is presented – containing an 

insight into all of the submissions made over the 4-year EngD and providing a visual 

representation of how this Innovation Report sits as an overall summary. The 

methodology of the project is highlighted within the explanation of this portfolio plan. 

This tells the story of this research and demonstrates the EngD’s inherent positioning 

between fundamental research and industry-focused outputs. The sponsoring 

company (JLR) is then presented as a case study establishing the state of competency, 

knowledge and influence of the company on this research. This introduction to the 

sponsoring company helps illustrate how this project was able to address the aims 

from the business, which in turn helped fuel this project. In summary of the 

requirements from JLR, and with an anticipation of the demands from the literature, 
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the broad research themes can be set out, which capture all the objectives of the 

research.  

With the introductory sections complete, a formal introduction to the two subjects of 

automated vehicles (AVs) and motion sickness (MS) will be presented – bringing the 

reader up to date with the state of the art (SOTA) for each subject. Evidencing the 

‘sustaining innovation’ approach, these two subjects of motion sickness and 

automated vehicles are brought together and the challenges that arise within the 

marriage of the two fields of study are explored. The combination of these two 

subjects is key for this Innovation Report, and provides an understanding into where 

the true challenges lie for this research. The three key projects, which make up the 

main body of this Innovation Report are then presented. Looking back on the three 

core projects, it will then be possible to revisit, in the closing sections, how this 

research has addressed the challenges, aims and objectives set out early on in this 

Innovation Report. Concluding, it is then possible to summarise the impact this work 

has had on the case study of Jaguar Land Rover as the sponsoring company.  

 

2.1 PORTFOLIO PLAN AND REPORT STRUCTURE 

 

As part fulfilment of this EngD, submissions have been made along the way to 

document and present distinct sections and/or research projects completed. Although 

this Innovation Report stands as the overall summary of these submissions, these 

documents hold within specifics and in-depth details of the work presented and 

discussed here. It is advantageous to present the structure of these submissions to 

provide a context to each submissions’ research contribution, which combined, make 

up this EngD. Figure 5 below shows how the research took place chronologically and 

shows the submissions in order of their completion:  

 

 

 

 

 

 

Figure 5 Portfolio Plan Version 1 
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Viewing the portfolio in chronological order helps in understanding how this project 

developed. Initially, work began within the Self-Learning Car (SLC) team at Jaguar Land 

Rover. However soon after starting research, the business decided to progress the SLC 

project from research to ‘mainstream engineering’ – thus the project, which initially 

enabled this EngD, was dissolved. This led to a period of, futurescaping and problem 

identification to find a new scope for research to address the overall aims and 

objectives of this EngD. Moving away from automating in-vehicle features, this 

research moved towards the subject of motion sickness. Submission 2 was the first 

submission made in this new direction and contains an in-depth and critical review of 

the literature surrounding motion sickness and automated vehicles.  From then, each 

submission ran relatively consecutively and demonstrates a logical progression of the 

project. Considering the change in direction of the research stemming from the 

disbandment of the SLC team, this EngD portfolio plan is reordered, moving away from 

a chronological timeline, but instead to reveal the true story of this EngD as three core 

projects and is presented below in its finalised version in Figure 6.  

 

 

 

 

 

 

Figure 6 Portfolio Plan Version Finalised    

Figure 6 above, presents the portfolio plan for the structure of this EngD and 

Innovation Report. There are a few notable differences from the original chronological 

plan set out in Figure 5, which will be explained along with a brief overview of the 

submissions to give an appreciation for the overall methodology of this project.  

Submission 2, setting the scene for this motion sickness research was a literature 

review focused on motion sickness with an emphasis on the automotive industry. This 

review provided the background learning and understanding of many concepts of 

motion sickness, covering a wide range of fundamental literature ranging from 

biological explanations of the condition to discussing design recommendations for the 

management of motion sickness. This literature review was strategically kept broad so 

that this submission could stand as the backbone behind subsequent research 

projects. The problem of motion sickness and automated vehicles at the time of this 
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report was still ill-defined within the published literature and in general understanding.  

Therefore covering a wide range of subjects allowed for the opportunity to scope this 

EngD in such a manner to ensure maximum validity for future projects and not limit 

future work by way of omitting various areas of the literature. The outcome of this 

literature review evidenced innovation in the contextualisation of existing literature 

surrounding motion sickness as a specific subject, and expectations for future 

automotive trends (e.g., automated vehicles and driving simulators). This literature 

review also served as the reference for the problem identification carried through this 

EngD research. The conclusion of Submission 2 presented a series of challenges and 

research questions on which the subsequent EngD projects could be based.  

The challenges and research areas from Submission 2 were developed into a 

framework of future research which highlighted three distinct areas of recommended 

motion sickness future research. These categories were identified to be of most utility 

to explore for this EngD considering the state of the literature and the demands from 

industry. The framework loosely follows the same linear style progression of the 

Technology Readiness  Level (TRL) (NASA, 2012) scale where fundamental research 

tends to sit to the far left of the framework, and applications to the right. A modified 

version of this framework is presented below in Figure 7, where the original version 

includes a summary of areas for further explanation found during the literature review. 

 

 

 

 

Figure 7 Modified Framework of Identified Future Research 

The framework above differs somewhat from that presented in the literature review 

summarised in Submission 2, as both the field and this research project have 

developed since its initial conceptualisation. Figure 7 helps to present and justify the 

scope for this EngD project – sitting in-between theory and application. The theory 

based fundamental research can be more exploratory in nature and tends to be 

associated with academic research. Whereas the applications traditionally tend to be 

more where industry focused research and development lies. The scope of the EngD is 

therefore represented by the grey diamond, where the bulk of the effort is in 

understanding and contextualising the impact of motion sickness and future 

automotive technologies. This positioning also allows for some significant work to be 

carried out either side of this centre point - both adding to the fundamental knowledge 

as well as the application of knowledge to industry. The six submissions (besides 

Submission 2 – the literature review) can be mapped onto this framework presented in 
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Figure 7 where they form three Projects - A, B and C as per Figure 6. A brief overview 

of the portfolio of submissions is given.  

2.1.1 PROJECT A – MOTION SICKNESS AND HUMAN PERFORMANCE 

(SUBMISSIONS 3 AND 4) 

Project A looks at motion sickness and human performance, it sits within the category 

of ‘impact of motion sickness’ as defined in the framework presented in Figure 7. One 

of the immediate concerns highlighted within the literature review (Submission 2) was 

the relatively undefined extent to which motion sickness affects human performance. 

This was of concern due to the nature of simulator-based user trials, and the 

propensity for driving simulators to induce motion sickness for some users. Submission 

3 looked to see how motion sickness affects various areas of human performance and 

looked to conclude on how performance, and therefore user trial results, may be 

impacted if motion sickness is a factor for participants. An experiment was devised 

using 51 participants, each using a simulator for up to 30 minutes and the impact of 

motion sickness on various areas of human performance was measured. The outcomes 

for Submission 3 were very interesting for understanding the transferability of 

simulator data to the ‘real-world’. Following up on the simulator study, a ‘real-world’ 

study using the pods from the UK AutoDrive project was devised, and this is presented 

in Submission 4.  

Within Submission 4, the same experimental procedure is followed as in Submission 3 

– the simulator study, although this time a further 17 participants were assessed whilst 

taking part in a ‘highly automated’ driving ‘pods’ trial, rather than a driving simulator 

study. This trial confirmed that the pods did not induce any significant motion sickness 

(in this trial) – and as a validation for results in submission 3 where performance was 

affected by motion sickness – no decrement to performance was observed following 

the pod trials. 

The summary of the two trials which make up Project A, provide insights into the 

transferability of simulator-based user trial data to real-world as well as bring into 

context the effect of motion sickness on human performance. This brings with it 

interesting considerations for automated vehicles and performance degradation 

because of motion sickness in an automated vehicle is discussed. 

2.1.2 PROJECT B – REDUCING MOTION SICKNESS SUSCEPTIBILITY 

(SUBMISSIONS 4 AND 5) 

Project B looks at a new method for reducing susceptibility to motion sickness, is 

comprised of Submission 4 and 5, and primarily sits within the category of 

‘applications’ as defined in the framework presented in Figure 7. However, this project 

also contributes significantly to the scientific literature through the more fundamental 
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understandings of motion sickness, which sits further to the left of Figure 7. One of the 

interesting findings presented in Submission 3 was the relationship observed between 

motion sickness and visuospatial skills. Upon examination of the data, and building 

further on the literature already discussed in Submission 2, it was hypothesised that 

motion sickness susceptibility could be reduced through improving one’s visuospatial 

skills. Project B set out to explore this hypothesis with a two-part experimental design. 

Submission 5 explores, through a simulator study, if through training visuospatial skills 

it is possible to reduce motion sickness susceptibility, a first for the academic 

literature. Submission 5 presents a novel visuospatial training tool, and shows how 

using this training tool participants (n=20) were able to improve visuospatial 

performance. Subsequently, and most significantly, it was shown how this increased 

visuospatial performance was responsible for a significant reduction in motion sickness 

susceptibility experienced within the driving simulator (measured as simulation 

sickness).  

Considering the importance of the findings presented in Submission 5, both for the 

fundamental understanding of motion sickness and the industry application of a 

potential motion sickness management method, Submission 6 looked to replicate this 

study in the ‘real-world’. Using a further 22 participants, a user trial was designed to 

mimic that of the trial presented in Submission 5, but using an on-road driving task as 

the motion sickness inducing task. This study somewhat mimicked the conditions of a 

fully automated vehicle where the occupant sat as a passenger whilst being driven. 

This user trial again showed how the novel visuospatial training tool was successful in 

improving visuospatial performance, and importantly showing how this improved 

visuospatial performance was responsible for a significant reduction in motion sickness 

severity for participants. Submission 6 therefore validated the findings presented 

within Submission 5 and showed the real-world application for a visuospatial training 

tool for the management of motion sickness. Further data was presented within this 

submission around the effect this reduced motion sickness had on cognitive workload 

when completing a basic reading task.  

Project B concludes on these two user trials, presents the data as well as a discussion 

about the implications of this finding. Further, an ideation workshop was conducted 

and methods of exploitation of this new knowledge have been presented – adding to 

the business case support for this project. 

2.1.3 PROJECT C – THE MEASUREMENT OF MOTION SICKNESS 

(SUBMISSIONS 7 AND 1) 

Project C primarily sits within the category of ‘measurement / detection/prediction’ as 

defined in the framework presented in Figure 7, and combines outputs submitted at 

the beginning and the very end of this EngD portfolio.  
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The roots of Submission 7 were again based upon the findings presented in the 

literature review (Submission 2), where this project looked to see the extent to which 

the physiological measures of Electro Dermal Activity (EDA) and skin temperature were 

useful as a measure of real-time motion sickness severity. This project idea stemmed 

from the confusion evidenced within the literature presented in Submission 2 where 

the utility of objective motion sickness measures was often argued. Using the user 

trials presented in submissions 3, 5 and 6 physiological data was collected for later 

analysis – hence it is presented at the end of the portfolio, upon completion of all 

these trials. There was a significant interest from the sponsoring company (JLR) to 

identify useful physiological metrics on which motion sickness can be inferred where at 

that time, JLR researchers were planning on using EDA and skin temperature to 

measure motion sickness. This submission looked at real-time measurement of motion 

sickness (objectively and subjectively) and showed that it is impractical to use these 

physiological measures as real-time motion sickness measures by themselves. Within 

submission 7, recommendations were made on how motion sickness could perhaps be 

measured using a mixed-methods approach, where this allowed for the re-

consideration of the data collection model presented in Submission 1. 

Submission 1, was completed at the beginning of this EngD, and looked at problems 

within JLR’s Self-learning  Car (SLC) project. This submission summarised the issues 

which were being experienced with the SLC system and proposed a new model 

through which data can be collected to better inform a machine learning system to 

enable reliability. The SLC team was disbanded soon after the completion of this 

submission and therefore the context in which the model was developed is less useful 

for this theme of motion sickness. However, the model itself remains relevant and is of 

testament to the appropriately scoped research in that its utility goes beyond its 

original purpose. This model may be applied to the measurement and perhaps 

prediction of motion sickness onset – exemplifying ‘architectural innovation’. The 

model is extracted and its implementation is discussed and explored  within this 

project.   

2.1.4 SUMMARY OF THE PORTFOLIO PLAN 

In summary of the portfolio plan, it is possible to revisit the frameworks presented in 

Figure 6 and Figure 7, combining the two to conclude upon the scope of this EngD. This 

has been presented below in Figure 8: 
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Figure 8 Innovation Report Summary of Scope 

No individual project is constrained to just one area in the scope of motion sickness 

research, where all span the spectrum from fundamental theory-based research to 

industry-ready applications in some manner. However, the three projects presented 

within this Innovation Report do lend themselves to be mapped loosely within the 

framework and evidence how this research has attempted to cover the spectrum of 

research opportunities. The purpose of Figure 8 is to show the scope of the research 

conducted for this EngD, with a fundamental aim to bridge the gaps between 

academia and industry. The section highlighted in blue on the left of Figure 8 

(measurement / detection / prediction) encompasses the study of physiological 

measures and their correlation to motion sickness. In the middle (orange), is the 

impact of motion sickness, and is focused on the performance and subjective 

discomfort that motion sickness brings. Finally, mitigation solutions to the right (green) 

covers strategies for reducing motion sickness without drug or hormonal manipulation 

(i.e., non-invasively). All of these themes will be explored primarily in an automotive 

context, but each offer transferability for their application to the wider field. 

As more of a point of interest, two further scales have been added to the bottom of 

the framework presented in Figure 8. In general, it is understood that the research 

topics towards the left of the spectrum lend themselves to academic research, and to 

the right, industry research – as previous explained. But also interesting for this EngD is 

the applicability of simulation as a research method for studies further to the left of 

the spectrum, where real-world studies are more suited to those further to the right. 

This is of consequence for this EngD project, which looks to cover simulator-based 

research transferability between many aspects of the projects included. 
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2.2  AN INTRODUCTION TO THE PROJECT SPONSOR 

 

Jaguar Land Rover (JLR) are a British automotive OEM (Original Equipment 

Manufacturer) and home of the two previously independent brands of Jaguar and Land 

Rover. The two brands both strongly target the luxury / premium car market. Although 

the traditional primary focus of the two brands has been sports cars (Jaguar) and off-

road capable vehicles (Land Rover), the defining characteristic of their overarching 

business model is certainly one of luxury and quality. More recently, it seems JLR are 

positioning themselves as a lifestyle company, whereby you might ‘buy in’ to the brand 

for the overall experience rather than just the product, their 2019 tag line on their 

company website speaks to this ambition:  

Jaguar Land Rover: “Creating experiences people love for life” (Jaguar Land Rover, 

2019) 

It is this focus on the premium/luxury market and experience ‘creation’ around their 

brand that helps define the scope set out for this EngD. It also uncovers the driving 

force behind this research project, which looks overall to make the JLR experience the 

best it can be for its customers. 

When this EngD began in September 2015, JLR were attempting the development of a 

Self-Learning Car (SLC) system, which aimed to learn user engagement patterns with 

distinct in-vehicle systems (such as heated seats, radio media and climate control). 

There were no new features within the vehicle, but rather the automation of these 

existing features was the innovative step JLR were making to continue their premium 

vehicle development, and create the new experience for their customer. The challenge 

faced by JLR at the time was in finding a way to accurately predict the users’ routine 

based on data it could collect from the user. This challenge was the primary aim of this 

initial EngD conception. The SLC project was taken away from the research department 

and handed over to mainstream engineering, the SLC research team was disbanded 

and the scope of this EngD project therefore adapted and changed. 

Looking towards the future of the automotive industry, with increasing levels of 

automation on the horizon, JLR were keen to better understand some of the human 

factors concerns with automation within vehicles. At the time, the scope from JLR was 

broad with no fixed direction to research. This played to the strengths of the EngD aim 

and the challenge was, considering future mobility, to create a meaningful impact to 

JLR’s future vehicles whilst enabling the ethos of “creating experiences people love for 

life”. An initial consideration from the original SLC project was to explore the possibility 

of driving simulator-based SLC user trials, and how transferable these studies would be 

to real-world applications. One consideration from this was the propensity for people 

to become motion sick during studies (specifically, simulator sick) which gave the 
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consideration for the first project looking to understand if there was a human 

performance consideration. Expanding this line of study, it was conceived that motion 

sickness could be an issue for current, and certainly future automated JLR vehicles. The 

concept of motion sickness was discussed with JLR, and it was agreed that there was 

good scope to help shape their future vehicles by better understanding the 

relationship between motion sickness and future automotive technologies. Such a 

project is well suited to JLR as a car company who are keen to develop value-adding 

and experience enabling technology for their target market in the premium 

automotive sector. When this project began, the JLR research department had limited 

competency within the field of motion sickness management for driving simulators or 

automated vehicles. 

 

3 REVIEWING THE SUBJECTS OF AUTOMATED VEHICLES AND MOTION 
SICKNESS 

 

Although the research aims, objectives and themes have already been presented – to 

enable clarity of this Innovation Report, the aims and objectives were primarily 

concluded upon after the initial literature review (Submission 2). The literature 

covering motion sickness, automated vehicles and the combination of the two was of 

significant interest and importance for this EngD and an introduction to the subjects 

are now presented where the aims and objectives are further justified. This literature 

has been explored in greater detail in Submission 2, and as a result of this 

contextualisation and exploration of the subject a publication was created looking at 

the potential disparity between automated vehicle expectation and realistic outcomes 

(Smyth, Jennings, & Birrell, 2019). 

3.1 AN INTRODUCTION TO AUTOMATED VEHICLES 

 

The premise of increasing automation within a vehicle is to reduce the requirement for 

manual driving interaction from a human driver. Common lay phrases used to refer to 

automated vehicles include ‘self-driving vehicle’, ‘driverless vehicles’ and ‘autonomous 

vehicles’. 

3.1.1 TERMINOLOGY 

There are different levels of automation to classify automated vehicle technologies 

and the most recent, and most useful, scale is supplied by the Society for Automotive 

Engineers (SAE) and presented below in Figure 9: 
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Figure 9 Summary of Levels of Driving Automation (SAE International, 2018) 

‘DDT’: Dynamic Driving Task.  

‘OEDR’: Object and Event Detection, Recognition, Classification, and Response 

‘ODD’: Operational Design Domain 

For the purposes of this research and Innovation Report, SAE Levels 2 to 5 (as per 

Figure 9) are of most interest and will further be discussed:  

At SAE Level 2 (partial automation), in defined scenarios the vehicle will allow the 

driver to relinquish control of both lateral and longitudinal driving inputs to the 

automation system. However the driver must remain attentive to the driving task at all 

times, and overall, responsibility for the vehicle still lies with the driver.  

At SAE Level 3 (conditional automation) the vehicle can take control of all aspects of 

driving in defined scenarios (or ODD’s), however, the system requires the user to 

regain control of the vehicle at any time, following a notice period. 

At SAE Level 4 (high automation) the vehicle can control all aspects of the driving task 

within specific ODD’s but will allow the user to take control of the vehicle if they so 

choose – although there is no requirement to do so. This is where the line between 

‘driver’ and ‘passenger’ begins to blur as the user can choose to be either.  

At SAE Level 5 (full automation), the vehicle will control all aspects of the driving task 

and there will be no availability for the occupant to take over the DDT. In such a 
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vehicle, there would not be any traditional driving controls such as a steering wheel or 

pedals.   

As somewhat of a summary to the definitions above, the term Autonomous Vehicle 

(sometimes abbreviated to ‘AV’) relates to an SAE Level 5 full driving automation 

vehicle. Pods, such as the ones created by RDM group (RDM Group, 2017) and as used 

in recent research (Burns, Oliveira, Hung, Thomas, & Birrell, 2019) look physically like a 

Level 5 vehicle (with no manual driving controls), although they are designed to 

operate in specific ODD’s therefore they are classified as Level 4 vehicles according to 

the SAE. The term ‘Automated Vehicle’ relates to vehicles with Level 3, 4 or 5 capability 

(i.e., conditional to full automation). Other commonly used terms such as ‘self-driving’ 

vehicle and ‘driverless’ vehicle, whilst presumably refer to a Level 5 fully autonomous 

vehicle, have fallen into disuse in recent academic literature due to their lack of 

specificity and should therefore be avoided. 

3.1.2 CURRENT STATE-OF-THE-ART 

Although the overall goal of many automotive OEMs is full driving automation (SAE 

Level 5) there are a number of technical and legislative barriers to cross before this 

technology is ready. Until then it is likely vehicles will be released with increasing levels 

of automation, until full autonomy can be achieved. As of 2019, there is already 

evidence of this path to full automation with companies such as Tesla (AutoPilot), 

Cadillac (Super Cruise), Volvo (pilot Assist) and Nissan (ProPilot Assist) amongst others 

all releasing SAE Level 2 vehicles. A subjective review of these current systems has 

been published (Olsen, 2018) and presents a good overview of the various systems and 

implementations of this technology. A key thing to note about Level 2 vehicles is the 

responsibility for the driver to remain attentive to the driving task at all times. The way 

in which this is executed differs between vehicles where, for example, Tesla requires 

hands on the steering wheel at all times and Cadillac monitors eye fixation behaviour. 

Looking at SAE Level 3 systems, Audi has released their ‘Traffic Jam Pilot’ system in 

their 2019 A8 model vehicle, which claims to operate under the defined requirements 

for a Level 3 system and can control all aspects of the driving task (DDT) up to a speed 

of 37mph. As of 2019 there are no commercially available Level 4 or 5 vehicles on the 

market.  

3.1.3 UTILITY OF AUTOMATED VEHICLES 

There are myriad benefits to automated driving systems, and the increased safety that 

these technologies are likely to bring is possible even in the lower levels of 

automation. Initial estimates studying ADAS systems and ‘low levels of automation’ 

show the potential for this technology to reduce light vehicle crashes by at least 

32.99% per year and crashes for heavy trucks by at least 40.88% per year (Yue , Abdel-
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Aty, Yina , & Ling, 2018).  However, considering Levels 4 and 5 it is expected this 

reduction in collisions would be drastically greater. Morgan Stanley have previously 

predicted a US$488 billion saving per year for the US economy due to the reduction in 

road traffic accidents due to Level 4 or Level 5 vehicles (Morgan Stanley, 2013). They 

based this figure on the reporting that 90% of road traffic accidents are related to 

human error (World Health Organisation, 2004 ) (p.10) – so without the driver, they 

expect a reduction of 90% in road traffic accidents. The logic behind this calculation 

may be disputed, but the argument for increased safety is established enough and the 

specifics of exact figures is not necessary for this EngD research. 

Looking past safety, there are many more benefits to this technology, particularly at 

the higher levels (SAE Levels 4 and 5) where the driver can relinquish control to the 

automated system completely. Such systems will enable transportation for those who 

cannot drive a traditional vehicle due to age, health, disability etc. and thus has the 

ability to significantly enhance inclusivity in mobility. Also within these vehicles (SAE 

Levels 4 and 5) comes the ability to engage in non-driving related tasks for extended 

periods. A Level 3 vehicle may also allow for some engagement – although tasks may 

be restricted by the requirement to regain control of a vehicle if needed. Some tasks 

often envisaged for these vehicles include reading, watching films, working and 

socialising, amongst others. A survey conducted by insurance company StateFarm in 

2016 (State Farm, 2016) looked to understand what people want to do within a vehicle 

that can drive itself (referring to SAE Levels 3, 4 and 5), given the premise that self-

driving technology would free up their time to engage in other activities. With a 

sample size of 961 they reported 45% of people would be more willing to read texts, 

36% would be more willing to access the internet, 21% would be more willing to watch 

movies and 19% would be more willing to read a book (StateFarm, 2016). Findings are 

also reported around the trust of automated vehicles, and it is expected that these 

figures presented above would likely increase as trust in the technology and 

willingness to ride in such Level 3, 4 and 5 vehicles increases. The breakdown of 

responses from this StateFarm survey is presented below in Figure 10. 
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Figure 10 What People Want to Do in a Level 3, 4 or 5 Automated Vehicle. 

This concept of productivity in vehicles is well supported by automotive OEM’s, many 

of whom have published concepts of what they believe are possible use cases for self-

driving vehicles. The image previously presented in Figure 4 which showed Mercedes-

Benz’s F015 automated vehicle speaks to this consideration and expectation for 

increased productivity in vehicles with all occupants engaging in a work based task. 

Many others are also advertising similar possibilities for future automated vehicles – 

two of which are presented below: 

 

 

 

 

 

 

 

 

Figure 11 Rinspeed XchangE Automated Vehicle Prototype (Rinspeed, 2014) 
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Figure 12 Volvo Automated Vehicle Prototype (Volvo, 2019) 

As proposed in these concepts, there appears to be a great opportunity to transform 

driving time into time spent doing many other activities when riding in an automated 

vehicle. Further to these leisure activities presented above, there is also scope for 

vehicles to become mobile offices as people can complete work-based activities whilst 

in their automated vehicle. This is particularly true for Levels 4 and 5 automated 

vehicles, but may also be possible, to some extent, for Level 3 vehicles. A recently 

OnePoll survey with a sample size of 2000, revealed how 27% of  the population would 

want to engage with work related activities whilst commuting in an automated vehicle 

(Lofthouse, 2017), although the full research article has not been published. Again, this 

figure is likely to increase as trust and willingness to ride in such vehicles increases. 

Further to this consumer pull, there may also be an industry push for work-orientated 

productivity in future automated vehicles. Morgan Stanley have estimated that the 

ability to work within an automated vehicle could bring US$508 billion per year to the 

US economy (Morgan Stanley, 2013) (p.50). A smaller figure, but again in support of 

the concept of completing work-based tasks in automated vehicles predicts a potential 

US$220 billion per year benefit to the US economy linked to increased productivity 

(Montgomery, 2018). 

 

3.2 AN INTRODUCTION TO MOTION SICKNESS 

 

Humans have been documenting motion sickness as early as 800 BC according to one 

text (Huppert, Benson, & Brandt, 2017) which explores the historical documentation of 

the condition. It is still a condition which humans suffer from today. Motion sickness, 

or ‘kinetosis’ can be experienced in a broad array of scenarios, such as on a boat 

(seasickness), in a car (car sickness), in a simulator (simulator sickness), or on a plane 

(airsickness) etc. Many of these definitions include motion sickness experienced when 
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in a mode of transport, therefore another common phrase covering these is ‘travel 

sickness’. Although all of these terms and more fall under the umbrella term of motion 

sickness (MS). 

3.2.1 THEORIES OF MOTION SICKNESS 

The cause(s) of motion sickness are still, to this day not fully agreed upon, with even 

the most established theories sometimes disputed. The most commonly referenced 

theory of motion sickness is the Sensory Conflict Theory (Reason & Brand, 1975). To 

understand this theory, it must first be understood that there are three primary ways 

of perceiving motion: 

 The Visual system –a person can infer motion using their eyes to track 

movement, light or parallax 

 The Vestibular system – balance organs within the inner ear which are 

responsible for sensing self-motion 

 The Somatosensory system – an area and therefore function of the brain which 

can infer motion based on movement of limbs and pressure on the body etc. 

The sensory conflict theory argues that mismatches between or within visual, 

vestibular or somatosensory inputs cause motion sickness. This theory holds the most 

weight in our present understanding of motion sickness where nearly all motion 

sickness incidences involve at least some form of conflict between these senses (Bles, 

Bos, de Graaf, Groen, & Wertheim, 1998) and therefore, it is most commonly 

observed. Some criticism of this theory is found within the literature, where it is 

argued that because “only a small subset of intermodal patterns of stimulation is 

associated with motion sickness” sensory conflict cannot necessarily predict motion 

sickness (Stoffregen & Riccio, 1991) (p.188).  

As somewhat of a response to the criticism of the sensory conflict theory, a new 

theory of motion sickness was proposed - the Postural Instability Theory (Riccio & 

Stoffregen, 1991). This theory explains how motion (physical or perceived) can disrupt 

the natural postural sway pattern of an individual, resulting in the inability to 

accurately understand ‘centre of gravity’ and therefore inability to maintain postural 

control. This theory was proposed as an alternative to sensory conflict theory and is 

presented as a challenge to the sensory conflict theory (Stoffregen & Riccio, 1991) 

where they argue that prolonged postural instability is the cause of motion sickness 

(Riccio & Stoffregen, 1991) (p. 205). This theory was investigated initially by (Warwick-

Evans & Beaumont, 1991) through a comparison of the postural instability theory to 

sensory conflict theory. Through attempting to remove postural control as a factor of 

the experimental design, the results of their study (where all participants became 

motion sick) indicated that reducing demands of postural control did not reduce 

motion sickness onset or severity. This study provided evidence on which to debate 
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the validity of the postural control theory. A further study using two conditions to 

control postural stability further disproves the hypothesis of the postural stability 

theory (Warwick-Evans, Symons, Fitch, & Burrows, 1998) whilst providing further 

evidence to support the sensory conflict theory.  More recently, the theory of postural 

control is  being considered less of a cause of motion sickness, and more as a precursor 

to motion sickness (Stoffregen, Hettinger, Hass, Roe, & Smart, 2000) (Stoffergen & 

Smart Jr., 1998) (Guerraz, Gianna, Burchill, Gresty, & Bronstein, 2001). It may not be 

postural instability that is necessarily causing motion sickness, but it does often 

precede motion sickness, agreeing there is a relationship between motion sickness and 

postural instability – but not a direct causation. 

Sopite Syndrome (Graybiel & Knepton, 1976) is also commonly discussed in relation to 

motion sickness subjects. Sopite syndrome is a condition related strongly to sensations 

of fatigue and mood changes in relationship to motion (observed and perceived). One 

of the subcategories of the MSAQ is sopite-related symptoms, again attesting to the 

link between this and motion sickness. However, sopite syndrome is not a causal 

theory of motion sickness, rather their relationship is such that they occur due to 

similar stimuli (motion), therefore in similar domains and at similar times.  

3.2.2 CLASSIFICATION OF MOTION SICKNESS TYPES 

Considering the various reference terms for motion sickness (car sickness, seasickness, 

virtual reality sickness etc.) along with the explanation of motion sickness theories it is 

useful to classify motion sickness states based on the presence of physical motion. The 

presence of motion and different motion cues are argued to be of importance in the 

understanding of motion sickness onset (Stoffregen & Riccio, 1991). A useful 

differentiating characteristic of motion sickness-inducing scenarios is those which 

involve ‘afferent’ and ‘efferent motion’. Where afferent motion accounts for when 

“objects are moving in the environment” (i.e., when observing object movement) and 

efferent motion accounts for “movements of the eyes, body or head” (i.e., self-

movement) (Kapoula & Thanh-Thuan, 2006) (p.438). It is afferent motion which also 

leads to the concept of ‘vection’ or the self-illusion of motion which is of consequence 

for sensory conflict theory and therefore motion sickness (for more on vection see 

(Palmisano, Allison, Schira, & Barry, 2015)). Given this reliance on motion (or lack 

thereof) for identifying motion sickness ‘type’, it is useful to categorise the three 

motion-related categories of motion sickness: 
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Table 1 Classification of Motion Sickness ‘States’ Based on Motion 

Classification  Examples of motion sickness state 

1. Motion is seen but not felt (afferent 
motion present) (referred to as VIMS) 

 E.g., Space-sickness, virtual reality (VR) 
sickness, simulator sickness (fixed base) 

2. Motion is felt but not seen (efferent 
motion present) 

 E.g., Car sickness, seasickness, airsickness 

3. Motion is seen (efferent) and felt (afferent) 
but the two do not correlate  

 E.g., Simulator sickness (moving base) or when 
using VR equipment or watching a film in a 
moving environment 

 

3.2.3 MOTION SICKNESS SYMPTOMOLOGY 

The subjective sensations of motion sickness are uncomfortable and undesirable, 

where common symptoms include nausea, sweating, headaches and, in severe cases, 

vomiting. The symptomology is somewhat explained through the evolutionary 

hypothesis (Treisman, 1977) which explains how the brain rationalizes the conflict in 

sensory inputs (as per sensory conflict theory) to be the result of ingesting a poison. 

Therefore evolutionary responses to self-sustain result in the characteristic sweating, 

burping and vomiting which are used to push toxins out through the skin, get rid of gas 

build up, and empty the stomach contents in case poison has indeed been ingested. 

The symptomology of motion sickness is somewhat dependent on the incidence of 

onset, where VIMS (visually induced motion sickness) related cases result in more 

visual discomfort, but afferent motion scenarios tends to result in more nausea related 

conditions. As a good explanation of this, two widely used subjective grading criteria 

for motion sickness - the Simulator Sickness Questionnaire (SSQ) by (Kennedy, 

Norman, Berbaum, & Lilienthal, 1993) and the Motion Sickness Assessment 

Questionnaire (MSAQ) (Gianaros, Muth, Mordkoff, Levine, & Stern, 2001) measure 

many motion sickness symptoms and therefore provide a good insight into the types of 

symptoms related to motion sickness. Where the SSQ is more useful for afferent 

motion environments, it is interesting to see a greater emphasis on visual system-

related symptomology, compared to the MSAQ.  

3.2.4 WHO IS AFFECTED BY MOTION SICKNESS 

It is understood that everyone is susceptible to motion sickness except those with 

complete loss of labyrinth function (i.e., those who are completely deaf or have a 

vestibular dysfunction) (Chung, Howard, & Money, 1991) (Kellogg, Kennedy, & 

Graybiel, 1965). The U.S Library of Medicine report that as many as one in three 

people are highly susceptible to motion sickness (U.S. National Library of Medicine, 

2019). Looking at car sickness specifically it is understood that around 60% of the 
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population has experienced some nausea from car travel, whereas about a third has 

vomited in cars before the age of 12 (Griffin, 1990). 

Motion sickness severity and onset frequency vary between demographics also, where 

it is known females are more susceptible than males (Jokerst, et al., 1999) (Flanagan, 

May, & Dobie, 2005) where the effect is even more pronounced when menstruating or 

pregnant. Because of this, and other factors, it is understood that the main reason for 

the gender difference in motion sickness susceptibility is related to sex hormones 

(Matchock, Levine, Gianaros, & Stern, 2008) where those with higher androgen levels 

report fewer incidents of motion sickness and those with higher levels of oestrogens 

report more motion sickness incidences (Hausmann, Slabberkoorn, Van Goozen, 

Cohen-Kettenis, & Gunturkun, 2000). There is also some differentiation between 

mechanisms for visually determining motion between the genders (Schouten, Troje, 

Brooks, Van Der Zwan, & Verfaillie, 2010)  which can result in higher motion sickness 

for efferent motion scenarios (VIMS) for women.  

There is also evidence to suggest that ethnicity has a role to play in susceptibility, 

where in general “Asian people are more susceptible than those of European or 

African origin” (Klosterhalfen, et al., 2005) (p.1051). Highlighting also how genetics too 

have a significant role to play in motion sickness susceptibility (Stern, et al., 1996). 

Further to gender and ethnicity, age also known to have an effect on motion sickness 

susceptibility, the direction of which is relatively well understood for children. It is 

known that infants and very young children are immune to motion sickness (Golding J. 

F., 2006) where susceptibility begins around the age of 6 or 7 (Reason & Brand, 1975), 

peaking towards the ages of 9 to 10 (Turner & Griffin, 1999) before a subsequent 

decline during teenage years. For adults however, there is greater confusion, with 

some claiming motion sickness increases with age (Golding J. F., 2006) (p.71), and 

others claiming motion sickness decreases with age (Turner M. , 1999). In this earlier 

paper (Turner M. , 1999) it is explained how familiarity and experience with travel 

modalities affects motion sickness independently of age. This study (with 3256 

participants) provides a stronger argument for the potential age effect in adulthood 

where the other studies had not considered travel experience as a factor. A greater 

exploration of age has been given in the literature review (submission 2) where it was 

concluded that it is not possible to draw robust conclusions about the effect of age (for 

adults) on motion sickness without an understanding of past travel experience. The 

exploration of age effects is still of interest and worth exploring in dedicated, 

fundamental studies, however it will not be the focus of this more applied EngD 

research. In consideration of the project sponsors motivations, the involvement of 

children was omitted from this EngD research and there was no motivation to add to 

the literature discussing the fundamental age effects.  
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No correlation between the ‘Big Five’ personality traits (extraversion/introversion, 

agreeableness/antagonism, conscientiousness/lack of direction, neuroticism/ 

emotional stability and openness/closeness to experience) and motion sickness 

susceptibility have been observed (Nieto & Golding, 2006). 

 

3.3 THE RELATIONSHIP BETWEEN MOTION SICKNESS AND AUTOMATED 

VEHICLES 

 

Upon the understanding of motion sickness onset and the expected use cases of 

automated vehicles, it is possible to bring the two subjects together to understand why 

this technology may increase motion sickness for many people. The main reasons have 

previously been classified into three key areas (Diels C. , 2014) (p. 303) which has been 

built upon to help create the classification list below, presented in no particular order: 

Table 2 Reasons why Automated Vehicles May Cause More Motion Sickness 

3.3.1 CHANGE OF THE ROLE OF THE DRIVER  

The ability to understand current and upcoming motion is related to the Postural 

Instability Theory (Riccio & Stoffregen, 1991) where understanding motion is key in 

effective postural control management. Although the exact theory linking the postural 

control theory to increased motion sickness through the removal of driving as a task is 

complicated by the disputes around the validity of the postural control theory itself 

(Warwick-Evans & Beaumont, 1991) (Warwick-Evans, Symons, Fitch, & Burrows, 1998). 

However, the reasoning for the increase of motion sickness onset remains. When a 

driver is no longer required to input lateral and/or longitudinal control there is a 

reduced ability to anticipate motion and change(s) in acceleration. This phenomenon is 

known as the ‘Profound Helplessness Reaction’ or, ‘Loss of Control Theory’. This is built 

upon findings that aircraft pilots in control of the plane do not suffer motion sickness 

when the rest of the crew do (Geeze & Pierson, 1986), and vehicle drivers do not suffer 

sickness when driving, despite suffering from motion sickness when being a passenger 

(Howard & Templeton, 1966) (p. 136) amongst others. A useful text exploring this 

relationship between control and motion sickness is provided by (Lublow & Rolnick, 

1991) who show that through control over a motion task, there is a decreased 

likelihood of motion sickness onset.  

 Classification Associated SAE Levels  

1 Change of role from active driver to passive occupant Levels 2, 3, 4 and 5 

2 Propensity to engage in non-driving related tasks Levels 3, 4 and 5 

3 Automated vehicle design changes Level 3, 4 and  particularly 5 
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Using the above findings in an automotive context provides an explanation as to why 

relinquishing control to an automated driving system may increase the chance of 

motion sickness onset. From SAE Level 2 automation onwards there are significant 

driver inputs ‘taken over’ by the car, but it is likely that this effect will be most 

significant in Levels 3, 4 and 5 where both lateral and longitudinal control is handled by 

the vehicle simultaneously.  

3.3.2 NON-DRIVING RELATED TASKS 

It is fairly well established that automated vehicles (specifically Levels 3, 4 and 5) will 

increase the freedoms to engage in non-driving related activities. Some of which have 

been discussed in the previous sections where survey data reports people want to 

engage with their consumer electronic devices such as mobile phones, watch films, read 

books and complete work-based tasks amongst others. All of these tasks increase eyes-

off-road time and therefore the theory of sensory conflict (Reason & Brand, 1975) is of 

importance. Figure 13 below shows a ‘first person view’ of an on-road Level 3 or 4 

vehicle mock-up for an occupant both driving the vehicle, and engaging in a reading task 

(a realistic use case for an automated vehicle). 

 

 

 

 

 

 

 

Figure 13 Example of Sensory Conflict in a Conditionally Automated Vehicle 

As seen in the image to the left in Figure 13, when driving a traditional vehicle (e.g., 

SAE Level 0, 1 or 2) the majority of the visual field (highlighted in purple) is of the 

outside world. Therefore, the visual system is able to detect motion, which will match 

the somatosensory system and the vestibular system. Given this ability to sense both 

afferent and efferent motion there is a minimal chance of motion sickness onset in this 

scenario. However, with the image to the right of Figure 13, the occupant is now 

reading a book and the majority of the visual field is therefore static with only a limited 

ability to gain visual information about motion (again, highlighted in purple). In this 

second scenario (right) the occupant’s visual system, registering no motion, will be in 

conflict to their somatosensory and vestibular system(s). As a result of no afferent 

motion cues, but still detecting the efferent motion, there is a sensory conflict and 

motion sickness onset is likely. Although this example is given when reading a book, 
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the effect is transferable to any task which requires the occupant to take their eyes off 

the road. Given this, it is discussed and agreed that (considering non-driving related 

activities in an automated vehicle) “all envisaged use cases can be predicted to 

increase the risk of motion sickness” (Diels & Bos, 2015) (p. 14). 

3.3.3 AUTOMATED VEHICLE DESIGN CHALLENGES 

Some concepts for automated vehicles have previously been presented – such as those 

shown in Figure 4, Figure 11 and Figure 12. It is somewhat expected that future 

automated vehicles are likely to move away from traditional vehicle design – 

particularly at the higher SAE levels of automation where traditional driving controls 

are of less importance. There is further affordance to change vehicle design where 

there is less reliance for a ‘driver’ to be attentive to the road in the traditional forward-

facing seat in front of a large windscreen. As the vehicle takes control of more of the 

DDT (Dynamic Driving Task) there is a reduced need to stick to these traditional vehicle 

layouts, and as the desire for non-driving related tasks increases comes the pull to re-

design vehicles to allow these other activities. Even with recent ADAS technology, such 

as parking assists (rear-view cameras, 360 cameras, parking sensors and even self-

parking) there has been a slow shift towards reduced need for the driver to have views 

around the outside of the vehicle. Such technology has afforded the design of DLO’s 

(daylight openings) to change from being designed with a utilitarian approach, to more 

of a stylistic approach as is evidenced in many modern vehicles. It is not possible to 

draw a direct correlation between the increase in technology and reduction in DLO 

size, but the willingness to change vehicle design is evident.  

It is likely that without the consideration of motion sickness, future automated vehicles 

may want to reduce DLO size, place display screens in the way of DLOs, include a host 

of new HMI’s (human machine interfaces) in new locations and enable flexible seating 

(including rearward facing seats). Explanations of why motion sickness will be 

increased in such designs is evident when combining the above two sections where it 

is understandable that many of these design choices will limit the ability to predict 

upcoming motion, manage postural sway, and increase the risk of sensory conflict. It is 

well established in the motion sickness literature that rearward facing seating should 

be avoided, but for the first time in an automotive context research showed 

empirically that rearward facing seating increases the incidence and severity of motion 

sickness (Salter, Ciels, Herriotts, Kanarachos, & Thake, 2019).  

Research published alongside this EngD project (as somewhat of an output from the 

literature review in Submission 2) further argued the need for motion sickness 

considerations in the design of future automated vehicles and went on to propose 

some design recommendations (Smyth, Jennings, & Birrell, 2019). As part of this 

publication, a categorisation table was developed to break down considerations for 

motion sickness in automated vehicles – see Table 3 below.   
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Table 3 Categorising Areas of Motion Sickness Management 

Category Explanation/ Examples 

1 – Occupant  characteristics E.g., a person’s natural susceptibility to motion sickness - including 
demographic differentiation, habituation, clothing, etc. 

2 – Interior design E.g.,  the design of the cabin including seat layouts, display locations, 
user interface design, DLO’s, climate control etc. 

3 – Vehicle design E.g., size, height, vehicle dynamics, suspension etc. 

4– Activity i.e., the activity of the person inside the vehicle such as working. E.g., 
reading, texting on a mobile phone, looking out the window etc. 

5 – Driving E.g., the driving style, speed, acceleration profiles, route motion path etc.  

 

This above table is useful for considering not only physical design but also system 

design, specifically in relation to category 5 Driving. A full discussion of the impact of 

automated vehicle design is given in Appendix 1. 

 

3.3.4 WHO WILL GET MOTION SICK IN AN AUTOMATED VEHICLE 

Of course, without widespread use of automated vehicles in the present day it is not 

possible to report on exactly how many people experience (or will experience) 

automated vehicle motion sickness. However, given the knowledge of how motion 

sickness is caused and how automated vehicles are intending to be used, a few papers 

have attempted to gain an estimation on the scale of the issue. One such paper looking 

at motion sickness onset likelihood for adults riding as passengers in a fully automated 

vehicle found that 37% of Americans, 40% of Chinese, 53% of Indian people would 

“experience an increase in the frequency and severity of motion sickness” (Slivak & 

Schoettle, 2015) (p.5) referring specifically to severe motion sickness. They went on to 

add that the actual figure might be greater depending on in-vehicle activity and the 

design of the vehicle. This paper also did not consider more mild cases of motion 

sickness so again, these figures could be greater still considering all levels of motion 

sickness. 

People surveyed in studies such as in the paper by Slivak, cited above, will have varying 

levels of trust and acceptance of automated vehicles. Research looking at how trust 

and situational awareness affects secondary task performance indicated that as trust 

increases, situational awareness for non-driving-related task completion does too 

(Peterson, Robert, Yang, & Tilbury, 2019). This indicates that as trust and familiarity 

within automated vehicles increases, so might peoples engagement with non-driving 

related tasks. Considering this, it is likely that predictions on how many people will get 

sensory conflict – induced motion sickness may increase as trust with automated 

vehicles increases. The increased likelihood of occupants completing non-driving 
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related activities is one significant reason why motion sickness onset may be more 

frequent in automated vehicles.  

There is no reason to believe that the demographics of motion sickness sufferers will 

change much, where those who are more pre-disposed to motion sickness currently 

will likely also be those who are susceptible to motion sickness in an automated 

vehicle. One thing that is known however, is the strong effect of habituation on motion 

sickness. Therefore, people who ride often as passengers in traditional vehicles and 

those who regularly engage in reading, text messaging, work related, or other eyes-off 

road tasks whilst in a vehicle would, in theory, be more ‘prepared’ (considering 

habituation) for the automated vehicle experience. Further, as experience with 

automated vehicles grows and people use them more frequently, it is perceivable that 

people may habituate themselves to the experience, gradually increasing their ability 

to complete eyes-off-road tasks as their experience and habituation increases. 

However, habituation is somewhat less understood in environments with intermittent 

exposure (e.g., road vehicles) compared to that of boats or planes, so it is not possible 

to conclude on the precise effect this may have at present. 

 

3.4 SUMMARY OF THE LITERATURE - PROBLEM IDENTIFICATION  

 

In summary of the previous three sections introducing motion sickness, automated 

vehicles, and the relationship between the two, the issue of motion sickness and 

automated vehicles is contextualised. It is understood that motion sickness is likely to 

be a factor for many users of automated vehicles, especially so if completing non-

driving related tasks as many claim they want to do. Even for those who do not claim 

to want to complete productivity based tasks in a vehicle, with such significant 

estimates for productivity gains in automated vehicles it seems possible that future 

employers may expect productivity from their staff as part of a job role. 

The implications of motion sickness are relatively well understood considering 

subjective discomfort – where many people have first-hand experience with the 

uncomfortable symptoms of motion sickness. Other factors are less understood, 

where more work needs to be done to understand the impact of motion sickness in 

relation to the automotive industry considering how, for example, cognitive 

performance may be impacted. The impact of motion sickness is of consequence for 

simulator-based user trials as well as automated vehicle use so this must be explored 

within this research. Further to the impact, methods of reducing or managing motion 

sickness also needs to be addressed, where existing methods should be summarised 

and a new method(s) will be explored. If it is likely that many automated vehicle users 

will experience motion sickness further work is needed in finding mitigation strategies. 
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Finally, the measurement of motion sickness is of importance for both research and 

the day-to-day use of automated vehicles to be able to manage, and one day perhaps 

predict, motion sickness onset.  

 

The problems identified are of interest to the field in general, considering the gaps in 

the literature and the problem identified, but also align well with JLR’s objectives as 

the sponsoring company.  

 

4 OVERARCHING METHODS 

 

Before the three core projects of this EngD are presented, a few overarching notes on 

methodology are given. Some measures and methods are used in many of the user 

trials which make up this EngD, therefore an introduction and explanation of these is 

given now which applies to all incidences in which these methods are applied.  

4.1 SIMULATION SICKNESS QUESTIONNAIRE (SSQ) 

 

The Simulation Sickness Questionnaire (SSQ) (Kennedy, Norman, Berbaum, & 

Lilienthal, 1993) is perhaps the most common method of measuring motion sickness 

experienced in a simulator (i.e., simulation sickness). It is comprised of 16 items, which 

allow participants to rate their severity for each symptom on a 0-3 scale ranging from 

none (0) to severe (3). The results from this questionnaire allow for a total motion 

sickness score output and can also be broken down into three subcategories, which 

include nausea (N), oculomotor (O), disorientation (D). The formula for calculating 

these categories relies on the selection of questionnaire items associated with each 

category and multiplying these by a calculated factor weighting as laid out in the 

original paper (Kennedy, Norman, Berbaum, & Lilienthal, 1993). The total score is 

calculated using the sum of all weighted scores and multiplying by another factor 

weighting as explained by Kennedy. In Submissions 3 and 4 total SSQ score was 

calculated by summing the calculated subcategories before applying a total factor 

weighting (ts) to their sum, resulting in a score that was larger, by a factor of ~14, than 

the original method set out by (Kennedy, Norman, Berbaum, & Lilienthal, 1993). The 

conclusions derived from the statistical outputs remain unchanged. For the rest of the 

research the total score calculation followed the same protocol as the original 

publication. A screenshot of the SSQ as used throughout this EngD research is given 

below in Figure 14:  
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 Figure 14 Simulation Sickness Questionnaire (SSQ) 

The SSQ is very useful for the measurement of motion sickness in a simulator, and as 

seen, includes a consideration for the measurement of oculomotor discomforts as well 

as a dedicated oculomotor subscale. This is important for simulator use where the 

inclusion of large display screens and dependence on efferent motion cues often 

induce oculomotor discomfort. To derive the total score as well as the subcategory 

scores the original author provides weightings to be applied. These weightings are 

included to provide ease of comparability when plotting results on a graph.  

4.2 MOTION SICKNESS ASSESSMENT QUESTIONNAIRE (MSAQ) 

 

Looking for motion sickness assessment measures for more ‘real-world’ motion 

sickness the Motion Sickness Assessment Questionnaire (MSAQ) was used (Gianaros, 

Muth, Mordkoff, Levine, & Stern, 2001). This questionnaire comprises of 16 items 

whereby participants rate their subjective severity of each symptom on a scale of 1 

(not at all) to 9 (severe). The results of this questionnaire allow for the calculation of a 

total score alongside four subscales including Gastrointestinal (G), Central (C), 

Peripheral (P) and Sopite-related (SR). Total score is calculated as a percentage of total 

points scored, similarly the subscales are calculated as a percentage taking into 

account the number of items associated with each subscale. The screenshot below 

shows the original design of the questionnaire, however the questionnaire used in this 
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EngD used a modified layout whereby the scale from 0-9 was presented alongside each 

questionnaire item for ease of use.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Motion Sickness Questionnaire (MSAQ) 

There is a slight error made in the formulas given in the original MSAQ (Gianaros, 

Muth, Mordkoff, Levine, & Stern, 2001) which appears to be a typing error. The 

calculation for ‘central’ should also include the questionnaire’s item 9 ‘I felt 

disoriented’ which has mistakenly been given the subscale reference as ‘Q’.  

 

4.3  FAST MOTION SICKNESS SCALE (FMS) 

 

Both of the above methods of motion sickness assessment are implemented directly 

after an exposure to a motion sickness related task and capture the subjective scores 

at the time directly after exposure. A method of measuring subjective motion sickness 

in ‘real-time’ is also of use where motion sickness can be tracked and measured 

throughout a motion sickness exposure. A method for measuring this is given by 

(Keshavarz & Hecht , 2011) who present a ‘Fast Motion Sickness Scale’ (FMS). This 

scale requires participants to report their motion sickness on a scale of 0 (none at all) 

to 20 (frank sickness). An explanation is given to participants whereby their 

consideration to motion sickness symptoms should “focus on nausea, general 
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discomfort, and stomach problems” (Keshavarz & Hecht , 2011) (p.418). There are a 

few ways in which the FMS score can be calculated for overall discussion, including 

taking the mean score of all scores given, the peak score given or the final score given. 

The authors recommend the FMS peak score as the most useful metric of overall 

motion sickness severity for a scenario. This scale was used for two reasons. Firstly, 

there was already familiarity with this tool within the sponsoring company, therefore 

results could be disseminated effectively and it provided the option to compare results 

if required. Secondly, where it was understood that comparisons of ‘real-time’ motion 

sickness to physiological measures would be of interest, the scale from 0-20 allowed a 

precise rating. Other scales such as the ‘misery scale’ (MISC) (Bos, MacKinnon, & 

Patterson, Motion Sickness Symptoms in a Ship Motion Simulator: Effects of Inside, 

Outside, and No View., 2005) has also proven to be of great utility in recent literature, 

although the MISC but utilises less precise rating scale of 1-7, making it less precise, 

albeit perhaps more simple for participants. 

 

4.4 EMPATICA E4 PHYSIOLOGY WRISTBAND 

 

In addition to measuring subjective motion sickness in many of the user trials 

completed as part of this research, physiological measures were also recorded. The 

utility of physiological measures are often disputed considering motion sickness, and 

this argument will be explored within the research summarised in Project C of this 

Innovation Report. However, as the physiology equipment was used in multiple studies 

a brief explanation is given. The Empatica E4 wristband (Empatica Inc. , 2016) is a non-

invasive wrist mounted device used to collect physiological data including heart rate 

(and derivations thereof), skin temperature, electrodermal activity (EDA) and motion. 

It requires no electrolyte gel and mounts on the wrist with no significant expectation 

of discomfort. . Evidence of its utility has been shown in recent publications such as 

(Betancourt, Dethorne, Karahalios, & Kim, 2017) and (Melnicuk, Birrell, Crundall, & 

Jennings, 2017). An image of the E4 is presented below in Figure 16: 

 

 

 

 

 

 

Figure 16 Empatica E4 Wristband 
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4.5  THE 3XD SIMULATOR 

 

The ‘3xD Simulator’ is a drive-in, driver-in-the-loop driving simulator located at WMG 

at the University of Warwick, UK (The University of Warwick, WMG, 2016). This was 

used for all of the simulator studies conducted for this EngD. An image of the simulator 

is presented below: 

 

Figure 17 3xD Simulator 

This simulator features a 360-degree screen providing a seamless projection of the 

created world from all viewing angles when inside the vehicle. The BUC (built up 

chassis) used within all experimentation was a Range Rover Evoque as photographed 

above. For all research, all driving related controls are linked to the simulation so the 

driver has complete control over the steering, braking and acceleration of the vehicle. 

Temperature can be controlled within the vehicle and a camera is used inside to 

monitor participants. There is a 2-way radio system allowing communication between 

the participant and the researcher in the control room. 

 

5 MOTION SICKNESS AND HUMAN PERFORMANCE (PROJECT A) 

 

This project stemmed from the literature review discussed in Submission 2 where 

much of the background literature is presented and discussed. The two user trials 

which make up this project were written up as separate submissions and presented as 

Submission 3 and Submission 4 for ease of documentation (see the portfolio plan in 

Figure 6 for further details). The results from Submission 3 and as presented in this 
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section have been used for two publications. The first explored the binary effect of 

motion sickness on human performance (Smyth, Birrell, Mouzakitis, & Jennings, 2018) 

and the second looked for a scale to the observed effect (Smyth, Jennigs, Mouzakitis, & 

Birrell, 2018). The results from Submission 4 were used internally within JLR for 

validation of the UK AutoDrive user trials. 

 

 

 

 

5.1 BACKGROUND 

 

Driving simulators are very useful tools for developing and testing new technology and 

have many benefits. The immediate benefit is that of safety – particularly when the 

technology involves interaction of the driver where, without understanding the 

potential risks of the technology such as distraction, invasiveness or influence on 

driving behaviour on-road trials should be avoided. A driving simulator provides a safe 

environment in which to test prototype technology where, in the worst instance the 

driver cannot come to physical harm if they make a driving error. Further benefits that 

are particularly useful for scientific research are the controllability and repeatability 

that driving simulators offer. In a simulated environment, the researcher can have 

complete control over all conditions including (but not limited to), road layouts, events 

and traffic. This allows for greater validity when testing technology in specific use cases 

and allows for the creation of many varied scenarios to test the new technology. With 

this controllability comes another benefit – which is repeatability. In many instances, 

particularly when looking for variations between or within a demographic set it is 

imperative that everyone receives the same ‘stimulus’ (dependent variable) on which 

their response (the independent variable) can be measured. In a driving simulator 

example, it is possible to test technology in exactly the same environment and scenario 

multiple times. This is not possible in the ‘real-world’ where it would be near 

impossible to orchestrate the same events to happen in the same way multiple times 

and factors such as changing traffic conditions, weather and external events etc. will all 

limit the repeatability of the study. This ability to create repeatability between trials 

also highlights the benefit of testing time that simulators can bring. With the ability to 

run scenarios one after the other a driving simulator offers a great time saving benefit 

where on-road studies may take much longer to set up and run.  

The list of benefits discussed above is not exhaustive and there are many more 

benefits to driving simulators.  However, there are of course some drawbacks of this 

technology. The most frequently discussed challenge is that of transferability of data 
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collected in a simulator to ‘real-world’ applications. There are many aspects to this 

challenge of transferability – many of which are dependent on specific trials. For 

example, a study measuring headway as the independent variable (i.e., distance 

maintained between the driver’s car and the car in front) may want to consider 

distance perception disparity between the simulator and the real-world. A study 

measuring eyes-off-road time might consider risk perception where participants may 

be more likely to have extended eyes-off-road time if they do not perceive physical 

danger of a driving error. One particular challenge however, which spans across almost 

all simulator studies, is the propensity to experience motion sickness in a driving 

simulator. It is known that motion sickness onset is an unpleasant physical experience 

and often manifests in nausea, sweating, dizziness, fatigue and sometimes even 

vomiting (amongst other symptoms). However, aside from these subjective 

discomforts, there is also the possibility that motion sickness may influence human 

performance and thus affect the validity of user trial results. Further to this, the 

consequence of motion sickness on performance may have further implications for the 

automotive industry as a whole where motion sickness is often experienced in car 

travel (car sickness) and is likely to be experienced also in future automated vehicles. 

5.2 INTRODUCTION 

 

As previously discussed, it is possible that motion sickness can be experienced in a 

simulator where the visual system can gain information on efferent motion, but 

without any afferent motion to match, sensory conflict is likely. This is true in both 

fixed and moving-base simulators where even those which have motion may not be 

able to replicate the expected physical motion as the occupant might expect so the 

disparity between the visual, vestibular and somatosensory system still remains. Below 

illustrates why sensory conflict is likely in a driving simulator: 

 

 

 

 

 

 

 

 

 

Figure 18 Motion Sickness in a Driving Simulator 
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Looking at Figure 18 above it is clear to see why sensory conflict may be likely in this 

scenario. The majority of the visual field is sensing motion (highlighted in purple) whilst 

the vestibular and somatosensory systems are detecting no motion, hence a conflict is 

likely. In fact, it is not uncommon in driving simulator trials to see around 25% of 

participants end the study early due to severe motion sickness as a ‘rule of thumb’. 

Looking at actual data, one study showed it is possible to have 50.3% of participants 

drop out of a user trial (Reed, Diels, & Parkes, 2007). Another study reported 52 out of 

88 participants dropped out of a simulator study due to motion sickness (59%) (Matas, 

Nettelbeck, & Burns, 2015). A meta-study of such MS looking at multiple user trials 

(Balk, Bertola, & Inman, 2013), reported the highest dropout rate in one trial was 71% 

(pp. 259), where the mean drop-out percentage was 14% between the 9 user trials this 

paper reviewed. The results from all these studies only speak to drop-outs - it is 

expected that many more people will experience at least some degree of simulation 

sickness in a driving simulator even though it is not severe enough to make them drop 

out.  

Considering the likelihood of motion sickness onset in a driving simulator, there is 

good reason to further investigate the effect of such sickness on human performance. 

There is limited literature directly discussing the effect of motion sickness on driving 

simulator user trial data, so the literature was explored with a wider scope looking for 

any motion sickness state and its relationship to human performance. Firstly, a tank 

simulator study from 1995 reported that “simulator sickness does degrade training 

effectiveness for some trainees” (p.36) (Lampton, Kraemer, Kolasinski, & Knerr, 1995) 

where the training effectiveness is not a transferable measure. Lampton and Kraemer 

go on to advise that simulator users should not drive a physical vehicle directly after 

the simulator exposure due to their understanding the performance would be 

degraded. This recommendation is commonly found in the literature, for example, one 

driving simulator research paper recommended that motion sickness “can affect 

performance after the simulator experience” (p.795) (Brooks, et al., 2010). Where they 

reference “problems with hand–eye coordination or postural instability that could 

interfere with the real-world task of driving home” (p.795) see also (Jones, Kennedy, & 

Stanney, 2004) and urged participants not to drive immediately after the study. This 

recommendation was based on the findings that use of virtual environments “could 

directly affect visuo-motor coordination” (p.29), where virtual environments can 

induce similar motion sickness effects to other motion sickness prone activities 

(Stanney, Kennedy, Drexler, & Harm, 1999). 

One study looked at a job-related cognitive task (exact task is unspecified) and found 

that when motion sick (seasickness) the inability to complete the task increased from 

5% to 60% (Bos J. E., 2004). This decrease in cognitive function was supported by 

another paper (Colwell, et al., Human Performance Sea Trial QUEST Q-303), which was 

part of a larger seasickness project showing how cognitive task performance decreased 
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with increased motion sickness symptoms. This project (Quest 303 trial) is perhaps one 

of the most useful series of experiments in this area where a three-phase seasickness 

experiment saw participants assessed in pre-exposure over four days whilst the boat 

was docked at harbour. This was followed by an exposure phase of eight days at sea 

with varying sea conditions (and therefore varying motion sickness states) and finished 

with a one-day post-exposure phase with the ship anchored in sheltered waters. The 

project was written up in more depth in an internal report (Bos, et al., 2008) which 

explains how researchers assessed cognitive performance using the Vigilance and 

Tracking Test (VigTrack) (Valk, Simons, Struyvenberg, Kruit, & van Berge Henegouwen, 

1997) alongside the Multi-Attribute Task Battery (MAT) (Comstock & Arnegard, 1992). 

The first assessment tool (VigTrack) was originally designed for aeroplane pilots, where 

the test was designed to relate to specific tasks pilots were expected to be able to 

perform. Therefore the use of this measurement in a seasickness trial may not be 

useful for specific job-based task completion, however it should still give a useful 

report on human performance when studying pre-exposure and exposure scores. The 

task, despite being validated by its authors in other studies, doesn’t appear to be a 

purely cognitive task as there is a heavy reliance on visual tracking of an object on a 

computer screen. Thus, it is likely visual performance also will impact test results. No 

attempt to address visual implications or counter them was discussed. 

Looking then for any relationship between visual performance and motion sickness 

one study looked at visual acuity (i.e., the ability to perceive detail) where a Dynamic 

Visual Acuity test was used as previously developed (Toet & Bos, 2002). In this study 

they found “consistent behaviour: in all tests sick subjects showed worse acuities” 

(p.22) (Bos, et al., 2008). This was written up in a separate report which concludes “a 

highly significant effect of seasickness on acuities” (Bos, Hogervorst, Munnock, & 

Perrault , 2008) (p.1). Further research by NASA looked to improve task performance 

ability by reducing motion sickness. Although they did not report specific measures 

used to record task performance (as it was related to job task) they did find it was 

possible to increase task completion ability significantly by reducing motion sickness 

(Stroud, Harm, & Klaus , 2005) with a speed increase of 12% and decrease in errors 

over two conditions of 39% and 34%.  

In summary of the literature, it is shown that motion sickness affects human 

performance in a number of ways – specifically when looking at job completion. There 

is a need therefore to understand to what extent various fundamental areas of 

performance are affected by motion sickness (where many of the cited texts are 

related to specific work-task related activities). Being able to understand the effect of 

motion sickness on performance will provide a better insight to the transferability of 

simulator data to real-world where it is known that people are likely to feel at least 

some level of motion sickness in a simulator. The research question is therefore set: 
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 Does simulation sickness affect human performance? 

The benefit of such a study is of further interest to the automotive industry however, 

where this Innovation Report has already detailed reasons why future automated 

vehicles may induce motion sickness for a considerable percentage of the population. 

There is added interest to begin to consider if someone is motion sick in an SAE Level 

2, 3 or 4 vehicle is it likely that their performance will be degraded and therefore will 

this have an impact on their ability to monitor or regain control of the vehicle. This is of 

interest as it is understood that non-driving related tasks (such as reading, or watching 

films) may be desirable in automated vehicles and these tasks are likely to induce 

motion sickness in vehicle occupants. Although motion sickness may be avoided 

through the choice not to engage in these tasks, it has already been discussed in this 

Innovation Report that future employment may require work-based tasks where 

motion sickness may be unavoidable.  Although for this study, the research question 

does not extend to automated vehicle applications, the concept remains for discussion 

and adds further justification for the importance of understanding this link between 

motion sickness and performance. 

The hypothesis of this study is that human performance is reduced when experiencing 

motion sickness.  

 

5.3 METHOD 

 

To answer the research question a two-part user trial was devised. Phase 1 will take 

part in the 3xD simulator at the University of Warwick, and Phase 2, will take part in 

the RDM SAE Level 4 pods as part of the UK AutoDrive project in Coventry, UK (UK 

Autodrive, 2019). 

 

5.3.1 HUMAN PERFORMANCE ASSESSMENT  

In order to answer the research question concerned with the relationship between 

motion sickness and human performance it must first be established what ‘human 

performance’ is for the purpose of this study. There are hundreds of specific driving 

tasks that could be measured and with future automated vehicles, there are many 

more undefined actions that may be expected of a driver/occupant. It would not be 

practical to measure all driving related performance measures. The limitation of some 

of the previously cited works was in regards to their transferability where many 

performance metrics were specific to a unique work-based task and therefore do not 

necessarily inform on any potential relationship with another task. It was decided that 

fundamental human performance should be measured which includes visual ability, 

cognitive ability and physical ability – where auditory ability was omitted as it is not 
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necessary for driving. The Venn diagram in Figure 19 below maps out the areas of 

performance to be assessed where the intersections of are also highlighted.  

 

 

 

 

 

 

Figure 19 Human Performance Diagram 

Using the above diagram to measure the six areas of human performance it is possible 

to apply the findings to any task which falls into one or more of the categories above. 

For example, although this trial will not directly measure the affect of motion sickness 

on comprehension of road signs, the results from the visual-cognitive section may lend 

themselves to this application. It is hoped that many driving tasks can be mapped to 

this diagram, therefore allowing for an understanding of motion sickness for many 

tasks, rather than looking at single specific driving tasks themselves. Table 4 below 

gives some examples of what type of task could be ‘mapped’ to the fundamental 

abilities to be explored: 

Table 4 Examples of Driving-Related Tasks  

Performance area Example of driving-related task 

Visual  Identifying road signs 

 Reading in-vehicle notifications 

 Identifying obstacles  

Physical  Dexterous interaction with out-of-sight HMI or HMI when not looking 
directly at it 

 Physical manipulation of vehicle controls 

Cognitive  Situational awareness of environment 

 Route planning 

 Appraisal of danger 

Physical-Visual  Interaction with HMI (Human Machine Interface) or in-vehicle 
controls (hand/eye coordination) 

Physical-Cognitive  Interaction with variable controls (such as rate of braking or 
acceleration) 

 Emergency driving manoeuvres (reaction time in emergency braking) 
Visual-Cognitive  Identifying upcoming dangers 

 Predicting traffic flow (for example, when approaching a junction) 

 Estimating distances for braking consideration 

 

 To assess the areas of human performance set out in Figure 19 six individual tests 

were needed. There were a few criteria, which the tests should meet: 
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 These tests should be pre-designed, pre-validated and used in other published 

research to ensure transferability, validity and reliability 

 Each test should take no longer than 60-seconds to complete (<six minutes for 

the entire set) so they can be completed before motion sickness recovery, 

where subjective sickness can decline rapidly within the first 5-10 minutes 

(Goulding & Stott, 1997). 

 They should have no ‘learning effect’, so that after the initial practice with the 

task, performance should not get better with repeat exposure 

 They should represent the category which they are assigned (as per Figure 19), 

isolating the specific ability without requiring abilities from other areas of 

performance 

 

Through an extensive review of the literature six tests were found, one for each of the 

areas of performance presented in Figure 19 which are presented below: 

Test 1 - Visual performance: A visual acuity (VA) ETDRS LogMar test chart was used 

whereby participants would use only their dominant eye, standing at a set distance 

and read out the letters presented on the chart. They were scored on the total number 

of letters read. Visual Acuity (VA) is the ability to perceive detail and is quick and easy 

to administer. There are many other visual abilities that could be measured such as 

depth perception, flicker fusion, stereopsis etc. however, all these take longer than 60-

seconds to administer and require specialist equipment. It must be noted that when 

referring to ‘visual ability’ this project is just referring to visual acuity. A screenshot of 

the test is shown below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Visual Acuity Test 

Test 2 - Physical performance: A card turning test was extracted from the ‘Jebson 

Taylor Hand Function Test’  (Raad, 2012). This test is used to measure physical skill and 
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dexterity in its original design. The cards used were 3” by 5” index cards as required by 

the standardized test. The cards were white and set on a dark grey table. Although 

there is visual ability required to identify the cards it is considered the visual 

requirements are extremely low where the cards are clearly identifiable, of sufficient 

contrast and size and would be used by people who are able to drive so it is assumed 

eyesight in normal conditions will not be a problem. As explained in the Jebson Taylor 

Hand Function Test, participants were scored on the time taken to turn over all cards 

for both their dominant and non-dominant hand independently. An image of someone 

completing the test is shown below: 

 

 

 

 

 

 

 

Figure 21 Card Turning Test (UAB OTCLASS, 2014) 

Test 3 - Cognitive performance: A ‘Paced Visual Serial Addition Test’ (PVSAT) was used, 

which is a visual version of an n-back test (for n-back see (Kane, Conway, Miura, & 

Coleflesh, 2007)). A visual version was preferable where ordinarily this test is given 

audibly, however, without the knowledge of audible skills, ability to distinguish accents 

for participants and hearing variability between participants a visual test was 

preferred. Numbers (from 1-10) were presented on a screen and participants had to 

add the current number to the previously shown number (i.e., 1-back) and give the 

answer verbally before the next number appeared. A 200pt font size with black text on 

a white background was used and the numbers were presented on a Microsoft Surface 

Pro 4 with a display screen of 31cm. It is believed the clear representation of the 

numbers is sufficient to isolate cognitive performance by reducing any effect of visual 

performance.  Participants were scored on the number of correct answers. An example 

of the test is given below: 

-if the first number is 3 the participant doesn’t answer. 

-if the second number is 5 the participant answers 8 (3+5) 

-if the third number is 9 the participant answers 14 (5+9) etc. 

A screenshot of the display screen is shown: 
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Figure 22 N-Back Test 

Test 4 – Visual-cognitive performance: A modified mental rotation test (MRT) was used 

(Peters M. , et al., 1995) whereby a ‘target’ 3D shape was presented on paper to the 

participant with four other shapes, their task was to identify which two of the shapes 

matched the target shape, despite being rotated into a different orientation. The test 

usually takes upwards of three minutes to complete however, to reduce the time 

requirements just four questions were extracted from the full test and participants had 

to complete the four questions as fast as possible. This deviation from the standard 

test reduces the transferability of the results to other studies using an MRT test, but 

due to time restrictions is was a necessary compromise. Participants were scored on 

completion time and the number of correct answers (i.e., if they gave the two correct 

shapes per question). Two example questions are given below where the target shape 

is highlighted by a thick border and the two correct answers for each question (i.e., 

those which match the target shape) are highlighted by red circles for illustrative 

purposes: 

 

 

 

 

 

 

Figure 23 Mental Rotation Test (MRT) 

Test 5 - Physical-visual performance: The Perdue Pegboard (Radd, 2014) was used to 

measure physical-visual performance. This test requires the physical dexterity and 

visual skill of locating pins in small holes. There are a few ways in which this test can be 

administered including constructing pins with washers and spaces. However, the basic 

version of just placing the pins in the holes was chosen as it was quicker to administer. 

Participants were tested with their dominant and non-dominant hand independently 

and were scored on the number of pins they put in the holes in the time given of 60-

seconds. An image of the test being completed is shown below: 
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Figure 24 Perdue Pegboard (OPC Health, 2018) 

Test 6 – Physical-cognitive performance: A reaction time test was used whereby a large 

traffic light was displayed on the Microsoft Surface Pro 4 screen, When the bottom 

green light illuminated (within a random length of time between 1 and 6 seconds) the 

participants had to press a physical button on a wired computer mouse. The amber 

light does not illuminate in this test. This test depended on cognitive processing speed 

and the physical response to press the button. Again, there was a visual aspect to this 

test, however, the traffic light was very large so easy to identify and given the spatial 

layout of a traffic light (familiar for all participants who all had a driving license) they 

will be able to identify the change with minimal visual skill. Participants were timed for 

five consecutive repetitions and their score was derived from the average of the five 

measurements. A screenshot of the test is shown below: 

 

 

 

 

 

 

 

 

Figure 25 Reaction Time Test (Allen, n.d.) 

A summary of the six tests chosen to assess the human performance areas (as 

identified in Figure 19) is given below in Table 5. 
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Table 5 Tests of Human Performance 

Test 
number 

Test area Test name 

Test 1 Visual ETDRS LogMar Visual Acuity 
Test 2 Physical Jebson Taylor Hand Function – Card Turning 
Test 3 Cognitive Paced Visual Serial Addition Test - PVSAT 
Test 4 Visual-Cognitive Mental rotation test 
Test 5 Physical-Visual Perdue Pegboard test 
Test 6 Physical-Cognitive Reaction time 

 

For Phase 1 of this study, the battery of six tests will be given to participants a total of 

three times each. For that reason, Tests 1, 3 and 4 (as per Table 5) were created three 

times each, each including a different set of questions so the participant did not see 

the same questions more than once. Each time the battery of tests were given, the 

order in which they were received was randomised. The first exposure to the tests is to 

teach the participants how to complete the test. The researcher will explain all 

instructions and give the participant a chance to try the tests– repeating the same test 

if required until familiar with the process. The second time they complete the tests will 

be to measure baseline performance in a non-motion sick state. The third time they 

complete the tests will be after a motion sickness exposure where their motion 

sickness will also be measured and the difference between their baseline scores and 

‘motion sick’ scores will be studied. 

For Phase 2 of this study only the cognitive and cognitive-physical tasks were used 

(Tests 3 and 6 as per Table 5). There was a significant time restriction as this trial was 

running alongside the JLR UK AutoDrive user trials so only a total of seven minutes 

available for data collection (including questionnaires etc.). These two tests were 

chosen after Phase 1 was complete as they were identified as being particularly 

interesting considering motion sickness.  

5.3.2 PROCEDURE FOR PHASE 1 – A SIMULATOR STUDY 

For Phase 1 of this two-part study design the participants will use the 3xD driving 

simulator where motion sickness (specifically, simulation sickness) will be measured. 

51 participants were recruited for this user trial using a convenience sampling 

technique. There was limited opportunity to collect pre-trial information for screening 

participants. Use of the motion sickness susceptibility questionnaire (MSSQ) (Golding J. 

F., 1988) in the trial itself was considered but omitted to ensure participant 

engagement time was kept under 60 minutes as requested within the guidelines from 

the BSREC committee. Participants were required to be aged between 18 and 65 and 

have normal or corrected to normal eyesight to take part. Upon arriving at the 

simulator at their agreed timeslot the trial was explained to them, they read through 

the participant information leaflet, signed the consent form and completed a 

demographics questionnaire. They were then trained on how to complete each of the 
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six human performance tests before their baseline scores were recorded. Participants 

were given a Simulation Sickness Questionnaire (SSQ) to complete to identify any 

baseline symptoms (such as if participant had a pre-existing headache or fatigue) so 

this could be filtered out from post-exposure scores. Participants were also asked to 

wear the Empatica E4 wristband and their physiology was tracked throughout the 

study.  

Participants were introduced to the 3xD simulator and given full instructions on how to 

operate the vehicle. The vehicle cabin was maintained at a stable 21 degrees Celsius 

throughout the study. The route was designed specifically for this user trial and began 

with an 8-minute familiarisation run, which consisted of a straight road at a constant 

speed (30mph). The concept of a familiarisation run is supported by (Reed, Diels, & 

Parkes, 2007) and this is considered an ethically appropriate way to begin a simulator-

based study to reduce the chance of immediate severe motion sickness. The main test 

route followed directly on from the familiarisation route where gradual bends and 

changes in speed were slowly introduced. The route consisted of a mixture of country, 

rural and motorway roads and takes approximately 30-minutes to complete. The final 

10-minutes of the route were particularly challenging with increasingly complex bends 

and junctions which were designed to challenge participants who have a particularly 

low susceptibility to motion sickness. Throughout the route, automated ‘sat-nav’ style 

instructions were played through the in-car speakers to the participant so everyone 

took an identical route. Multiple speed signs ensured participants completed the drive 

at a similar pace and road blocks ensured that only one route was possible to follow – 

although the researcher monitored driving progress throughout. 

Whilst driving the simulator, participants were able to speak to the researcher through 

the 2-way radio system whilst the researcher sat in the control room. Participants 

were asked once every minute to rate their motion sickness as per the FMS design 

(Keshavarz & Hecht , 2011). Participants were reminded at the beginning of the driving 

scenario that if any time they felt too unwell and wanted to end the study they should 

say so right away and the driving task can be stopped. If the researcher noted a 

particularly severe increase in FMS scores or a participant appeared to be getting more 

uncomfortable the researcher prompted the participant to consider if they were fit to 

continue. There was no specific criteria used to classify a ‘severe increase’ in FMS 

score. It was expected that scores would gradually increase, but if this increase 

became uncharacteristically high for that given individual, the researcher would ask 

the participant if they were fit to continue.  

At the end of the drive, participants came back to the control room (connected to the 

main simulator) and immediately completed the battery of six tests again, in a 

randomised order. All tests were completed within 6-minutes of the scenario ending. 

After this, another SSQ was given where participants were asked to rank their motion 
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sickness between ending the driving scenario and until this point. Even if participants 

asked to end the driving early, they were still eligible to complete the six tests and SSQ 

as long as they were happy to do so, as the length of driving was not a variable of 

interest, rather their motion sickness state was of interest. All participants were 

reminded that if they feel unwell, to stay and recover as long as necessary and to not 

drive a car for at least 1 hour after the simulator exposure, and until they feel well 

enough to do so. This user trial was approved by the University of Warwick Biomedical 

& Scientific Research Ethics Committee (BSREC) with the reference: (REGO-2017-2090). 

A photo of a participant taking part in the study is shown below in Figure 26 (with 

permission given by the participant to publish this photo). 

 

 

 

 

 

 

 

Figure 26 Human Performance Simulator Study (Phase 1) From the Control Room 

An example of what the participant might have seen whilst in the vehicle is also shown 

below in Figure 27: 

 

 

 

 

 

 

 

 

 

Figure 27 Human Performance Simulator Study (Phase 1) Inside the Simulator 
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5.3.3 PROCEDURE FOR PHASE 2 – A ‘REAL-WORLD’ STUDY 

Phase 2 used the UK AutoDrive trials (AK Autodrive, 2018) on which to collect 

additional data using 17 participants - none of whom had completed the simulator 

study in Phase 1. For this trial, the overall trial design was already set out by the JLR 

research team. Given this, there was no chance to contribute to the trial design and 

the study had to be written around the existing research plan. 7-minutes were given 

for data collection for this motion sickness study. When participants arrived at the 

facility they were given the SSQ to complete to capture any baseline conditions. 

Although the MSAQ would have been more appropriate for this ‘real-world’ study, it 

was important that results would be transferable to the simulator study in Phase 1 so 

the SSQ was a necessary comprise. The SSQ has been used in on-road studies 

successfully previously (Salter, Ciels, Herriotts, Kanarachos, & Thake, 2019) so it was 

still deemed an appropriate tool. After completing the baseline SSQ, participants were 

then introduced to the cognitive and cognitive-physical tests as previously explained 

and as presented in Table 5 Tests of Human Performance. They had a chance to learn 

how to complete the tests and then baseline scores were measured where the tests 

were given in a random order.  

The self-driving pod exposures formed the core of the user trial for the organisers, this 

process saw participants sitting in the self-driving pod for 8-minutes whilst the pod 

drove around a test facility. Participants were not allowed to complete any task inside 

the pod (use their phone, read a book etc.) so were asked to just sit and observe the 

‘scenery’. After the 8-minutes, participants exited the pod and completed a 

questionnaire about trust, sitting in a waiting room whilst another participant was in 

the pod. This cycle of 8 minutes in the pod, 8 minutes out was repeated four times. 

The total number of exposures to the pod was four, with a total time in the self-driving 

pod being 32-minutes. The test track was based within an approximately 24m by 34m 

warehouse and the pod followed a pre-programmed route through the track turning, 

braking and accelerating autonomously. The pod travelled at 2.5m/s (approx. 5.6mph) 

on the straights and slowed to 2m/s (approx. 4.5mph) for the corners. An image of a 

pod as used in this trial is shown below in Figure 28: 

 

 

 

 

 

Figure 28 RDM UK AutoDrive Pod 



48 
 

Also shown below is an approximate layout of the warehouse where the user trial was 

conducted.  

 

 

 

 

 

 

 

 

Figure 29 Layout of Test Facility  

No photos of the pods or test facility were allowed at the time of testing and no 

dimensions or measures of test circuit or vehicle dynamics could be collected.  

After the final pod exposure participants came to the control room and immediately 

completed the two performance tests (cognitive and cognitive-physical) in a random 

order and completed another SSQ to give comparative results. Although participants 

completed the performance assessments only at the end of all four exposures (with 

gaps in-between each exposure), it is understood that total motion sickness recovery is 

greater than 8 minutes and certainly not less than 10 minutes (Goulding & Stott, 1997), 

so residual effects in-between exposures would be expected to ‘carry over’. This, 

although not an ideal experimental procedure was the best achievable methodology 

considering the practical limitations of this collaborative research. 

The hypothesis of this experiment was that if motion sickness was induced, this would 

be responsible for a reduction in human performance 

5.3.4 DATA ANALYSIS 

The statistics package SPSS (version 26) was used for analysis of results where people 

who dropout of the driving scenario due to motion sickness as a group were compared 

to those who completed the entire drive. This grouping method is an effective way of 

categorising motion sickness objectively whilst ensuring the outcomes of analysis will 

be practical to inform the overall research question. Mixed ANOVA’s were the primary 

method of analysis, but were supported by further t-tests, one-way ANOVAs, Welsh 

ANOVAs, Sign tests and Wilcoxon Signed-Rank tests, where appropriate. In all cases 
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significance levels are reported, but the threshold of 95% significance (p ≤ 0.05) is 

being used. 

 

5.4 RESULTS 

5.4.1 PHASE 1 – A SIMULATOR STUDY 

51 participants took part in Phase 1 of this user trial, including 27 males and 24 

females. The minimum participant age (measured using age ‘brackets’) was 22 ± 4 

years, with a maximum age of 49 ± 4 years, a mean age of 31 and a standard deviation 

of 10.13. Exact reporting on ages is not possible where age groups were used. In total, 

45% of participants ended the study early due to MS (N=23), including 26% of males 

(N=7) and 67% of females (N=16). These participants are referred to as ‘dropouts’ and 

make up ‘Group 2’. Group 1 participants include all the participants who completed 

the full driving scenario and were not severely motion sick. All dropouts still completed 

the post-driving the SSQ and six performance tests. SSQ scores were collected and 

calculated to give a ‘total’ score and a score for the three subcategories (‘nausea’, 

‘oculomotor’ and ‘disorientation’). An exploratory analysis was conducted where 

scores were reported for ‘pre-driving (i.e., scores reported before the driving task) and 

‘post-driving’ (i.e., the scores reported directly after the driving task) including mean 

and standard deviation (SD) and this is presented below in Table 6.  

Table 6 Exploratory Analysis of the Subscales of the SSQ 

 

As seen, motion sickness was increased across the group where, on average, simulator 

use caused a total motion sickness score of 31.499. Table 7, below now looks at delta 

scores (i.e., change in sickness) for Group 1 (those who completed the driving) and 

Group 2 (those who dropped out due to sickness). All delta (Δ) scores for statistical 

analysis were calculated on an individual basis (post score minus baseline score) before 

the mean was taken for the group. 

 

SSQ Category 

Pre-Driving 

Mean Pre-Driving SD 

Post-Driving 

Mean Post-Driving SD 

Nausea 3.18 7.05 44.71 32.74 

Oculomotor 6.66 11.39 33.44 21.66 

Disorientation 2.95 7.38 52.68 42.8 

Total 3.667 4.701 35.166 23.287 



50 
 

Table 7 Motion Sickness for Group 1 and Group 2 

 

 

 

 

 

Looking at the SSQ scores comparatively between those who completed the driving 

(Group 1) vs those who dropped out (Group 2) a one-way ANOVA reveals significance 

for three of the four SSQ categories. Where dropouts had a significantly higher Δ Total 

SSQ score (F=10.009, p=0.003), Δ Nausea score (F=16.453, p<0.001), and Δ Oculomotor 

score (F=12.305, p<0.001). However there was no significant difference between those 

who completed the driving scenario and dropouts for the Disorientation subscale 

(F=0.361, p=0.551). Average motion sickness scores for each group has been shown 

below in Figure 30. The notation * denotes a 95% confidence significant difference, 

and ** a 99% confidence and the error bars indicate the standard deviation. 

 

Figure 30 Motion Sickness Scores for Group 1 and Group 2 

An exploratory analysis of the six human performance tests was conducted - each 

denoted by a number from 1 to 6 – as per Table 5. Tests 2 and 5 scores were recorded 

for both dominant and non-dominant hands independently (where the participant was 
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required to report on their dominant hand). The results are presented in Table 8 

below: 

Table 8 Exploratory Analysis of Human Performance Scores 

Test Number 
 

Pre-Driving 
Mean 

Pre-Driving 
SD 

Post-Driving 
Mean 

Post-Driving 
SD 

1 (Visual) Score 1.055 0.093 1.056 0.09 

2 (Physical) Dominant 3.813 0.617 4.025 0.737 

Non-Dominant 4.015 0.835 4.289 0.81 

3 (Cognitive)  Score 18.196 1.184 17.569 1.769 

4 (Visual-Cognitive Score 3.157 1.027 3.235 0.971 

Time 79.821 43.789 74.878 43.738 

5( Physical-Visual Dominant 16.039 1.673 15.529 1.641 

Non-Dominant 14.765 1.531 14.471 1.419 

6 (Physical-
Cognitive) 

Average Time 0.3 0.038 0.324 0.056 

It was shown previously that participants who dropped out (Group 2) reported 

significantly higher total motion sickness scores compared to those who completed the 

study (Group 1). To explore the scores visually, seven graphs are presented to show 

the scores before (pre) and after (post) simulator exposure for both the non-motion 

sick group (Group 1) and the motion sick group (Group 2). A note has been added 

below each graph to explain the implication of an increased score, where the 

implication of a decrease score is opposite. The notation * denotes a 95% confidence 

significant difference, and ** a 99% confidence and the error bars indicate the 

standard deviation. 

 

 

 

 

 

 

 

 

Figure 31 Visual Performance (Test 1)  note: an increase in LogMar score indicates an improved 

performance 
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Figure 32 Physical Performance (Test 2) note: an increase in time indicates a reduced performance 

 

 
 

Figure 33 Cognitive Performance (Test 3) note: an increase in n-back score indicates an improved 

performance 
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 Figure 34 Visual-Cognitive Performance Score (Test 4) note: an increase in score indicates an 

improved performance 

 

Figure 35 Visual-Cognitive Performance Time (Test 4) note: an increase in time indicates a reduced 

performance 
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Figure 36 Physical-Visual Performance – (Test 5) note: an increase in score indicates an improved 

performance 

 

 

 

 

 

 

 

 

 

 

Figure 37 Physical-Cognitive Performance (Test 6) note: an increase in time indicates a reduced 

performance 

 

Looking at the above figures, visually, there appeared to be some differences in 

abilities between Group 1 and Group 2’s pre-exposure (i.e., baseline) performance 

scores. To understand if there was a difference, a mixed ANOVA was conducted. The 

exploratory statistics below present only the pre-exposure (baseline) scores for the 
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Table 9 – Group 1 vs Group 2 Pre-Exposure Performance Scores 

 
Groups Mean Std. Deviation N 

1 Visual  Group 2 1.0478 .06681 23 

Group 1 1.0607 .11055 28 

Total 1.0549 .09277 51 

2 Physical (dominant) Group 2 3.8261 .66436 23 

Group 1 3.8021 .58695 28 

Total 3.8129 .61675 51 

2 Physical (non-

dominant) 

Group 2 4.1426 .97678 23 

Group 1 3.9104 .69869 28 

Total 4.0151 .83489 51 

3 Cognitive Group 2 17.9565 1.49174 23 

Group 1 18.3929 .83174 28 

Total 18.1961 1.18355 51 

4 Visual Cognitive (Score) Group 2 3.0870 1.04067 23 

Group 1 3.2143 1.03126 28 

Total 3.1569 1.02708 51 

4 Visual Cognitive (Time) Group 2 80.2596 21.77686 23 

Group 1 79.4611 56.25164 28 

Total 79.8212 43.78945 51 

5 Visual Physical (non-

dominant) 

Group 2 14.7391 1.38883 23 

Group 1 14.7143 1.60686 28 

Total 14.7255 1.49771 51 

5 Visual Physical 

(dominant) 

Group 2 16.3043 1.29456 23 

Group 1 15.8214 1.92553 28 

Total 16.0392 1.67285 51 

6 Physical Cognitive Group 2 .3105 .04089 23 

Group 1 .2913 .03286 28 

Total .2999 .03757 51 

Box’s test for equality of covariance matrices (‘M test’), showed that with an M value 

of 74.440 and a p value of 0.073 we can reject the null hypothesis (with a 0.05 

significance threshold) and assure reliability in a mixed ANOVA analysis where the data 

meets the assumption of a multivariate normal distribution. 

Assuring Mauchly's Test of Sphericity indicated that the assumption of sphericity had 

been violated a mixed ANOVA with repeated measures with a Greenhouse-Geisser 

correction was used to understand if there was a difference between mean 

performance baseline scores between the groups (Group 1 and Group 2). There was no 
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main effect for group observed between baseline test scores (F(1, 49)= 0.006, 

p=0.936). 

Following this precursory analysis, the data was then explored to see if there was a 

difference between the change of performance scores of Group 1 and Group 2 

participants where motion sickness is the differentiator between the groups. This will 

give an indication as to the effect of motion sickness on human performance, where 

dropping-out of a user trial is a good indicator that someone is motion sick. A mixed 

ANOVA was conducted for each performance test. Although there were only six 

performance areas, test 2 and test 5 tested both dominant and non-dominant hands 

independently and thus 9 analyses were completed.  

Test 1 visual performance. There was no significant main effect for pre vs post test 

score F(1, 49) =0.290, p=0.866 for the entire group of participants. Further, there was 

no significant main effect between the groups F(1, 49) =0.145, p=0.705. There was no 

interaction between pre and post test scores and group F(1, 49) =0.198, p=0.658. 

These results show that performance remained unaffected after simulator use, and 

this was true for both the motion sick group (group 2) and the non-motion sick group 

(group 1). 

Test 2 physical performance (dominant hand). There was as a significant main effect 

observed for pre vs post test score F(1, 49) =15.308, p<0.001. There was no main effect 

between the groups F(1, 49) =2.288, p=1.137. Following the significant main effect of 

pre vs post, there was also a significant interaction between pre/post and group F(1, 

49) =16.251, p<0.001. The estimated marginal means showed how Group 2 (motion 

sick) took significantly longer to complete the card turning task (pre vs post exposure) 

indicating a decreased physical performance for the motion sick group (group 2). The 

estimated marginal means have been plotted below to show the direction, where an 

increase in score shows an increased time to complete the task, thus a poorer 

performance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 Test 2 Physical Performance (dominant hand) Error bars: 95% CI  

(Group 1 Non-Motion Sick, Group 2: Motion Sick) 
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Test 2 physical performance (non-dominant hand). There was as a significant main 

effect observed for pre vs post test score F(1, 49) =11.282, p=0.002. There was no main 

effect between the groups F(1, 49) =2.800, p=0.101. There was no significant 

interaction between pre/post and group F(1, 49) =2.032, p=0.160. The estimated 

marginal means plot below shows that although time taken to complete the task 

increased after exposure for the entire sample, the difference in scale between the 

motion sick and non-motion sick group was not significantly different showing that the 

classification for motion sickness (dropout vs non-dropouts) did not impact the scale of 

performance change. The estimated marginal means have been plotted below to show 

the direction, where an increase in score shows an increased time to complete the 

task, thus a poorer performance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 Physical Performance (non-dominant hand) Error bars: 95% CI 

(Group 1 non-motion sick, Group 2: Motion Sick) 

Test 3 Cognitive performance 
There was a significant main effect between exposures F(1, 49) =11.155, p=0.001. 
There was also a significant main effect of group F(1, 49) =5.114, p=0.028. The 
interaction effect was not significant at a confidence threshold of 0.05, where F(1, 49) 
=3.918, p=0.053. This result shows that performance was degraded for both groups 
and they were affected to different extents. However, the lack of an interaction shows 
again the scale of performance degradation was not well characterised by the motion 
sickness classification. The estimated marginal means have been plotted below to 
show the direction, where a decrease in score indicates a poorer performance.  
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Figure 40 Cognitive Performance Error bars: 95% CI  

(Group 1 Non-Motion Sick, Group 2: Motion Sick) 

 

Test 4 visual cognitive performance (score) 
There was no main effect observed for pre vs post exposure, F(1, 49) =0.409, p=0.525 
nor was there a difference observed between the sickness groups. F(1, 49) =0.260, 
p=0.873. Further, there was no interaction observed F(1, 49) =1.258, p=0.267, all of 
this indicates that performance was not affected through simulator use or motion 
sickness. 
 
Test 4 visual cognitive performance (time to complete) 
Similar to the visual-cognitive score analysis there was no main effect for pre vs post, 
F(1, 49) =2.920, p=0.094, between the groups F(1, 49) =0.017, p=0.898, or interaction 
F(1, 49) =0.073, p=0.789. This shows how performance (i.e., the time to complete the 
task was not affected through simulator use or motion sickness. 
 
Test 5 Visual Physical performance (non-dominant) 
There was no main effect observed between assessments F(1, 49) =2.562, p=0.116 or 
between groups F(1, 49) =0.073, p=0.789. Further, there was no interaction observed 
F(1, 49) =0.074, p=0.787 indicating that simulator use and motion sickness did not 
impact performance for the non-dominant hand. 
 
Test 5 Visual Physical performance (dominant) 
Looking at the dominant hand scores, there was a main effect observed between tests 
(pre vs post) F(1, 49) =9.910, p=0.003. However there was no significant group main 
effect F(1, 49) =0.010, p=0.920, or interaction F(1, 49) =3.670, p=0.061. The estimated 
marginal means have been plotted below to show the direction, where an decrease in 
score indicates a poorer performance.  
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Figure 41 Visual Physical Performance (dominant hand) Error bars: 95% CI  

(Group 1 Non-Motion Sick, Group 2: Motion Sick) 

 

Test 6 physical cognitive performance 
For the physical cognitive performance a strong main effect between the pre and post 
test was observed F(1, 49) =33.727, p<0.001. There was also a main effect of group 
observed F(1, 49) =5.006, p=0.030. However, there was no interaction F(1, 49) =3.494, 
p=0.068. This shows that simulator use negatively affected both groups, and with a 
difference between the groups, motion sickness was a compounding negative factor 
for group 2. However, the lack of interaction again hints that the grading criteria of 
motion sick vs not motion sick was not entirely effective for predicting the scale of 
performance change. The estimated marginal means have been plotted below to show 
the direction, where an increase in score indicates a longer reaction time and thus a 
poorer performance.  
 

 

 

 

 

 

 

 

 

Figure 42 Physical Cognitive Performance Error bars: 95% CI  

(Group 1 Non-Motion Sick, Group 2: Motion Sick) 

The mixed ANOVA is a very thorough analysis, allowing the variance across the groups 

to be taken into account for each analysis. However, for consistency between 

submissions within this EngD research, further analysis was also done through splitting 

the groups and analysing them in comparison to one another. These outputs are useful 

to consider as a post-hoc analysis for where there was a significant main effect of pre 
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vs post exposure in the previous mixed ANOVA. The paired (pre and post) data sets 

were not normally distributed and symmetry was not observed in the data from Test 3, 

Test 4 (time and score), Test 5 dominant and Test 6. Therefore, data was analysed 

using the Sign Test for the non-symmetrical results and the Wilcoxon Signed-Rank Test 

for the symmetrical results. The output is presented below in Table 10 where all 

significant findings are highlighted in yellow and directional arrows (↑,↓) have been 

included next to significant results to show if this difference was an improvement (↑) 

or reduction (↓) in objective performance. 

Table 10 Analysis of Dropouts and Complete Scores (where ** indicates 99% confidence) 

Test Number Score Group 1 Pre vs. Post Group 2 Pre vs. Post 

1 (Visual) Score Z=-0.428 Z=-0.404 

2 (Physical) 
 

Dominant  Z=-0.162 Z=-3.101** ↓ 

Non- 
Dominant  

Z=0.054 Z=-2.660**↓ 

3 (Cognitive)  Score p=0.804 p=0.004 ↓ 

4 (Visual-Cognitive) 
 

Score p=0.791 p=0.118 

Time p=0.265 p=0.523 

5 (Physical-Visual) 
 

Dominant  p=1.000 p=0.004 ↓ 

Non- 
Dominant 

Z=-0.857 Z=-1.182 

6 (Physical-Cognitive) Average Time p=0.003 ↓ P<0.001 ↓ 

 

As shown above in Table 10 there is a significant difference in many performance 

scores for Group 2 participants (i.e., those who dropped out due to motion sickness) 

where performance was statistically decreased for Physical ability (Test 2), Cognitive 

ability (Test 3), dominant hand Physical Visual ability (Test 5) and Physical-Cognitive 

ability (Test 6). For the ‘complete’ participants (i.e., those who didn’t drop out due to 

severe motion sickness there was no change in their abilities in any test other than the 

Test 6 which showed a significantly reduced Physical-cognitive ability, which used a 

reaction time test.  

The previous analysis methods have looked at motion sickness as a binary state – by 

comparing those who had to drop out of the study (Group 2) vs. those who were able 

to complete the full driving scenario (Group 1). Within the mixed ANOVA method it 

was shown that, through a lack of interaction in some tests, the grouping classification 

was not always an appropriate indicator for the difference in scale of performance 

change between groups. It was interesting therefore to see if there is a scale to the 

effect where it’s possible that motion sickness severity as ascertained from the SSQ 

may correlate to performance degradation. Participants were split into three equal 

groups of 17 participants, based on individual MS (motion sickness) severity where 

group 1 contained participants with the lowest Δ(delta) SSQ scores, group 2 consisted 

of the next 17 participants and group 3 consisted of the final 17 participants with the 
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greatest Δ SSQ scores. An ANOVA showed a significant difference between the three 

groups’ SSQ scores (F=36.882, p<0.001). An exploratory analysis of the groups 

(considering motion sickness) is given below in Table 11 

Table 11 Descriptive Statistics of MS Severity Groups 

 

Now, Table 12 below presents the mean performance delta scores for the three 

groups, where delta scores were calculated for each individual, before an average of 

each group was taken. 

Table 12 Descriptive Statistics of Performance for MS Severity Groups 

Performance area Group Mean Std. Error Standard Deviation 

Test 1 Visual 

1 0.0056 0.01312 0.05565 
 

2 0.0119 0.01376 0.05504 
 

3 -0.0141 0.01303 0.05374 
 

Test 2 Physical (dominant) 

1 0.0556 0.05774 0.24498  
2 0.2288 0.15137 0.60547 

 
3 0.3606 0.12984 0.53533 

 

Test 2 Physical (non-dominant) 

1 0.0922 0.10543 0.44729 
 

2 0.2969 0.15609 0.62435 
 

3 0.4435 0.17436 0.71891 
 

Test 3 Cognitive 

1 -0.1111 0.29024 1.23140 
 

2 -0.8750 0.40697 1.62788 
 

3 -0.9412 0.30281 1.24853 
 

Test 4 Visual Cognitive (Score) 

1 0.2778 0.23990 1.01782 
 

2 0.1250 0.20156 0.80623 
 

3 -0.1765 0.31196 1.28624 
 

Test 4 Visual Cognitive (Time) 

1 -5.8050 3.66316 15.54146 
 

2 -0.5550 4.35667 17.42669  
3 -8.1612 6.34660 26.16772 

 

Test 5 Visual Physical (non-
dominant) 

1 0.2222 0.36654 1.55509 
 

2 -0.2500 0.26615 1.06458 
 

3 -0.8824 0.34173 1.40900 
 

Test 5 Visual Physical (dominant) 

1 0.1667 0.27116 1.15045 
 

2 -0.6875 0.39496 1.57982 
 

3 -1.0588 0.42418 1.74895 
 

Test 6 Physical Cognitive 

1 0.0141 0.00372 0.01576 
 

2 0.0398 0.00981 0.03923 
 

3 0.0198 0.00744 0.03067 
 

Group Mean Delta SSQ Total Standard Deviation 

1 (n=17) 9.460 6.219 

2 (n=17) 27.500 6.194 

3 (n=17) 57.539 15.199 
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The above raw mean data indicates there may be a difference between the groups 

across a few of the performance scores. Box Plots of the performance change between 

the groups have been included in Appendix  4 to explore any visual relationship. 

Using a Levene Test for Homogeneity of Variance it was found that data within Test 2 

(Physical) and 6 (Physical-Visual) exhibited significance where F(2,48)=4.667, p=0.014 

and F(92,48)=4.255, p=0.02 respectively. The Welch ANOVA will be used for analysing 

Test 2 and 6. The data within tests 1, 3, 4 and 5 met all assumptions so a one-way 

ANOVA was used. The result of the ANOVA found no statistical significance between 

the three groups in Tests 1, 3, 4 or 5 where p>0.05 in all cases. Using the Welch ANOVA 

no statistical significance was found for Test 2 where p>0.05. However, for Test 6 

(physical-visual) statistical significance was found F(2,27.168)=3.468, p=0.046. For Test 

6 the Scheffe post-hoc analysis showed a statistically significant difference between 

group 1 and 2 (p=0.035) and group 2 and 3 (p=0.026), however there was no difference 

between groups 1 and 3 (p>0.05), indicating a lack of linear relationship between the 

groups.  

Another approach used to better understand if there was a relationship between 

severity of motion sickness and scale of performance change was to analyse the data 

at a group level using a liner regression. Initially, the multiple correlation coefficient R 

value at 0.588 does not indicate great quality of the prediction of test score change as 

the dependent variable. Further, the coefficient of dertmination (R2) value of 0.345 

indicates that the independent variable of motion severity change explains just 34.5% 

of the variability of the performance change. The overall ANOVA within this test shows 

that the change in test score was significantly related to motion sickness state 

F(,9,41)=2.402, p=0.027. However, all but one of the individual tests proved to be 

insignificant in themselves where p>0.05. For the cognitive test (N-Back, Test 3) 

significance was observed where p=0.027. Overall this output of the linear regression 

further examples the overall negative effect of motion sickness on human 

performance, but does not provide evidence for the subjective motion sickness scores 

as a useful predictor for the scale of performance change (R2=0.345) across tests. 

5.4.2 PHASE 2 - A ‘REAL-WORLD’ STUDY 

A further 17 participants took part in the RDM pod user trial which was used for Phase 

2, none of these participants had completed the simulator study in Phase 1 of this 

project. All participants completed the driving scenario with no dropouts. Motion 

sickness scores for ‘PRE’ SSQ (baseline) and ‘POST’ SSQ (after use of the pods) along 

with ‘PRE’ (baseline) and ‘POST’ N-Back (cognitive) and reaction time (cognitive-

physical) scores are presented in Table 13 below 
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Table 13 Exploratory Analysis of SSQ and Human Performance (Pre and Post) 

 

To see how motion sickness scores changed after exposure to the pods, the delta (i.e., 

change in) scores were assessed. The SSQ scores has been presented as delta total, as 

well as for its three sub-categories of nausea (‘N’), oculomotor (‘O’), and 

disorientation (‘D’). The descriptive statistics are presented below in Table 14: 

 

 

As seen in Table 14, every measure was slightly decreased after exposure to the pods 

except in the nausea scale. It appears that the pods did not induce any motion 

sickness. To assess if the use of the pod affects motion sickness it was first necessary 

to check for normality in the data so the appropriate statistical test could be executed. 

The Shapiro-Wilk test was used where the null hypothesis is that the data is normally 

distributed. In all cases p<0.05, so the null hypothesis of the Shapiro-Wilk must 

rejected and it can be concluded that the data is non-normally distributed. Given the 

lack of normality in the data, a non-parametric test was required. The data was then 

assessed for symmetry, whereby the Sign Test could be used for the for the non-

symmetrical results and the Wilcoxon Signed-Rank Test for the symmetrical results (as 

all other assumptions of each test were met). To check for symmetry, the delta scores 

(i.e., the difference between the paired data pre vs. post) was used and box plots 

created. Conclusively, none of the data was observed to be symmetrical so the Sign 

Test was used. A statistical analysis using the Sign test shows that there was no 

significant change in motion sickness total score (p=0.727), nausea (p=0.625), 

oculomotor (p=0.774), or disorientation (p=0.727) 

Looking now at the performance scores, there was no statistically significant change 
between the pre and post N-Back scores assessing cognitive ability (Z=-1.270, p=0.204) 

 N Minimum Maximum Mean Std. Deviation 

PRE_SSQ_TOTAL 17 0.000 18.7 3.3 4.746 

POST_SSQ_TOTAL 17 0.000 11.2 2.9 3.379 

PRE_REACTION 17 0.226 0.352 0.299 0.0341 

POST_REACTION 17 0.267 0.394 0.317 0.0381 

PRE_NBACK 17 14.000 19.000 17.823 1.333 

POST_NBACK 17 15.000 19.000 17.117 1.495 

Table 14 Exploratory Analysis of The SSQ Subcategories 

 N Minimum Maximum Mean Std. Deviation 

DELTA_N 17 -9.50 9.50 1.117 4.608 

DELTA_O 17 -22.70 22.70 -0.447 9.833 

DELTA_D 17 -27.80 13.90 -0.817 7.724 

DELTA_TOTAL 17 -11.2 11.2 -0.440 5.101 
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where p>0.05. However a t-test revealed there was a significant increase in cognitive-
physical ability between pre-exposure (m=0.299, SD=0.034) and post exposure 
(m=0.317, SD=0.038) t(16)=-2.251, p=0.039. 

It is now possible to explore if the statistically significant change in reaction time score 

was related to any fluctuation in motion sickness using an ANOVA. Despite the lack of 

significant change between pre and post motion sickness scores and N-Back scores, it 

is still worth presenting the data to aid discussion and give comparison to the results 

presented in the first simulation-based user trial in Phase 1. There was no statistical 

significance between delta SSQ total (i.e., the change in total SSQ score) and delta 

cognitive-physical score as determined by the one-way ANOVA (F=0.967, p=0.493). 

Likewise, there was no significance shown between delta total SSQ and delta cognitive 

score (F=1.1998, p=0.159) where p>0.05 in both instances. Looking also for any 

significance between the delta SSQ subscale scores and the two performance 

measures there too was no significance shown where delta nausea vs. delta reaction 

showed (F=0.205, p>0.05) and delta N-back showed (F=0.701, p>0.05). Delta 

oculomotor vs. delta reaction showed (F=1.200, p>0.05) and delta N-Back showed 

(F=1.218, p>0.05). Finally, delta disorientation vs. delta reaction showed (F=2.564, 

p>0.05) and delta N-Back showed (F=3.016, p>0.05). 

 

5.5 DISCUSSION 

 

Firstly, looking at Phase 1 of this project, dropout rates in the simulator were higher 

than a usual 3xD simulator study, with 45% (n=23) participants asking to end the study 

early. It is thought that the driving route design had the biggest impact on participant 

dropouts and the track was designed to be challenging considering motions. It is 

noteworthy that every participant reported at least some motion sickness as measured 

by the SSQ proving that no one was immune to motion sickness. 

Previous literature discussed the effect of different demographics on motion sickness, 

such as gender (Jokerst, et al., 1999), age (Golding J. F., 2006) and driving experience 

(Turner M. , 1999) amongst others. These relationships did not form part of the 

research question so analysis is retained within Submission 3. 

Looking to the key findings, it was shown that motion sickness affects various areas of 

human performance. Motion sickness in this instance was considered as a binary state. 

For those who did complete the drive (Group 1) they were classified ‘not motion sick’, 

whereas those who asked to end the drive early due to sickness (Group 2) were 

classified as ‘motion sick’ and referred to as ‘dropouts’. This method has previously 

successfully been used in the published literature where dropping out is an accepted 

classifier for motion sickness state (Bertin, Collet, Espie, & Graf, 2005). There is 
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currently no validated method for categorising motion sickness states other than 

strictly by the SSQ scale, where there are no thresholds on which to infer states of 

‘motion sick’ or ‘not motion sick’. To assess human performance across the entire 

range of scores many participants would be needed each at similar motion sickness 

states. Therefore, with the modest sample size, and no real thresholds, the propensity 

to drop out of the drive was used as the defining characteristic to classify motion 

sickness. Four of the six areas of human performance (as per the Venn diagram in 

Figure 19) were shown to be negatively affected by motion sickness. Looking at the 

human performance diagram it can be amended to identify the areas shown to be 

negatively affected by motion sickness and is presented below where the red area 

identifies the area as being negatively affected by motion sickness: 

 

 

 

 

 

 

 

 

Figure 43 Modified Human Performance Diagram 

Considering Visual Acuity (VA) previous literature suggests motion sickness 

(seasickness in their case) had a negative effect on VA (Bos, et al., 2008). However, the 

results found in this simulator trial should be considered as non-conclusive. It was 

noticed early on in the user trial that there may be some darkness adaptation 

benefiting participants. The control room where the VA test took place is much 

brighter than the simulator and there was no ability to change the lighting in either the 

simulator or the control room. It is likely that participants, after spending time in the 

dark simulator were dark adapted, then, when coming back to the control room for 

the post-exposure tests they benefited from being dark adapted and being tested in a 

better lit environment. This justification is supported by the literature where it has 

been shown multiple times how dark/light adaption has a significant affect on VA that 

dark/light adaption has a significant affect on acuities (Hecht, Haig, & Chase, 1937) 

(Graham & Cook, 1937) (Campbell, Harrison, & Vertigen, 1950). Unfortunately because 

of this inability to control lighting conditions, it is not possible to make any conclusions 

on the relationship observed between VA and motion sickness in this user trial.  
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Secondly, looking at the visual-cognitive assessment which consisted of a modified 

Mental Rotation Test (MRT), no significant change was observed. Contrary to the 

hypothesis, the group average score increased (insignificantly) from (m=3.157, 

SD=1.027) to (m=3.235, 0.971). The time taken to complete the test (measured in 

seconds) showed no significant change either, although the raw data showed a slight 

decrease from (m=79.82, SD=43.78) to (m=74.87, SD=43.73), albeit statistically 

insignificant. Curiously, as shown in  Figure 34 it seems that scores increased more for 

dropouts (i.e., those who were motion sick) than for those who completed the drive 

(i.e., those who were not motion sick) – this was opposite to the expected effect. Upon 

some brief further reading it was found that the ‘skill’ of spatiality, assessed using the 

MRT, has an interesting relationship with motion sickness. For example, one study 

showed that those who scored lower at spatial ability tasks reported greater numbers 

of historic bouts of motion sickness (Levine & Stern, 2002) This relationship is 

continued to be discussed and explored within Project B of this Innovation Report.  

Looking at all of the other areas of human performance it was shown that Group 2 had 

significantly reduced cognitive ability, physical ability, physical-cognitive ability and 

physical-visual ability. These findings are difficult to compare to the literature, as many 

previous projects used specific work-related tasks on which to assess performance, 

thus it is unknown what specific areas of human performance were affected in other 

experiments. One aforementioned project did find a negative relationship between 

cognitive skills and motion sickness (Bos, et al., 2008) when using the Vigilance and 

Tracking Test (VigTrack) (Valk, Simons, Struyvenberg, Kruit, & van Berge Henegouwen, 

1997) alongside the Multi-Attribute Task Battery (MAT) (Comstock & Arnegard, 1992). 

However, these tests both rely on other abilities, such as visual ability. Therefore the 

data presented in this simulator study, is in agreement with the conclusion set out by 

(Bos, et al., 2008) but adds to our understanding of this relationship, where cognitive 

ability was more isolated in this project.  

Looking to the results found in Phase 2 of this study, using the RDM pods there was no 

motion sickness being induced for participants. However, despite there being an 

observed decrease in physical-cognitive scores, there is no evidence that this 

relationship was linked to motion sickness (where there was none). As one possible 

explanation for the reduced physical-cognitive scores observed after the exposure to 

the pods, it is thought that the temperature was of influence. The outside temperature 

on the three days of the user trial was conducted had lows of 5 degrees, 1 degrees and 

-1 Degrees Celsius and the trials took place in a non-heated warehouse. Participants all 

wore insulated jackets to counter the cold, but their hands were exposed. It is 

expected that when arriving at the facility and completing the first round of 

assessments they were in a normal state considering temperature. However, after 40-

minutes in this cold warehouse it was possible that their motor skills were slowed due 

to the cold. There is much research correlating cold temperatures to decreased hand 
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performance (such as (Clark, 1961)), although no skin temperature readings were 

taken to validate the temperature as a reason for the decreased physical-cognitive 

performance so this explanation remains speculative. Another possible explanation is 

that the onset of Sopite Syndrome could affect reaction time as previously observed 

(Lawson & Mead, 1998), however there was no measure taken to measure sopite 

syndrome, so again, it is not possible to draw a reliable conclusion. Overall, with 

motion sickness not being a significant factor for these pod trials in Phase 2, and no 

relationship observed between motion sickness and human performance, this trial did 

help validate the validity of simulator study where no change in motion sickness 

showed no significance to any change in performance. Taking the findings that motion 

sickness does affect human performance as measured in the simulator study it is of 

benefit to the UK AutoDrive trials that no significant motion sickness was observed as 

this helps to validate the findings they will take away from the project. 

The implications of motion sickness affecting human performance is very interesting 

for further automotive technologies. Firstly, it highlights the importance of data 

handling for simulator-based user trials where it is not advisable to use user trial data 

for participants who have to drop out of a study due to motion sickness as it is proven 

that this level of motion sickness significantly affects their performance and therefore 

their data is not-representative of their usual abilities. At this stage it can be concluded 

that if participants are not asking to end the study early (therefore ‘not motion sick’ by 

this binary classification system) their results (for the most part) are representative of 

their usual abilities, and therefore this adds to the validity of simulator-based user 

trials. It was shown however that even for those who completed the driving task, their 

physical-cognitive ability did significantly decrease where their reaction time 

(measured in seconds) increased from (m=0.3, SD=0.038) to (m=0.324, SD=0.056). A 

few papers look at reaction time in simulator environments such as (Guzek, Jurecki, 

Lozia, & Stanczyk, 2006) and (Guzek, et al., 2012) and both confirm that reaction time 

is affected negatively through simulator use. The exact reason why is described in 

these reports in relation to specific driving tasks, rather than a change in fundamental 

ability. It is possible that Sopite Syndrome (Graybiel & Knepton, 1976) could be a factor 

which is a complex condition related to drowsiness and fatigue related to motion 

exposure. This usually is of consequence when experiencing physical motions but it is 

possible that the perceived sensation of self-motion experienced in the simulator 

through vection could induce similar sensations which may induce sopite syndrome. 

Previous research has explored the onset of Sopite Syndrome in simulators and details 

how this fatigue and drowsiness related syndrome is indeed a factor for vehicle 

simulators where there is no physical motion (Lawson & Mead, 1998). No data 

collected to assess participants for sopite syndrome symptoms (as this research was 

solely interested in motion sickness). However it is conceivable that it may have had a 

role to play in the observed reduction in physical-cognitive ability in the pod trials – but 

this can not be proven. 
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Within this project (specifically Phase 1 where more data was collected), it was also 

considered if there was a scale to the effect of motion sickness and human 

performance. This, although not the primary research question, was of interest 

considering the impact of performance degradation. It has already been discussed that 

when looking at motion sickness as a binary measure (sick or not sick) a difference has 

been observed between the two group’s performance scores. However, it is 

interesting to explore how one might go about understanding if there is a scale 

between motion sickness severity and performance change. As a brief insight, Table 11 

presents an exploratory method for splitting participants into lowest, highest  and 

those in the middle of severity scores – dividing the group equally into three as more 

of an ‘exploratory’ approach. It was shown how the grouping of participants using SSQ 

data, assigning participants based on their subjective motion sickness severity into 

three groups (low, medium, high) showed no changes. The implication of this 

highlights the utility of the binary method used for grouping sick / not sick participants 

in this study (using dropouts as the grouping variable). A linear regression was also 

conducted to further explore this relationship, but again did not support any linear 

relationship between the scale of motion sickness and the scale of performance 

degradation.  

In order to provide a more reliable analysis of a linear relationship it would be 

necessary to first collect a much larger range of motion sickness data. The largest score 

measured by the SSQ in this user trial was 71.1, whereas the largest total motion 

sickness score achievable would be 224.4 indicating this experiment observed only up 

to 31% of the range of possible SSQ data. An experiment to better understand if there 

is a linear relationship might involve identifying motion sickness severity score targets 

as ‘groups’, and subjecting participants to a motion sickness stimulus until they reach a 

common group threshold. A comparison between groups of participants each at a 

discrete level of subjective motion sickness would then show, more robustly, if there is 

a linear relationship between the scale of motion sickness severity and the scale of 

performance degradation.  

This consideration highlights two limitations on the ability to conclude on any linear 

relationship – firstly, there is no validated method of splitting SSQ severity into groups 

there may be a better way to interpret this subjective data. Secondly, all participants 

were constantly reminded they can end the study if they feel too sick. It is likely this 

data set has not captured the full extent of motion sickness severity, where if 

participants were required to endure the motion sickness inducing task for longer a 

greater state of motion sickness would be measured and a greater range of data may 

reveal a significance between subjective score and performance. However, due to 

ethical considerations and concern for participant wellbeing no one was subjected to 

any more motion sickness than they opted to tolerate. Use of the motion sickness 

susceptibility questionnaire (MSSQ) (Golding J. F., 1988) may have provided a useful 
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method of categorising participants and collecting data from a broad demographic 

considering susceptibility and it is unfortunate this data was not collected. 

Overall, and besides the simulator transferability questions, considering the impact of 

motion sickness on performance (simulation sickness in this instance) these findings, 

and that which was explored in the literature, may have significant implications for 

future automated vehicles. The propensity for automated vehicles to induce motion 

sickness is quite well established in the literature and summarised in this Innovation 

Report. It is now seen (both in this experiment and the background literature) that 

motion sickness can reduce human performance in a number of ways. If, for example 

in a SAE Level 3 vehicle, the user is experiencing motion sickness, and thus their 

performance is degraded, it is possible that their ability to regain control of the vehicle 

may be deteriorated. There is no agreement yet about the time between a Level 3 

vehicle asking the user to regain control, and the time in which the user is required to 

take control. However, in one well cited report a 10-second handover request is 

recommended (Melcher, Rauh, Diederichs, Widlroither, & Bauer, 2015). Considering 

subjective motion sickness recovery, for the most part, takes 15-30 minutes there is 

perhaps an implication for the timeline of vehicle handover. If automated vehicle 

induced motion sickness is affecting performance, it may not be advisable to hand over 

control of a vehicle within this 10-second time frame. Further, in a Level 4 vehicle, if 

the occupant is experiencing motion sickness they may decide to regain control of the 

vehicle as a method of self-help, where ‘controllability’ and driving a vehicle is a known 

way to minimise motion sickness onset (Howard & Templeton, 1966). However, if the 

user is motion sick to the degree of no longer being able to tolerate the environment 

(similar to ‘dropouts’ in this project’s experimentation) it is possible that the users’ 

cognitive, physical and other performance areas will also be reduced – the extent to 

which this has a safety implication is not known, but worthy of consideration. These 

concerns have not been directly addressed in an automated vehicle instance, so no 

precise conclusions can be drawn, but the consideration of this has been highlighted 

for the first time, and the need for further research has been identified and justified.  

Considering also the previously discussed use cases of automated vehicles, it is 

apparent that productivity is a significant influencer on the appeal of these vehicles. 

Morgan Stanley have estimated that the ability to work within an automated vehicle 

could bring US$508 billion per year to the US economy (Morgan Stanley, 2013) (p.50) – 

clearly identifying the possibility of productivity in an automated vehicle. It was also 

discussed that many of these work-related tasks would induce the likelihood of motion 

sickness meaning people may not want to be productive. Further to this, it is now 

proven that motion sickness can negatively influence various areas of performance – 

this may further limit the productivity benefits expected. Going back to the literature it 

was shown in a seasickness trial how work task-related performance suffered 

significantly when motion sick (Bos J. E., 2004), and the experiment presented here 
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confirms these findings. This starts to bring into question the true ability to be 

productive in an automated vehicle. This, as a potential issue is worsened still when 

considering how different demographics are more affected than others considering 

motion sickness – so it is likely this productivity concept may be rather limited 

considering inclusivity. This inclusivity consideration was further discussed in a recent 

paper (Smyth, Jennings, & Birrell, 2019), which has been included in Appendix 1. 

 

5.6 CONCLUSION 

 

Motion sickness has been shown to be a significant negative influencer on four of the 

six human performance categories highlighted for this study: including, cognitive 

ability, physical ability, physical-cognitive ability and physical-visual ability. The test 

results from the visual ability and visual-cognitive ability remain inconclusive from this 

trial due to uncontrollable light conditions concerning visual skills, and external 

variables of spatial awareness ‘training’ and simulator exposure for the visual-cognitive 

skill. It was also shown that physical-cognitive skill (reaction time in this case) was 

negatively affected not only by motion sickness, but by simulator use in general as well 

as pod use. This is expected to be related to sopite syndrome, although this was not 

measured so cannot be reliably concluded upon. It does highlight however cause for 

concern of the transferability of reaction-time measures from simulator data to ‘real-

world’ applications. If future reaction-time based research is completed in a simulator 

(3xD or otherwise) it is recommended that Sopite Syndrome is measured and perhaps 

a baseline reaction time assessment is given alongside the primary task to compare 

reaction time differences between simulated and real-world. All other areas of 

performance are considered to be transferable from simulator to-real-world if 

participants are not experiencing motion sickness which makes them drop out. It is 

advised that if participants do drop out of a study all of their data should be omitted 

from the study where the validity of their performance is not assured.  

The RDM pods were shown in this specific user trial to not be an influencer on motion 

sickness and more explanations as to why this is the case is given in Submission 4, 

where vehicle speed, and inability to complete secondary tasks were thought to be of 

most significance.  

This project, using original data and supported by the background literature has 

identified the need for future research around the safety of vehicle handover scenarios 

for future automated vehicles – specifically SAE Level 3 and 4 vehicles. Motion sickness 

induced performance degradation may impact the safe ability for someone to regain 

control of a vehicle. Further to this safety concern, bringing into consideration the idea 

of productivity in automated vehicles, this research highlights a possible limitation to 

productivity goals - such as predicted by (Morgan Stanley, 2013). 
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This project has also allowed for an opportunity to provide useful impact to the 

sponsoring company- JLR. Through the literature review presented in Submission 2, 

and the simulator-based user trial as discussed (and presented in Submission 3) a ‘best 

practice’ guide was created for JLR research staff who will run future user trials. This 

document is summarised into a one page handout and was designed to be easy to 

follow to ensure maximum validity of future JLR studies as well as minimise participant 

dropouts and ensure participants are taken care of appropriately considering motion 

sickness. The latest copy of this is presented in Appendix  2. Further, as a summary of 

the project on the UK AutoDrive project a 1-page summary was also completed for the 

JLR staff (See  

Appendix  3). This was used to show that motion sickness was not a significant factor 

for their user trials, adding validity to their research findings and providing useful 

information about the usability of these pods considering motion sickness. The findings 

around performance degradation provided a useful insight into the issue of motion 

sickness for automated vehicles and helped scope future research plans for JLR as a 

result. 

5.6.1 FUTURE RESEARCH 

Although this research project has made many contributions, some further questions 

and areas of interest for future research have been raised. As a brief summary these 

have been noted below: 

- The extent to which motion sickness affects specific driving tasks in a 

simulator should be addressed (such as lane keeping, apprehension of 

danger, headway etc.) to ensure transferability of trials containing those 

variables.  

- Impact of motion sickness compared (using identical performance 

measures) to other common driver states such as fatigue 

- Areas of visual performance should be addressed in a more controlled 

environment. 

- A method for categorising or grouping motion sickness severity states using 

the SSQ should be examined. 

- Consideration of vehicle handover implications with regards to motion 

sickness should be further explored  

- The effect of motion sickness and/or simulator use and the mental rotation 

test should be further explored 

- The impact of Sopite Syndrome on automotive technology (simulators and 

automated vehicles) should be further explored. 
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5.6.2 LIMITATIONS 

This project was effective in addressing the primary research question, but had a few 

limitations that are important to note. As an overall point it is first worth mentioning 

that although the term ‘motion sickness’ is used, the specific form of this sickness was 

‘simulation sickness’.  

Firstly, the categorisation method of human performance only allowed for one test per 

performance area, where in fact there are many. For example, visual skills can relate to 

visual acuity, depth perception or night vision etc. Cognitive skills could include 

processing, working memory or long term memory etc. For this experiment, only one 

test was allocated to test each area of performance. This was done to ensure the tests 

could be completed before motion sickness subsided, but due to this, some wider 

information on each area of performance is missing.  

The grouping method of motion sickness severity was based on a binary classification 

related to the objective measure of dropping out or completing the trial. This was 

effective for addressing the research question, but leaves further questions about the 

linear relationship of motion sickness and performance which this data is not entirely 

suitable to address. Subjecting participants to a motion sickness stimulus to the point 

that they reach a specific level of sickness would allow for better grouping of 

participants for analysis. Further, as a limitation to the data set, only relatively 

moderate sickness was captured, where participants were advised to end the study if 

they became to unwell. This limits the breath of data available and the maximum 

motion sickness score collected was 71.1, out of a total possible score of 224.4. This 

does not limit the applications of the primary research question, but hinders 

understanding about the linear relationship. 

Considering the follow up trial in the ‘RDM pods’, motion sickness was expected to be 

very low given the experimental design, and this was bared out in the data. This limits 

the utility of the data collected to directly show ‘real-world’ comparability. The 

extraneous conditions, and the lack of control over experimental design and 

temperature etc. is a significant limitation of this section research.  
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6 VISUOSPATIAL TRAINING AND MOTION SICKNESS (PROJECT B)  

 

This project was conceived through the exploration of the results from Project A and a 

deep review of the literature. Some of this background literature was added to the 

Literature Review presented in Submission 2. This project was a two-part study, 

beginning with simulator trials followed by on-road trials. These two phases are 

written up as Submissions 5 (simulator study) and 6 (on-road study) as shown in Figure 

6. This project identified a new way of reducing motion sickness susceptibility through 

training visuospatial skills. JLR (the sponsoring company) placed an embargo on this 

project to restrict a journal publication where they want to protect the intellectual 

property associated with the findings. Therefore, no publications have been made as 

of August 2019 and discussions over future publications are ongoing. 

 

 

6.1 BACKGROUND 

 

This Innovation Report has established the issue of motion sickness onset for future 

automated vehicles and vehicle simulators for developing new technology. Of course, 

the reduction of motion sickness considering onset frequency and overall severity is 

something that would be of great benefit to the automotive industry as a whole. There 

are a few methods through which motion sickness can be managed. These have been 

categorised as part of this EngD (see Table 3) and the publication (Smyth, Jennings, & 

Birrell, 2019) which has been included in Appendix 1. As part of this categorisation for 

motion sickness countermeasures, some previous design-based methods were 

considered and this has been discussed in the literature review as seen in Submission 

2. Many design recommendations for automated vehicles have been summarised in 

(Diels & Bos, 2015) which include methods for reducing the onset of sensory conflict 

through ensuring outside views in the direction of travel. Later research looked at the 

location of display screens finding that indeed, those which allow maximum peripheral 

vision to the motion can reduce sickness (Diels C. , Bos, Hottelart, & Reilhac, 2016). A 

sea-sickness study concerned with HMI (Human-Machine Interface) design looked at 

the utility of presenting artificial horizons on display screens with some success (Bos, 

Houben, & Lindenberg, 2012).  

Other methods of reducing motion sickness in automated vehicles which are recently 

being explored include the use of Bone Conducting Vibration (BCV) headsets which use 

vibrations to disturb the signals between the vestibular system and the brain, 
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essentially ‘masking’ the afferent motion. The effectiveness of these methods is hard 

to establish in the current literature and is a relatively new development. It is expected 

that, if effective, it is only a short-term solution however. Something that one might 

want to use for a short drive where motion sickness is likely, but not for extended 

periods. Other methods of reducing motion sickness in an automated vehicle include 

the use of Virtual Reality (VR) headsets (e.g., (California, United States of America 

Patent No. US 2018/0089901 A1, 2018)) which look to provide the afferent motion 

cues to match the efferent motion being experienced. Again, there is no literature 

discussing the effectiveness of this method, but one questions is raised – the 

acceptability of wearing a VR headset throughout a journey. It thought to be unlikely 

people will want to wear a VR headset throughout a car journey. A slightly less 

intrusive method presents designs for glasses which project light in the periphery 

vision to help infer motion cues see (University of Michigan Regents, 2018) although 

again, no data has been published to attest to the success of this method. 

Drugs such as scopolamine have been shown many times to be effective in reducing 

motion sickness (Sherman, 2002), (Wood, Manno, Wood, Manno , & Redetzki, 1966) 

and (Schmäl , 2016). However, not only do these drugs limit habituation (Wood C. D., 

et al., 1994) (p.632), the also bring many side effects such as drowsiness and fatigue 

which last for many hours and affect day-to-day tasks which limit the application of 

medication. Medication is thought to be a very useful method of elevating motion 

sickness for ‘one-off’ applications (such as when on a cruise ship for recreation), 

however long term use is not advisable.  

Despite there being various methods discussed, all are limited by specific use cases. 

For example, for HMI based solutions, one has to be actively engaging with the HMI. If 

someone wants to work on a personal electronic device such as a phone, tablet or 

laptop (as is common for work-related tasks) they will not benefit from the in-car 

design implementations. Considering wearables, the user has to be actively wearing 

them every time they travel, this is unlikely to be desirable. For medication it is unlikely 

someone can use prescription motion sickness medication for a commute to work and 

then have a productive day on account of the fatigue-inducing side-effects.  All of 

these solutions are limited further when considering future Mobility as a Service 

(MaaS) concepts which see ride sharing and multi-vehicle mobility solutions where 

specific mitigation strategies may not be possible in a ride-sharing scenario and design 

may differ from vehicle to vehicle. Consideration needs to be given to methods of 

reducing personal susceptibility to motion sickness, in a non-invasive, non-drug related 

and non-vehicle-design dependent way which will reduce motion sickness across any 

use case.  

In Project A (presented also as Submissions 3 and 4) an interesting effect was observed 

between simulator use and the mental rotation test (MRT). It was found here that 
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participants average MRT score and completion time after simulator exposure was 

statistically unchanged (see  Figure 34 and Figure 35). This was despite the fact that 

many participants were suffering from motion sickness and other areas of 

performance were decreased – including cognitive ability. Initial exploration of these 

results and some literature started to reveal a possible relationship between mental 

rotation ability and natural motion sickness susceptibility. Further research into the 

relationship between the MRT and motion sickness was needed. 

 

6.2 INTRODUCTION 

 

Mental rotation is an aspect of visuospatial ability – a relatively well-studied subject in 

itself. Looking to the literature for more information about visuospatial skills, the most 

prominent, and widely discussed area is surrounding gender variability in visuospatial 

ability. Many studies highlight how, on average, males have an improved ability in 

visuospatial tests over females. For example, one study measuring the difference 

between males and females highlighted gender differences among a variety of 

visuospatial tasks –identifying particularly large sex differences specifically in the MRT 

(mental rotation test) (Linn & Petersen, 1986). Other research has confirmed these 

findings also finding males outperforming females in the MRT abilities (Peters, 

Chrisolm, & Laeng, 1995) and other visuospatial tasks including water level tests and 

rod and frame tests (Robert & Ohlmann, 1994) and (Scholl, 1989). Using the water 

level test combined with a card rotation test, this gender difference and direction is 

again confirmed by (Sigorella, Jamison, & Krupa, 1989) where they went on to highlight 

how “sex, self-concept, and spatial activities made significant direct contributions to 

the prediction of spatial performance” (p. 1). Across a variety of tests, and research 

projects the same gender effect is revealed multiple times and it can be concluded that 

gender has a significant role to play in natural visuospatial performance. 

 

This gender difference is immediately of interest where this EngD research has 

identified in a previous simulator trial (presented as Project A and in Submission 3) 

how a far greater number of females dropped out of the simulator study due to 

motion sickness than males. So it also becomes apparent that there is a gender 

difference in motion sickness susceptibility. This is not a new finding, in fact the 

literature is very clear on this gender effect considering motion sickness  - for example 

(Jokerst, et al., 1999), (Flanagan, May, & Dobie, 2005), (Dobie, McBride, May, & Dobie, 

2001) and (Matchock, Levine, Gianaros, & Stern, 2008). This relationship is well 

established where not only is this gender effect observed when specifically looking for 

it, as in the above studies, but has been observed in a variety of motion sickness 

studies including studies assessing airsickness (Lindseth & Lindseth , 1995), 

seasickness, (Grunfeld & Gresty, 1998) and car sickness (Turner & Griffin, 1999). 
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It is shown that females score lower at visuospatial performance tests, and experience 

more motion sickness. Conversely, males score higher at visuospatial tests and 

experience less motion sickness. One factor linking these two relationships can be 

found in research discussing the effect of sex hormones on both visuospatial skills and 

motion sickness. It has been previously shown how oestrogen (female sex hormone) 

fluctuations throughout the menstrual cycle influence spatial ability, where females 

perform worse at spatial tasks when menstruating (Silverman & Phillips, 1993). It has 

also been shown how fluctuations in female sex hormones throughout the menstrual 

cycle affects motion sickness susceptibility (Hausmann, Slabberkoorn, Van Goozen, 

Cohen-Kettenis, & Gunturkun, 2000).  

 

Given the nature of these findings it starts to become possible to consider that there is 

an underlying relationship between visuospatial ability and motion sickness 

susceptibility. Further to the findings presented in Project A and Submission 3, it is 

interesting therefore to consider if through improving visuospatial ability it is possible 

to reduce motion sickness susceptibility. Some research discusses the effect of 

hormone manipulation on visuospatial ability (Van Goozen S. , 1995). However, 

hormone manipulation is to be avoided for this application, and two research 

questions (RQ’s) are highlighted: 

 

RQ1 - Is it possible to improve visuospatial ability through non-invasive training tasks?  

RQ2 - Does increasing visuospatial ability decrease motion sickness susceptibility?  

 

6.3 METHOD 

 
To address the two research questions it was decided that a two-part user trial would 

take place. The first trial will be a simulator-based study, which is useful for a low-cost, 

quick, controlled and safe way to assess RQ2. Further, it is possible that the interesting 

effect between simulator use and visuospatial performance (as measured by the MRT) 

was linked to the visually intensive simulator environment. Following the success of 

the simulator trial as Phase 1, an on-road study will take place to further answer RQ2 

by providing information on the applicability of findings to ‘real-world’ motion sickness 

– this on-road part will be presented as Phase 2.  

6.3.1 DEVELOPING THE VISUOSPATIAL TRAINING PACK 

In order to answer RQ1 it is necessary to develop a method of training visuospatial 

ability. There were no useful academic publications advising on the training of 

visuospatial skills in a non-invasive manner, therefore a slightly more experimental 
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approach was needed, guided by common practice rather than scientific literature. 

There were found to be many sources online providing training platforms for training 

visuospatial ability for people who want to prepare for recruitment aptitude tests – 

where some tests similar to the MRT are commonly present. Many sources online 

advocate (through their conception and design) that repeat exposure to, and practice 

with these tasks can improve  ability. Therefore, a training pack was to be developed 

which included many visuospatial tests and through repeat exposure and practice with 

these tests it was conceivable that participants could improve their visuospatial ability. 

It was not practical to create entirely new visuospatial tests and training tasks, 

therefore online resources were used to create a novel assemblage of pre-existing 

visuospatial tests which would be used as the training pack. A few considerations were 

needed before deciding on the format for a training regime. Firstly, it was decided that 

the training tasks needed to be printable pen and paper tasks so that participants 

could be given a hard copy – thus controlling the variable of screen size and effects of 

VDU (Visual Display Units) if this was an online training task.  

 

Next, it was considered that for both phases (simulator and real-world) participants 

would provide a baseline motion sickness susceptibility score, complete the training 

pack, and then give a comparative motion sickness score. Therefore, the training pack 

should be long enough to ensure that habituation to the baseline motion sickness 

exposure was not an issue between the two exposures, but short enough to ensure 

participants do not withdraw from the study due to frustration of a long training 

period. Consulting a motion sickness expert (Diels C. , 2018) it was thought that 14-

days would be long enough to ensure habituation to the motion sickness task (used for 

a baseline measure) would not be a factor for the second exposure. Although the 

literature is sparse, 14-days does seem appropriate, where one study recommends 

that when looking to habituate someone to a motion sickness task, repeat exposure 

should take place within one week (Kennedy, Jones, Lilientha, & Harm,, 1993). Further 

supportive evidence to attest to one week as suitable time for habituation to the task 

to subside is found in (Dunlap, 2000). The effect of time taken to train on the 

effectiveness of the visuospatial training was unknown, but it was hoped that 14-days 

should provide enough time to see some training effect if indeed possible. 

 

To assemble the training pack, 14-days’ worth of training tasks were needed. For 

practicality sake, it was decided that training should last around 15-minutes per day 

where it was unlikely that participants would want to take part if the training tasks 

took up too much time. Three main sources for training tasks were found which 

included website dedicated to testing and training spatial abilities (amongst other 

traits for aptitude test preparation) (IndiaBix, 2009), a book published about 

mechanical and spatial aptitude (Learning Express, 2001) and an US army flight 

aptitude test document (Wiener, 2005). Training tasks were selected within these 
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sources, primarily based on the supportive information given by (Voyer, Voyer, & 

Bryden, 1995) around visuospatial training. Table 15 below gives an outline of each 

test chosen to be included in the training pack as well as the source. 

 

Table 15 Tests Used for Visuospatial Training Pack. 

Day Test name Description of training task  Source 

1 Image analysis  A selection of shapes is given along with four 
assembled shapes. Participants imagine constructing 
the pieces and choose which answer resembles the 
sum of all their pieces. 

(IndiaBIX 
Technologies, 
2009) 

2 Paper folding 
task 1 

A target shape is presented on imaginary transparent 
paper. Four possible answers are given with the paper 
folded in half, participants have to fold the shape In 
their head to work out which folded shape matches 
the target shape. 

(IndiaBIX 
Technologies, 
2009) 

3 Perdue Spatial 
test 

A shape is presented in two orientations. The 
participant has to work out how the shape has been 
rotated. They are then presented with another shape 
which they have to mentally rotate in a similar way to 
the first shape and work out which answer has the 
same orientation 

(Bodner & Guay, 
1997) 

4 Block counting A complex 3D shape is shown, made up of many 
uniform blocks. The participant has to work out the 
number of blocks present, imagining the side of the 
shape that isn’t visible. 

(Learning 
Express, 2001) 

5 Unfolded cube 
test 

An unfolded cube is presented with images on each 
face of the cube. Four assembled cubes are then 
presented with images on each side. The participant 
has to imagine assembling the cube to decide which 
one of the four options is not possible. 

(123Test, 2018) 

6 Paper folding 
task 2 

The same test as ‘paper folding task 1’, but with a 
different set of questions. 

(IndiaBIX 
Technologies, 
2009) 

7 Understanding 
patterns  

A 2D pattern (with fold lines) is presented along with a 
series of four 3D shapes. Participants have to imagine 
the pattern being folded and decide which shape it will 
make when 3D. 

(Learning 
Express , 2001) 

8 Spatial analysis 
task 

Participants are given an engineering drawing of a 
shape with views from the top, side and front. They 
have to imagine these 2D shapes as a 3D object and 
decide which one of the four possible answers is  

(Learning 
Express, 2001) 

9 Embedded 
images 1 

A line diagram is shown along with four much more 
complex line diagrams. The participant needs to find 
the original diagram within one of the four complex 
diagrams and report where it is  

(IndiaBIX 
Technologies, 
2009) 

10 Rotated blocks Participants have one ‘target shape’ and five other 
shapes. The participant needs to report which one of 
the five shapes is the same as the target shape (but 
rotated in a different orientation) 

(Wiener, Part 14 
ROTATED 
BLOCKS, 2005) 

11 Mixture of tests Tests comprise of a mixture of block rotations, paper 
folding, shape rotations, pattern identification, shape 
assembling, and gears and pulleys,  

(Psychometric 
Sucsess, n.d.) 
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12 Embedded 
images 2 

The same test as ‘Embedded images 2’, but with a 
different set of questions. 

(IndiaBIX 
Technologies, 
2009) 

13 Matching pieces 
and parts 

A shape is presented along with five smaller shapes. 
Participants have to decide which two of the five 
smaller shapes can be assembled to make the original 
shape. 

(Learning 
Express, 2001) 

14 Rotated shapes Participants have one ‘target shape’ and four other 
shapes. The participant needs to report which one of 
the four shapes is the same as the target shape (but 
rotated in a different orientation) 

(Learning 
Express, 2001) 

 
 
To give an example of the type of questions within the training tasks highlighted in 

Table 15, an example of one question from each day’s training is presented below in 

Table 16: 

Table 16 Examples of Training Tasks 

Day Test Name Example question 

1 Image 
analysis  

 
2 Paper 

folding task 
1 

 

3 Perdue 
Spatial test 
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4 Block 
counting 

 

5 Unfolded 
cube test 

 

6 Paper 
folding task 
2 

 
7 Understand

ing patterns  

 
8 Spatial 

analysis 
task 

 
9 Embedded 

images 1 
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10 Rotated 
blocks 

 
11 Mixture of 

tests 
 
 

12 Embedded 
images 2 

 

13 Matching 
pieces and 
parts 

 

14 Rotated 
shapes 

 

 
Participants would be given the training pack as a hard copy, where instructions were 

given to complete one training task per day, and at the beginning of each day there 

was a short explanation on how to complete the task. Participants were told to spend 

at least 15-minutes on the training task each day, so everyone had the same training 

exposure. For example, if the days training only took 10 minutes to complete 

participants would spend the remaining 5-minutes re-reading and checking their 

answers – ensuring they were practicing visuospatial tasks for at least 15-minutes per 

day. If the task took longer than 15-minutes participants were asked to continue until 

the task allocated for that day was complete. For this trial, there was no benefit in 

randomising the task order between participants, as this study was not interested in 

how visuospatial skills can be trained or what tests are most appropriate, but instead 

more fundamentally, if they can be trained. There was no practical way to ensure 

adherence to the training regime, and participant training material was not marked. 

6.3.2 COMMON METHODOLOGY 

To assess the effectiveness of this training pack on visuospatial abilities (RQ1) and the 

subsequent effect this has on motion sickness (RQ2) two separate studies were used 
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(Phase 1 and Phase 2), although the methodologies followed the same basic format. 

Initially participants would be assessed to measure their baseline visuospatial 

performance. Alongside this, participants would also take part in a driving exposure to 

measure their baseline motion sickness susceptibility. In Phase 1, this would be a  

simulator study where participants will be driving the 3xD simulator as the motion 

sickness task. In Phase 2, this will be an on-road study where participants will be sitting 

as passengers in a vehicle (one at a time) which is being driven round Warwickshire 

roads as the motion sickness task. Once baseline visuospatial performance and 

associated motion sickness susceptibility is captured, participants will then enter the 

‘training phase’ where, over the next 14-days, participants will train their visuospatial 

skills using the training pack developed. After the 14-day training period, participants 

will return and researchers will assess their visuospatial performance once again to see 

if training has had an effect. Immediately after this assessment, participants will take 

part in an identical driving task and their motion sickness state will be measured and 

compared to their baseline scores (before training). At no time were participants told 

that this training would reduce their motion sickness, the information sheets were 

kept vague so as to not influence any placebo affect. During both drives, participants 

wore the Empatica E4 wristband to collect physiological data for a later study. Figure 

44 below provides a visual representation for the methodology of this project 

 

 

 

 

 

 

Figure 44 User Trial Diagram 

6.3.3 PROCEDURE FOR PHASE 1- A SIMULATOR STUDY 

To assess the effectiveness of visuospatial training on reducing motion sickness in a 

simulator (therefore simulation sickness) the participants who took part in the 

previous user trial assessing human performance were re-recruited (as per Project A 

and Submission 3). Those who reported the highest motion sickness scores were 

contacted to take part in this next user trial, where there was no benefit in reducing 

motion sickness for those who did not get motion sick. Participants were ranked in 

accordance to their SSQ score and 20 of those with the highest scores were contacted. 

Using the same participants was beneficial as baseline data on their motion sickness 

scores for the driving scenario had already been captured previously, so there was no 
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need for two exposures. It was also considered an ethical way of running this trial as 

participants will already be aware of the risks of taking part, so can make an informed 

choice if they want to take part in this follow up study. The second user trial would 

take place approximately 6-months after the human performance trial, therefore 

habituation to the simulator was not a factor. 

Participants were recruited to this user trial via email and the participants received an 

information leaflet about the study proposal. If participants agreed to take part, they 

were met at the University of Warwick (UoW) and were asked to complete a mental 

rotation test (MRT) to capture their baseline visuospatial performance. The MRT was 

originally developed by (Vandenberg & Kuse, 1978) but the recreated version by 

(Peters M. , et al., 1995) was used in this study, which included CAD (Computer Aided 

Design) images and were much easier to read than the original. Two tests were 

assembled: one to be given before the visuospatial training pack and one to be given 

after to capture the effect of the training. Upon meeting at the agreed timeslot, 

participants were asked to complete one MRT test, where they were given three 

minutes to complete the test in silence. As before, a score of ‘1’ was given only if they 

selected both answers correctly per question. Where two MRT tests are used, the 

order in which they are received (before or after training) was randomised. As baseline 

motion sickness (from the previous human performance trial) was already recorded for 

participants there was no need for a motion sickness exposure before training and 

data from the previous study was carried over.  

The participants were then given the visuospatial training folder and an explanation as 

to how to complete the folder was given. Participants went away and completed the 

training pack for 14-days where they received a few follow up emails during the 

training period to remind participants what day they should be on. After this 14-day 

training period, participants returned to the 3xD simulator and completed another 

MRT, which was in the same style as their pre-training MRT, but a different set of 

questions to remove any memory or learning effect. Participants then completed the 

same driving task as described in Project A (and Submission 3), following identical 

instructions introducing them to the vehicle, an identical route and in identical 

conditions (climate, traffic, route speed, lighting etc.). Participants were recruited to 

return as close as possible to the same time of day as when they completed the first 

simulator study. As before, this driving task took up to 30-minutes to complete. 

Motion sickness was measured by completing an SSQ (Kennedy, Norman, Berbaum, & 

Lilienthal, 1993) before and after the simulator exposure and through administering 

the once-per minute FMS (Keshavarz & Hecht , 2011) measure to track motion sickness 

throughout the exposure. As before, participants were made aware of all the risks of 

taking  part and were reminded they can end the driving at any time if they feel too 

motion sick. The researcher again would monitor participant wellbeing throughout the 
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study and if someone was getting notably more motion sick, they were asked to 

consider if they felt fit to continue or not. All participants were reminded that if they 

feel unwell, to stay and recover for as long as necessary and not to drive a car for at 

least 1 hour after the simulator exposure, and until they feel well enough to do so. 

From this experimental design, the data set collected included baseline motion 

sickness susceptibility (from the first study human performance study in Project A), 

baseline visuospatial ability (as assessed using the MRT), post-training visuospatial 

ability (as assessed using a second MRT) and post-training motion sickness (as 

measured in the second simulator exposure. To take part in this study, participants 

were given £40 in Amazon vouchers as a gesture of thanks for giving up their time to 

complete the 14-day training pack. Payment was given to participants mid-way 

through training so that there was no sense of payment being related to driving 

simulator performance. This study was given ethical approval by the Warwick BSREC 

with reference (REGO-2017-2090 AM01). 

6.3.4 PROCEDURE FOR PHASE 2- A ‘REAL-WORLD’ STUDY 

For Phase 2 of this study, the methodological approach was kept as similar as possible 

to that of the simulator-based study; however the main difference was the motion 

sickness exposure was an on-road scenario. For this study, participants would be 

driven around in a vehicle to measure the susceptibility to motion sickness in a car (car 

sickness) and it was further explored if increasing visuospatial skills (RQ1) could 

decrease motion sickness in the ‘real-world’ (RQ2). 

To complete this study, a new set of participants were used, who had not taken part in 

any previous trials as part of this EngD. JLR, as the sponsoring company of this project 

and as a stakeholder for the IP (intellectual property) which is created from this study, 

insisted that the study must be kept confidential and therefore only JLR staff can be 

used, who all have agreed to a JLR non-disclosure agreement. Considering this, 

practicality of this user trial was of importance, where participants needed to be 

accessible from a common location during office hours. Participants from the JLR 

Whitley site (Coventry, UK) were recruited for this user trial where recruitment emails 

indicated that we were particularly interested in gaining participants who suffer from 

motion sickness. It was decided that all trials would be completed in the mornings, so 

that if motion sickness was a factor, symptoms should subside before participants have 

to drive home in the evening. JLR Whitley site was chosen as this site consists of mostly 

business-related staff, therefore reducing the chance that visuospatial skills would be 

skewed by job (e.g., JLR for design engineers who might use CAD frequently). 

Participants were recruited via email using an internal JLR email list where those who 

were most susceptible to motion sickness were of most interest. For this trial, there 

were 20 testing days available (five working days per week, and a four week study) and 

with three timeslots for testing (9am-10am, 10am-11am, 11am-12noon), a total of 30 
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slots for user trials. It was decided that this trial would aim for 20 experimental 

participants who would receive training, and 10 participants to act as control group – 

who would not receive the training pack. JLR were in charge of recruitment, where 

access to internal email databases was restricted. The method of assigning participants 

to the control and experimental group was limited whereby the first 20 participants to 

take part formed the experimental group, and the final 10, the control group. This was 

decided purely for a practical reason where the sponsor wanted to ensure firstly there 

were enough experimental participants to collect data on. 

Participants will be assigned two 1-hour user trial timeslots spaced exactly 14 days 

apart, where the timeslot will be at the same time of day to ensure consistency for 

personal factors and road conditions (as much as possible). When participants were 

met for the first time they completed a demographics questionnaire and an MRT test. 

This MRT test is the same as used in Phase 1, where two tests were created and given 

to participants in a random order (one before training, one after). Once baseline 

visuospatial performance was measured participants were taken to the vehicle and 

taken on a ~30-minute drive around Coventry roads. Participants were to sit in the 

near-side rear seat of the 2018 Land Rover Range Rover Sport L494 fleet vehicle 

supplied by JLR. The same vehicle was used for all participants and temperature was 

maintained at a steady 21 degrees Celsius for all participants. The lead researcher sat 

in the front nearside seat and a trained JLR driver was driving the vehicle. No 

conversation unrelated to data collection was allowed between the researcher and 

participant. A mock-up photo of the user trial lay-out is shown below in  

 Figure 45: 

 

 

 

 

 

 

 

 

 

  Figure 45 On-Road Visuospatial User Trial 

The route taken was designed to take approximately 30-minutes and included a 

mixture of road types and speeds. Including country roads, rural and town roads as 

well as a short section on a dual carriageway. Participants were reminded they can end 
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the drive at any time if they feel motion sick, where multiple safe pull-over spots were 

identified throughout the route. A map of the test route is shown below in Figure 46. 

 

 

 

 

 

 

 

 

 

Figure 46 Route for On-Road Visuospatial Trial 

The JLR driver was trained on the route, and practiced it multiple times before the 

trials, to ensure driving style was as consistent as possible between drives. It was 

considered that between the first and second drives (spaced 14 days apart) that 

participants may act differently. Specifically, if motion sickness was experienced in the 

first drive participants may spend more time in the second drive looking out of the 

window in front and doing other self-preservation activities. Therefore, it was 

important that participant activity was controlled as much as practical so that the two 

driving exposures were as comparable as possible (mostly considering sensory 

conflict). A reading task was designed whereby, throughout the drive, text would 

appear on the head-rest-mounted screen in front of the participants for 30-seconds at 

a time. Participants would read through the text and then it would disappear for 30-

seconds before new text re-appeared and the cycle would continue throughout the 

drive. The reading tasks were taken from an adult learning website ( British Council, 

2019) and were written in basic English so comprehension for someone who has a full-

time job at JLR was not considered to be an issue. The blocks of text were randomised 

so no specific story was followed which may have resulted in an emotional response. 

Two reading tasks were created, one for the first drive, and one for the second. The 

order in which they were received was randomised between participants. The use of 

this reading task was not likely to affect subjective or physiological responses as is 

validated in a recent text by (Horrey, Lesch, Garabet, Simmonds, & Maikala, 2017). An 

image showing the participants’ view from inside the vehicle is shown below in Figure 

47: 
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Figure 47 View of the Reading Task 

Throughout the drive, the researcher measured motion sickness once per minute using 

the FMS method. Motion sickness was also assessed using the SSQ before and after 

the trial. This questionnaire was useful for making comparisons between the 

simulator-based trial and this on road trial. However, due to its simulator-focused 

design, the MSAQ was also used which is considered more appropriate for ‘real-world’ 

motion sickness. As there was a basic reading task being completed it was interesting 

also to collect some secondary data on the perceived workload of this task so the 

NASA TLX (Task Load Index) (NASA, 1986 ) was used after the drive to address the 

workload of reading whilst being driven around. The MSSQ (Golding J. F., 1988) was 

considered for participant recruitment, but there were limitations on what data could 

be collected before meeting the participant as recruitment was handled by JLR staff, so 

this was not used. 

After the first drive, the experimental participants were given the training folder (the 

contents of which have been previously explained) and the training was explained fully 

to each participant. The control group did not receive a training folder. After 14-days 

and when the training had been completed, participants returned for the second 

(post-training) exposure at the same time of day as their first trial. Comparative 

visuospatial skills were measured again using another MRT (for both control and 

experimental participants). After this, participants were taken on another drive, 

following an identical route to the first drive and maintaining the same driving style 

from the trained JLR driver. Participants completed another reading task throughout 

the drive although the text was different. Motion sickness was assessed using the FMS 



88 
 

throughout the drive and the SSQ, MSAQ and TLX were given at the end of the drive. 

No payment was given to participants for this user trial and the user trial was approved 

by the JLR Ethics Committee (reference 12323185).  

 

6.4 RESULTS 

 

6.4.1 PHASE 1 – A SIMULATOR STUDY 

All participants (n=20) completed the training tasks in their entirety and attended the 

simulator driving part of the trial. In total, there were 10 males and 10 females; ages 

were reported in discrete categories so no descriptives of age is possible. A total of 

seven participants ended the driving early on account of motion sickness (35%). All 

participants were able to complete the SSQ after the drive so data from all participants 

(n=20) was retained for analysis. People who dropped out of the driving task due to 

sickness are referred to as ‘dropouts’. 

Addressing RQ1 it was explored to see if the visuospatial training pack was successful 

in increasing visuospatial ability (as measured with the MRT). Some descriptive 

statistics of the Mental Rotation Test (MRT) scores before the training period (pre-

training MRT) and after the training period (post-training MRT) is presented below in 

Table 17: 

Table 17 Exploratory Analysis of MRT Scores 

 

The mean MRT score has increased (pre to post training) from 5.10 to 7.05, showing a 

mean average increase of 38.24%. A t-test revealed this increase in visuospatial ability 

before and after training to be statistically significant t(19)=-4.278, p<0.0001 thus 

answering RQ1.  

Previous literature identified an interesting gender effect with regards to visuospatial 

ability. The data collected here showed males performed significantly higher than 

females for their MRT baseline with an average male MRT score of 6.2 (SD=1.39) 

compared to females with an average score of 4.0 (SD=2.53). A one-way ANOVA  

identified this difference as significant where p<0.05 (F=5.76, p=0.027). After training 

 N Minimum Maximum Mean Std. Deviation 

Pre-Training MRT 
score 

20 1.00 9.00 5.1000 2.29186 

Post-Training MRT 
score 

20 1.00 12.00 7.0500 3.39466 
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males had an average score of 8.8 (SD=2.34) and females 5.3 (SD=3.47). This also proved 

to be statistically significant where p<0.05 (F=6.991, p=0.016).  

Looking then to motion sickness, first an exploratory analysis of SSQ data is presented 

below in Table 18, which includes the total SSQ score as well as the three SSQ 

subcategories where the change in mean score is presented as delta (Δ): 

 Table 18 Exploratory Analysis of SSQ Scores 

 

The data presented in Table 18,shows how total SSQ score for the group decreased 

from an average of 66.299 to 32.164, showing a 51.48% decrease across the group 

after the training period. A similar direction is seen for the subcategories where 

Nausea decreased by 40.36%, Oculomotor by 46.94% and Disorientation by 53.11%. 

These changes in motion sickness scores have been presented graphically below in 

Figure 48. For all results presented The notation * denotes a 95% confidence 

significant difference, and ** a 99% confidence and the error bars indicate the 

standard deviation.  

 

 

 

 

 

 

 

 

 

 

Figure 48 SSQ Scores, Before and After Visuospatial training 

SSQ Category 
Pre-Training, 
Mean 

Pre Training, 
SD 

Post-Training, 
Mean 

Post-Training 
SD Δ Mean 

Nausea 68.95 34.89 45.79 39.58 -23.16 

Oculomotor 45.87 17.99 28.43 18.54 -17.44 

Disorientation 77.96 25.30 45.24 31.57 -32.72 

Total 66.29 20.11 32.16 20.96 -34.135 
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To analyse if these changes in SSQ scores before and after training were statistically 

significant, paired T-tests were first performed (where the data met all the 

assumptions of the test) and the results are presented in Table 19 below: 

Table 19 Statistical Analysis of SSQ Scores 

 

As shown above, all reductions in motion sickness measured across four SSQ outputs 

were shown to be statistically significant where p<0.05 in all cases.  

Looking at participants individually, it is seen that three participants did not improve 

their visuospatial ability through training, whereas the rest of the group (n=17) did. 

Removing these three participants from the group, it is then shown that motion 

sickness, for those who improved their visuospatial ability, was reduced on average by 

58.02% in total SSQ score, 47.77% for Nausea, 46.16% for Oculomotor, and 46.94% for 

Disorientation. As before, all of these decreases were shown to be statistically 

significant when assessed using a paired T-Test where p<0.05 in all instances. Despite 

the small sample size (n=3), it was further shown that for these three participants who 

did not improve their visuospatial abilities, also showed no significant change in their 

SSQ scores after training (t(2)=-1.947, p=1.91) where p>0.05. 

To understand if there was a gender effect in motion sickness reduction the change in 

motion sickness scores between genders was examined. The Shapiro-Wilk Test resulted 

in a p value greater than 0.05 for both groups, and a homogeneity in variance test 

(Levine) resulted in an output of (F(1,18)=0.014, p=0.906) - showing the data was both 

normally distributed had homogeneous variances. Therefore, an ANOVA was used to 

explore if there was a gender effect in the extent to which total motion sickness was 

reduced after training. The ANOVA provided a results of (F=4.211, p=0.055) indicating 

that there was no gender effect where p>0.05. This showed both genders benefited to 

a comparable scale from the training. 

Further to the subjective motion sickness questionnaires, it was also interesting to 

explore participant dropouts – looking at motion sickness in a binary manner. Rate of 

participant dropouts before and after training is presented below in Figure 49. The 

notation * denotes a 95% confidence significant difference and the error bars indicate 

the standard deviation. 

 

SSQ Category (pre training vs. post 
training) df t Sig. (2-tailed) 

Nausea 19 2.175 0.043 

Oculomotor 19 2.597 0.018 

Disorientation 19 3.236 0.004 

Total 19 4.903 0.000 
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 Figure 49 Dropouts Due to Motion Sickness 

Total dropouts across the group decreased from 13 to 7 (a 46.2% decrease) after the 

training period. A paired T-test was used to examine the significance in observed 

reduction in propensity to drop out after training compared to before. This test 

showed this decrease to be significant where t(19)=-2.854, p=0.010. However, as this 

study (specifically RQ2) is interested in the effect of increased visuospatial skills on 

motion sickness, the three participants who did not increase their visuospatial scores 

can be removed from the group and it is then shown improving visuospatial ability was 

responsible for reducing dropouts by 60%, although given the small sample size 

statistical analysis is not reported on. 

 

6.4.2 PHASE 2 – A ‘REAL-WORLD STUDY 

Despite filling 29 (out of a possible 30) timeslots with 19 experimental participants and 

10 control participants, there were seven people who withdrew from the study due to 

work commitments. The total experimental group therefore consisted of 15 

participants, and a further 7 participants made up the control group. The experimental 

group consisted of 6 males (40%) and 9 females (60%) and the control group had 3 

males (~40%) and 4 females (~60%). The mean age for the experimental group was 

33.6 (SD=12.8) with the youngest participant being 20 and the oldest being 59. The 

mean age for the control group was 32.4 (SD=8.24) with the youngest participant being 

24 and the oldest being 45. One participant (in the experimental group) asked to end 

the driving task during their baseline exposure due to motion sickness. No participants 

asked to end the driving in the post-training exposure. Data was reserved for this one 

‘dropout’ for analysis.  

Looking first to assess visuospatial performance, an exploratory analysis is shown 

below: 
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Table 20 Exploratory Analysis of MRT scores 

 

 

 

 

 

 

The mean MRT score for the experimental group increased (pre vs. post training) from 

5.26 to 7.67, showing a mean average increase of 45.81% for the experimental group. 

For the control group (i.e., those who received no visuospatial training), average MRT 

score increased from 4.42 to 5.71, showing a mean average increase of 16.96%  To see 

if MRT score was significantly changed for the control and experimental groups a 

mixed ANOVA was performed. Box’s test for equality of covariance matrices (‘M test’), 

showed that with an M value of 4.163 and a p value of 0.321 we can reject the null 

hypothesis (with a 0.05 significance threshold) and assure reliability in a mixed ANOVA 

analysis where the data meets the assumption of a multivariate normal distribution. 

Using a mixed ANOVA with a Greenhouse-Geisser correction it was shown that there 

was a mean change in MRT scores before and after the intervention (F(1,19) = 11.203, 

p=0.003). Further, there was a significant difference between the groups (Experimental 

group vs control) after the intervention (F(1,19) = 19.628, p<0.001).  

A paired T-test confirms the experimental group significantly improved their scores, 

t(14)=-5.150, p<0.001, whereas the control group did not t(6)=-1.89, p=0.108. 

Considering any gender effect it was shown for the total sample (e.g, experimental and 

control participants) that males had a significantly higher MRT ability before training 

with a mean score of 6.38 (SD= 2.669) compared to females with a mean score of 4 

(SD=2.082) (F=5.210, p=0.034) where p<0.05. Experimental participants (i.e., those 

who underwent the training period were analysed again for a gender effect. Here, it 

was shown that with a mean male score of 10.50 (SD= 2.88) and mean female score of 

5.77 (SD= 2.22) there was a statistically significant difference between the genders  

(F=12.875, p=0.003) where the p value was <0.05 showing males improved their scores 

to a greater degree than females. 

As two MRT tests were used, one pre-training and one post-training (given randomly 

between participants) it was explored to see if the tests were of the same difficulty. A 

paired t-test revealed no significant difference between scores for the two tests (MRT1 

vs MRT2) where t(16)=0.566, p=0.579 

 Group Mean Std. Deviation N 

Pre training MRT score Experimental  5.27 2.789 15 

control  4.00 1.673 6 

Total 4.90 2.548 21 

Post training MRT score Experimental  7.6667 3.39467 15 

control  5.5000 1.51658 6 

Total 7.0476 3.10606 21 
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Looking at the motion sickness data for the experimental group, Table 21 below 

provides an exploratory analysis for both the SSQ and MSAQ data including all 

subcategories.   

Table 21 Exploratory Analysis of Motion Sickness for the Experimental Group 

 

Table 21 shows an average decrease in total MSAQ scores from 36.85 to 17.73, 

showing a 51.89% decrease. A similar direction is seen within the MSAQ subcategories 

with gastrointestinal decreasing by 54.71%, central decreasing by 49.47%, peripheral 

decreasing by 42.66% and sopite-related decreasing by 43.37%.  For the SSQ, total 

scores were decreased from 46.87 to 19.45, showing a 58.50% decrease. For the 

subcategories of the SSQ, Nausea decreased by 68.08%, oculomotor decreased by 

41.97% and disorientation decreased by 56.89%. 

Presenting this graphically,  

 

Figure 50 below shows the decrease in motion sickness scores for the experimental 

group. For all results presented error bars indicate the standard deviation. 

 

 

 

 

 

 

Motion Sickness 
category 

Pre-Training 
Mean 

Pre-Training    
SD 

Post-Training 
Mean 

Post-Training      
SD Δ Mean 

MSAQ 
Gastrointestinal  

49.07 28.28 22.22 7.57 
-26.85 

MSAQ Central 35.55 27.15 17.96 9.67 -17.59 

MSAQ Peripheral 34.81 25.76 13.33 3.37 -21.48 

MSAQ  Sopite-
Related 

36.66 18.46 20.74 9.08 
-15.93 

MSAQ Total 36.85 21.10 17.73 6.08 -19.12 

SSQ Nausea 59.78 29.39 19.08 14.86 -40.70 

SSQ Oculomotor 40.93 23.41 23.75 16.91 -17.18 

SSQ Disorientation 68.67 66.85 29.60 24.60 -38.98 

SSQ Total 46.87 27.80 19.45 12.42 -27.42 
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Figure 50 Motion Sickness Scores Before and After Training (Experimental Group) 

 

A paired T-test was performed for both SSQ and MSAQ  scores for the experimental 

group, including total scores and all subcategories, the results of which are presented 

below in Table 22: 

Table 22 Statistical Results of Pre and Post Training for Experimental Group 

 

As seen in Table 22, all decreases in MSAQ and SSQ scores were statistically significant 

where p<0.05 in all cases.  

Motion Sickness (experimental group) df t Sig. (2-tailed) 

MSAQ Gastrointestinal 14 4.370 0.001 

MSAQ Central 14 2.841 0.013 

MSAQ Peripheral 14 3.622 0.003 

MSAQ  Sopite-Related 14 4.181 0.001 

MSAQ Total 14 4.342 0.001 

SSQ Nausea 14 5.924 0.000 

SSQ Oculomotor 14 3.956 0.001 

SSQ Disorientation 14 2.866 0.012 

SSQ Total 14 5.456 0.000 
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Again, to see if there was a gender effect in motion sickness reduction, the change in 

motion sickness scores between genders was examined for the experimental group. The 

Shapiro-Wilk Test resulted in a p value greater than 0.05 for both groups (p=0.714 for 

females and p=0.238 for males), and a homogeneity in variance test (Levine) resulted in 

an output of (F(1,13)=0.066, p=0.802) - showing the data was both normally distributed 

had homogeneous variances. Therefore, an ANOVA was used to explore if there was a 

gender effect in the extent to which total SSQ motion sickness was reduced after 

training. The ANOVA provided a results of (F=12.875, p=0.003) indicating that there was 

a gender effect where p<0.05. This showed females had a statically greater reduction in 

motion sickness compared to males where average reduction in scores for females was 

-21.57 (SD=21.32) and for males, -13.29 (SD=21.97). 

Looking now to the control group (n=7) for any changes in motion sickness, an 

exploratory analysis of their data is presented below in Table 23: 

Table 23 Exploratory Analysis of Motion Sickness for the Control Group 

For the control group, mean total MSAQ score increased by 11.98% where 

gastrointestinal increased by 44.11%, central decreased by 7.69%, peripheral 

decreased by 18.18% and sopite-related increased by 10.25%. For the SSQ, total score 

also increased, this time by 3.70%, where the subcategories of nausea decreased by -

6.66%, oculomotor increased by 4.44% and disorientation increased by 29.16%. 

Presenting this data graphically, Figure 51 shows the scores for all categories of the 

SSQ and MSAQ for the control group.  For all results presented the error bars indicate 

the standard deviation. 

 

 

Motion Sickness 
category 

Pre-Training 
Mean 

Pre-Training    
SD 

Post-Training 
Mean 

Post-Training      
SD 

Δ 
Mean 

MSAQ 
Gastrointestinal  

40.476 17.336 58.333 48.723 17.857 

MSAQ Central 30.952 15.991 28.571 15.274 -2.381 

MSAQ Peripheral 29.100 22.673 23.809 14.480 -5.291 

MSAQ  Sopite-
Related 

30.952 16.544 34.127 20.012 3.174 

MSAQ Total 31.051 13.553 34.722 20.230 3.670 

SSQ Nausea 61.328 29.070 57.240 25.240 -4.088 

SSQ Oculomotor 48.728 37.354 50.894 30.544 2.165 

SSQ Disorientation 47.725 33.961 61.645 46.763 13.920 

SSQ Total 43.277 25.444 44.880 23.752 1.603 
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Figure 51 Motion Sickness Scores Before and After Training (Control Group) 

Looking for any significance between the changes seen above in  

Figure 51, paired T-tests were performed for each category, the results are presented 

below: 

Table 24 Statistical Results of Motion Sickness Change for Experimental Group 

 

Table 24 shows that there was no significant change for any motion sickness score for 

the control group – in either the SSQ or MSAQ where p>0.05 in all cases. 

Motion Sickness (Control group) df t Sig. (2-tailed) 

MSAQ Gastrointestinal  6 -1.158 0.291 

MSAQ Central 6 0.679 0.522 

MSAQ Peripheral 6 0.909 0.398 

MSAQ  Sopite-Related 6 -1.220 0.268 

MSAQ Total 6 -0.997 0.357 

SSQ Nausea 6 0.750 0.482 

SSQ Oculomotor 6 -0.603 0.569 

SSQ Disorientation 6 -1.871 0.111 

SSQ Total 6 -0.549 0.603 
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Group data has been individually analysed (e.g., control and experimental groups are 

analysed separately). A mixed ANOVA has also been conducted with group 

(control/experimental) as the between groups variable and motion sickness (pre and 

post) as the within groups variables. The SSQ and MSAQ (totals) did violate the 

assumptions of this test where the null hypothesis of Box’s test for equality of 

covariance matrices was accepted at a 95% confidence level where (M=11.107, 

p=0.023) for the SSQ and (M=27.442, p<0.001) for MSAQ. However, given the uneven 

groups it is understood that the M Test is not necessarily robust, so this is ignored. It 

was shown that SSQ total was significantly reduced between exposures (F(1,20) = 

11.23, p=0.003) where p<0.05. Further, there was a significant difference between the 

control and experimental group for SSQ (pre vs post exposure) (F1,20) = 14.203, 

p=0.001. There was a strong and significant interaction observed (F(1,20) = 14.203, 

p=0.001)  Observing the estimated marginal means output presented in Figure 52 

below, it is clear that the experimental group significantly reduced their scores where 

the control group did not. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52 Estimated Marginal Means for Pre and Post SSQ Score Control Vs Experimental  

Error Bars: 95% CI 

Looking also at the MSAQ total, there was a significant change observed within the 

main effect of  MSAQ scores between exposures (F(1,20) = 4.908, p=0.039) where 

p<0.05. Further, there was a significant difference between the control and 

experimental group for MSAQ (pre vs post exposure) (F1,20) = 10.679, p=0.004. There 

was also a strong and significant interaction effect observed (F(1,20) = 10.679, 

p=0.004) Observing the estimated marginal means output presented in  

Figure 53 below, it is clear that the experimental group significantly reduced their 

scores where the control group did not. 
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Figure 53 Estimated Marginal Means for Pre and Post MSAQ Score Control Vs Experimental  

Error Bars: 95% CI 

Finally, it is also possible to explore the secondary data looking at workload of the 

reading task using the TLX (non-pairwise) – commonly referred to as Raw TLX or ‘RTLX’. 

For the experimental group RTLX score decreased from 33.80 to 24.40 showing a 

decrease of 27.8%. This decrease was proven to be statistically significant where 

t(14)2.847, p<0.05. For the control group, RTLX increased from 37.26 to 40.00, a 

difference of 7.35%. This increase was not significant however where t(6)-0.961, 

p=0.374. These scores are shown below in Figure 54 for both the control and 

experimental groups:   

 

 

 

 

 

 

 

 

Figure 54 RTLX Scores for the Control and Experimental Groups 

Rejecting the null hypothesis of Box’s test for equality of covariance matrices where 

(M=5.034, p>0.05) it was possible to conduct a mixed ANOVA comparing change in 

RTLX (pre vs post) between the two groups. This test revealed at a group level there 

was no significant change in RTLX scores (F(1,19) = 1.693, p=0.209). However, 

0

10

20

30

40

50

60

Experemental Group Control Group

R
T
L
X
 S

c
o
re

Groups

Raw Task Load Index (RTLX) Scores

Pre-training Post-training

* 

Group 



99 
 

contrasting the changes experienced within each group (control vs experimental) a 

difference was observed (F(1,19) = 5.616, p=0.029) where p<0.05. There was also a 

significant interaction effect observed (F(1,19) = 19.000, p=0.029)  The estimated 

marginal means graph below indicates how the aforementioned reduction in RTLX for 

the experimental group was significantly different to the control group: 

 

 

 

 

 

 

 

 

 

 

 

Figure 55 Estimated Marginal Means for Pre and Post RTLX Score Control Vs Experimental 

As there were two reading tasks used, and given randomly between drive 1 and drive 2 

between participants, a test to see if reading task influenced the RTLX score was 

carried out, to make sure there was no bias in the reading tasks. A paired T-Test 

showed there was no significant difference between RLTX scores for the two reading 

tasks t(21)=1.123, p=0.283. 

 

6.5 DISCUSSION 

 

This project looked to address two research questions: 

RQ1 - Is it possible to improve visuospatial ability through non-invasive training tasks?  

RQ2 - Does increasing visuospatial ability decrease motion sickness susceptibility? 

To address these two research questions a two-part user trial was devised including 

both simulator-based, and on-road experimentation. The motion sickness being 

measured in the simulator is often referred to as ‘simulation sickness’ whereas for the 

on-road study it is commonly referred to as ‘car sickness’ for the on-road trial. 

However, as the term ‘motion sickness’ is an umbrella term capturing all forms of 
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motion sicknesses it can be summarised as such. Each research question can be 

discussed before conclusions bring the project together. 

6.5.1 RQ1 - IS IT POSSIBLE TO IMPROVE VISUOSPATIAL ABILITY THROUGH 

NON-INVASIVE TRAINING TASKS? 

Discussing first RQ1, which looked to validate a method for training visuospatial skills 

using a pen and paper training folder, it was shown in both user trials that this pack 

was successful across the groups. There was no literature or previously proven method 

for training visuospatial skills, therefore this pack was devised to facilitate practice with 

various visuospatial tests in hope that this would train participant skill. In Phase 1, it 

was shown how average visuospatial ability significantly increased by 38.24% across 

the group. In the on-road study it was shown that the training pack significantly 

increased visuospatial skill by 45.81%. As these two groups used the same training 

pack, it is possible to combine these two groups (giving a sample size of 35) to provide 

an overall average visuospatial score increase of 42.03% after training.   

As a validation to this training pack being the only independent variable, a control 

group was used in the on-road study who did not complete the training pack over the 

14 days. Strictly speaking, this control group was not a true control, where they did not 

complete any ‘training task’ and thus had a different experience to the experimental 

group. This group may be better considered as an ‘untrained group’. However, the 

term ‘control group’ is used as an easily understood phrase. It was shown that for this 

control group, there was no significant change in their MRT scores, thus it is believed 

that this training pack is a successful way of training visuospatial ability. It is not known 

if this is the most effective method of training, and it is not known what specific tests 

contributed the most, and/or what training time, exposure frequency is optimal. This 

project did not set out to create the best training pack, but rather see if it was possible 

to train these skills so that later research can refine the training.  

In the simulator, three people did not improve their score and in the on-road trial, one 

person in the experimental group did not improve their visuospatial score. As there 

was no way to accurately control how people were training, there are three initially 

considered reasons why no change in visuospatial score was noticed. Firstly, it is 

possible that there was just no effect where these people did train as recommended, 

but this style of training was not successful for these people. Second, participants may 

not have trained as recommended and perhaps rushed the training without engaging 

with it properly. A third, perhaps more speculative reason, where all four participants 

who did not increase their scores were female it is possible that hormonal fluctuations 

had an effect on their ability, where it is known that natural hormonal changes 

throughout the menstrual cycle does have a significant effect on MRT score (Silverman 

& Phillips, 1993). Menstruation was not a variable that could be controlled, and this is 

highlighted as a possible drawback of this experiment. 
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6.5.2 RQ2 - DOES INCREASING VISUOSPATIAL ABILITY DECREASE MOTION 

SICKNESS SUSCEPTIBILITY? 

With good evidence that the training pack increased visuospatial performance, RQ2 

could then be addressed and the data was examined to see if this visuospatial 

performance was effective in reducing motion sickness susceptibility. For the simulator 

study, there are three methods of measuring the impact. It was shown that, for those 

who improved their visuospatial ability, participant dropouts due to motion sickness 

reduced by 60%, average, SSQ total reduced by 58.02% and drive time for those who 

did still drop out (n=4) increased by 104.87%. All of these changes were statistically 

significant. There was no control group for this study as simulator time was strictly 

limited and there was only time for 20 participants, it was decided to retain the entire 

sample as experimental where removing enough for a meaningful control may have 

impacted the validity of this first study due to limited sample sizes. However, three 

participants did not improve visuospatial skills. Despite this being a very low sample 

(n=3) it is interesting, on an anecdotal level to see that there was no significant change 

in their collective SSQ scores before and after the training period. Their drive time did 

not change significantly and there was also no change in their propensity to drop out 

(where all three dropped out both before and after the training period). No meaningful 

conclusions can be drawn from this due to its limited sample size, but does bode well 

for the validity of the relationship between increased visuospatial skills and reduced 

motion sickness where this is further evidenced. 

Looking to the on-road study, it is positive to see a similar direction and scale of results 

for on-road motion sickness, or car sickness. It was shown that for the experimental 

group, average total SSQ decreased by 58.50% and average MSAQ decreased by 

51.89%. Again, these reductions were proven to be statistically significant. Both of 

these scores are a very sizable reduction in motion sickness scores. Anecdotally, one 

participant dropped out of the first driving scenario (pre training) 13 minutes into the 

drive giving an FMS score of 17 out of 20. This same participant, after training, gave a 

score of 5 out of 20 at the same minute 13, and went on to complete the entire drive 

with a maximum FMS score of only 7 out of 20 for the entire post-training drive. 

As this on-road study benefitted from having a control group it was positive to see that 

both MSAQ and SSQ did not significantly change between the two exposures for those 

with no visuospatial training. This, matched with the finding that their visuospatial 

skills remained the same helps validate that this visuospatial training was indeed the 

only factor which influenced the reduction in motion sickness for the experimental 

participants.   

As well as motion sickness, this on road trial was able to collect data on the workload 

for completing the reading task. Using the RTLX it was shown that workload 

significantly decreased by 27.8% for the experimental group, but had no significant 

change for the control group. This was a very basic reading task – designed for adults 
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learning to read, and, as there was no goal for the readers it was not expected to see 

such a large decrease in perceived workload. However, this change was seen, and adds 

to the literature previously discussed where reducing motion sickness was shown to 

increase job performance (Stroud, Harm, & Klaus , 2005). There were no measures of 

how successful participants were at completing the reading task, as this was not the 

primary aim of the study, rather, workload was an easy secondary data set to capture 

with minimal interruption to the primary research questions. Support for the RTLX is 

given by (Byers, Bittner, & Hill, 1989), who show that the pairwise comparison (as is 

needed for the standard TLX calculation) is not needed and further validates the 

methodology of this analysis.  

The results showing decreased motion sickness leads to decreased workload further 

builds on the findings within Project A, to show how motion sickness does have an 

impact on human performance. Linking this very basic finding back to automated 

vehicle productivity, where reading is a known desired use case for automated vehicles 

(State Farm, 2016), this work evidences the importance for motion sickness 

management, where motion sickness will likely impact productivity.  

Considering the effect of gender again, it was shown in the simulator experiment that 

males and females benefited equally from statistically comparable reductions 

(considering scale) in motion sickness reduction. However, the on-road experiment 

identified that males reduced their sickness more so than their female counterparts, 

on average. This mixed result makes it difficult to conclude on the exact gender effect 

of this motion sickness management method and more data would be required to 

answer this question with controlling for the menstrual cycle advised for further study.  

6.5.3 OVERALL DISCUSSION 

Firstly, to discuss the validity of the findings, the first concern with this study was in 

ensuring that the habituation to the task from the first exposure would not impact the 

second exposure. The literature discussed indicated that anything over one week 

should be sufficient to reduce the chance of repeat exposures (Dunlap, 2000). Further 

a leading academic in the field of motion sickness was also consulted who agreed that 

14-days was sufficient to ensure that repeat exposures should not have any effect 

(Diels C. , 2018). In the simulator study, actual time between the first exposure (as 

discussed in Project A) and the second exposure to the driving task was 6 months, so 

this certainly would not be an issue. For the on-road study, the lack of change in the 

sickness scores for the control group confirmed that there was no habituation to the 

first exposure. Controlling the two exposures to ensure they were as similar as possible 

was straightforward in the simulator, where all factors (including, but not limited to, 

climate, traffic, route, vehicle etc.) were controllable and maintained the same 

between exposures. Driving style including speed could be a factor for motion sickness 

also, where self-regulation of driving could have been a factor. In the simulator study, 
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the six month gap between exposures is likely to be of benefit where participants were 

not freshly practiced in operating the simulator so they could not easily employ self-

help measures which may have skewed results for the second exposure. Secondly, 

speed limit signs were placed very frequently and participants were under strict 

instruction to adhere to these speeds as close as possible throughout both exposures, 

so it is thought that driving style was as similar as reasonably possible to control 

between the two exposures. Also, the times of the two exposures were kept as close 

to the same time of day as possible.  

For the on-road trial, the 14-day gap in between the two exposures was seen to be 

effective in removing any habituation where the control group showed no significant 

change in motion sickness scores. The driver was a JLR trained driver and was 

conscious to drive in a comparable manner throughout all drives, they were not aware 

of who was a control participant or an experimental participant. The lead researcher 

who was in the vehicle throughout all drives was also conscious of the driving style and 

despite (subjectively) monitoring for consistency did not need to advise the driver at 

any time as the driving style was considered to be very consistent throughout all 

drives. Traffic conditions were harder to control, however the route was checked with 

the Highways Department to ensure no road works were planned at any time during 

the study (which they were not). The time of day that participants completed the study 

was also kept the same between exposures, ensuring that routine traffic at specific 

times was going to be the same. These external variables are a limitation of any on-

road study, but in this trial, there were no significant timing deviances between drives.  

The only other significant factor which was uncontrolled was female menstruation. It is 

known that hormone fluctuations throughout the menstrual cycle affect both 

visuospatial skills (Silverman & Phillips, 1993) and motion sickness (Hausmann, 

Slabberkoorn, Van Goozen, Cohen-Kettenis, & Gunturkun, 2000). Unfortunately this 

was not possible to control or measure for this user trial. Succeeding in reducing 

motion sickness despite this, provides a more realistic use-case for the concept of 

visuospatial training. 

Overall, the methodology of this two part study was thought to be very effective in 

isolating visuospatial training as the only variable which had changed between the two 

exposures. The scale of the impact of this study was not of great consequence as a first 

of its kind study to explore the relationship between visuospatial skills and motion 

sickness. However, it was of benefit to see this effect to be very strong, and this 

certainly adds to the justification for further experimentation. Specifically, this training 

method has a lot of scope for further development. Further research should look at 

the most effective training tasks, the optimal training time and frequency and, other 

methods (other than pen and paper) through which training can be possible. Further, 

the long-term effect of this reduced susceptibility is not known and should be further 

researched. 
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The exact psychophysiological mechanism through which motion sickness is affected 

through this visuospatial training is as yet unknown. This research represents the first 

time that this link has been identified and explored with data. Upon initial 

consideration, it is perceivable that the cognitive ability to understand/ comprehend/ 

process motion aids in the ability to sub-consciously process the moving environment 

– overcoming sensory conflict, the sense of ‘lack of control’. This concept of pre-

conditioning is supported in the literature discussing the working memory model the 

‘visuospatial sketchpad’. This model is concerned with the retention of object and 

spatial information (Buchsbaum & D'Esposito, 2008), and it is considered that the 

training regime improved skills within this ‘visuospatial sketchpad’ as a collective of 

working memory skills. This improvement in working memory skills within this model 

linked strongly with orientation and movement may logically be of benefit when trying 

to comprehend and subconsciously resolve motions (actual and perceived). 

Increased visual dependence is observed in individuals who have less ‘confidence’ in 

vestibular or somatosensory functions (i.e., a decreased dependence) and rely more on 

visual cues for information – see (Agarwal, et al., 2011). Research linking visual 

dependency to motion sickness is sparse. Looking at one paper however, researchers 

observed that participants who were more susceptible to motion sickness also were 

more affected by a visual motion stimuli (Yokota, Aoki, Mizuta, Ito, & Isu, 2005)  – i.e., 

had an increased visual dependence. It is conceivable therefore to consider that 

through reducing visual dependence (though, say, training visuospatial skill to enhance 

somatosensory dependence) you may be able to reduce susceptibility to motion 

sickness. Linking this correlation of visual dependency and motion sickness to training 

previous literature has discussed how repeat visual motion stimuli can reduce visual 

dependence and manage (somewhat) postural sway (Pavlou, et al., 2011). Although 

there is recent agreement that postural sway is not a cause of motion sickness, the link 

between the two is certainly established and motion sickness is understood to 

commonly proceed postural sway effects (Stoffregen, Hettinger, Hass, Roe, & Smart, 

2000). 

It is possible this enhanced ability to resolve motions is linked to the habituation effect, 

whereby repeat exposures to a motion sickness-inducing, or spatiality-challenging task 

can reduce the susceptibility to motion sickness through ‘habituation’ - see (Wood C. 

D., et al., 1994). This supports the idea of the visuospatial sketchpad as a working 

memory function for the comprehension and therefore processing of motion. If this 

affect is linked to habituation and working memory, the length of effect time before 

reduced susceptibility to motion sickness is present may be linked to a similar period 

as habituation or working memory skill retention.  

The impact of this method for reducing motion sickness by training visuospatial skills is 

considered to be very impactful for JLR, the automotive industry and the field of 

motion sickness as a whole.  Considering the automotive industry, many current 
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recommendations for reducing motion sickness in future vehicles, as previously 

discussed, are limited by specific use cases. For example, many require the user to be 

looking at an HMI screen, some require the user to wear various wearables throughout 

a journey, and some require fundamental changes in a vehicles design (often referred 

to as body in white). All of the previous recommendations are useful and valid, 

however, the method presented in this project, is thought to be independent of all 

these limiting factors and is a method to reduce susceptibility to motion sickness 

across any use case, vehicle, or situation.  

There are many benefits this new finding can have for the automotive industry. With 

the assumption that this effect can be translated into a refined training tool, it may be 

useful to help reduce simulator dropouts in future research as well as ensure 

transferability of simulator data is improved where the impact of motion sickness on 

human performance can be reduced. Considering real-world applications, many people 

want to use automated vehicles to complete entertainment and productivity based 

tasks (such as reading, watching films, working etc.) which have previously been 

identified as motion sickness-inducing tasks. With a method of reducing motion 

sickness susceptibility it is possible to improve automated vehicle users ability to 

complete these tasks comfortably. The exact scale to which this method can reduce 

motion sickness is as yet unknown, thus the full potential is not possible to comment 

on. As knowledge within the field progresses it is hoped that this training tool can be 

refined to be more effective than it has already proven to be. 

There also is no reason to believe this effect would not be transferable to other motion 

sickness states where the utility of this technique has already been shown to work in a 

simulated environment (with no efferent motion) and an on-road environment (with 

limited afferent motion cues). The impact of increasing visuospatial skills could indeed 

be useful for reducing seasickness, VR sickness or airsickness. Although there is no data 

to support this claim, it is recommended that the transferability of this relationship 

should be further explored. This finding could have a great impact on other areas 

where motion sickness is an issue and this method has the potential to significantly 

benefit multiple fields. For example, studies have previously tried to improve job 

performance through reducing motion sickness susceptibility, for example, a military 

tank simulator training experiment showed how simulation sickness degraded training 

effectiveness (Lampton, Kraemer, Kolasinski, & Knerr, 1995). Various other projects, 

including Project A of this Innovation Report, have discussed the impact motion 

sickness has on human performance – for example (Bos, et al., 2008). It is possible that 

this knowledge about how to reduce motion sickness susceptibility can benefit many 

sectors where it is known that visuospatial training is useful for both simulator and 

real-world motion sickness. Such industries that could benefit include military 

simulator training, sea-sickness in navy staff, motion sickness for the tourist industry 

(e.g., seasickness on cruise ships, airsickness on aeroplanes etc.). The data presented 
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as part of this research supports the effectiveness of this training for both males and 

females. It is therefore conceivable that this method may help improve inclusivity in 

fields where motion sickness is a limiting factor for females – who, on average, are 

more susceptible to motion sickness than males.   

As a final note on this project, and re-visiting the subject of transferability between 

simulator and real-world experimentation, this user trial evidences that the effect 

observed in the simulator was similar to that which was observed in the real-world. 

Direct comparison of the two motion sickness reductions is not possible, where the 

route design and task (i.e., simulator participants ‘drove’ the vehicle, and on-road 

participants sat as occupants) are not comparable. However, now it is known that this 

effect is useful for both simulators and real-world it is possible to recommend that 

future research to refine this method can be conducted in a simulator. The simulator 

allows for greater repeatability where many conditions can be kept the same and is 

both quicker and easier to run trials without being limited by uncontrollable external 

variables such as traffic. 

Further discussions around gender differences and real-time motion sickness 

measured by the FMS for both the on-road and simulator study can be found in 

Submissions 6 and 7.  

 

6.6 CONCLUSION 

 

This project has validated a method, using a novel assemblage of pen and paper 

training tasks, to significantly improve visuospatial performance. It was shown that for 

the whole sample (n=35) visuospatial performance (as measured with the MRT) 

improved by 38.24%. A small control group (n=7) who received no training showed no 

significant change in their visuospatial skills, highlighting this training pack as a 

successful method of training visuospatial skills in a non-invasive manner. Further, 

through a two-phase user trial involving both simulator-based and on-road 

experimentation it has been proven that through increasing visuospatial performance 

it is possible to decrease motion sickness. Increasing visuospatial performance was 

shown to reduce motion sickness in a simulator by 58.02% with a further 60% 

reduction in simulator dropouts. This was also evidenced in an on-road trial where 

motion sickness was reduced by 57.19% after visuospatial training.  

Although the exact mechanisms for this effect are as yet unknown, the concepts of 

visual dependency and the visuospatial sketchpad have been discussed. It is 

considered that this training method may be linked to reducing ones visual 

dependency through the training of spatiality and orientation working memory skills. 

This training may mitigate sensory conflict by resolving visual conflicts (by way of 
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reducing dependency) giving way to greater comprehension of motion through the 

somatosensory system.   

The applications of this finding may be useful for reducing motion sickness for future 

simulator participants, reducing motion sickness in current vehicles, and reducing 

motion sickness in future automated vehicles. It is also shown, through some 

secondary data that this reduction in motion sickness was responsible for a significant 

reduction in workload (measured using the NASA RTLX) – adding to the strength of this 

method for enabling productivity in future automated vehicles. The applications of this 

method for reducing sickness go beyond just the automotive industry and may benefit 

various other industries and motion sickness applications, such as seasickness for navy 

staff and tourists or simulator sickness for military or professional training amongst 

others. The transferable nature of these findings evidenced through this two-part user 

trial show that simulator testing is a useful and valid way of continuing this further 

research where many more future questions have been highlighted.  

6.6.1 LIMITATIONS 

Within this research looking at visuospatial performance training, the majority of 

participants for the simulator trial were JLR staff or University staff/students and all of 

the participants for the second on-road study were JLR staff. Every effort was made to 

recruit from diverse occupations where both the university and JLR employ a wide 

range of job types. Although unmeasured, it is very likely that these groups were not 

representative of the general population where the group most likely had higher than 

average educational qualifications. This is worth considering when looking at the 

effectiveness of the training and working memory skills, where people with greater 

experience of further education may be more skilled at learning than others. It is 

conceivable that the effectiveness of the training pack may be greater for a group with 

more educational experience. This is not thought to affect the relationship observed 

between visuospatial performance and motion sickness, rather it could have skewed 

the results on the effectiveness of the training pack.  

The training packs were not marked so understanding of individual training task 

performance was not possible. Further, there was no practical method to ensure 

adherence to the training regime. Although the data provided strong evidence that 

these skills can be trained, it provides limited evidence for the scale of training 

effectiveness where there was no control over training regime effort. 

Finally, as mentioned within the body of the research, the ‘control’ group used was not 

a true control. A true control would have seen participants completing a training pack 

in the same routine of the experimental participants where this training pack would be 

for unrelated tasks -such as numeracy (for example). This would ensure that both 
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groups had a more similar experience, and ensure that there was no bias from 

participants and expectancy effect. 

 

6.7 WORKSHOP 

 

With the new knowledge created within this research project there were a few routes 

available for commercialisation, each would conclude on slightly different future 

research questions. There was, of course, a desire to make this research applicable to 

the sponsoring company, so it was decided that experts within JLR would be brought in 

to inform on the future of this research – giving a business case of direct benefit to the 

sponsor. A workshop was held to explore methods of exploitation of this knowledge, 

where through the creation of some project proposals, a research plan could be taken 

to higher management to fund a larger scale research project to develop this motion 

sickness management method. The workshop took place over one afternoon and a few 

‘design thinking’ ideation exercises were used to gather information about areas of 

exploitation for this new finding in the context of JLR. Firstly, a presentation was given 

about this project (both simulator and on-road trials) to get everyone to a common 

state of knowledge about this relationship between visuospatial skills and motion 

sickness.  After the presentation, three core areas of interest for further research were 

presented: 

1 – Understanding underlying effect 

2 – How can the effect be improved and developed 

3 – How can this knowledge be applied and what ‘product(s) or service(s)’ can be 

created. 

With these three categories as headings, groups were formed and research questions 

were identified which were deemed to be of importance to answer each  area. 

Alongside this, workshop participants had to rank each research question (high, 

medium or low) for the impact to JLR, as well as for the complexity of the research 

question (using the same scale). 

After research questions were established, everyone was asked to write down a 

company they perceive to be innovative and inspiring. The task then was to imagine 

that their chosen company has this new knowledge and to think, and write down how 

this company might turn it into a product. This was a useful way of enabling creativity 

in the ideas generation phase. 
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A product ideas matrix was then put up on the wall consisting of age categories on the 

X-axis (young, middle aged, retired) and use cases on the Y-axis (personal life, in car, 

other brand related ways). The task was then to think about what exploitation 

methods could be used for each category. When ideas started to slow, participants 

were stopped and they were told to imagine the IP now belonged to a theme park and 

now continue to place ideas on the board about how this theme park could exploit this 

knowledge – again to further enable creative thinking. A photo of some of the 

workshop participants filling in the ideas matrix is shown below in Figure 56 (where 

faces have been distorted to protect identities) 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 Workshop Participants Completing the Ideas Matrix 

The final task was for the groups to identify what they thought to be the best product 

or exploitation ideas, taking them off of the ideas matrix and back to the research 

questions where each product idea was assigned research questions which 

participants decided needed to be answered to achieve this goal. 

This workshop was very useful for quickly generating some concepts for further 

products to help the sponsoring company benefit from this new knowledge. The 

results from the workshop were given to the management staff for JLR as a business to 

decide how a new project could be developed based on the findings from this EngD 

research. A JLR team was formed to develop a mobile application for visuospatial 

training, the utility of which will be used by JLR to further answer some research 

questions highlighted and explore the idea of a possible future product. Some 

screenshots of this mobile app, which the information from this EngD project helped to 

develop is shown below: 
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Figure 57 JLR Motion Sickness App 

 

6.8 FUTURE RESEARCH 

 

In summary of the findings from this project, and on reflection of the workshop which 

was run to further explore areas of exploitation of this knowledge, many areas for 

further research questions were highlighted. These areas of research were considered 

the most important questions for the automotive industry and the sponsor of the 

project (using a quantitative assessment of importance as measured in the workshop): 

1. What are the psychophysiological underpinnings to this effect, through what 

mechanisms does visuospatial training reduce motion sickness susceptibility and how 

long does this effect last?  

2. To what extent is visual dependency related to visuospatial performance and are 

those with a greater visual dependency more prone to motion sickness?  

3. What are the most effective training tasks to use to reduce motion sickness, and 

what is the most effective medium to interact with the training ? 

4. What is the optimal training regime, considering length of training sessions, 

quantity/frequency of training sessions and reinforcement? 

5. How acceptable do people find it to train their visuospatial skills and are people 

willing to do these tasks to improve their motion sickness resilience? 
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7 UNDERSTANDING THE MEASUREMENT OF MOTION SICKNESS (PROJECT 
C)  

 

This project looked to explore how motion sickness may be tracked, measured or even 

perhaps predicted for ‘real-time’ automotive applications – although the scope 

allowed this project to consider motion sickness in a cross-industry manner. The initial 

consideration for a physiological project came from the literature discussed in 

Submission 2, where there was much discussion about the utility of various 

physiological measures on which to track motion sickness. JLR, as the sponsoring 

company proposed the use of an physiological monitoring system using just two 

physiological measures (electro dermal activity and skin temperature) to measure and 

give feedback on motion sickness in real-time. This project therefore set out to explore 

the feasibility of such physiological measures to measure real-time motion sickness 

onset (presented in full in Submission 7). It used the machine learning model 

developed in Submission 1 to propose useful data sources which may be used to 

accurately measure, and perhaps predict motion sickness onset in the future. The 

human factors approach to machine learning model has been published (Smyth, et al., 

2018) and the analysis of physiological data as an indicator for motion sickness has 

been submitted as a journal paper and is currently under review for publication. 

 

 

 

 

7.1 BACKGROUND 

Currently, the most accurate and useful methods for measuring real-time motion 

sickness onset is through the application of subjective questionnaires FMS (Keshavarz 

& Hecht , 2011) or MISC (Bos, MacKinnon, & Patterson, Motion Sickness Symptoms in 

a Ship Motion Simulator: Effects of Inside, Outside, and No View., 2005) – both of 

which require the subject to report their own subjective symptoms. These methods 

are useful for ‘lab-based’ research purposes where participants have the time and 

proclivity to respond to questioning. However, for commercial applications where it 

may, for example, be useful to measure motion sickness of a vehicle occupant, it 

would be advantageous to track motion sickness without requiring regular and in-

depth questionnaires. Being able to track motion sickness state may be beneficial for 

many reasons. For example, there are a few known ways to help mitigate motion 

sickness and if a vehicle can notice an occupant is getting motion sick, these mitigation 

strategies can be implemented. Example mitigation strategies have been previously 
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discussed in this Innovation Report and might include, changing the route to a less 

sickness-inducing route, providing airflow to the occupant, and encouraging eyes-on-

road to minimise sensory conflict amongst others. Having an objective measure of real-

time motion sickness would also be useful for the purposes of future motion sickness 

research.  

When this project began, JLR as the sponsor and case study of this EngD, were 

discussing the utility of physiological data for measuring motion sickness in user trials. 

Specifically they were keen to use the measures of skin temperature and electro 

dermal activity (EDA) to infer real-time motion sickness state for vehicle occupants and 

user trial participants. This was known as a challenging subject, with many discussions 

in the literature. This project therefore looked to see if these physiological measures 

alone were useful for measuring or even predicting real-time motion sickness state, 

and looked to advise on what data would be most useful for a future motion sickness 

monitoring system where the literature provided no definitive answers. 

 

7.2 INTRODUCTION 

 

The evolutionary theory of motion sickness (Treisman, 1977) argues that when a 

sensory conflict is taking place the body assumes a poison has been ingested and is 

responsible for the conflict in senses. This somewhat explains some of the common 

symptomology of motion sickness where people sweat (a response used to push toxins 

out through the skin) and core body temperature drops to preserve vital organs. It is 

therefore perhaps reasonable to presume that physiological measures may be a good 

indication of motion sickness onset.  

Looking at functions such as heart rate (and derivations) it has been concluded 

previously that there are no consistent agreement between heart rate measures and 

motion sickness state (Hu, Grant, Stern, & Koch, 1991). As an example, research has 

previously claimed to observe a correlation between heart rate and motion sickness 

(Cowings, Sutter, Toscano, Kamiya, & Naifeh, 1986), whereas others disagree, finding 

no correlation (Graybiel & Lackner, 1980). The lack of agreement has been 

documented well in a report by (Hu, Grant, Stern, & Koch, 1991). Although there is a 

great deal of contradictory literature, overall researchers tend to agree that heart rate 

(and derivations thereof) are not a useful indicator of motion sickness.  

 

Other research looking to measure motion sickness using physiological measures looks 

to skin sweat response – also referred to as Galvanic Skin Response (GSR) or Electro 

Dermal Activity (EDA). This, given the known response to motion sickness explained by 

the evolutionary hypothesis (Treisman, 1977), makes logical sense as an area to 

explore. Research in this field has previously found a link between those with a 
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naturally high sweat rate (volar sweating) and increased propensity to become motion 

sick (Parker, 1971). This effect was further discussed in an aviation study which 

correlated increased skin sweat response to higher motion sickness questionnaire 

scores, after a motion sickness exposure (Warwick-Evans, et al., 1987). However,  it 

was further explained how external variables are likely interfering with the data, where 

they found little support for the link between skin sweat response and single incidents 

of motion sickness. Another study claimed that phasic skin conductance was a useful 

indicator of motion sickness when all participants in the study had reached a similar 

level of subjective sickness (Golding J. , 1992). All these previous studies do show 

support for the relationship between motion sickness and skin sweat response.  

The second measure of interest in the literature is that of skin temperature. This 

measure is a logical area for exploration where the thermoregulatory response to 

motion sickness is relatively well understood and documented (Nobel, Tribukait, 

Mekjavic, & Eiken, 2012). There are fewer research projects looking at skin 

temperature as a measure of motion sickness, although one key text does summarise 

this measure as worthwhile pursuit (Nalivaiko, Rudd, & So, 2014). 

To date there has only been one published text looking at the ‘real-time’ measurement 

of subjective motion sickness analysis of associated skin response (Bertin, Collet, Espie, 

& Graf, 2005). The conclusion of this work agreed that motion sickness is related to 

skin conductance and skin temperature but concluded that the only ‘useful’ analysis of 

this data relies on post-hoc analysis (p287). This research required manipulation of the 

data based on the entire journey - involving minimum and maximum scores of the 

individuals as well as the group to normalise the data before processing. Further, there 

is discussion about the temporal nature of motion sickness onset where 

symptomology proceeds subjective discomfort, and the state of relaxation was 

concluded to be an effector, rather than motion sickness itself. 

Given this background literature the research question was therefore set: 

RQ1 - Is it possible to correlate motion sickness in real-time to electrodermal activity 

and skin temperature using non-invasive methods? 

The scope of this research question was specific to ‘non-invasive’ where the goal was 

to assess these measures for utility in a consumer application. With this in mind, the 

scope was set to exclude lab-based medical grade physiological equipment as well as 

equipment which required head-mounted equipment or electrolyte gel – which would 

be inconvenient for a consumer. Further, the importance of ‘real-time’ is emphasised 

where the motivation for measuring physiological states was to help predict and 

measure motion sickness in real-time for both user trials and vehicle features. The 

methodology must therefore reflect practical real-time analysis techniques.  
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7.3 METHOD  

 

To assess the relationship between real-time motion sickness and the physiological 

measures of EDA and skin temperature some original data was needed. The user trials 

discussed in this Innovation Report including the human performance simulator trial 

(Project A and Submission 3), the visuospatial training simulator study (Project B and 

Submission 5) and the visuospatial training on-road study (Project B, Submission 6) 

provided a good opportunity to collect physiological data. Throughout these studies, 

participants wore the Empatica E4 wristband (Empatica Inc. , 2016) which measured 

physiology in real-time. This wristband is a wireless wrist-mounted device, which 

requires no gel and can be worn comfortably without irritation. The E4 records EDA in 

the unit of micro-Siemens (μS) and skin temperature in the unit of degrees Celsius (°C) 

both at 4hz which provides 240 data points per minute. Throughout the user trials, 

participants also reported subjective motion sickness at a rate of once per minute 

using the FMS (Keshavarz & Hecht , 2011). This subjective real-time information was 

used to compare to the objective physiological data collected. Due to the nature of the 

user trials, every participant had a minimum of two minutes rest time whilst wearing 

the E4 and before the trial began where baseline ‘rest’ data was collected.  

Environmental conditions were kept as similar as possible throughout the studies 

where both simulator trials and on road trials had an average temperature of 21 

degrees Celsius maintained throughout and no windows were opened during the on 

road trials so airflow was not a factor.  

7.3.1 DATA ANALYSIS 

To analyse the data collected, three groups were established into which participants 

were categorised for analysis. These groups are described below in Table 23) 

Table 25 Groups for Physiology Analysis 

 

Group 1 (as presented in Table 23) contained 14 participants made up of seven males 

and seven females with mean age of 30 (SD=10.69). Seven of these participants ended 

the simulator driving task early due to severe motion sickness (one male and six 

females) However, the physiological data of these participants was retained for 

analysis, but trimmed up until the point in which they ended the driving scenario. The 

average drive time for Group 1 was 22 minutes, with the longest drive being 33 

Group Number Description Group Size 

1 Simulator study participants N=14 

2 On-road study participants, first exposure N=26 

3 On-road study participants, second exposure N=21 
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minutes. Due to these dropouts, the shortest drive was 8 minutes. This group contains 

participants from both the human performance simulator trial and the simulator-based 

visuospatial training trial, although participants only appear once in this data set. 

Group 2 contained 26 participants made up of 12 males and 14 females and the mean 

age of the group was 33.6 (SD=12.8). There were no dropouts in this group and the 

average drive time was 28 minutes with the longest drive being 31 minutes and the 

shortest being 27 minutes. Group 2 consisted of participants from the first on-road 

study as part of Project B’s visuospatial training research. 

Group 3 contained 21 participants made up of 10 males and 11 females with a mean 

age of 31.1 (SD=11.8). Again, there were no dropouts in this group and the average 

drive time was 28 minutes with the longest drive being 30 minutes and the shortest 

being 27 minutes. This group of participants contains the same participants as in Group 

2 however; this is their second exposure to the on-road driving task explained in 

Project B. There are fewer participants in Group 3 as some in Group 2 withdrew from 

the study before their second exposure due to work commitments.  

In total 1,603 minutes of motion sickness data was collected, which equated to 

384,720 measures of EDA, 384,720 measures of skin temperature and 1,603 measures 

of subjective motion sickness. Given the amount of data collected, (with physiological 

scores being captured at a rate of 4hz), the data was first processed to calculate the 

mean score for both physiological measures (individually) for the one minute leading 

up to the associated FMS score. For example, if the FMS score was given at minute 

two, the associated physiological data was calculated from taking the average of the 

measures recorded between minute one and minute two. This process provided each 

participant with a once-per-minute score of EDA and skin temperature to correlate to 

that minute’s subjective sickness score. Using each participants baseline scores, the 

delta (Δ) scores were then calculated using the same method as set out in this paper 

(Meehan, Insko, Mhitton, & Brooks, Jr, 2002) using the below formulas: 

Δ EDA minute x = EDA minute x – EDA baseline 

Δ Skin Temperature minute x = TEMP minute x – TEMP baseline 

To analyse the data, the main motivation for this research must be considered so that 

any conclusions made are practical considering the overall goal – understanding the 

utility of physiological data for real-time measure of motion sickness. Firstly, the term 

‘real time’ is often discussed within the literature with regards to physiological 

measurement. In many cases real-time is discussed as a matter of a few hundred 

milliseconds. However, considering subjective data is to be analysed at once every 60 

seconds, this is our threshold for ‘real-time’ analysis. This means that methods 

involving post-processing of data are not suitable for the scope of this project. The 

data needs to be analysable within a rolling 60 second timeframe to be considered 
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practical. The motivation for method selection was driven solely on the goal to 

understand if these physiological outputs are useful as real-time predictors/measures 

of motion sickness. Therefore, methods involving significant post-hoc analyses 

(including normalisation of data) were disregarded. Pearson’s correlations were to be 

the primary method for analysis of this collected data where this method is a practical 

method for determining real-time correlation without post-hoc data manipulation and 

can be done on a ‘rolling’ basis without requirements for a ‘complete’ data set.  

 

7.4 RESULTS 

 

Data was collected throughout all the user trials conducted in Projects A and B, 

however due to some technical issues with the device and the data collection method, 

some data was lost. Overall, data sets from 40 participants data was retained for 

analysis, where 21 of these participants completed repeat-measure trials so in total 61 

sets of data were collected.  

For Group 1, the average EDA during the rest period was 0.782μS, SD=1.063, which 

increased during the driving scenario to an average of 1.015μS, SD=1.531. The average 

skin temperature for the rest period was 32.644°C, SD=0.935, which decreased during 

the driving scenario to an average of 32.298°C, SD=1.528. 

For Group 2, the average EDA during the rest period was 0.669μS, SD=0.635, which 

increased during the driving scenario to an average of 1.092μS, SD=1.683. The average 

skin temperature for the rest period was 32.086°C, SD=0.559, which decreased during 

the driving scenario to an average of 31.925°C, SD=0.475. 

Finally, for Group 3 the average EDA during the rest period was 0.685μS, SD=0.262, 

which increased during the driving scenario to an average of 1.225μS, SD=0.043. The 

average skin temperature for the rest period was 32.368°C, SD=1.448, which 

decreased during the driving scenario to an average of 32.061°C, SD=0.431. 

To begin to explore the relationship between these three measures (subjective score, 

skin temperature and EDA)  

Figure 58 below presents the average EDA, skin temperature and FMS score for Group 

1 – simulator participants.  
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Figure 58 Electrodermal Activity (EDA), Skin Temperature and Subjective Motion Sickness (FMS) – 

Group 1 (simulator) 

Figure 59, below, combines all the data from the on-road participants (where the 

environment is the same) to present the data from the average EDA, skin temperature 

and FMS score for Group 2 – on-road participants (first exposure):  

 

 

 

 

 

 

 

Figure 59 Electrodermal Activity (EDA), Skin Temperature and Subjective Motion Sickness (FMS) – 

Group 2 -road) 

Looking at the graphs presented above in Figure 58 and Figure 59, there does appear 

to be some visual signs of a relationship between these variables at a group level, 

particularly when observing the timings of peaks and troughs. However, the error bars 

included (calculated from standard error) begin to highlight the degree of variance 

between each participant where there are substantial changes in the size of these 

error bars as the trials progress. The error bars appear much greater for the on-road 

trial presented in Figure 59 – perhaps due to the variance in environmental conditions 

that were tightly controlled in the simulator, but uncontrollable in the real world. 
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These graphs are looking at the groups as a whole, and do not consider any 

participants scoring or physiological response individually.  

To better understand if there is an underlying practical relationship between real-time 

motion sickness severity and the physiological measures of EDA and skin temperature 

at an individual level, the correlations between these measures were considered on an 

individual basis. To begin analysis, the data within three groups was first checked for 

normality using the Shapiro Wilk test which showed the data was not normally 

distributed in any group (where p<0.05 in all cases). Therefore the non-parametric 

Spearman's rank-order correlation was used to look for  the statistical relationship 

between subjective motion sickness (as measured using the FMS) and the  

physiological measures of EDA and skin temperature. The results of this analysis are 

presented below in Table 26. 

Table 26 Correlations of EDA and Skin Temperature (TEMP) Against Subjective Motion Sickness (FMS) 

  Group  Participant rs FMS vs. EDA rs FMS vs. TEMP 

Group 1 

 175 .815** 0.166 
 180 -.865** -.814** 
 195 0.066 0.238 
 237 .847** -.941** 
 388 0.145 0.084 
 489 0.232 .894** 
 549 -.647** -.603** 
 607 0.181 -.651** 
 633 -0.365 -0.079 
 731 -0.334 -0.115 
 784 -0.228 -.825** 
 846 .627** -.684** 
 950 .982** -0.746 
 968 0.353 -0.263 

 

 519 -0.516 -.491** 
 699 0.316 0.316 
 524 -.723** -0.267 
 856 -0.145 -0.082 
 394 .422* .398* 
 473 .563** .821** 
 57 -0.243 .460* 
 781 .609** .765** 
 447 0.051 -.579** 
 217 -.890** .939** 
 150 .529** .737** 
 766 0.003 -.514** 
 110 -0.078 0.284 
 956 .378* .683** 
 283 -.373* 0.115 
 580 .779** .841** 
 20 .459* .415* 
 476 .484** .436* 
 146 0.092 -0.276 
 480 0.216 .646** 
 322 .433* .427* 
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*=95%confidence rating 

Table 26 presents all of the individual correlations (Spearman’s rs ) between subjective 

motion sickness (FMS) and the physiological measures on a case-by-case basis. The 

notation of ** denotes significance at a 99% confidence rating and * denotes 

significance at a 95% confidence rating. The colour scheme of red, orange and green 

has been used to help identify the significant correlations, where green represents 

correlations that are significant with 99% confidence, orange with 95% confidence and 

red shows no significant correlation. Already there are many varying correlations here, 

with a mixture of significance values and lack of significance. To summarise the 

significant Spearman’s rs   correlations Table 27 has been created which presents the 

quantity of significant correlations (using both levels of significance) and totals for 

each. 

Table 27 Summary of Significant (99%), Significant (95%) and Non-Significant Correlations between 

Groups 1, 2 and 3 

 

 

 948 -.584** .768** 
 215 0.011 .667** 
 9 .831** .838** 
 810 -0.126 -0.277 
 177 .431* -.527** 

Group 3 

 519 -.775** -.796** 
 524 -0.007 -.747** 
 856 -0.144 0.176 
 394 0.187 0.302 
 473 -0.313 -0.205 
 57 -0.097 -0.179 
 781 0.857 0.000 
 217 .750** -.750** 
 766 0.132 -.499** 
 956 -0.064 0.187 
 283 .567** .645** 
 580 0.250 -0.036 
 20 0.257 .882** 
 476 0.054 .381* 
 146 .751** .633** 
 480 .810** .943** 
 322 0.133 0.285 
 948 .439* .428* 
 215 .581** -0.063 
 9 -0.383 -.762** 
 177 0.228 .526** 

 Group 1 Group 2 Group 3 Total 

  n % n % n % n % 

p>0.05 15 54% 18 35% 23 55% 56 46% 

p<0.05 (95%) 0 0% 11 21% 3 7% 14 11% 

p<0.01 (99%) 13 46% 23 44% 16 38% 52 43% 
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As shown in Table 27, over the entire sample of 122 correlations, 54% were shown to 

be significant (at either 99% or 95% confidence) where 46% were shown to not be 

significant. Looking at just the significant results, correlations ranged from +0.982 to -

0.865 for EDA and from +0.894 to -0.941 for skin temperature where positive one 

(+ve1) is a perfect negative correlation and negative one (-ve1) is a perfect negative 

correlation. There appears to be a great deal of variance between the scales and 

directions of these correlations so the histograms in Figure 60 and Figure 61 have been 

created below to give an indication of the variance of correlation values observed 

within the data set.  

 

 

 

 

 

 

 

Figure 60 Correlation Values for EDA vs FMS 

 

 

 

 

 

 

 

 

 

Figure 61 Correlation Values for Skin Temperature vs FMS 

The figures presented above provide a good visualisation of the range of correlations 

observed within this data set. This gives an indication of a lack of utility of these 

measures at an individual level, where one might expect to see leptokurtic or 

platykurtic distributions trending towards either a negative or positive correlation 
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direction if these measures were directly related to motion sickness in ‘real-time’. For 

the EDA vs FMS correlation, the distribution of the Pearson’s correlations is normally 

distributed as shown with the Shapiro-wilk test where p>0.05 at p=0.215. Temperature 

vs FMS was non-normally distributed where p<0.05.  

This research (considering its application and motivation of the sponsoring company) is 

not concerned with correlation at a group level, but rather at an individual level. To 

help illustrate the range of correlations at a group level further, graphs from four 

example participants (two with no motion sickness and two with motion sickness) have 

been presented below. These participants were chosen as they (in pairs) showed 

similar styles of motion sickness onset, where the first two had a very flat FMS profile, 

and the second two had quite a varied and high motion sickness experience. These 

examples further identify the complexity in deriving commonalities between individual 

and group analyses where the physiological measures appear erratic. 

 

 

 

 

 

 

 

 

Figure 62 Participant 801 (no motion sickness) 

 

 

 

 

 

 

 

 

Figure 64 Participant 699 (no motion sickness) 
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Figure 63 Participant 110 (varied motion sickness) 

 

 

 

 

 

 

 

 

Figure 64 Participant 956 (varied motion sickness) 

 

Moving back towards looking at these measures as a group, and away from individual 

scores an average correlation figure needed to be calculated. A common process for 

doing this involves transforming the data into a Fisher’s z score, calculating the 

average, and then transforming the data back. Another method involves averaging 

observed sample rs correlations (Alexander, Scozzaro, & Borodkin, 1989) which is 

thought to be a superior method (Alexander R. A., 1990). The process of this 

calculation is presented below: 

𝑟 ∗̅ =
∑(𝑛𝑖 − 1)

∑ 𝑛𝑖 − 𝑘
{𝑟𝑖 + [

𝑟𝑖(1 − 𝑟𝑖
2)

2(𝑛 − 3)
]} 
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Using knowledge presented by the original author on how this equation was derived 

author (Hotelling, 1953) it is possible to rearrange this equation slightly as in its current 

published form, it is easy to misinterpret. The revised formula used to calculate 𝑟 ∗̅ is 

presented below: 

𝑟 ∗̅ =

∑(𝑛𝑖 − 1) (𝑟𝑖 + [
𝑟𝑖(1 − 𝑟𝑖

2)
2(𝑛𝑖 − 3)

])

∑ 𝑛𝑖 − 𝑘
 

Using this re-ordered equation (adapted from (Alexander R. A., 1990)) the average 

correlation figures for each physiological measure and each group have been 

calculated and is presented below in Table 28:  

Table 28 Average Correlations for Groups 1, 2 and 3 

 

The strongest correlation given in the above table is rs-0.3 for Group 1 skin 

temperature vs FMS. This score of rs-0.3 is considered to be a very weak correlation, 

and this is perhaps no surprise when observing the range of correlation values as 

shown in the graphs for Group 1 skin temperature vs FMS. Overall, none of these 

correlations are deemed to be of any use, where these average correlations are all 

considered to be very weak.  The method used to calculate these averages is reported 

to be the most unbiased and useful method (Alexander R. A., 1990). However, the 

method using Fisher’s Z score is more commonly used where more recent research 

often uses this method (for example (Ghassan , Flordelis, & Tufvesson, 2017). Given 

this more recent support for this method, and considering the transferability of this 

project to future research, this Fisher’s Z method was also used to re-run the 

calculations of averages for each physiological score. The method through which this 

calculation happens involves transforming each rs into a z score, by using the following 

formula: 

𝑧𝑖 = 𝑡𝑎𝑛ℎ−1(𝑟𝑖) 

After which these z values are averaged:  

𝑧̅ =
∑(𝑛𝑖 − 3)𝑧𝑖

∑(𝑛𝑖 − 3𝑘)
 

And finally, 𝑧̅  is transformed to 𝑟̅ by: 

 
Average Correlation Coefficient ( 𝑟 ∗̅ ) 

 EDA vs. FMS Temp vs. FMS 

Group 1 -0.03 -0.30 

Group 2 0.11 0.29 

Group 3 0.20 0.07 

Combined 0.12 0.15 
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𝑟̅′ = tanh (𝑧̅) 

Further information and detail on this method, including explanations of the notation 

is given in (Alexander R. A., 1990). Using this method, the results are presented below 

in Table 29: 

Table 29 Average Correlations for Groups 1, 2 and 3 

 

The results presented in Table 29 are very similar to that which is shown in Table 28 

and the conclusion about the weak nature of these correlations remains the same 

despite using this different method. 

 

7.5 DISCUSSION 

 

Previously published research has identified the link between the physiological 

measures of EDA and skin temperature and motion sickness onset (Parker, 1971). 

These findings support our understanding about the body’s response to motion 

sickness onset (Treisman, 1977) and the concept that motion sickness evokes both 

sweat and thermoregulatory responses is not disputed. Specifically, one might expect 

to see an increased sweat rate and decreasing temperature when suffering from 

motion sickness. The relationship between EDA and skin temperature as proven in 

previous literature is not disputed and at a group level, the relationship between 

motion sickness and EDA and skin temperature is established. Indeed, this effect was 

found within some participants, for example, participant 237 of Group 1 showed a 

correlation between EDA and FMS of rs+0.847 and for skin temperature and FMS rs-

0.941 (where p<0.01 in both cases). When looking to the data as a whole (as presented 

in Table 26) many of the correlations observed are found to be significant with 

significance observed in 54% of all correlations found (n=66) which may indicate there 

is some utility in these measures.  

The analysis of this data was conducted to understand if there was feasibility in using 

these physiological measures as ‘real-time’ indicators of motion sickness state. The 

intended purpose of these measures therefore dictated the analysis methods used and 

disregarded any methods requiring post-hoc analysis (e.g., normalization of data). The 

analysis of Pearson’s correlation is rather basic considering the breath of the available 

 
Average Correlation Coefficient ( 𝑟 ∗̅ )                                                      

 EDA vs. FMS Temp vs. FMS 

Group 1 -0.04 -0.30 

Group 2 0.06 0.21 

Group 3 0.18 0.07 

Combined 0.02 0.02 
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statistical tools available for physiological analysis. However, all methods, including 

phasic responses (measuring peaks and troughs) require significant post-hoc analysis. 

That is to say, they cannot be computed in real-time, and certainly not give an 

indication of prediction, where a peak is only identifiable after a decline. Similarly, 

cross correlation analysis was considered as a method for analysing the results, where 

it was shown in the plots (Figure 58 and Figure 59) physiological data falls somewhat 

behind subjective sickness. Such a calculation would account for difference in time-

domains. However, this method was not of use considering the ‘real-time’ dependency 

for this analysis where any delay greater than one-minute (i.e., our minimum 

subjective threshold) would render these measures useless for a practical application. 

Other, traditional research looking to understand physiological measurements will first 

transform the group data to avoid skew, kurtosis, and heterogeneity of variance. 

However, the process of normalising data cannot be done in ‘real-time’ and thus those 

methods were avoided for this research. Similar motivations are seen commonly 

within the literature, for example (Khalaf, et al., 2020) who also are aware that 

individual differences (especially emotional reaction) can lead to group-level data 

being unrepresentative of data on an individual level.  

Looking into the individual correlations across the group, a wide range of correlations 

are observed ranging from rs+0.982 to rs-0.865 for EDA, and rs+0.939 rs-0.941 for skin 

temperature. This range of correlations have been plotted in the histograms presented 

in Figure 60 for EDA and motion sickness and in Figure 61 for skin temperature and 

motion sickness. It is within these figures that it becomes quickly apparent that this 

range of correlations indicates a lack of utility for these measures for a ‘basic’ real-time 

assessment at an individual level. It is thought that this range of correlations is the 

most useful indicator for a lack of overall correlation between these variables using a 

real-time method. However, to quantify this further, average correlations were 

calculated using the method set out in (Alexander R. A., 1990). It was shown here that 

the overall correlations for the physiological measures to motion sickness (FMS) were 

shown to be rs0.12 for EDA and rs0.15 for skin temperature (see Table 28). This finding 

and ultimate conclusion at this time are in agreement with previously published 

literature (Harm, 1990) which summarises that there is a lack of utility for physiological 

measures at an individual level, and the experimentation and presentation of original 

data in this Innovation Report provides data to support this claim. 

The data presented here is interesting for two other reasons, firstly in assessing the 

difference between simulator sickness and ‘real-world’ motion sickness. Secondly in 

providing data for 21 repeat measures participants, where all participants in Group 3 

also appear in Group 2.  

Looking firstly at the difference between the simulator and real-world motion sickness 

correlations where in the simulator trial there was afferent (visual) motion, but no 
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efferent (physical) motion, and in the on-road ‘real-world’ study there was efferent 

motion but limited afferent motion. It is not strictly possible to compare the scale or 

‘shape’ of the motion sickness onset between these two scenarios, where the route 

design was entirely different. However, comparing results of significance between 

Group 1 and Groups 2 and 3 combined there is little evidence of differentiation. That 

is, nothing between the two categories of groups appears to highlight a difference 

between the data sets when looking at the individual scores in Table 26, or the 

summary of the group’s correlation significance levels in Table 27. Therefore, despite 

not running user trials directly comparable to each other considering route design, at 

this time there is little evidence to say that the relationship between these 

physiological measures in the simulated and real-world differ from one-another. 

Although it is agreed that further research would be required considering 

transferability if a valid physiological method was found.  

With more room for discussion (considering the availability of data collected) is the 

‘repeat-measures’ aspect of Groups 2 and 3, where for all members of Group 3, they 

also appear in Group 2 as their first exposure. Any analysis and conclusions taken from 

this have to consider that participants were only measured during two exposures, it 

may be argued that two interactions is not enough for a true repeat-measures analysis. 

However, where it is well understood that individual characteristics such as aerobic 

fitness affect both motion sickness susceptibility (Cheung, Money, & Jacobs, 1990) and 

sweat response / thermoregulation (Green, Pritchett, Crews, McLester, & Tucker, 

2004). It is therefore conceivable that individual/personal factors could influence the 

reliability of the real-time correlations. The (somewhat limited) data presented in this 

report however does not support this, where for example, participant 146 provided 

non-significant correlations of rs0.092 for EDA and rs-0.276 for skin temperature for 

their first exposure (in Group 2), but on their second exposure (in Group 3) their 

respective correlations were rs0.751 and rs0.633 both significant with a confidence 

level of 99%. In fact, with 21 repeat exposure participants, only one participant 

showed significance in both physiological measures during both exposures. Participant 

217 showed correlations rs-0.890 for EDA and rs0.939 for their first exposure (both 

significant with a confidence of 99%). Where for their second exposure they showed 

correlations of rs0.750 for EDA and rs-0.750 for skin temperature – both again 

significant with a 99% confidence level. As seen, despite the strong significance level, 

both directions to the correlations were reversed from (+ve) to (-ve) for EDA and from 

(-ve) to (+ve) for skin temperature between the first and second exposures. The 

findings within this data set therefore provide no evidence to support the idea that 

physiological measures are reliable even within individuals.  

Looking at reasons to explain this lack of agreeable correlation between these 

physiological measures and subjective motion sickness at an individual level, it is 

immediately apparent that the measures of EDA and skin temperature (amongst many 
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other physiological measures) are affected by a great deal of other ‘real time’ 

variables. For example, states of arousal (where the term ‘arousal’ is used to cover 

many emotional states) are known to evoke significant physiological responses 

(Warwick-Evans, et al., 1987). Where it is summarised in a further report how most 

researchers agree that the physiological responses of motion share many of the 

component characteristics of stress or alarm (Harm, 1990) (p.164). In fact, specific 

research addressing the relationship between stress and EDA confirms this correlation 

(Ionescu-Tirgovişte & Pruna, 1993). Using this knowledge, an anecdotal evidence that 

sensations of motion sickness can be both stressful, and alarming it is conceivable that 

the physiological responses being measured in a motion sick state could be 

significantly affected by emotional/arousal states – and not just the state of motion 

sickness. There are a great deal of  motional states and arousal states that may alter 

physiological measures, such as excitement, anger, fatigue, stress, alarm, frustration, 

confusion, fear, discomfort etc. therefore it is likely these states of arousal that are 

responsible for a lack of correlation between physiology and motion sickness 

evidenced in this data. Previous literature also looking at simulator sickness and EDA 

concluded that sensations of relaxation were related to physiological measures (Bertin, 

Collet, Espie, & Graf, 2005) which supports this issue. 

Further to these relationships between emotional state and physiological measures 

there are also other external factors that influence physiology and associated 

measurements. Specifically considering on-road experimentation, changes in 

environment may have a significant affect on physiology. Sunlight (directional 

temperature), ambient temperature, radiant temperature, humidity and airflow 

(amongst others) will likely affect both sweat response and skin temperature through 

conduction, convection and evaporation. Considering these factors (specifically 

evaporation of sweat) it also quickly becomes apparent how these physiological 

measures are themselves strongly linked to one another both as effectors and 

affecters. The thermoregulatory response to heat is to cool the body through sweating 

(measured as EDA) and associated evaporative heat loss. For such measures to be 

useful to compare at an individual level during a user trial or commercial application, 

the effect of environmental change and difference between exposures must be 

considered. Conclusively these physiological measures (and others) are not 

independent of emotion, environment, or even themselves. 

As a final note on the applicability of these measures as a real-time measure and/or 

predictor of motion sickness, it has previously been concluded that physiology is a 

delayed response to subjective scoring (Min, Chung, Min, & Sakamoto, 2004) and this, 

also appears to be evident in this data set. When looking at the graph presented in  

Figure 58, there is a notable delay between the pick ups/decreases in subjective 

motion sickness (FMS) and the physiological measures. The challenge with addressing 

such a time delay within the scope of this work is that delays are only identified 
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retrospectively, if it was possible to predict future data based on existing data there 

would be no need to collect data at all. This is in agreement with the aforementioned 

literature (Min, Chung, Min, & Sakamoto, 2004)  who also used a graphic simulator for 

their study, and further supports the idea that these physiological measures are less of 

a direct response to motion sickness, and perhaps a response to the emotional state / 

alarm / arousal of not feeling well and this may be responsible for such a ‘delay’. 

Analysis of this delayed response were considered, but as the primary objective is to 

consider the applicability of these measures as a real-time measure (e.g., to replace a 

validated subjective scale), the conclusion of such an analysis would not address this 

objective.  

It is known that the measures of EDA and Skin temperature are related to motion 

sickness. But the relationship has only ever been observed at a group level, with 

significant post-hoc analysis e.g., (Bertin, Collet, Espie, & Graf, 2005) – limiting the 

application of such measures for a consumer application. This previous research is the 

only identified paper discussing real time measures, and they also conclude that to find 

such relationships requires significant post-hoc analysis. Although, they did not provide 

data and analysis to explore the true real-time calculation, the results presented in this 

innovation report are in agreement with the previous conclusions from the literature.  

 

7.6 CONCLUSION  

 

This project, building on the previous literature which has identified a relationship 

between EDA, skin temperature and motion sickness has looked to see if there was a 

correlation between these various measures in the hope to find a method for 

objectively measuring motion sickness in real time using practical methods. Collecting 

data alongside three user trials, a total of 40 participants provided 61 sets of data 

(where some participants took part in a repeat-measures study) and a total of 1,603 

minutes of motion sickness data was captured comprising of EDA, skin temperature 

and real-time subjective motion sickness.  

Despite 54% of the correlations showing significance, the range of these correlations 

(ranging from +0.982 to -0.865 for EDA, and +0.939 -0.941 for skin temperature) 

indicated that at a cohort level, there is little evidence that these physiological 

measures alone are reliable or useful predictors or measures of subjective motion 

sickness on an individual real-time level. The reasons for this wide range of results, and 

lack of agreement between correlation direction are as yet unquantified. However, the 

literature provides ample evidence that many other factors and states of arousal also 

affect these physiological measures, where perhaps these other variables have a 

greater impact on these measures and thus render them useless as motion sickness 
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predictors. The average correlation throughout the entire sample was rs0.12 for EDA vs 

motion sickness and rs=0.15 for EDA vs skin temperature – both are considered 

incredibly weak.  

There are currently no other published works looking to assess real-time motion 

sickness as a correlate to these physiological measures (simulator or real-world based) 

so comparisons are not possible. The only text found which looks at similar measures 

utilises a technique involving significant post-hoc analysis and thus does not address 

this research question of real time assessment (Bertin, Collet, Espie, & Graf, 2005). 

Overall, it can be concluded that these physiological measures alone show little 

suitability as motion sickness measures for real-time assessment at an individual level 

and further research needs to be conducted to understand the effect of motion 

sickness on physiological measures and methods for measuring/analysing this in real 

time. It may be possible to combine much more information and/or filter physiology 

based on the understanding of external variables. The outcome of this research does 

not dispute the previously found correlations using more advanced analysis, and the 

conclusions from this research should be considered with an understanding for the 

motivations of the analysis methods used and their strict focus on ‘real-time’ 

practicalities.  

 

7.7 FUTURE RESEARCH – A MODEL FOR COLLECTING MOTION SICKNESS-

RELATED DATA 

 

There are many factors that may influence the onset of motion sickness in a vehicle, 

from demographics, to specific driving scenarios. Some of these factors are already 

known and somewhat understood. Previous research discussed in specific relation to 

physiological measures of EDA and skin temperature have been proven to not be 

useful by themselves using real-time analysis methods. However, there may be the 

ability to predict or measure motion sickness using a collection of information and 

informative data.  

Considering motion sickness onset likelihood it is known how gender (Jokerst, et al., 

1999), ethnicity (Klosterhalfen, et al., 2005), driving experience (Turner M. , 1999) and 

perhaps age (Golding J. F., 2006) (Reason & Brand, 1975) (Turner & Griffin, 1999) are 

useful to identify motion sickness susceptibility for a group. Further, it is known how 

completing tasks which allow for sensory conflict (Reason & Brand, 1975) such as 

head-down reading, or interaction with HMI out of the line of sight of the window 

(Diels C. , Bos, Hottelart, & Reilhac, 2016) will all affect the likelihood of motion 

sickness. Considering an automated vehicle, route and driving style will have a further 

impact on motion discomfort (Mountain View , CA USA Patent No. US 10 , 107 , 635 
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B2, 2018), where exposure to specific periodic motion frequencies (vibration) is also 

known to be an affecter of motion sickness (Smart Jr & Stoffregen, 1998) (p.437). 

Considering other factors, environmental changes can also have an impact on 

subjective discomfort, where cooler temperatures are often advised to limit motion 

sickness discomfort (although ambient temperature may not necessarily be linked to 

the motion sickness onset frequency (Turner & Griffin, 1999). Fresh airflow and 

unrestrictive clothing can also aid in the ability to manage the thermoregulatory 

responses to motion sickness and associated discomforts.  

When looking into the propensity for motion sickness onset, with the overall goal of 

being able to predict motion sickness onset before it happens so that preventative 

measures can be initiated, it quickly becomes apparent that there is a plethora of 

information sources on which one can make a measurement or prediction.  Submission 

1 of this EngD looked at machine learning systems to automate in-vehicle features, 

based on user routine. The conclusion of this project presented a model for enhanced 

machine learning which can be used to identify different sources of data to collect. 

This data is thought to be useful for the machine learning algorithm to be both trained 

and used for various applications. More detail on the specifics of this model creation is 

found within Submission 1, as well as a full explanation of its expected utility within 

the realm of automotive in-vehicle features (such as climate). However, this model can 

also be used to help explore the various metrics which may be useful in measuring or 

predicting motion sickness. The human factors approach to enhanced machine 

learning model has been modified slightly to remove specific notations for the SLC 

project as well as to remove notations focused on ‘user routine’. The revised model is 

presented below in Figure 65: 

 

 

 

 

 

Figure 65 A Human Factors Approach To Machine Learning Model 

As a brief explanation as to the utility for the model presented above in Figure 65, it is 

considered that through using this model to identify all the streams of information 

available to a machine learning system, the ability to understand/measure/predict 

motion sickness state may be enhanced. There are three primary sources of 

information highlighted here. The human (to the left of the model), from the vehicle 

(from the left of the model) and from contextual data (from the bottom of the model). 
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The machine learning algorithm, being an entire subject in itself is not of interest to 

this human factors model, where this is just designed to inform on types of data to 

collect, rather on what to do specifically with that data. Given the range of data types 

available between different sources, and within different sources, there is likely to be 

some data which is more important than others. For example, predisposition to 

motion sickness and history of motion sickness is perhaps more important than 

clothing for predicting the onset of motion sickness. Therefore, to highlight this, the 

arrows used are of varying thicknesses, symbolising varied weights of importance 

(which may differ, person to person). Each section of this model is now briefly 

explained with some example types of data that would be useful to collect. 

7.7.1 COMMUNICATION BETWEEN USER AND VEHICLE 

This section explores the availability for the occupant to communicate with the vehicle 

and the vehicle to communicate with the occupant (represented with double headed 

arrows). The overall idea of a model such as this is to limit the requirement for the user 

to input information (such as filling out questionnaires), however there should still be 

an option to capture user input if they so desire, as their subjective motion sickness 

rating is the most important aspect. It is recommended the system includes the option 

for a user to input motion comfort feedback, where a dial, similar to a volume knob for 

a radio, may be an easy way for someone to set and adjust their subjective sickness to 

inform the car. Further to this, there must be a method through which the vehicle can 

communicate to the occupant. If, for example, motion sickness countermeasures are 

being initiated, (such as a change in route), informing the occupant of this will both 

inform them of the system status, and perhaps increase their self-efficacy in the 

knowledge that mitigation strategies are being employed. Another area of information 

about the human which is useful for the machine learning system is understanding the 

occupants’ demographics, where it is known that factors such as fitness, age, ethnicity 

and certainly gender are all related to motion sickness severity. This information could 

be input by the user in a personal vehicle, or captured as part of a personal profile in a 

shared mobility instance. Further information, such as visuospatial performance may 

be accessible if the user is willing to communicate with the system. As a final point, 

despite the current lack of understanding about its utility, physiological measures 

could be transmitted from consumer wearables to the vehicle. At present, there is 

little support for the utility of this data, however, when combined with other 

information sources and/or filtered to remove other variables it could be of use. 

7.7.2 PROCESS BASED LEARNING 

The system should be able to register various interactions with the vehicle and, from 

these interactions (or processes) gain knowledge about motion sickness state. This 

could include monitoring preferred driving style, interaction with features known to be 
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linked to motion sickness management -such as opening the windows, or using the 

HVAC (Heating, Ventilation and Air Conditioning) system or other actions an occupant 

takes. Further, in an automated vehicle processes could include understanding what 

the activity of the occupant is at that time. For example, if on-board sensory 

equipment can monitor occupant activity to detect if they are reading, working with 

their head down, watching a film, sleeping or are monitoring the road, this information 

will help determine the chance of motion sickness onset. 

7.7.3 STORED AND CONNECTED KNOWLEDGE  

This category explored the ability for knowledge to be collected, stored and shared 

between vehicles. For example, route type and design could have an impact on motion 

sickness where straight roads and constant speed are preferred over winding roads 

with varied speed limits. This information (a ‘heat map’ of motion sickness routes for 

example) can be stored within the vehicle to both inform on motion sickness likelihood 

and use in case a mitigation is needed (changing route). Connected vehicles, will have 

the ability to share data between them, so based on many interactions with the same 

route, a database of knowledge can be stored about different road sections.. 

7.7.4 CONTEXTUAL DATA 

Contextual data which may be of use to understanding motion sickness onset may 

include weather and climate, where increased heat and humidity (although may not be 

a cause of motion sickness) certainly will affect subjective discomfort through the 

inability to thermoregulate – a known factor for motion sickness onset. Other 

contextual information may include knowledge about the vehicle being used, including 

interior design layout (considering flexible seating, or size and location of DLO’s) 

through which efferent motion cues can be gained. Further, vehicle dynamics and 

suspension could be monitored, adjusted and informed upon for understanding 

motion sickness onset and for counteracting motion sickness 

7.7.5 SUMMARY 

This model is designed to capture various data types, which can be used to inform a 

machine learning algorithm. The nature of a machine learning system is that it requires 

training data on which to learn about the correct interpretations. This data could be 

labelled (supervised learning), or unlabelled (unsupervised or reinforcement learning). 

The exact implementation of a machine learning system is well beyond the scope of 

this brief note on measuring motion sickness. However, as a brief hypothetical 

example, using information already discussed within the Innovation Report, it is 

possible to better understand the utility of this model. The benefit of this model is in 

its ability to combine data sources, such as (in this hypothetical example), an Asian 

female, who has history of motion sickness, is traveling on a route known to impact 
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motion sickness and approaching traffic moving at inconsistent speeds, she started 

head down reading and a change in her physiology has been noticed. Stringing a 

hypothetical set of information together starts to show how many streams of data, 

which on their own are perhaps not useful, can be used as a collective to understand 

motion sickness likelihood. Of course, this model is untested so the effectiveness of 

this cannot be discussed, rather the contribution is in highlighting how all these data 

sources may fit together for future research on the measurement of motion sickness 

state.  

 

7.8 ADDITIONAL NOTES ON MOTION SICKNESS MEASUREMENT   

 

Throughout this project, and EngD Innovation Report, three key methods of measuring 

subjective motion sickness severity were used: the Simulator Sickness Questionnaire 

(SSQ) (Kennedy, Norman, Berbaum, & Lilienthal, 1993), the Motion Sickness 

Assessment Questionnaire (MSAQ) (Gianaros, Muth, Mordkoff, Levine, & Stern, 2001) 

and the Fast Motion Sickness Scale (FMS) (Keshavarz & Hecht , 2011). Given the 

amount of data collected and the reliance on subjective motion sickness assessment 

for many conclusions it is useful to explore the effectiveness of these measures. A 

correlation analysis has been done using the data collected in Project A and B and 

written up in Submission 6 as the on-road motion sickness trial where participants 

completed all three questionnaires simultaneously (SSQ, MSAQ and FMS). The results 

from the Spearman’s Rank Order correlation is presented below: 
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Table 30 Correlation Between Subjective Motion Sickness Scales 

  

Table 30 shows every measure of subjective motion sickness was significantly 

correlated with 99% confidence (p<0.01) as denoted by the double asterisk ‘**’. The 

correlations shown are strong, which bodes well for the validity of the results 

discussed within this EngD research. Despite the SSQ being designed specifically for 

simulators with a strong visual aspect, it is correlated to the MSAQ in this real-world 

study with a person’s score of rs0.888. This is considered a very strong correlation and 

informs on the ability to compare simulator sickness to real-world sickness using these 

same measures in both environments. FMS peak score (i.e., the maximum FMS score 

given throughout an exposure) was recommended by the original author to be of most 

utility (Keshavarz & Hecht , 2011). The data presented confirms this, where the FMS 

peak score has the strongest correlation to both MSAQ (rs 0.838) and SSQ (rs 0.742). 

These strong scores validate the FMS scale for the real-time measurement of motion 

sickness as discussed in this project, and for the use of this method going forward in 

cases where full questionnaires are not possible. 

 

 

 FMS Average FMS Peak FMS  Final  SSQ MSAQ 

FMS 
Average 

Correlation 
Coefficient 

1 .975** .933** .718** .803** 

Sig. (2-tailed) 

 

0.000 0.000 0.000 0.000 

N 51 51 51 51 51 

FMS Peak Correlation 
Coefficient 

.975** 1 .932** .742** .838** 

Sig. (2-tailed) 0.000 

 

0.000 0.000 0.000 

N 51 51 51 51 51 

FMS Final Correlation 
Coefficient 

.933** .932** 1 .700** .798** 

Sig. (2-tailed) 0.000 0.000 

 

0.000 0.000 

N 51 51 51 51 51 

SSQ Correlation 
Coefficient 

.718** .742** .700** 1 .888** 

Sig. (2-tailed) 0.000 0.000 0.000 

 

0.000 

N 51 51 51 51 51 

MSAQ Correlation 
Coefficient 

.803** .838** .798** .888** 1 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 

 

N 51 51 51 51 51 
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8 A NOTE ON SIMULATOR TO ‘REAL-WORLD’ TRANSFERABILITY 

 

Although not a core aim of this EngD project, transferability of data from simulator 

trials to real-world applications has been a significant consideration in many of the 

research projects that make up this Innovation Report. It is possible to conclude on 

some of the findings and discuss some of the implications that have been highlighted 

along the way.  

Firstly, and upon reflection of Project A, it was shown how simulator sickness, as is a 

common phenomenon in simulator trials, can have a significant effect on human 

performance. It is with this understanding that future projects must consider user trial 

data collected in a simulator and the influence that motion sickness may have on this 

data. Thinking about common industry focused research methods, such as the ‘2/12 

rule’ as it is commonly referred to. This ‘rule’ is a guideline published by NHTSA 

(National Highway Traffic Safety Administration) in reference to eye-glance behaviour 

for in-vehicle HMI’s, it advises that glances away from the road (to interact with a 

piece of HMI) should consist of glances no longer than 2 seconds, and for a total eyes-

off-road time of less than 12 seconds to complete the task. It is deemed that anything 

longer (in glance duration, or total eyes-off-road time) constitutes a bad and possibly 

dangerous HMI design (Perez, Hulse, & Angell, 2013). Guidelines such as these, and 

others are commonly used in industry-based research, and some academic research 

also. It is therefore important, considering these small thresholds that performance is 

measured in a simulator. Specifically, if someone asks to end the driving task early, 

their user trial data should be omitted from the data set where it is likely their 

performance is degraded to the extent to which their interaction data is significantly 

different from their usual ability. Without a further grading criteria for motion sickness 

severity, it is not yet possible to say at what point, on a subjective scale, motion 

sickness affects results. Further to this issue of performance degradation, due to the 

known effects of Sopite Syndrome, and as the data supports in Project A it is not 

advisable to run reaction-time based user trials in a simulator due to reduced reaction 

times which may not be directly transferable to real-world abilities. If reaction time, or 

any other assessment-dependent specific performance ability is being studied, it is 

recommended that a baseline and post-simulator assessment is used (as was done in 

Project A). These additional assessments will be able to validate if the simulator has 

affected these fundamental skills, and thus conclude on the validity of the data 

collected during the trial. 

From Project B, it seems that the effect of visuospatial training on motion sickness 

susceptibility is worthwhile testing in simulator and on-road environments equally. The 

data presented in Project B does not highlight that simulator sickness and car sickness 

differ from one-another in their relation to visuospatial ability and its relationship to 
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motion sickness. It can be recommended that simulator trials are beneficial here 

where transferability does not appear to be of concern. However, simulator trials seem 

to be more of an ‘extreme’ environment for people, with drop-out rates being higher 

than on-road trials. For example, 35% (n=7) people dropped out of the simulator 

visuospatial trial, whereas only one participant (4%) dropped out of the on-road trial 

due to motion sickness. This is a factor worthy of consideration when planning a study 

where motion sickness is a factor. Dropouts should be considered in the target sample 

size and in a simulator study the researcher should account for a greater number of 

dropouts when recruiting. Anecdotally, the estimated average number of dropouts per 

3xD simulator trial is around 25%, observed through experiments at WMG. It is hard to 

compare dropout rates between simulators given how many factors, such as field of 

view (Bos, de Vries, van Emmerk, & Groen, 2010), impact motion sickness. A meta 

study on this subject, presented a mean drop-out percentage of 14% between 9 

different simulator trials (Balk, Bertola, & Inman, 2013). This figure is thought to be 

realistic for a generic trial, but perhaps more pronounced when the test route is 

designed to be particularly challenging or in a 360degree field of view, such as the 3xD 

simulator.  

No data presented in this research indicated that physiological response to motion 

sickness differs between simulated and real-world, despite the change in 

efferent/afferent motion cue significance. Simulators are far easier to control for this 

style of testing, where airflow, directional/ambient/radiating temperature can all be 

controlled or eliminated, as these are known effectors of many physiological signs. It is 

therefore predicted that there is greater utility in simulator testing for fundamental 

physiological research. However, of course the transferability of any effects found 

within a simulator may be limited in direct transferability to the real-world, where 

environmental factors an important variable. 

It has been shown in the correlation matrix in Table 30 that the MSAQ and SSQ are 

strongly correlated. Therefore, ideally when running a repeat measures study including 

simulator and real-world experimentation (such as in Project B) both questionnaires 

should be used. This ensures that later simulator-only trials can be compared to the 

SSQ, and later on-road trials can be compared to other MSAQ’s (where SSQ is 

advisable for simulator studies, and MSAQ for any real-world studies). However, if this 

is not possible, then either questionnaire may be suitable as a compromise. It is 

recommended that if only one questionnaire is to be used the MSAQ allows for a 

greater range of severity assessment, and four (rather than three) subcategories which 

improve precision and areas for exploration over the SSQ. As recommended by the 

author (Keshavarz & Hecht , 2011), the FMS peak score seems to be the most useful 

score for measuring motion sickness, and given its strength in correlations it may be 

sufficient to have as the only motion sickness measure if a trial does not allow for 

questionnaires.  
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Finally, considering the subcategories of motion sickness severity, in the simulated and 

real-world, previous literature has looked to classify the profile of the SSQ dependent 

on the environment (Kennedy, Lane, Lilienthal, Berbaum, & Hettinger, 1992). Using the 

categories of nausea (N), oculomotor (O) and disorientation (D), it was summarised 

that the motion sickness profiles in different motion sickness environments are as 

follows: 

 Virtual environments as D>N>O. 

 Space sickness as O>D>N, 

 Simulation sickness as O>N>D 

 Seasickness/airsickness as N>D>O 

With the data collected over this EngD project, it is possible to compare simulation 

sickness findings and present a profile based on car sickness. Table 31 below 

summarises all simulator trial participants and all on-road trial participants over all 

experimentation (inclusive of repeat-measures) and presents the N, O and D average 

scores. 

Table 31 Profiles of Motion Sickness (SSQ) 

 Count Nausea (N) Oculomotor (O) Disorientation (D) 

Simulator Sickness  71 46.14 30.93 48.95 

Car sickness 51 45.97 38.58 50.98 

 

Given the results from the SSQ used throughout this study it is seen that with a sample 

size of 71, the profile of motion sickness in a simulator is: D>N>O and for car sickness, 

it is also shown to be D>N>O.  

The simulation sickness profile is entirely reversed to that which is presented 

previously by (Kennedy, Lane, Lilienthal, Berbaum, & Hettinger, 1992) where it is 

considered that simulator design may have a significant role to play. It is also 

interesting to note that despite the change in afferent/efferent motion cue 

significance, on-road motion sickness measured by the SSQ follows the same profile as 

the simulator.  
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9 DISCUSSION 

 

This Innovation Report has detailed the background literature and the scope of the 

research completed within this project. It has then presented three research projects 

(A, B and C) which collectively address the aims and objectives as previously set out 

and focus on understanding the impact, reduction and measurement of motion 

sickness. Although each of these projects include their own discussion in specific 

relation to their individual findings, this section will bring together all research as an 

overall project. This discussion section will pull out the key findings from the three 

projects to show the impact of this project as a whole to both academia and industry. 

To complete this discussion, the limitations of the project as well as some 

opportunities for further research are highlighted. Firstly, the objectives as set out at 

the beginning of this Innovation Report are presented once again: 

1. To critically review the body of literature covering motion sickness with an 

emphasis on impact to automotive applications 

2. To explore the impact of motion sickness on human performance to inform 

transferability of simulator data to real-world 

3. To advise on the most appropriate way to conduct user trials for future 

simulator-based experimentation (including that of motion sickness 

management) to inform ‘best practice’ of vehicle simulator trials. 

4. To consider the impact motion sickness may have on the utility of future 

automated vehicles 

5. To detail state of the art methods for managing motion sickness in vehicles 

6. Design, test and validate a method of reducing personal susceptibility to 

motion sickness 

7. Provide information on the ways through which a motion sickness 

management method could be implemented in production vehicles 

8. Explore methods for the measurement and detection of motion sickness 

9. Explore the feasibility of physiological data as objective measures of motion 

sickness and provide information about useful metrics through which motion 

sickness may be measured objectively.  

Throughout this discussion, it will be possible to see how these objectives have all 

been met. 
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9.1 KEY FINDINGS – CONTRIBUTIONS TO ACADEMIA  

 

The rapid and competitive development of automotive technologies sometimes means 

the technology is available before the human factors considerations have had time to 

be fully addressed. Human factors is often trying to catch up with technological 

developments, where it is often only after technology introduction that manufacturers 

consider, or have time to consider, human integration. As evidence to this, there is 

much ongoing research around existing (i.e., consumer available) technology such as 

touch screen HMI usage (Large, et al., 2019) and ADAS features (Caber, Langdon, & 

Clarkson, 2019) – many of which have been available on the consumer market for 

many years. With the next shift in the automotive industry heading towards 

automated vehicles, there are already concepts for such vehicles (for example see the 

concept vehicle in Figure 4), and a growing consumer expectation – as seen in Figure 

10. There is therefore a pressing need to address the human factors considerations for 

such technology to enable future vehicles to be developed, designed and 

manufactured in a user-focused manner. There are already hopes for automated cars 

to be on the road in just a few years (Driverless Future, 2017), so there is a great 

urgency for human factors researchers to ensure the technology is usable, safe, 

enjoyable and effective. With that in mind, this EngD project looked to address the 

relationship between motion sickness and future automotive technology – covering 

both the development (using driving simulators) as well as considering the end goal of 

automated vehicles. 

The first contributions of this EngD are found within the Literature Review presented in 

Submission 2 and as summarised in Section 3.3 in this Innovation Report. The 

relationship between motion sickness, driving simulators and automated vehicles was 

considered and contextualised. A clear argument as to why motion sickness is a factor 

for automated vehicles is presented evidencing innovation of existing knowledge. An 

update of the state of the art of motion sickness management for driving simulators 

and automated vehicles has been explored within Submission 2. Using this knowledge 

it was possible to conclude upon some areas for design recommendations within 

future vehicles (as summarised in Table 3) and form the basis for future research which 

this EngD then set out to address. Since then, the three core projects which tell the 

story of this EngD are able to break down further contributions: 

9.1.1 MOTION SICKNESS AND HUMAN PERFORMANCE (PROJECT A) 

Project A has, for the first time in an automotive context, shown how motion sickness 

significantly affects various areas of human performance (as seen in Table 10). This is 

of consequence for the transferability of simulated data to real-world applications 

where it has been recommended that simulator dropouts should be omitted from the 
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data analysis of performance related trials, where severe motion sickness resulting in 

someone ending the study early is known to significantly reduce their performance in 

many areas. This builds upon the previous literature which hints at motion sickness 

degradation in task-specific domains, such as in (Stroud, Harm, & Klaus , 2005), (Bos J. 

E., 2004) and (Lampton, Kraemer, Kolasinski, & Knerr, 1995). Through testing 

fundamental abilities rather than specific work or driving related tasks, the utility of 

the findings are not limited by or to the tests chosen unlike previous studies. Further, 

the utility of a simulator for reaction-time based experimentation has been 

questioned, where data suggests reaction times are significantly reduced when using a 

simulator, likely due to Sopite syndrome. These core findings have allowed for an 

update on the utility of driving simulators for user trials and allowed for the creation of 

a best practice guide for simulator use (see Appendix  2). With the on-road aspect to 

this trial, it was possible to explore the transferability of these simulator findings to the 

‘real-world’, and the measurement of motion sickness was able to help validate the 

data found in the UK AutoDrive project (as summarised in Submission 4). Overall, this 

project helped to validate the transferability of simulator data where non-dropout 

performance was, for the most part, no different from baseline performance – adding 

reassurance to future user trials looking to develop technology in a simulator.   

9.1.2 VISUOSPATIAL TRAINING AND MOTION SICKNESS (PROJECT B) 

This EngD research has shown, for the first time how training visuospatial ability can 

significantly reduce motion sickness susceptibility for both simulator-based (Figure 48) 

and on-road motion sickness ( 

 

Figure 50). Previous research had indicated that visuospatial performance and motion 

sickness were related (Van Goozen S. , 1995), but there has been no attempt, until 

now to try and train visuospatial skills to reduce motion sickness. This is of great 

significance for a few reasons. Firstly, for future simulator trials (where pre-training 

may reduce dropouts, and ensure transferability of performance related measures). 

Secondly, for the automotive industry in that this method may act as a mitigation 

strategy to reduce car sickness in both traditional and future automated vehicles. 

Finally, this key finding is of significance for the field of motion sickness in general, 

where this relationship has been identified and validated as a motion sickness 

management method. These findings, may be more effective than design-based 

methods for reducing motion sickness given their the to other environments. The 

ability to reduce personal susceptibility to a motion sickness-inducing task (proven for 

both simulator sickness and car sickness) may be a useful tool for the estimated 1/3 of 

the population who suffer from high motion sickness susceptibility (U.S. National 

Library of Medicine, 2019). Not only has this relationship been established, but this 

project has shown the effectiveness of pen and paper training tasks, assembled in a 
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novel form, using pre-existing tests in improving visuospatial ability – providing a 

method as well as the relationship. 

Again, although not a core aim, this method has further shown how the motion 

sickness reduction (through the training of visuospatial tasks) can reduce workload for 

a simple reading task. It is possible that this method can be used to not only reduce 

subjective sickness, but improve productivity in automated vehicles, and possibly other 

job roles where motion sickness is a factor (such as navy crew, or for military simulator 

training tasks). This effect has not been quantified, but this project certainly has 

highlighted the scope for further research in this field.  

9.1.3 UNDERSTANDING THE MEASUREMENT OF MOTION SICKNESS 

(PROJECT C) 

Although this project has not concluded on a successful method of objectively 

measuring motion sickness, it is of equal importance to highlight how real-time motion 

sickness cannot be measured using just EDA or skin temperature alone - furthering the 

pursuit to an overall objective measure. This project, for the first time has looked at 

how real time motion sickness and the physiological response of EDA and skin 

temperature are (in their unfiltered and individual analysis) are not useful predictors of 

motion sickness state using ‘real time practical methods’. Previous research has 

identified a link between EDA and motion sickness (Parker, 1971) (Warwick-Evans, et 

al., 1987)  (Golding J. , 1992), and this may have been misconceived by some to think 

EDA is a direct measure of motion sickness. However, through disbanding this as an 

objective measure for real-time severity or onset (although not disputing that the two 

are related) this project has made progress in the continuation of this pursuit to find 

an objective measure. Through the exploration of physiology and motion sickness this 

research (exampled in Figure 60 and Figure 61) has shown the importance of sample 

size in such research where given the diversity in correlation strength and diversity, 

with a small sample size the relationship could be easily misinterpreted. As a 

conclusion of this project, a new model is presented through which other data (known 

to affect motion sickness) can be collected to help identify a holistic method of 

measuring motion sickness in real-time through the use of machine learning 

(presented in Figure 65). The utility of each data stream suggested has been of proven 

utility in other research projects highlighted in Submission 2 and throughout the EngD. 

It is expected that the sum of these parts may provide the ability to infer motion 

sickness state and this contribution will stand as justification for future research.  

 

9.2 KEY FINDINGS - IMPACT ON THE SPONSORING COMPANY 

 

Throughout this research, consistent consideration has been given to the applicability 
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of key findings to JLR as the sponsoring company – ensuring this EngD remains not only 

innovative but also relevant. Although the project has shifted quite far from its initial 

conceptualisation – within the SLC team some valuable contributions were made 

during this first small project (Submission 1). The SLC team were struggling at the time 

to understand why there was such disparity between  users’ actual routine, and their 

prediction of their routine. Through the creation of a new model on which human-

focused data could be collected, this research was able to identify some errors in their 

current model, and propose considerations for the next iteration of product 

development. The impact of this project was proven through the invitation to present 

at the internal JLR technical specialist conference where the model created was 

disseminated among the research team and taken on board when the project was 

handed over to mainstream engineering. 

The identification of motion sickness as a consideration for future JLR vehicles and 

research was a significant contribution, where few people within the business were 

aware of the subject of motion sickness and there was limited knowledge across the 

human factors teams about the subject. This research was of great utility to JLR, 

through the contextualisation and clear argument for the subject of motion sickness 

both in initial reports, and through company meetings. The first experiment identified 

how simulator dropouts had significantly decreased performance in many areas 

including physical-visual, physical, cognitive-physical and cognitive performance. 

Identifying this as an issue helped JLR understand the nature of simulator 

transferability, where future trials could be assured for transferability (considering 

fundamental human performance) so long as motion sickness was not an issue. 

Further information was provided around the limitations of simulators for reaction-

time related studies. Although Submission 3 included all the in-depth information 

(which was available to JLR) a two-page summary of best practice for simulator trials 

was also created as a result of this experimentation and further reading (Appendix  2). 

No data has been collected on the utility of this best practice guide, but it is expected 

to help reduce simulator dropouts (saving time and money when running trials), 

inform on the ethics of running simulator trials where motion sickness is a risk and 

help in validating the data collected considering transferability.  

Another outcome of the first project was in the validation of the UK AutoDrive user 

trial data, where motion sickness was tracked and shown to not be a significant issue. 

This report was written up in Submission 5, but a one-page ‘industry friendly’ summary 

was also created. This is of use for the JLR owned project where they can be assured 

that human performance in their trials was not affected by motion sickness, adding to 

the validity of their study. 

One of the most exciting contributions and areas of impact made to the sponsoring 

company (considering its novelty) was in the creation of a method to reduce motion 
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sickness through visuospatial training. This method provided a solution to the issue of 

motion sickness within future vehicles, and if created into a consumer focused product 

could help in “Creating experiences people love for life” (Jaguar Land Rover, 2019) by 

helping reduce motion sickness discomfort for passengers in both traditional and 

future automated vehicles. Not only was this new knowledge created, but a workshop 

to explore exploitation methods was held and the results of this were handed over to 

JLR to inform them on possible areas of exploitation, and associated research 

questions that would help in product development. One of the outcomes of this 

research was in the creation of a JLR mobile app which this EngD research helped 

inform. This app was co-created to enable future testing and refinement of this 

method within JLR’s research division and, ultimately, would be considered for its 

applicability of being used as a consumer product. The development of this app, and 

JLR embargo of publications of this work to retain the IP is good evidence of the impact 

this research had on JLR. 

The concept for measuring motion sickness objectively through only the measures of 

skin temperature and EDA was being discussed within JLR and in response to the 

overall lack of conclusive information in the literature the third project of this EngD 

helped JLR to understand the utility of these physiological measures. This paper was 

taken by the head of JLR research and used to update the state of knowledge within 

the company about objective motion sickness measures. The impact this project had 

was one of prevention rather than addition, where this research prevented JLR 

spending time and money following these physiological measures as individual 

measures, although the impact to the wider field was greater in presenting real-time 

motion sickness physiology vs subjective measures for the first time. The conclusion of 

this research showed how there are many useful points of data that can be collected 

for future motion sickness measurement projects and this EngD provided an adapted 

model for data collection on which to inform a machine learning system to 

track/measure and perhaps predict motion sickness in the future.  

Considering other impacts created through this EngD, the detailed review of the 

literature and a strong understanding of the subject allowed for the creation of design 

recommendations for future automotive vehicles which will be useful for JLR to 

consider in the design of their future cars. Further to this, over the course of two 

workshops the information collected in this EngD was presented to the JLR automated 

vehicle interior design team where JLR staff were trained in the area of motion 

sickness countermeasures which was of great impact to the team. A letter from the 

manager of the user interface for automated driving team, written to the internal JLR 

EngD funder is shown in Appendix  5 as testament to the impact and contribution 

made. Further to this design project, the information and knowledge collected 

thought-out this EngD was used to inform JLR on future research strategies for motion 

sickness. Through multiple sessions JLR were advised on what areas of research should 
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be pursued, where the gaps in the knowledge are, the benefits of specific research 

projects and the impact to JLR for each research item. As testament to the utility of 

this information another letter has been included in Appendix  6, written by the lead 

engineer of interior sensing and sent to the JLR internal funder of this EngD.  

Overall the research conducted and the knowledge gained through this EngD has had 

many direct impacts on JLR as the project sponsor, and to the automotive industry as a 

whole. The impacts made to JLR speak well to the strengths of the EngD scope where 

creation of new knowledge, along with the innovation of this has shown to be of great 

benefit and success. There is still much more work to be done in this field, but JLR now 

have the understanding, tools and direction to tackle further motion sickness related 

issues, working towards their goal of creating experiences people love for life. 

9.3 LIMITATIONS OF THE RESEARCH  

 

Despite the many strengths of this research there are a few limitations that should be 

highlighted. Project specific limitations have been presented within the individual 

projects There are a few overarching limitations of the project overall. 

Given the geographical location of the experiments conducted, the vast number of 

participants were white, British participants. Given that motion sickness is known to 

vary between ethnicities this lack of diversity is considered a limitation for widespread 

representation. 

Throughout all user trials, and specifically relating to Projects A and C where the effect 

of motion sickness was being measured, a potential limitation of these studies was 

that the entire range of motion sickness was not experienced. As discussed, 

participants were free to end the study when they felt as if they were too 

uncomfortable to continue. This, although ethically advisable, limited the data set 

where little data was collected for severe motion sickness. 

Age is an often discussed characteristic of motion sickness. Motion sickness 

susceptibility variation is particularly observed in children (under 18s). The variance in 

susceptibility throughout the development of a child may be linked to developments of 

the brain, balance organs, familiarisation (habituation) and hormones. This research 

project has purposefully omitted the consideration of children within both 

experimental groups and discussions.  

Vehicle dynamics and vibration management is a popular area of research within 

motion sickness. This field was not discussed within this project, nor was data 

collected. The sponsoring company were already working in the field of dynamics so it 

was important for them that this project did not overlap. This does not limit the 

findings or results presented as part of this research, rather it limits the transferability 
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of data to other research. Particularly considering performance metrics in vibration 

environments (project A), and effectiveness of visuospatial training compared to 

vibration management (project B) 

9.4 OPPORTUNITIES FOR FURTHER RESEARCH 

 

Throughout the research projects presented, some ideas of further research have been 

highlighted. As a summary of these questions raised along the way, and considering 

wider aspects of the field, a few areas for further research have been highlighted: 

Project A: 

 How does motion sickness, and subsequent human performance 
degradation affect specific driving tasks in a simulator (simulation sickness) 
or in real world driving (considering automated vehicle control handover)? 

 How does motion sickness affect the various areas of visual performance 
(visual acuity, depth perception, target identification etc.)? 

 Is it possible to categorise motion sickness severity states using the SSQ or 
MSAQ? 

 What is the best method to measure at what level of sickness does 
performance (across individual categories) become significantly affected? 

 Does motion sickness affect the ability to regain control of a Level 3 or 4 
automated vehicle? (safety) 
 
Project B: 

 What is the most efficient way of training visuospatial ability (considering 
training duration and frequency)? 

 What tasks are most useful for training visuospatial skills? 

 What is the underlying mechanism through which motion sickness is related 
to visuospatial ability? 

 When training visuospatial ability, how long does the reduced motion 
sickness susceptibility affect last for? 

 How might the relationship between visuospatial training and car 
sickness/simulation sickness be applied to other fields where motion 
sickness is a concern? 

 What is the most acceptable method through which to train visuospatial 
skills and would automated vehicle users be willing to train? (also 
considerate of children as a stakeholder)  
 
Project C: 

 What key components affect the physiological measures of EDA and skin 
temperature and is it possible to filter the data to reduce the impact of 
variables other than motion sickness? 

 Can physiological data be analysed within specific time sections to give a 
better understanding of motion sickness state per specified timeframe? 



146 
 

 What data is most effective for a machine learning system to identify real-
time motion sickness state? 

General: 

 Considering the propensity for automated vehicles (and non-driving related 
tasks which they enable) what is the actual expected productivity gain of 
these vehicles? 

 How can automated vehicles be designed to enable productivity through 
managing motion comfort? 

 Considering how motion sickness severity varies between demographics, 
how can future vehicles be designed in an inclusive manner to ensure no 
demographic is designed out of utility due to motion sickness? 

 How acceptable are the many proposed solutions to minimise motion 
sickness (including vehicle designs, wearables, visuospatial training, 
habituation, route changes etc.) 

 

10 FINAL THOUGHT 

 

This EngD project has contextualised the issue of motion sickness within driving 

simulators and future automated vehicles. It has highlighted how motion sickness 

affects human performance, and discusses the impact this has on simulator trials and 

the utility of automated vehicles. A novel method of reducing motion sickness 

susceptibility has been developed, validated and discussed and further information 

around objective motion sickness measurement has been presented. Through the 

creation of new knowledge and the multiple innovations that this EngD generated, this 

research is of significance for academia, the sponsoring company (JLR) and the future 

of the automotive industry as a whole.   
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12  APPENDIX 

Appendix 1 Design recommendations for autonomous vehicles publication 
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Appendix  2 Best Practice Guide for Simulator Trials 

Best Practice Guide for Simulator-
Based User Trials 

 
 
 

This best practice guide has been created to enable the most effective simulator-based user trials 
considering efficiency of user trials, participant wellbeing and reliability of user-collected data. All the 
recommendations made within this report are based on peer-reviewed findings from previous literature 
and original research collected in WMG’s 3xD simulator. It is recommended that all researchers using a 
simulator to collect data read understand and adhere to this guide. The guide has been split into six 
sections including scenario design, recruitment, pre-trial, during-trial, post-trial and data analysis. 
 
The most prevalent and accepted theory of why people become motion sick is ‘sensory conflict theory’, 
which states that “mismatches between (or within) the visual, vestibular, and somatosensory inputs” 
cause motion sickness [1] . That is to say a person can detect motion with their eyes (through sight), 
with their vestibular system (the inner ear) and through the somatosensory system (the brain area 
responsible for sensation of movement of limbs). If one or more of these senses conflicts with the other 
motion sickness can prevail. In a simulator, for example, the eyes will detect movement, but the 
vestibular system will detect none, so there is conflict and motion sickness is possible.  
 
Scenario design 

 Total user trial time should ideally be 15 minutes or less to minimise the chance of motion 
sickness. Multiple shorter runs separated by breaks are better than one long single run. 

 Routes should be mainly straight roads and minimal tight bends. Avoid multiple changes of 
speed and ensure any speed change happens on a straight road and not a bend. 

 Avoid roundabouts if possible, where making participants take the 3rd exit on a roundabout is 
perhaps the most disorientating action possible in a simulator. If roundabouts are needed the 
1st or 2nd exits are preferable. 

 Give all participants a 5 minute (at least) familiarisation run where they can drive at a steady 
slow speed on a straight road and are gradually introduced to speed and bends (if required). 

 Ensure the simulator is set up with no trip hazards if the participant has to exit quickly due to 
motion sickness. Provide a recovery space with plenty of water for unwell participants.  

 Reaction-time based user trials should be avoided, where Sopite Syndrome (a side effect of 
simulator use) is likely to induce fatigue and has been shown to significantly decrease reaction 
time. If reaction time is being measured it is recommended that Sopite Syndrome is also 
measured and pre and post simulator exposure reaction time is measured, where significant 
changes after simulator exposure indicate the user trial may be compromised.  

 
Recruitment 

 An exclusion criterion can be used if researchers need to minimalize the amount of people 
dropping out due to motion sickness. This should be used with caution considering excluding 
participants will not give a true representation of the general population. 

 Participants should be made aware of the risks of motion sickness upon recruitment, where the 
exclusion criteria can be provided (even if not being enforced) and participants made aware 
that if they meet any points they have an increased risk of motion sickness.  

 If participants are being paid to take part they should be made aware that they will receive the 
payment before simulator exposure and will receive payment even if they dropout.  

 Participants should be made aware at recruitment that motion sickness can affect human 
performance and they are advised not to operate heavy machinery (e.g. driving a car) for at 
least 2 hours after the simulator study – even if feeling subjectively well.  

 Participants should be advised not to consume caffeine directly before the user trial where this 
can increase the chance of motion sickness. 

 When recruiting be aware that around 25% of participants may dropout due to motion sickness 
(although some user trial have no dropouts) so recruit more participants than is required to 
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compensate. Females are more likely to drop out compared to males, so recruitment of more 
females may help ensure an equal demographic in the final data set.  

 
Pre-trial 

 Before taking part in the trial, make participants fully aware of the risks including subjective 
discomfort due to motion sickness. Ensure participants have signed a consent form. 

 Increasing self efficacy decreases motion sickness, so explain the simulator positively, where if 
the participant believes they will not get motion sickness, they are less likely to. 

 Acclimatise the participant for at least 5 minutes to the lighting conditions. If possible introduce 
the participant to the user trial inside the simulator so they have time to adapt.  

 The SSQ (Simulator Sickness Questionnaire) by [2] should be administered before the exposure 
to the simulator to capture any baseline feelings. Research has shown a pre SSQ. has no effect 
on likelihood of becoming motion sick and does not prime participants.  

 Participants should be reminded they are free to withdraw and end the study at any time. 
 

During-trial 

 The simulator should vent cold air to the participant, where increased airflow and lower 
temperatures are known to reduce motion sickness. 

 Remind participants to look ahead as much as possible – avoiding looking out the side or rear 
windows as much as possible.  

 The FMS (fast motion sickness questionnaire) can be administered by the researchers to 
capture subjective motion sickness in ‘real time’ [3]. 

 Ensure the intercom system is turned on and advise the participant they can contact the 
researcher at any time to end the study if they become motion sick. 

 Participants should be observed throughout the trial via the in-cabin cameras. Researchers 
should look out for signs of severe motion sickness so they can end the study. Anecdotal 
evidence of motion sickness onset highlights these actions: change in face pallor where 
participants can turn pale, increased sweating on the face, participants raising their hand to 
their mouth or brow, burping. A general ‘path’ to sickness is sweating – burping – vomiting. 

 
Post-trial  

 If participants dropout of the trial due to motion sickness their trial data should not be used. It 
has been shown that people who dropout due to motion sickness have impaired performance 
so their data is invalidated and non representative of their actual ability. Post-trial 
questionnaires relating to the user trial will also be invalidated so should not be used. 

 Participants should complete the SSQ  post-simulator exposure to measure new symptoms. 

 Participants should be welcomed to sit, drink water and recover fully before leaving. 

 Participants should be asked to not mention to any colleagues the nature of the user trial until 
the trial period is over. Discussing the trial with others may impact future results. 

 
Data analysis 

 SSQ scores should be evaluated looking at the difference between pre and post scores to 
eliminate prior conditions (such as a headache or fatigue) from affecting the SSQ scores. 

 If participants withdrew due to motion sickness, no performance data should be used and 
further questionnaires should not be given at risk of collecting unreliable data. 

 For those who don’t dropout due to motion sickness, human performance should be 
considered unaffected, however, transferability of simulator-collected data to ‘real-world’ 
applications is very much dependent on the trial specifics (e.g. risk perception of an AV) 
 
[1] J. T. Reason and J. J. Brand, “Motion Sickness,” Academic Press, 1975.  
[2] R. S. Kennedy, N. E. Lane, N. E. Berbaum and M. G. Lilienthal, “Simulator Sickness Questionnaire: An enhanced 
method for quantifying simulator sickness,” International Journal of, pp. 203-220, 1993.  
[3] B. Keshavarz and H. Hecht , “Validating an Efficient Method to Quantify Motion Sickness,” Human Factors: The 
Journal of the Human Factors and Ergonomics Society , vol. 53 , pp. 415-426, 11 April 2011. 
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Appendix  3 UK AutoDrive One Page Summary 

Motion Sickness and Human Performance – A Follow-up Study with the UK Auto Drive Project ( Project Summary) 

Background: 

Previous research in this EngD has shown how motion sickness can affect various areas of human performance. 

Specifically - cognitive performance, physical performance, physical-visual performance and physical-

cognitive performance were all shown to be negatively affected by motion sickness. This impact may 

invalidate some user-collected data in future user trials where motion sickness is prevalent. Where it is thought 

that motion sickness is likely to affect the validity of user data if they are motion sick. It was important to see if 

effects observed in the 3xD simulator were similar to effects in the UK AutoDrive pods 

Method: 

Human performance can be broken down into a Venn diagram 

(right) considering performance skills needed to drive. Because 

time was a factor only two areas of performance were addressed 

- Cognitive performance, where driving cognitive performance 

is required for route planning, appraising danger, contextual 

awareness etc. In addition, Cognitive-Physical performance 

which is the intersection of cognitive skills (as mentioned) and 

physical skills which are required for dexterous interaction with 

HMI and physical manipulation of controls etc. The test used to assess cognitive performance was an N-back 

test - which relied on the participants cognitive ability to remember and add numbers in their head. The test 

used for assessing physical-cognitive skill was a reaction speed test where participants clicked a button when a 

light illuminated, thus depending on cognitive processing speed and subsequent physical response. Both tests 

are pre-validated representative of the specific areas without being impacted by other abilities. Motion sickness 

was measured using the Simulation Sickness Questionnaire (SSQ) so results were transferable to the previous 

simulator study. Participants completed the SSQ (to capture any pre-existing conditions) and completed both 

performance tests (in a random order) when they arrived at the facility. They were then exposed to the pods for 

a standardised time. After exposure participants completed the two tests again (randomised) and another SSQ. 

Results were analysed looking the change in motion sickness and comparing this to the change in task 

performance ability.  

Results: 

There was no statistically significant change between pre and post SSQ scores for the Nausea (N) subscale, 

Disorientation (D) subscale, Oculomotor (O) subscale and total SSQ scores where in all cases P>0.05. Looking 

at the difference between the pre and post cognitive scores there was no difference found (Z=-1.270, p=0.204). 

However, looking at the pre and post physical-cognitive test scores a significant difference was observed - 

t(16)= -0.251, p=0.039. Indicating that there was a significant increase in reaction time scores where the mean 

score pre exposure was 0.299 seconds and the mean post score was 0.317 seconds. There was no statistical 

significance observed between delta SSQ total (i.e., the change in total SSQ score) and delta reaction score as 

determined by the one-way ANOVA (F=0.967, p>0.05). Likewise, there was no significance shown between 

delta total SSQ and delta N-Back (F=1.1998, p=)0.05). 

Conclusion: 

Overall, motion sickness does not appear to be an issue for these UK Autodrive trials, where the design of the 

pod, test track and scenario are all designed in such a way that motion sickness onset likelihood is low. It is 

recommended that motion sickness is continued to be tracked whereby the Motion Sickness Assessment 

Questionnaire (MSAQ) by Gianaros et al. (Gianaros, et al. 2001) can be used in future studies. For real-time 

subjective scoring the Fast Motion Sickness Questionnaire (FMS) (Keshavarz and Hecht 2011) can be used. 

Previous EngD research has validated the effectiveness of the FMS (Pearson’s correlation = 0.620, p<0.001). If 

motion sickness does become more common in future trials then researchers are advised to consider if such 

motion sickness may affect the validity of results, where it is known motion sickness can affect performance. 

As for the performance scores, reaction time was significantly increased for participants. There is no evidence 

this was related to motion sickness, instead it is likely that cold test conditions impacted dexterity and motor 

control or Sopite Syndrome induced through the vehicle motion was a cause. If physical interaction is a 

measured variable in future trials, the impact of such factors should be considered.  
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Appendix  4 Box Plots for Motion Sickness Severity Groups’ Performance Change 

Visual Performance 

 

 

 

 

 

 

 

 

Physical Performance (dominant) 

 
 

Physical Performance (non-dominant) 

 

 

 

 

  



169 
 

Cognitive Performance 
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Physical Visual Performance (non-dominant) 
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Appendix  5  Letter of Contribution From the Automated User Interface Manager 
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Appendix  6 Letter of Contribution From the Interior Sensing Systems Lead Engineer 
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