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Mortality rates differ across countries and years, and the country with the lowest observed
mortality has changed over time. However, the classic Science paper by Oeppen and Vaupel
(2002) identified a persistent linear trend over time in maximum national life expectancy. In
this article, we look to exploit similar regularities in age-specific mortality by considering for
any given year a hypothetical mortality ‘frontier’, which we define as the lower limit of the
force of mortality at each age across all countries. Change in this frontier reflects incremental
advances across the wide range of social, institutional and scientific dimensions that influence
mortality. We jointly estimate frontier mortality as well as mortality rates for individual
countries. Generalised additive models are used to estimate a smooth set of baseline frontier
mortality rates and mortality improvements, and country-level mortality is modelled as a set
of smooth, positive deviations from this, forcing the mortality estimates for individual
countries to lie above the frontier. This model is fitted to data for a selection of countries from
the Human Mortality Database (2019). The efficacy of the model in forecasting over a ten-
year horizon is compared to a similar model fitted to each country separately.
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1. Introduction

Modelling and forecasting mortality is a vital function for government bodies that produce

official statistics. Population projections and life expectancy calculations depend on their

production, and in turn these influence policy on public pensions, health spending, and

planning. Official projections may gain from utilising data from across a range of countries

(see, for example Raftery et al. 2013), as this greater depth of mortality experience may

reveal the long-term pattern in mortality more clearly than any single country alone.

Frontier (or ‘best-practice’) life expectancy, defined as the highest value of national life

expectancy globally, has shown sustained increases over many decades (Oeppen and

Vaupel 2002), and furthermore national life expectancies in different states appear to be

converging (Wilson 2001). The extent to which we can expect these trends to continue in

the long term is subject to debate (Olshansky et al. 2001; Vallin and Mesle 2009; Lee

2019). However, as highlighted by Oeppen and Vaupel (2002), previous predicted limits

to life expectancy have been surpassed not long after they were proposed.
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The regularities in period life expectancy identified by Oeppen and Vaupel (2002) have

obvious utility for forecasting, and a number of authors have taken up the challenge of

producing forecasts based on extending these observed patterns in life expectancy into the

future (Bijak et al. 2007; Torri and Vaupel 2012; Pascariu et al. 2018). However, as Lee

(2019, 70) notes, period life expectancy is “a very particular and non-linear summary

measure” based on the hypothetical experiences of a synthetic cohort, and the underlying

age-specific rates appear to be a more fundamental quantity in the study of human

mortality. The importance of the age-specific force of mortality is underlined by its role in

evolutionary arguments about the ageing process (e.g., Wachter 1997; Wachter et al.

2014). Furthermore, in order to produce population projections, which are often the main

goal of any demographic projection exercise, age-specific rates are needed in any case.

Thus, forecasts based on regularities in life expectancy must also provide some method of

decomposing this summary into age-specific mortality, hopefully in a way that captures

the diversity of patterns in age-specific change in mortality across countries. For these

reasons, we prefer to model log-mortality rates directly.

Oeppen and Vaupel (2002) make it clear that, initially at least, they do not see a

contradiction between regularities in life-expectancy and in age-specific mortality (as

Lee (2019) also points out). In arguing against an imminent limit to life expectancy,

they cite papers by Lee and Carter (1992) and Tuljapurkar et al. (2000) that focus on an

observed stability in improvements in log-mortality as evidence of a steady long-run

stream of improvements. Furthermore, in the supplemental material to their article, they

explicitly state that: “steady rates of change in mortality levels produce steady absolute

increases in life expectancy: This relationship may underlie the linear trend of record

life expectancy”. This reasoning is based on analytical results going back to Keyfitz

(1977) that show this relationship holds under the assumption of rates of mortality

improvement that are constant with respect to age (Vaupel 1986; Vaupel and Canudas

Romo 2000).

However, as Vaupel and Canudas Romo (2003) show, the time-derivative of life-

expectancy is a weighted sum of rates of mortality improvements over age, the weights for

which depend on the current level of mortality. As Aburto et al. (2020) illustrate, these

weights shift to place a greater emphasis on older ages over time, so that at current

Swedish levels of age-specific mortality, life-expectancy increases are mostly dependent

on rates of mortality improvement at 70 and older, whereas in the past, infant mortality and

mortality in middle ages were much more significant.

Historically, rates of mortality improvement have tended to be slower at older ages,

so this shift towards an increased importance of old-age mortality may result in

decelerating growth in life-expectancy. Interestingly, Lee (2019) identifies such a

deceleration in the original series provided in Oeppen and Vaupel (2002), although

only to a relatively small degree. In practice, the difference between linear life-

expectancy growth and constancy in log-mortality improvements appears to be

relatively slight. For instance, Figure 2 in Tuljapurkar et al. (2000) provides projections

of life expectancy at birth derived from mortality forecasts using the model of Lee and

Carter (1992, 791), which assumes linear mortality improvements at each age-specific

rate. The median paths of these life expectancy forecasts are close to linear for the G7

countries.
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2. The Mortality Frontier

The model presented in this article relies on the concept of a mortality frontier; a schedule

of mortality rates that represents the best achievable outcome by a national population at a

given point in time, as determined by existing constraints provided by technologies, social

and political norms, economic factors and population histories. Such a concept is

necessarily hypothetical, in that one can always imagine ways in which such a limit could

be breached. However, this idea of ‘best-practice’ mortality is widespread in the literature

on mortality (Oeppen and Vaupel 2002; Torri and Vaupel 2012; Pascariu et al. 2018; Alho

2019), and our usage in this article differs only in that we apply it to underlying log-

mortality rates and not to life expectancy.

To make this concept more concrete, we consider the frontier as a mortality surface that is

lower than, but as close as possible to, the force of mortality for all national populations of a

reasonable size. As the force of mortality is an unobservable quantity, any attempt to estimate

this frontier will be imperfect, but we show that such a concept may have utility for the

purposes of forecasting. Although in common with other authors (e.g., Vallin and Mesle 2009)

we focus on relatively large national populations to identify this mortality frontier, there is

nothing fundamental about this level of analysis in the study of mortality. Small-scale

subdivisions of populations would no doubt result in frontiers exhibiting lower mortality, to

the extent that factors that might determine mortality differ between these sub-divisions.

This effect was noted by Vallin and Mesle (2009) and Bengtsson (2019), who point out

that low historical mortality in New Zealand is likely in part due to a small population

subject to positive selection via the process of migration. However, national populations

are the primary focus of mortality modelling for official statistics agencies, so we focus on

this level for pragmatic reasons.

A number of explanations exist as to why consistent declines in the hypothetical

mortality frontier (whether defined at the level of mortality rates or life expectancy) occur.

Oeppen and Vaupel (2002, 1029) describe a “regular stream of continuing progress”

resulting from an “intricate interplay of advances in income, salubrity, nutrition, eduction,

sanitation, and medicine”. In the supplemental material to their article, they highlight that

as mortality at younger ages drops, scientific and governmental attention and the resources

brought by continued economic growth can be focussed on maintaining progress at older

ages. Oeppen (2019) expands on this theme with reference to a model that seeks to

describe the relationship between national income and life expectancy at each time point

through a technology function that describes the ‘price’ of a given level of mortality,

deviation from which is determined by the particularities of the history and institutions of

specific countries. Bengtsson (2019) also highlights that as with technological progress in

economics, we might expect a penalty for innovators in terms of future progress, as they

are unable to borrow ideas from more advanced neighbours. He notes that a repeated

pattern, whereby particular countries accelerate to take the lead but subsequently slow

down, could result in a long-run linear frontier trend.

Many authors highlight that the exact reason as to why mortality improvements should

be linear is uncertain (Vallin and Mesle 2009; Lee 2019; Bengtsson 2019). However, it

seems that there are enough potential explanations for us to seek to employ consistent

regularities in frontier mortality in the pursuit of better projections.
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This article employs the Bayesian generalised additive mortality model of Hilton et al.

(2019) to estimate frontier mortality rates and project them forward at the long-run rate of

log-mortality improvement, modelling individual country mortality schedules as

deviations from this frontier experience. Such an approach appears to be at odds with

some recent work in the literature, which is concerned that forecasts based on the

assumption of constant log-improvement systematically under-predict life-expectancy

(Bohk-Ewald and Rau 2017; Bergeron-Boucher et al. 2017, 2018). This is not necessarily

the case, as our model only assumes this regularity for the frontier. As individual countries

‘catch up’ with the mortality frontier, accelerations in their rate of mortality improvement

are expected (Bengtsson 2019). The next section examines empirical evidence for linear

declines in frontier log-mortality.

3. Descriptive Analysis

In order for such an approach to be suitable for mortality forecasting, we hope that frontier

mortality does display the expected regularities. The Human Mortality Database provides

a collection of mortality data spanning a wide range of developed countries, which are

collectively ideal for examining the behaviour of the mortality frontier (Human Mortality

Database 2019). Mortality data are typically defined in terms of the central mortality rate

mxt ¼
Dxt

Rxt

;

where Dxt denotes the number of deaths of individuals aged between x and xþ 1 during

year t, and Rxt is the exposure to risk during of the same group over that period, measured

in terms of person-years lived. Ages may range from 0 to some maximum age X, with the

latest year denoted by T. We define the empirical ‘frontier’ as the best (lowest) mortality

rate at each year and age among all countries for which data are available:

m*
xt ¼ mincðmxtcÞ;

where c indicates a particular country. Figure 1 plots the natural logarithm of empirical

frontier mortality for females at forty-year intervals from 1816 to the present day. We can

see from this plot that log-mortality appears to have declined more quickly over the last

century than over the preceding 100 years, and furthermore, the rate of decline varies for

different ages. Additionally, we can see that empirical frontier log-mortality is not smooth;

considerable variability is observed for the youngest ages in particular, where death counts

are low and random variability plays a greater role. Any proposed frontier model should be

able to take into account these features of the data.

The pattern of mortality frontier improvement factors is an important consideration for

modelling. Restricting ourselves to more recent years, we can observe the pattern of

decline in empirical frontier mortality over time for particular ages in Figure 2. According

to a quick observation, it would appear that such declines have been relatively linear since

1960.

Also of interest is the extent to which different countries contribute to the mortality

frontier. Figure 3 plots tallies for each country of the number of individual age-specific

mortality rate observations that form part of the empirical mortality frontier. The
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breakdown of these observations by age-group are also recorded. It is clear that although

Japan and Norway are the biggest contributors, the frontier is not primarily made up of

observations from one country. This suggests that we may be able to make gains in

estimating the frontier with a model that uses information from multiple countries. Some

of the countries identified as contributing to the frontier may seem surprising. For instance,
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Fig. 1. Empirical frontier mortality for females in selected years. Human Mortality Database.
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Scotland contributes many observations to the frontier between ages 0 and 40, while

England contributes very few, despite the latter having higher life expectancy over the

period considered. This is because Scotland’s much smaller population means that random

variation is more likely to result in observed mortality rates that are very low, even if on

average, rates are higher than for many of its peers. This also may explain the prominent

contributions of other smaller countries such as Ireland, Finland and New Zealand to

frontier mortality at young ages. This observation provides more motivation for a model-

based approach to estimating frontier mortality; simply using the best observed rate for

each year and age will cloud our understanding of the long-term structural changes

associated with declining frontier mortality. We can therefore make a distinction between

the empirical mortality frontier and a hypothetical frontier that we wish to model.

The extent to which levels of frontier mortality improvement have persisted over time is

also worth examining. Mortality improvement is typically measured using log mortality ratios

(or improvement factors), defined as log
mx;t

mx;t21

� �
¼ logðmx;tÞ–logðmx;t21Þ. Figure 4 displays
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the average age-specific log mortality improvement ratios base on linear models fitted to data

for each decade since 1960, smoothed using local weighted polynomial regression. While

ages below 30 display low counts and are more likely to be subject to noise, ages from 40

onward are concentrated in a band around –0.02, particularly in the period since 1970.

This empirical evidence supports the suggestion that there may be some utility in

modelling and forecasting mortality with reference to the frontier defined for log-

mortality. Model-based techniques can help us better extract a representation of the

mortality frontier from the empirical noise of detailed and varied cross-country data. The

next section examines existing approaches to mortality modelling, with particular focus on

models that borrow strength across countries and that involve ‘best-practice’ mortality.

4. Models of Mortality

There are various different approaches to the modelling of mortality, of which Booth and

Tickle (2008) provides an extensive review. Mortality is the demographic component

most amenable to forecasting; unlike migration and fertility, both the age pattern of the

rates and the direction of change has remained steady over a very long time horizon. A few

key approaches to mortality forecasting are highlighted in this section. One strand of the

literature is based on the idea of reducing the dimensionality of the problem by identifying

leading principle components of the matrix of log-mortality rates and using these for

forecasting. The seminal paper in this area is Lee and Carter (1992). Their method

decomposes the centred log-mortality rates into a time index describing the overall rate of

mortality decline and a vector of age-specific factors describing the rate of decline of each

age-specific rate relative to this index, so that logðmxtÞ ¼ ax þ bxkt. The vectors b ¼

ðb0; b1; : : :; bXÞ and k ¼ ðk1; k2; : : :; kT Þ correspond to the first principal component of the

centred log-rate matrix, and can therefore be estimated using singular value

decomposition. Since only the index kt varies over time, the forecasting problem is

much simplified. Typically, simple time series models suffice for kt, and in particular the

random walk with drift has been found to perform well. A wide of extensions of the Lee-

Carter model have been proposed, a testament to the simplicity and efficacy of the model

(e.g., Lee and Tuljapurkar 1994; Booth et al. 2006; Li et al. 2013). Hyndman and Ullah

(2007) provide an extension of the Lee-Carter model from within the functional data

analysis framework, allowing for more than one principal component to be employed in

forecasting, and for the smoothing of the age-profile of mortality decline.

From a different perspective, Currie et al. (2004) employ two-dimensional penalised B-

splines to capture log-mortality rates, allowing considerable flexibility in the shape of the

mortality surface. Forecasting is possible through the interpretation of the smoothing

penalisation of basis function coefficients as a time series model, allowing basis function

coefficients for new periods to be generated. Also employing penalised B-splines, Hilton

et al. (2019) fit generalised additive models in order to capture smooth age, age-specific

improvement, and cohort components together with a period effect capturing deviations

from the linear trend (for which roughness is deemed appropriate). Taking a more general

view, Cairns et al. (2009) describe a family of models in which log-mortality is considered

as a sum of terms of age, period and cohort effects, possibly including interactions. This

family includes the Lee-Carter model and the model of Currie et al. (2004) as special cases.
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4.1. Coherent Models

Many researchers have attempt to utilise information from multiple countries or

populations to produce better forecasts. This often arises within the context of attempting

to ensure coherence between male and female forecasts, or between mortality forecasts

across many countries. Models that forecast separate populations with constant rates of

mortality improvement can expect to see predictions diverge in the future, to an extent

which is unsupported in the data (Hyndman et al. 2013). Similarly, given that the gap

between male and female life expectancy is narrowing in many countries, separate long-

term forecasts by sex are likely to show a crossover in mortality rates. This seems similarly

implausible given evidence that there may be some biological basis for difference in male

and female mortality and ageing (Luy 2003). By identifying common trends across

populations and allowing individual populations to converge towards such trends,

coherence is ensured. While the trends involved do not refer to the mortality frontier

discussed above, there are many commonalities between the coherent mortality models

and the approach proposed in this article.

Several authors have attempted to produce models that avoid such incoherent forecasts.

Li and Lee (2005) fit the Lee-Carter model to all-country mortality, and specify additional

mean-reverting bi-variate terms that capture divergences from this central trend. Kleinow

(2015) develop this work to include different populations with the same Lee-Carter age

term bx but different time terms. Bergeron-Boucher et al. (2017) also adapt the model of Li

and Lee (2005) to apply to their compositional data (CODA) mortality modelling

framework, where the modelling target is the distribution of life table deaths rather than

the mortality rates themselves. Still working with a principle component framework,

Hyndman et al. (2013) extend the model of Hyndman and Ullah (2007) to target the

product and ratio of sub-population mortality rates, modelling these transformations using

functional principal component time series techniques, and taking advantage of the fact

that these products and ratios are uncorrelated, making uncertainty quantification for

forecasts more straightforward. They find that coherent forecasts improve overall accuracy

in comparison to independently fitted equivalents. Adapting existing models to provide for

coherence is a common approach: Biatat and Currie (2010) provide an extension of the

model of Currie et al. (2004) that allows mortality for two populations to be modelled; the

first using the original model, and the second as the first population plus a gap, comprising

the sum of two one-dimensional splines, one aligned along the age axis and other against

time. Cairns et al. (2011) also consider a two-population model, but using a simple Age-

Period-Cohort model as a test case. They describe and implement various ways of

enforcing coherence in the evolution of period and cohort effects, including cases where

one population is dominant. Enchev et al. (2017) discuss and evaluate a range of different

multi-population models, including the Li and Lee (2005) model, and find that both the

common age effect model of Kleinow (2015) and the Li and Lee (2005) model produce

satisfactory, albeit different, forecasts.

The hierarchical model of mortality feeding into the United Nations World Population

Projections provide an elegant way of ensuring coherence in mortality forecast across the

globe, while also allowing forecasts to be made for countries with incomplete data

(Raftery et al. 2013). The time evolution of life expectancy for each country is modelled
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using a stochastic double logistic function, with the parameters drawn from a global

distribution. Such a model also allows for missing data, an important problem when

modelling mortality in developing countries. Bohk-Ewald and Rau (2017) similarly adopt

a hierarchical Bayesian perspective, but allow age-specific mortality improvements to

depend on time in a linear or exponential fashion, and assume the rates of change and

intercepts of such models are drawn from common global distributions. The extent to

which sub-population forecasts borrow strength can also be specified; Schinzinger et al.

(2016) provide a family of mortality forecasting models deriving from the Lee-Carter

specification, but with mortality improvements rather than mortality rates as the modelled

quantity. This family includes different degrees of overlap between populations in the

models and parameters for their time-varying index, providing for varying degrees of

coherence in the final forecast.

4.2. Frontier Models

As well as attempting to jointly model mortality across countries, one can attempt to

specify a model that describes how the mortality frontier evolves, and describe how far

behind this frontier each individual country is. Bijak et al. (2007) provide population

forecasts for 27 European countries using a mortality model based on the assumption that

frontier life expectancy increases linearly, and that individual countries converge

exponentially toward the frontier with different rates of convergence for males and

females. Similarly, Torri and Vaupel (2012) model both frontier life expectancy and the

gap between such life expectancy and that of individual countries. The gap is modelled

using a logarithm transform to ensure countries always remain below the frontier, and

various time-series models are applied to the gap, including the discrete geometric

Brownian motion and the discrete geometric mean-reverting process. Pascariu et al.

(2018) present a ‘two-gap’ mortality model, which considers both the gap between the

female frontier life expectancy and the equivalent value for any particular country, and the

gap between female and male life expectancy in that country, allowing for coherence both

between and within countries. Bergeron-Boucher et al. (2018) are concerned with the gap

between male and female mortality, and provide a model that constructs a forecast of

female mortality, and then separately forecasts male-female mortality ratios. These papers

provide ample evidence of the potential efficacy of thinking about mortality forecasting in

terms of a mortality frontier. The model presented in this article differs from these

approaches in that it attempts to estimates a smooth frontier mortality profile at the level of

age-specific rates, based on all available data, and jointly estimates positive deviations

from this frontier in a Bayesian hierarchical framework.

5. Model Specification

The model presented in this article employs Generalised Additive Models (GAMs) (Wood

2006) to capture both the frontier mortality surface and deviations from it. GAMs model

target quantities as sums of smooth functions of covariates, with identifying constraints

ensuring such smooths are distinguishable. Hilton et al. (2019) describe a model for

mortality forecasting using GAMs. The logarithm of mortality rates are considered as a

smooth function of age and cohort, together with smooth age-specific improvement factors
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and non-smoothed period effects. Smooth terms are modelled using penalised B-splines

(Wood 2006). The model proposed in this article extends this approach to provide for the

inclusion of a mortality frontier. For the sake of simplicity, cohort effects included in the

model of Hilton et al. (2019) are jettisoned in order to simplify the development of the

model, and an extension of the model could allow their re-inclusion.

Starting from the likelihood, age-specific death counts Dxt are given a negative binomial

distribution, with a parameter exp(f) determining the degree of over-dispersion relative to

the Poisson:

Dxt , Negative BinomialðmxtRxt; expðfÞÞ: ð1Þ

The log mortality rate log(mxt) is then modelled as a sum of frontier mortality term f(x,t), a

country specific term g þ(x,t,c) that is constrained to be positive (ensuring, for the most part,

that all country rates lie above the frontier), and a period effect ktc: For the frontier term,

smooth functions of age are used to capture the overall pattern of frontier log-mortality sb(x)

and the age-specific pattern of mortality improvement factors sb(x), assuming that frontier

mortality declines linearly. This assumption seems reasonable given the evidence presented

in Figure 2, although the distinction between the empirical and modelled frontier should be

stressed (the latter aims to discount random variability as well as incorporating assumptions

about constant rates of improvement). The country-specific term is considered to be a

product of a smooth positive term sc
gðxÞ describing age-specific deviations from the frontier,

and an additional term expðhðx; t; cÞÞ which describes changes in this deviation over time.

The exponent in this factor ensures that the overall country-specific term remains positive

logðmxtcÞ ¼ f ðx; tÞ þ gþðx; t; cÞ þ ktc

f ðx; tÞ ¼ smðxÞ þ sbðxÞt ð2Þ

gþðx; t; cÞ ¼ sc
gðxÞexpðhðx; t; cÞÞ:

The function hðx; t; cÞ describing changes at the level of individual countries can

potentially take a number of different forms. As a starting point, we consider h(x, t, c) to

comprise a single smooth age term interacting with time hðx; t; cÞ ¼ sc
dðxÞt: Thus, the term

sc
gðxÞ can be interpreted as the level of deviation from the frontier at time t ¼ 0; and the sc

dðxÞ

term controls the rate of decline or increase of this deviation. The pace of change with

respect to time slows as the term gþðx; t; cÞ tends to zero, so that country-specific rates

approach the frontier only asymptotically. However, this model assumes that particular age-

specific mortality rates either converge to or diverge from the frontier for particular

countries; the direction of change cannot reverse. The introduction of a quadratic term

sc
lðxÞt

2 rectifies this problem, so that hðx; t; cÞ ¼sc
dðxÞt þ sc

lðxÞt
2.

More varied patterns of deviations from the frontier can be considered by allowing more

flexibility in the specification of h(). Any number of combinations of age, period and even

cohort terms may be included, as long as these are sufficiently constrained so that the other

terms in the model are identifiable. Two particular special cases may be important. Firstly,

we might allow for variations in the pace and direction of mortality change by incorporating

the bi-variate form of Lee and Carter (1992), so that hðx; t; cÞ ¼sc
dðxÞktc. In this case, we

would no longer include the period term ktc; as its function would be subsumed by the new

ktc term. The usual Lee-Carter constraints would be required to ensure identifiability.
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Secondly, an even greater degree of flexibility might be provided by including a two-

dimensional spline term hðx; t; cÞ ¼sc
hðx; tÞ, in the spirit of the model of Currie et al. (2004).

Again, constraints would be required in order to identify such effects. Furthermore, the

introduction of bivariate terms complicates matters both conceptually and computationally.

Preliminary experiments encountered difficulties in estimating these models, although we

do not believe these are insurmountable. For this article, the simpler parametric forms are

retained, although future work may benefit from investigating this link.

All smooth terms are modelled using penalised B-splines (Wood 2006). Separate B-

spline basis functions of age are defined for the frontier mortality term and the country-

specific deviations, allowing a larger number of knots to be used to capture the pattern of

frontier mortality:

smðxÞ ¼ Bf ðxÞm

sbðxÞ ¼ Bf ðxÞb

sðcÞg ðxÞ ¼ BgðxÞgc

sðcÞd ðxÞ ¼ BgðxÞdc

sðcÞl ðxÞ ¼ BgðxÞlc

sc
hðx; tÞ ¼ ðBgðxÞ^BlðtÞÞhc:

ð3Þ

First difference prior penalties are applied to basis function coefficients to ensure

smoothness with respect to age and to guard against over-fitting (Wood 2006; Lang and

Brezger 2004). As in Hilton et al. (2019), the null space of these penalties is penalised

separately to ensure that the resulting prior is proper. The matrix of country-specific basis

function coefficients G ¼ ðg1;g2; : : :;gCÞ; which determine the main deviation term

sg(x), is treated slightly differently. These coefficients are constrained to be positive,

ensuring that the smooth term as a whole is positive everywhere, as all elements of the

matrix of basis functions B(x) are positive. As with other terms, the coefficient matrix has a

smoothness prior applied to each column penalising first differences in the age direction

(Currie et al. 2004), but also double exponential random effect priors applied across each

row, with separate variance parameters. The later prior pulls country-specific deviations

toward zero, in effect ensuring that the frontier remains close to the lowest observed

mortality rates at each age. The full prior specification for G is:

gy ¼ ðgy1; gy2; : : : ; gyCÞ
T

gyc > 0 for all y; c

gyc , Nð0;syÞ

sy , Exponentialð0:2Þ;

ð4Þ

where y indexes a particular basis function in Bg(x).

Hilton et al.: Modelling Frontier Mortality 579



The period effect ktc is a country-specific random walk capturing year-to-year random

variation in mortality caused by factors such as flu and temperature variations. In order to

ensure that the overall time-trends are captured in the other model parameters, the k term

is constrained so that it sums to zero, and contains no linear or quadratic components. The

random walk prior is adjusted to account for these constraints in a similar way to Hilton

et al. (2019). One limitation introduced by specifying the period effect in this way is that it

makes it possible for individual countries to dip below the frontier in the short term. This

problem is mitigated to some extent by the constraints on the period term; these prevent

the country rates from straying systematically below the frontier. Thus, where rates do fall

below the frontier, these indicate short-term aleatory deviations rather than a sustained

trend, and do not undermine the structure of the model. In the examples that follow, period

effects of different countries are considered independent, although the prior correlation

structure could be specified in greater detail, allowing different levels of correlation

between countries, or accounting for geographical or social-cultural factors that might

induce correlation between mortality rates across countries.

In summary, the proposed model has some desirable features. Firstly, it produces

smooth estimates and forecasts of mortality with associated uncertainty. Secondly,

although mortality improvements in particular countries may wane and wax in the short

term (Case and Deaton 2017), the overall global decline in best-practice mortality appears

to be relatively consistent.

This model provides a means of estimating a smooth profile and rate of change for this

frontier mortality. Thirdly, where a particular country has displayed fast decline in

mortality, we anticipate that this growth will slow as that country approaches the limits of

what is currently possible. This model formalises this assumption by ensuring country

mortality is limited by the level of the frontier.

6. Data and Estimation

The Human Mortality Database (Human Mortality Database 2019) was used to obtain age-

specific death and exposure data for 19 developed countries with reasonably large

populations and for which data is available for at least the period 1961 and onward. Only

female data are used in this instance; future work could plausibly consider modelling males

jointly by extending the ‘double-gap’ life-expectancy model of Pascariu et al. (2018) to a

mortality rate context. Infant mortality and centenarians were excluded, although extending

the model to incorporate these age groups should be possible. Data from 1961–2006 is used

to fit the three models: the linear and quadratic variants of the proposed model and

comparator model where each country is fitted independently. Data from 2007–2016 held

back for purposes of assessment. Table 1 provides a list of the countries used.

The frontier and country-specific elements of the models were fitted jointly using the stan

Bayesian modelling software (Stan Development Team 2019). Each model run consisted of

four chains, each consisting of 8000 iterations, with the first half of each chain used to

optimise the relevant sampling parameters and discarded, and additionally the remaining

samples were thinned by a factor of two, to reduce memory usage. Diagnostic measures

suggested that each chain had converged to the target distribution. The four chains were run

in parallel, with sampling taking 37 hours for the frontier model results presented here.
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7. Results

7.1. Frontier Posterior

In this section, model results are presented for the quadratic model variant. Starting with

the frontier model, Figure 5 shows the posterior distribution of the frontier surface defined

by smðxÞ þ sbðxÞt at selected years. These distributions are plotted together with

corresponding empirical log rates for the 19 countries included in the estimation processes.

Each country is displayed in a different colour, although distinguishing individual

countries, observations is not important for the interpretation of the chart. The frontier

estimates lie below, but close to, the vast majority of observed rates. At younger ages,

some, observations lie beyond the frontier. This is to be expected, as the estimated frontier

is supposed to represent the lower limit of the central rate mx;t; but it does not account for

the additional negative binomial uncertainty in deaths. In other words, although the force

of mortality will generally lie above the frontier, random variation in realised death counts

could result in observed rates that lie below it. Thus, the empirical mortality frontier is

distinct from the ‘true’ mortality frontier that we are trying to model. Younger ages are

more likely to display this effect, because mortality is much lower at these ages, and so the

effect of negative binomial uncertainty on observed log-rates is far greater.

It should also be noted that unlike the country-specific deviations, the period effect for

particular yearsktc may be negative, and in some cases this may result in modelled mortality

rates that lie below the frontier. Given that the scale of the period effects is generally small

relative to the deviations, this will only occur for countries that are already very close to the

frontier, and is not deemed to be a significant shortcoming in the model specification.

Table 1. List of country data from

the Human Mortality Database used

in model estimation.

Country name

Australia
Austria
Belgium
Denmark
Finland
France
West Germany
Spain
Ireland
Japan
Netherlands
New Zealand (non-Maori)
Norway
Portugal
Sweden
Switzerland
England and Wales
Scotland
USA
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The final panel in Figure 5 is a forecast for 2016. Again, observations for the majority of

the age range appear consistent with our interpretation of the frontier, although it is

possible that decline in the frontier for young adults aged 20–30 is slightly under-

estimated by the model.

Moving on to the results for individual countries, Figure 6 displays the posterior of

country-specific deviation term sc
gðxÞ by age for a few selected countries, namely France,

England and Wales, Japan, and Norway. Results for all countries are provided in the

supplementary materials. This term defines deviations at the intercept of the time index
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Fig. 5. Posterior distribution of frontier mortality, selected years. Plotted data points represent all observations

in a given year; colours denote countries.
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Fig. 6. Posterior distribution of country-specific deviations at the intercept of the time index for selected

countries.
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variable t. For fitting, this index is centred and normalised, so the deviations displayed

correspond to the distance from the frontier in the middle of the fitting period 1961–2006

(about 1983). One can see that England and Wales approach best-practice mortality for

young adults, but are further away at age 60. In contrast, Japanese mortality is very close to

frontier from ages 30–60, while French mortality appears to take the lead around age 60.

Knowledge of the extent of deviations may provide useful information for government

bodies and service providers. If a particular country appears to be lagging behind in best-

practice mortality at particular age groups, this may provide a useful target for future

interventions. Comparing the speed of convergence towards the frontier with similar

countries may also provide useful benchmarking information.

A key question is how effectively the model can fit observed data and predict future trends

in mortality. For illustrative purposes, we display posterior distributions for particular age-

specific rates across time for England and Wales in Figure 7. Empirical rates are plotted as

red dots, while the beginning of the forecast period is indicated by a black horizontal line.

The posterior mean for each age-specific rate lies above frontier mortality boundary. Most

empirical observations lie within the 90% credible interval, both over the fitting period and

for the forecasts, indicating that the model does a reasonable job at capturing our uncertainty
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about the data. There is some evidence that our forecasts are overly optimistic about the

extent to which mortality for England and Wales will decline towards the frontier around

age 70; here the last few observations fall outside the predictive interval.

Of course, a more thorough examination of the model is needed to decide its efficacy.

Extensive plots for all countries can be found in the supplemental material. It is evident that for

the quadratic model in particular, some countries display unrealistic forecasts at particular

ages; the cause of and potential remedy for this issue is discussed in Section 8. For the purposes

of formal assessment, root-mean squared error (RMSE) and empirical coverage (the

proportion of observations falling within the posterior interval of a given probability) were

calculated over the forecast period 2007–2016 for all countries. RMSE was calculated using

the mean of the posterior rate for each forecast year and age as the relevant point estimates.

One goal of the assessment is to provide evidence that including information about the frontier

is useful for forecasting. To this end, a series of models were fitted to each country

independently that included only smooth age, age-specific improvement, and period terms:

logðmxtÞ ¼ smðxÞ þ sbðxÞt þ kt:

Thus, we can compare the forecast performance of the model in which country forecasts are

independent (labelled ‘Independent’ in subsequent plots) with variants of the frontier model

we are proposing. Specifically, we investigate two different choices of the hðx; t; cÞ function

determining the change in country mortality relative to the frontier:

h1ðx; t; cÞ ¼ sdðxÞt ð5Þ

h2ðx; t; cÞ ¼ sdðxÞt þ slðxÞt
2: ð6Þ

These are referred to as the linear and quadratic models respectively. To give a clear idea of

whether these variants are doing better than the comparator independence model, Figure 8

displays the difference between RMSE for the variants and the independence models for each

Australia
Austria

Belgium
Denmark

England and Wales
Finland
France
Ireland

Japan
Netherlands

New Zealand (non−Maori)
Norway
Portugal
Scotland

Spain
Sweden

Switzerland
USA

West Germany

−0.002 0.000 0.002 0.004 0.006

RMSE versus independence

C
o
u
n
tr

y

Model

Linear

Quadratic

Fig. 8. Difference between RMSE of frontier model variants and a similar model fitted independently.

Note: The data here does indeed refer to (the geographical region of) the old West Germany. The Human

Mortality Database maintains a separate time series for this region. It is used here because it allows the use of a

consistent series going back to 1946, which allows more reliable estimates than would be possible if only data for

the unified country from 1990 onwards was used.
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country. If this value is negative (to the left of the axis at zero in the chart), it indicates that the

variant model performs better. If it is positive, the reverse is true. The assessment reveals that

for 13 of the 19 countries, the quadratic model has a lower RMSE over the forecast period than

the independent model. For the linear model, the results are closer: it is preferred by this metric

over the independence model in 11 of 19 cases.

The accuracy of point estimates are not the only relevant area of assessment.

Quantification of uncertainty in forecasts is important in managing longevity risk, and so the

extent to which observations fall within forecast intervals is also important. Figure 9 provides

the proportion of observations that fall within the central 90% predictive probability interval.

Ideally, this value should approach 90%, indicating that forecast uncertainty appears well

calibrated. However, given that for each country we only observe one correlated set of rates

(over the period 2006–2016), this proportion does not correspond exactly with the

frequentist interpretation of coverage, which relies on independent replications of the same

experiment. Therefore, we must not over-interpret the reported empirical coverage statistics.

In general, the results are encouraging. A majority of all models have empirical coverages

ranging between 80% and 95% for the 90% interval. The quadratic model has five

observations with coverages below 80%, compared to five for the independent model and

seven for the linear variant. The United States, Denmark and Spain appear to have patterns of

recent mortality decline that are difficult to capture for all models. The quadratic model

appears to be the better performing model overall based on these metrics, although it appears

to perform particularly poorly for both RMSE and coverage in the case of the Netherlands.

8. Discussion

This article has set out a model of mortality that estimates the evolution of frontier

mortality as a set of smooth rates, and then considers individual countries as deviations
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Fig. 9. Proportion of observations falling within 90% predictive interval for the independent model, and linear

and quadratic variants of the frontier model.

Note: The data here does indeed refer to (the geographical region of) the old West Germany. The Human

Mortality Database maintains a separate time series for this region. It is used here because it allows the use of a

consistent series going back to 1946, which allows more reliable estimates than would be possible if only data for

the unified country from 1990 onwards was used.
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from this profile. Frontier mortality is constrained to lie below the modelled force of

mortality for all individual countries, but the prior specification ensures that it remains

close to best-performing countries by penalising the magnitude of the individual country

deviations. Estimates of frontier mortality and the extent of particular country deviations

from this standard may provide useful benchmarking information to public bodies. The

model was fitted jointly to 19 countries, and its performance in short-term forecasting is

compared to a similar model without a frontier component, in which each country was

modelled independently. The frontier model was found to perform somewhat better in

terms of the accuracy of its central forecasts than the independence model over a ten-year

time horizon. These findings suggest that a frontier model has potential for use in

forecasting mortality for a large group of countries, perhaps particularly by multinational

bodies with access to harmonised data from a variety of sources.

Some limitations and areas for future investigation can be identified. Firstly, a longer

time horizon may be required to accurately assess the usefulness of the model. Mortality

forecasts are typically used to compute cohort life expectancies, which require

considerable longer forecasts than have been provided here. Secondly, forecasts for

females only were produced in the examples above. Extending the approach described to

multiple sexes using a ‘double-gap’ model, as employed by Pascariu et al. (2018) for life

expectancy, may have some utility. Thirdly, at present simple linear and quadratic terms

were chosen to describe the evolution of country specific deviations from the frontier.

These may not be the best choices for this element of the model. In particular, over longer

time horizons, the quadratic model may predict unrealistic divergences from the frontier at

some ages in countries where recent stagnation in mortality rates have been observed,

leading in some cases to predicted increases in mortality. Section 5 sets out two possible

alternative models based on Lee and Carter (1992) and Currie et al. (2004) that require

further investigation. Specifying priors on the time-varying elements of these models that

favour mean-reversion will help to ensure forecast means do not diverge from the frontier

over the long term. Finally, a comparison between frontier models and those that provide

for convergence towards a mean trend might be investigated; it may be that such models

produce similar conclusions, or that one or another is more efficacious.
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