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Abstract

Pre-processing techniques were developed for cell identification algorithms. These

algorithms which locate and classify cells in digital microscopy images are important

in digital pathology. The pre-processing methods included image sampling and colour

normalisation for standard Haemotoxilyn and Eosin (H&E) images and co-localisation

algorithms for multiplexed images. Data studied in the thesis came from patients

with colorectal cancer. Patient histology images came from ‘The Cancer Genome

Atlas’ (TCGA), a repository with contributions from many different institutional

sites. The multiplexed images were created by TIS, the Toponome Imaging System.

Experiments with image sampling were applied to TCGA diagnostic images.

The effect of sample size and sampling policy were evaluated. TCGA images were

also used in experiments with colour normalisation algorithms. For TIS multiplexed

images, probabilistic graphical models were developed as well as clustering applica-

tions. NW-BHC, an extension to Bayesian Hierarchical Clustering, was developed

and, for TIS antibodies, applied to TCGA expression data.

Using image sampling with a sample size of 100 tiles gave accurate prediction

results while being seven to nine times faster than processing the entire image.

The two most accurate colour normalisation methods were that of Macenko and

a ‘Näıve’ algorithm. Accuracy varied by TCGA site, indicating that researchers

should use several independent data sets when evaluating colour normalisation

algorithms. Probabilistic graphical models, applied to multiplexed images, calculated

links between pairs of antibodies. The application of clustering to cell nuclei resulted

in two main groups, one associated with epithelial cells and the second associated

with the stromal environment. For TCGA expression data and for several clustering

metrics, NW-BHC improved on the standard EM algorithm.
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Chapter 1

Introduction

Radical improvements in camera technology, huge expansions in storage capacity

and the development of super-fast graphics processing units have turned digital

pathology into a rapidly maturing discipline (Kayser [93]). Digital pathology enables

researchers to extract knowledge from images stored in the resulting repositories

(which may be distributed or centralised).

This thesis analyses image data originating from patients with cancer of the

lower intestine, bowel cancer. Bowel cancer is the third most common cancer in the

UK [28] and occurrences of this cancer in the US [29] follow a similar pattern. In

addition, advanced colon cancer, characterised by metastasis, its spread to distant

sites in the body, has a high mortality rate ([160]).

Data produced by the The Cancer Genome Atlas project (TCGA), are used

extensively in this thesis [89]. TCGA was a project sponsored by the US government

in which the aim was “to profile genomic changes in 20 different cancer types” [167].

Data collection commenced in 2005. In the case of colon cancer twenty-four sites

from across the USA contributed data which included clinical and demographic data

as well as results of sequence analysis, i.e. the determination of DNA coding and

protein expression data which measured the presence of proteins in tissue. Although

the TCGA project has been wound up the TCGA data repository remains accessible

via the Genomic Data Commons portal [131] which as of October 30th 2020 con-

tained data from “67 projects covering 68 primary sites, 23,399 genes and 3,376,130

mutations from over 84,000 cases” [64].

Bowel cancers are also referred to as colorectal cancers or CRCs. Data related

to colorectal cancers that have been extracted in surgery are stored in the TCGA
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COAD (colon cancer) and READ (rectal cancer) data collections.

Much of this thesis is devoted to the analysis of diagnostic images from

TCGA, images of cancer tissue that have been captured using high-definition digital

microscopes. The aim has been to identify the individual cells in an image using

digital techniques and to uncover interesting relationships between cell features and

other variables of interest such as clinical variables (gender, age, pathology scores,

etc.) and molecular data.

This introductory chapter is structured as follows. Section 1.1 contains a brief

overview of the role of pathology in the diagnosis and treatment of colorectal cancer,

focussing on histology, the examination of diseased tissue under the microscope.

The section describes various standard techniques for processing histology images.

Section 1.2 introduces digital histology: the use of advanced devices, software and

computational techniques in histology. The remaining sections address topics covered

in the three substantive chapters of this thesis. The first topic, described in Section

1.3 is the application of sampling to cell identification algorithms. Section 1.4

introduces the second topic, the use of colour normalisation in processing histology

images: the adjustment of colour intensities so that they match specified colour

distributions. Section 1.5 describes the third topic, the analysis of multiplexed images

output by a robot, the Toponome Imaging System (TIS), which applies multiple

reagents to tissue samples. In addition this chapter describes a Bayesian clustering

algorithm and its extension to data with more complex structures. Finally, Section

1.6 summarises the contributions to knowledge made in this thesis.

1.1 Histology - Tissue under the Microscope

This section describes the contents of the first part of Chapter 2, the background

chapter. One of the primary responsibilities of the pathology laboratory is to analyse

tissue and to report on any findings. The tissue may come from a biopsy, whereby

a small sample is extracted from a suspicious location in the body, or from tissue

extracted during surgical excision of the cancer. After surgical excision the tumour

mass and surrounding tissue are sent to the pathology laboratory which then reports

on gross characteristics, such as tumour size and appearance and on results of exam-

ination under the microscope. Both the COAD and READ data sets contain the

results of such analysis.

After laboratory analysis the resulting pathology report is sent to other mem-

2



bers of the medical team. The report is used by physicians for diagnosis and to

decide on treatment options [31]. These include surgery (particularly in the case

of biopsies), chemotherapy, radiotherapy, or even no active treatment - ‘watchful

waiting’ [130].

As well as results generated in the pathology laboratory a typical pathology

report (Ayesha Azam [11]) contains information supplied by the patient’s medical

team: demographic information such as gender and age, plus observations made in

surgery such as the location of the extracted tumour and radiology results such as

the degree of metastasis. Individual contents of a typical pathology report for colon

cancer are discussed in Section 2.3

Figure 1.1: View of normal colon tissue under the microscope. (Ed Uthman [50])

In general, for normal healthy, tissue taken from the gut wall the biological

structures appear well organised: cells are positioned with a high degree of regularity,

and their sizes and shapes are well defined. Figure 1.1 is an example of normal colon

tissue. The empty region at the top of Figure 1.1 is part of the gut lumen where the

waste products are carried. The surface of the gut wall is marked by a single layer of

connected dark cells, a layer which is folded like a part of a glove that has fingers.

In Figure 1.1 there are three fingers that start at the lumen and have their tips at

the bottom of the image. Each of these fingers has darkish purple cells along its

edge. In the three-dimensional volume from which the tissue section was taken these

cells are in a sheet that is one cell thick. The finger-like regions are called crypts
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and they are the place where liquid is removed from the matter in the gut. The cells

forming the surfaces of crypts are mostly epithelial cells.

An important result of microscopic examination which is included in the

pathology report is the cancer grade, an indicator of the abnormality of the tumour’s

microscopic appearance. In normal tissue cells develop from precursor cells called

stem cells: cell differentiation occurs when cells take on their function in an organ,

such as forming part of a layer of skin or fighting infection: the cancer grade is an

assessment of the degree of differentiation seen in the tissue under the microscope.

Low grade cancers are well differentiated and resemble normal healthy tissue while

high grade cancers are poorly differentiated, looking disordered and unlike normal

tissue.

Figure 1.2: Tile from a moderately differentiated tumour (TCGA COAD:Patient
AA-3543, Tile 1490). (Tile numbering is explained in detail in Subsection 3.5.2.)

Cancer grade is described in more detail in Section 2.6, in the background

chapter of this thesis. Here it is discussed in the context of colorectal cancer.

In contrast, to Figure 1.1 the colon cancer tissue shown in Figure 1.2 appears

disorganised and cells tend to be large and irregular in shape. Here the epithelial

cells are only roughly lined up in the shape of crypts. They are clumped together in

some areas and scattered about in others. The tissue displayed in Figure 1.2 is from

the diagnostic image for patient AA-3543 in the TCGA repository. The cancer grade
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assigned to the tissue was “moderately differentiated”. Further note that the term

tile in the caption of Figure 1.2 refers to a region in the diagnostic image which is

defined in detail in Subsection 3.5.2.

Figure 1.3: Tumour Infiltrating Lymphocytes. (Libre Pathology [116])

Figure 1.4: Tumour-Infiltrating Lymphocytes (From TCGA COAD)

Inflammatory cells are cells produced by the body in response to infection or

other threats such as cancer. Figures 1.3 and 1.4 are images of colon cancer tissue in

which tumour infiltrating lymphocytes (TILs) are visible as well as epithelial cells.

A lymphocyte is a type of inflammatory cell that is made in the bone marrow and

is found in the blood and in lymph tissue (National Cancer Institute [128]). Some

lymphocytes make antibodies while others kill tumour cells and help control immune

responses. TILs are lymphocytes that are interspersed among epithelial cells in the

tumour. In Figures 1.3 and 1.4 TILs may be identified by their round shape, dark

with a light-coloured halo.
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Figure 1.5: Tissue Section Showing Fibroblasts - long spindle-shaped cells surrounded
by pink staining (Patient:AA3543, Tile 1067)

Figure 1.6: Tissue Section Showing ‘other’ cells (‘Cell’ Training set: Image 86) (3.3)

So far two categories of cells, epithelial cells and inflammatory cells have

been introduced. Two other categories analysed in the thesis are fibroblasts and a

miscellaneous category of other cells. Figure 1.5 displays fibroblasts from the TCGA

repository while ‘other’ cells are displayed in Figure 1.6. The ‘other’ cells are framed

by black boxes in the figure. Cell types are described in more detail in Section 2.4.
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When pathologists individually assign values to cancer grade the level of

agreement is relatively low. There are usually only three or four different classes in

the grading scheme (see the related discussion in Chapter 2), which also lowers the

accuracy of predictions, but cancer grade does summarise what is seen under the

microscope and is a measure of the severity of the underlying disease.

1.2 Digital Modelling of Histology Images

Since the mid-sixties when Prewitt and Mendelsson [139] applied computerised

image analysis to histology slides much effort has been devoted to the extraction of

meaningful information from such slides. The aim has always been to formulate a

model of the image data, a model which has predictive power.

The term model refers to a mathematical formula which uses input variables

to output predictions. For example, in digital histology the input to the model is

generally an image while the predicted output is some useful quantity, often related

to diagnosis or prognosis. Observe that in the literature the term ‘model’ may also

refer to an algorithm which does the actual calculations.

Early work in digital pathology used hand-crafted models whereby in the

modelling process features of the image are selected for use by experts in the field and

input to a mathematical formula that predicts quantities of interest. The aim may

be to predict quantities for low level tasks such as counting cells or distinguishing

regions of tumour from regions of normal tissue or the objective may be to predict

high level indicators for diagnosis or prognosis. For example Yuan [187] modelled

the spatial distribution of lymphocytes in triple negative breast cancers, finding

a formula that was a predictor of patient survival. This example, where domain

specific knowledge was used to select the variables of interest, in order to identify

cell locations is typical of handcrafted approaches.

Frequently an image processing model breaks the prediction task into feature

identification, followed by the prediction of a quantity of interest using those features.

The features may be low-level quantities such as texture features, edges of objects,

or even colours. High level features may represent complex biological entities such

as cell nuclei. In colon histology not only cells but also other objects are of interest.

These include crypts and regions of tumour and in these cases the output of feature
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identification is a spatial map of these objects.

The map is then summarised in a profile, a set of summary features such as

counts or correlations. In the case of Yuan [187] two summary features were extracted

from each histology image. The first feature was was the number of intratumoral

lymphocytes and was the second feature was the number of cancer cells. These were

combined in a single value: the ratio of feature 1 to feature 2 which could be regarded

as single-feature profile of the patient. In the work just described the patient profile

output by the model was a good predictor of both survival time and the level of

cytotoxic T lymphocyte protein.

More recent work in digital pathology has focussed on Deep Learning, the

application of Convolutional Neural Networks (CNNs) to image processing. A

convolutional neural network is an assembly of processing components which is

designed to take advantage of local spatial correlations in the input data. A CNN

has a form which allows it to use general features, not just pre-selected ones. When

presented with an input object, a CNN passes data through various processing

layers, outputting predictions in the last layer. For example, in the case of cell

location algorithms, the input may be an image of a cell, and the output may be

the cell type. Figure 1.7 is a diagrammatic representation of such a network, used

in Chapter 3. Note that the network is based on the well-known CIFAR-10 image

classifier, available from the Tensorflow web site [10]. In the example shown in

Figure 1.7 input to the model is an image containing an inflammatory cell. The

model processes the input, and a prediction of the cell type is output (e.g. one of

‘Epithelial’, ‘Inflammatory’, ‘Fibroblast’ or ‘Other’.

Figure 1.7: Schematic of CNN Model. The model classifies an image according to one
of the four categories shown on the right. The predicted cell type is ‘Inflammatory’.
Seven processing layers are shown.

To predict the cell type on the right of Figure 1.7 the image on the left is

input to the layer L1 which extracts many small patches from the image, transforms

them, and passes them to the next layer L2. Data passes through the layers of the
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network, and the final layer L7 outputs the predictions made by the network. The

operation of each layer is specified in detail using a collection of parameters, numeric

values which define the transformations applied to the data input to the layer. In

the case of CNNs these parameters are usually referred to as weights. The sheer

number of weights make CNNs very flexible [51] compared with hand crafted models

but determining the best weights to use presents challenges.

1.3 Sampling

Chapter 3 explores the effects of sampling in the CNN prediction process. Most

applications of CNNs use the entire histology image to make predictions. To do this

the whole-slide image is subdivided into tiles using a grid of constant size, the CNN is

applied to each tile individually, and the per-tile results are stitched together in order

to compute the whole-image features. Tiles are typically large enough to contain

hundreds of cells, but small enough so that computations are not too demanding of

memory or processing power.

Deep learning models can be trained and deployed in reasonable time-scales

using the power increasingly offered by inexpensive graphics processing units. How-

ever, using the entire image in prediction remains expensive and any performance

improvements are useful. By using only a small proportion of the image in the

prediction phase of modelling, sampling can improve performance without significant

loss of accuracy. In addition, sampling gives insights into how features of interest

are distributed in the image.

In Chapter 3 two sampling policies, Random Sampling, and Systematic Ran-

dom Sampling were examined. These policies were applied to both the ‘Cell’ identi-

fication algorithm of Sirinukunwattana et al. [157] and the ‘HoverNet’ algorithm of

Graham et al. [71] which segmented an image into regions corresponding to single cells.

After training using a locally available data set the trained ‘Cell’ model was

applied to tiles sampled from diagnostic images that belonged to the TCGA data

repository. The output, a list where each entry was a coordinate pair accompanied

by a classification tag, was not useful without further processing. Instead, it was

necessary to extract profiles from the list, summary features which captured the

distribution of cells within the diagnostic image. In this study straightforward

statistics were used: for each whole slide image (WSI) the average numbers of cell

types per unit area was calculated, a profile descriptive of the WSI.
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Like the ‘Cell’ model, the ‘Hovernet’ model accepts tiles as input. In contrast

to the ‘Cell’ model which outputs cell locations tagged by cell type, the ‘Hovernet’

model outputs a segmentation of the tile into disjoint regions labelled by cell clas-

sification. The network is trained by optimising the detection weights and the

classification weights simultaneously.

Experiments were carried out using with different sample sizes. It was found

for the calculation of profiles, that sampling led to a nine-fold improvement in speed,

with little degradation in performance. This applied to the use of Sysematic Random

Sampling with a nominal sample size of 100 tiles. Systematic Random Sampling was

more accurate than Random Sampling.

As an application, associations between profile values and various clinical

variables were calculated and several of these were found to be significant.

1.4 Colour Normalisation

Chapter 4 describes exeriments with colour normalisation using TCGA data.

Differences in laboratory preparation techniques, including variations in the

stain manufacturing process, and differences microscope software lead to colour vari-

ations in histology images. Although these variations are handled quite easily by the

human eye they challenge digital image processing quite seriously. For example, in

Chapter 4 an experiment with TCGA diagnostic images, the use of raw unnormalised

images for cell classification with the ‘Cell’ algorithm described in Chapter 3, resulted

in an average classification accuracy of less than 40%.

In the TCGA COAD repository, patient data have been uploaded from twenty-

four different sites and the diagnostic images vary markedly with respect to average

colour intensity. It is necessary to cater for such batch effects. Colour normalisation

pushes the input image into the training colour space, where it can be processed

more accurately. Colour Normalisation was used in preprocessing, transforming the

image before it was presented to the ‘Cell’ algorithm.

Two experiments with colour normalisation were conducted, one for cell

detection and the other regarding cell classification.
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Tiles containing cells were selected from ten different TCGA contributing sites,

hand-marked and normalised using five different colour normalisation techniques.

Cell detection, that is the prediction of the locations of nuclei was applied to

the normalised images. The locations of cells were hand marked and compared with

predictions. No improvement was observed, possibly because the cell detection al-

gorithm carried out stain normalisation internally before applying the detection CNN.

In contrast it was found that colour normalisation markedly improved classi-

fication accuracy. However, the improvement was quite site-dependent, indicating

that studies of colour normalisation should include several sites, rather than only

one or two.

‘Naive’ colour normalisation and Macenko stain normalisation were the win-

ning techniques: for each site, the best performing algorithm was one of these two

methods. The computational cost of ‘Naive’ Standardisation is much lower than

the Macenko technique, indicating that this straightforward technique should be

seriously considered for colour normalisation.

1.5 Molecular Analysis

Chapter 5 deals with multiplexed images created by an imaging robot [105]. Input to

the robot, the Toponome Imaging System (TIS) is a tissue section (extracted from a

tumour block in the case of colorectal cancer). The robot contains a caddy (library)

of antigens chemicals that indicate the presence of different types of molecules, partic-

ularly proteins. In successive processing rounds each antigen is applied to the tissue

section and the resulting patterns of adhesion are captured under fluorescent light us-

ing a charge coupled device. Each complete execution of a robot program results in a

stack of images that record spatial maps of the molecules associated with the antigens.

In the thesis analysis of stack data included the following. Pearson colocal-

isation analysis was extended to the multivariate case with Probabilistic Graphical

Models, extracting undirected graphs from the set of image stacks. Partial correlations

are extracted from such graphs: providing better explanatory power than marginal

correlations extracted directly from the covariance matrix. In one application of

graphical modelling the data points were pixels and the features were the per-pixel

intensities of the tags (antigens). In the second application, the data points were cell
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nuclei and the features were average intensities across the cell nuclei.

The second method used to analyse stack data was clustering, applied to

intensity vectors, calculated on a per cell basis. In the case of images classed as

‘normal’ tissue the EM clustering algorithm identified regions which mostly corres-

ponded to crypts and stroma.

The second part of Chapter 5 considered the use of clustering in the analysis

of gene expression data, for proteins used in the TIS stacks. Bayesian Hierarchical

Clustering, BHC was extended from uncorrelated data to modelling correlated data.

The extended algorithm BHC-NW was applied to protein expression data from the

TCGA data repository. Using various clustering metrics BHC-NW performed well,

beating the EM algorithm for Gaussian mixture models on many criteria.

BHC-NW found two significant clusters in the gene expression data; the

smaller cluster being associate with MLH1 underexpression. Comparison of clinical

variables according to cluster found associations with tumour location. For example,

the smaller cluster was associated with right-sided tumours. These results are in

accord with the smaller cluster containing CIMP-high, MSI-high tumours - that

molecular grouping being regarded as significant for outcome and treatment.

1.6 Contributions

In cell identification the role of sampling was explored. For two well known al-

gorithms, ‘Cell’ and ‘Hovernet’ when sampling was used the computational effort

was reduced by a factor of about 9 or 10 without significant loss of accuracy. An

application of sampling to the TCGA COAD dataset found significant associations

between the densities of cell types and various clinical variables.

Colour normalisation was found to be advantageous when determining the

type of a cell, though it did not prove to be useful for cell detection. In addition

to the well-known Macenko algorithm a straightforward implementation without

stain decomposition performed well experimentally. Different sites varied greatly:

researchers should beware of results that apply to only one of two sites.

Molecular data obtained from multiplexed fluoerescence images was analysed

using both probabilistic graphical models and clustering. The BHC algorithm was

extended to data with off-diagonal elements in the cluster covariance matrices and
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to hyperparameter optimisation. The extension BHC-NW was used to cluster gene

expression data from the COAD and READ data sets, outperforming other clustering

algorithms. In addition various clinical variables were found to be associated with

cluster assignments.

Chapter 2 covers the background to the three research chapters.
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Chapter 2

Background

Research made possible by developments in digital camera technology, networking

and GPU technology has led to considerable progress in histology. This chapter

introduces conventional histology and describes recent work in digital histology,

providing the background for Chapters 3, 4 and 5.

The development of digital camera technology has enabled histology slides to

be recorded digitally and the resulting image files can be saved in digital repositories.

Thanks to networking technology, users can view remote images and the information

associated with them, such as markings made in the laboratory to draw attention

to specific regions in images, as well as technical details of the procedures used,

such as microscope manufacturer and pixel resolution. The Cancer Digital Slide

Archive (CDSA) (Gutman et al. [74]) is such a repository allowing TCGA images to

be viewed using a web browser (See the CDSA website [2]).

Digital pathology replaces shelves of glass slides - and the postal service -

with digital storage and networking technology, but its advantages go beyond routine

patient care. With digital pathology it becomes easier to search for interesting

associations between histology images and biological and molecular features. Already,

research using manual pathology has found many such associations, some of which

are described in this chapter.

If it is assumed that the view under the microscope (either direct or digitised)

contains useful information about underlying biological processes then we may explore

different ways of accessing that information. Digital image processing can be used for

many different purposes: it has the potential to identify biological objects such as cells

and crypts, to distinguish abnormal from normal tissue and to identify the molecu-
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lar subtype of a cancer, for example to determine what sorts of mutations are present.

This background chapter is organised as follows:

Section 2.1 is a brief introduction to the biology of colorectal cancer. Standard

histology procedures in the pathology laboratory are discussed in Section 2.2 while

Section 2.3 describes the structure and contents of a standard pathology report.

Section 2.4 discusses the appearance of tissue under the microscope.

Section 2.5 describes various measures that have been found to be useful in

diagnosis, prognosis and in making treatment decisions. Some of these measures, such

as cancer ‘grade’ are already employed in routine pathology (Section 2.6). Others

have been discovered through research but are not in general use.

Increasingly, information about molecular processes is being used in medical

decision making. Section 2.7 describes relationships between mutational data, protein

expression data and colorectal cancer.

Section 2.8 discusses developments in digital pathology: the use of image

processing models which make useful predictions for patient care. Models based on

convolutional neural networks (CNNs) are discussed in Section 2.9. We describe the

structure of CNNs, their use in image processing applications and issues concerning

the training of CNNs. In particular we discuss various optimisation strategies used

in CNN training. CNN models used in cell identification are discussed.

2.1 Colon Cancer Biology

The colon is the part of the gastrointestinal tract which is responsible for absorbing

water from human waste products. Figure 2.1 shows how the gastrointestinal tract

is organised.

The innermost layer of the gut wall is called the mucosa. The mucosa is

surrounded by a layer of connective tissue (the lamina propria). Epithelium can be

seen in the image of the mucosa in Figure 2.2. The epithelial layer is a single sheet

of columnar epithelial cells that are clearly visible in Figure 2.2. Folds in the sheet

take the form of finger-like invaginations called the crypts of Lieberkuhn - about

14,000 per cm2, also visible in Figure 2.2. Figure 2.3 is a diagram of a crypt, dating

from 1892. Note that crypts are also found in the small intestine. The mucosa is

15



Figure 2.1: The Colon [162]

Figure 2.2: Mucosa of the colon. [50]

surrounded by the submucosa and the muscularis externa (the external muscle layer)

while the outermost layer is called the adventitia or serosa. Note that the empty

region in the centre of the tract is called the lumen and is where the waste is carried.

Figure 2.4 shows a section of normal tissue containing crypts. The section

is a transverse cut through the crypts which therefore appear circular in the figure.

The boundary of each crypt is formed by a single layer of epithelial cells. The lumina

at the centres of the crypts are also visible as white coloured regions. Some of the

epithelial cells are goblet cells which are responsible for secreting mucus into the

lumen. The mucus is a jelly-like substance which aids the progress of waste products

through the bowel. The mucus builds up in the goblet cells, in the region between
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Figure 2.3: A Crypt of Lieberkuhn

epithelium and lumen: the region that resembles a cut through an orange.

Most cancerous tumours develop from polyps that form on the inside of the

gut. The majority of polyps are benign and do not form cancers ([80], [1]), but those

polyps that do develop into tumours are characterised by uncontrolled cell division

and proliferation. Less commonly, non-polypoid areas of neoplasia (often associated

with inflammatory bowel disease (IBS)) develop into tumours (Zisman and Rubin

[190]).

If a patient’s symptoms or screening results suggest the presence of colon

cancer, a biopsy may be taken: a section of tissue from a suspicious polyp or from an

area of dysplasia, the abnormal growth of cells. The sample is sent to the pathology

lab for screening. If the pathology report suggests that surgery is needed then the

tumour is removed and the surgical section, (i.e. the tumour and any surrounding

tissue) is preserved. In the pathology laboratory, the tumour is examined to check

how far it has penetrated the bowel: a measurement recorded by the pathologist -

the T stage. See Section 2.3 for more details.

Figure 2.5 is a schematic diagram showing two crypts. The top third of a

crypt contains terminally differentiated epithelial cells which are continually extruded
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Figure 2.4: Normal Tissue Containing Crypts. Original image obtained from Wiki-
pedia contributors [185]

into the lumen [144]. There are three main types of such cell: coloncytes (columnar

absorptive cells also called absorptive enterocytes), mucus-secreting goblet cells, and

enteroendrocine cells.

Stem cells at the bottom of the crypt are responsible for producing these

differentiated cells [96]. They have two main properties: they are able to perpetu-

ate themselves through extended time periods and they are pluripotent : they can

generate differentiated cells of the tissue of origin. The stem cells generate transit-

amplifying (TA) cells that proliferate and differentiate into one of the epithelial

cell types. The exact location of the stem cells is undetermined, but Ricci-Vitiani

et al. [144] state that it is believed that stem cells are: “interspersed among more

differentiated daughter cells” making it difficult to identify them.

Others identify the +4 position in the crypt (i.e cell number four in the crypt

wall, counting away from the bottommost cell in the crypt) as the location of stem

cells [148]. In a normal human crypt there are about 2,000 cells and, it is believed,

about 19 stem cells [96].

Stem cells are responsible for the self-renewal of the crypt and many cell
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Figure 2.5: Colonic crypt organisation. Stem cells are located at the bottom of the
crypts. Upon asymmetrical division, the daughter cells undergoing differentiation
migrate upward to give rise in turns to transit-amplifying (TA) precursors and
terminally differentiated cells. Ricci-Vitiani et al. [144]

processes are involved ([164]) , in particular in the Wnt signalling pathway. Schatoff

et al. [149] state:

“The WNT signaling pathway is a critical mediator of tissue homeostasis and

repair, and frequently co-opted during tumor development. Almost all colorectal

cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many

cases is believed to be the initiating and driving event.”

Colon cancer is one of the best-studied cancers because of studies of hereditary

cases. In the USA such cases account for between 10% and 30% of colorectal cancers

(National Cancer Institute [129]).

Cancer has its origins in the cell nucleus, in DNA. When dangerous mutations

in DNA accumulate, cancer results from unregulated cell proliferation (Munro et al.

[122]).
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There are two theories concerning the genesis of colon cancer: the stochastic

theory and the cancer stem cell (CSC) theory [144]. The stochastic theory postulates

that all cells in the tumour have the potential to proliferate and that tumour growth

results from the accumulation of cell division in randomly selected cells. In contrast,

the CSC theory holds that the colon cancer tumour is hierarchically organised and

only a proportion of cells are capable of supporting tumour growth. In their survey

paper on CSCs [96] state:

“According to the CSC hypothesis, it can be assumed that the first muta-

tional hit occurs in a colonic stem cell located at the crypt bottom that, being

long lived, can accumulate oncogenic mutations over years or decades. Once trans-

formed, mutated stem cells can divide symmetrically or asymmetrically giving rise

to other CSCs and progenitors, which in turn generate other cancer cells devoid

of self-renewal ability. Eventually, the entire niche will be colonised by mutant

stem cells, and the crypt will be filled with their progeny. The proliferating cancer

cells will be subjected to further changes that may result in the progression of cancer.”

The CSC theory postulates that when the entire crypt is full of cancer cells

or their progeny - an event called monoclonal conversion has occurred. In recent

times evidence has been accumulating for the CSC theory [7]. The importance of

CSCs was highlighted in the study by [122]. Five stem cell markers were all detected

in CRC tumours and found to be associated with tumour grade. It was possible

to discriminate between normal tissue, low grade adenocarcinomas and high grade

carcinomas using the markers.

2.2 Colorectal Cancer and Pathology - Biopsies and

Tumour Specimens

A systematic discussion of the pathologic procedures connected with colorectal cancer

can be found in [55]. When a patient presents with indicative symptoms or as a

result of screening and cancer is suspected they may be subjected to a colonoscopy

in which a surgical instrument is used to examine the interior of the bowel. The

examining physician snips any suspicious polyps off and sends the tissue biopsy off

to the pathology laboratory for examination. If the decision to operate is made, and

the tumour is removed from the patient it is sent to the pathology laboratory for

processing and examination.
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The glass slides used in histopathology are produced by a sequence of standard

operations. The first step is to place the tissue in a chemical fixative such as formalin

in order to prevent decay. The sample is then progressively dehydrated with the

use of alcohol, before being infiltrated with molten wax, then cooled. Finally, the

wax block is sliced with a piece of equipment called a microtome (Figure 2.6) and

selected tissue sections are placed on glass slides. Manual microtomes require skilled

operators, although more recent models have automated settings.

Figure 2.6: Microtome (Veterinary Pathology [178])

The tissue sections are nearly transparent in appearance, and for purposes of

examining cellular structures they are stained with reagents that react differently with

different molecules, hence cellular components. In the most common type of staining,

H&E staining, a combination of haemotoxilyn (H) and eosin (E) is used. Haemotox-

ilyn stains nuclear material dark blue, and eosin stains cytoplasm and extracellular

connective tissue pink. A cover slip is placed over the stained tissue slice and the glass

slide is stored for later analysis. Subsequently the slides are referred to as H&E slides.

Pathologists examine the slide under the microscope, and prepare reports

for the rest of the medical team. These findings feed into decisions concerning

treatment options: decisions to be made by the clinical team responsible for the

patient. Experts extract useful information rapidly in these routine examinations.
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Procedures for the production of digital images from tissue sections are well-

defined, but differences in materials and manual operations can result in substantial

variations in the appearance of the images, posing significant challenges for auto-

mated methods: hence the discussion here.

The pathologist examines the tissue sections under the microscope. Where

the microscope includes a camera, the slide may be photographed and the resulting

image stored, alongside other information concerning the patient.

Figure 2.7: Microscope (Veterinary Pathology [178])

2.3 The Pathology Report

The pathology laboratory’s post-operative report is used for diagnosis and prognosis,

and to inform decisions regarding future treatment. Table 2.1 outlines the structure

of such a pathology report - information kindly provided by Ayesha Azam [11]. The

report outlined here is applicable to colon cancer, issued after laboratory analysis

of a surgically extracted tumour. Note that besides items obtained by microscopic

examination, other information is also present, some of which is provided by sources

outside the laboratory: for example the radiology department usually contributes

information on metastasis.
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Note that the items in part A (clinical information) include demographic

variables and the patient’s clinical history:

“The clinical history includes the location of the tumour in the body, because

it is known that left-sided and right-sided cancers have different behaviours.” [11]

Part B records details of the surgical procedure.

In Part C, the results of macroscopic examination (measurements taken using

the naked eye) are recorded.

Part D includes the results of microscopic examination. According to [11]:

“Part D includes our findings based on histology, the examination of slides

under the microscope (or digital images). Mostly in the form of a synoptic report

which includes items (a) to (j).”

If the growth is confirmed to be a colorectal cancer it is categorised: there

are two main categories adenocarcinomas and mucinous adenocarcinomas as well as

rarer types of cancer such as signet ring cancers. This standard WHO classification

is recorded as item (a).

Part E is the final diagnosis, including the TNM components, which are

described in Subsection 2.6.1.

Most of the fields in TCGA clinical data are standard and map directly onto

the structure in Table 2.1.

Various components of the pathology report are discussed in more detail in

later sections of this chapter.
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Table 2.1: Structure of Pathology Report - After Ayesha Azam [11]

Part Description Comments

A Clinical information

a Patient Details e.g. patient name, age, gender,

hospital ID, lab ID,

NHS number, date specimen sent.

b Clinical History Can include information about previous

biopsy diagnosis, site of tumour,

preoperative stage of the tumour,

any pre-operative chemotherapy

or any other co-morbidities

B Specimen Details

a Type of procedure e.g. right hemicolectomy or other types

b Nature of specimen e.g. small bowel, large bowel, caecum

C Macroscopic description

a Site of tumour in

the specimen

b Maximum tumour diameter

c Distance to the nearest Longitudinal and circumferential

resection margin

d Any tumour perforation As it will upstage the tumour

D Microscopic description

a Tumour type WHO classification. Such as:

adenocarcinoma,

mucinous carcinoma,

signet ring carcinoma

b Tumour grade Higher grade related to poor prognosis

c Extent of local invasion Helps decide pT

d Distance of the tumour from To assess whether the tumour has

resection margins been completely taken out or not

e Any vascular/peri-neural/ Adverse prognosis indicators

lymphatic invasion

f Tumour deposits Status predicts prognosis

g Tumour budding

h Lymph nodes examined

i Metastasis Any histological evidence

of distant metastasis.

j TNM stage Recorded as pT, pN, pM

E Diagnosis pT, pN, pM
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2.4 The Slide under the Microscope

In histology images there are many objects that pathologists have identified as useful

biological entities [62]. Under the microscope these are recognisable at varying resolu-

tions. For example at coarse resolutions regions of tumour, stroma, and fat are visible.

Regions of tumour are usually purple in colour with lighter-coloured tree-like

structures traversing them. Stroma is tissue which supports the functioning cells in

an organ and is light pink in colour with cells contributing to its grainy texture. Fat

is usually whitish in colour. Note that the term Tumour Microenvironment (TME) is

often used interchangably with the term ‘stroma’ to emphasise the role of non-cancer

cells in the vicinity of tumour cells (Chen and Song [34]).

At higher magnifications, crypts or distorted variants can be distinguished,

as illustrated previously in Figure 1.1. The appearance of crypts is important in

cancer grading, discussed below.

As the microscope’s magnification is increased individual cells come into view

[62]. For example, in digitised slides from TCGA, at maximum magnification each

pixel is nominally 0.25 micrometres in width. This magnification is termed 40X .

The magnification of 20X has pixels which are 0.5 micrometres in width. (Note that

these numbers are approximate, and in the TCGA data, the actual pixel widths vary

by a few percent from the nominal value)

In this thesis we concentrate on cells, the loci of most biological activity.

Under the microscope many different types of cell are visible, but in practice the

four categories of cells mentioned in the introductory chapter are adequate for many

purposes. The following subsections discuss these in more detail.

2.4.1 Epithelial Cells

Epithelium is one of the four basic tissue types in the human body [62]. (The others

are connective tissue, muscle and nervous tissue.) Epithelium is made up of epithelial

cells and is present as sheets of contiguous cells such as skin or as glands. Crypt

boundaries are composed of epithelium.

There are three principal shapes of epithelial cell: squamous, columnar, and

cuboidal. These can be arranged in a single layer of cells as simple epithelium or in

layers which are two or more cells deep. Functions of epithelial cells include secretion,
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Figure 2.8: Tissue Section Showing Lymphocytes - Dark circular nuclei are surrounded
by bright rings (AA-3864, tile 1504)

Figure 2.9: Tissue Section Showing Fibroblasts - Long spindle-shaped cells surrounded
by pink staining (AA3543, tile 1067)

selective absorption, protection, transcellular transport and sensing.

As already discussed in the introduction, in normal tissue, the crypts are

regular and well-defined. Figure 2.2 is of normal tissue. It is a longitudinal view of
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Figure 2.10: Tissue Section Showing ‘Other’ cells (‘Cell’ Training set: Image 86)

crypts while Figure 2.4 is a transverse view of normal tissue containing crypts. In a

colon tumour, it is usually, though not always, possible to make out structures that

resemble crypts (Figures 2.13 and 2.14).

2.4.2 Inflammatory Cells

White blood cells are associated with inflammation which is the body’s natural

response to cancer. Lymphocytes are inflammatory cells that are produced in lymph

nodes. Lymphocytes are darker than other cells, with dense round nuclei. According

to [62]:

“The peripherally situated cytoplasm stains a light blue and contains azurophilic

granules.”

Inflammatory cells are mostly less than about 10µm in diameter. A region

occupied nearly entirely by lymphocytes is shown in Figure 2.8.

2.4.3 Fibroblasts

Fibroblasts are spindle-shaped cells found in the stroma. Because the image is a

two-dimensional section of the tissue, a fibroblast may appear elliptically shaped in

the image. Figure 2.9 displays fibroblasts. They appear as long purplish-grey cells

against pink-coloured stroma. Note that Figure 2.9 also contains a region occupied

by inflammatory cells similar to those in Figure 2.8. Fibroblasts are discussed in
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more detail in 2.6.6.

2.4.4 ‘Other’ Cells

In the analysis described in later chapters, the category ‘Other’ is used to assign a

category to cells not already classified as one of the three main types. In this analysis,

these cells comprise a small percentage of all cells: about 2%. Figure 2.10 contains

‘other’ cells. Ten ‘other’ cells are highlighted, surrounded by black squares. They are

mostly dark coloured like inflammatory cells, but in Figure 2.10 they generally are

smaller, and the surrounding ‘halo’ is not present.

2.5 Grading

Figure 2.11: Normal colon tissue

It is generally accepted that the appearance of tissue under the microscope is

a significant predictor of outcome, and the examining pathologist routinely records

the appearance of the biopsy material or surgical material as the tumour grade. In

normal tissue the crypts are easily visible, and their structure is orderly. It is easy

to assign cells to their type. In contrast, in late-stage cancer, the crypt structures

are not discernible, or, if they can be made out, they are very distorted.

Grade is assigned a value on a discrete scale by the pathologist. Cancers that

resemble normal tissue are graded as well differentiated or equivalently as low grade.

The image in Figure 2.12 is an example of a low grade cancer. The crypts are clearly

visible and well formed. Low grades are associated with less aggressive cancers and

good outcomes for patients.
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At the other end of the scale are cancers that look highly abnormal, high

grade cancers. Figure 2.14 is a region sampled from a high grade whole-slide image.

Crypts are visible, but deformed in appearance. The WHO grading scheme of 2010

defines three categories of differentiation: well differentiated, moderately differentiated

and poorly differentiated [23]. An example of moderately differentiated tissue can

be seen in Figure 2.13. The labels are defined in terms of the percentage of the

image with gland formation. Swapping between categories when referring to them

can be confusing, because the maximum value of one labelling set, say ‘high grade’

corresponds to the minimum value of the other: ‘poorly differentiated’.

The latest WHO guidelines [126] use the following grades:

Table 2.2: WHO Grading Guidelines

Grade 1 Well Differentiated

Grade 2 Moderately Differentiated

Grade 3 Poorly Differentiated

Grade 4 Undifferentiated

In the UK the WHO grades are routinely combined, with Grades 1 and 2

together and Grades 3 and 4 together [24].

Manual procedures are slow and the time of a fully-trained pathologist is

expensive. In contrast, digital image processing is fast and cheap to operate. If

digital pathology can capture useful relationships between computable features of

the histology image and clinical variables of interest then these relationships can be

used predictively. Thus if a computer can successfully extract information from a tis-

sue sample then automation has clear benefits beyond mere data capture and storage.

Unfortunately the assignment of tumour grade is a subjective process, res-

ulting in low levels of both intra-observer agreement and inter-observer agreement.

Chandler and Houlston [30] report on a study in which 104 consultant pathologists

(sampled from the register of the UK College of Pathologists) examined twenty

images of CRC. Intra-observer agreement was measured by asking respondents to

grade the same image on two separate occasions. Both three-grade (as described

in an earlier WHO classification scheme) and two-grade classification schemes were

used. There was substantial intra-observer agreement for both systems (two-grade

system κ = 0.809, three-grade system κ = 0.704). However, the level of agreement

between the pathologists was low : (two-grade system κ = 0.358, three-grade system
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Figure 2.12: Example of a low-grade (well differentiated) colon cancer (TCGA COAD:
Patient AA-3845, tile 1412)

Figure 2.13: Patch from an intermediate grade (moderately differentiated) colon
cancer (TCGA COAD: Patient AA-3543, tile 854)

κ = 0.351). The most disagreement occurred for moderate differentiation. The

individual κ scores were: 0.467, 0.255, 0.358 for the well-, moderately- and poorly-

differentiated categories.
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Figure 2.14: Example of a high grade (poorly differentiated) colon cancer (TCGA
COAD: Patient AA-A02J, tile 3169)

Hassan et al. [78] report a significant relationship between grade and outcome

(P < 0.05) in a meta-analysis that pooled thirty-one studies with 1,900 patients in all.

2.6 Pathological Indicators in Colorectal Cancer

In addition to cancer grade many other pathological indicators have been studied.

Some of these are recorded routinely, while others are still the subject of research.

The American Joint Committee on Cancer (AJCC) recording system defines

standards for the fields in pathology reports. It is updated every few years as new

research findings become available [31], and thus can be regarded as embodying

those indicators which are generally accepted as significant.

For example, Version 8 of the AJCC recording system for CRC included

lymphovascular invasion, both small and large, as well as genomic markers relevant

to precision medicine. Microsatellite Instablity (MSI) status, a molecular measure,

was added to the prognostic factors for use in clinical care. Note that the TCGA

study found that MSI status was a significant genomic marker [167].

In this section we describe various histopathological characteristics which have

31



been studied. These features have been identified as being significant for diagnosis,

prognosis and treatment decisions. In most cases the features were initially identified

using manual pathology - for example cells may be counted under the microscope.

In other cases digital pathology has also been used, for example, in the study of

tumour-infiltrating lymphocytes.

2.6.1 TNM Staging

One of the aims of medical reporting is to produce reports which can make useful

predictions. The patient’s report should be reproducible: ideally the same report

should result, no matter which laboratory or which personnel contribute.

Defined by the American Joint Committee on Cancer (AJCC), the TNM

staging system is the standard system for describing cancer. The TNM version for

colorectal cancer has three stages (T:tumour, N:node and M:metastasis). The T

stage records the extent of the tumour. It indicates how far the cancer has grown

into the wall of the colon or rectum. The degree to which the cancer has spread to

nearby lymph nodes is recorded in the N stage. The M stage relates to metastasis:

whether or not the cancer has spread to distant organs or glands.

In practice, in cases of colorectal cancer, as well as the cancer grade, TNM

stages are also reported as noted in Table 2.1. In Table 2.1 the T, N, M stages are

output as part of the final diagnosis, underlining their importance. A single TNM

stage may be reported by the pathologist, recorded as a combination of the T, N, and

M stages: a summary of the pathological indicators. Corresponding to increasing

severity, the stages used in the TCGA clinical data are recorded as 0, I, IIA, IIB,

IIC, IIIA, IIIB, IIIC, IVA, IVB and IVC.

In the pathology report structure shown in Table 2.1 the T, N and M stages

are recorded separately. The T stage is obtained through the assessment of any

tumour invasion of the bowel wall. Ayesha Azam [11] remarks:

“The degree of tumour invasion into or through the bowel wall will help us

decide the pT stage.”

As for the N Stage, [11] remarks that regarding lymph nodes:

“the number examined and how many involved helps us to define the N stage

of the tumour, higher number of involved LN nodes has been found to be associated
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with higher risk of tumour recurrence.” (ibid.)

Concerning the M stage:

“Pathologists can only base assessment of distant metastatic disease on

submitted specimens. Sometimes the included specimen does include certain aspects

that would qualify for the criteria of distant metastasis. However, in most cases we

are unable to record the M stage in the histology report and this information comes

from the radiology data (e.g. distant metastasis in liver).”

2.6.2 Mucin

In the case of colorectal cancers, the presence of mucin is an important factor. Mucin

is produced as part of normal bowel functions and carcinomas with an excess of

mucin are recorded as mucinous carcinomas in the TCGA COAD data set. Mu-

cinous carcinomas are associated with varying outcomes and with other symptoms.

Symonds and Vickery Jr [163] found that in 132 of 893 colorectal cancer cases the

tumours were mucinous carcinomas and were associated with poorer outcomes. In a

study of 6,475 patients Park et al. [137] found various differences between mucinous

and non-mucinous carcinomas. Patients with mucinous carcinomas were younger,

had larger tumour size and later T stage. Five-year disease-free survival was lower:

76.5% versus 83.2% (p=0.008) as was five-year overall survival: 81.4% versus 87.4%

(p=0.005). In the analysis of colon cancer mucinous histology was an independent

factor (p=0.026).

2.6.3 Venous, Lymphovascular, and Perineural Invasion

Venous, lymphovascular and perineural invasion are all associated with poor out-

comes and their status is recorded in the TCGA clinical data used in this thesis.

Dawson et al. [41] report:

“Venous invasion is a surrogate marker of the risk of metastatic disease.”

In addition the detection of venous invasion in Stage II CRC:

“may prompt oncologists to consider adjuvant chemotherapy.”
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2.6.4 Presence of Epithelial Cells

The number of (epithelial) tumour cells was found to be associated with improved

survival by West et al. [182].

2.6.5 Tumour Infiltrating Lymphocytes

Regarding the different types of cells, inflammatory cells have long been recognised

as important cancer battlers, and their presence is indicative of the on-going fight

within the body.

Tumour-infiltrating lymphocytes (TILs) are inflammatory cells implicated in

killing tumour cells. Their presence is often associated with better clinical outcomes

(after surgery or immunotherapy). Galon et al. [59] found that TIL concentrations

predicted clinical outcomes in colon cancer. Denkert et al. [47] found that the

increased concentration of TILs was associated with improved survival in HER2+

and TNBC breast cancer, but in luminal HER2- breast cancer TILs were negative

for survival. In Figure 2.15 round lymphocytes are clearly visible, both inside and

outside the epithelium.

Figure 2.15: Tumour-Infiltrating Lymphocytes (From TCGA COAD)

2.6.6 Fibroblasts and Stroma

Fibroblasts are associated with the body’s response to injury: the process of wound

healing. Fibroblasts are the most common cells in stroma (Section 2.4), the con-

nective tissue found in organs as opposed to the functional tissue parenchyma. The

role of fibroblasts in cancer progression and metastasis is complex: “with both

cancer-promoting and cancer-restraining actions” according to Kalluri [92] who refers
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to fibroblasts as the “cockroaches of the human body”.

Normally injury to tissue results in a wound healing response: the formation

of scar tissue. The growth of stroma in scar tissue formation is referred to desmo-

plasia [82]. The response to cancer is similar and is called cancer fibrosis or cancer

stroma. The immune cells, capillaries, basement membrane, activated fibroblasts

and extracellular matrix (ECM) surrounding the cancer cells constitute the tumour

stroma [92]. Tumour cells interact with the stroma which is referred to as the tumour

microenvironment (TME). The interaction is two-way: tumour cells can influence the

chemistry of fibroblasts which in turn may change the behaviour of the tumour cells.

Cancer Associated Fibroblasts (CAFs) form a dominant component of the

tumour stroma and are believed to play an important role in tumour progression.

Qian et al. [140] analysed data from patients undergoing screening colonoscopy and

concluded that higher levels of circulating fibroblast growth factor 21 (FGF21) were

associated with increased risks of disease. In an earlier study Tommelein et al. [170]

found links between CAFs and metastasis. In particular they concluded that positive

expression of CAF-related genes was “significantly correlated with distant recurrence

and poor probability of recurrence-free and overall survival”.

A recent review by Chen and Song [34] described the role of CAFs in cancer

pathology. According to the authors current cancer treatments often fail because

the TME surrounding tumour cells may prompt relapse and therapeutic resistance.

The mechanisms favouring tumour progression involve cell to cell contact and CAFs

are believed to be responsible. According to [34]:

“Mechanistically CAFs build up and remodel the extracellular matrix (ECM)

which enables the tumour cells to invade through the TME ... CAFs are larger,

harbour multiple branches of cytoplasm and have indented nuclei under light micro-

scopy.”

There are numerous potential sources of CAFs as well as normal fibroblasts,

including mesenchymal stem cells. At least six are mentioned by [34]. Correspond-

ingly, although there are many biological markers for CAFs none of them uniquely

identifies CAF subpopulations [34]. Tumour cells reprogram normal fibroblasts into

CAFs using molecular mechanisms such as hypoxia, activation of active growth

factors and epigenetic. In turn, CAFs can turn normal epithelial cells into tumour

cells causing tumorigenesis, promote the formation of blood vessels in the tumour,
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and cause metastasis.

There are many molecular markers for CAFs. According to Han et al. [76]:

“Traditional CAF biomarkers such as α-smooth muscle actin (αSMA), g activation

protein (FAP), S100A4, platelet-derived growth factor receptors (PDGFRα/β) or

vimentin have been well-studied despite none of them (being) specific to CAFs.”

Fibroblasts have been proposed as biomarkers for diagnosis and prognosis

in CRC. Tsujino et al. [172] reported that the abundance of myofibroblasts in the

tumour stroma was an indicator of disease recurrence. Vitamin D expression from

CAFs was also positive for survival in [34].

2.6.7 Tumour Budding

A tumour bud is a “single cancer cell or cell cluster of up to four tumour cells”.

Tumour budding has recently been included as an additional prognostic factor in the

Union for International Cancer Control’s TNM classification and in guidelines issued

by the College of American Pathologists (Zlobec et al. [191]). Tumour budding was

not in UK guidelines as of May 2020 [121].

According to Ayesha Azam [11]:

“There is considerable interest in the phenomenon of tumour budding at the advancing

edge of colorectal cancers. There is some published evidence that presence of tu-

mour budding can help predict the risk of metastatic spread in early stage cancers). ”

Tumour buds are associated with poor patient outcomes. Lang-Schwarz et al.

[114] analysed 576 low-grade CRCs and included tumour buds in a metric that they

found to be good for prognosis. Unfortunately they do not quote the regression

coefficients of their statistical model and the contribution of tumour budding to the

metric is not quoted.

2.6.8 Poorly Differentiated Clusters

Poorly differentiated clusters (PDCs) are “malignant clusters with five or more

cells lacking glandular differentiation” [175]. Studies indicate that the presence

of PDCs strongly predicts lymph node metastasis and therefore can be useful in

decision-making about treatments in early stage colorectal cancer.
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2.6.9 Region of Submucosal Invasion

Toh et al. [169] studied 207 pT1 colorectal cancers, looking for high-risk features

associated with lymph node metastasis. Lymph node metastasis was noted in 19

patients (9.2%). These cancers had a significantly wider area of invasion (p = 0.001)

and greater area of submucosal invasion (p < 0.001) compared with pT1 stage cancers

without lymph node metastasis. Differentiation and vascular and lymphatic invasion

were also significant predictors of lymph node metastasis (p < 0.0001, p = 0.039, and

p = 0.018). Submucosal measures were good predictors, but patient numbers were

small in this study.

2.6.10 Serrated Carcinomas

Figure 2.16: Serrated Adenoma (Wikimedia user Nephron [184]).

Another useful morphological feature is the presence of epithelial material

whose section has a serrated appearance. It has been demonstrated by [91] that

“sessile serrated lesions” found in the colon are associated with a distinct molecular
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pathway to colorectal cancer. These lesions develop into serrated adenomas (polyps)

and eventually into serrated carcinomas. Of various molecular groupings associated

with mutational status, Group I, defined by [91] is CIMP-High, MSI-High and as-

sociated with silencing of the mismatch repair gene, MLH1. The group examined

approximately two hundred CRC carcinomas and found that approximately 20% of

them were hyper-mutated. They were strongly associated with CIMP-High status,

MSI-High status and MLH1 silencing. This implies that these carcinomas are associ-

ated with the serrated pathway [167].

Serrated carcinomas are believed to develop from serrated adenomas (Figure

2.16). In an analysis of colorectal cancer data Felipe De Sousa et al. [54] found three

distinct subtypes of cancer distinguished by their molecular profiles. The group that

was associated with poor prognosis was characterised by histological images that

were poorly differentiated. The term serrated pathway refers to the steps by which

serrated adenomas change into carcinomas.

2.7 Molecular Aspects of Colon Cancec

For cancer to develop from polyps and adenomas it is necessary to disrupt the

molecular pathways that prevent its development. By studying familial cases of

CRC, various oncogenes and tumour suppressor genes associated with mutations

were discovered, in particular APC, KRAS and P53 [53].

Molecular findings for the TCGA colon and rectal data sets were published

in [167]. It was found that 16% of colorectal cancers were hypermutated. Hyper-

mutation was strongly associated with MSI-high status (microsatellite instability)

and CIMP -high status (CIMP:CpG island methylator phenotype). Additionally, it

was associated with suppression of the mismatch repair protein MLH1. These are

the characteristics of consensus molecular group 1 described by authors such as Jass

[91] and Guinney et al. [73].

Board [19] contains a discussion of the genetics of colorectal cancer. Much

effort has been devoted to the understanding of the molecular pathways which

underlie carcinogenesis. Aims here are the discovery of both all-purpose therapies

and also targeted therapies. For example in the treatment of colorectal cancer the

use of anti-EFGR drugs is common, but these drugs are not effective for all cancers.
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Guinney et al. [73] describe a large study which aimed to establish consensus

molecular subtypes among different research groups. They remark:

“All groups identified one tumour sub-type enriched for microsatellite in-

stability (MSI) and one subtype characterised by high expression of mesenchymal

genes, but failed to achieve full consistency among the other subtypes.”

Their analysis (six subtyping algorithms and 4,151 patients) found four mo-

lecular subtypes, listed as consensus groups CMS1, CMS2, CMS3 and CMS4.

Regarding CMS1:

“CMS1 encompassed the majority of MSI tumours and had over-expression

of proteins involved in DNA damage repair in reverse phase protein array (RPPA)

analysis, consistent with defective DNA mismatch repair.”

“CMS1 is characterised by increased expression of genes associated with a

diffuse immune infiltrate, mainly composed of TH1 and cytotoxic T cells, along with

strong activation of immune evasion pathways, an emerging feature of MSI CRC1.”

This consensus group had a population frequency of 14%. Tumour character-

istics included a high infiltration of immune cells and an average level of stromal

infiltration.

The CMS2 group was the most common consensus type: 37%. There were

low levels of stromal infiltration:

“We detected more frequent copy number gains in oncogenes and losses in

tumour suppressor genes in CMS2 than in the other subtypes.”

“CMS2 tumours displayed epithelial differentiation and strong up-regulation

of WNT and MYC downstream targets, classically implicated in CRC carcinogenesis.”

The consensus subtype CMS3, was 13% of the population. There was a

low/average infiltration of immune cells accompanied by a low level of stromal

infiltration:

“Notably, CMS3 samples had a distinctive global genomic and epigenomic pro-
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file as compared with other CIN tumors: (i) consistently fewer SCNAs an association

not explained by differences in tumor purity; (ii) nearly 30% were hypermutated,

which overlapped with MSI status; and (iii) higher prevalence of CpG Island Methyl-

ator Phenotype (CIMP) low cluster in TCGA samples, with intermediate levels of

gene hypermethylation.”

“Enrichment for multiple metabolism signatures was pronounced in CMS3

epithelial CRCs, in line with the occurrence of KRAS activating mutations described

as inducing prominent metabolic adaptation. CMS3 tumors displayed similarities

with a ‘metabolic’, genomically stable subtype recently described in gastric cancer”.

Consensus type CMS4, with a frequency of 23% had an average/high infiltra-

tion of immune cells and a high level of stromal infiltration.

“CMS4 samples exhibited a gene expression profile compatible with stromal

infiltration, ... and higher admixture with non–cancer cells.”

2.7.1 Immunohistochemistry

Immunohistochemistry is the experimental discipline of of localising proteins and

other molecules in tissue sections using labelled antibodies and markers. These

are applied as dyes. Some dyes are designed for the visible sprectrum while others

fluoresce under ultra-violet light.

In visible light microscopy the resulting coloured precipitate colours the tissue

where the molecules of interest are located. The reaction pattern is viewed under

the microscope. According to [141]:

“interpretation of IHC results requires familiarity with the expected pattern

of immunoreactivity based on location of the antigen in the cell of interest.”

Galon and Lanzi [58] use immunohistochemistry in work which is based on

the observation that presence or absence of T Cells (immune cells) is associated with

patient survival. A biomarker is created by measuring the quantities of two types of

T cells in the tumour. The antibodies used are CD3 and CD8. Concentrations of

these cells are measured in two regions: the tumour core and the tumour margin.

The biomarker is obtained as follows. Adjacent tissue slices from the microtome

are stained, one slice with CD3, the other with CD8. Segmentation of the into
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core and margin is done automatically, and stain intensity measurements result in

four quantities which comprise the biomarker: < CD3,margin > < CD3, core >,

< CD8,margin >, < CD8, core >. For TNM stages I, II and III the authors report

that the biomarker predicts both disease-free survival time and overall survival time

better than TNM staging.

In fluorescence microscopy fluorophores are added to antigens (the molecules

that lock to entities of interest in the tissue).

Analysis has concentrated on localising proteins to particular cell components

(usually in defined cell phenotypes), starting with isolated single cells and more

recently progressing to images containing many cells. For an excellent overview of

locational proteomics, the study of proteins in their locations, the reader is referred to

[132]. Much work in this field has been carried out by Robert Murphy and colleagues

at Murphy Labs where results from subcellular image analysis have been used to

create models of cellular structure [25].

A good example of the application of machine learning to protein localisation

is described in the report by Boland and Murphy [21]. Fluorescent images of HeLa

cells were used to learn a neural network classifier. Given an image associated with

a new protein, the classifier could extract a set of features from the image and carry

out a calculation which assigned a specific organelle to the image (such as the nucleus,

the nucleoli, the cytoskeleton, etc). The classifier is obtained from a training data set

containing images and their class. Each member of the data set is an image consisting

of exactly one cell and the cell has been treated with a protein which selectively

associates with a particular organelle. The first step is to extract morphological

features from the images. There are eight types of these subcellular location features

(SLFs), including geometrical features such as roundness, eccentricity, edge features

such as brightness, homogeneity, texture features and wavelet features and more. If

a parallel image of the cell DNA is available then extra features may be used such

as the amount of overlap with the DNA region, and the average distance from the

nucleus. 22 features were input to a neural network classifier. The authors found

that the neural network performed well with test data and was superior to linear

discriminant analysis, decision trees and kNN classifiers.

Huang and Murphy [85] describe how subcellular patterns may be recognised

within an image containing many cells without using segmentation into single cells.

Each image in the training set was generated synthetically by merging single Hela
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cell images that belonged to one of ten major subcellular location patterns. A DAG

Gaussian kernel was trained to recognise the location pattern of an image. The most

discriminative features were selected by step-wise discriminant analysis and of the

top fifteen discriminative features, ten are Haralick texture features which can be

calculated without requiring cell segmentation.

Chen and Murphy [33] applied graphical models to subcellular location

patterns in multi-cell images. It was assumed that the cells being sampled were

individuals which resulted from the growth of an original population of ancestor cells.

The ancestor cells were a mixture of the cell classes of interest and the descendant

cells were clustered in regions. Segmentation was used to divide the image into

individual cells. Two sorts of graphical model were used: the first type was the

feature space model whereby cells in an image were from mixed populations which

had not had time to proliferate. In second type of model the ancestor cells were

mixed and daughter cells had had time to form and were clustered near each other.

In each case a cell was assumed to belong to a class with a prior probability but

the class was adjusted by the likely class probabilities of its neighbours. Priors were

obtained using a support vector machine. Test and training data were created by

aggregating single-cell data from the well-known HeLa data set. Good improvements

were obtained: the classification error of the base classifier was decreased by about a

third.

Feature vectors have been used to predict subcellular location in fluorescence

images from the Human Protein Atlas [133]. Each data point consisted of four images

- from protein, nucleus, micro-tubules and endoplasmic reticulum (ER). The protein

image was obtained by immunofluorescence whereas conventional staining was used

to obtain the other channels. Three different cell lines were used and 1,902 proteins

imaged. As well as the morphological features mentioned above, the authors used

features that linked images together - for example the correlation coefficient between

the protein and nuclear channels was employed as a feature. The authors also used a

modified watershed algorithm to segment the images into single cell regions: 29,099

of these. Two types of classifier were used: a support vector machine and a random

forest model. Both classifiers gave similar results. In both cases the best features for

classification included measures of interaction between channels, such as the Pearson

correlation between DAPI and protein.
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2.8 Digital Analysis of Histopathology Images

Pathologists routinely and rapidly extract useful information from histology slides.

They summarise this information in their reports to the physicians responsible for

treatment decision. Snead et al. [159] have examined how well these standard

procedures are carried out using digital images. They conclude that digital pathology

is as good as manual methods.

The next step is to use digital image processing to extract information that

has clinical value. Broadly, there are two general approaches to this problem. The

first approach is to use hand crafted algorithms, and the second approach is to use

deep learning algorithms which use convolutional neural networks such as the one

outlined in the introductory chapter of this thesis. Various hand crafted algorithms

were discussed in Subsection 2.7.1, in the description of immunohistochemistry. Here

we briefly discuss how hand crafted algorithms operate before proceeding to describe

modelling with CNNs.

Hand crafted algorithms were used in early experiments with digital image

processing in pathology. Researchers concentrated on choosing features that were

likely to be useful. Feature selection could be guided by manual pathology research

or from research in general image processing.

For many hand crafted algorithms prediction is carried out in two stages. The

first stage extracts a set of selected feature values from an image while the second

stage is a regression step which combines the features to produce the final prediction.

This process was described in the introductory chapter of this thesis using Yuan

[187] as an example.

In the first stage consider the set S containing J functions gj :

S = {1 ≤ j ≤ nJ : gj} (2.1)

Each function gj operates on the image I to compute the value gj(I) of

feature j.

In the second stage of the algorithm a regression function h operates on the

feature values and predicts the value of output variable y:

y = h(g1(I), g2(I), ...gJ(I)) (2.2)
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The overall model f is the composition of h and g:

y = f(I) = h(g(I)) (2.3)

In hand crafting the broad aim is to find good features: that are repro-

ducible, that have good predictive power and that can be explained in terms of

known biology. For example, it is known from manual pathology that the pres-

ence of TILs is indicative of good survival, so it might be expected that a measure

of TIL concentration, computed from the H&E image would be a predictor of survival.

The gj() are functions of the image intensity, handcrafted features which

capture visual aspects of the image. Examples include textural features such as

those defined by Haralick [77], statistics of ‘colour intensity’ and morphological

features such as regions found by watershed algorithms (Preim and Botha [138]),

often used to segment nuclei. The resulting statistical models often achieve a good

fit between prediction and observation but they can be unstable to minor changes in

input and fail to generalise to new data sets (Janowczyk and Madabhushi [90]). An

advantage of hand crafting is that the parameters of the model can be interpreted as

weightings that reflect the importance of the different features, but this can be off-

set by the need for specialists to make the selection of features which can be costly [90].

Examples of hand crafted models have already been discussed in this thesis.

These include the fully automated model of TIL densities formulated by Yuan [187]

and the partially automated model of West et al. [182] that calculates the abundance

of epithelial cells and uses this feature to predict survival.

Deep learning models that do not require hand crafting are discussed in the

next section.

2.9 Convolutional Neural Networks

As discussed in Section 1.2 deep learning models that rely on convolutional neural

networks (CNNs) have become increasingly popular (Bera et al. [16]). In recent years

there has been a strong trend towards using convolutional neural networks in digital

pathology rather than hand crafted models.

In this section CNN models are introduced as mathematical formulae; a CNN

model is the composition of a set of processes, or layers. Layers take different forms
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and the main types of layer that comprise a CNN are introduced. It is not enough

to specify the structure of a CNN, it is also necessary to use numeric constants

in the formulae. The numeric constants, also known as parameters or weights are

not specified in advance but instead are obtained by training the CNN. Training

is usually done by labelling a set of images using manual marking then finding the

values of weights that give a good fit between labels and the values that the CNN

predicts. A discussion of techniques used in training is included in this section.

The term model was introduced in Section 1.2. Formally, a CNN may be

regarded as a statistical model, a function f of observed data x and a set of parameters

θ (equivalently, weights W ). Calculation of f results in a set of predictions y (Efron

and Hastie [51]). The notation used is:

y = f(x; θ) (2.4)

In a few cases the values of θ are available from physical or chemical know-

ledge, but in most situations they are obtained by training the model using data

which contains cases where both x and y are known.

Convolutional neural networks are models which grew out of experimental

knowledge of the operation of the visual cortex. LeCun et al. [115] designed an image

processing model based on neural networks which successfully recognised digits from

handwritten US Zip codes. The successful classification of images by Krizhevsky et al.

[111] led to CNNs becoming hugely popular for image recognition. Note that CNNs

are also used with other types of data such as temporal data, but the discussion here

focuses on image data.

CNNs have proved very successful in extracting a wide variety of biological

objects from pathology images. For example, [90] applied deep learning to seven

different use cases including segmentation (into nuclear regions, epithelium, tubules

and lymphocytes), detection (of mitosis events, invasive ductal carcinoma) and

classification (lymphoma type). For an application of CNNs in histopathology see

Xu et al. [186].

The widespread adoption of CNNs in digital pathology has been made possible

by the use of Graphics Processing Units (GPUs), processors originally designed for

handling scenes in 3D games. GPUs specialise in array operations and are very

suitable for image processing [3].
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CNNs utilise spatial properties when processing an image. For example we

expect that pixels that are close together should be treated together. The first stage

of a CNN is a bank of filters: the image is broken up into small patches which are

input to the filters, and each filter applies a set of weights to an incoming patch.

In later layers the filter banks may assemble patches together, with the last bank

outputting a set of features that contains enough information to predict the final

output. This output may be a set of activation maps, maps of probabilities of objects

of interest, a tag assigning a class to the object, or indeed one of many possible

output types, such as survival predictions. CNNs are very flexible: they allow for

complex non-linear transformations, and make no assumptions about which features

of an image are significant: this means that modellers who are not domain experts

can implement CNNs successfully.

The introductory chapter included a schematic of the CIFAR-10 network.

Another influential network is ‘Alexnet’ which was introduced by Krizhevsky et al.

[111]. Figure 2.17 shows a version of ‘Alexnet’ which was used by Janowczyk and

Madabhushi [90] in an introduction to deep learning in pathology. The original

‘Alexnet’ network contains eleven computational layers, connected in series. There

are five convolutional layers, labelled C1 to C5, three pooling layers labelled M1, M2

and M3, and three fully connected layers, labelled F1 to F3. The version used in [90]

and shown in Figure 2.17 uses fewer layers - mainly because the images are much

smaller and fewer parameters are needed in the model.

Figure 2.17: Layers used by Janowczyk and Madabhushi [90] adapted from ‘Alexnet’

Now let us consider the flow of data through the network.

Assume that each layer l is associated with a function fl. If there are L
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layers connected in series then the CNN predicts output y = f(x) where f is the

composition of the fl:

f = fL(fL−1(..., f1(I; W1)...;WL−1);WL) (2.5)

Each fl operates on the output of the previous transformation fl−1 and its

output is fed into the next transformation fl+1.

Each transformation is a mathematical formula containing a set of input

values x and a set of constant values, the set of weights Wl applicable to layer l. For

example, consider the first layer with transformation f1, then x is the input image I.

If I is an RGB image of height h and width w, then input x is instantiated as three

arrays of size h× w, Ired, Igreen and Iblue. Considering colour c ∈ {red, green, blue},
then for a pixel < i, j > in the image, at row i and column j, the intensity of the

pixel is the array value Ic(i, j).

Ic(i, j) = intensity of pixel < i, j >∈ Ic (2.6)

For the first layer, the expression is:

f1 = f1(I; W1) (2.7)

Note that layers do not have to be connected in series as in this example;

they can be connected using more complex structures such as trees and recursive

structures containing loops.

There are several types of layers in CNNs: convolution layers, pooling layers,

rectified linear layers and fully connected layers.

2.9.1 Convolution Layers

In a convolution layer the input to the layer is an image (or a set of image patches)

and the output is a collection of activation maps. Figure 2.18 illustrates the flow

of data in the first convolution layer of ‘Alexnet’ in the original formulation by

Krizhevsky et al. [111]. In this example the input is an RGB image, stored as three

(227 × 227) intensity maps. The first step in constructing the convolution layer

consists of defining a grid of points: the distance between points on the grid is known

as the stride. The patch at each grid point is input to a bank of 96 filters (in the

example the size of the patch is (11 × 11)). Therefore each filter is defined by a

(11× 11× 3) array of weights. At each pixel in the patch the product of the pixel
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intensity [r, g, b] and the weight array [wg, wg, wb] defines an output pixel in the

output patch. In the diagram, the size of the grid is (55× 55), meaning that 3025

(55×55) output patches are created for each filter. The patches are stitched together,

forming activation maps as output.

2.9.2 Pooling Layers

Pooling layers reduce the size of the activation maps. Contiguous patches in an

activation map are grouped together and used to create new, smaller patches. Figure

2.19 shows max pooling (Nagi et al. [125]) being applied to four 2× 2 patches. The

maximum value in each patch is computed, and the four max values are used to

form a new patch. In this example, the height and width of the activation map have

been reduced by two. There are two important advantages of pooling. In the first

place pooled patches contain information from larger regions in the original image

than do the individual input patches so that the network gets this information at

an earlier stage. Secondly, fewer weights need to be used in the next convolutional

layer: the number of weights in successive stages is reduced. Both these properties

of pooling reduce the training burden.

As well as the max() function described here, other aggregation functions may

be used. These include average pooling where the average patch value is used, and

global pooling. However Scherer et al. [150] conclude that, in general, max pooling is

superior to other forms of pooling.

Figure 2.18: Convolutional Layer - First Layer with Image as Input
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Figure 2.19: Max Pooling. Here each new patch is created using the maximum value
in four patches. The righthand side of the figure shows pooling operating on sixteen
patches to produce four new patches.

2.9.3 Rectified Linear Unit (ReLU) Layer

The usual approach is to employ layers in series: a mix of convolution, pooling and

Rectified Linear Units (ReLU)s. ReLU units put non-linear transformations in the

path followed by data as it travels through the network. The ReLU transformation

is a threshold operation whereby every element less than zero is set to zero and

elements greater than or equal to zero are left unchanged:

f(x) = max(0, x) (2.8)

One advantage of ReLUs is that they improve network training [69].

2.9.4 Fully Connected Layers

The final stages of a CNN contain fully connected layers which predict the final

result(s). It is assumed that the CNN, pooling and ReLU layers build a set of features

which capture the implicit information in the image. These features are input to

the final fully connected layers which may be instantiated by conventional neural

networks. Note that other computational models may be hooked in here, such as
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decision trees, or even logistic regression.

2.9.5 The CNN as a Composition of Layers

It is usual to group the convolutional, pooling and regularisation layers together dur-

ing network construction, building the network in series. For example the network of

interest may be represented as shown in Figure 2.17, the network used by Janowczyk

and Madabhushi [90].

2.10 Deep Learning in Digital Pathology

Deep learning has been extensively used in digital pathology.

Janowczyk and Madabhushi [90] have written a tutorial introduction to deep

learning in digital pathology with many examples. A recent review by Bera et al.

[16] cites many applications of deep learning using histology images, in particular

standard H&E images.

Deep learning in pathology usually includes the identification of biological

entities or their surrogates. Biological entities that have been used include cells,

TILs, cellular regions, glands and other regions of interest, such as stroma and

tumour. For example [32] used CNNs for automatic lymphocyte detection. Bych-

kov et al. [26] describe the use of CNNs to classify regions in the image as either

tumour or cancer and found that this classification could be used to predict outcomes.

In this thesis, in Chapters 3 and 4 deep learning is applied to the task of

cell identification. In a given deep learning algorithm the job of cell identification

may include several tasks. The detection task is that of finding cells - finding the

locations of cells in an image. The classification task is to assign a cell type to an

cell. Another approach to cell identification is to segment the input image: to find a

set of non-overlapping regions such that each region is associated with a cell, and

each cell is labelled with a region number.

In the thesis the focus is on two cell identification models. The first model is

termed ‘Cell’ in this discussion. In ‘Cell’ the detection task is based on [158] while

the classification task is based on CIFAR-10 [10] The second cell identification model

is the ‘Hovernet’ model introduced by Graham et al. [71]. ‘Hovernet’ employs a CNN

to segment the input image and outputs regions which are labelled with the cell type.
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The ‘Hovernet’ training data included diagnostic images of colorectal cancer from

TCGA and may be suitable for identifying colorectal cancer cells.

The next section of this background chapter briefly introduces the two models.

The models are used as exemplars in describing the creation of data sets to be used

in training which is discussed in Section 2.12 of this chapter. The models are also

discussed in Chapter 3, which deals with sampling in whole slide images.

2.11 Deep Learning Models: ‘Cell’ and ‘Hovernet’

The ‘Cell’ procedure is carried out using two convolution neural networks, applied in

series, linked by an intermediate step. The first CNN detects nuclei while the second

CNN, based on the CIFAR-10 algorithm, classifies a nucleus into a category defined

in training. The intermediate step links detection and classification.

The second algorithm ‘Hovernet’ also has three components, but in contrast

to ‘Cell’, a single cost function is used in training to estimate goodness of fit. This

unified form of the cost function enables the model weights of the three components to

be optimised simultaneously. The ‘Hovernet’ algorithm is a segmentation algorithm,

taking a tile as input, and outputting a set of non-overlapping regions, each of which

is predicted to contain a single cell of a certain type. Rather than work on small

patches within a tile, the ‘Hovernet’ CNN integrates three branches, ‘distance’ ,

‘detection’, and ‘cell type’ into a single predictive model. Some post-processing,

namely boundary computation, is required in order to separate clumps of cells: the

watershed algorithm is used here. The gradients of the distance functions show sharp

changes at boundaries and this property of the distance map helps in calculating

boundaries.

2.12 Training CNNs

Training is the process of choosing the best parameters (weights) for a prediction

model. Training has been referred to in broad terms in Section 1.2; here it is explained

in more detail.

The first step in the training process is to create a training data set Dtrain, a

set of data for which the values of the dependent variables are known. Dtrain is of
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the form:

Dtrain = {1 ≤ i ≤ nobs :< xi, y
obs
i >} (2.9)

In Equation 2.9, nobs refers to the total number of items in the training set,

i refers to a particular item in the training set, xi refers to the values of the input

(predictive) variables and yi refers to the value(s) observed for item i.

In many cases, human users create the training data sets needed for cell

prediction. If the model is a detection algorithm, that is, if it predicts the locations

of cells, then the user can view a training image on a computer screen and mark cells

with the mouse. The exact method used depends on the type of model: for example

the centres of cells may be dotted with the mouse as in ‘Cell’ or segment boundaries

may be traced as in ‘Hovernet’. Images with their sets of observed detection data

are stored as training data.

In the case of a classification model which accepts an image of a cell as

input and predicts the cell type, the human user can label such images with their

cell type. Usually some expertise is required: ideally a trained pathologist should

do this. The training data is the set of images tagged with their cell type assignments.

Considering cell classification the training data set is of the form:

Dtrain = {1 ≤ i ≤ nobs :< Ii, c
obs
i >} (2.10)

Here the model f(Ii; W ) is applied to each image Ii using the specified weights

W . The model outputs a predicted value of the cell type ci.

cpredi = f(Ii;W ) (2.11)

The list of predictions Spred is denoted by:

Spred = {1 ≤ i ≤ nobs : cpredi } (2.12)

The network is trained by finding the weights W for which the prediction list

best matches the observation list.

To quantify the match between predictions and observations a loss function

L is defined. The loss function compares predictions with observations and the

aim of training is to minimise the loss function. In the case of cell classification a

suitable loss function is the cross entropy loss function. Briefly, the cross entropy loss
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function is the difference between the information needed to know the observations

(the ground truth) and the information obtained by applying the model f to the

input data. If the value of the cross entropy is low the difference is low and the loss

function is low, which is the correct behaviour. Conversely, if the difference is high

the loss function is also high.

To compute the classification loss function for an image the output of the

last layer of the CNN is used, a vector z of logistic regression values. For example, if

there are four classes, z is of the form:

z = [z1, z2, z3, z4] (2.13)

The z values are converted to probabilities using:

q(zj) =
ezi∑′
j e

zj′
(2.14)

Assume that the observed value for data item i is j = cobsi . This is converted

to a binary vector v which is 1 in position j and 0 in the remaining positions. For

example, if the cell type 2 (‘inflammatory’) is observed then the vector v is [0100].

The cross entropy loss function Li for observation i is the scalar product of v and q:

Li = −
∑
j

vjlog(qj) (2.15)

And summing over all data points in the training set we obtain the training

loss function:

L =

ntrain∑
i

Li (2.16)

The network is trained by finding the minimum value of the loss function L

with respect to W . This is done by optimisation, by calculating those weights which

minimise L.

Note that it is assumed implicitly that images in Dtrain are a representative

sample of the images for which predictions will be made. This is rarely spelled out

in the literature and if the training images are selected from a small number of WSIs

important cases may be missed. The ‘Cell’ algorithm was trained on ten WSIs and

16 WSIs were used to train the ‘Hovernet’ model. These are quite small numbers

and do not guarantee that interesting cases such as those with MLH1 suppression
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are included. In addition, it may be important to identify rare types of cell for

classification. Here stratified sampling may be appropriate.

Figure 2.20: Loss Function Calculation. f(Ii;W ) predicts cpredi for labelled image Ii,
outputs loss Li. Sum losses to get total loss L.

2.12.1 Optimisation

Optimisation of the loss function is an iterative process in which the loss function is

repeatedly calculated until it reaches a minimum.

Figure 2.20 is a schematic of the computation of the loss function. The

training data set is represented by the set of labelled patches on the left: epithelial

cells, inflammatory cells and fibroblasts are illustrated. The current patch Ii is

input to the model f(Ii; W ) which outputs the prediction cpredi . The loss function

L compares cpredi with the observed value Ci, outputting Li (the cross-entropy loss

function described above is often used). The Li values are aggregated to form the

overall loss function L for the training set and weights. Figure 2.20 is specialised to
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cell classification but the overall structure still applies to detection and segmentation.

Figure 2.21: Loss Optimisation.

Figure 2.21 is a diagram of the optimisation process. Optimisation is iterative:

the same steps are repeated until a stopping criterion is satisfied. In the diagram

variable t denotes the current step number. The weights W0 are initialised randomly,

images Ii are selected from the training data Dtrain and the aggregate loss function

L for the training data is calculated as illustrated in Figure 2.20.

In each iteration t upgraded values of the weights Wt+1 are obtained by

stochastic gradient descent. The partial derivatives of the loss function with respect

to the weights are calculated and the new weights are obtained by travelling along the

surface of L in weight by L space a fixed distance η in the downward direction defined

by the partial derivatives. (η is called the learning rate and is a hyperparameter

chosen by the user.)
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Algorithms 1 and 2 contain outline code for the optimisation process illus-

trated in Figure 2.21. The training data set is denoted by Dobs and an independently

tagged validation data set is denoted by Dval. The network structure is denoted by

fnet. The aim is to return a good set of weights W . In the pseudocode the terms

Dx
train and Dx

valid refer to the sets of predictor variables x in Equation 2.9. Similarly,

the term Dobs
valid refers to y the predicted values in that equation.

Before the main loop the weights are initialised to random values and the

epoch t is set to zero.

Calculation of the partial derivatives of the weights is carried out using the

chain rule (Algorithm 2). In a forward pass through the layers of the network the

intermediate per layer activation maps are stored, plus the derivatives of the loss

function with respect to the weights in each layer. The forward pass is followed by

a backward pass in which the chain rule is used to compute the partial derivatives

from the stored activation maps and derivatives.

A second, independently obtained set of labelled patches, the validation set

is used to obtain the validation loss function Lvalid. When Lvalid converges then

iterations stop and the weights Wt are returned by the optimisation function.

Algorithm 1 Train Network

1: procedure trainNetwork( Dtrain, Dvalid, fnet, ε, η )
2: W0 = random() . Initialise weights randomly
3: t = 0 . Epoch zero
4: L0

valid = 0
5: while True do
6: t = t + 1 . Next epoch
7: ∇WL = GETDERIV S(Dx

train, fnet,Wt−1) . Derivs. loss w.r.t. weights
8: Wt = Wt−1 + η∇WL . Update weights
9: fpredvalid = fnet(D

x
valid;Wt) . Predictions for validation set

10: Lvt = L(Dobs
valid, f

pred
valid)

11: if |Lvt − Lv(t−1)| ≤ ε then return Wt

12: end if . Return if convergence
13: end while
14: end procedure
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Algorithm 2 Compute Partial Derivatives

1: procedure GETDERIVS( D, fnet, W )

2: for all layers l ascending do . Forward pass to compute predictions

3: zl = weighted average of inputs to fl

4: al = fl(zl) . Predict activation map

5: (fl)
′ = derivative of fl w.r.t. zl . Save derivs,

6: end for

7: for all layers l descending do . Backward pass. Use chain rule.

8: δl = (fl)
′W T

l+1δl+1

9: ∇Wl
L = δla

T
l−1 . Compute gradients. (T denotes transpose.)

10: end for

11: end procedure

Typically when L is considered as a function over weight space there are

many local minima and heuristics need to be used in order to ensure a thorough

search. If too coarse a grid is used then minima will be missed; conversely, if the

grid defined by the value of η is too fine the search will take too long. In practice

the research community tends to use a standard value for the learning rate, based

on experience and experimentation. For example, in the ‘Cell’ detection algorithm,

for the size of the step in W − space, the learning rate η, the value 0.001 was used.

2.12.2 Batching

The training data set may contain a very large number of points and rather than

process the entirety of Dtrain it is usual to divide it into a set of batches. Batches

are processed in series: the output from batch b is the input to batch b + 1. The

weights are updated during each batch: convergence to the minimum is faster.
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Algorithm 3 ProcessBatches

1: procedure processBatches( D, fnet, W0, nbatches, η )

2: SB = {1 ≤ b ≤ nbatches : Db} . Partition data into batches

3: b = 1

4: while b ≤ nbatches do

5: ∇WL = GETDERIV S(Dx
b , fnet,Wb−1) . Partial derivs.:L w.r.t. W

6: Wt = Wt−1 + η∇WL . Follow the slope of W for distance η

7: b = b+ 1

8: if |Lbt − Lb(t−1)| ≤ ε then return Wt

9: end if

10: end while

11: end procedure

The pseudo-code in 3 should replace the contents of the main processing loop

in Algorithm 1. In the algorithms used in this thesis a batch size of 256 was typical.

2.12.3 Momentum

To use an analogy with walking in a landscape of peaks and valleys: we compute the

maximum slope of the ground where we are, and walk down that slope, predicting

the height of the ground at a displacement which is a distance η from the current

coordinates. This calculation does not take the trajectory followed by W into account.

To do this we may add the term α∆Wt−1:

Wt = Wt−1 − η∇WLt + α∆Wt−1 (2.17)

In Equation 2.17 the weights are updated, by a linear combination of the

standard update term and the previous weight values . Note that α is a hyperpara-

meter called the momentum

2.12.4 Varying the learning rate

The Adagrad algorithm (Duchi et al. [48]) varies the learning rate η: increasing η

for sparse parameters and decreasing it for denser parameters.

We denote the partial derivative of the loss function L w.r.t the jth weight

Wj , computed at epoch t as gtj where:

gtj = (∇WL)tj (2.18)
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Then we may define the quantity Gtjk as follows:

Gtjk =
∑
ft

gjtgkt (2.19)

At epoch t+1 we consider the diagonal elements of G and use them to modify

the calculation of Wt+1:

W(t+1)j = Wtj −
η√
Gtjj

gtj (2.20)

It may be observed that
√
Gjj is the `2 norm of previous derivatives, so

weights with a smaller value of this quantity change more.
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2.12.5 The Adam Optimiser

The Adam optimiser (Kingma and Ba [102]) keeps running averages of the gradient

∇WL at each iteration t and uses them to compute the changes to the weights. The

algorithm:

“updates exponential moving averages of the gradient and the squared gradient where

the hyperparameters β1, β2 ∈ [0, 1) control the exponential decay rates of these

moving averages.”

Using moving averages ensures that the gradient change at each iterative step

is calculated more accurately than in Algorithm 1.

Algorithm 4 Adam Optimiser

1: procedure trainAdam( Dtrain, Dvalid, fnet, ε, ε2, η, β1, β2 )

2: W0 = random()

3: t = 0

4: L0
valid = 0

5: stopping = false

6: while True do

7: t = t+ 1

8: ∇WL = GETDERIV S(Dx
train, fnet,Wt)

9: gt = (∇WL)t

10: mt = β1mt−1 + (1− β1)gt . Update biassed moving average of moment 1

11: vt = β2vt−1 + (1− β2)(gt)
2 . Update biassed moving average of moment 2

12: m̂t = mt/(1− βt1) . Correct first moment for bias

13: v̂t = vt/(1− βt2) . Correct second moment for bias

14: Wt = Wt−1 − ηm̂t/(
√
v̂t + ε2) . Make predictions for validation set

15: Dpred
valid = fnet(D

x
valid; Wt) . Calculate validation loss

16: Lvt = L(Dobs
valid, D

pred
valid; Wt) . Check for convergence of validation loss

17: if |Lvt − Lv(t−1)| ≤ ε then return Wt

18: end if

19: end while

20: end procedure

2.12.6 Regularisation

According to Efron and Hastie [51]

“regularization describes almost any method that tamps down statistical

variability in high dimensional estimation or prediction problems”
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Many of these techniques involve the addition of a penalty term to the loss

function. Two common penalty functions are the `1 norm and the `2 norm:

`1 =
nW∑
j

|wj | (2.21)

`2 =
nW∑
j

|wj |2 (2.22)

The corresponding penalised loss functions L′1 and L′2 are:

L′1 = L(ypred, yobs)− λ`1 (2.23)

and

L′2 = L(ypred, yobs)− λ`2 (2.24)

The use of `1 is known as ridge regression or the LASSO [51] while use of the

`2 penalty is also known as Tikhonov regression. The term λ is a hyperparameter.

According to Efron and Hastie [51] there is at presemt no well-grounded theory for

selecting λ, which is usually chosen on empirical grounds.

The addition of the penalty term ensures that weights stay low in magnitude,

favouring simpler models over more complex ones, obeying Occam’s razor. Regular-

isation is effectively a Bayesian approach because it confines the probability space to

a region defined by the modeller.

2.12.7 Dropout

The use of dropout is another regularisation technique [161]. Dropout randomly

removes neurons and their connections from the network, enabling the weights of

neurons to change independently as training proceeds. During training a bundle of

“thinned” networks with fewer weights is used. For testing and prediction the thinned

networks are averaged and the final network is a full network that uses suitably

weighted averaged values.

2.12.8 Augmentation

Another way of improving the accuracy of weights is to add extra cases to the

training data. In the case of pathology images it is reasonable to assume that

rotating and reflecting an image has no effect on its validity for training purposes. It
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is straightforward to rotate by 90, 180 or 270 degrees and optionally add a reflection.

This augments the data by at least a factor of four. In addition it is reasonable to

stretch the image, to blur it, and to modify the colour range. Each image presented

in a training epoch is randomly transformed using some augmentation technique,

working markedly against overfitting.

2.13 Object Identification

Identifying a collection of objects in an image is a harder task than deciding if an

image contains a single instance of an object.

General object modelling techniques include YOLO (You only look once)

[143] in which the loss function combines the losses associated with detection and

classification. Object identification is also provided by Fast R-CNN [68].

Both the ‘Cell’ algorithm and the ‘Hovernet’ algorithm are object identific-

ation models. Segmentation of an image automatically identifies objects, so the

segmentations produced by ‘Hovernet’ define individual cells. ‘Cell’ finds individual

cells by training a detection algorithm that can decide if a small patch contains

a cell. To extend object recognition to a large image a grid is defined over the

entire image and the detection algorithm is applied to each location defined by

the grid. Thus, for each grid location an associated probability of an object be-

ing present in the patch around the grid point may be computed. This defines

a probability function for which the peaks correspond to cells. The ‘Cell’ model

estimates the locations of peaks using clustering [157]. This approach was used

with Gaussian mixture models by [107] in their refinement of that detection algorithm.

2.14 Competitions in Cell Identification

The MICCAI 2018 conference held a satellite competition, MONUSEG, in which the

aim was to segment cell nuclei in images from a variety of organs and TCGA sites

(? ]) . Training data was a set of cell-rich tiles that had been extracted from thirty

TCGA images, including two images of colon carcinomas. Test data included tiles

from fourteen TCGA images, one from the colon collection. Cell boundaries were

hand marked for use in both training and testing.

The test metric was the Jacquard Index. The top value was 0.69, with 95%
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confidence limit of (0.68, 0.70). Confidence intervals of next four entries were within

these bounds.

Various forms of colour normalisation were used in preprocessing. The win-

ning entries used data augmentation heavily: all of them used rotation and affine

deformation. The winning entry added colour jitter to the augmentation techniques.

U-Net was the most popular CNN in use. All competitors applied boundary separa-

tion. The top-rated entrants carried out boundary separation as a separate task with

its own loss function, while others included boundary separation as a post-processing

stage.

MoNuSAC 2020, a ‘Multi-organ Nuclei Segmentation and Classification Chal-

lenge’ Verma et al. [180] was similar to MONUSEG. Contestants were:

“provided with H&E stained tissue images of four organs with annotations

of multiple cell-types including epithelial cells, lymphocytes, macrophages, and

neutrophils. Participants used the annotated dataset to develop computer vision

algorithms to recognize these cell-types from the tissue images of unseen patients

released in the testing set of the challenge.”

Many teams entered the competition which invited contestants to consider both the

‘Cell’ and ‘Hovernet’ models when devising their models. The Panoptic Quality was

used as the evaluation metric (Kirillov et al. [103]).

Competitors in both competitions improved on existing results: digital patho-

logy continues to develop.
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Chapter 3

Deep Learning with Sampling

Whole-slide images are large and processing them is costly. Using a sample, rather

than the entire WSI may speed up processing significantly. In addition, sampling

can aid the analysis of features of interest: the spatial behaviour of such features is

important in the analysis of whole-slide images.

This chapter, based on Shapcott et al. [154], describes experiments with TCGA

whole slide images of colon cancer. In the experiments two sampling policies were ap-

plied to the data: Random Sampling (RS) and Systematic Random Sampling (SRS).

Two cell identification algorithms were used, the ‘Cell’ algorithm (Sirinukunwattana

et al. [157]) and the ‘Hovernet’ algorithm (Graham et al. [71]). The Background

chapter introduced these algorithms in Section 2.11: here they are dealt with in

more depth.

The chapter is structured as follows. Section 3.1 describes the use of sampling

in pathology images while Section 3.2 introduces the RS and SRS sampling policies.

The operation of ‘Cell’ and the ‘Hovernet’ algorithms are described in detail in

Section 3.3. Section 3.4 describes the workflow that results when these algorithms

are applied using sampling. The output of cell identification is a list of detected

points (defined by coordinates and cell types) and an aggregate (summary) function

extracts a profile from the list. In this chapter the profile was defined to be a

list of counts of the different types of cell. Various experiments using sampling

were carried out using the sampling workflow (Section 3.5). Estimates of the er-

ror in the cell counts associated with sampling were calculated as were results for

different types of cell (Section 3.7) and the RS and SRS sampling policies were

compared for accuracy. Section 3.8 is an example application in which SRS was used

with ‘Cell’ to examine associations between cell counts for colon cancer and various
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clinical TCGA variables. Section 3.9 concludes this chapter with a general discussion.

3.1 Sampling in Histopathology

Sampling of regions within an image is a normal activity in manual pathology. Patho-

logists are accustomed to rapidly scanning tissue slides under the microscope and

selecting interesting regions for intensive consideration. Kayser et al. [94] discuss how

an equivalent procedure can be carried out using digital pathology. They propose an

implementation using three stages. In the first stage a set of regions in the image is

generated by automated sampling, in the second stage an information measure is

calculated for each region, and in the final stage the most informative regions are

selected for intensive consideration by the pathologist. The authors argue that this

hybrid approach can achieve viewing times that are comparable with those achieved

in manual pathology.

Automated sampling within an image is used in stereology, originally the ana-

lysis of three-dimensional structures, using two-dimensional sections. In stereology

various statistical procedures are used to extract significant structural information.

A typical approach is to lay a regular grid over the image, and to sample the image

using the grid. Stereology has been applied using digital pathology by [95]. The

authors found that the use of their automated sampling algorithm was 50% to 90%

more-time efficient than conventional random sampling.

In another study sampling was employed in the analysis of cases of colon

cancer where pathologists were asked to categorise the tissue type at three hundred

randomly selected points in a dense region of tissue [182]. The study found that a

low proportion of tumour cells was related to poor cancer-specific survival.

Regarding sampling applications in digital pathology, a description of the use

of sampling in the detection of invasive breast cancer in histopathology images can be

found in [39]. A trained CNN classifier accepted patches of fixed size as input. The

pathology image was tiled and in the first sampling step the resulting patches were

randomly sampled. Each patch in the sample set was classified as homogeneous or

heterogeneous. Regions of interest were those where the classification was uncertain.

The regions surrounding tiles of uncertain classification were searched by sampling

them systematically, using the gradient of the uncertainty map to guide the search.
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In histopathology applications the choice of a sampling policy is affected

by spatial dependency, whereby characteristics at neighbouring locations tend to

have similar values. Standard statistical sampling techniques that assume that

observations are independent of each other do not take spatial dependencies into

account and are not always the most appropriate methods. Sampling policies that

do take account of spatial dependencies have been developed in geospatial statistics

[45] and of these, systematic random sampling is an established technique [44].

3.2 Basic Random Sampling and Systematic Random

Sampling

In the experiments described in this chapter the following approach was used:

sampling of a set of fixed size square regions (tiles) followed by cell identification

and profile generation.

For each sampling policy (i.e. RS or SRS), tiles in an image W were sampled,

then a deep learning model was applied to each tile in the sample. For each tile

t a cell map was obtained, a set of labelled cell locations, then a tile profile φt

was extracted from the cell map. The profile for the WSI φ(W ) was calculated by

assuming that the tile profiles could be averaged to yield an estimate for φ(W ).

When nT tiles were sampled the aggregate profile was:

φ(W ) =

∑nT
t φt
nT

(3.1)

In some situations, non-random sampling, such as uniform spacing may be

adequate. Uniform spacing gives good coverage of the WSI but will fail if there are

periodicities in the image, or if there are relationships that depend on distance that

should be estimated from the sample.

The basic form of Random Sampling used in this chapter operates as follows.

The image is assumed to be already segmented into foreground tiles, containing tissue,

and background tiles which do not. If there are nF foreground tiles, nS integers are

selected randomly from the integers between 1 and nF (without replacement). The

deep learning algorithm accepts a tile as input and outputs cell locations and labels.

Random sampling is straightforward to implement but if spatial dependencies are

present random sampling tends over-sample some areas and under-sample others

([44]).
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Systematic Random Sampling overcomes the unbalanced sampling problem

of RS. The whole slide image is overlaid with a grid of identical sub-grids, or sample

grids and a tile is randomly sampled from each sub-grid. SRS may be viewed as a

combination of non-random sampling (all sub-grids are used) and random sampling

(tiles within a sub-grid are randomly sampled).

Note that sampling may be used in other ways. In adaptive sampling, inform-

ation is derived from the samples already taken, and used to choose later samples.

If elements of search are incorporated into the sampling process, then adaptive

sampling may be appropriate. SRS and RS are non-adaptive sampling policies: all

observations are extracted at once, according to the same rule.

This chapter reports on experiments with sampling polices, RS and SRS.

Because there was no prior information to indicate that any specific feature in the

morphological profile should be prioritized, the use of adaptive sampling was not

considered. This does not rule out the use of adaptive sampling in future applications,

for example, when it is necessary to concentrate on features that are uncommon

when the sampling policy might be directed towards areas with such features. For

example, if a tissue sample consists mainly of normal cells, but we wish to analyze the

features of rare abnormal cells, it might be advisable to search near points already

sampled that were found to contain abnormal cells.

3.3 Cell Identification Models

The two cell identification models ‘Cell’ and ‘Hovernet’ were introduced in Chapter

2. Here they are presented in more detail.

3.3.1 The ‘Cell’ model

‘Cell’ is an algorithm carried out in three stages: namely two convolution neural

networks, linked by an intermediate step, applied in series. In Stage I the first CNN

outputs an activation map containing probabilities of nuclear material at pixels. The

intermediate stage II finds clusters in the activation map, and assigns them to the

locations of nuclei. In the implementation of ‘Cell’ the CNN in Stage III is based on

the ‘cifar10’ algorithm. It classifies a nucleus into one of the four categories defined

in training, in practice cells are ‘epithelial’, ‘inflammatory’, ‘fibroblasts’ or ‘other’

cells.
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Input to the ‘Cell’ algorithm is a tile, a H&E image of colorectal cancer. The

size of the tile is 500× 500 at 20X.

The ‘Cell’ architecture was used in [158]. WSIs of colorectal carcinomas were

tiled and the ‘Cell’ algorithm was applied to each tile, predicting cell locations and

cell types. The per-tile output results were aggregated into a map of cell locations

labelled by cell type. Nearest neighbour networks were calculated from the map and

used to extract motifs which were then used to create image profiles. The authors

found that the profiles were predictive of distant metastasis.

3.3.2 The ‘Hovernet’ Model

As already remarked the ‘Hovernet’ algorithm segments an image into areas which

contain cellular material. In training three main error components are optimised

simultaneously. In the first place parameters used to calculate behaviour of the

activation map with distance are optimised. In the second place “a novel loss function

which calculates the mean squared error between horizontal and vertical gradients

and the GT gradients of the horizontal and vertical maps respectively and the

corresponding gradients of the (Ground Truth)”.

The authors created a new dataset of 41 tiles from 16 WSIs of colorectal

cancer, H&E diagnostic slides from 16 patients. The images included overlapping

nuclei and artefacts such as ink markings. These tiles were used in training. Training

used a cost function which included expressions for each of the three branches in the

model, ‘ND’ for the accuracy of distance prediction, ‘NP’ for the quality of detection

prediction and ‘NC’ for the quality of classification prediction.

3.4 Workflow: Using Cell Identification Algorithms with

Whole-Slide Images

Figure 3.1 illustrates the stages used to create a profile from a whole-slide im-

age. It is assumed that the cell identification algorithm has been trained using

images of fixed size and resolution and that the image has been subdivided with

tiles of the same size and resolution. (In the experiments described later in this

chapter, the training image size was the same as the tile size, (500× 500) pixels at a

resolution of 20X, approximately 0.5 microns/pixel). For a given tile the cell identi-

fication algorithm detects cells and classifies them as one of the types used in training.
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Figure 3.1: Workflow - From WSI to Profile

3.4.1 Foreground/Background Segmentation

In the first stage of the workflow, that of segmentation, the whole slide image (A) is

separated into foreground and background regions, represented by a binary mask

(B).

In the second stage the mask is divided into tiles which are the same size

and resolution as those used to train the algorithm. Each tile then is categorised as

foreground or background, depending on how many pixels in the intersection of the

tile with the segmentation mask are white or black respectively. Figure 3.3 displays

the resulting foreground tiles in the case of Patient AA-3543 in the TCGA COAD

data set. For each foreground tile (D) the cell identification algorithm locates and

classifies cells (E). The information concerning cell nuclei is summarised in a set of

cell locations labelled with a cell type. The tile results are then stitched together,

creating a map over the WSI containing the locations of labelled cells. The map can

then be analysed, creating a profile of the WSI. In Figure 3.3 the frequencies of the

four cell types in the entire image, are the output profile, displayed as a histogram (F).

In this study the cell profile was defined straightforwardly as the areal densit-

ies of the different types of cell. These features can be interpreted as measures of

cellularity, the number of cells of a given type in the cancer tissue. Cellularity is

described as “The degree, quality, or condition of cells that are present” [52].
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3.5 Materials and Methods

3.5.1 Experimental Dataset

Diagnostic images were downloaded from the TCGA COAD data set, via the Genomic

Data Commons Portal [72]. COAD contains 433 viable diagnostic images, stored

in SVS format, which have a nominal resolution of 40X (0.25 microns/pixel). Each

TCGA diagnostic image file contains both pixel intensity maps and meta-information

such as the actual resolution and the name of the capturing device. In the case of

the TCGA COAD files, the finest resolution is nominally 40X - 0.250 microns per

pixel. In practice, images are stored at several resolutions within the file. As well as

the maximum resolution image, coarser images are stored at various downsampling

values. Typical downsampling values are 1, 4, 8, 32, 64, though the exact set used in

the COAD diagostic images varies from image to image.

The experimental data set contained 142 diagnostic images from COAD,

selected from a single site, the ‘AA’ site. These were images from patients where

gene expression data was included in the patient data: gene expression data that is

analysed in Chapter 5.

Figure 3.2: Workflow with Sampling - From WSI to Profile

Figure 3.2 illustrates the stages used to create a morphological profile from
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a whole-slide image when sampling is used. Segmentation of foreground and back-

ground results in a mask. The mask is applied to a tiling of the image, resulting

in a set of defined foreground tiles. The foreground tiles are sampled, and the cell

identification algorithm is applied to each one. For each tile an aggregate function is

applied to the resulting cell map, and a tile profile is output. The tile profiles are

averaged to create a profile for the whole-slide image. In the following sub-sections

the workflow stages are described in more detail.

3.5.2 Tiling and Image Segmentation

Figure 3.3: Foreground Tiles - TCGA COAD - AA-3543

The first stage in dealing with the whole slide image was to separate fore-

ground from background. Working at a resolution of 8 microns per pixel the image

was subdivided into patches, and the entropy-based measure due to Trahearn [171]
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Figure 3.4: Schematic of Tiling: Outer rectangle represents perimeter of WSI, tiling
is a grid of four rows and six columns

was used to decide if patches were foreground (tissue) or background (empty areas).

Foreground patches, having more variations in intensity, had higher entropy values

and background patches had lower values. A mask was created from the pattern

of foreground and background patches. Tiles that overlapped with the foreground

mask were denoted as foreground tiles and marked for possible processing with the

detection algorithm. Figure 3.3 displays a WSI after segmentation, with foreground

tiles outlined.

Figure 3.4 is a schematic diagram of a grid laid out in the enclosing rectangle

that represents the perimeter of a WSI. The WSI can accommodate five rows and

seven columns of tiles (the first tile has been laid with its top left corner placed on

the top left corner of the enclosing rectangle). If the sampling policy is RS, then nS

tiles are sampled by selecting nS values from the integers between 1 and 35 (without

replacement).

Otherwise, if the sampling policy is SRS, then sample grids are defined. In

Figure 3.4 sample grid is a square containing 4 tiles. In the diagram the sample grids

are outlined in red. In the creation of the set of sample tiles each 2× 2 sample grid

is considered and an integer from the set [1, 2, 3, 4] is selected randomly. There are

six sample grids, so the number of tiles sampled is also six.
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We may identify tiles by their index in the grid: an index generated by the

tile row and column. If a tile is in row i and column j of the grid then its tile index

is:

k = (j − 1) ∗ nR + i (3.2)

where nR is the number of rows in the tiling.

3.5.3 Artefact Handling

Artefacts were handled on the fly. Although no coloured ink markings were visible

in the set of diagnostic images, there were artefacts caused by fixative that had not

been wiped clean, and what appeared to be black ink splodges. Tiles were tested for

the presence of such artefacts after sampling.

3.6 Training the ‘Cell’ Identification Algorithm

The two CNNs in the ‘Cell’ algorithm were trained as follows.

Training data for detection consisted of 852 hand-marked images, including

the images described in [157]. The authors of that article marked locations of cell

nuclei and each nucleus was tagged with its cell type. This could be done rapidly

and approximately 30,000 nuclei from ten CRC patients were marked. For training

the detection network, small patches were selected from the 852-tile set, those sur-

rounding each tagged cell location and also background patches. The patches were

fed to the detection CNN which assigned them a probablity of being nuclear tissue.

In successive iterations of the training algorithm the predictions of the CNN were

compared with ground truth values and used to adjust the weights in the CNN.

Specifically, input to the detection CNN was a tile of size 500× 500 at 20X,

and output was an activation map which mapped each pixel to the probablity that

the pixel was nuclear material. The intermediate stage clustered the activation map,

then assigned the cluster centres to detection points. Small patches (33× 33 pixels

at 20X) were extracted from the tile and input to the classification model.

The detection algorithm was trained using the method in [157]. The detection

code used ‘vlfeat’ software implemented in Matconvnet Vedaldi and Lenc [179]. The

same clustering algorithm as detailed in [157] was applied to the probability map
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output by the convolutional neural network and generated the locations of cell nuclei.

The classification model was based on the Tensorflow ‘cifar10’ model [110],

and was trained with Tensorflow [4], using the Pycharm IDE (Python 2 and Tensor-

flow 1.4). The layers of the classification CNN were the same as those defined in the

‘cifar10’ model [10], and the following hyperparameters were applied: (batch size =

128, moving average decay = 0.9999, number of epochs per decay = 350, learning rate

decay factor = 0.1, initial learning rate = 0.1, maximum number of steps = 1,000,000).

Patches for training the classification network were generated by selecting

(51 × 51) pixel images around hand marked points. There were 111,659 of these,

from which smaller patches of size (33× 33) pixels were extracted subject to random

displacements that allowed for inaccuracies in location (an average of up to 5 pixels)

and each which was augmented in training by extra images generated by rotation

and reflection. All processing was done at 20X (0.5 microns/pixel). The average

RGB intensities of the training patches were recorded for later use in standardisation.

An accuracy of 84% was achieved in evaluation of classification using a hold-out set.

3.6.1 Identifying Nuclei with the ‘Cell’ Algorithm

Feature fj is the number of cells of type j in the cell map (adjusted by a constant ρ

to ensure an effective area of 100µM × 100µM).

fj = ρ

nM∑
p=1

(cp == j) (3.3)

Figure 3.5 displays a tile marked with the results of the cell identification

algorithm. The algorithm has identified (i.e. detected and classified) a mixture

of epithelial cells (red squares) and inflammatory cells (green squares), plus cells

identified as fibroblasts (yellow squares). To compute the morphological profile of

the tile, we simply count the numbers of different types of cell and multiply by ρ.

3.6.2 Implementing ‘Hovernet’

In ‘Hovernet’ the tiles were 256× 256 square pixels in size. To ensure comparability

with ‘Cell’ each 500 by 500 ‘Cell’ tile was subdivided into four regions. Hovernet

tiles were created for each region and the four of them were offered to the Hovernet

algorithm. The Hovernet output was stitched together (four tiles back into one) to
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Figure 3.5: Tile with Identified Cells

fit the 500× 500 ‘Cell’ tile.

In equation 3.4 the cell identification model MI accepts an image I and,

together with the intermediate clustering step, creates a cell-map consisting of nM

cell nuclei, located at points < x, y >, each of which is labelled with the cell type c.

MI(I) = {< xp, yp, cp >: 1 ≤ p ≤ nM} (3.4)

The image’s morphological profile is a set of J features.

φ(I) = [f1, ...fj ...fJ ] (3.5)

3.6.3 Sampling for Cell Identification - RS

In the case of RS and for each experimental run, nT tiles were randomly sampled

from the set of nF foreground tiles. The cell detection algorithm was applied to

each tile individually. The detection component calculated the haemotoxylin channel

and supplied it to the detection CNN. The classification module extracted patches

around each detected point, normalised them collectively, using the average intensities

saved from the training stage, and applied the classification algorithm to each patch
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individually.

If nt cells are detected in image It we may denote the coordinates of cell p by

(xp, yp). If the cell is classified as type cp then the tile detection function gt is:

gt(It) = {nt, (xp, yp, cp) : 1 ≤ p ≤ nt} (3.6)

If there are nT tiles altogether the detection function g that applies to I, the

image in its entirety, is:

g(I) =
⋃

1≤t≤nT

gt(It) (3.7)

3.6.4 Calculating Profiles

We define the profile of image I as a set of nJ features, where each feature fJ is an

aggregate function of I:

fj(I) = fj(g(I)) (3.8)

In many cases these aggregate functions may be computed on a per-tile basis:

fjt(It) = fjt(g(It)) (3.9)

And the per-image profiles may be aggregated in turn:

fj(I) =

∑
1≤t≤nT fjt(g(It))

nT
(3.10)

Sampling can be used to calculate features in a straightforward way. If nT

tiles are randomly sampled then we may use the formula:

f ′j(I) =

∑
1≤t′≤nT fjt′(g(It))

nT
(3.11)

3.6.5 Implementing SRS

SRS was implemented as follows. A nominal sample size nNOM was defined: the

number of non-background, non-artefact tiles to be sampled. A coarse tiling of the

WSI used sample grids, squares that each contained (g× g) tiles. The value of g was

calculated using nNOM and γ, an estimate of the fraction of tiles in the image that

are not artefacts and nF the number of foreground tiles:
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g =

⌊
γnF
nNOM

⌋
(3.12)

Note that the proportion of artefacts, if not estimated in advance, was as-

sumed to be zero. With SRS one patch was sampled randomly from each sample grid.

If the tile was a foreground tile then the cell identification algorithm was applied to

it and the resulting profile was added to a list of profiles associated with the WSI.

Tiles judged to be artefacts were excluded from the calculations. Otherwise, if the

tile was a background tile as assigned in the segmentation mask, it was ignored. The

whole-slide profile was calculated by averaging the profiles in the list of included

tiles.

Figure 3.6: Region of H&E Image Displaying Sample Grids

Figure 3.6 is a detail of a WSI split into sample grids with divisions indicated

by blue lines. Each sample grid contains four tiles in a (2 × 2) pattern. The tiles

selected by SRS for processing by cell identification are outlined in yellow. Not shown

here, but there may be cases where none of the tiles in a sample grid is outlined

in yellow. This happens when a sample grid contains only background tiles or if a

background tile is selected in sampling the sample grid.
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3.7 Results

3.7.1 Evaluation of Cell Identification Using Hand Marking

In five of the TCGA diagnostic images 1,500 cells were hand-marked by a pathologist.

Cells were classified as already noted except that epithelial cells were classified as

normal cells or malignant cells. Patches containing hand-marked cells were run

through the cell identification algorithm and detection and classification were both

scored. (Note that the two types of epithelial cells were merged into one, because the

cell identification algorithm did not distinguish them.) Both detection achieved 65%

accuracy on average, while classification was 76% accurate on average. See Table 3.1.

Table 3.1: Detection and Classification Accuracy

Patient ID Detection Classification

Accuracy Accuracy

AA-3543 0.85 0.66

AA-3845 0.68 0.76

AA-3864 0.62 0.81

AA-3986 0.61 0.90

AA-A02J 0.50 0.66

Average 0.65 0.76

These scores were lower than the scores achieved when predictions for a

hold-out set were evaluated in training. This is not surprising: the TCGA data is

from a data set independent of the training data set.

3.7.2 Comparing Batches - ‘Cell’ Algorithm

Experiments with sampling policies RS and SRS were conducted with the ‘Cell’

algorithm, using varying sample sizes: [25, 50, 100]. For each experiment two batch

runs were executed. In each batch run the sampling policy was applied to the 142

whole slide images described in Subsection 3.5.1. The batch runs of RS were done

after those for SRS using the actual sample sizes generated by SRS, ensuring that

the runs could be compared for accuracy.

Figure 3.7 comprises four scatterplots. They compare two batch runs that

apply SRS with a nominal sample size of 100 to the 142 whole slide images. There is

one scatterplot for each type of cell. x values are profile features calculated in the first

batch run and y values are the corresponding features output by the second batch
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Figure 3.7: ‘Cell’ algorithm: Comparison of Batch Runs (SRS: sample size = 100)

run. The correlation between x and y is shown on each plot. Values of correlations

are very high, indicating that this level of sampling is very satisfactory.

Table 3.2: Correlation matrix of cell counts

Epithelial Inflammatory Fibroblast Other

Epithelial 1 0.2 -0.59 -0.63

Inflammatory 0.20 1 -0.34 - 0.13

Fibroblast -0.59 -0.34 1 0.56

Other -0.63 -0.13 0.56 1

As well as correlations between batches it is also possible to calculate correl-

ations between features in the profiles. Table 3.2 shows the marginal correlations
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between counts of the four types of cells. In general, partial correlations are better

indicators of multivariate relationships ([183]) and Table 3.3 displays partial correla-

tion coefficients that have been extracted from the marginal coefficients.

A priori one might expect cell counts to be negatively correlated because cells are

competing for space in the tissue. Ignoring the ‘Other’ cell category (there are

small numbers of these cells) it can be seen that the graph associated with the

partial correlations has links <fibroblast, epithelial>(strength -0.34) and <fibroblast,

inflammatory>(strength -0.29), indicating that the number of fibroblasts is directly

linked to the other two cell types, but that the <epithelial, inflammatory>link is

small (strength 0.038).

Table 3.3: Partial Correlations Between Cell Counts

Epithelial Inflammatory Fibroblast Other

Epithelial 1 0.038 -0.34 -0.45

Inflammatory 0.038 1 -0.29 -0.086

Fibroblast -0.34 -0.29 1 0.31

Other -0.45 -0.086 0.31 1

3.7.3 Comparing RS and SRS using different sample sizes

For each sampling policy i.e. RS or SRS and each nominal sample size ns the

detection algorithm was run for each patient of interest. This was done in two

batches. For each batch a sample was taken according to the current sampling policy.

To explain how results were obtained we adopt the following notation. The profiles

resulting from batch run b are denoted by Zisub where i was the patient index, s was

an index into the array of nominal sample sizes u denoted the cell type and b was

the batch number. Table 3.4 compares SRS and RS for a range of sample sizes and

cell types.

For each patient i, each s, the relative mean error for cell type u is defined in

the equation below. (The indices 1 and 2 refer to batch numbers.)

eisu = 2
|Zisu1 − Zisu2|
|Zisu1 + Zisu2|

(3.13)

The mean error, averaged over all nP patients is ēsu where:

ēsu =

∑
i eisu
nP

(3.14)

It can be observed from Table 3.4 that the mean error decreases with increas-
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ing sample size. For epithelial cells and the SRS sampling policy the mean error for

the sampling size 100 is 3.5%.

As expected SRS performs better than RS in all cases. For example, for

epithelial cells and various sample sizes the SRS average relative error compared with

the RS error was as follows: 81% (9.20/11.3) for sample size = 25, 74% (6.0/8.1) for

sample size 50 and 60% (3.5/5.8) for sample size 100.

Table 3.4: Error Values(%) - RS and SRS (‘Cell’)

Sample Size 25 50 100

(Nominal Number of Tiles)

Epithelial Cells Global Average 21.3 cells

RS 11.30 8.10 5.80

SRS 9.20 6.00 3.50

Inflammatory Cells Global Average: 5.52 cells

RS 19.20 12.50 8.30

SRS 17.40 7.60 6.50

Fibroblasts Global Average: 5.64 cells

RS 14.50 11.00 8.00

SRS 13.80 8.10 4.80

‘Other’ Cells Global Average: 2.43 cells

RS 24.30 16.90 9.90

SRS 20.10 11.50 7.80

3.7.4 ‘Hovernet’ - Sampling Experiments

The experiments previously described in Subsections 3.7.2 and 3.7.3 were repeated,

the only difference being that the ‘Hovernet’ algorithm [71] was used as the cell

locator instead of the ‘Cell’ algorithm. Note that ‘Hovernet’, previously introduced

in Section 2.11, is also described in Subsections 3.3.2 and 3.6.2.

Figure 3.8 includes six scatterplots, one for each cell type. The sampling

policy was SRS and the sample size was the same as for ‘Cell’, namely 100. Each

scatterplot compares the results of sampling run Batch 2 with those of sampling

run Batch 1. Correlation coefficients are shown on the scatterplots. The minimum

correlation is 0.978: the results for the two batches are strongly related.
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Figure 3.8: Hovernet - Comparison of Batch Runs (SRS: sample size=100)
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Table 3.5: Error Values (%) - RS and SRS - ‘Hovernet’

Sample Size 25 50 100

Background Cells Global Average 1.64 cells

RS error 8.58 7.03 4.54

SRS error 7.47 4.47 2.84

Epithelial Cells Global Average 23.90 cells

RS error 6.66 4.88 3.37

SRS error 5.28 3.21 1.86

Inflammatory Cells Global Average 4.78 cells

RS error 13.59 10.75 7.10

SRS error 11.66 7.04 3.97

Fibroblasts Global Average 4.64 cells

RS error 13.71 9.97 5.76

SRS error 10.68 6.86 3.45

Other Cells Global Average 2.07 cells

RS error 17.18 10.90 8.41

SRS error 13.52 8.05 4.81

Normal Cells Global Average 2.34 cells

RS error 11.18 9.36 6.52

SRS error 11.51 6.11 3.93

Table 3.5 displays the sampling errors associated with the ‘Hovernet’ al-

gorithm. It follows a similar pattern to Table 3.4. The numbers of each type of

cell detected are greater than those for the ‘Cell’ algorithm in Table 3.4 but the

relative distributions are similar, roughly four times as many epithelial cells as

inflammatory cells, and four times as many epithelial cells as fibroblasts. The average

number of epithelial cells predicted by ‘Cell’ was 21.3, and correspondingly values

for inflammatory cells were 5.5, for fibroblasts were 5.6 and for ‘Other’ cells were 2.4.

The corresponding ‘Hovernet’ averages were 23.9 epithelial cells, 4.8 inflammatory

cells, 4.6 fibroblasts and 2.1 ‘Other’ cells in each 100µM × 100µM square. For SRS

with a sample size of 100 the average error is 1.86% indicating that sampling is

accurate enough to compute profile values.

The error values calculated in the experiments carried out here refer to the

errors due to sampling, not to errors in the cell identification process itself. Sampling

accuracy could be high for both the ‘Cell’ algorithm and the ‘Hovernet’ algorithm,

but those algorithms predictions of the average numbers of cells differed by 10%

to 20%. Equivalently, it is possible that the sampling errors are low, but the cell

identification algorithm itself has poor accuracy.
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3.8 Application: Assocations between Profile Values

and Clinical Variables

Preprocessing of the clinical data associated with the 142 images in the data set

identified fourteen clinical variables of interest. (Variables with large numbers of

missing values were excluded, as were variables with constant values.)

Table 3.6: Associations between cells counts and clinical variables

Clinical Variable Group 1 Group 2 p-value BH p-value BH sig

Metastasis

M0 (n=120) M1 (n=21) M0 M1

Epithelial 22.1 17.2 0.00152 0.0411 Y

Inflammatory 5.8 4.0 0.0372 0.0411 Y

Fibroblast 5.3 7.7 0.0156 0.0429 Y

Other 2.1 3.5 0.00506 0.0482 Y

Residual Tumor

R0 (n=117) R2 (n=20) R0 R1

Epithelial 22.1 17.7 0.0130 0.0438 Y

Inflammatory 5.8 4.4 0.0506 0.0393 N

Fibroblast 5.3 7.8 0.0179 0.0420 Y

Other 2.2 3.3 0.0100 0.0464 Y

Vascular Invasion

NO (n=64) YES (n=73) NO YES

Fibroblast 4.6 6.4 0.00661 0.0473 Y

Venous Invasion

NO (n=98) YES (n=30) NO YES

Epithelial 22.9 19.4 0.0111 0.0455 Y

Fibroblast 4.8 6.4 0.0116 0.0446 Y

Mucinous Carcinoma

NO (n=120) YES (n=20) NO YES

Inflammatory 5.9 3.4 0.00361 0.0491 Y

Vital Status

Alive (n=130) Dead (n=12) Alive Dead

Inflammatory 5.70 3.80 0.0488 0.0402 N

Each variable was cross-tabulated against each of the four profile features,

or correlation coefficients were calculated, or a MANOVA was performed. Where

the clinical variable was a binary categorical variable, t-tests were used to compare

the mean value of the profile variable by clinical group. For example, metastasis

was grouped by value as ‘M0’ or ‘M1’ and it was natural to compare the average
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numbers of different types of cells in the two groups.

Table 3.6 shows the six clinical variables for which the (uncorrected) t-test

had a p-value less than or equal to 0.05 for at least one of the four cell types.

The other clinical variables were also tested, but no significant associations were

found and these results are not displayed. Table 3.6 shows the name of the clinical

variable in the first column followed by the categories of interest and the number of

patients in each category. In lines containing cell types, the average value of the cell

count is shown for each category, followed by the p-value. The significance value of

0.05, appropriate to a single test has been adjusted using the Benjamini-Hochberg

correction [83], [15] and is shown in the column labelled “BH p-value”.

Differences between the two categories for metastasis had significant p-values

for all cell types. Compared with M0, (colorectal cancer without evidence of distant

metastasis), the category M1, where metastasis was present, had increased numbers

of fibroblasts and ‘Other’ cells and fewer epithelial cells and inflammatory cells. The

presence of residual tumor was also associated with more fibroblasts and ‘Other’ cells

and fewer epithelial cells and inflammatory cells. Both vascular invasion and venous

invasion were associated with increased numbers of fibroblasts. Venous invasion was

associated with fewer epithelial cells.

Mucinous carcinomas were associated with fewer inflammatory cells than were

non-mucinous carcinomas. Finally, the twelve patients who were recorded as dead

when added to the TCGA repository were also likely to have fewer inflammatory

cells detected than patients who were recorded as alive, although the associated

p-values were not significant.

Note that the remaining clinical variables, for which no associations were

found, were as follows: Gender, Age, T Stage and N Stage, History of colon polyps,

History of other malignancy, Anatomic neoplasm subdivision (Tumour Location -

left side versus right side) and CEA level.

3.9 Discussion

There were five clinical variables for which we found significant associations with

morphological features. Four clinical variables had significant associations with

fibroblast counts: in each case higher fibroblast counts were associated with poorer

values of the clinical variable. This is not unexpected [82]. In a review of the

role of cancer-associated fibroblasts in the tumour microenvironment, [92] refers to
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fibroblasts as the ‘cockroaches’ of the human body and states that they play an

important role in tumorigenesis and cancer progression.

Two clinical variables were associated with differences in inflammatory cell

counts, namely metastasis, and mucinous carcinoma. Poor values of the clinical

variables were associated with lower numbers of inflammatory cells, which might

be expected, in the light of the positive role of tumour infiltrating lymphocytes in

slowing down disease progression [136], [134].

Finally, metastasis, residual tumour and venous invasion were related to lower

numbers of epithelial cells.

The morphological features extracted from the 142 diagnostic images from

the COAD data set may be regarded as expressions of cellularity, the numbers,

degree or quality of cells present in a tumour. Cellularity is a familiar concept in

pathology: here each morphological feature corresponds to the spatial density of the

corresponding cell type. Regarding the four different types of cell, deep learning

generated morphological features that are indicators of cell density. Cellularity has

been reported to be related to patient survival and other diagnostic and prognostic

indicators, indicating that the features calculated here may be of general usefulness.

To train a CNN to recognise an object, images need only be large enough

to include relevant information from the object’s neighbourhood. For example, the

models used in this thesis were trained on image patches of size (33× 33) at 20X

magnification. To apply a model to a whole-slide image the image was segmented

into (500× 500) at 20X) tiles and the cell identification procedure was applied on a

per-tile basis. In this approach the procedure is applied to each tile independently,

outputting a set of features that characterise that tile. The per-tile features were

aggregated over the WSI to generate a collection of features which characterise the

cellular characteristics of the WSI: a WSI profile.

However, such an approach is computationally costly: on average, each WSI

in the data set used in this study contained about 900 tiles that had significant

amounts of tissue. Computational costs were reduced by sampling a limited number

of tiles, applying the identification algorithm to each, then averaging the per-tile

features over the sample of tiles. In principle, if enough tiles are sampled, processing

costs can be reduced without significant loss of accuracy.
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Using sampling to obtain results can save processing costs. In this application

the average number of tiles containing tissue in an image was approximately nine

hundred, so processing a random sample of patches had the potential to greatly

reduce computation costs. Two sampling policies were examined in this study. The

first policy was random sampling which samples patches with uniform weighting.

The second policy was systematic random sampling which takes spatial dependencies

into account. Compared with the processing of complete whole slide images there

was a seven-fold improvement in performance. When systematic random spatial

sampling was used to select 100 tiles from the whole-slide image for processing there

was very little loss of accuracy (approximately 4% on average).

The profiles being computed were particularly suitable for some form of

random sampling because the features of interest all associated with ‘cellularity’ were

additive over regions in the images. In applications where the regions of interest

are sparse and spatially concentrated, adaptive sampling may be more appropriate.

The two examples from the literature, discussed in the introduction, use random

sampling to find regions of interest followed by adaptive sampling to narrow the

search.

Further experiments remain to be done. For example, we have calculated

profiles using quite large tiles, usually containing hundreds of cells. Sampling using

smaller tiles, but more of them, might well prove effective. The performance is likely

to be affected by both pure speed-ups and by latency costs associated with loading

data onto the GPU, so some experimental work would be useful.

The work described here has been experimental: no explict statistical model-

ling of locational distributions has been used. For example, a first approximation

would be to assume that the spatial distribution of cells has a Poisson distribution.

This assumption allows standard errors and other statistics to be estimated using

standard statistical machinery.

In addition, multi-level modelling could be considered. The theory of multi-

level modelling applies to data in which statistics may be calculated within objects,

then used as variables that describe those objects. For example, we may determine

the distribution of test scores of pupils within each class in a school. Summary

descriptors of the distribution, such as class test averages, may then be used as

attributes when comparing the performance of different classes within the school [70].

The TCGA data is multilevel data. It consists of patient data: images containing
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cells, clinical data and molecular data. We are calculating the distribution of cells

within an image (the image profile), then we compare patients, using both profiles

and clinical data. The use of the theory of multilevel data is a possible extension to

the work done here.

In addition to the cellularity features studied here, other features may be

calculated using deep learning. Such features, most of which have been discussed in

the previous chapter, include tumour budding which is the presence of single tumour

cells or small clusters of up to five cells in the stroma and which is associated with

aggressive cancer ([43], [174] and [104]). In addition, [106] suggests that poorly differ-

entiated clusters, perineural invasion, and desmoplastic reaction are also important

in diagnosis. Another morphology of interest is that of serrated cancers in which the

colonic glands are of distinctly serrated form [123], [61].

[91] classified colorectal cancers according to molecular features, observing

that they are related to morphological features such as the number of tumour in-

filtrating lymphocytes, differentiation, presence of dirty necrosis, serration, tumour

budding, mucinous/not mucinous and presence of an expanding invasive margin. [54]

reported that serrated cancers have distinct molecular features. Deep learning has

recently been used to predict diagnostic molecular features from morphology, e.g.

for lung cancer [37], and breast cancer [38]. It is to be expected that future work

with deep learning will enable morphological, clinical and molecular data to be linked.

The experimental results in this paper were obtained from a single TCGA

site. The analysis could be extended to all sites in the TCGA colon cancer repository.

In the experiments carried out here, standardisation was straightforward, using

the pooled average intensities of a group of whole-slide images to normalise data.

Unfortunately, there is no guarantee that this approach will always be successful.

Techniques that cater for the many different originating sites in TCGA should be

used. The next chapter addresses the colour variability found in the different TCGA

sites.

3.10 Conclusions

The work here has shown experimentally that a cell identification algorithm using

deep learning can uncover informative ‘profiles’ of diagnostic images and that sys-

tematic sampling of tissue regions can improve performance without losing accuracy.
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In analysing a set of diagnostic images from TCGA, statistical sampling of

tiles from whole-slides images proved to be worthwhile: significant improvements

in classification performance were achieved with very little loss of accuracy. This

finding applied both to the ‘Cell’ algorithm and to the ‘Hovernet’ algorithm.

For both ‘Cell’ and ‘Hovernet’ systematic random sampling (SRS) was

markedly more accurate than straightforward random sampling (RS). For example,

with a sample size of 100, and considering epithelial cell counts the batch difference

error was 3.5% for systematic random sampling and 5.8% for basic random sampling

(Table 3.4 above).

An application of sampling to the ‘Cell’ algorithm found statistically signi-

ficant associations between morphology and various clinical variables. The TNM

grading system used in cancer treatment considers tumour penetration, nodes and

metastasis [88]. Of these three indicators significant associations were found for

metastasis, for all four types of cell. In addition, associations between WSI profiles

and ‘Residual Tumour’, ‘Venous Invasion’, ‘Vascular Invasion’, and ‘Vital Status’.

Mucnous carcinomas were found to be associated with fewer inflammatory cells.
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Chapter 4

Colour Normalisation

In the preceding chapter sampling was used in cell identification. In that work,

analysis was confined to a subset of TCGA patients from the AA contributing site,

patients for whom gene expression data was stored,. A typical image, a tile from a

diagnostic image is displayed in Figure 4.1.

This chapter considers the entire TCGA COAD (colon cancer) data store.

The COAD repository contains 433 high-resolution diagnostic images which have

been uploaded from twenty-four different sites and vary greatly in appearance, mainly

in the intensities of the haemotoxilyn and eosin regions. The haemotoxilyn stain

binds to the nuclei of epithelial cells and varies in colour from light mauve in Figure

4.1 to nearly black in Figure 4.2. The eosin stain binds to cytoplasm and stroma.

Variations in stroma colour can be seen by comparing Figure 4.3 which has light

staining of stroma with Figure 4.4 which has heavy staining of stroma. The lightly

stained images are both from the contributing site labelled AA while the heavily

stained images are from the A6 site and the D5 site.

The human observer is not particularly impeded by variability in colour

intensity: a trained pathologist will have learned to cope. Even to the untrained eye

the cells in the preceding figures are mostly quite easy to identify. Unfortunately,

the typical automated system is not so versatile. When heavily stained images are

presented to the ‘Cell’ classification model used in the preceding chapter, the model

almost invariably predicts the cell type poorly. See Table 4.9 in Sub section 4.3.7

which summarises the results of the ‘Cell’ classification model when both unnorm-

alised and normalised patches are input. The first column of results displays the

per-site classification accuracies of ‘raw’ (unnormalised) patches. In general these

accuracies are low and the average accuracy for unnormalised images across all sites
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Figure 4.1: Tile with epithelial nuclei - light staining (Patient:AA-3845 Tile:1412)

Figure 4.2: Tile with epithelial nuclei - heavy staining (Patient:A6-2686 Tile:6010)

is 35%.

Colour variability in TCGA COAD data is summarised in Table 4.1. Colour

statistics of patches detected by the SRS detection algorithm were computed for

all 433 viable WSIs in the COAD data set. Table 4.1 displays the average colour
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Figure 4.3: Lightly coloured stroma: (Patient:AA-3845 Tile:704)

Figure 4.4: Heavily stained stroma: (Patient:D5-6928 Tile:1131)

intensities at the ten sites with the largest number of patients (omitting one site

with images with many coloured pen markings). In addition, Figures 4.5, 4.6 and

4.7 plot Blue against Red, Green against Red and Green against Blue site averages.

In each plot the corresponding point for the classification training patches is shown

as a red dot (R=191, G= 158, B=208). In these plots the point associated with the

AA site is the closest one to this red dot, suggesting that of all the sites, the AA
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site, analysed in Chapter 4, contains data that is closest to the training data.

Table 4.1: Classification Patches - Colour Statistics

Site Mean StDev Stdev

w.r.t global w.r.t 10 means

Red Green Blue Red Green Blue Red Green Blue

AA 165.0 132.5 197.9 37.7 40.0 40.0 19.2 19.5 13.4

A6 131.8 79.2 122.6 47.5 40.0 40.0 14.2 15.1 12.9

CM 145.3 95.7 140.2 44.5 39.7 39.7 12.2 14.4 12.9

D5 179.4 131.9 164.9 42.1 44.9 44.9 12.9 18.3 15.2

G4 156.8 101.7 146.7 40.7 38.4 38.4 23.7 17.6 16.1

AZ 150.7 92.2 132.5 50.4 43.2 43.2 19.0 17.7 14.8

F4 159.0 93.9 139.0 54.2 39.4 39.4 29.8 19.1 21.9

CK 149.6 96.1 138.9 51.7 42.1 42.1 14.4 13.2 10.2

AD 156.8 101.7 146.7 40.7 38.4 38.4 23.7 17.6 16.1

AY 128.3 84.7 129.4 42.5 35.6 35.6 21.2 13.8 10.0

Figure 4.5: TCGA Sites: Mean Blue Intensity Plotted against Mean Red Intensity
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Figure 4.6: TCGA Sites: Mean Green Intensity Plotted against Mean Red Intensity

Figure 4.7: TCGA Sites: Mean Green Intensity Plotted against Mean Blue Intensity
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Ideally, if standardised laboratory procedures are used to create a digital im-

age from a tissue sample, the intensities in the digital H&E image will be independent

of the laboratory. In practice, variations from the ideal occur for all sorts of reasons.

Use of the microtome is a skilled operation: the depth of the tissue slices can vary,

within a tissue section, from slice to slice, from machine to machine and from operator

to operator. Variations in the time for which the tissue is left in the stain bath are

also responsible for such batch effects [63]. The behaviour of the haemotoxilyn and

eosin dyes can also vary. This is likely to be a batch effect: within-slide variation due

to different dye behaviour is likely to be much less than differences resulting from

the use of different dye manufacturers. In addition, calibration of the microscope

can produce varying results.

There are several ways of dealing with such batch effects. The first approach,

colour normalisation, transforms the image of interest to a new image that has

statistics that match the statistics of reference images. Usually colour normalisation

alters the colour intensity distributions of images so that they match those of a

reference data set, usually the set of images that were used to train the model.

The second method, augmentation, extends the training space by applying

random changes to the training data, thereby adding new cases which mimic pos-

sible variations in the experimental setup. For example, the effect of different dye

manufactures can be mimicked by adding training images with colour intensities

corresponding to dye varieties used at different sites. The augmented CNN model is

then applied to images at these sites. CNN models have an abundance of trainable

parameters, enough to deal with large image spaces, so this is a feasible strategy.

Finally, generative adversarial networks, GANs, deal with each new site sep-

arately. The training network uses both the labelled training images and unlabelled

new site images as input. The main idea is to add a secondary network to the main

network. The secondary network classifies images by site location: training site or

new site. The aim is modify the parameters of the main network until the secondary

network fails to discriminate between sites: the learnt parameters capture features

that are invariant to the change of site. The term adversarial refers to the fact

that the two networks operate in opposite ways: while the loss function of the main

network is minimised, that of the secondary network is maximised. GANs are similar

to augmentation because the parameters of the (hybrid) CNN contain parameters

that embody information concerning features of the new site.
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In the rest of this chapter we compare colour normalisation methods, ap-

plying them to diagnostic images from ten TCGA sites, the sites with the largest

number of images. The effects of normalisation on both cell detection and on cell

classification are examined. For each normalisation method we calculate appropriate

statistics for the training data then apply normalisation to hand marked images. Ap-

propriate metrics are used to evaluate the normalisation techniques on a per-site basis.

The chapter is organised as follows. Section 4.1 contains an introduction to

colour normalisation and considers five colour normalisation methods. One method,

‘Naive’ colour normalisation, operates directly on colour intensities while the other

four colour normalisation methods are based on colour separation: the extraction

of the separate contributions of the dyes in operation. These methods are those of

Ruifrok and Johnson [147], Khan et al. [100], Macenko et al. [117] and Vahadane et al.

[177]. Section 4.2 describes the test harness used to compare these normalisation

techniques in cell classification, a test harness in which cell patches were selected,

hand marked, normalised, then subjected to the classification model of the ‘Cell’

algorithm. Results are presented in Section 4.3. Normalisaton techniques were also

examined for effectiveness in detecting cells, using the detection model of the ‘Cell’

algorithm, in Section 4.4. Related work is considered in Section 4.5. Section 4.6 is a

concluding discussion of results.

4.1 Colour Normalisation Methods

Normalisation uses two sets of statistics, one set for the training data, and the other

for the prediction data. In this context the term statistic refers to a quantity that

has been calculated from the features that define an object: in image processing

this is usually the result of a calculation performed on (appropriate regions of) the

image. The theory of exploratory data analysis [173] suggests that the first statistics

to compute are measures of size, followed by measures of dispersion. Measures of

size include means, modes and medians. Measures of dispersion include standard

deviations and ranges, both raw and adjusted. In statistics these correspond to

the first and second moments of a frequency distribution. The third and fourth

moments of a distribution, skewness and kurtosis are occasionally used. For cases

where order-preserving transformations are most appropriate, order statistics, such

as quartiles and other percentiles are also used.

The general workflow in normalisation is displayed in Figure 4.8. Relevant

statistics are extracted both from the training image (or images) and the whole slide
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Figure 4.8: Workflows in Normalisation

image. The relevant regions of the image are loaded into memory and transformed

so that the transformed image has the same statistics as the training image.

Note that in most cases of normalisation, background pixels in the image are

identified and removed from consideration before statistics are extracted. This is

because the background area of an image is a large proportion of the region that

varies greatly in size, without containing useful colour information.

4.1.1 ‘Naive’ Colour Normalisation

‘Naive’ colour normalisation adjusts RGB intensities to match training statistics.

The ‘Naive’ algorithm used here applies standardisation so that the input image

intensity maps have the same mean and standard deviations as those of the training

data. A straightforward approach is to carry out standardisation as the combination

of two transformations. The first transformation is a standard Z-transformation

while the second transformation transforms points in Z-space to a space where their

means and standard deviations are the same as the means and standard deviations

of the reference (training) data.

In the implementation of ‘Naive’ normalisation it is assumed that there are

three colour maps fR, fG, fB and that each map function fc returns the colour

intensity of the pixel at a point belonging to the region of interest.
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The mean intensity fc, and the standard deviation of the image intensity sc

are used to standardise the fc. The transformed data zc has zero mean and unit

standard deviation:

zc =
(fc − fc)

sc
(4.1)

We transform zc to the normalised intensity f ′c using the mean intensity of

the reference image(s) fc
T

, and the corresponding standard deviation, sc.

f ′c = zcs
T
c + fTc (4.2)

Finally we ensure that the normalised intensity is in the allowable range: for

example if the range is 0, 255 by restricting the possible values. The component f ′′c

of the normalised image is:

f ′′c = max(min(f ′c, 255), 0) (4.3)

In ‘Naive’ colour normalisation two statistics are used: the mean colour

intensity (over the region on which the image is defined), and the corresponding

standard deviation. The statistics are calculated for both the reference images and

for the current image. The normalisation transformation has the two lots of statistics

as input, plus the image to be normalised.

4.1.2 Stain Separation and Stain Normalisation

When tissue is stained with a single stain such as the nucleus-staining haemotoxilyn,

each pixel in the resulting image reflects the amount of stain present. The Beer-

Lambert transformation [120] maps intensity values (fR, fG, fB) to optical density

values, denoted by (dR, dG, dB). If the maximum intensity is 255, then the Beer-

Lambert transformation of colour intensity fc may be defined as:

dc = −log(
fc + 1

256
) (4.4)

The set of all possible optical density values is referred to as optical density

(OD space). Points close to the origin in OD space are the brightest pixels, usually

background pixels, whereas the darkest pixels are those farthest from the origin of

OD space.

The optical density is linearly related to the quantity of stain. If a single stain

is used, OD pixels correspond to areas of tissue where the stain has adhered: hence,

in the case of H&E slides, the type of tissue of interest being nucleus or cytoplasm.
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The linear relationship can be specified by a stain vector, a three-dimensional vector

in optical density space. The stain vector for a given stain may be determined

experimentally by applying the stain to tissue, preparing a digital image of the tissue,

then fitting a line to the resulting points in OD space. Stain vectors for haemotoxilyn

and eosin are generally available (Ruifrok et al. [146]). Figure 4.10 in Sub section

4.1.4 shows these stain vectors in OD space, together with pixels obtained from a

particular WSI (patient A6-2686).

The (unit) stain vectors ĥ and ê may be composed into a stain matrix:

S =


hR eR

hG eG

hB eB

 (4.5)

For a particular image, the individual contributions of haemotoxilyn and

eosin can be computed using stain separation, also known as stain deconvolution.

They are estimated by transforming the image from RGB space to OD space, where

a stain deconvolution transformation is applied.

4.1.3 Deconvolution in the Stain-Vector Plane

Figure 4.9 illustrates how the process takes place in the plane spanned by two unit

stain vectors ĥ and ê. We may project the optical density of a pixel in the image

onto this plane, obtaining the 2D point (rx, ry). In the plane we set the X axis to lie

in the same direction as ĥ. Let n̂ be the unit normal to the plane and define the Y

axis to lie in the direction of ĵ where:

ĵ = n̂× ĥ (4.6)

In Figure 4.9 the optical density vector (rx, ry) is decomposed into two vectors

indicated by the sides of the parallelogram shown in the diagram. Let the sizes of

these vectors be h and e respectively. The size of (rx, ry) is r:

r =
√
x2 + y2 (4.7)

Let (rx, ry) be at an angle α to the X axis, and let θ be the angle between the

eosin stain vector and the X axis. Straightforward geometry allows us to calculate

the stain intensities h and e as:

h = r cosα− cot θr sinα (4.8)
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Figure 4.9: Workflows in Normalisation

and

e = r csc θ sinα (4.9)

Which can be written in matrix form as:h
e

 = D

rx
ry

 (4.10)

where D is:

D =

1 − cot θ

0 csc θ

 (4.11)

Because h is a unit vector along the X axis, and e is a unit vector at angle θ

to the X axis) the stain matrix is of the form:

S =

1 cos θ

0 sin θ

 (4.12)

Inverting S we obtain the deconvolution matrix D.

D = S−1 (4.13)
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4.1.4 Stain Separation in Three-Dimensional Space

Stain separation in three dimensions is carried out as follows. The 3 by 2 stain

matrix S2 defined below is extended by adding the unit normal n to the plane that

has h and e as basis vectors as specified in Equation 4.15.

S2 =


hR eR

hG eG

hB eB

 (4.14)

S3 =


hR eR nR

hG eG nG

hB eB nB

 (4.15)

Where:

n̂ =
ĥ× ê∥∥∥ĥ× ê∥∥∥ (4.16)

The 3-D deconvolution matrix D is:

D = S−1
3 (4.17)
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Figure 4.10: OD space showing stain vectors obtained by Ruifrok and Johnson
(Patient: A6-2686)

To separate the stains we apply D to the OD values of the pixels in the image,

resulting in two surfaces of OD density for the pixels considered in xy space. Applic-

ation of the inverse of the Beer-Lambert transformation yields the corresponding

RGB intensities. Figure 4.10 displays the distribution of pixels in OD space plus two

lines that are projections of the stain vectors experimentally obtained by Ruifrok

et al. [146]. The pixels tend to be clustered around these two lines in the 3D space.

There is one line for H and one for E, both passing through the origin. Nucleic tissue,

coloured red, appears in pixels close to the H line, while cytoplasmic tissue, coloured

blue-grey, is represented by pixels near to the E line. Pixels representing high

concentrations of a stain are further from the origin, while pixels representing low

concentrations are closer to the origin. Stain vectors may be obtained experimentally

(Ruifrok et al. [147]) or determined from current data by stain separation procedures.

Well-known stain separation procedures are those developed by Khan et al. [100],

Vahadane et al. [177] and Macenko et al. [117].

Stain normalisation is carried out by computing appropriate statistics for the

two intensity distributions in OD space. The intensity distributions are normalised so

that their statistics match the reference statistics, usually obtained from the training

stage.
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4.1.5 Ruifrok Normalisation

Figure 4.11: Stain normalisation using experimentally determined stain vectors

Figure 4.11 illustrates the workflow in the stain normalisation process when

the experimentally determined stain vectors of Ruifrok and Johnson are used. The

Beer-Lambert transformation is denoted by the square box containing B while the

inverse Beer-Lambert transformation is denoted by B−1. The image is transformed

into OD space and the stain maps for H and E are calculated using the inverse stain

matrix. The OD values are stretched so that they have the approximately the same

maximum value as in the training data. The range is not a robust statistic, so the

99th percentile has been used instead.

4.1.6 Khan Normalisation

This normalisation technique [100] divides the three-dimensional colour space into

labelled volumes: into a palette. The palette is used to label pixels as foreground,

background or ‘other’. The foreground pixels are also labelled as H or E. The h stain

vector is the centroid of the H pixels scaled to a unit vector. The e vector is obtained

in a similar fashion. The statistics computed in OD space are various percentiles of

the stain maps, including the median and the 1% percentile. These percentiles are

used to compute piecewise spline approximations of the E and H distributions: the

WSI image is forced to the training image by matching the knots of the piecewise

splines. The palette may be computed in advance or on the fly.
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The workflow for Khan normalisation is shown in Figure 4.12. The vectors

obtained by this algorithm for one WSI (A6-2686) are shown in Figure 4.13. In

addition the standard Ruifrok vectors are shown. Observe that the Khan stain vector

for H appears to be a better representative of the cloud of darker pixels than the

Ruifrok vector for H.

Figure 4.12: Workflow in Khan normalisation

4.1.7 Macenko Normalisation

The colour normalisation method of Macenko [117] computes stain vectors, carries

out stain decomposition, then normalises pixels using robust maxima. Points in OD

space are summarised by their covariance matrix and its eigenvalues and eigenvectors

are extracted. The two stain vectors are assumed to lie in the plane spanned by

the eigenvectors corresponding to the two largest eigenvalues and the projections

of all points onto this plane are obtained. The region occupied by pixels in the

plane is roughly cone-shaped: one edge of the cone is made up of nucleic pixels and

the other edge contains cytoplasmic pixels. The edges are obtained by sweeping a

clock-hand around the plane and counting pixels. The stain vectors are positions of

the hand that have a small fraction of pixels on one side. Applications of Macenko

algorithm described in this thesis used percentiles of 2% and 98% respectively. Once

the stain vectors have been obtained stain normalisation is carried out using the

method already described for Ruifrok normalisation.
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Figure 4.13: OD Space with stain vectors obtained by the Khan algorithm and by
the Ruifrok algorithm(Patient: A6-2686)

4.1.8 Vahadane Normalisation

Vahadane’s method [177] is another method that estimates stain vectors. The two

stain vectors are non-orthogonal basis vectors for the data and may be estimated

using non-negative matrix factorisation. The optimisation process that finds the

stain vectors has sparsity constraints which are controlled by a sparsity parameter.

Once again, stain normalisation is carried out using the same method as in Ruifrok

normalisation.

4.2 Test Harness - Cell Classification

The test harness which applied the normalisation methods listed in Table 4.2 operated

as follows. The ten COAD sites with the greatest numbers of diagnostic images

were used. (Site DM has large numbers of WSIs with pen markings and has been

excluded). Five WSIs were randomly sampled from each site. Three tiles of interest

from each WSI were saved for hand marking. This was done as follows. The WSI

was viewed with the display showing tiles from a previous SRS detection run (see

Chapter 3). Figure 4.14 shows the tiles sampled in the ‘Cell’ detection algorithm,

outlined in yellow. The user scanned the WSI (zooming and panning appropriately)

and selecting at least three tiles containing examples of epithelial cells, inflammatory

105



Figure 4.14: Whole slide image showing tiles sampled in detection

cells and fibroblasts. If possible the following structures were included in at least

one of the three tiles: crypts containing normal cells, tumour cells, stromal material

containing cells and regions containing inflammatory cells.

Table 4.2: Normalisation Methods

Normalisation

Raw

Ruifrok and Johnson

Khan

Macenko

Vahadane

‘Naive’

4.2.1 Preprocessing: Calculation of Colour Statistics

For each normalisation method of interest various statistics were needed. These

might include colour statistics for foreground and background pixels (average colour

intensities), stain vectors and various percentiles. Statistics were calculated for both

reference (training) data and for the whole slide images selected by the test harness.

For the six types of colour normalisation only four sets of statistics needed to be

calculated (Ruifrok, Khan, Macenko, Vahadane). This was because the ‘raw’ type

does not use statistics at all, and the Naive algorithm can use the statistics generated

for the Ruifrok algorithm.
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Not all pixels in the WSIs were used in the generation of statistics. Instead,

when hand marking, the user selected cell locations detected by the SRS algorithm

as described in Subsection 4.2.2. Patches around the selected cell locations were

used to compute the colour statistics to be used in normalisation. Small subpatches

were randomly sampled from the patches and colour statistics of the sample set were

computed.

4.2.2 Hand Marking for Classification

The selected tiles were hand marked for classification using the interface displayed

in Figure 4.15. When hand marking, the user viewed the tile with previously

detected cells shown in white-edged squares. The tile was displayed without the

white-edged squares in a second figure: this helped the user to see the image without

the distraction of the white edges. The user marked up to forty nuclear patches with

their type - ten epithelial, ten inflammatory, ten fibroblasts and a few ‘other’ cells.

The user marked only cells that that they could classify with confidence. Marked

patches were saved for use in normalisation and prediction. In accuracy calculations

the markings were referrred to as ground truth.

Figure 4.15: Selecting cells in a tile and hand marking them

4.2.3 Normalisation for Classification

For each normalisation technique the selected patches were normalised to the train-

ing statistics, using the WSI statistics applicable to the normalisation type. The

normalised patches were saved for prediction. The trained classification CNN from
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‘Cell’ predicted the classes of the selected patches. The patches’ predicted cell types

were compared with the hand marked classes. Confusion matrices were computed

and accuracy values were extracted.

4.3 Results - Normalisation for Cell Classification

This section presents results for each normalisation technique.

4.3.1 Raw Data

Table 4.3 displays the confusion matrix applicable to raw data. The entries in the

table add up to 100, so that if classification was perfect the entries on the leading

diagonal would sum to 100. Rows show how ‘true positives’ have been classified and

columns show how the predicted classification values correspond to the ground truth

values. For example, for every 100 cells 16.9 of them are ‘true positive’ fibroblasts

but have been classified incorrectly as ‘Other’ cells. The average accuracy over all

cell types is 36.5%. The classification errors were particularly large for epithelial

cells, most of which were classified as inflammatory cells. As previously observed, in

most sites the diagnostic images are darker looking than the training data images.

In the training data set inflammatory and ‘Other’ cells are dark coloured, so it is

not too surprising that many cells are classified as inflammatory or ‘Other’.

Table 4.3: Raw confusion matrix

Epith Inflam Fibro Other

Epith 8.7 25.3 2.2 1.8

Inflam 0.7 24.4 0.1 7.9

Fibro 1.2 5.4 1.8 16.9

Other 0 2.1 0 1.6

4.3.2 Ruifrok Normalisation

The Ruifrok normalisation accuracy was 69.7% - see Table 4.4. This is a marked

improvement on the scores for raw images.

4.3.3 Khan Normalisation

Khan normalisation (Table 4.5) has an accuracy of 64.4%, similar to that of Ruifrok

normalisation. The errors that do arise are due to about half the fibroblasts being

classified as epithelial cells, and about a third of inflammatory cells being classed as

‘Other’ cells.
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Table 4.4: Ruifrok algorithm - confusion matrix

Epith Inflam Fibro Other

Epith 33.5 0.8 0.6 3.2

Inflam 1.4 23.3 0.2 8.1

Fibro 5.4 1.1 11 7.7

Other 0.2 1.8 0.1 1.7

Table 4.5: Khan algorithm - confusion matrix

Epith Inflam Fibro Other

Epith 33.9 1.3 2.5 0.4

Inflam 4.9 17.6 1.2 9.3

Fibro 10.9 1.1 11.8 1.5

Other 1.1 1.2 0.2 1.1

4.3.4 Macenko Normalisation

Table 4.6 shows how Macenko normalisation performed. The accuracy, averaged over

cell types was 83.7%. The three most common cell types had satisfactory behaviour.

The small number of ‘Other’ cells tended to be classified poorly - the most common

classification being as epithelial cells.

Table 4.6: Macenko algorithm - confusion matrix

Epith Inflam Fibro Other

Epith 34.9 0.5 2.6 0

Inflam 2.8 26.4 2.6 1.2

Fibro 0.8 0.8 21.8 0.4

Other 1.8 0.8 0.8 0.6

4.3.5 Vahadane Normalisation

Normalisation using the method described by Vahadane yielded the following results

in the test environment (Table 4.7 ). The overall accuracy was 67.8%. The main

contributor to inaccuracy was fibroblasts being predicted to be epithelial cells.

4.3.6 ‘Naive’ Colour Normalisation

The confusion matrix for ‘Naive’ colour normalisation of images is displayed in Table

4.8. Results of ‘Naive’ colour normalisation were a big improvement on prediction

using raw data. The average accuracy is 80.9%. This is a high value: the results of
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Table 4.7: Vahadane algorithm - confusion matrix

Epith Inflam Fibro Other

Epith 31.9 1.2 4.6 0.4

Inflam 4.3 22.0 4.4 2.3

Fibro 10.5 1.1 13.1 0.6

Other 1.1 1.2 0.6 0.8

‘Naive’ colour normalisation are comparable to those of the Macenko normalisation,

the best normalisation technique that used stain separation.

Table 4.8: ‘Naive’ algorithm - confusion matrix

Epith Inflam Fibro Other

Epith 34 0.3 3.3 0.1

Inflam 2.7 23 4.6 2.4

Fibro 1.1 0.2 23 1.3

Other 0.3 1.1 1.4 0.9
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Table 4.9: Classification accuracy tabulated by site and normalisation method

Site Raw Ruifrok Khan Macenko Vahadane ‘Naive’ Site Avg.

AA 65 61 39 75 38 78 60

A6 23 72 45 84 76 79 63

CM 42 68 80 76 69 79 69

D5 40 75 63 86 80 84 72

G4 28 72 84 90 82 85 74

AZ 27 64 81 82 67 79 67

F4 17 54 78 80 46 73 58

CK 33 69 85 86 71 76 70

AD 35 69 41 75 66 77 61

AY 37 67 42 89 57 88 63

Avg. 35 67 64 82 65 80 65

4.3.7 Disaggregation by Site

Table 4.9 cross-tabulates classification accuracy by site and normalisation method.

For all sites, apart from the AA site, classification accuracy for non-normalised

patches is poor and varies markedly from site to site. The worst site for raw patches,

F4, scores only 17%. In contrast, for the AA site that includes the images that were

processed in the preceding chapter the 65% accuracy measure is nearly twice as good

as the site average, 35%.

Macenko normalisation and Naive colour normalisation both perform well.

They have similar ranges (75% to 90%) for Macenko normalisation and (73% to

88%) for Naive colour normalisation, although the Macenko average at 82% beats

the average Naive colour score of 80%.

Most evaluations of stain normalisation and stain augmentation techniques

consider only one or two sites. Authors should be careful when making claims about

the specific improvements obtained in such situations. The percentage improve-

ment in accuracy is site-dependent in this case, although ranking values are more

stable. However, most of the differences between the stain normalisation techniques

are consistent between sites and either the Macenko technique or ‘Naive’ colour

normalisation is always a winner.
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4.4 Test Harness - Detection

An experiment examining the effect of colour normalisation on the accuracy of the

detection component of ‘Cell’ was undertaken. The experiment used the same set

of tiles as had been sampled in the cell classification test harness. A tile typically

contained hundreds of cells, potentially imposing a heavy burden on the person

doing the hand marking. The effort involved was reduced by having a region within

the tile selected for hand marking automatically. This was done on the basis that

marking tens of cells rather than hundreds would still yield many hand marked cells

per patient and that the overall accuracy of calculations was unlikely to be affected.

Figure 4.16 displays the hand marking interface. The figure displays the region to be

hand marked as a square marked in white. The user clicks on the centres of nuclei

that are in the white square. In Figure 4.16 the clicked points are shown as small

white squares. When the use is satisfied the coordinates of the markings are saved

in an ‘observations’ file.

Figure 4.16: Hand marking of nuclei for detection (Patient:AA-3543, Tile:1328)

Tiles from the hand marked set were normalised, then fed to the ‘Cell’ de-

tection algorithm. Coordinates of the predicted locations that were inside the hand

marking square were saved.

Batch runs were carried out for five of the normalisation types listed in Table
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4.2. (The Khan algorithm was not included because the ‘Cell’ detection algorithm

already included Khan normalisation.)

A predicted location was scored as a true positive if a hand marking location

was found close to the prediction, in this case within a distance of 5 µM . The

Hungarian algorithm [112] was then used to assign predictions to observations and

to decide if a particular prediction was correct.

The effectiveness of normalisation was then assessed by calculating values of

precision, recall and F1 using the numbers of true positives TP , false positives FP

and false negatives FN. Precision is defined by:

precision =
TP

TP + FP
(4.18)

Recall is defined by:

recall =
TP

TP + FN
(4.19)

And the F1 score combines precision and recall:

F1 =
2.precision.recall

precision+ recall
(4.20)

Tables 4.10, 4.11 and 4.12 display precision, recall and F1 respectively,

crosstabulated by site and normalisation type.

Table 4.10: Precision values displayed as percentages

Site Raw Ruifrok Macenko Vahadane ‘Naive’ Average

AA 71 75 78 79 81 76.7

A6 67 76 69 75 77 73.1

CM 75 84 77 80 90 81.2

D5 88 87 85 85 90 87.2

G4 83 80 79 79 81 80.5

AZ 71 76 69 74 79 73.9

F4 68 72 70 72 72 70.8

CK 76 84 79 81 84 81.0

AD 75 80 79 74 82 78.0

AY 63 71 73 74 80 72.2

Average 73.9 78.5 75.9 77.3 81.7
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It can be seen that values of precision were improved by colour normalisation.

Unfortunately, while precision was improved, recall was not.

Table 4.11: Recall Values Expressed as Percentages

Site Raw Ruifrok Macenko Vahadane ‘Naive’ Average

AA 71 72 64 59 65 66.1

A6 82 71 80 74 55 72.5

CM 70 55 65 62 37 58.0

D5 48 43 52 44 38 45.0

G4 59 66 69 69 57 63.9

AZ 70 61 74 65 51 64.2

F4 73 66 74 70 58 68.2

CK 80 64 81 70 53 69.5

AD 64 57 64 40 42 53.5

AY 68 62 75 69 58 66.1

Average 68.6 61.7 69.8 62.3 51.3

Recall values, displayed in Table 4.11 were worse for the Ruifrok, Vahadane

and ‘Naive’ normalisation algorithms. The Macenko algorithm had approximately

the same value as for ‘Raw’ data.

Table 4.12: Detection: F1 values expressed as percentages

Site Raw Ruifrok Macenko Vahadane ‘Naive’ Average

AA 71% 73 70 68 72 70.8

A6 74 74 74 75 64 72.2

CM 73 66 71 70 53 66.5

D5 62 57 65 58 53 59.2

G4 69 72 74 74 67 71.1

AZ 71 68 71 69 62 68.2

F4 71 69 72 71 64 69.3

CK 78 73 80 75 65 74.2

AD 69 67 71 52 56 62.8

AY 65 66 74 71 67 68.7

Average 70.3 68.5 72.2 68.3 62.3

The F1 metric combines precision and recall. Table 4.12 displays F1 crosstabu-

lated by site and normalisation type. Values are given as percentages. Macenko

normalisation beats unnormalised data but the difference is small and may be attrib-

utable to sampling effects.
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There was no noticeable improvement between detection using raw data and

using normalised data. This may be explained by the fact that in the ‘Cell’ detection

algorithm stain separation is used to calculate the value of the haemotoxilyn channel

which is then standardised before being input to the detection CNN.

4.5 Related Work

4.5.1 Stain Normalisation

Most stain normalisation techniques are similar to those presented here. They can

vary in the way that stain vectors are calculated, or in the statistics used to pull the

optical density maps towards the training maps.

[63] present a stain decomposition method that operates in OD space, but

uses only the colour components of OD points to extract the stain vectors. A point

in OD space is projected onto the Maxwellian Chromacity Plane, specifically a colour

triangle. The presence of two stain components is indicated by a pattern of two

clusters. The EM algorithm is used to identify the clusters, and thereby derive

estimates for the stain vectors. Stain separation can be carried out in the usual

way. The authors model the charge-couple sensor noise, thereby improving model

accuracy. The method results in a set of optical density maps (over the region of

interest), maps which may be quantified in various ways. The stain normalisation

method developed by [14] operates in HSD colour space. It has been used by [35] in

the classification of colorectal WSIs into nine different region types, such as tumour,

stroma, lymphocytes, etc. Stain normalisation improved the accuracy from 50% to

75%.

4.5.2 Stain Augmentation

When a CNN is being trained the data space can be expanded by adding extra

training points. The training points are generated by pushing existing points into new

regions in the colour space, either by directly scaling RGB values or by doing stain

augmentation. [165] trained a CNN to detect mitosis and used stain augmentation.

They carried out stain deconvolution on sample images, then modified each channel

individually with random stretches and biases before adding the OD channels and

transforming the OD coordinates back to RGB. Stain augmentation contributed

0.4 to the best F1 score of 0.6 obtained with unseen data. In a later publication

Tellez et al. [166] compared the effects of stain augmentation with those of stain

normalisation. Similar results were obtained from both techniques, with the authors

reporting that applying both techniques together improved results even further.

115



4.5.3 Adversarial Networks

Domain adversarial networks (DANNs) introduced by Ganin et al. [60] are forms of

GANs, introduced at the start of this chapter. They use labelled data (the training

data) and unlabelled data (the data from a new site for which predictions are wanted).

The idea is to extract the statistics of the two sets of data and to use the information

to improve accuracy. The main network has an extra classifier added to it, a classifier

which is trained so that it does not discriminate between the data sources. As a

result the predictions for the new site are improved. Lafarge et al. [113] use DANNs

to train a mitotis-detecting CNN. The effects of using stain augmentation (SA), stain

normalisation (SN) and a DANN were compared. All methods yielded improvements:

baseline F1 = 0.33, SA F1 = 0.58, SN F1 =0.46, DANN = 0.55. SA and DANN

were joint winners. Cycle-Consistent adversarial networks [189] were applied by [42]

in renal histopathology, approximately doubling the accuracy obtained.

4.6 Discussion

In the case of cell classification the experiments with diagnostic images from ten

different TCGA sites resulted in clear improvements resulting from all the norm-

alisation techniques tested. The same improvements were not observed with cell

detection where the detection algorithm executed colour normalisation internally.

Estimates of the haemoeotoxilyn vector tended to be better than estimates

of the eosin vector. This may not always cause problems, but it would be useful to

characterise cases that result in poor performance. In addition these results apply to

cell identification algorithms and should be treated with caution if normalisation is

being done for other objects.

Three of the algorithms that have been tested (Ruifrok, Macenko and Va-

hadane) use a robust upper range value R to determine the scaling factor that

is used to transform optical density values in test space to training space. This

approach uses the optical density of the darkest pixels: usually these pixels are in

the nuclear regions of inflammatory cells. If, as occasionally happens, there are very

few inflammatory cells in the tissue then R does not correspond to inflammatory

cells and as a result the transformation may not be correct.

Similar arguments may apply to the use of central statistics, such as the mean

and mode of optical density pixels. In some cases of high-grade cancer the epithelial

cells which comprise the bulk of the cells in the image look very washed out, large
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and distorted. Using their mean intensities in normalisation will tend to result in a

normalised image that is darker than it should be. Central statistics are used in the

Khan algorithm and in the (pure) colour normalisation algorithm, so they may be

vulnerable to this effect.

Divergences from biological assumptions are challenging for normalisation

algorithms. The problem is that these divergences are not always easy to identify.

For example, if there are very few inflammatory cells in a tissue section then the

robust range in the normalising transformation will be incorrect: it will be less

than the value that would have been measured if inflammatory cells were present.

Possibly there are recognisable features which are present in every WSI and whose

underlying colour intensity is conserved. These could be used to calibrate each

image. For example the colour intensities of fibroblasts or stroma might be effectively

invariant and usable for normalisation. A workaround might be to include stain

augmentation at training time. This might do the same work as stain normalisa-

tion without there being a need to specify the normalisation transformation explicitly.

It is an open question, as to which of the three general methods, stain

normalisation, stain augmentation or adversarial methods yields the best results.

Future work would be to repeat this exercise with both stain augmentation and with

adversarial networks. We remark that although colour normalisation and colour

augmentation are effective tools on their own, practical applications might benefit

from the use of both methods in cell identification.

In this chapter various stain normalisation methods were systematically com-

pared with respect to cell identification. The methods included three based on colour

separation and one, a ‘Naive’ standardisation method which operated on the three

colour channels directly. Input came from ten sites in the TCGA data repository.

For cell classification the two best performing methods, Macenko standardisation

and ‘Naive’ standardisation, performed well across all sites. The good performance

of ‘Naive’ standardisation, a straightforward approach, suggests that it should be

considered seriously due to its speed and simplicity.

It was found that the accuracy of cell classification varied markedly across

all sites, indicating that the evaluation of colour normalisation techniques should

include testing across a large and varied a range of data sets as possible.

Experiments were also carried out, evaluating the effect of performing colour

normalisation before detection. Improvements, if any were marginal, indicating that

the internal normalisation operations in the ‘Cell’ detection component were already
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performing adequately.
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Chapter 5

Molecular Expression: From

Image Stacks to TCGA

This chapter analyses multiplexed images output by the Toponome Imaging System

(TIS), a robotic system described in Schubert et al. [151]. The robot treats a tissue

section to rounds of treatment with antigens, chemicals associated with complex

molecules of interest, mainly proteins. Exposure to fluorescent light results in a

grayscale image which reflects the concentration of the molecule of interest. The

patterns made by pairs of antigens allow us quantify their degree of colocalisation,

their tendency to be located in the same place (Dunn et al. [49]). Colocalisation is

important because its presence suggests that the molecules are involved in the same

chain of interaction.

The chapter has two parts. In the first part TIS data was analysed. Bivariate

analysis associated with colocalisation was extended to multivariate colocalisation,

using probabilistic graphical models (PGMs) (also known as Markov random fields).

Clustering was applied to TIS images. In the second part of the chapter various

clustering algorithms were applied to molecular data from the TCGA colorectal data

sets. An algorithm was developed, BHC-NW, which is an extension to Bayesian

Hierarchical Clustering [81].

5.1 TIS: The Imaging Robot, Tags and Stacks

The imaging robot takes a tissue section as input, applies various reagents to the

section and outputs images that reflect the concentration of those reagents in the

tissue section.
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Figure 5.1: TIS Imaging Robot (After [56])

A detailed account of the operation of the TIS imaging robot may be found

in Friedenberger et al. [56]. To operate the robot experimenters select a collection

of reagents, tags of interest. Examples of tags include antigens associated with

proteins which are known or suspected to participate in certain chemical processes.

Some antigens are chosen because they can detect proteins which bind to specific

cell organelles; others detect proteins which are cancer markers. Tags also include

reagents such as DAPI which binds to nucleic material.

The selected chemical reagents are placed in the robot’s ‘tag hotel’. See

Figure 5.1. A slice of tissue is excised from an existing tissue block and placed on

a slide which is put into the robot. The robot then subjects the tissue to a list of

processing cycles. Each cycle in the list is carried out as follows. A specific tag is

selected from the tag library by a pipetting unit and applied to the tissue. The

resulting fluorescent activity is registered by a CCD camera and the image is stored.

Subsequent bleaching and washing of the tissue sample removes (most) fluorescent

activity from the tag and allows the cycle to be followed by processing cycles that

use the other tags in the ‘tag hotel’. In an overview, Schubert et al. [152] state

that the choice of ‘soft bleaching’ resulted from a feasibility study in the 1980s,

being the key to ‘high reproducibility of data’. In the ‘soft bleaching’ process the

bleach removes fluorescence, but does not remove the other chemical bonds between

molecular groups in the tissue, enabling the robot to perform repeated applications

involving different tags but the same slice of tissue.

The final result of a robot run is a stack of image sets, one image set for each

120



tag application. Each image set contains two grayscale images, plus a phase-contrast

image. The first grayscale image is the fluorescence pattern that the sample exhibits

before the tag is applied and the second image is the fluorescence pattern produced

by the tag and which reflects the spatial distribution of the protein or biological

entity associated with the tag. The images created by a robot run are subject to

pre-processing. An image registration algorithm is used to align images from different

cycles - see [153]. In addition, some regions may contain artifacts and in such cases a

mask may be created which identifies the affected areas in the image, allowing them

to be excluded from calculations.

5.1.1 Image Stacks

Eleven stacks were analysed in this chapter. Stacks were labelled by a combination

of patient identifier one of five (13, 15, 17, 18, or 20), a designation of cancer (a) or

normal (b), followed by a sample number (1 or 2). For example, the first stack 13a2

was for patient 13, labelled ‘a’ for cancer and was sample 2. There were four possible

stacks for each patient: a1, a2, b1, b2, but not all were available. Six stacks were

labelled as normal tissue and five were labelled as cancer.

Stacks = {13a2, 15a1, 15a2, 15b1, 15b2, 17b1, 17b2, 18a2, 20a2, 20b1, 20b2 }

The number of patients is small, but most analysis here involves measurements

associated with individual nuclei. There are approximately 3,000 nuclei, allowing for

analysis of general characteristics.

5.1.2 Tag Selection

Tags referred to in this chapter were selected by biologists and are listed in Table

5.1. Many antibodies were connected with stem cell proliferation, as well as general

cancer markers, CEA and P53. Surface proteins and cyclins, plus the mucin protein

MUC2 were included. DAPI was also used in the tag library, to segment nuclei.
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Table 5.1: Tags used in Analysis of TIS Stacks

CD133 Cell transmembrane glycoprotein involved in regulation of stemness,
associated with cancer local recurrence and survival. Stem cell
protein. [188]

CD166 Cell adhesion molecule associated with the development of adenoma
to carcinoma. [188]

CD24 Cell adhesion molecule [188], [181]

CD36 Scavenger receptor: a mechanism by which cells recognize, phago-
cytose and clear damage and debris through broad pattern recog-
nition [75]. These receptors are well characterized on immune cells.
They are also expressed by non-immune cells and are associated
with lipid metabolism.

CD44 Cell surface glycoprotein involved in malignant progression, cell
adhesion and migration. Associated with less sensitivity to apop-
tosis signals and more resistance to therapies. [188]

CD57 Human NK cells are lymphocytes with expression levels CD3-,
CD56+, CD16(plus or minus). Lymphocytes with high CD57
expression are highly cytotoxic. Presence is generally beneficial.

CEA Carcino Embryonic Antigen. Glycoprotein. Found in normal tissue
of colon, in epithelial cells and goblet cells. Clinical marker of
colon cancer [17].

Cyclin A Cyclins govern cell proliferation, regulating transitions through key
checkpoints of the cell cycle. Cyclin A controls the transition to
mitosis [12].

Cyclin D The transition from the G1 phase to the S phase of the cell cycle is
regulated by Cyclin D1. It is overexpressed in many tumours [12].

Muc2 Forms protective layer of colon. Expression suppressed in non-
mucinous adenocarcinomas. Associated with cancer development,
including metastasis [84].

CK19 Keratin. One of the main cytoskeleton proteins of epithelial cells.
Breast cancer cells release CK19 [9].

CK20 Cytoskeleton protein. Metastasis marker. Distinguishes between
different tumour types [135].

EpCAM “Cell adhesion molecule involved in Cadherin-Catenin and Wnt
pathway, associated with lymph node metastasis, vascular invasion
and distant metastasis .” [188].

P53 “Acts as a tumor suppressor in many tumor types; induces growth
arrest or apoptosis depending on the physiological circumstances
and cell type.” [168].
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5.2 Related Work

In the literature the analysis of stacks created with TIS has concentrated on creating

summary features that characterise such multiplexed images. Motifs extracted from

image stacks, molecular coexpression patterns (MCEPs), were identified in [13]. These

motifs are similar to item-sets found when mining for association rules (Agrawal

et al. [6]). A web-based visualisation tool that displays MCEPs is presented in [105].

Experimental use of the TIS system in the analysis of colon cancer tissue has

been reported in various publications. Clustering was used to identify MCEPs, using

two stacks, one of cancer tissue, and one of normal tissue [87]. The MCEPs divided

naturally into two groups: one of cancer cells and one of normal cells. Clustering

using a non-linear embedding [100] used three tissue stacks and found many clusters

so the reported results are not directly comparable to those reported in this thesis.

Cell phenotyping using TIS image stacks was carried out by [98].

Humayun et al. [87] describe the use of clustering in TIS data. They find a

clear difference between the clusters assigned to normal tissue and those assigned to

cancer tissue. However, the presence of batch effects cannot be ruled out here, and

the technique needs to be applied to more stacks in order to be validated fully. Khan

et al. [97] applied a locality-preserving dimensional reduction technique to data from

three 12-tag stacks, two from normal tissue and one from cancer tissue. The nuclear

regions in the images were identified and segmented. For each nucleus the average

intensity for each tag was computed, resulting in a vector of intensities. The data

were subject to dimensionality reduction and the reduced data were then subjected

to clustering techniques. The resulting clusters discriminated well between cancer

cells and normal cells. In an extension of this work Khan et al. [98] identified five

phenotypes in cancerous cells and fifteen phenotypes in normal cells and identified

the most significant tags.

Another clustering approach has been used by [105] as part of WHIDE, a

Web-based Hyperbolic Image Data Explorer. The WHIDE software is designed to

display and process image stacks and other forms of multivariate bioimages (MIBs).

WHIDE has four main functions. In the first place WHIDE gives an overview of the

image using a pseudocolour visualisation. In the second place, WHIDE supports the

identification and display of MCEPs. In the third place, the display technique enables

users to apprehend differences and similarities between MCEPs. Finally, WHIDE en-

ables the user to filter and zoom according to both tissue type and protein colocation.
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Kovacheva et al. [109] have carried out an analysis of the interactions between

proteins using the eleven image stacks already described. They identified protein

pairs with significantly higher coexpression.

Note that more examples of related work are described in the rest of this

chapter, in sections where the context is more fully discussed.

5.3 Colocalisation

Colocalisation is discussed in this section, starting with a brief survey of bivariate

colocalisation, followed by a discussion of multivariate colocalisation techniques that

use TIS data. The main approaches are the use of Pearson correlation and clustering

techniques.

5.3.1 Bivariate Colocalisation

Most of the existing literature on colocalisation concerns the analysis of pairs of

proteins (as opposed to sets of proteins) and bivariate analysis is used. Both [22]

and [5] discuss the techniques that are in use.

Figure 5.2: Overlay of Fluorescence Images of Normal Tissue:CD133 and CEA: Stack
15b1
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The simultaneous application of two tags to a sample allows the calculation

of bivariate colocalisation in fluorescence microscopy. The tag associated with the

first protein fluoresces in one part of the spectrum and the tag for the second protein

fluoresces in another: the procedure yields two grayscale images. Conventionally,

one image is mapped to a red monochrome image and the other is mapped to green.

In the combined image where the red and green images are overlaid, areas of high

overlap are yellow, allowing the viewer to deduce that these are locations where the

two proteins may interact.

Figure 5.2 shows such an overlay. The images belong to a stack created from

a TIS processing run on a sample of normal tissue. Tag CD133 was used in the ‘red’

image, while the second ‘green’ image was produced by the tag CEA. Two crypts

are clearly visible and there appears to be colocalisation at the apical (closed) ends

of the crypts.

Qualitative analysis gives useful insights into protein-protein interactions but

it has disadvantages. Simple image processing may be used to manipulate the profile

of intensity levels of the red and green channels, increasing the chances that the

image contains yellow regions that are not significant. In addition, experts may differ

in their interpretation of the data. Objective measurements of colocalisation are

therefore desirable. Several in common use are described below.

5.3.2 Pearson Correlation

Figure 5.3: Scatterplot of Intensity of tag CD133 vs tag CEA in Cancer Stack 18a2

Figure 5.3 is a scatterplot created using two images of tumour tissue, images

for proteins CD133 and CEA. Pixels have been sampled randomly from the aligned

images and each point on the scattergram is associated with a sampled pixel, with
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the x value being the grayscale intensity of a pixel from CD133 and the y value

being the corresponding grayscale intensity of the matching pixel for CEA. It is clear

that x and y values are associated. Scatterplots are useful in giving an intuitive

visualisation of the relationship between two tags. Some of the metrics described in

the following sections can be interpreted in terms of the properties of scatterplots.

For example, the Pearson correlation coefficient, a frequently used metric, defines a

straight line which provides a visual description of the relationship.

The Pearson correlation may be defined as follows. Consider two images, IA

and IB with nR rows and nC columns. Assume that in IA the intensity has the

distribution f(x, y), and image IB has the distribution g(x, y).

The mean intensity of f , denoted by f is:

f =

∑
x,y f(x, y)

nRnC
(5.1)

The standard deviation of f is sf defined as:

sf =

√∑
x,y (f(x, y)− f)2

nRnC − 1
(5.2)

For the spatial intensity distributions, f(x, y) and g(x, y) the Pearson correl-

ation r between f and g is defined as follows:

r =

∑
x,y (f(x, y)− f)(g(x, y)− g)

(n− 1)sfsg
(5.3)

The Pearson correlation [155] is in fairly common use in fluorescence micro-

scopy. Various authors describe modifications designed to reduce spurious effects.

For example [36] have produced an algorithm in which low-level intensity values are

regarded as background noise and excluded from calculations. An automatic method

is used to compute the threshold used to decide if a pixel belongs to the background.

Note that the usual statistical theory dealing with the Pearson correlation

assumes that the value of f(x, y) is independent of values at nearby points. In

practice biological images are heavily structured. We expect that if q = (x+ d, y+ e)

is a point near p = (x, y), i.e. if d and e are small in absolute value, then I(q)

will be close to I(p) i.e the two values will not be independent. When the Pearson

correlation is applied to spatially correlated data it is desirable to calculate statistics

in a way that takes spatial correlation into account.
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5.3.3 Multivariate Colocalisation

Multivariate analysis is needed to treat TIS data, where stacks contain more than two

tags. The modelling of multiway interactions requires many more parameters than

two-way interactions and the accuracy of multivariate interaction models decreases

as their complexity increases. In multivariate modelling the experimenter usually

builds simpler models first and gradually increases the model complexity until some

stopping rule is satisfied.

5.3.4 Combinatorial Molecular Pattern Technique (CMPs)

The inventors of the TIS machine [152] describe the Combinatorial Molecular Pat-

tern Technique (CMP), a pixel-based technique. The method is designed to detect

frequently occurring combinations of proteins. It is applied to a stack of images

as follows. For each tag t in the stack a threshold Tt is chosen. A pixel which has

intensity values (f1, f2, ..., fnT ) is assigned the binary vector b. In b an element

corresponding to tag t is 1 if the intensity of is greater than Tt: otherwise it is zero.

The algorithm detects frequent patterns in the collection of vectors: a combinatorial

molecular pattern (CMP) is a vector p of nT elements in which the tth element is

either 1, 0 or *(the ‘don’t care’ or ‘indifferent’ word). Vector b matches a given

CMP pattern p at element t if p[t] is *; otherwise it matches if both b[t] and p[t]

are 1 or if they are both 0. If b matches p at all elements then it matches p. The

authors go on to group CMPs together to form motifs - motifs always share at

least one lead protein. The authors define a lead protein to be a protein which has

the value 1 for all CMPs in the motif. (That is, it is always overexpressed in the motif.)

[151] developed CMP motifs in different situations, using toponome maps to

identify interesting functional regions in images of skin disease contrasted with images

of normal skin. Toponome maps of TE671 rhabdomyosaroma cells taken during the

migratory state showed the presence of significant CMPs. Another application, that

of analysis of the murine hippocampus, is described in [20].

It is not clear how repeatable this method is, given that threshold selection

is carried out manually by the user and given the variability in the data from one

sample to the next. [151] addressed the issue by inverting the sequence of tags and

having independent experts assign thresholds. They reported that closely similar
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results were obtained.

The CMP approach has been applied to both cancerous tissue and histolo-

gically normal tissue from the colon in an exploratory study by [17]. In that study

6,813 CMPs were found in cancer tissue and 32,009 CMPs in normal tissue. The

authors identified five potential cancer stem cells using specific CMP motifs with

CD133, CD44, EpCAM and CD166 as lead proteins.

5.3.5 Pixel Protein Profiles

Similarity Mapping (SIM) is a technique composed of both automatic and manual

methods [152]. Each image in a stack is assigned a colour, and the images are

merged. Defining a pixel-protein profile (PPP) as the vector of tag intensities at a

given pixel, different pixels may be compared for similarity, based on their PPPs. In

addition, the merged image reflects the distribution of PPPs in the sample: usually

cell structures are clearly visible. In the manual stage of SIM the user examines

the merged image. Selecting a pixel with the mouse results in pixels with similar

profiles being highlighted. The authors describe an example of the use of SIM in skin

samples from patients with psoriatic disease. It was easy to identify PPPs whose

presence distinguished between involved (diseased) and uninvolved (normal) regions

of skin. The usage of PPPs is based on identification of interesting regions by the

user, a subjective process. This subjectivity is a possible limit on the effectiveness of

Similarity Mapping.

5.4 Probabilistic Graphical Models for Multivariate Coloc-

alisation

Undirected probabilistic graphical models (also known as Markov random fields) [183]

generalise the Pearson correlation statistic. In this section probabilistic graphical

modelling is applied to TIS stack data.

A probabilistic graphical model contains both a graph (containing vertices

and edges) and a set of probability mass functions. The vertices are the variables

of interest and the presence of an edge between two variables indicates a direct

interaction between the variables. On its own, without considering the probability

mass functions, the graph can be regarded as a network which captures independence

relations between the variables. The probability mass functions define numerical
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probabilities that indicate the strengths of the interactions.

A simple example of a graphical model may be defined as follows. Assume

that there are five variables, which stand for expression levels of a set of tags, say

CEA,EpCAM,Muc2, CK19, CD133. We may capture the probabilistic behaviour

of these five variables by the function f() which maps the variables to the unit interval.

By this we mean that if we run some hypothetical experiment the probability of

observing the outcome CEA,EpCAM,Muc2, CK19, CD133 is:

f(CEA,EpCAM,Muc2, CK19, CD133).

Figure 5.4 displays a possible independence graph for f . If this butterfly

graph does apply to f then the following conclusions may be made:

Figure 5.4: Independence Graph for Colocalisation of Five Tags

The function f is separable: it may be split into the product of two functions

g and h which have only one variable (Muc2) in common:

f(CEA,EpCAM,Muc2, CK19, CD133) = g(CEA,EpCAM,Muc2)h(Muc2, CK19, CD133)

(5.4)

Given the value of Muc2 the value of CEA is independent of the values of

CK19 and CD133. CEA is independent of CK19 (or CD133) conditional upon

Muc2.

Graphical models are interesting in the analysis of real-world data, because

the presence or absence of edges in an independence graph may indicate direct or

indirect associations in the real world. For example, when we consider the variables
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in Figure 5.4 the graph indicates that Muc2 is a good predictor of the levels of other

tags. In addition the thickness of the links is related to the strength of association.

The weakest link shown is that between CEA and Muc2 while strong links are

associated with the set {Muc2, CK19, CD133}

In the case of multivariate data it is usual to assume that the data have been

generated by sampling from some predefined multivariate distribution. It is usual to

fit the data to a graphical model which includes as few parameters as are needed.

The theory for multivariate normal (Gaussian) distributions is well-developed and

can be seen as a natural generalisation of the theory concerning correlation. It is

also related to linear regression which can be used when the aim is to predict one of

the variables as a function of the others. (For example, we may wish to predict that

a given pixel belongs to a cancer cell given the values of tag variables and we may

use linear regression to compute this probability.)

Multivariate data have interesting properties compared with bivariate data.

Perhaps the most important difference is that the correlation between variables

needs to be defined carefully. There is an important difference between marginal

correlation and partial correlation.

5.4.1 Multivariate Dependencies in Graphical Models

When a stack of TIS images is considered then each pixel is associated with a

number of tags - up to around twenty. An obvious way to generalise the use of

correlation coefficients is to simply create an array of the coefficients and to generate

a network of linkages using those correlations above a threshold value. However,

when more than two variables are involved, the value of an edge strength has a

more subtle interpretation. In the multivariate case, there is a difference between

the marginal correlation and the partial correlation between variables and it is the

partial correlation which should be used to indicate edge strength.

Define A to be the set of pixels in the stack which have the combination of

intensity values i1, i2, i3. Assume that the number of pixels in each image is n.

A = {x, y : I1(x, y) = i1, I2(x, y) = i2, I3(x, y) = i3} (5.5)

Then we may assert that the chance that an arbitrarily selected pixel has

this combination of intensities is:
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P (i1, i2, i3) =

∑
x,y 1A(x, y)

n
(5.6)

Let us consider the conditional distribution of two variables i1 and i2 given a

third i3:

P (i1, i2|i3) =
P (i1, i2, i3)

P (i3)
(5.7)

The partial covariance cov(i1, i2|i3) is the covariance of i1 and i2 for a given

value of i3. It is defined by:

cov(i1, i2|i3) = cov(i1, i2)− cov(i2, i3)var(i3)−1cov(i3, i2) (5.8)

The partial correlation of i1 and i2 with respect to i3 is:

r1,2|3 =
cov(i1, i2|i3)√

var(i1|i3)var(i2|i3)
(5.9)

In the three-node graphical model which displays independence relationships

between three variables an edge is only drawn between two variables if the partial

correlation coefficient between them is not identically zero. Partial correlations are

indicators of statistical independence in situations where there are more than three

variables. In addition, similar arguments apply when the data are binary or ordinal

in nature. Note that the theory may be extended to situations where the data refer

to objects and interestingly to objects which are linked to each other in some way.

[65] describe how heterogeneous objects may be modelled using link mining.

5.4.2 Graphical Models applied to TIS Data

Graphical models were applied to two forms of TIS data. In the first case, existing

nucleic masks were applied to the raw image data, so that only pixels from nucleic

material were included in the analysis. In the second case, DAPI, which associates

with nucleic material, was applied to a tissue section and the resulting image was

segmented into nuclei [99]. As a result each data point was a nucleus, accompanied

by aggregate feature(s): in practice, the average R, G and B intensities in the nuclear

region.
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5.4.3 Graphical Models Based on Pixel-Level TIS Data

The eleven available stacks mentioned in the introductory chapter were analysed

both separately (i.e a probabilistic graphical model was produced for each stack)

and also as pooled data (pooled cancer data and pooled ‘normal’ data).

In addition, the effect of coarsening the pixel grid was examined. Coarsened

patches of various sizes were used. For example, the image could be divided into

patches of size (5 × 5) pixels, and the average intensity of each tag in a patch

computed. A minimum number of pixels in the patch had to be included by the

masking process for a patch to participate in the calculation of intensities.

The tags used are shown in Table 5.1, and are the same as used in analysis

by Khan et al. [97].

Algorithm 5 Pixel-Based Graphical Model

1: procedure GM(T Images with Grayscale Intensity)

2: for each tag t do

3: i = 0

4: for each pixel p in a nucleus do

5: i = i +1

6: fit = Intensityt(p)

7: end for

8: nt = i

9: f t =
∑

ifit
nt

10: s2
t =

∑
i (fit − f t)2

11: end for

12: for each tag t do

13: for each tag u do

14: rtu =
∑
i (fit−f t)(fiu−fu)

stsu

15: end for

16: end for

17: C = r−1

18: rpart = normalised C

19: end procedure
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5.4.4 Graphical Models for Individual Stacks

Graphical models were produced for individual stacks using the twelve tags listed

above and for a variety of effective pixel sizes. Algorithm 5 outlines the code used to

extract a PGM from pixel data. In order to handle spatial correlations the images

were coarsened, producing models that varied by patch size. Models computed for

the same stack but with differing patch sizes were strongly related to each other. See

Table 5.2 below. The many correlation values near 1 indicate that in general the

models are very similar. The models for single pixels are least like the models for

the patch size of 20× 20.

Table 5.2: Correlations between Models with Different Patch Sizes

1×1 2×2 3×3 4×4 5×5 10×10 15×15 20×20

1×1 1 1.00 0.99 0.99 0.99 0.97 0.97 0.95

2×2 1.00 1 0.99 0.99 0.99 0.97 0.97 0.95

3×3 0.99 0.99 1 0.99 0.99 0.98 0.97 0.96

4×4 0.99 0.99 0.99 1 1.00 0.99 0.98 0.97

5×5 0.99 0.99 0.99 1.00 1 0.99 0.99 0.97

10×10 0.97 0.97 0.98 0.99 0.99 1 1.00 0.99

15×15 0.97 0.97 0.97 0.98 0.99 1.00 1 0.99

20×20 0.95 0.95 0.96 0.97 0.97 0.99 0.99 1

1×1 2×2 3×3 4×4 5×5 10×10 15×15 20×20
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Table 5.3 compares pairs of models by correlating their edge strengths. The

correlations may be regarded as a measure of similarity. The average correlation

between two models from differing stacks was 0.37 for this set of tags, indicating

that there is some overall similarity between all the models. However there was no

discernible grouping of cancer stacks or normal stacks. There was some indication

of batching effects: the within-patient similarities for patients 15, 17 and 20 were

relatively high.

Table 5.3: Correlations between Pixel-Level Graphical Models

13a2 15a1 15a2 18a2 20a2 15b1 15b2 17b1 17b2 20b1 20b2

13a2 1 0.41 0.31 0.32 0.28 0.36 0.32 0.33 0.26 0.09 0.22

15a1 0.41 1 0.48 0.48 0.33 0.43 0.39 0.49 0.61 0.32 0.34

15a2 0.31 0.48 1 0.28 0.37 0.47 0.29 0.34 0.51 0.14 0.38

18a2 0.32 0.48 0.28 1 0.40 0.32 0.37 0.33 0.37 0.31 0.37

20a2 0.28 0.33 0.37 0.40 1 0.37 0.30 0.33 0.30 0.40 0.59

15b1 0.36 0.43 0.47 0.32 0.37 1 0.54 0.55 0.57 0.18 0.33

15b2 0.32 0.39 0.29 0.37 0.30 0.54 1 0.62 0.49 0.09 0.15

17b1 0.33 0.49 0.34 0.33 0.33 0.55 0.62 1 0.63 0.16 0.33

17b2 0.26 0.61 0.51 0.37 0.30 0.57 0.49 0.63 1 0.16 0.21

20b1 0.09 0.32 0.14 0.31 0.40 0.18 0.09 0.16 0.16 1 0.73

20b2 0.22 0.34 0.38 0.37 0.59 0.33 0.15 0.33 0.21 0.73 1

13a2 15a1 15a2 18a2 20a2 15b1 15b2 17b1 17b2 20b1 20b2

134



5.4.5 Graphical Models Based on Nuclear Segmentation

Algorithm 6 describes the generation of a PGM from a set of ministacks. Each

ministack contains a stack of grayscale images associated with a single nucleus, a

mask being defined for the nucleus using the segmentation. The term Iut refers to the

image in ministack u and tag t. In Algorithm 6 the aggregate function ft is applied

to each image resulting in value gut. Values of gut averaged over u and corresponding

variances are used to compute the correlation matrix which is inverted, normalised

and its negative taken. The result is a matrix of partial correlations.

Algorithm 6 Nucleus-Based Graphical Model

1: procedure GM( nU nuclei labelled by u, nT tags labelled by t, nU grayscale

images Iut, nT aggregate functions ft )

2: for each tag t do

3: for each nucleus u do

4: gut = ft(Iut) . Calculate aggregate function for image

5: end for

6: ḡt =
∑
u gut
nU

7: s2
t =

∑
u(gut − ḡt)2

8: end for

9: for each tag t do

10: for each tag v do

11: rtv =
∑
i (gut−gt)(guv−gu)

stsv
. Marginal correlation matrix

12: end for

13: end for

14: C = r−1 . Invert correlation matrix

15: rpart = - normalise( C ) . Partial correlations

16: return rpart

17: end procedure

Nucleic regions were obtained from segmentations described by [97]. For each

region the average intensity per tag was calculated. The resulting table of regions

versus tags was used to extract a graphical model. A comparison of the models

is shown in Table 5.4. In the table each cell displays the correlation between the

edge strength of the models and thus can be taken as a measure of model similarity.

The average value of the cells (excluding the diagonal) was 0.30, worse than for

the pixel-based calculations, but showing some similarity between models. Models

obtained for stacks which were from the same patient were often highly similar:
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there appeared to be batch effects at work. For example the models for 17b1 and

17b2 (normal tissue from patient 17) had a similarity of 0.57. Models for 15b1 and

15b2 had a similarity of 0.42 and the models for 20b1 and 20b2 had a similarity of 0.67.

Table 5.4: Correlations between Region-Based Graphical Models

13a2 15a1 15a2 18a2 20a2 15b1 15b2 17b1 17b2 20b1 20b2

13a2 1 0.29 0.20 0.27 0.31 0.37 0.23 0.29 0.15 0.09 0.26

15a1 0.29 1 0.33 0.37 0.33 0.35 0.28 0.41 0.53 0.29 0.3

15a2 0.20 0.33 1 0.18 0.28 0.46 0.14 0.36 0.5 0.12 0.28

18a2 0.27 0.37 0.18 1 0.35 0.33 0.25 0.25 0.32 0.25 0.30

20a2 0.31 0.33 0.28 0.35 1 0.24 0.29 0.31 0.14 0.4 0.41

15b1 0.37 0.35 0.46 0.33 0.24 1 0.42 0.47 0.54 0.21 0.29

15b2 0.23 0.28 0.14 0.25 0.29 0.42 1 0.56 0.44 0.04 0.04

17b1 0.29 0.41 0.36 0.25 0.31 0.47 0.56 1 0.57 0.14 0.18

17b2 0.15 0.53 0.5 0.32 0.14 0.54 0.44 0.57 1 0.18 0.26

20b1 0.09 0.29 0.12 0.25 0.4 0.21 0.04 0.14 0.18 1 0.67

20b2 0.26 0.3 0.28 0.30 0.41 0.29 0.04 0.18 0.26 0.67 1

13a2 15a1 15a2 18a2 20c2 15b1 15b2 17b1 17b2 20b1 20b2

Table 5.5: Partial Correlations for Pooled Normal Nuclei

C
D

13
3

C
E

A

C
y
cl

in
A

M
u

c2

C
K

19

C
D

16
6

C
D

36

C
D

44

C
D

57

C
K

20

C
y
cl

in
D

E
p

C
A
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CD133 100 3 49 -18 10 -14 -33 15 14 32 -36 41

CEA 3 100 -15 -2 28 -15 15 -10 2 -32 13 64

Cyclin A 49 -15 100 23 4 26 1 -10 34 -1 14 -2

Muc2 -18 -2 23 100 81 -29 7 52 -0 0 -10 -11

CK19 10 28 4 81 100 16 -15 -33 6 8 16 -4

CD166 -14 -15 26 -29 16 100 -20 35 27 13 -20 20

CD36 -33 15 1 7 -15 -20 100 -16 84 13 -5 10

CD44 15 -10 -10 52 -33 35 -16 100 5 -11 32 6

CD57 14 2 34 -0 6 27 84 5 100 -22 14 -7

CK20 32 -32 -1 0 8 13 13 -11 -22 100 52 -6

Cyclin D -36 13 14 -10 16 -20 -5 32 14 52 100 -3

EpCAM 41 64 -2 -11 -4 20 10 6 -7 -6 -3 100

Table 5.5 records the partial correlation values (shown as percentages) ob-

tained when regions from normal stacks were pooled. Table 5.6 contains the cor-

136



Table 5.6: Partial Correlations for Pooled Cancer Nuclei
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CD133 100 -14 14 31 -21 20 20 1 -6 -1 -42 12

CEA -14 100 14 17 -20 -7 27 -32 -9 -30 3 82

Cyclin A 14 14 100 5 51 29 38 18 -15 -3 13 -10

Muc2 31 17 5 100 47 7 6 19 -3 34 -4 8

CK19 -21 -20 51 47 100 -38 2 12 -0 -12 14 23

CD166 20 -7 29 7 -38 100 8 0 -5 17 30 28

CD36 20 27 38 6 2 8 100 -16 44 17 11 -24

CD44 1 -32 18 19 12 0 -16 100 7 -18 12 -2

CD57 -6 -9 -15 -3 -0 -5 44 7 100 0 -1 9

CK20 -1 -30 -3 34 -12 17 17 -18 0 100 11 1

Cyclin D -42 3 13 -4 14 30 11 12 -1 11 100 -7

EpCAM 12 82 -10 8 23 28 -24 -2 9 1 -7 100

responding results for cancer stacks. Visualisations of the graphical models are

shown in Figure 5.5 and in Figure 5.6. In the graphs, a yellow link between two

tags indicates a positive partial correlation; a blue link denotes a negative partial

correlation. The width of the link scales with the absolute value of the partial

correlation. Stronger yellow is used when the partial correlation is near +1, and

when the partial correlation is near -1 stronger blue is used. Partial correlations rcorr

are represented on the diagrams if their absolute values pass a threshold value of 20%.

In both the normal and the cancer graphs the edge CEA−EpCAM between

two cancer markers is one of the highest strength links (N=64%, C=82%). This result

is to be expected, but if it had not been obtained questions concerning the usefulness

of the PGM approach would have been raised. Links appear to be weakened in cancer

tissue, compared with normal tissue. Let us consider the most positive links in the

normal graph (excluding the CEA−EpCAM link). In cases of strong positive links in

normal tissue, the links are reduced in cancer tissue: for CD57−CD36 the strengths

are (N=84%, C=44%, for Muc2− CK19 the strengths are (N=81%, C=47%), for

CD44 −Muc2, (N=52%, C=19%) and for CyclinD − CK20, (N=52%, C=11%).

Considering the four most negative links, two change only slightly: CEA− CK20

(N=-32%, C=-30%), CD133− CyclinD (N=-36%,C=-42%) and two links go from

negative to weak positive. These are CD133 − CD36 (N=-33%, C=20%) and

CD44− CK19 (N=-33%,C=12%).
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Figure 5.5: Graphical Model for Pooled Normal Data

Figure 5.6: Graphical Model for Pooled Cancer Data
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Kovacheva et al. [108] introduce a model of interactions between proteins.

The model, DISWOP, extracts within-nucleus statistics, values calculated using only

data from the ministack associated with each nucleus. The statistics reflect the

degree of disorder in the nucleus so tag-tag values reflect how much the two tags

are in concordance within a nucleus. In contrast, the parameters of the PGM model

are calculated using image-wide statistics. The per-cell values are computed using

the cell’s role as part of the image. For a given tag and nucleus the tag value is the

(average) intensity of the nucleus compared with the average tag value in the entire

image.

The results presented in Kovacheva et al. [108] were compared with the results

shown here. The CEA − EpCAM link was in the top 10% of dependency scores

found by DISWOP for both normal and cancer tissue, In addition, in the DISWOP

results Muc2 is strongly linked to CD133 in cancer tissue. A link with strength 23%

is shown on the cancer graph in Figure 5.6, a link in the top quarter of strength

values. Due to differing calculation methods the results of PGM modelling are not

directly comparable with the results in Kovacheva et al. [108], but similar results

were obtained in some cases.

Due to the very small sample sizes, only six normal patients and five cancer

patients, it is not possible to decide if these results would carry over to data sets with

more members. However, PGMs are a natural generalisation of bivariate analysis

which is grounded in experimental results, so it would be expected that the technique

would be generally applicable. In the next section of this chapter clustering methods

are used to analyse TIS data.
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5.5 Clustering

This section describes the analysis of the TIS stack data set using clustering. In the

clustering algorithm, each data point represented a cell nucleus with a set of features,

each feature being associated with an antibody tag. For each tag, the same feature

was used: the mean intensity of the tag in the region occupied by the nucleus. This

was chosen for its simplicity although various texture features could also have been

selected. As in the preceding subsection, the segmentation of nuclei described in [99]

was used.

Clustering was applied to the data from each stack. EM mixture model

clustering Dempster et al. [46] was used with a selection of 12 tags. Figure 5.7

illustrates the results obtained when the EM model (4 clusters) was applied to stacks

individually. The six images in the top half of Figure 5.7 have been obtained from

normal tissue, while the five images in the bottom half originate in cancer tissue. Four

colours are used: red, brown, dark brown (for epithelium) and green (for stroma).

In the images where crypts are clearly visible nuclei have been assigned to clusters

which have been coloured red, brown or dark brown. Colours were assigned as follows.

If only opithelium, those cells were coloured red; if two clusters were assigned to

epithelium they were coloured red or brown: if epithelial cells were coloured, red,

brown or dark brown, according to cluster assignment. Correspondingly stromal

material was coloured green or dark green. The exception to these colour assignments

was cancer stack 15a2 which has been displayed with some nuclei coloured blue: this

is because it was not obvious whether these nuclei should be assigned to epithelium or

stroma. The other four cancer stacks exhibit some crypt-like structures, particularly

stack 15a1, so it was possible to assign colours to clusters. To summarise, in the

case of normal tissue, clustering has been successful in separating stromal cells from

the epithelial cells that comprise the crypt walls. For cancer tissue, however, where

the crypt/stroma divide is not always clear, the clusters do not always decisively

separate the cells along this divide.

To examine the generality of this approach, images in each stack were stand-

ardised (to mean zero, and unit standard deviation) and pooled. Clustering using

the EM algorithm for Gaussian mixture models was employed. Figure 5.8 presents

the results graphically where the number of clusters is set to four. Four colours

were assigned to nuclei according to their cluster membership: red and brown for

epithelial cells, green for stroma . Cells were coloured blue if they were assigned to

the remaining cluster which appear to be mainly epithelial cells but did include cells

located in stroma.
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Figure 5.7: EM clustering of eleven individual stacks - 4 clusters

In conclusion the main effect of clustering TIS expression data was to separate

epithelial nuclei from nuclei associated with stroma. When data from different stacks

were pooled this separation was also observed, indicating that the clustering reflected

the underlying biology. It was not possible to decide if a particular cell in the

stromal region was an epithelial cell, an inflammatory cell or a fibroblast, so the

use of markers to identify the cell type would aid in the analysis of multiplexed images.
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Figure 5.8: EM clustering of pooled data - 4 clusters
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5.6 TIS Tags and TCGA Colorectal Cancer Data

This section explores the role of the TIS tags in colorectal cancer, using the TCGA

COAD and READ data sets. The Cancer Genome Atlas (TCGA) was introduced in

Chapter 1. TCGA is a repository of cancer-related data, obtained with many dif-

ferent advanced techniques, such as microarray technology and gene sequencing [127].

The work described in this section applied clustering techniques to TCGA

gene expression data. Eleven genes of particular interest were employed, mapping

to the tags used in the TIS analysis. Of the 461 colon cancer cases in COAD and

171 rectal cancer cases in READ gene expression data were available for 155 and

69 cases respectively. In addition, clinical data were available for all patients, as

described previously. The COAD and READ data sets were primarily prospective in

nature and for the majority of cases outcomes such as time to disease recurrence or

time to death were not available and so have not been analysed here.

Variables in the TCGA clinical data set were examined for their relationship

to clustering results and those variables having statistically significant associations

with cluster membership have been reported. However, in the TCGA repository

there are many variables, with large numbers of missing cases, so that it has not

been possible to examine all potential relationships.

5.6.1 Methods and Results

All gene expression files in the COAD and READ data sets, named in accordance

with patient bar-codes (one per patient), were downloaded and merged into two large

tables, one for colon cancer and one for rectal cancer. The bar codes of participating

patients, and the names of genes found in the gene expression files were also saved.

Each table was filtered by confining the genes being expressed to the eleven genes of

interest. Clinical data were also downloaded.

Tags used in the TIS project were matched to genes used in the COAD and

READ gene expression files. In some cases the TIS tag corresponded to more than

one gene. For example the marker CAM5.2, cytokeratin, is quoted as reacting to a

cocktail of CK8, CK18 and CK19 low molecular weight proteins (KRT8, KRT18 and

KRT19 in the TCGA gene expression data). It was found that expression levels for

KRT8 and KRT18 were quite strongly correlated, (r = 0.83), and the decision was

made to include only one of these genes in the analysis. The resulting list of genes,
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Table 5.7: Tags Used in TIS Study and Corresponding Proteins Selected from TCGA

TIS TCGA

CAM5.2 KRT18

CAM5.2 KRT19

Ki67 MKi67

P53 TP53

MLH1 MLH1

MSH2 MSH2

MSH6 MSH6

PMS2 PMS2

CDH1 CDH1

EpCAM TACSTD1

CD133 PTEN

Table 5.8: Mean Log-Scores of Gene Expression Values

Gene Score

KRT18 0.1838

KRT19 0.7964

Ki67 -0.8660

P53 -0.2128

MLH1 -1.1403

MSH2 -1.2558

MSH6 -1.4445

PMS2 -0.3113

CDH1 2.1145

EpCAM 3.6795

PTEN 0.4237

with corresponding TIS tags is shown in Table 5.7:.

Table 5.8 contains average expression values in the COAD data set for the

selected genes. E-Cadherin(CDH1) and EpCAM(TACSTD1) have the highest mean

log-scores in the data set as a whole.

5.6.2 EM Clustering of COAD and READ Expression Data

The EM algorithm was applied to the COAD data with varying values for the

numbers of clusters k. In the three-dimensional scattergram in Figure 5.9 k is 2.
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Figure 5.9: COAD - EM - Two clusters projected onto three principal components

Table 5.9: COAD - EM with k = 3 - Mean Log-Scores of Clusters

Gene C1 C2 C3

KRT18 −0.021 0.115 0.845

KRT19 0.540 0.754 1.359

Ki67 −0.946 −0.879 −0.695

P53 0.093 −0.253 −0.342

MLH1 −2.071 −0.813 −1.961

MSH2 −1.220 −1.272 −1.205

MSH6 −1.542 −1.481 −1.108

PMS2 −0.455 −0.253 −0.484

CDH1 1.383 2.312 1.826

EpCAM 3.411 3.790 3.346

PTEN −0.099 0.564 0.221

An advantage of the EM algorithm is that the number of clusters may be specified

in advance, although this has implications for deciding on how many clusters there

really are. Extending the EM algorithm to the case where there are three clusters

we obtain the clusters, denoted here as C1 (23 pts), C2 (113 pts) and C3 (19 pts).

Tables 5.9 and 5.10 contain means and Z-deviations.

Figure 5.10 displays the three clusters, using the three highest principal

components of the data. Entries in Table 5.10 are the Z-deviations of the genes’

mean cluster values. The largest cluster, Cluster 2, appears to be quite similar to

the larger cluster for the two-cluster example and relatively high in MLH1, while

Clusters 2 and 3 are both low in MLH1. Cluster 3 is high in KRT10 and KRT19 and
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Table 5.10: COAD - EM with k=3 - Z-deviations of Clusters

Gene C1 C2 C3

KRT18 −0.100 −0.034 0.322

KRT19 −0.125 −0.021 0.274

Ki67 −0.039 −0.006 0.084

P53 0.149 −0.020 −0.063

MLH1 0.454 0.160 −0.400

MSH2 0.017 0.008 0.025

MSH6 −0.047 −0.018 0.164

PMS2 −0.070 0.029 −0.084

CDH1 −0.357 0.096 −0.141

EpCAM −0.131 0.054 −0.163

PTEN −0.255 0.069 −0.099

low in MLH1. If Clusters 1 and 3 are amalgamated, his is in line with a commonly

found division of gene expression values in CRC into two groups [91]. The smaller

group is of interest because it is associated with suppression of the mismatch repair

gene MLH1. In the next section of this chapter, Section 5.7, similar results are

obtained using Bayesian Hierrachical Clustering.
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Table 5.11: COAD - EM - k=3 - Counts of Mucinous Adenocarcinoma Cases in
Clusters

Cluster Colon Adenocarcinoma Colon Mucinous Adenocarcinoma

C1 13 9

C2 102 10

C3 16 3

Table 5.12: COAD - EM - k=3 - Gender vs Cluster Assignment

Cluster FEMALE MALE

C1 15 8

C2 47 66

C3 14 5

Figure 5.10: COAD - EM - Three Clusters Projected onto three Principal Components

Cluster 1 has a high frequency of patients with Mucinous Adenocarcinoma

compared with the other two clusters. See Table 5.11. Both the chi-square test

and Fisher’s exact test [155] yielded highly significant results (χ2 = 15.311, df = 2,

p-value = 0.0004735) (Fisher p= 0.0010). Both Cluster 1 and Cluster 3 have higher

proportions of women than Cluster 2 (Table 5.12). The Chi-squared test statistics

are (χ2 = 9.5338, df = 2) and Fisher’s exact test yields a p-value = 0.0089.

No other clinical variables were found to have significant associations with

cluster assignment. The effect of specifying k=3 for the EM algorithm appears to

be that of splitting the largest cluster into two. Mucinous adenocarcinomas and
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Table 5.13: Rectal Cancer - Mean Log-Scores of Gene Expression Values

Gene Score

KRT18 0.007

KRT19 0.748

KI67 −0.991

P53 −0.131

MLH1 −0.699

MSH2 −1.339

MSH6 −1.511

PMS2 −0.250

CDH1 2.176

EpCAM 3.591

PTEN 0.507

Table 5.14: READ EM with Two Clusters - Counts of Mucinous Adenocarcinoma
Cases in Clusters

Cluster Rectal Adenocarcinoma Rectal Mucinous Adenocarcinoma

C1 6 5

C2 52 2

females continued to be overrepresented in the two smallest groups, whereas they

were underrepresented in the two larger groups.

5.6.3 Rectal Cancer Data

Similarly to the gene expression data for colon (COAD) tumours, the rectal gene

expression values shown in Table 5.13 are very high for CDH1 and EpCAM. The

EM clustering algorithm was used to cluster rectal cancer data. Running the EM

algorithm against READ expression data, with k = 2 clusters, yielded a cluster with

12 members and one with 57 members. Figure 5.11 is a scattergram of the two

clusters projected onto the three principal components of the gene expression data.

Similarly to colon cancer, the clustering of the selected gene expression profiles

for rectal cancer that the frequency of mucinous carcinomas in the two clusters was

different. Table 5.14 contains counts for the two clusters. Note that in this table only

11 cases are shown in Cluster 1, and 54 in Cluster 2. This is because there are some

missing values for cancer type and these have been omitted from the analysis. No

other clinical variables were significantly related to cluster predictions. However, the
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Table 5.15: READ - EM with Two Clusters - Mean Log-Scores of Clusters

Gene C1 C2

KRT18 −0.021 0.115

KRT19 0.540 0.754

KI67 −0.946 −0.879

P53 0.093 −0.253

MLH1 −2.071 −0.813

MSH2 −1.220 −1.272

MSH6 −1.542 −1.481

PMS2 −0.455 −0.253

CDH1 1.383 2.312

EpCAM 3.411 3.790

PTEN −0.099 0.564

Table 5.16: READ - EM with Two Clusters - Z-deviations of Clusters

Gene C1 C2

KRT18 −0.158 0.033

KRT19 −0.170 0.036

KI67 −0.204 0.043

P53 0.295 −0.062

MLH1 0.122 −0.026

MSH2 −0.103 0.022

MSH6 −0.073 0.015

PMS2 −0.089 0.019

CDH1 −0.155 0.033

EpCAM −0.144 0.030

PTEN −0.165 0.035
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Figure 5.11: READ - EM k=2 - Clusters Projected onto Three Principal Components

numbers are very small, so there may be relationships that are not strong enough to

detect. The EM algorithm was also applied to the rectal data, with k=3, but no

significant relationships with clinical data were detected.

5.6.4 Pooling COAD and RECT

The TCGA report [167] concluded that there are great resemblances between colon

and rectal cancers, so with this conclusion in mind the colon and rectal cancer gene

expression datasets were pooled to form one large data set. Application of the EM

algorithm to this data set using k=2 resulted in a cluster containing colon cancers,

many of which were mucinous, and a larger cluster containing non-mucinous colon

cancers and all the rectal cancers. When the number of clusters was increased the

mucinous rectal cancers continued to be included with the cluster containing non-

mucinous cancers. It was decided that for the current set of tags it was appropriate

to cluster the colon and rectal expression datasets separately.
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5.7 BHC - Bayesian Hierarchical Clustering

The previous section applied the K-Means algorithm and the EM algorithm to TCGA

data. In this section we concentrate on Bayesian Hierarchical Clustering (BHC)

originally presented in [81]. Bayesian Hierarchical Clustering developed by [81] and

[156] is a form of agglomerative hierarchical clustering.

BHC is a bottom-up clusterer which builds a binary tree in which the leaves

are data points. Each node of the tree is potentially a cluster. BHC identifies clusters

by computing the odds of merging child nodes versus keeping them as separate

clusters. This thesis describes an extension by the author to an existing version

of BHC. The existing version assumes that within a given cluster, variables are

uncorrelated [156]. In this extension, which is termed BHC-NW, the Normal-Wishart

version of BHC, the algorithm can deal with clusters that have correlated features.

We apply the algorithm to data pertaining to colorectal cancer, both data obtained

from immunofluorescence images and also data extracted from TCGA [127].

Frequentist methods for estimating model parameters estimate the values of

θ that maximise the likelihood of the data set D = {x(i)}:

P (D|θ) =
∏
i

f(x(i)|θ) (5.10)

The application of a clustering algorithm results in a model M which may be

used for prediction. Given a new data point x we predict M(x) to be the cluster

(or clusters) most likely to be associated with x. Note that if clusters overlap a

lot then two or more clusters may have non-zero probabilities for a given point.

Various objective functions may be used to measure how well the model fits the data,

including both distance-based criteria such as sums-of-squares, and probabilistic

functions such as the log-likelihood.

There are various difficulties associated with clustering. One problem is

that of finding a global minimum for the objective function. The solution space

is very large, with many local maxima, and the problem is NP-Hard. Clustering

algorithms with feasible performance are greedy, finding local minima rather than the

global minimum. The problem may be ameliorated by running a local optimisation

algorithm repeatedly, using different random starting points. For example, K-means

[118] can use randomly chosen points as starting points for cluster centres, being

run repeatedly. Similarly, the Expectation Maximisation (EM) algorithm [46] can

use starting points derived from the outputs of different runs of K-Means. Another
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issue, common to many machine-learning algorithms, is that of overfitting [79]. If

the number of clusters nk is allowed to vary as part of the modelling process, then,

in general, for given training data, the objective function continues to improve as nk

increases. However, if the objective function is measured against independent test

data, this improvement will not in general be observed. Overfitting may be tackled

by adjusting for high values of nk with penalty terms such as the Akaike Information

Criterion, AIC [79] or the Bayesian Information Criterion, BIC [79]. Alternatively,

n-fold cross-validation may be used to establish how well the model performs with

test data. Both penalty terms and cross-validation enable the number of clusters nk

to be estimated.

Bayesian clustering may be used to avoid various problems associated with

traditional frequentist algorithms. For example, variational Bayes clustering [18]

generalises the EM algorithm by using prior values for model parameters, values

which smooth the development of the algorithm and prevent the development of

singularities in the solution.

BHC is Bayesian because various assumptions are made about the nature

of the populations which are assumed to generate the data. These assumptions

are captured by the values of various hyperparameters. For example, in the course

of BHC, when estimating the population mean at a node of the hierarchy, we use

both the sample mean of the data points in the sub-tree defined by the node and

a prior mean specified by a hyperparameter ξ. The BHC algorithm described in

[156] assumes that the underlying sub-populations are multivariate Gaussian with

constraints on their structure . The constraints are as follows: for each subpopulation,

in the associated covariance matrix, all off-diagonal terms are zero.

In the work described here a model was developed which relaxed this require-

ment. The model, BHC-NW, allowed the off-diagonal terms in the covariance matrix

to be non-zero. This meant that correlations between the coordinates of data points

in the same cluster could be represented. In addition, the hyperparameters of BHC-

NW were optimised in hyperspace, using non-linear optimisation techniques. Two

versions of optimisation have been developed. In the first version, BHC-NW-TREE,

gradients of the optimisation function are computed numerically. In the second

version, BHC-NW-GRAD, gradients are computed using closed-form versions of the

partial derivatives. These closed-form gradients apply only to fixed tree structures,

so optimisation with respect to closed-form gradients must alternate with steps in

which the tree is constructed afresh.
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5.7.1 Dirichlet Process Model

The BHC algorithm is based on the Dirichlet Process Model (DPM), an approach in

which clusters are built up as data points are added to a data set [57]. DPMs have

various advantages, such as automatically generating the number of clusters (subject

to the value of a hyperparameter known as the concentration parameter).

We may express the marginal likelihood P (Dk|Tk) of the data Dk in tree Tk

as the sum of two terms, corresponding to two hypotheses. The first hypothesis

H1
k assumes that the data at node k comes from a single phenotype, and the

second hypothesis H2
k assumes that there are separate phenotypes (i.e. cluster

groups) corresponding to child trees Ti and Tj . Both H1
k and H2

k are assigned

prior probabilities which depend only on the sizes of the trees Ti, Tj , Tk and the

hyperparameter α (the concentration parameter).

P (Dk) = ΠkP (Dk|H1
k) + (1−Πk)P (Di|Ti)P (Dj |Tj) (5.11)

We have denoted the probability of hypothesis H1
k by Πk and that of the

alternative hypothesis H2
k by (1−Πk).

The probability r that the data at Tk belongs to a single phenotype is:

r =
ΠkP (Dk|H1

k)

P (Dk|Tk)
(5.12)

Note that if r ≥ 0.5 then we mark the node as a merging node.
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Algorithm 7 BHC Algorithm

1: procedure BHC(data, α)

2: c = n

3: k = n+ 1

4: for each data point i do

5: Di = {x(i)}
6: Mark i as active

7: end for

8: while c > 1 do

9: for All active pairs of nodes m = {i, j} do

10: Πm = COMPUTEPI(m, α)

11: Compute probability rm of merged hypothesis

12: end for

13: Select pair {i, j} which maximises rm

14: Create new node k with children i and j

15: Dk = Di ∪Dj

16: Mark i and j as inactive

17: c = c− 1

18: k = k + 1

19: end while

20: end procedure

Algorithm 8 Computation of prior values Πk

1: procedure COMPUTEPI(m, α)

2: for each node k ∈ m (as it is generated by the main BHC algorithm) do

3: dk = α ∗ Γ(nk) + dleftdright

4: Πk = αΓ(nk)
dk

5: end for

6: end procedure

Execution of the BHC algorithm proceeds from the leaves of the binary tree,

inwards as the tree is built up. Initially all nodes are leaf nodes and are marked

as active. In each iteration all pairs of active nodes i and j are considered, and

the probability r(i, j) that they should be merged into a single node k is computed.

Next the pair (i, j) which maximises r is selected and the tree is augmented with a

node k which is designated as the parent of i and j. The node k is marked as active,

and the nodes i and j are marked as inactive. Iterations continue until there is only

one active node left (the root node). Algorithm 7 contains pseudocode for the main
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BHC process, while Algorithm 8 describes how the hypothesis probability values Πk

are calculated from child values as execution proceeds.

The completed tree is examined for clusters by finding nodes for which the r

value is less than 0.5, that is, where the associated log-odds ratio is less than zero.

These are nodes whose children should remain as separate clusters. The final model

is based on a set of nodes where mixing proportions are determined by the number of

leaves under each node, divided by the size of the data set, and the other parameters

are determined from the data.

We now discuss the role of the Bayesian approach in BHC. From a Bayesian

perspective we assume that not all parameter values θ are equally likely, but instead

we specify that the probability of θ follows a distribution h(θ|ξ) where ξ is a

hyperparameter which determines the precise shape of h. Then, the probability of

the observed data point x(i) is given by:

P (x(i)) = g(x|θ)h(θ|ξ) (5.13)

A natural way of defining h() and ξ is to use conjugate priors. This approach

assumes that a set of virtual data has already been sampled, and that this set has

been sampled from the same form of probability distribution as the actual data. We

assume that data set Dk consisting of data points that have been randomly sampled

from the sub-population k. We are interested in sufficient statistics for Dk which in

the case of the multivariate Gaussian distribution are the sample mean and sample

variance. We assume that we have already taken pseudo-samples which can be used

to weight the actual observations. The pseudo-samples have a specified prior mean

and a specified prior variance, which act as hyperparameters in our calculations. The

prior mean µ0 is assumed to be calculated from a data set of size κ0 and the prior

sum of squared deviations T0 is calculated from a virtual data set of with degrees of

freedom ν0.

A suitable prior distribution for multivariate Gaussian data is the Normal-

Wishart prior [18] which has precisely the properties specified in the preceding

paragraph. The Normal-Wishart prior is the product of a multivariate Normal

(Gaussian) distribution and a Wishart distribution. The Wishart distribution models

the sample inverse variance matrix Λ for a multivariate normal (Gaussian) distribution

with population variance T0 and with ν0 degrees of freedom. The Normal component

models the sampling distribution of the mean of κ0 data points sampled from a

multivariate normal distribution with mean µ0 and inverse variance Λ.
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h(µ,Λ) = N(µ|(µ0,Λ)−1)Wiν(Λ|T0) (5.14)

To be explicit, the list of hyperparameters ξ can be written as:

ξ = (µ0, κ0, T0, ν0) (5.15)

In the subsequent discussion we denote data point i in Dk by x
(i)
k . We assume

that the dimensionality of the data is d, so x
(i)
k is a vector composed of d real numbers.

Denoting the number of points in Dk by nk we may express the mean value x̄k as

follows:

x̄k =

∑nk
i=1 x

(i)
k

nk
(5.16)

Another statistic Sk the total sum of squared deviations may be expressed as

follows:

Sk =

nk∑
i=1

(x
(i)
k − x̄k)(x

(i)
k − x̄k)

T (5.17)

Next we create updated hyperparameters as follows (note that for clarity we

have dropped the subscript k):

µn =
κ0 + nx̄

κ0 + n
(5.18)

κn = κ0 + n (5.19)

νn = ν0 + n (5.20)

Tn = T0 + S +
nκ0

κ0 + n
(µ0 − x̄)(µ0 − x̄)T (5.21)

And the marginal likelihood of D is:

P (D|ξ) =
1

π
nd
2

Γd(
νn
2 )

Γd(
ν0
2 )

|T0|
ν0
2

|Tn|
νn
2

(
κ0

κn
)
d
2 (5.22)

In the equation above terms of the form Γd(x) denote the multivariate Gamma

function of order d. A definition is:
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Γd(x) = π
d(d−1)

4

d∏
j=1

Γ(x+ (1− j)/2) (5.23)

We must also consider how Πk is generated. In practice values of Πk are

calculated as the tree is built up by the BHC algorithm, moving inwards from the

leaves.

5.7.2 BHC - Optimisation over Hyperparameters

The discussion above has described the basic operation of BHC-NW. One output

of BHC-NW is the marginal log-likelihood of the data at the root of the tree. This

log-likelihood φ varies with hyperparameter values, and optimisation of φ with respect

to the hyperparameter values, may be used to obtain the optimal binary tree. In

practice not all of the hyperparameter space has been considered in the optimisation

process, and furthermore all hyperparameter values have been considered equally

likely (flat priors). Two algorithms which implement hyperparameter optimisation

have been developed.

The two algorithms differ in their calculations of the partial derivatives of φ

with respect to ξ. The first algorithm, which we call BHC-NW-TREE uses non-linear

optimisation where gradients are calculated numerically by a non-linear optimiser

(in practice this is the MATLAB optimiser fmincon()). The second algorithm,

BHC-NW-G, calculates gradients using analytic formulae, as the binary hierarchy

is formed. The reader is referred to Appendix A for the details of the analytic

formulae for the partial derivatives of P (D|Tj) and to Appendix B for the method

of accumulating the partial derivatives of the marginal likelihood P (D) as the tree is

built.

Algorithm 9 BHC-NW-TREE

1: procedure BHC-NW-TREE(Data, ξ0, Boundsξ)

2: Normalise(Data)

3: Set function Pointer fp to BHC(Data, ξ)

4: end procedure
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Table 5.17: COAD - BHC-NW - Mean Log-Scores of Clusters

Gene C1 C2

KRT18 0.121 0.533

KRT19 0.780 0.888

Ki67 −0.920 −0.597

P53 −0.292 0.173

MLH1 −0.836 −2.911

MSH2 −1.256 −1.275

MSH6 −1.453 −1.294

PMS2 −0.266 −0.538

CDH1 2.238 1.419

EpCAM 3.763 3.205

PTEN 0.478 0.181

Algorithm 10 BHC-NW-G

1: procedure BHC-NW-G(Data, ξ0, Boundsξ)

2: Normalise(Data)g

3: Set function Pointer fp to BHC(Data)

4: Set gradient Pointer gp to BHCGrad(Data)

5: NonLinearOptimiser(fp, gp, ξ0, Boundsξ)

6: end procedure

5.7.3 Bayesian Hierarchical Clustering - TCGA Colon Cancer Data

The BHC-NW algorithm was used to cluster the 155 COAD cases that had gene

expression data. BHC-NW found three clusters. One cluster that contained only

one member was regarded as trivial and excluded from further calculations. Two

non-trivial clusters were found, containing 131 and 23 data points and are referred

to as C1 and C2. Mean log-scores of points in the two non-trivial clusters found by

BHC-NW are shown in Table 5.17.

Contrasts between clusters have been computed for genes using Bioconductor

software [86]. The association may be computed for each gene and each cluster by

subtracting the mean log-score of the gene from its cluster mean, then dividing by the

standard deviation of the log-score for the gene. Table 5.18 displays the Z-deviations

for the two non-trivial clusters.

The highest contrast is for EpCAM, the cancer marker gene. Genes MLH1,
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Table 5.18: COAD - BHC-NW - Contrasts Between Clusters - p-values

Gene p-value

KRT18 1.080× 10−4

KRT19 7.450× 10−28

Ki67 1.530× 10−32

P53 1.220× 10−3

MLH1 5.140× 10−89

MSH2 5.520× 10−83

MSH6 6.700× 10−87

PMS2 1.800× 10−24

CDH1 1.050× 10−97

EpCAM 1.370× 10−150

PTEN 3.600× 10−21

MSH2, MSH6 and PMS2 are associated with the DNA mismatch repair pathway.

We note that they are all suppressed in Cluster 2, the smaller cluster. For example,

MLH1, is described as follows:

“The MLH1 gene provides instructions for making a protein that plays an

essential role in DNA repair. This protein helps fix mistakes that are made when

DNA is copied (DNA replication) in preparation for cell division.” [176]

The heatmap in Figure 5.12 displays the genetic expression profiles of the

patients, together with the binary tree ouput by BHC-NW. Underexpression is

indicated by red, and overexpression by green.

In Figure 5.13 the data points have been projected onto the first three principal

components of the restricted (11-gene) COAD data set. The blue data points in the

larger cluster are clearly separated from the magenta points in the smaller cluster.

5.7.4 BHC-NW - Evaluation Metrics Using TCGA Data

Evaluation was carried out for the BHC-NW and EM algorithms when applied to

the TCGA colon data (COAD) used in the previous section. Table 5.19 displays

the values of various metrics for both the BHC-NW algorithm and also for the EM

algorithm where the number of clusters is two, three and four, respectively. The

Adjusted Rand Index [142] uses an independent test set to compute the effectiveness

of clustering and finds BHC-NW to be a clear winner. The BHC-NW algorithm is

also the best algorithm for the Davies Bouldin metric [40] and the Silhouette metric
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Figure 5.12: COAD - BHC-NW - Heatmap

Figure 5.13: COAD - BHC-NW - Clusters Projected onto three Principal Components

[145] . BHC-NW does not perform so well in the Variance Ratio test [27]. EM with

three clusters has a variance ratio of 10.7 compared with the BHC-NW variance

ratio of 19.31. However the Variance Ratio metric decreases monotonically with

cluster number and preferably should be used for the comparison of clusterers that

have the same number of clusters, in this case two. For EM k=2 the variance ratio

is 20.65 and very similar to the variance ratio of BHC-NW.
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Table 5.19: Results of Clustering TCGA COAD data

Metric BHC-NW EM k=2 EM k=3 EM k=4

Adjusted Rand Index [142] 0.23 0.07 0.06 0.07

Purity [101] 0.85 0.85 0.85 0.87

Variance Ratio [27] 19.31 20.65 27.26 10.7

Davies Bouldin [40] 7.96 5.49 3.92 5.13

Silhouette [145] 0.45 0.31 0.22 0.06

Log Likelihood [183] na -1,080 -985 -891

Akaike Information Criterion [8] na 2,480 2,440 2,400

Bayesian Information Criterion [66] na 2,950 3,140 3,350

Table 5.20 displays the results of ten-fold cross-validation when used with

the EM algorithm. The highest value of the test log-likelihood is for k = 2, for

two clusters. This result indicates that the EM algorithm should be used with two

clusters.

Table 5.20: 10-Fold Cross-Validation

Metric EM k=2 EM k=3 EM k=4

LLTest -140 -155 -184

5.7.5 BHC-NW - TCGA COAD Clusters and Clinical Variables

In each application of clustering the predicted cluster assignments were saved, and

matched with the corresponding clinical data. A script written in the R statistical

programming language examined all clinical variables and their behaviour with

respect to a given set of predictions. In practice, many of the clinical variables

had nearly all missing values in the colorectal clinical data and only significant

results have been reported. Data were examined for relationships between cluster

membership and clinical variables.
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Table 5.21: COAD - BHC-NW - Counts of Mucinous Adenocarcinoma Cases in
Clusters

Cluster Colon Adenocarcinoma Colon Mucinous Adenocarcinoma

C1 116 13

C2 14 9

Table 5.22: COAD - BHC-NW - Gender vs Cluster Assignment

Cluster FEMALE MALE

C1 58 73

C2 18 5

Cancers in the smaller cluster are significantly more likely to be mucinous as

recorded in the patient’s histologic diagnosis - see Table 5.21. Pearson’s Chi-squared

test with Yates’ continuity correction yielded values of χ2 = 11.066, p-value = 0.0009,

and Fisher’s exact test for count data had a p-value = 0.001.

Patients in the smaller cluster are far more likely to be female than male.

Table 5.22 shows counts for male and female patients, for each cluster. (χ2 = 7.7, df

= 1, p-value = 0.005, Fisher’s Exact Test p-value = 0.003)
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Table 5.23: BHC-NW COAD - Anatomic Neoplasm Subdivision vs Cluster
Asc.=Ascending, Desc.=Descending, Trans.=Transverse

Cluster Discre- Asc. Cecum Desc. Hepatic Sigmoid Splenic Trans.

pancy Colon Colon Flexure Colon Flexure Colon

C1 0 19 22 6 4 66 2 11

C2 1 9 6 0 5 0 0 2

Table 5.24: COAD - BHC-NW - Ajcc Pathologic Tumour Stage vs Cluster Assignment

Cluster I II IIA IIB III IIIA IIIB IIIC IV IVA

C1 25 10 37 3 5 3 8 16 22 1

C2 4 1 9 2 3 0 4 0 0 0

The location of the tumour also varied significantly. None of the tumours

associated with the smaller cluster were in the colon proper, but were almost all in

the ascending colon, the cecum or the hepatic flexure (Table 5.23). Statistics were

(χ2 = 37.631, p-value = 3.6e-06) and a p-value = 3.1e-07 for Fisher’s exact test.

Patients in the smaller cluster were significantly more likely to have early

stage tumours. See table 5.24 showing “Ajcc Pathologic Tumour Stage” against

cluster number. Significance levels were χ2 = 17.3, df = 9, p-value = 0.04 (Pearson’s

Chi-squared test) and p-value = 0.019 (Fisher’s exact test).
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5.8 Conclusions

Probabilistic graphical models generalise the Pearson correlation, a standard measure

of colocalisation to multiplexed images. PGMs that could handle to stacks of TIS

images were developed. Both pixel-level data and segmented nuclei were modelled.

Multivariate colocalisation was applied to both ‘normal’ and ‘cancer’ stacks. Strong

relationships characterised certain pairs of tags in normal tissue, while appearing

weaker in cancer.

Clustering was also applied to TIS stacks. Clustering nuclei according to tag

values segmented them into two groups, one containing epithelial cells and the other

containing stromal cells.

Bayesian Hierarchical Clustering was extended in this chapter. The BHC-NW

algorithm catered for clusters in which the underlying Normal distribution allowed

off-diagonal terms in the covariance matrix. This allowed many more data sets to be

modelled accurately. In addition, by using the Wishart distribution for prior values,

hyperparameter optimisation for BHC-NW was implemented.

The BHC-NW algorithm was applied to TCGA gene expression data, to

eleven proteins matched to TIS tags. Clustering results were compared with those of

the EM algorithm and it was found that BHC-NW outperformed EM with regard to

most metrics.

Clusters resulting from BHC-NW were examined with respect to available

TCGA clinical data. For both colon (COAD) and rectal (READ) cancers, the BHC

clustering algorithm found two significant clusters in TCGA protein expression levels,

the smaller cluster being associated with lowered levels of the DNA mismatch repair

protein MLH1. This result matches the main finding of the TCGA paper, where

mutational data separates patients into in two groups, one of which has suppression

of the mismatch repair protein.
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Chapter 6

Conclusions

6.1 Deep Learning with Sampling

Chapter 3 demonstrated that sampling regions from whole-slide diagnostic images

and applying cell identification models to these selected regions was effective in

identifying cells. Furthermore, Systematic Random sampling performed appreciably

better than Random Sampling. Two different cell identification algorithms, ‘Cell’

and ‘Hovernet’ were used and sampling performed well with both of them.

As an example, the ‘Cell’ identification results were used to look for associ-

ations between the spatial densities of different types of cell and clinical variables. A

range of significant associations was found.

Time constraints have prevented the examination of the behaviour of sampling

at varying levels of resolution and region (tile size). The experiments used a fixed

image resolution of 20X (0.5µM) and the tile size was also fixed, at (500 × 500)

pixels. It would be useful to estimate the effect of varying image resolution and/or

tile size. There are various latencies, associated with loading the GPU with input

data, so that many small patches might be slower to process than a few large ones.

Performance modelling would entail measuring these latencies as well as computation

times for on-GPU processes once they have been initiated.

In principle, sampling could be used as a preprocessing step, applicable to

many deep learning models. In addition, sampling captures the spatial distribution

of cells and other objects, which is of interest to pathologists in modelling the

characteristics of tissue, both normal and cancer.
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6.2 Colour Normalisation

Colour normalisation was studied in Chapter 4 which describes the systematic com-

parison of several colour normalisation methods when applied to cell classification.

The algorithms used in Chapter 3 did not use explicit colour handling (such

as normalisation or augmentation). Although good results were obtained with high-

quality TCGA images from the AA site, it was desirable to carry out cell identification

using colour normalisation for the remaining sites in the TCGA COAD dataset.

Although all colour normalisation methods gave considerably better results than

doing nothing, there were two clear winners, namely ‘Naive’ colour normalisation

and Macenko normalisation.

Chapter 4 used a test harness to compare normalisation algorithms as well as

considering the effects of site differences. Sites varied greatly in the level of staining

and as a result accuracy scores for cell classification at different sites also varied,

particularly for unnormalised images. For the most part, the rankings of the different

normalisation algorithms were preserved when going from site to site, but even for the

best algorithms the accuracy varied between sites: from 73% to 89% for naive colour

normalisation and from 79% to 89% for Macenko normalisation. This result indicates

that researchers should take care when evaluating new normalisation algorithms: a

well-accepted algorithm should always be applied to the data for comparison purposes.

The effect of colour normalisation on the accuracy of ‘Cell’ detection (as op-

posed to cell classification) was examined. No systematic improvement was observed,

possibly because Khan normalisation was carried in the detection phase.

Although various colour normalisation algorithms were compared, stain norm-

alisation with stain augmentation or with adversarial algorithms were not evaluated

in the work described here. These results suggest that it would be profitable to

carry out experiments with augmentation and adversarial algorithms, using the hand

marking set created for this study.

6.3 TIS Stacks and TCGA Expression Data

Several areas of interest were explored in Chapter 5, “Molecular Expression: From

Image Stacks to TCGA”.
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The first research area was the analysis of image stacks, multiplexed fluores-

cence images created using the Toponome Imaging System. Probabilistic graphical

models were applied to image stacks of tissue from patients with colorectal cancer. In

this application the nodes represented antigens, while the edges represented depend-

encies between the nodes. For a pair of images the Pearson correlation coefficient

is a standard measure of colocalisation. For multiplexed images, the corresponding

measure is the set of partial correlations extracted from the graphical model. The

graphical models produced for TIS data had various interesting linkages between

antigens.

The second part of Chapter 5 also considered multiplexed fluorescence images

from TIS data. When clustering was applied to the image stacks it was found that

the clusters separated epithelial cells from cells in the stroma.

Consideration of the literature suggests that the algorithms in parts 1 and 2 of

Chapter 5 could be improved in various ways. In the TIS data there are two images

associated with each application of an antigen: ‘before’ and ‘after’ images. The

analysis undertaken in Chapter 3 considers the ‘after’ image only, possibly decreasing

the accuracy of the graphical model. Improvements might be obtained by operating

on the difference between the ‘before’ and ‘after’ images. In addition, various authors

have taken background effects into account. Future work would examine the effect of

including background effects. Regarding future work, several directions are possible.

In the first place, the analysis applies to multiplexed fluorescence images but could

be easily extended to multi-stain images in the visible spectrum. In the second place

only regions containing nuclear material have been considered. It would be useful to

include areas of cytoplasm as well.

The third area of interest in Chapter 5 was Bayesian Hierarchical Cluster-

ing. This algorithm was extended to a new version, BHC-NW, which allowed the

covariance matrices of clusters to contain off-diagonal entries. BHC-NW performed

well with respect to various metrics when compared with Gaussian mixture models.

When BHC-NW was applied to protein expression data from TCGA (The Cancer

Genome Atlas) it was found that cluster membership was associated with various

molecular and clinical features. Of the two highest-level clusters the smaller cluster

had properties corresponding to the group identified by the TCGA project as having

high mutation rates and suppression of mismatch repair proteins.

Extending BHC-NW to deal with high dimensional data would allow the
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algorithm to be applied to a greater range of data. Most protein expression data

sets have very large numbers of proteins and cannot be handled by low-dimensional

clustering algorithms. A direction for future work is the modification of BHC-NW

to a high-dimensional version.

6.4 Concluding Remarks

The work described in this thesis has found links between features that are associated

with histopathology, and genomic and clinical features. Only a small subset of all

possible features has been considered. Many other features could have been included

in the analysis - clinical features such as height and weight, identifiable histologic

features such as cell complexes and glands, stroma and inflammation, topological

features such as edges, textures and regions, and genomic features. Many studies

have uncovered links between different types of feature, but these links often relate

to an isolated set of features. The task of modelling relationships in a single model

that links all features remains incomplete.
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Appendix A

Bayesian Hierarchical Clustering

As described in Chapter 5, Bayesian Hierarchical Clustering is a bottom-up hier-

archical clustering method. In the version of the BHC algorithm described in [156]

the data in each cluster are modelled using a specialised form of the multivariate

normal distribution, in which the off-diagonal elements of the covariance matrix are

zero. The aim of the analysis in this appendix is to model the general multivariate

normal case in which the covariance matrix has off-diagonal components. Specifically,

for each cluster corresponding to a data set D containing n data points, we aim to

compute the likelihood of D, given a prior distribution for the mean and variance.

The existing BHC algorithm requires modification in two main places. The

first part of the algorithm to be changed is the calculation of the statistics that

specify a cluster. It is necessary to generalise the term which specifies the intra-

cluster covariance by including off-diagonal terms in the calculations. The second

modification required is to generalise the hyperparameter optimisation procedure.

We use a term for the marginal log-likelihood P (D) that includes correlated features.

Partial derivatives of the log-likelihood may subsequently be used in a numerical

optimisation procedure. The appendix presents details of both modifications.

In a particular cluster we assume that the d-dimensional data point x has been

generated from a multivariate normal distribution with (unknown) population mean

µ and concentration matrix Λ, the inverse of the covariance matrix Σ. Note that

the case where the d variables comprising x are uncorrelated then the off-diagonal

elements of the concentration matrix are zero. We may write:

x ∼ N (µ,Λ) (A.1)

where the probability density function (pdf) of the multivariate normal

distribution is:
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(
1

2π
)d/2(detΛ)

1
2 exp(

1

2
(x− µ)Λ(x− µ)) (A.2)

In the Bayesian modelling approach data point x may be regarded as a sample

from a model with parameters θ (in this case, the mean and the concentration matrix).

In turn, the parameters θ depend on a set of hyperparameters ξ, for which we assume

we have a suitable form for the prior P (θ|ξ) which specifies the dependency of θ on

ξ. The hyperparameters may be interpreted as variables which capture the degree of

belief in initial values of the model parameters which contribute, together with the

data, to the estimated values of the model parameters.

P (x|θ, ξ) = P (x|θ)P (θ|ξ) (A.3)

A.1 Conjugate Prior - The Normal-Wishart prior

The Normal-Wishart prior specifies the probabilistic dependence of parameters

µ and Λ on hyperparameters κ0, µ0, ν0 and T0 when data are sampled from the

multivariate normal distribution. It is a conjugate prior, having a particular form with

a natural interpretation (in terms of pseudo-sampling) which makes computations

more tractable than an arbitrary prior.

Pseudo-sampling may be regarded as a process which samples quantities of

(imaginary) prior data which have the appropriate mean µ0 and variance T0/ν0.

We interpret µ0 as resulting from prior pseudo-sampling of a dataset of κ0 points.

Similarly we may assume that some prior pseudo-dataset of ν0 points has a scale

matrix T0.

To define the Normal-Wishart prior we proceed as follows. (See ?? for details.)

First we define the Wishart function. Let Λ be a d-dimensional symmetric

positive-definite matrix. Let T0 be a scale matrix (also symmetric and positive-

definite). Assume that the number of degrees of freedom is ν0. Let Γd be the

generalised Gamma function:

Γd(α) = π
d(d−1)

4

d∏
i=1

Γ(
2α+ 1− i

2
) (A.4)

Define a normalising factor Z:

Z = 2dν0/2Γd(ν0/2)(detT0)ν0/2 (A.5)
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The Wishart function W is:

W (Λ|T0, ν0) =
1

Z
(detΛ)(ν0−d−1)/2exp(−1

2
tr(T−1

0 Λ)) (A.6)

The pdf of the Normal-Wishart prior is:

N(µ|µ0, (κ0Λ)−1)Wi(Λ|T0, ν0) (A.7)

Where the pdf for the Normal factor is:

N(µ|µ0, (κ0Λ)−1) =
κ
d
2
0 (detΛ)

1
2

(2π)
d
2

exp(−κ0

2
(µ− µ0)TΛ((µ− µ0)) (A.8)

And the pdf for the Wishart factor is:

Wi(Λ|T ) =
(det(Λ))

ν0−d−1
2 exp(−tr(T−1

0 Λ)/2)

2
ν0d
2 (det(T0))

ν0
2 Γd(

ν0
2 )

(A.9)

For the special case where d = 1 the probability density function reduces to

that of a Normal-Gamma prior: (See Equation 7 of [156]):

NG(µ, σ|µ0, κ0, λ0, β0) =
βλ00

Γ(λ0)
(
κ0

2π
)
1
2σ−2(λ0− 1

2
)exp(− 1

2σ2
(κ0(µ− µ0)2 + 2β0))

(A.10)

The Normal-Wishart prior reduces to this expression when we substitute

d = 1, σ−2 = Λ, λ0 = ν0/2 and β0 = T 2
0 .

A.2 Updating Hyperparameters for use in Estimation

In the presence of n independent random data samples we may update the hyper-

parameters, which, because we have selected a conjugate prior, are also estimates of

the parameters of interest. That is, µn estimates µ and T0/νn estimates Λ. Assume

that the sample mean is x̄ and the sample sum of squares S is:

S =

n∑
i=1

(xi − x̄)(xi − x̄) (A.11)

We update the hyperparameters as follows:

µn =
κ0µ0 + nx̄

κ0 + n
(A.12)
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Tn = T0 + S +
κ0n

κ0 + n
(µ0 − x̄)(µ0 − x̄)T (A.13)

νn = ν0 + n (A.14)

κn = κ0 + n (A.15)

A.3 Marginal Likelhood

The marginal likelihood is used during tree construction. The BHC algorithm

examine the current pool of subtrees and combines those which optimise an expression

including the likelihood. In addition, hyperparameter optimisation maximises the

log-likelihood of the root node of the tree.

The marginal likelihood in terms of the updated hyperparameters is (See

equation 234 of [124]):

P (D) = (π)
−nd
2

Γd(νn/2)

Γd(ν0/2)

(det(T0))
ν0
2

(det(Tn))
νn
2

(
κ0

κn
)
d
2 (A.16)

We recast this equation by substituting the expression ν0/2 with α0 and νn/2

with αn to obtain:

P (D) = (π)
−nd
2

Γd(α0)

Γd(α0/2)

(det(T0))αn

(det(Tn))α0
(
κ0

κn
)
d
2 (A.17)

This substitution simplifies the computation of partial derivatives.

A.4 Partial Derivatives

In order to optimise the log-likelihood w.r.t. hyperparameters numerically we supply

a gradient-descent algorithm [67] with expressions for partial derivatives of the

log-likelihood with respect to these hyperparameters.

logP (D) = log(Γd(αn))−log(Γd(α0))+α0log(det(T0))−αnlog(det(Tn))+
d

2
log(κ0)−d

2
log(κn)

(A.18)

We now present formulae for the partial derivatives of log(P(D)) w.r.t. κ0,

α0, µ0 and T0.
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A.4.1 Derivative of logP (D) w.r.t. κ0

Terms in logP (D) which contain κ0 are

Y1 = −αnlog(det(Tn)) (A.19)

Y2 =
d

2
log(κ0) (A.20)

Y3 = −d
2
log(κn) (A.21)

∂Y1

∂κ0
= −αntr(T−1

n

∂Tn
∂κ0

) (A.22)

Substituting for Tn where

Tn = T0 + S +
κ0n

κ0 + n
(µ0 − x̄)(µ0 − x̄)T (A.23)

we obtain:

∂Tn
∂κ0

=
n2

(κ0 + n)2
(x̄− µ0)(x̄− µ0)T (A.24)

And:
∂Y1

∂κ0
= −αntr(T−1

n

n2

(κ0 + n)2
(x̄− µ0)(x̄− µ0)T ) (A.25)

∂Y2

∂κ0
=

d

2κ0
(A.26)

∂Y3

∂κ0
= − d

2(n+ κ0)
(A.27)

Hence:

∂log(D)

∂κ0
= −αntr(T−1

n

n2

(κ0 + n)2
(x̄− µ0)(x̄− µ0)T ) +

nd

2κ0(n+ κ0)
(A.28)

A.4.2 Derivative of log(D) w.r.t. α0

Terms in log(P (D)) which contain α0 are as follows:

Z1 = log(Γd(αn)) = log(Γd(α0 + n)) (A.29)

Z2 = −log(Γd(α0)) (A.30)
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Z3 = α0log(det(T0)) (A.31)

Z4 = −αnlog(det(Tn)) = −(α0 + n)log(det(Tn)) (A.32)

∂Z1

∂α0
= ψd(α0 + n) (A.33)

where ψd is a generalisation of the digamma function ψ. See Appendix B for the

definition.

∂Z2

∂α0
= −ψd(α0) (A.34)

∂Z3

∂α0
= log(det(T0)) (A.35)

∂Z4

∂α0
= −log(det(Tn)) (A.36)

A.4.3 Derivative of log(D) w.r.t. µ0

The term below is the only one in the expression for log(D) which contains the

vector µ0j where the subscript j refers to the data attributes:

W = −αn
2
log(det(Tn)) (A.37)

And we have:

∂W

∂µ0j
= −αn

2
tr(T−1

n

∂Tn
∂µ0j

) (A.38)

The partial derivative of Tn w.r.t. µ0j is the partial derivative of the term:

κ0n

κ0 + n
(µ0 − x̄)(µ0 − x̄)T (A.39)

Defining:

V = (µ0 − x̄)(µ0 − x̄)T (A.40)

We may express V in subscript notation as:

Vij = (µ0i − x̄i)(µ0j − x̄j) (A.41)

If i 6=j then:
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∂V

∂µ0j
= (µ0i − x̄i) (A.42)

Otherwise if i = j:

∂V

∂µ0j
=
∂(µ2

0j − x̄jµ0j + µ2
0j)

∂µ0j
= 2(µ0j − x̄j) (A.43)

A.4.4 Derivative of log(D) w.r.t. T0

The terms containing T0 are:

V1 = −α0log(det(T0)) (A.44)

and:

V2 = −αnlog(det(Tn)) (A.45)

Using the formula in Appendix B for the derivative of log(det(T )) we obtain:

∂V1

∂T0j
= α0tr(T

−1
0 ) (A.46)

and:
∂V2

∂T0j
= −αntr(T−1

n ) (A.47)

And
∂log(D)

∂T0j
= α0tr(T

−1
0 )− αntr(T−1

n ) (A.48)
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Appendix B

Useful Formulae

B.1 First Derivatives of the Determinant

Let B be a square matrix with adjugate Adj(B). The derivative of the determinant

according to [119] is :

∂det(B)

∂x
= tr(Adj(B)

∂B

∂x
) (B.1)

Or:

∂det(B)

∂x
= det(B)tr(B−1∂B

∂x
) (B.2)

The derivative of the logarithm of the determinant is:

∂log(det(B))

∂x
= tr(B−1∂B

∂x
) (B.3)

(See The Matrix Cookbook: equations 41, 42, 43.)

B.2 Generalised Gamma Function

The generalised Gamma function Γd(x) has the definition:

Γd(x) = πd(d−1)/4
d∏
j=1

Γ(x+ (1− j)/2) (B.4)

The derivative of log(Γ(x)) is the digamma function denoted by ψ(x) where:

ψ(x) =
d

dx
log(Γ(x)) (B.5)

And we denote the derivative of log(Γd(x)) by ψd(x) which satisfies:
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ψd(x) =
d∑
j=1

ψ(x+ (1− j)/2) (B.6)

Note that the use of the notation ψd(x) is intended to distinguish this term

from the polygamma function ψd(x) in which the subscript denotes the (d − 1)th

order derivative of the logGamma function.
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and Ekkehard Vollmer. Theory of sampling and its application in tissue based

diagnosis. Diagnostic Pathology, 4(1):6, 2009.

[95] Kresten Krarup Keller, Ina Trolle Andersen, Johnnie Bremholm Andersen, Ute

Hahn, Kristian STENGAARD-PEDERSEN, E-M Hauge, and Jens Randel

Nyengaard. Improving efficiency in stereology: a study applying the propor-

tionator and the autodisector on virtual slides. Journal of microscopy, 251(1):

68–76, 2013.

[96] Feras J Abdul Khalek, G Ian Gallicano, and Lopa Mishra. Colon cancer stem

cells. Gastrointestinal cancer research: GCR, (Supplement 1):S16, 2010.

[97] A A Khan, Mujahid Humayun, SeA Raza, Michael Khan, and Nasir M. Rajpoot.

A novel paradigm for mining cell phenotypes in multi-tag bioimages using a loc-

ality preserving nonlinear embedding. In Neural Information Processing:Lecture

Notes in Computer Science Volume 7666, pages 575–583, 2012.

[98] Adnan M Khan, Shan-e-Ahmed Raza, Michael Khan, and Nasir M Rajpoot.

Cell phenotyping in multi-tag fluorescent bioimages. Neurocomputing, 134:

254–261, 2014.

[99] Adnan Mujahid Khan, Ahmad Humayun, Michael Khan, Nasir M Rajpoot,

et al. A novel paradigm for mining cell phenotypes in multi-tag bioimages

using a locality preserving nonlinear embedding. In International Conference

on Neural Information Processing, pages 575–583. Springer, 2012.

187

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga


[100] Adnan Mujahid Khan, Nasir Rajpoot, Darren Treanor, and Derek Magee.

A nonlinear mapping approach to stain normalization in digital histopatho-

logy images using image-specific color deconvolution. IEEE Transactions on

Biomedical Engineering, 61(6):1729–1738, 2014.

[101] Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations

via alternating non-negativity-constrained least squares for microarray data

analysis. Bioinformatics, 23(12):1495–1502, 2007.

[102] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient

descent. In ICLR: International Conference on Learning Representations, 2015.

[103] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr

Dollár. Panoptic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 9404–9413, 2019.

[104] Viktor H Koelzer, Inti Zlobec, and Alessandro Lugli. Tumor budding in

colorectal cancer—ready for diagnostic practice? Human pathology, 47(1):4–19,

2016.
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