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Abstract:  Nylon spur gears were 3D printed using Nylon 618, Nylon 645, alloy 910 filaments, 

together with Onyx and Markforged nylon proprietary materials, with wear rate tests performed 

on a custom-built gear wear test rig. The results showed that Nylon 618 provided the best wear 

performance among the 5 different 3D printing materials tested. It is hypothesised that the different 

mechanical performance between nylon filaments was caused by differences in crystallinity and 

uniqueness of the Fused Deposition Modelling (FDM) process. The performance results showed 

that gears 3D printed using Nylon 618 actually performed better than injection moulded nylon 66 

gears when low to medium torque was applied. The selection of printing parameters for 3D printing 

can dramatically affect the dynamic performance of components such as polymer spur gears. 

Performance of 3D printed gears has been optimised using a machine learning process. A genetic 

algorithm (GA)–based artificial neural network (ANN) multi-parameter regression model was 

created. There were four print parameters considered in 3D printing process, i.e. printing 

temperature, printing speed, printing bed temperature and infill percentage. The parameter setting 

was generated by the Sobol sequence. Moreover, sensitivity analysis was carried out, and leave-

one cross validation was applied to the genetic algorithm-based ANN which showed a relatively 

accurate performance in predictions and performance optimisation of 3D printed gears.  

Small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), differential scanning 

calorimetry (DSC), X-ray fluorescence (XRF) and Fourier-transform infrared (FTIR) test were 

carried out to analyse the influence from different Nylon materials to the dynamic performance 

and mechanical properties of 3D printed gears, and demonstrate the intrinsic links between 

processing parameter, mechanical performance, and materials. Various of computer simulation 

has been carried out to test the different loading scenario affecting gear and materials performance. 

The Objective of this project is to improve the performance of the 3D printed polymer gears. 
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Chapter 1. Introduction to polymer gear and additive manufacturing process.   

1.1. General 

The objects of this project were to predict and improve the performance of the polymer gear. There 

are two main parallel research lines undertaken within the Warwick research team, one group was 

focused on the injection mould gears, another group was focused on 3D Printed gears. This thesis 

was concentrated mainly on the 3D printed gears. There were three main stages of this project. 

The first stage was to understand the basic behaviour of the 3D printed gears, including wear rate, 

loading capacity and material behaviour. The second stage was focused on one material, to 

improve the performance by control the parameters of the 3D printer. The third stage was to 

investigate how each parameter could change the material behaviour. It was one of the first 

research carried out the analysis the 3D printed polymer gear and it has proved that 3D printed 

gear has potential to overcome the performance of injection mould gears.  

In recent years, there have been increasing demands for polymer composites in different 

engineering applications, due to their quite running, excellent moulding ability and low weight. 

However, polymer composite gear is not widely used in the gear systems of automotives due to 

lack of mechanical strength and heat resistance. Hence, it is practical to used additional 

components such as carbon fibres, glass fibres and nanotubes to reinforce the mechanical strength 

of the polymer composite. (2) 
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1.2. Polymer material properties.  

There are 5 materials was mainly used in this project, High density polyethylene (PE), 

Polyxymethylene (POM), Polyamide (Nylon), Polycarbonate (PC), and PEEK 650G 

(Polyetheretherketone). According to Frank (3), it is important to consider material properties such 

as how material temperature depends on thermal characteristics (mechanical and chemical 

structure of thermoplastics resins) for example Glass Transition (Tg), Flow Temperature (Tf), 

Crystallite Melting Temperature (Tm), Thermal Decomposition (Td), Dimensional Stability, 

Thermal Conductivity, Thermal Diffusivity and Heat Capacity (4). It is clearly indicated that, there 

was a gap between glass transition temperature and melting temperature. During this phase, the 

crystalline structure was transferred into amorphous phase. 

As shown in figure 1, plastics will change into different phases when the temperature is increased, 

hence, temperature could produce an impact on the mechanical properties.  Moreover, according 

to the B.Darlix (4), the yield stress and Young’s modulus of polycarbonate  decreased as 

temperature rises.   

 

Figure 1.Temperature behaviour of semi-crystalline amorphous thermoplastic resins. 
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1.3. Reinforced Polymer composite. 

For  applications such as gears and bearings which requiring high load capacities, high temperature 

resistance and low friction required, hence, increasing mechanical properties of polymer gear 

became necessary (5). Moreover, in the process of reinforcing polymer gears, two main parameters 

of filler could affect the outcomes filler material and filler proportion. 

Firstly, there are several of matrices including polyoxymethylene, polyetheretherketone, 

Polyethylene and Polycarbonate could provide as host material. The filler could be inorganic or 

organic, and it could improve wear resistance by bonding between transfer films and metallic 

counterparts in the chemical phase, or improve modulus and hardness which is mechanical phase 

(6). In terms of inorganic filler, such us copper, Cus and SiC could enhance the bonding between 

the transfer film and the metallic counterpart with PEEK (7-9). Nevertheless, in terms of organic 

filler, such as carbon fibre and glass fibre, these will affect both chemical properties and 

mechanical properties. The reinforcement of PEEK leads to a significant reduction in the specific 

wear rate during long dry sliding against steel (10). 
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Secondly, the proportion changing of the filler could also affect the wear resistance. According to 

S. Mishra et al. (11), there were two different types of organic filler, glass fibre and biofibre (sisal 

fibre pineapple leaf fibre) used to reinforce polyester, and it is believed that increasing the 

percentage of the fibre filler could improve the impact strength . However, after certain percentage 

of filler, the wear resistance stay constant. Shown in figure 2 above. 

 

Moreover, it is argued that size of the fillers could affect the wear behaviour, Durand et al claimed 

that a larger size of the filler (around 100 μm) could provide better wear resistance than smaller 

filler (around 20 μm), however, Xin et al. (12) proved that, the smaller filler size around 120 to 

510 nm sized particles seemed to be more effective in improving the wear resistance.  

 

 

  

                                         (a)                                                                                       (b) 

Figure 2.  (a) Effect of glass fiber loading on the impact strength of PALF/ glass hybrid polyester composite (total fibre 
content=25 wt. %). (b) Effect of glass fiber loading on the impact strength of sisal/ glass hybrid polyester composite (total 
fiber content 30 wt.% 
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1.4. Polymer gear and reinforcement.  

According to the K. Mao (13, 14) , the acetal and nylon gear wear behaviour and performance 

prediction were introduced based on the gear thermal mechanical contact with the real world 

experimental and numerical calculation. It was claimed that the performance of acetal gear 

depends on the surface temperature, increasing of the temperature and causing an increasing rate 

of wear, and it also affects the gear transition torque. However, the nylon gear friction and wear 

performance were different compared with acetal gear, and the failures of nylon gear are often root 

and pitch fractures rather than surface failure. Moreover, according to the Kurokawa (15, 16),it is 

shown that Poly-ether-ether-ketone (PEEK) can provide excellent gear performance, while, by 

using carbon fibre reinforced PEEK could increase gear performance compared with unfilled 

PEEK. However, PEEK is relatively expensive compared to other various of Polymers such as 

polyamide 12 (PA12), Polyamide 6 (PA6), polyamide 66 (PA66). The performance of PA12 

carbon fiber reinforcement shows better result compared other PAs and lower cost compared with 

PEEK. 

Furthermore, Senthilvelan (17) stated that the alignment of glass fibre along the gear tooth involute 

could reduce the shrinkage, also provide better results in profile deviation. However, due to the 

orientation of the glass fibre, not all the glass fibre could fill along the gear tooth, hence, glass fibre 

which does not coinciding with tooth lead will not improve the shrinkage, hence, the rate of 

shrinkage with the glass fibre reinforcement gear was not uniform. Figure 3 below shown the 

orientation of the fibre within the injection mould gear. 
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Figure 3. Predicted average fiber orientation in glass fiber reinforced. 
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Chapter 2. Literature review.  

 

2.1. Finite element method.  

 

According to Reddy (18), finite element method is a method that could estimate the solution to 

boundary value problems for the partial deferential equations. FEM divides relatively complex 

problems into smaller and simpler elements, then calculates each small problem and converge 

every the small problems to estimate the final value of the whole problem.  

2.2 History and application of FEM. 

FEM was first used to solve complex elastic and structural problems. It is not clear that when finite 

element method was invented, however, according to work done by Hrennikoff (19) and Courant 

(20), around1950s to 1960s, the systematic numerical methods was created for solving a partial 

differential equation to solve dam construction problem, based on this method the concept of the 

element was introduced. Until the late 1960s, the actual FEM method was introduced by the J.H 

Argyris.  

The demand for FEM has increased in various industries, including aeronautical biomechanics and 

automotive industrie. With the different packages for specific components such as thermal 

electromagnetic, fluid and structural working environments.  
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2.3. Recent spur gear simulation using FEM 

 

Due to dramatic increase in the power of computers, FEM simulations are become increasingly 

accurate. According to Asker (21), the contact stress and deformation of gear tooths is simulated 

in a linear single tooth contact, shown as figure 4(a), this simulation could provide relatively 

accurate linear contact behaviour, however, this simulation could not represent the dynamic 

contact behaviour of gear tooth. Moreover, Vivek (22)  was created a linear contact of a steel spur 

gear has been simulated with FEM, and as the result, comparison between hertz equation 

calculation and FEM simulation is compared. It has shown a linear contact between two gears. 

 

(a)                                                                                    (b) 

Figure 4. (a) linear static simulation of stress on gear tooth. (21) (b) heat flow analysis in steel gear. (22) 
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Furthermore, Qrimli (23), provides a relatively accurate static contact simulation of steel spur 

gears, shown as figure 5, in his simulation, the static gear was against with a tooth shaped rigid 

element. In this simulation the FEM result was compared with both Hertz equation, and AGMA 

equation with an error of 12.71% and 1.66%, however, in this static simulation, Hertz effect was 

not fully represented due to the different mechanical properties between the rigid body and gear 

body, moreover, the full cycle of the gear tooth contact was not carried out. Johns simulated a 

more accurate gear pair with rotation which could observe full meshing cycle of the gear tooth, 

moreover, in the report, different effect of misalignment was also carried out. Nevertheless, Xin.W 

(24) simulated the heat flow within the gear by created a heating point located on the side of gear. 

Moreover, in this simulation, some cracks were generated to analyse the heat transfer at a crack. 

However, this report was only focused on how the cracks affect the heat transfer and does not 

represent the heat generate by the friction of the gear tooth shown in figure 5(b). 

 

Figure 5.  linear simulation of stress on gear tooth.  
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In order to simulate the fiber reinforcement, it is practical by adding fiber filler into composite will 

increase the mechanical performance. Tibor and Friedrich (25), (26) modelled the tribological 

performance of composite polymer with steel counterpart using analysis by real world experiment 

and FEM simulation. As the figure 6 shows below, a steel sphere was slid across the carbon fiber 

reinforcement polymer, in three different orientation, and different behavior with different 

orientations of fiber filler was discussed. K.K.Chawla (27), claim that fiber reinforcement material 

is inhomogeneous material that should follow the rule of mixtures formula.   

The tribological performance was analysed, and stress allocation of polymer and carbon fibre was 

also discussed. It is believed that normal fibre orientation could provide better mechanical 

performance. Furthermore, even though the thermoplastic are unsuitable for high torque load 

transmission, but by adding carbon fibre could significantly increase enforcement, moreover, with 

30% volume of glass fibre in polymer composite loading behaviour is studied.   

Moreover, due to the simulation being increasingly complex, many researches are working on 

reducing the computational time while retaining accuracy. According to Paul (28), computational 

time could be reduced by adding hand calculation associated with FEM. In other words, this 

method that combined Hertz equations and FEM, reduce computer cost and provide a relatively 

accurate result. However, this method has significant drawback due to the limitations of the contact 

position, and the result of this method could only show of single contact position. Hence, such 

 

 

Figure 6. Sphere steel was sliding across the carbon fibre reinforcement polymer, in three different orientation 
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methods can only provide limited information of helical gear contact analysis. Furthermore, 

Alencar B created a model which could predict the failure by three different dynamic effect thermal 

simulation, wear simulation and fatigue simulation (29), and this simulation could provide both 

thermal affect, wear affect and fatigue affect. whereas, realistically three dynamic effect were 

working on gear operation at the same time, however, in this simulation three dynamic simulation 

was modelled separately.        

2.4. Additive Manufacturing Process  

 

Due to the process of the injection mould processes the fiber filler orientation within the host 

martial was hard to control, however, it is possible to control the filler orientation by additive 

manufacturing process. There has been a rapid growth in the number of units sold from 2010. In 

the process of additive manufacturing process, geometric information is provided by computer-

aided design (CAD), then, CAD file will be converted to a stereolithography (STL) file. This SLT 

file is converted the CAD drawing into sliced part which containing the information for each layer 

going to be printed (30).  

There are three main supply sources for additive manufacture (liquid, powder and solid) divided 

by seven industrial additive manufacturing processes which are stereo lithography(SL), fused 

deposition modelling (FDM), ink jet printing(IJP), three dimensional printing(3D-P), selective 

laser sintering (SLS), laser cladding, and laminated object manufacture. (LOM) (31).  
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Stereolithographic (SL) is a liquid based process, and in this process the liquid phase polymer 

converted into a solidified polymer by ultraviolet (UV) light scan. The thickness of each layer 

limited by the power of the UV light. In the process of fused deposition modelling (FDM), a thin 

polymer filament feld  and melted into the metal print head to extrude certain objects, and this is a 

relatively cost effective process but restricted by resolution of  the Z axis (31), (32). There are 

many different filaments available on the market including polylactic acid (PLA), acrylonitrile 

butadiene styrene (ABS), polycarbonate (PC) and many others. Ink jet printing (IJP) requires a 

droplet of molten material to achieve layer deposition. As well as the three-dimensional printing 

(3D-P), droplets of molten material is also required to solidify the solid powder material. Selective 

laser sintering (SLS) using laser to fuse power material to provide layers, moreover, the majority 

of current commercial printers apply CO2 lasers, power supply from 50W to 200W. Laser cladding 

(LC) are process in which power material is forced through a nozzle to the laser beam by using 

material fusing to create layers. Laminated Object Manufacturing (LOM) is a process that build 

object by cutting single layer of membrane into cross-section, then bonded it together by heat and 

 

Figure 7. Current additive manufacturing technologies (1). 
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pressure (30). In the recent years, there has been a rapid growth of additive manufacturing  in 

industry, according to the Wohlers Report 2013 (1) there has been around 25% annual growth of 

additive manufacturing product and services during last 25 years. From 2010 to 2012 there was a 

27.4% market growth rate which reached $2.2 billion. The sold industrial AM system which cost 

less than $5000 was increased by 19.3% in 2012, and AM systems which cost more than $5000 

was increased by 46.3% in 2012. Moreover, there are more additive manufacturing processes have 

been invented shown as figure 8 below: 

 

Application of 3D printing usually suitable for relatively low production volume, small size and 

complex design. For example, when the production volume below 1000 unit, 3D printing is cost 

effective with plastic injection moulding (33). Moreover, additive manufacturing technology is 

applied in a wide range of industries including the motor, aerospace, medical and architectural. 

To simulate the power transmission of the gear there are two main stages: static simulation and 

dynamic simulation. Haidar F. AL-Qrimli (23)  simulated a single spur gear meshed with a single 

tooth shaped rigid body, which is able to provide a relatively accurate result of an instant moment 

 

Figure 8. Additive manufacturing in industrial distribution (Wohlers Report 2013 (1)). 
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of stress acting on a certain position. However, in this static simulation, the Hertz effect was not 

fully represented due to the different in mechanical properties between a rigid body and gear body. 

Moreover, a full cycle of the gear tooth contact was not carried out. Johns simulated more accurate 

gear pair with rotation which could observe full meshing cycle of the gear tooth, In the report, 

different effects of misalignment were also carried out (34).  There are limited reports regarding 

to the dynamic and thermal effect of the polymer spur gear. According to Xin (24) there is a heating 

point located on the side of gear, aimed at to analysing the heat flow within the gear body. In this 

simulation, some cracks were generated to analyse the heat transfer in the cracks. However, this 

report was only focused on how the cracks affected the heat transfer and could not represent the 

heat generated by the friction of the gear tooth. Hence, the aim of this research is mainly to simulate 

the mesh of polymer spur gear with dynamic affect and thermos effect. Furthermore, A model has 

been created which could predict the failure by three different dynamic effect including thermal 

simulation, wear simulation and fatigue simulation (29).  

 

2.5 Additive manufacturing of polymer spur gear. 

 

For particular applications such as in automotive and aerospace engineering, polymer gears have 

unique advantages over metal gears, such as: low cost and weight; high efficiency; quietness of 

operation; functioning without external lubrication; etc. The characteristics of wear and thermal 

behaviour of injection moulded gears have previously been studied (35), however, additive 

manufacturing (AM) and 3D printing processes have become increasingly popular for production 

of polymer components. It is generally understood that 3D printing is cost effective if production 

volumes are below 1000 units in comparison with plastic injection moulding (33). The technology 

has been applied in wide range of industries, including the automotive, aerospace, medical and 
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architectural industries (36). The nature of 3D printing means that the process is inherently linked 

to the materials used and each 3D printing technology has a subset of materials that it is compatible 

with. For Fused Deposition Modelling (FDM) for instance there are many different materials 

available on the market including polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), 

polycarbonate (PC), nylon and many others (37). Due to the increased interest in 3D printing there 

is an increasing amount of research regarding the direct mechanical properties and thermal 

properties of 3D printed materials and their modification. Leigh et al (38)introduced a low-cost 

conductive composite material for 3D printing of electronic sensor. Christ et al (39) increased the 

elastic strain of polyurethane through addition of multi wall carbon nanotubes. Blok, et al 

(40)claimed that adding continuous fibers could further increase the tensile strength compared with 

carbon fibre nylon composites. Kalin et al. (41) claimed that gear performance and durability could 

be affected by thermal properties with the result showing an increase in operating temperature 

could decreasing the life cycle of the gear. Hu and Mao (42)investigated misalignment effects on 

acetal gears together with wear behavior, with the results demonstrating that acetal gears were 

most sensitive to pitch misalignment.  

ABS FDM filaments have for instance been reinforced by Montmorillonite (OMMT) with the 

mechanical properties and thermal properties such as tensile stress, elastic modulus and thermal 

expansion increasing as the percentage of composite loading is increased (43). Torrado et al. (44) 

evaluated the mechanical properties of eight different ABS-based polymer matrix composite with 

different build orientations. The results showed the anisotropy in mechanical properties and 

variation in the mechanical properties across the range of different ABS materials. Moreover, ABS: 

Ultra-high-molecular-weight polyethylene (UHMWPE) Styrene-ethylene-butylene-styrene 

(SEBS) composites showed a reduction in anisotropy. Gupta et al (45) introduced a numerical 
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method to evaluate the mechanical properties of a carbon nanotube (CNT) reinforced PEEK matrix. 

Moreover, the reaction stress between the host polymer and carbon nanotubes was simulated, with 

the results stating that CNTs could directly affect the mechanical properties of PEEK. Singha et al  

(46) state the current issues in additive manufacturing with more focus on the rigidity of 3D printed 

parts. There was also some further investigation regarding the increase in mechanical performance 

by adding carbon fibres into filaments and showing dramatic increases in rigidity (47), (48). Tavcar 

et al. (49) investigated life time tests for several types of material and reinforced materials 

including Nylon, 6 Nylon 66, POM and PPS, with the results showing reinforced materials could 

survive more cycles if lubrication was applied. Santos et al. (50) established that higher 

crystallinity could increase elasticity when polymers are heated up beyond glass transition 

temperature. Moreover, higher crystallinity is coupled with stronger intermolecular forces which 

makes the polymer harder but more brittle, with amorphous regions within polymer providing 

plasticity and impact resistance (51). 

In the above published studies, static forces applied to test samples can provide relatively accurate 

static mechanical properties, however other methods are required to evaluate more complex 

dynamic contact problems as might be encountered in components such as polymer gears. For 3D 

printed gears it is important to understand gear performance under set load conditions, their 

complex thermal mechanical behaviour their hyper elastic and visco elastic behaviour. 

Conventionally, polymer gears are produced using injection moulding but surprisingly to date 

there are have been very few studies published on the topic of 3D printing of polymer gears, 

perhaps due to mistrust or preconceptions about their potential mechanical performance.  
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2.6 Performance optimisation of 3D printed gear by machine leaning methods.  

 

According to Ye et al (52) 5 different 3D printing nylon material has been compared, result shown 

nylon 618 has outstanding performance compare with other nylon materials, including 23% carbon 

fiber reinforced nylon filament (Which originally manufactured by filament supplier).  There have 

been many investigations into the characteristics of wear and thermal behaviour of injection 

moulded gears. Mao et al. (35) carried out analysis of the friction and wear behaviour of acetal and 

nylon gears including characterising the failure mechanism and thermal analysis. The results 

showed the operational time of polymer spur gears under different circumstances. Hu and Mao 

(42) investigated the effects of different misalignments on the fatigue of polymer gears during use. 

Hooke et al (53) proved that increases in the surface temperature can dramatically increase the 

wear rate of the gear tooth. Moreover, Gauvin et al (54)carried out an investigation into the 

maximum surface temperature experienced by polymer gears without lubrication.  Mao et al. (55) 

introduced a new method to predict the surface temperature of acetal gears and found the 

correlation between fatigue life and tooth size. Additive manufacturing (AM) and 3D printing 

processes have become increasingly popular, with the application of 3D printing usually suitable 

for relatively low production volumes, small size parts and complex designs. It is generally 

understood that 3D printing is cost effective if production volumes are below 1000 units in 

comparison with plastic injection moulding (33). The technology has been applied in wide range 

of industries, including the automotive industry, aerospace, medical and architectural (36). There 

is limited research on dynamic performance of 3D printed polymer parts, however, there are 

several investigations regarding the parameters which affect the mechanical and thermal properties. 

Chacon et al. (56) has investigated the effect of process parameters on mechanical performance of 

PLA in terms of on-edge orientation, layer thickness and feed rate. It has been shown that higher 



18 
   

printing speeds can increase the mechanical performance of printed parts. Giovanni (57) carried 

out Taguchi experimental design for fatigue analysis of PLA and claimed that infill percentage 

had the most influence on fatigue life. Kuznetsov et al. (58) claimed that printing temperature and 

printing speed could dramatically dominate the mechanical properties of the 3D printed part. 

Moreover, the thermal conductivity of 3D printing filaments can also affect the properties of the 

object (59),  increasing or decreasing the bond quality between each layer during fused deposition 

modelling (60), (61). In order to understand the complicated interplay between these different 

process parameters and to select the most appropriate parameter set for production of 3D printed 

gears a multiple regression process is required.  

Multiple regression process could be achieved by machine learning methods, however, there are 

extremely limited research regarding machine learning associated with predicting performance of 

gears and only some on its application to 3D printing processes. Fracture behaviour of 3D printed 

material has been shown to be dramatically different compare with other materials (62).  Deng et 

al. (63)introduced optimisation methods to the multi-factor printing of a ceramic slurry by using 

artificial neural networks. Koeppe et al. (64) used neural networks to analyse load distribution in 

3D printed lattice-cell structures.  Delli and Chang (65) used supervised machine learning to do 

real time monitoring of 3D printing to eliminate printing time and waste.  Those research reports 

have provided valuable results in terms of static force analysis and monitoring of the 3D printing, 

however, dynamic analysis of 3D printed parts requires further investigation. Li et al. (66) has 

introduced a method using support vector machine to predict dynamic contact characteristics for 

helical gears. Shouli Sun et al. (67) used neural networks to optimise and predict a gear hobbling 

process to improve the efficiency and reduce cost. Sun et al. (68) used artificial neural networks 

and support vector machines with genetic algorithms to monitor the faults in gears. To find the 
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correlation of 3D printing process parameters and dynamic performance of polymer gears would 

be of significant benefit to researchers both in the fields of 3D printing and gear manufacture in to 

increase the efficiency of the 3D printing process and quality of the resultant 3D printed spur gears.  

Performing multi-parameter regression has many challenges, for example missing data, and data 

noise, as well as high dimensionality which impact the ability to identify the relations between 

parameters (69). Through ordinary mathematical solutions, it is extremely computationally 

complex to solve multi-target modelling and targets often may not correlated. However, by using 

some base-line methods such as gaussian processes, neural networks or support vector machines, 

the complexity of the problem can be much reduced (70).  

2.7 Machine learning methods.  

2.7.1 Machine learning 

Implementing suitable machine learning methods could help to analyse different 3D printer 

parameters to achieve prediction and optimisation of the gear wear rate. Algorithms are the core 

of machine learning (71). In 1950s , Turing published  “Computing Machinery and Intelligence” 

that initiated the conception for the future research of  machine learning (72). In 1957, Rosenblatt 

presented the notion of perception, which is the foundation for the neural network algorithm and  

the SVM algorithm (73). In 1967, Cover proposed another important machine learning algorithm 

called k-nearest neighbour method (74). In 1970, Winston raised learning structure theory , which 

promoted the development of symbolism learning algorithm (75). In 1980s, ANN Algorithm was 

the mainstream technology (76) because  Rumelhart proposed BP Algorithm, which significantly 

promoted the progress of ANN Algorithm (77). At the same time,  based on information theory, 

Iterative Dichotomiser 3  (ID3) algorithm (78) was proposed by Quinlan an Classification And 

Regression Tree (CART) algorithm (79)  was put forward by Breiman, which formed DT 
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algorithm. In 1990s , SVM algorithm became the mainstream technology in spite of it was firstly  

proposed in 1970s by Vapnik  (80) combining with the theory of VC dimension ,  Experience Risk 

Minimization Principle (81). and Structural Risk Minimization Principle (81). Until 1990s, VaPnik 

came up with Statistical  Learning  Principles (82). Vapnik and Boser (REF) combined kernel 

method improved the non-linear support vector algorithm, which make the SVM can perform 

better with minor data to  solve non-linear problems as well as high dimension pattern recognition 

(83). Hence from the middle of 1990s this algorithm was extensively used in machine learning 

field (84). In 2000s, ANN algorithm again became one of dominant technologies because, in 2006, 

Hinton presented the conception of Deeping Learning that  is actually a kind of ANN that contains 

hidden layers and  Lecun raised Convolutional Neural Network that was the first real Deeping 

Learning algorithm (85) which hugely enhance the development of ANN (86).  

 

2.7.2 Support Vector Machine 

 

Now the SVM is the most popular machine learning algorithm applied in geotechnical engineering. 

The SVM is a new data mining approach based on statistical learning principles.  It can effective 

deal with regression and pattern recognition issues and it also can be applied in prediction and 

stability assessment aspects (87). The SVM mainly has three advantages: 1. It can use kernel 

function to realise the non-linear mapping from the raw space to high dimensional space; 2. It can 

utilize small number of sample data to achieve accuracy prediction; 3. Few support vectors 

determine the final outcome as a result the complexity of calculation depends on the number of 

support vectors rather than the dimension of sample space (88).  
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2.7.3 Support Vector Machine Classification 

 

The SVM is a binary classification model, which is able to establish a hyperplane to divide sample 

data to achieve structural risk minimization based on maximum margin principles. Due to the 

introduction  of the kernel function the SVM is capable of solving no-linear partition (89).  The 

kernel function has the capacity to map the samples in low-dimension space to high-dimension 

space to address no-linear issues. In practical applications, many raw samples data space do not 

exist a hyperplane to divide the sample data in it correctly. For example, as the sample data in the 

two- dimension plane in Fig.9. It is impossible to find a line to separate the sample data correctly.  

 

Figure 9. Sample data in two-dimension plane 
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However, the kernel function is able to map the sample data in the two-dimension plane to three 

dimension or higher dimension space and finding a hyperplane in high dimension space divides 

the sample data. For instance, the sample data in the two-dimension plane are mapped to a three-

dimension space in Fig 10. 

It is obvious that a two-dimension surface in the three-dimension space can be found to divide the 

sample data by two groups, but there are numerous surfaces in the three-dimension space that can 

divide the sample data by two sets. How to determine the optimum hyperplane is another problem 

that the SVM needs to solve. The SVM principle seeks the optimum hyperplane based on the 

Margin Maximization. The Margin Maximization Principle refers to looking for a hyperplane that 

has the largest distance with that sample points which have the smallest distance with it as the 

optimal hyperplane.  The sample points that are nearest to the optimal hyperplane are called 

Support Vectors, and the distance between the support vectors and the optimal hyperplane is 

known as Margin (90). As shown in the Fig 10. 

 

 

Figure 10. Sample data in three-dimensional space 
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The support vectors for the optimal hyperplane are Point 1 and Point 2 , and the margin is v . Hence 

the issue of seeking the optimal hyperplane transfer to the matter of calculating the minimum value 

of the Margin v that is a function of the coordinates of sample points (Eq. 1). 

 

  (v* -1=0 1,2,......i iy x b i n− =） ，                                                      (1） 

where, b is constant. 

In order to be convenient to calculate, finding the minimum value of v2 often is adopted to replace 

the computation of the least of v. Hence the classification issue for the SVM is converted to solve 

the matter for the convex quadratic programming (91). The process of solving the issue of the 

 

Figure 11. The schematic of the Support Vector Machine. 
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convex quadratic programming is rather complex. In order to simplify the procedure of obtaining 

the optimal solution of the convex quadratic programming matter, the Lagrange multiplier method 

is adopted to transform the primal issue to its dual problem, as shown from Eq. 2 to 4.  
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where, a is constant.  

Hence through solving the simplified mutable problems, the optimal hyperplane is obtained.  

 

2.7.4 SVM Regression  

Another important function of the SVM is to solve the regression problem. Regression problem 

refers to determining a regression model to describe the relationship of  given sample data, as 

shown in Formula 5. 

 

( ) 1 1 2 2, , ( , ),........L x y x y=                                                         (5) 
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where, L is regression model, xi(i=1,2…..n) is the x value of  the sample data, yi(i=1,2….n)is the 

y value of the sample data.  

To gain a regression model indicates the relationship between x and y (92).  The principles and 

methods are adopted to solve the regression problem as that of the classification issue. The SVM 

can utilise few sample data to build a regression model based on the structural risk minimization 

principle (93). The optimal regression model means the difference value between f(x) and y is 

the least. The Support Vector Regression assumes that deviation value between f(x) and y that is 

less that s can be ignore when calculating the total difference value between f(x) and y, which 

manifests that only the deviation value that is larger than s is able to be reckoned in the total 

difference value (94). As shown in Fig 12. 

The deviations that are caused by the points in the area are omitted, and only the deflections that 

are result from the points that outside the region are included. Hence the problem of Support 

 

Figure 12. The schematic of Support Vector Machine regression 
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Vector Regression can be converted to the matter of searching minimum value, as shown in 

Formula 6.  
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where, s is constant. 

This function is called s-incentive loss function. (95). Hence the Support Vector Regression issue 

is transformed to the matter of solving the convex quadratic programming. Regarding the linear 

regression problem, as that of the classification problem, the Lagrange Multiplier Method is 

adopted to convert the primal problem to its dual problem to simplify the calculation of it, as shown 

in Formula7.  
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Then through solving the equation of the more complex problem. The optimal regression model is 

obtained, as shown in Formula8.  
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For the nonlinear regression problem, like that of the classification matter, mapping the nonlinear 

sample data from the low dimension space to the high dimension space by the kernel function 

converts the matter to the linear issue. Afterwards using the same procedures of solving the liner 

problem finds the optimal regression model of it.  

 

2.7.5 Hopfield Networks  

The Hopfield network is a symmetrically single layer full-feedback network, which can be divided 

by Discrete Hopfield Neural Network(DHNN) and Continuous Hopfield Neural Network（

CHNN）based on various activation functions (96). Now a majority of applications of the 

Hopfield network adopt the DHNN. The activation function of the DHNN is the ramp function. 

The weight matrix of the DHNN is determined by weight design of Lyapunov function. The weight 

design of the Hopfield network is achieved by the cyclic operating the network to finally converge 

to a balancing point that is memorised by the network, namely the stable point of Lyapunov 

function. Since the minimal value of a function is the table point, the key of the Hopfield design 

is to choose weight matrix W and the deviator vector b to get the minimal value of Lyapunov 

function. Hence the issue of solving the balancing point of the Hopfield function is  transformed 

to the matter of solving the minimal value of quadratic function (97). The DHNN has three major 

advantages: firstly, it has good astringency. Secondly, balancing points of it are finite. Thirdly, it 

has favourable stability (98). 
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2.7.6. DT network 

The DT is a tree structure that can automatically classify and predict data. The DT consists of 

nodes and directed edges. There are two kinds of nodes : internal nodes and leaf nodes, and the 

internal node represents a characteristic as well as the leaf node denotes a category(101). It adopts 

the top-down recursive approach to compare the attribute value of the internal nodes in the decision 

tress, and the downward branch is determined by based on attribute value. The conclusion is gained 

from the leaf node(102). The DT algorithm has three major advantages: firstly, it is easy to 

understand and realise. Secondly, the volume of the sample data that the DT requires is not large. 

Thirdly, it is simple to evaluate the DT model by static tests and get the reliability of the model 

(103). 

 

Figure 13. The schematic of the Hopfield network 
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Figure 14. Schematic of the DT 
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The DT is able to employ a variety of algorithms to conduct classification operation, such as ID3, 

C4.5,C5.0 , PUBLIC, rough set, CART classification approach and the  like (104). These 

algorithms adopt diverse sorting criterions to carry out classification operation. The ID3 algorithm 

uses the Information increment as the group standard, which can make the  entropy of the system  

smallest when classification is completed(105). C4.5 and C5.0 algorithms introduce the gain ration 

to improve on the shortcomings of the largest increment tending to Multi-Valued Attribute in ID3.0 

algorithm and they also is able to address continuous attribute(106). The CART classification 

mean utilises the shortest distance Gini index criterion to classify data, which can solve over-fitting 

problems(107). The PUBLIC algorithm employs calculating Gini index technique to classify 

samples, which is able to significantly improve the calculation efficiency(108).  The rough set 

algorithm utilises core attribute as classification standard, which sorts the problems of repeated 

subtrees(109).  
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2.7.7 SOM network 

The SOM network is a competitively learning ANN network without supervision, which can map 

input data in high dimension space to low dimension space without changing the topological 

structure of input data in high dimension space (99). SOM network is composed of input layer and 

competitive layer, and the neural in input layer and competitive layers fully interconnects. The 

training method of the SOM network is that firstly the sample data are input into the network, then 

the neural in competitive layer would calculate the gap between the sample data and its own weight 

vector, and the neural that has the smallest gap would become the best matching unit. After that 

the weight vectors of the best matching unit and the neural that is near it would be adjusted to 

make the gap between the sample data and the weight vectors become the smallest. The process 

constantly iterates until the model converges (100).  

2.7.8. The DT regression, principles of the DT regression  

The procedure of CART is composed of the feature selection, the generation of trees and 

pruning(110). The generation of regression tree is based on the Empirical Risk Minimization of 

 

Figure 15. The schematic of the SOM network 



31 
   

the square error. The process of generating the regression tree is similar to that of the classification 

tree each node of the regression tree would corresponds to a predicted value. Firstly, the input 

space of the regression tree is divided based on the minimization of the mean square error to find 

the best break points. secondly the classification with the least mean square error has been defined 

as the most reliable one. Thirdly, The classification would end until the value of each node is 

unique or reaches expected expired criterion(111). finally, pruning is conducting, which means the 

average value of each node of the regression tree with the least loss function is selected as the 

predicted regression value of testing samples. The process of pruning can guarantee the balance 

between the complexity of the model and fitting accuracy 

 

2.8 Materials influence on 3D printed gear.  

The performance of 3D printed gear has been investigated previously.  According to Ye et al (52) 

5 different 3D printing nylon material have been compared, with the result showing that 618 has 

an outstanding performance compared with other nylon materials, including 23% carbon fiber 

reinforced nylon filament. Moreover, there has been an increasing amount of research on 

improving 3D printing parameters cross different areas; Ratiporn and Sorawit carried out an 

optimisation method to enhance the mechanical properties of stereolithography using Taguchi 

methods(112). It has been found that the post cure temperature significantly influenced on flexural 

stress and hardness. The bonding force between polymers and nano composites and textiles has  

shown that the bonding force was affected by printing temperature, printing speed and different 

printing process (113). Yi Wei et al. carried out an investigation regarding the effect of printing 

parameters in 3D concrete printing. Several 3D printed structures was tested, and a fractural test 

was performed, with the result showing that the nozzle travel speed and material volume flow rate 
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significantly affected the solidity ratio of the filament (114). Nevertheless, there are increasing 

numbers of investigations on optimising parameters when printing polymers. Chacon (115)carried 

out an investigation regarding the effect on processing parameters from on-edge orientation, layer 

thickness and feed rate on mechanical performance of polylactic acid (PLA). It has been 

demonstrated that higher printing speeds can induce the better mechanical performance of printed 

parts. Giovanni (116) carried out Taguchi experimental design for fatigue analysis of PLA and 

claimed that infill percentage had a major influence on fatigue life. Kuznetsov (117) claimed that 

printing temperature and printing speed could dramatically affect the mechanical properties of the 

3D printed part. Moreover, the thermal conductivity of 3D printing filaments can also affect the 

properties of the objects (118), increasing or decreasing the bond quality between each layer during 

fused deposition modelling(119) (120). 

Microstructures such as crystallinity, size of the crystallinity domain and different phase of 

crystallinity could also have a significant effect on mechanical performance. Kennedy has claimed 

that crystallisation of polymer could be an influence on tensile deformation (121). Giovanni et al. 

meanwhile analysed the stereo-regularity of different types of polymer structures Showing the 

obtained result revealed that lower crystallinity or less stereospecific polymerization could lead to 

lower values of the Young modulus, and lower values of the stress at every strain, easy 

deformability and viscous flow at very high deformation (122). In addition, the thickness of 

amorphous located in between the lamellar crystals with various preferred orientation could also 

influence to the polymer mechanical properties (123). Different types of branching such as methyl 

or longer branches could define the crystallinity and mechanical properties of polymers as well as 

the distribution of the branch type (124, 125).  
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Chapter 3. Methodology  

3.1 Computational simulations.  

A finite element methods simulation was carried out by computer software named Abaqus. Abaqus 

FEA (formerly ABAQUS) is a software suite for finite element analysis and computer-aided 

engineering, originally released in 1978. According to the Reddy (126), FEM is a method that 

could estimate the solution to boundary value problems for partial deferential equations. FEM 

divided relatively complex problem into smaller and simpler elements, then calculated each small 

problem and converge all the small problems to estimate the final value of whole problem. The 

Abaqus product suite consists of five core software products and in our polymer spur gear 

simulation there are two in use:  

Abaqus/Standard, a general-purpose finite-element analyser that employs an implicit 

• integration scheme (traditional). 

Abaqus/Explicit, a special-purpose finite-element analyser that 

• employs an explicit integration scheme to solve highly nonlinear systems with many complex 

contacts under transient loads. 

In order to reduce the weight of the gear and computational cost of the simulation, it is plausible 

to reduce the volume of the gear by shape optimisation. Shape optimisation refers to reduce the 

material which carried less stress. Gear shape optimisation uses software called Fusion360 （a 

software could clearly indicate which part of the gears carried less torque and can be removed）. 

which allow the load distribution within the gear will be analysed and the part with lower load will 

be removed.   
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3.2 3D printed polymer gear.  

3.2.1 Gear Design 

The first stage in 3D printing of a polymer spur gear was to design the gear itself. The gear design 

selected was similar to the injection moulded 

gears used in a previous study (35). The gear tooth face width was reduced by 2mm due to test rig 

specifications. The specifications of the final gear are given in figure 16.  

 

 

 

 

 

 

Five different 3D printed nylon materials were tested and compared with injection moulded nylon 

gears including nylon 618, nylon 645, alloy 910, Onyx, and Markforged nylon. The different 

materials were printed using two different types of 3D printer. Nylon 618, Nylon 645 and Alloy 

910 were printed using an Ultimaker 2 and the proprietary Onyx and Markforged nylons were 

printed using a Markforged X7 system. Gear inspection has carried been out by KLINGENBERG 

ZPK 260 gear inspection machine, and the result showed the quality of the gears was DIN 12 （BS 

D）. All 3D printing parameters were set as default and printed with manufacturer recommended 

temperature and speed apart from infill percentage, which was set to 60% for both printer systems 

to start with. Printer settings were matched between the Ultimaker 2 and Markforged systems 

 

Module 2mm 

Tooth number 30 

Pressure angle 20° 

Face width 15mm 

Nominal backlash 0.18mm 

Tooth thickness 3.14mm 

Contact ratio 1.65 

(a)                                                                                   (b)  

Figure 16. Additive manufacturing in industrial distribution. 
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where possible. Gear wear tests were conducted with a pair of 3D printed gears with the same 

geometry and printed using the same settings, with both the driven and driver gear manufactured 

in same material. Between and during printing, all materials were stored in a dry box to keep 

moisture away from the materials. 

3.2.2 Gear Testing Rig  

The gear test rig is designed to test the gear wear whilst the gears are meshed and running. The 

specific details of the test rig shown as figure 17. 3D printed gears can be tested in much the same 

way as injection moulded gears, using a back to back test configuration where the gears are loaded 

by winding in the torque to a prescribed level (35). The schematic of the test rig is presented in 

figure 17. In this section a step load was applied to the gears at the different levels of 5 Nm, 6 Nm, 

7 Nm, 8 Nm, 9 Nm, 10 Nm, 11Nm and 12 Nm. During the step load test, each load was operated 

for 30 minutes and increased from 5 Nm to 12Nm until the gear was failed (see chapter 4.3 Fig.2 

(a)). Gear fatigue tests were performed with nylon 618, nylon 645, alloy 910, Onyx, and 

Markforged nylon gears. The test rig motor drives the gears with externally applied torque. Torque 

was simulated by the weight added to the driven shift. The contact force between gear teeth is 

provided by the weight added to the bearing block and loading arm. This loading method permitted 

large amounts of wear without significantly affecting the applied torque. To increase the sensitivity 

of the displacement sensor on the test rig, the displacement sensor was relocated from the pivot 

block to the weight to create a large reading of the displacement sensor. Gear failure was defined 

as when a large deformation was recorded by the test rig and the meshed gear tooth jumped out 

from its original running position. 
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Ɵ: Rotation angle of the pivot.  

 

𝑡𝑚: Signal of wear to being magnified   

𝑑𝑚: Displacement measured by LVDT (Linear Variable 

Differential Transformer) 

 

𝐿 𝑎𝑛𝑑 𝐿2: Distance of pivot between LVDT and weight.  

 

 

 

1. Driver gear 2. Driven 

gear 

3. Pivot block 

assembly. 

4. Driven 

shaft 

5. Universal 

couplings. 

6. Driving 

shaft 

7. Conical 

clutch 

8. Pulley 9. Motor 10. Motor     

controller 

11. Weight 12. LVDT 13. Centre   

spacer 

14. Pivot 

 

Figure 17. Schematic of test rig for polymer gears. Ye et al (52) 
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As figure above shown that total wear value of the gear tooth determined by the LVDT while 

gear is running, the wear of individual gear tooth hence equal to half of 𝑡𝑚. Wear not directly 

measured through the rotation of the pivot, it can be represented by the total wear: 

𝑡𝑤 = 𝑑𝑝 × cos(𝛼) ×  Ɵ … … … … … … … … … … … … … … … … . (9) 

 𝑑𝑝 Represent the pitch circle diameter. 𝛼 shows the pressure angle of the gear, and Ɵ is the 

rotation angle of the pivot. The relationship between rotational angles of the pivot Ɵ and dm is: 

𝑑𝑚 = 𝑡𝑎𝑛Ɵ × 𝐿2 … … … … … … … … … … … … … … … … … … (10) 

While Ɵ is derived: 

 

Ɵ = arctan (
𝑑𝑚

𝐿2
) … … … … … … … … … … … … … … … … … . (11) 

Hence, final wear of the gear tooth will be represented by equation below: 

𝑡𝑤 = 𝑑𝑝 × cos(𝛼) × arctan (
𝑑𝑚

𝐿2
) … … … … … … … … … … … … … … . . (12) 

Moreover, operational time was mainly determined by the wear and wear rate, higher wear rate 

will cause less operational time.   

 

3.2.3 Gear surface temperature 

There are three temperature components contributing to the gear surface temperature: the ambient, 

bulk and flash temperatures (35). The ambient temperature was between 20 ℃ and 30 ℃ for the 

different tests. The bulk and flash temperatures were measured during running using a thermal 
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camera. In order to check that the wear transition, thermal behaviour and mechanical behaviour 

actually corresponded to the maximum surface temperature during operation reaching the melting 

point of Nylon (approximately 256 ℃), a number of incremental tests were carried out at elevated 

surface temperatures.  Although the flash temperature is hard to measure, however, with 

calculation and numerical simulation, it could be estimated with relatively accurate result.  

An investigation into the gear surface temperature during wear tests was carried out, with the aim 

of investigating the gear surface temperature under different loading criteria.  A FLIR E4 thermal 

camera was used and set 10 cm above the testing gears. Surface temperature tests were carried out 

on Nylon 618 and Onyx gears. The duration of each test was 15 minutes and in the first 10 seconds 

of each test, an image was captured every 2 seconds due to rapid temperature rise and after the 

first 10 seconds the thermal image captured every 10 seconds until surface temperature settled with 

a stable range. The wear can be divided into three phases, a “running-in” period, a linear wear 

period and a final rapid wear period (35). The linear wear period is most representative of the 

operational conditions and should reveal the operational temperature of a gear (127).  

 

3.2.4. Differential Scanning Calorimetry (DSC) Analysis.  

In order to understand the thermal behaviour of the nylon materials being used and assess if the 

thermal behaviour of 3D printed filament changed after printing, differential scanning calorimetry 

(DSC) was performed using a Mettler Toledo DSC 3. The results showed that materials had 

relatively stable thermal behaviour and high repeatability of heating and cooling after being printed. 

Due to relatively poor performance in wear tests, alloy 910 and Markforged Nylon were not 

included in the DSC test. Nylon 66 (as used in the literature study of injection moulded gears) was 

included in the tests as a comparison material. The other aim of DSC tests was to measure the glass 
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transition temperature, crystallinity of the materials and enthalpy change during heating. Tests 

were performed with two cooling cycles and two heating cycles to analyse the repeatability of each 

heating and cooling cycle. The temperature range of the test was set at -150 °C to 320 °C, with a 

heating rate of 10.00 K/min. An initial test was carried out with a maximum temperature of 420°C, 

however, the materials decomposed after first heating cycle, and hence the heating temperature 

was limited to 320°C.  

3.3 Performance optimisation and prediction of 3D printed by Machine learning. 

3.3.1 Performance optimisation of 3D printed polymer gear.  

There are several stages to complete this dynamic performance optimisation of 3D printed gear. 

Firstly, use sobol sequence (algorithm) to generated sobol random parameters with 50 data per 

parameter. Secondly, 50 set of test data was generated, including printing temperature (230°C-

275°C), printing speed (20mm/s-75mm/s), and bed temperature (30°C -70°C). Furthermore, bed 

temperatures refer to the temperature of printing surface which will affect the first few layers 

during printing. Infill percentage represent how hollow is the gear, the aim of reduce the infill 

percentage is to reduce the weigh and inertia during operation hence the percentage increasing 

from 20%-80%. Each parameter was increased by factor of one, for example, for printing 

temperature was from 230°C-275°C and sobol sequence will be cover entire range increased by 

unit steps of 1, hence there are in total 45 data of printing temperature alone. Furthermore, apply 

similar range for each parameter, 50 experiments could potentially cover every combination of 

each test data which roughly equal to 45 × 55 × 40 × 60 = 5940000  3D printing setting 

possibilities. Then printing gears with Ultimaker 3 extended. Gear will be printed on tufnol bed 

due to chemical bonding between nylon and tufnol to eliminate the peel off effect during 3d 

printing process. Table shown the inputs and output.  There were 100 gears was printed. Average 
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printing time around 6 Hours per gear depends on the setting of the parameters.  Second stage was 

placing the printed gear on the gear wear test rig to generate performance life cycle with 10Nm 

torque. Test then will be recording the wear increasing at the gear tooth and shows different stage 

of gear operation until gear has been failed. The time from gear start to run on the test rig until the 

gear has been failed was considering of fatigue time as result. Third stage was using for 3D printing 

parameter as input and life cycle from test rig as output to create a neural network model of 

correlations between input and output. In the main time, using Gaussian process to perform multi-

parameter regression to find out the approximate likehood of output accuracy. Finally, by using 

the model which generated by ANN and GP to do a sensitivity analysis to investigate the relations 

of each multi-parameter. The process is showed as table 1 below. 

Table 1. Input parameters generated by sobol sequence and output from test rig. 

Testing 

number 

 

Printing 

Temp 

(°C) 

Printing 

Speed 

(m/s) 

Bed 

Temperature 

(°C) 

Infill 

Percentage 

(%) 

Test result 

Gear 

fatigue time 

(Hours) 

1 230 25 30 20 0.04 

2 253 50 50 50 20 

3 264 38 60 35 11.11 

4 241 63 40 65 30 

5 247 44 55 28 1.94 

6 269 69 35 58 24.69 

7 258 31 45 43 9.32 

8 236 56 65 73 21.03 

9 238 41 43 61 15.57 

10 261 66 63 31 10.1 

11 272 28 53 76 30.18 

12 250 53 33 46 20.6 

13 244 34 68 54 10.12 

14 267 59 48 24 6.66 

15 255 47 38 69 12.9 

16 233 72 58 39 0.36 

17 234 48 64 44 12.77 

18 257 73 44 74 36.8 

19 268 36 34 29 1.65 



41 
   

20 245 61 54 59 16.66 

21 251 30 49 37 2.88 

22 274 55 69 67 20.16 

23 262 42 59 22 2.67 

24 240 67 39 52 10.32 

25 237 33 51 71 12.24 

26 260 58 31 41 1.96 

27 271 45 41 56 7.28 

28 248 70 61 26 0.06 

29 243 39 36 78 21.24 

30 265 64 56 48 27.78 

31 254 27 66 63 25.71 

32 231 52 46 33 0.39 

33 232 38 54 55 25.2 

34 255 63 34 25 11.38 

35 266 26 44 70 8.4 

36 243 51 64 40 1.76 

37 249 32 39 62 5.16 

38 271 57 59 32 4.17 

39 260 45 69 77 34.49 

40 238 70 49 47 15.67 

41 241 29 62 28 0.07 

42 263 54 42 58 14.79 

43 274 41 32 43 3.06 

44 252 66 52 73 30.45 

45 246 48 47 21 0.04 

46 269 73 67 51 12.77 

47 257 35 57 36 16.38 

48 235 60 37 66 32.77 

49 234 37 41 79 25 

50 256 62 61 49 25.41 
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3.3.2 Sobol sequence 

Sobol sequence is a method to sampling data in a quasi-random sequence in which data was 

selected in a uniformly random form. Sobol sequence was first introduced by Russia, 

mathematician I.M Sobol (128). Sobol’s sequence could provide better evenness and higher speed 

to fill the space within a hyper cube. Sobol’s sequence’s algorithm had over past 20 years of 

improvement of the algorithm to apply to high dimension. Hence, sobol’s sequence became a best 

practice in different applications. Sobol’s sequence was generated with sobole generator fitted in 

MATLAB, experiment data of each parameters was generated based on the algorithm of sobol 

sequence. This code below creates 50 vectors (4 components in each vector) according to a 4-

variate uniform distribution implemented (approximately) using a sobol sequence. Each 

component in each vector is a number between 0 and 1. The command above produces a matrix 

‘X’ that lines up each of the vectors as a column in the matrix X. There are therefore 50 columns 

and 4 rows. 

 

 

Figure 18. Schematic of 3D printing optimising process 
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>>Temperature=225+X(1,:)*50 

This takes the first component of each of the 50 vectors and rescales it to get a temperature input 

value (between 225K and 275K).  Basically, use the first row X(1,:) of X 

>>Speed=20+X(2,:)*50 

Same as above but use the 2nd row X(2,:) of X to get the printing speed values (between 20 and 

70rpm). 

>>BedT=10+X(3,:)*50 

3rd row X(3,:) of X to get the bed temperature values 

>>Infill=20+X(4,:)*50 

4rth row X(4,:) of X to get the infill values 

>>Input(:,1)=Temperature' 

Create a matrix called ‘Input’ and make the first column the 50 temperature values by typing the 

above (you need to transpose the vector of temperature values by using a prime, i.e. ‘) 

>>Input(:,2)=Speed' 

Second column of Input is the speed value.  

>>Input(:,3)=BedT' 

Third column of Input is the bed temperature values 

>Input(:,4)=Infill' 

Fourth column of Input is the infill values. 
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3.3.3 Artificial Neural Networks (ANN) 

Artificial neural networks could simulate of physiological structure and mechanism of human 

brain. It is a machine learning process which is different from common methods such as signal 

reasoning and logical thinking approaches (76). ANN is an appropriate method to solve incomplete 

associative memory and defective characteristics pattern recognition and automatic learning. There 

are three main reason that ANN is suitable for this project, first of all, the calculation speed of the 

ANN is significantly computationally cheaper than other methods, and hence, it is computational 

cheaper than other simulation methods. Secondly，ANN has strong fault-tolerant ability to 

minimise the uncertainty during the experiments. Thirdly, ANN is adept in addressing the 

problems with multi-parameter regression which is hard to solve with numerical methods (129). 

The ANN has four common basic structures:  feed-forward model, feed-back model, self-

organising competition model, and Back-Propagation (BP) Networks. Hopfield Networks and 

Self-Organizing Map Networks (SOM) are the most representative networks for corresponding 

basic structures (130).  

3.3.4 Back-Propagation Networks  

The detailed stages of BP training method are following: 1. the sample data for training are input 

to the network. 2. Data moves forward from input stage to each hidden layer until the output stage, 

then the output data is generated. 3. The difference between input data and output data is compared 

and if the differences are larger than expected, they will be transferred back to the hidden layer.  

4. The weight of each neuron is adjusted based on the deviation via the steepest descent method 

that means calculating the minimum value (maximum value) of the loss function along the gradient 

descent (ascent) direction, and the deviation transited to the input layer. 5. The value proceeds 
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forward again and after repeated iteration, the error constantly diminishes. (6) The training process 

is over when the gap between the input value and output value is smaller than the expected value.  

 

Figure 19 shown the structure of the ANN model. The ANN model in this paper was carried out 

based on MATLAB Neural network toolbox. Moreover, there is a loop fitted in the model aimed 

to select optimized hidden number of neural from 1 to 20. Result shows 5 hidden size providing 

less error. The ANN model in this paper is composed of 4 input layer nodes, 5 hidden layer nodes 

and 1 output layer nodes. The initial parameters of ANN, such as the connection weights between 

input layer, hidden layer and output layer, and threshold value of hidden layer and output layer 

 

Figure 19. Schematic of ANN structure. 
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have large influence on the predictive performance. Due to the small number of training data, best 

validation performance could be 1. 

Figure 20.  Performance validation of ANN. 

 

 

 

 

 

                                             (a)                                                                                      (b) 

 

                                                                                         (c) 
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3.4 Genetic algorithm (GA) 

For the traditional ANN predictive models, without combining optimization algorithms, the initial 

parameters are determined randomly, which is inefficient, or prone to converging to local optima, 

slow convergence speed, overtraining, subjectivity in the determining of model parameters and 

often pose a convergence problem (131). The optimised algorithm GA is able to optimise the initial 

parameters of machine learning models to increase the estimating accuracy and accelerate the 

convergence speed of the ANN models (132, 133). 

GA is a parallel random search optimisation algorithm to simulate the genetic mechanism of 

natural and biological evolution GA can conduct efficient heuristic search and parallel computing 

(134).  It introduces the biological evolutionary principle of “survival of the fittest” in the coded 

tandem population formed by optimisation parameters, and chooses individuals according to the 

fitness function of the individuals and the operations of selection, cross and mutation to make the 

individuals with high fitness value be retained, the individuals with low fitness be eliminated (135). 

The new generation would inherit the information of the previous generation and be superior to 

the previous generation. This iteration is repeated until the predetermined expired criterion is met 

(136). 

The basic operations of the GA are divided into: 

3.4.1 Select operation 

The selection operation refers to the selection of individuals from the old generation to the new 

generation (137). The probability that the individual is selected from the old generation to the new 

generation is related to the fitness value of the individual. The better the individual fitness value, 

the higher the probability of being selected (138). 
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3.4.2 Cross operation 

The cross operation refers to the selection of two individuals from the old generation to produce 

new individuals by randomly exchanging and combination of the chromosomal locations of the 

two old individuals (139).  

3.4.3 Mutation operation 

The mutation operation refers to the selection of an individual from the old generation and 

choosing a point in the chromosome of the individual to mutate to produce a new individual. The 

basic process of GA as shown in Figure 21 below.  

 

 

The detailed method of applying GA in improving the performance of ANN is following: the GA 

is used to optimise the initial parameters of ANN. Each particle in GA contains all information of 

the initial parameters of the ANN model. According to the fitness function of the individuals and 

the operations of selection, cross and mutation to make the individuals with high fitness value be 

retained, the individuals with low fitness are eliminated. This iteration is repeated until the 

 

Figure 21. Schematic of GA process (132). 
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predetermined expired criterion is met. The initial parameters of the particle with the highest 

fitness are assigned to the ANN model. The objective function (fitness function) is the R-square. 

The crossover coefficient of the GA algorithm is 0.2, the mutation coefficient is 0.2, the size of 

population is 100, the maximum iteration number is 100.  

3.3.5. Leave-one-out cross validation 

Leave-one-out cross validation is the method which evaluate the performance of a machine 

learning algorithm, in this case is ANN. It is suitable for giving data set and output has relatively 

limited number. It could increase the prediction accuracy by increasing the training data point to 

49 and decrease the test data point to 1. Hence, Leave-one-out cross validation could eliminate the 

randomness of dividing instances into for training and testing. By changing the ratio of training 

and testing of AAN could maximised the training algorism to provide a better understanding of 

model and clearer pattern of sobol sequence (140). Due to small amount of data, it is plausible to 

maximise the number of the training data.   

 3.3.6 Garson’s algorithm  

Based on the established machine learning models, the sensitivity analysis of the input 

parameters is conducted by adopting Garson’s algorithm. In 1991, Garson proposed Garson’s 

Algorithm(141, 142), later modified by Goh (1995), for determining the relative importance of the 

input parameters to the output parameter (139, 143-145), the equation of Garson’s Algorithm as 

shown in Equation 5, the results of the sensitivity analysis by using Garson’s Algorithm as shown 

in Eq 13.  
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Where ijR is the relative importance of input parameters, ijW , jkW are the connection weights of the 
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input layer-hidden layer and the hidden-output layer, i= 1,2….N，k=1,2….M(N, M are the 

numbers of the input parameters and output parameters).  

3.4 Material analysis of 3D printed gear.  

 

There were two focus on optimisation of 3D printing parameters, firstly, is to investigate the 3D 

printer parameters setting influences on the dynamic performance of 3D printed polymer gear. 50 

pairs of gears were printed and tested on the gear test rig (52). Parameters from 3D printer was 

optimised and predicted. Secondly, by carried out the different test including Small-angle X-ray 

scattering (SAXS), Wide-angle X-ray scattering (WAXS), Differential Scanning Calorimetry 

(DSC), X-ray fluorescence (XRF) and Fourier-transform infrared (FTIR) to investigate the 

crystallinity, size of the crystallinity domain and different phase of crystallinity to demonstrate the 

different failure mechanisms.  

3.4.1 SAXS/WAXS test 

Small Angle X-ray Scattering (SAXS) is a powerful X-ray technique which enables the non-

destructive investigation of nanoscale particle size, distribution, and morphology. Typically is an 

important tool to study the corresponding microstructure parameters of polymers. The one-

dimensional data of SAXS is consisted of intensity (Y-axis) and scattering vector (q, X-axis), 

where |q| = 4sinθ/λ, λ is the wavelength of the incident beam and 2θ is the scattering angle (123). 

This gave a q range for the detector of 0.009 Å-1 to 0.338 Å-1. A radial integration as function of q 

was performed on the 2D scattering profile and the resulting data corrected for the absorption and 

background from the sample holder. In this research, SAXS measurements were made using a 

Xenocs Xeuss 2.0 equipped with a micro-focus Cu Kα source collimated with Scatterless slits. The 

scattering was measured using a Pilatus 300k hybrid photon counting detector with a pixel size of 

0.172 mm x 0.172 mm. The distance between the detector and the sample was calibrated using 
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silver behenate (AgC22H43O2), giving a value of 1.181(3) m. WAXS was measured on a Pilatus 

100k mounted at an angle of 36° to the beam direction at a distance of 0.163m. The data was 

collected as intensity (Y-axis) and 2θ (diffraction angle) basing on the Bragg equation 

(2dsinθ=λ)(146), while the 2θ range was from 18 to 47 ̊ in our test system. 

3.4.2 DSC test 

Differential Scanning Calorimetry (DSC) means the measurement of the charge of the difference 

in the heat flow rate to the sample and to a reference sample while they are subjected to a controlled 

temperature program (Differential Scanning Calorimetry, Günther Höhne, Wolfgang F. 

Hemminger, H.-J. Flammersheim). It is a quantitative measurement of phase transitions used to 

determine transition temperatures, phase composition of materials such as glass transition in 

polymers, glass/crystal fractions. In the experiment, data was collected via Mettler Toledo DSC 3 

with three heating and cooling cycles ranging from -150 to 320 ̊C in an the atmosphere of nitrogen. 

The heating/cooling rate was ±10 ̊C·min-1 and a standard aluminium crucible with 40 μL volume 

was used as sample holder.  

3.4.3. Element and molecular structure test (XRF and FTIR) 

X-ray fluorescence (XRF) supplies simply, accurately and economically analytical ways for the 

detection of elemental composition of many types of materials including polymers. Herein, a 

Rigaku Primus IV XRF system was employed, which is advanced and unique wavelength 

dispersive X-ray fluorescence (WDXRF) equipment and used to analyse products. WDXRF 

system is based on Bragg’s law, which utilizes the phenomenon that crystals will reflect x-rays of 

specific wavelengths and incident angles when the wavelengths of the scattered x-rays interfere 

constructively. While the sample position is fixed, the angles of the crystal and detector can be 
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changed in compliance with Bragg’s law so that a particular wavelength can be measured. Only x-

rays that meet Bragg’s law are reflected. For non-destructive ultra-trace elemental analysis, the 

Rigaku system can supply total reflection X-ray fluorescence (TXRF) spectrometers as well. 

Fourier-transform infrared (FTIR) spectrometers can not only be widely used in composition but 

also molecular structure analysis, which is derived from the basic that bonds between various 

elements absorb light at different frequencies. Interferometer is utilized to identify samples by 

engendering optimal signals with all the IR frequencies involved into it. The signal can be tested 

quickly. After that, the signal is decoded by applying a mathematical technique known as Fourier 

transformation. This computer-generated process then forms a mapping of the spectral information. 

Bruker Vertex 70V IR spectrometer utilized a nylon samples test with a frequency range from 

4000 to 500 cm-1. 
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Chapter. 4. Analysis of additive manufacturing polymer spur gear.   

4.1 Wear of 3D Printed Gears  

During the test, a set of gears were produced in each of the material variants and tested to a 

maximum of 2.4 million cycles or until gear failure (whichever came first). Whenever a gear lasted 

at least 500000 cycles in one test, a similar new one was texted at a higher load. Material properties 

of each tested gear were presented in figure 22, (35) (147),(148),(149),(150). From a visual 

inspection it appeared that most gear failures were due to the thermal bending of the gear teeth. 

Interestingly, a high proportion of the Nylon 618 gear failures appeared to be due to failure at the 

root of the gear teeth.  

The results of the wear tests are presented in Figure 22. The Nylon 66 results of the injection 

moulded gear performance test is from a literature report and nylon 618, nylon 645, Alloy 910, 

Markforged Nylon and Onyx values are resultant from the tests on the 3D printed gears. For the 

3D printed gears, both Nylon 618 and Onyx gears were relatively stable below 10 Nm, however 

Onyx gears failed instantly after any load beyond 10 Nm due to dramatic thermal bending and 

wear. There were two regimes of debris observed, strip-like debris occurred after operation of 

Nylon 645, Alloy 910, Onyx and MF Nylon. Strip-like debris was also associated with relatively 

Figure 22.  Material properties of five different materials provided by manufactures. 

Material/ 

Properties 

Nylon 

66(35) 

Nylon 

618(147) 

Nylon 

645(148) 

Alloy 910 

(149) 

Onyx 

(150)  

Markforged 

Nylon  

Specific gravity (g/c𝑚3) 1.41 N/A N/A N/A 1.18 1.10 

Tensile strength (MPa) 62 31.5 35.7 55.8 36 31 

Flexural modulus 

(MPa) 

2600 152.9 212.7 502.8 2900 840 

Glass transition temperature 

(℃ ) 

51 48 52 82 N/A N/A 

Melting temperature 

(℃ ) 

256 218 217 210 N/A N/A 

N/A: Data was not provided by manufacture. 
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high operation noise and relatively high wear rate. Snowflake-like wear debris occurred in Nylon 

618. The operation noise of Nylon 618 was significantly lower compared with the other 3D printed 

materials tested. As shown in figure 22, several tests were undertaken on the gears. When a gear 

failed after less than 1 hour at 5 Nm torque no further tests were carried out, which was the case 

for MF nylon, nylon 645 and alloy 910. MF nylon gears operated for around 0.018 Million cycles, 

Nylon 645 gears operated for 0.014 Million cycles and Alloy 910 failed just after 0.0078 Million 

cycles. Perhaps most importantly, as a comparison, 3D printed Nylon 618 gears performed better 

than the literature values for an injection moulded Nylon 66 gears in the region below 10 Nm. 

Nylon 66 gave relatively better performance when torque was applied beyond 12 Nm. It is often 

incorrectly assumed that 3D printed parts have inferior performance when compared to 

conventionally produced counterparts, however this result showed that the 3D printed gear 

performed better than a ‘conventionally’ produced gear in this low to medium torque regime. In 

order to further understand the performance of Nylon 618 printed gears, further tests were carried 

out. The results of the wear tests are presented in Figure 23. Opreational speed of test for figure 23 

were 1000 rpm for each each tests. 
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4.2 Comparison of 3D Printed Nylon 618 Gears to Injection Moulded Nylon 66 Gears 

The wear in a gear is defined as the amount of material lost from gear tooth contact surface during 

gear operation.  As detailed previously, the wear can be divided into three distinct phases, a 

“running-in” period, a linear wear period and a final rapid wear period. In the low torque stage, 

there was only a small amount of wear observed with minimal wear debris generated during both 

the running-in and linear wear stages. In the final rapid wear period, the wear rate increased 

dramatically and subsequently the appearance of debris was accompanied by a marked increase in 

operational noise. After gross wear (nearly 40% of tooth thickness), the gears failed in thermal 

bending and the teeth jumped out from meshing position. For loads greater than 12 Nm there was 

no run-in period observed with gears going straight into a linear wear period. Large amounts of 

 

Figure 23. Wear test rig results 

Material/  
Load 
 

Nylon 66 
(Injection 
mould)(35] 

Nylon 618 
 

Onyx 
 

MF nylon 
 

Nylon 645 
 

Alloy 910 
 

5Nm 
 

2.4  
Million 
cycles 
 

2.4 
 Million 
cycles 
 

2.4  
Million 
cycles 
 

0.018 
Million 
cycles 
 

0.014 
Million 
cycles  

0.0078 
Million 
cycles 

7Nm 
 

2.4 
 Million 
cycles 
 

2.4  
Million 
cycles 

0.96  
Million 
cycles 

N/A* N/A* N/A* 

10Nm 
 

1 Million 
cycles 
 

1.5 Million 
cycles  
 

0.006 
Million 
cycles  

N/A* N/A* N/A* 

12Nm 
 

Tested  
0.504 
Million 
cycles 

0.78  
Million 
cycles  

N/A* N/A* N/A* N/A* 

15Nm 
 

0.08  
Million 
cycles 
 

0.012 
Million 
cycles  

N/A* N/A* N/A* N/A* 

*When gear tested for less than 1 million cycles no further test were done. 
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wear debris were recorded at the outset of gear operation at loads in excess of 12 Nm. The results 

obtained can be compared to literature results of injection moulded Nylon 66 gears, where under 

5 and 7 Nm loads, the gears were operational for in excess of 1.2 million cycles, however, wear 

increased from 0.2 mm to 0.5 with the same wear rate. Under 10 Nm load, the test duration of 

injection moulded gears was decreased to 0.9 million cycles. When the load applied was increased 

to 15 Nm, the gear survived up to 0.08 million cycles (35). Hence, when compared to literature for 

injection moulded nylon gears, Nylon 618 3D printed gears provide better performance when load 

is applied below 12 Nm. Figure 24 shows the results of wear test carried out on a pair of printed 

nylon 618 gears.  

                                     

 

Figure 24. Result of Nylon 618 wear tests. 
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4.3 Wear rate analysis. 

In order to ascertain the wear rate of 3D printed gears, a step load test was carried out. Nylon 618 

gears were operated at 1000 rpm from 5 Nm and step load was increased by 1 Nm for each step 

until the gear failure. Figure 25 (a) shown the result of each step load that last 30 minutes. Each 

test was performed under same operational speed (1000rpm) increased by 1 Nm until gear was 

failed. 

The nylon 618 test results in figure 25 (a) can be used to calculate wear rate under different loads 

shown as figure 25 (b), where the wear rate represents the material loss against torque per minute. 

According to the Friedrich et al. (151), the wear volume 𝑉𝑤 is: 

𝑉𝑤 = 𝑘𝐹𝑠                                                                                (14) 

Where 𝑘 is the specific wear rate, F the normal force, and s the sliding distance. If this equation is 

revised for tooth profiles, the specific wear rate for gear can be expressed as: 

 

𝑄𝑏𝑑 = 𝑘
𝑇

𝑟
𝑑 × 𝑛                                                                       (15) 

Rearrange equation: 

   

                                           (a)                                                                                 (b) 

Figure 25.(a) Step load test of Nylon 618 (b) Wear rate against load for nylon 618 gears. 
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𝑘 =
𝑄𝑏𝑟

𝑇𝑛
                                                                                    (16)                 

Where Q represents wear depth, b represents tooth face width, d is tooth depth, r is gear pitch circle 

radius and n are the number of cycles corresponding to the wear Q. Associated with the test of 

Nylon 618, at 5 Nm the wear rate was around 0.0113mm per 1 minute, and hence after calculating 

each step load test, the wear rate against torque was plotted as figure 25 (b). 

As figure 25 (b) shows, the wear rate from 5 Nm to 9 Nm was very low. Each step load test was 

carried out for 30 minutes, hence, the operation time of each step load was not considered in this 

test. For loading above 9 Nm, the wear rate increased dramatically, believed to be mainly due to 

two factors: gear tooth bending force reaching the limitation of material yield stress, and gear 

failure due to thermal softening. When the gear surface temperature exceeds the material melting 

point, including ambient, bulk and flash temperatures, the wear rate will increase sharply. In order 

to fully characterise the wear behaviour of the 3D printed gears they were examined using 

microscopy.           

 

4.4 Scanning Electron Microscopy (SEM) Analysis.  

Injection moulded gears have previously been examined for signs of wear using SEM. In acetal 

and Nylon 6 gears, the material has been observed to be torn away at both sides of the pitch line. 

(152), (153)]Notably however, in the 3D printed gears tested here, there appears to be more 

material torn away at the addendum of the tooth flank. This contrast to literature behaviour may 

be due to higher tensile strength of Nylon 66 compared to Nylon 618 in the 3D printed gear. The 

lower tensile strength in the resultant gears potentially causes increased bending deformation of 

teeth causing a change in meshing position.  
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Figure 26 shows the failed tooth surface of nylon 618 3D printed gear. It is evident under x100 

magnification that there is significant wear and bending at the addendum of the tooth, with that 

region of the tooth surface appearing to be melted. Moreover, SEM revealed that there was no 

material peeled off from the tooth (as might be expected with a 3D printed gear), showing there 

was strong bonding between each layer deposited during the 3D printing process. From visual 

inspection, the color of the printed material on the contact surface changed from white to yellow 

and the pitch line on the tooth face remained parallel to the addendum.    

In order to draw a comparison between the Nylon 618 printed gears and one of the other printed 

gears, SEM was carried out on a Nylon 645 gear. As presented in figure 27, the SEM showed 

significant wear and bending at addendum of the tooth and the addendum part of the tooth surface 

appears to be melted. Moreover, the SEM also showed that material had peeled off from the tooth 

(Fig 28 (b)), which shows there was relatively weak bonding between each layer during the 3D 

printing process. As with the Nylon 618, the colour of the material changed on the contact surface 

 

              (a)                                                                                                                 (b) 

Figure 26. (a) Fish eye SEM image over view of failed 618 tooth surface and debris.  (b) Surface wear debris (×100)) 
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from white to yellow and the pitch line on the tooth face did not remain parallel to the addendum 

cycle (Fig 27 (a)).  

The results show dramatically different wear behaviour compared to injection molded gears. 

Examination of the tooth flank below the pitch line of the driver showed evidence of the material 

being torn away as the teeth roll against the direction of sliding and the tooth surface showed 

relatively low surface roughness with no material peeled off from tooth surface (42), (58).  

         

         

            (a)                                                                                                           (b)                                                                              

Figure 27. (a) Fisheye SEM image over view of failed 618 tooth surface and debris.  (b) Surface wear debris (×100)) 

 

 

      

                                         (a)                                                                                             (b) 

 

 

 

Figure 28. (a) Nylon 66 injection mould gear (x 18). (b) Gear surface wear debris of Nylon 66 injection mould gear (×100) 
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Moreover, as shown in figure 28, there is evidence of the onset of melting on the gear tooth surface, 

with the gear tooth shown relatively smoother compare with 3D printed gear. Several studies have 

mentioned that during FDM process, changes in temperature of the layer-by-layer polymer FDM 

process causes dramatically different cohesion strength of the layers and, the strength of the part. 

Greater differences in temperature during printing will weaken the bonding between each layers 

hence, this is one of the reasons causing different wear behaviour of 3D printed gear (60).  

Polymer sintering effects affecting bond formation between layers, as shown in figure 29 [(60), 

(61)]. Parameter y represents the ratio of half the width of sintered bond, and d relates to filament 

radius. Hence y/d represents the bond formation of filaments and temperature difference in each 

layer could significantly affect the sintering process during FDM process. 

                          

This view of inter-layer bonding in 3D printed part (as shown in figure 29) could go some way to 

explain the difference formation in wear surface between Nylon 618 and Nylon 645, because nylon 

618 has better polymer sintering behaviour compared with nylon 645 when printed using the 

manufacturers recommended parameters.  

 

                                           (a)                                                         (b)                                                      (c) 

Figure 29. Process of polymer sintering between layers. (a) Represent filament instantaneously after deposition (b) 
Represent the neck growth, and (c) Represent sintering effect due to the movement of polymer chains. 
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4.5 Differential Scanning Calorimetry (DSC) analysis.  

In order to understand the thermal behaviour of the materials being used for 3D printing and assess 

if the thermal behaviour of 3D printed filament changed after printing, DSC was performed. DSC 

tests were carried out at three different stages, the first test was carried out before printing, the 

second test carried out after the nylon filaments were 3D printed and the third test carried out after 

the nylon gear step load test. It was found that the crystallinity of the filament before printing was 

slightly lower compared with the material after printing and material from gear tooth surface after 

testing. For example, the crystallinity of the Nylon 618 filament before printing was 43% and after 

printing was measured at 48%. Nylon 645 exhibited similar behaviour. Materials from a gear tooth 

surface after testing showed a crystallinity of 47.4%. DSC test results of glass transition 

temperatures and melting temperature showed that they remained relatively stable across the 

different stages with high repeatability of heating and cooling after being printed. Due to relatively 

poor performance in wear tests, alloy 910 and Markforged Nylon were not included in the DSC 

test. Nylon 66 (as used in the literature study of injection moulded gears) was included in the tests 

as a comparison material. 

Tests were performed with two cooling cycles and two heating cycles to analyse the repeatability 

of each heating and cooling cycle. The temperature range of the test was set at -150 °C to 320 °C, 

with a heating rate of 10.00 K/min. An initial test was carried out with a maximum temperature of 

420°C, however the materials decomposed after first heating cycle, and hence the heating 

temperature was limited to 320°C. As figure 30 shows the DSC tests of the different materials. 

Crystallinity was calculated using fitted equation with standard method based on a constant 

standard ∆H=196 J/g (154).  
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As figure 30 shown, the glass transition temperature of Nylon 66, Nylon 618, Onyx and Nylon 

645, were measured as 54℃, 48℃, 47℃ and 43.5℃ respectively. The glass transition temperature 

of Nylon 618 was the same as the manufacturer’s quoted value of 48℃. However, the test result 

of Nylon 645 was around 16% different to the value provided by manufacturer. The measured 

melting temperatures were similar compared with the data provided.  

 However, pure Nylon 66 had a higher melting temperature than the manufacturer quoted value. 

The crystallinities of Nylon 66, Nylon 618, Onyx and Nylon 645 were 56.51%, 48%, 23.5%, and 

31% respectively. Normalised energy consumption showed the energy consumed during the 

heating and cooling cycling.   

Based on the result of DSC test, it is believed that in the dynamic contact scenario found in polymer 

gears, thermal behaviour of polymer affects the wear rate and hence the performance of the 

polymer gear. From the test rig result, Nylon 618 filament had higher wear resistance compared 

with injection moulded gears at low applied torque. This may due to the unique process of the 

 

Figure 30. DSC test result of Nylon 618 filament after printed. 
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FDM, with the gear tooth extrusions following the path of the gear tooth (155). Moreover, the 3D 

printing process could provide a benefit to molecular alignment in crystalline polymers such as 

Nylon (156). Shear stress distributed during the printing process can potentially cause the polymer 

to be aligned in the plane of the printed layers (157). Intramolecular bonding in 3D printing process 

often occurs as covalent bonding, which is stronger than van der Waals forces. Hence the 

mechanical properties could increase with suitable intramolecular bonding, which could further 

help explain why 3D printed gears can perform better than injection moulded gears in certain 

operating scenarios (55).  

 

 

Measured 
Material / 

Thermal spec 

Nylon 66 
 

Nylon 618 
 

Onyx 
 

Nylon 645 
 

Glass transition 
temperature 

54℃ 
 

48℃ 
 

47℃ 
 

43℃ 
 

Melting 
temperature 

260℃ 
 

225℃ 
 

200℃ 
 

210℃ 
 

Crystallinity 
 

56% 
 

48% 
 

23% 
 

31% 
 

Normalised energy 
consumption 

84J/g 
 

60J/g 
 

34J/g 
 

45J/g 
 

 

Figure 31. DSC test results 
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4.6 Gear tooth surface temperature.  

The thermal performance of the Nylon 618 gears and Onyx gears is shown in figure 32 (c) and 32 

(d) respectively via different torque at a constant rotational speed of 1000 rpm. The initial reading 

from the camera is plotted in dotted light grey, and the dark solid line represents the 6th order 

polynomial trend line to simplify the temperature analysis. Thermal test was carried out by wear 

test which the torque applied to nylon618 with 5Nm, 7Nm, 10Nm and 12Nm.  Torque applied for 

thermal test for Onyx with 5Nm, 7Nm and 10Nm. 

 

Figure 32. (a) Thermal image of Nylon 618 gear with 12Nm torque at 890 s. (b) Thermal image of Onyx gear with 10Nm 
torque at 200 s. (c) Thermal behaviour of Nylon 618 gears at 1000 rpm. (d) Thermal behaviour of Onyx gears at 1000 rpm 
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It was observed that for both materials, the surface temperature of the gears during operation was 

above the glass transition temperature. The analysis shows that there is a linear increase in 

temperature with increasing load in both materials. When the applied torque was 5 Nm, the surface 

temperature of the nylon 618 gears was steady around 80℃. There was a 20℃ increase in 

temperature when the torque was increased to 7 Nm, with a 35℃ increase in the surface 

temperature between 7 Nm and 10 Nm. Furthermore, there was around a 15℃ increase in 

temperature between 10 Nm and 12 Nm.  

When 5 Nm torque was applied to Onyx 3D printed gears, the gear surface temperature stabilised 

around 110℃, increasing by 30℃ (to 140℃) when the torque was increased to 7 Nm from 110℃. 

However, when the applied torque was increased to 10 Nm, the gear failed after just over 180 

seconds with a surface temperature of 170 ℃, 30 degrees below the melting temperature.  

Comparing the thermal behaviour of Nylon 618 and Onyx, there was a 30℃ in difference (from 

80℃ to 110℃) in surface temperature when both gears were subjected to the same torque of 5 Nm. 

There was around a 40℃ difference in surface temperature between Nylon 618 gears and Onyx 

gears at an applied torque of 7 Nm. 

 

4.7. 3D printed gear failure mechanism. 

Increasing the torque applied to 3D printed gears could lead to three main effects:  an increase in 

contact stress, bending stress, and flash temperature of contact surface according to the equation 

(17) (18) below. (125):  

𝜎 = 𝑊𝑡𝐾0𝐾𝑣𝐾𝑠

1

𝑏𝑚𝑡

𝐾𝐻𝐾𝐵

𝑌𝐽
… … … … … … … … … … … … … … … … … (17) 
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𝜎𝑐 : Gear contact stress. 

𝑊𝑡: Tangential transmitted load (N). 

𝐾0 : Over load factor. 

𝐾𝑣 : Dynamic factor. 

𝐾𝑠 : Size factor.  

𝑏    : Face width of the narrower member (mm). 

𝐾ℎ : Load-distribution factor.  

𝐾𝐵 : Rim thickness factor.  

𝑌𝐽  : Geometry factor for bending strength. 

𝑚𝑡  : Transverse metric module (mm) 

 

Increasing the torque will lead to a greater value of 𝑊𝑡 hence, bending stress acting on the gear 

tooth will accordingly increase. Gear tooth contact stress shown as equation below. 

𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾0𝐾𝑣𝐾𝑠

𝐾ℎ

𝑑𝑤1𝑏

𝑍𝑟

𝑍1
… … … … … … … … … … … … … … … … … (18) 

 

𝑍𝑟 : Elastic coefficient (√𝑁/𝑚𝑚2). 

𝐶𝑃 : Surface condition factor.  
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𝑑𝑤1 : Pitch diameter of pinion. (mm). 

𝑍𝐼  : Geometry factor for pitting resistance.  

It is extremely hard to measure the flash temperature of the gears, due to instantaneously contact 

of gear tooth, and flash temperature represent the highest temperature after gear tooth was sliding 

and contact, it is encloser when occurred.  However, we could calculate the flash temperature via 

numerical calculations to predict flash temperature of the gears.   

As shown in equation 19, increasing of the load applied to the gear will give rise to a raise in gear 

contact stress. Moreover, increasing the torque will cause a temperature accumulation in the gear 

body. An expression for the gear body temperature is shown as equation (19) below. (158) 

𝜃𝑏 =
3.927𝜇𝑇

𝑐𝜌𝑍𝑏(𝑟𝑎
2 − 𝑟2)

… … … … … … … … … … … … … … … … … . (19) 

Where 𝜃𝑏  is the body temperature of gears, 𝜇  is the friction coefficient. T represents the 

transmitted torque, 𝜌 is specific gravity, c refers to specific heat.𝑟𝑎, r and b are outside radius, 

reference radius and tooth face width respectively. Z represents tooth number. From this equation 

it can be seen that torque and gear body temperature are positively correlated. The flash 

temperature can be expressed as in equation (20) below. (158) 

𝜃𝑓 = 1.11𝜇𝑇
(𝑉1

0.5 − 𝑉2
0.5)

𝑏√2𝑘𝜌𝑐𝑎
… … … … … … … … … … … … … … . . (20) 

𝜃𝑓 is the flash temperature of the gear, 𝑎 is half contact width, V represents sliding velocity of each 

gear, T represents the transmitted torque.  

As figure 33 shows, there were three different types of failure that occurred in the wear tests of 

nylon 618 gears. When low torque was applied, the gears could sustain dramatically longer life 
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cycles compared with higher torque being applied. According to figure 33 (c), the gears failed due 

to material loss from the pitch line of the gear tooth when 10 Nm of torque was applied. Once wear 

from the gear tooth reached a certain depth, size factor 𝐾𝑠 could dramatically increase lead bending 

stress in equation 18 excised the limitation of the gear tooth causing gear failure. When 12 Nm 

torque were applied, the life cycles were decreased from 1.5 million cycles to 0.78 million cycles 

with gear teeth failing due to root fracture (figure 33 b). With less life cycles, material loss was 

not the main cause for the gear tooth fail where in fact failure was due to lack of sintering effect 

between layers at the root of a gear tooth. Moreover, increasing load from 10 Nm to 12 Nm could 

rise the beading stress causing gear root fracture. With a higher toque of 15 Nm applied (figure 33 

a), due to higher contact stress could lead to higher operational temperature (equation 19.20), teeth 

failed due to thermal bending.  

For other types of nylon filaments, failure was mainly due to the lack of bonding between each 

layer of gear tooth, leading to dramatically higher rates of material loss from wear tests. Moreover, 

other nylon filaments are easier to heat up according to DSC tests, and hence operational 

temperature easily reached the melting temperature of the material. Those combined effects caused 

the rest of the nylon filaments to exhibit a much-reduced lifetime compared with Nylon 618 gears. 

 

 

 

 

 

 

 

Figure 33. Failure mechanism of nylon 618 during wear test. 
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Chapter 5.  Machine learning process applied for dynamic performance optimisation and 

prediction of 3D printed polymer spur gear. 

5.1 ANN model fitting with original test data. 

 

Figure 34 shown the performance of each model fitting with original 50 test data in section 3.3.  

Simulation was carried out with different ANN methods. In figure 34, Original test data was 

represented by red line, simulated data represented by black dote which provided by 3 different 

ANN models. It is clear shown that the converges of simulated data was improved with more 

complex model. Figure 34 (a) shows the linear fitting between ANN model and test data give 

pearson product-moment correlation coefficient of 0.85326 and R- square is 0.728 which shown 

high correlation related to the original test data (159),(160). However, performance optimisation 

could be achieved with more complexed simulation model.   Hence, GA based ANN figure 34 (b) 

has been applied to the model which give closer agreement between the measured and predicted 

values of gear fatigue time. R2 increasing from 0.728 to 0.8 with GA applied, moreover, Pearson’s 

r increased by nearly 5%. This could be an explanation to the fact that the proposed ANN-based 

predictive model accuracy in this case was increasing with GA optimization technique. 

Furthermore, initial target was to achieve the R-square greater than 0.9, hence, even the GA based 

ANN could provide a relatively satisfactory result. However, optimisations and prediction 

accuracy could be further increase by applied leave one cross validation. Figure 34(c) shown the 

model applied with both GA and using leave-one cross validation, Pearson’s r and R2 shown 

dramatically increased from 0.83 to 0.97 and 0.728 to 0.956 respectively. Hence model with leave 

one cros validation applied will be the final model to carry on further analysis. 

  



71 
   

 

5.2 Genetic algorithm optimisation  

Result of optimisations process performed by GA to optimise the ration between 𝜔 and 𝛿 shown 

as figure 35, hence, to contribute on the accuracy of the ANN performance. According to figure 

36, solid plot represents the average error corresponded to the real test data, in the GA optimisation 

process, there are 200 iteration was selected due to decrease of the computational time and 

converge with optimised solution. Each iteration has 50 population involved, plot on solid line 

represent the average error corresponding to the test data and dotted line represent the best fitness 

             

                                             (a)                                                                                      (b) 

 

                                                                                         (c) 

Figure 34. Performance result fitted with test data. 
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corresponded to test data performed by wear test rig. It is shown that average error was decreased 

from around 23% to 10%, moreover, best fitness was improved from 10% to less than 5% 

respectively. Hence, it can be proved that by applied GA could increase the efficiency and accuracy 

of the ANN regression model. The error of fitness was shown the difference between simulated 

data and real data, figure 35 shown a trend of error was decreased. 

 

 

 

 

5.3. Sensitive analysis by Garson’s algorithm.  

The model reveals (figure 36) that printing temperature contributes to the performance of a printed 

gear by around 22% in terms of weighting. Printing speed has around a 23% influence in the 

performance. Bed temperature contributes a 8.6% influence to the final result, showing a reduced 

 

Figure 35. Optimisation process of GA on weight ratio of ANN 
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importance compared with the rest parameters. Finally, by using Garson’s algorithm it is possible 

to identify the most influential parameter regarding gear performance is infill percentage. 

Conceptually this result makes sense as it is possible that by increasing infill percentage, the 

rigidity of gear under loads is increased.  

 

 

 

 

 

 

 

 

5.4. Optimisation setting analysis  

 

In order to explore the power of the model in predicting optimal gear performance and outputting 

the 3D printer parameters required, a simulation was carried out. Figure 37 shows the simulation 

of 14256 combinations of different parameters. In this simulation, printing temperature is 

increased from 230°C to 275°C by 5°C （9 data）. Hence, there are 9 data points created for 

printing temperature instead of 50. Print speed was increased from 20mm/s to 75mm/s every 5 

mm/s （10 data）. hence, there are 12 data points generated. Bed temperature is increased from 

30°C to 70°C with 5°C each time, with 9 data points required for the analysis. Infill percentage 

was increased from 20% to 80%, with 12 data points. As mentioned earlier, there are more than 5 

 

Figure 36. Sensitivity response contributes to result. 
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million combinations that could be used in generating test input data, however, errors in the 3D 

printing process and errors in the test rig could counter the tolerance of the setting, hence, a gap 

between parameters by factor of 5 could provide relatively accurate results.  Simulation was carried 

out by leave one cross validation applied GA based ANN model. Simulation number 5732 showed 

52.07 hours of potential gear performance with 3D printer settings of a printing temperature of 

250°C, printing speed of 70mm/s, bed temperature of 25 °C and infill percentage of 80 %.  Shown 

in Figure 37 below. According to figure 37, figure shown a periodic structure, it is meanly due to 

the repeat parameter for each simulation. Simulation with higher infill percentage, provide a longer 

operational time.  

 

  

 

 

Figure 37. Sensitivity response contributes to result. 
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5.5 Simulation result validation test. 

 

Validation of this model result was performed by producing a 3D printed gear using the same 

settings suggested by the ANN optimisation. 5 pair of gears were printed and tested on the wear 

test rig, with the results shown in figure 38 below. The results showed that the 5 tests yielded an 

average performance 51.46 hours, close to the ANN simulation value of 52.07 hours, hence 

optimisation simulation could be considered as a valid simulation.    

 

5.6 Influence of different 3D printer settings on gears dynamic performance.  

 

In previous chapter, a set of experimental data has been designed by sobol sequence, providing 

relatively higher tolerance and covering a much larger range of input data with minimal test data 

being required. Four 3D printing parameters was selected via specific requirement of polymer 

gears which require rigidity and light weight. A prediction model of 3D printed gears has been 

carried out with three models including an ANN model, a GA based ANN model and a leave one 

  

Figure 38. 5 test using optimisation setting for 3D printed gears. 

 

 



76 
   

cross validation applied GA based ANN model. Moreover, sensitive analysis for printing 

temperature, printing speed, bed temperature and infill percentage were 22.2%, 23.9%, 8.6% and 

45.3% respectively. The results show that all models provide a relatively accurate prediction result 

and provide satisfactory fitting to the test data. A leave one cross validation applied model provides 

the strongest correlation with test results, with Pearson’s r equal to 0.97 and R2 equal to 0.956 

respectively. Moreover, by simulating an experiment, the printing parameters have been optimised 

to increase the performance of the 3D printed polymer gears. The results suggest an optimised 

setting of the 3D printer of printing temperature equal to 250°C, a printing speed of 70mm/s, a bed 

temperature of 25 °C and infill percentage of 80 %.  The operational time of the resultant 3D 

printed polymer gear was increased more than 3 times compares with one produced using the 

default print settings. Sensitivity analysis performed by Garson’s algorithm indicated that infill 

percentage has most influence on the performance of a 3D printed gear and bed temperature has 

the least influence on the test result.   

 

5.7 Influence of each 3D printer parameter to gear performance.  

ANN regression methods were performed within a black box. It is hard to see how each neuron 

interact with other neutrals. Hence, to investigate how each parameter could affect the performance 

of the 3D printed nylon gear was carried out in the following section. Moreover, sensitive analysis 

for each parameter has been carried out in the previous section, to further investigate how each 

parameter would affect the performance of the gear was carried in the following section. 

50 data point were generated based on artificial neural network model. Figure below describes the 

correlation between bed temperature and operational time. Bed temperature varied from 20 ̊C to 

70 ̊C. In terms of investigating the response for each parameter, only one parameter will vary in 
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each simulation. Hence, when investigating bed temperature response, infill percentage was kept 

at 45%, printing temperature at 245 ̊C, and printing speed was held at 45mm/s.  

Due to the variation in bed temperature, gear performance time varied from 9.5 hours to 14 hours.  

Gear operational time was around 9.5 hours and when bed temperature around 20 ̊C. Operational 

temperature started to increase until reach 50 ̊C the gear operational time was 14 hours. with further 

increasing the bed temperature, the gear operational time was decreased.    

The fitted curve could be described as a Sine function with R-Square of 0.99972, which is highly 

correlated to the plot. Hence with ANN simulation this equation could describe the model with 

bed temperature and gear performance time, showing in figure 39. 

 

 

 

 

 

 

Model Sine 

Equation y=y0+A*sin(pi*(x-
xc)/w) 

Plot Bed temperature 

y0 11.52731 ± 0.2197 

Xc 34.99826 ± 1.43696 

W 36.4007 ± 2.85844 

A 2.41381 ± 0.1811 

R-Square 0.99972 

Figure 39. Numerical fitting via change of bed temperature. 
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As figure 40 showed, there were 50 test was simulated based on an ANN model to investigate the 

relationship between infill percentage and gear performance time. During infill percentage test, 

infill persentage  was increased from 20% to 70% while bed tempurature remained at 45 ̊C, 

printing temperature was set as 245 ̊C, and printing speed at 45 mm/s respectively. Gear 

performance time was increasing from 5 hours to 30 hours. There was a dramatic increase in gear 

operational time after 50% of infill percentage, when infill percentage increased to 65%, gear 

performance time remained similar.  

 

To describe the response of infill percentage with a numerical equation, a Boltzmann equation was 

introduced with R-Square of 0.98815, which shows a high correlation of response.   

 

 

Model Boltzmann 

Equation Time = A2 + (A1-A2)/(1 
+ exp((x-x0)/dx)) 

x Infill percentage. 

A1 7.22821 ± 0.31975 

A2 32.7766 ± 1.0516 

x0 54.44405 ± 0.69017 

dx 6.7595 ± 0.54995 

R-Square 0.98815 

 
  

Figure 40 Numerical fitting via change of infill percentage. 
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Figure 41 shown the response of the printing temperature, with the test of printing response. The 

temperature was increased from 220 ̊C to 270 ̊C, bed temperature fixed at 45 ̊C, infill percentage 

stay at 45% and printing temperature set as 245 ̊C. Gear performance time varied between 6 hours 

and 24 hours, and the gear performance time peak appeared when printing temperature reached 

255 ̊C, and decreased after wards. There was a sharp increase after 230 ̊C  sine equation was 

describing the response of the printing temperature with R-square of 0.99509.  Hence, the 

numerical model could well fit well with response of the printing temperature.   

 

 

Model Sine 

Equation y=y0+A*sin(pi*(x-
xc)/w) 

Plot B 

y0 13.82837 ± 0.16404 

xc -173.08288 ± 10.39637 

w 40.9804 ± 1.00264 

A 6.88894 ± 0.13573 

R-Square(COD) 0.99509 

Figure 41 Numerical fitting via change of printing temperature. 
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The response of printing speed shows a positive correlation with the gear performance time. 

Printing speed was increased from 20mm/s to 70mm/s, however, when printing reached 30mm/s 

gear operational time experienced a slight decrease. After 35mm/s gear operational time was 

sharply increased until speed reached 55mm/s. Gear performance time increased from 2.5 hours 

to 22.5 hours. A Boltzmann equation could describe the response of the printing speed.  Shown in 

Figure. 42. 

To discuss the response of the bed temperature, according to previous work, bed temperature was 

8.6% in the sensitivity analysis, moreover, variation in bed temperature could change the 

operational time of gear by only 4.5 hours. This means, changing the bed temperature, could only 

have a limited effect on the result. This may due to the bed temperature only affecting the first few 

layers when printing. The thicker the printing object the less the bed temperature will contribute 

to the result. Unlike bed temperature, infill percentage has 45.3% of influence on the gear 

performance time in sensitivity analysis. Moreover, changing only the infill percentage could lead 

 

Model Boltzmann 

Equation Time= A2 + (A1-
A2)/(1 + exp((x-
x0)/dx)) 

x Printing Speed 

A1 5.35548 ± 0.21755 

A2 23.18063 ± 0.23782 

x0 45.917 ± 0.28938 

dx 4.78645 ± 0.27505 

R-Square 0.99242 

Figure 42. Numerical fitting via change of printing speed. 
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to gear performance varying by around 25 hours. This is mainly due to the rigidity of the gear 

body. Increasing the infill percentage would be beneficial to the gear rigidity, hence, gears would 

occur less deformation during meshing and running. Therefore, gear teeth could operate in a 

desired position (117).  

Printing speed and printing temperature could affect the bonding force between different layers, 

while, printing temperature and printing speed have similar sensitivity responses, of 22.2% and 

23.9% respectively. By change printing temperature and printing speed separately, gear 

performance will be affected by 13.5 hours and 20 hours. A change in printing temperature could 

mainly affect the overall bonding force between each layer. Lowering the printing speed could 

increase the temperature difference of each layer, higher difference in temperature could cause 

higher thermal stress between each layer, hence, causing uneven stress across the gear tooth. 

Hence, a higher printing speed could provide better mechanical performance. However, in this 

case 70mm/s would be the appropriate speed due to no further increase in gear performance time 

after 70mm/s.   
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Chapter 6. Material properties analysis of 3D printed gears.  

There were five different tests was carried out, including SAXS, WAXS, FTIR, and XRD test. 

Moreover, five tests were performed on three different 3D printing materials, including Nylon 68, 

Nylon 645 and Co Nylon. The aim of this chapter is to investigate the reasons that causing Nylon 

66 based 3D printing filaments perform differently. 

6.1 Analysis of different Nylon materials influence on failure mechanism. 

The characteristic SAXS curves obtained from Nylon samples are adequately described by the 

equation proposed by Beaucage (161) which assumes the existence of a number of related 

structural levels by means of a unified equation offering a wide range of experimentally observed 

q values . The intensity would then obey the equation: 

𝑰(𝒒) = 𝑮𝒆𝒙𝒑(−𝒒𝟐 𝑹𝑮
𝟐

𝟑
) + 𝑩(

{𝒆𝒓 ∫(𝒒𝑹𝒈√𝟔)}𝟑

𝒒
)𝒑                                         (21) 

, where the first term accounts for the Guinier region (values of q≤2π/Rg), with two adjustable 

parameters: G (Guinier pre-factor) and Rg (radius of gyration). The second term describes the 

power law scattering behavior (for q>2π/Rg), and the fitting of the experimental curve determines 

the pre-factor B, as well as the value of 𝒑 (power-law exponent). A value of 𝒑=4 for the high 𝒒  

limit in the case of sharp interfaces is predicted by Porod’s law. Values of P larger than 4 are 

related with diffuse interfaces. If 4>𝒑>3 the exponential law is characteristic of a fractally rough 

surface. The fractal dimension ds is calculated from the slope of the log–log intensity plots using 

the equation ds=6−𝒑(162). The values obtained for ds are between 2 and 3 and this parameter is 

associated with the topology of the surface. For ds approaching 2, a well relevant smooth surface 

is assumed and fords tending to 3 the surface will be more tightly crumpled(163). 
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In Fig. 43, the SXAS result consisted of intensity (Y-axis) and scattering vector (X-axis), and 

converted into volume distribution function (Y-axis) and volume distribution of radius (X-axis) 

under assumptions to be satisfied in reality, through a Titchmarsh transform according to: 

𝑫𝒗(𝑹) ∝ 𝑹 ∫ [𝑲 − 𝒉𝟑𝑰(𝒒)][𝟐𝑱𝟎(𝒒𝑹) + (𝒒𝑹 − 𝟑𝒒𝑹)𝑱𝟏(𝒒𝑹)]𝒅𝒒
∞

𝟎

                                           (𝟐𝟐) 

, where D,(R) is the volume distribution function of assumed spherical scattering heterogeneities 

whose radius is R, K = lim, ~ q3Z(q) and J, and J1 are first-kind Bessel functions of order zero and 

one, respectively. Moreover, other representative parameters are available by directly analysing 

the experimental intensity curves(164). In Fig. 44, from the converted SAXS data, the mean radius 

of Nylon 618, Nylon 645 and Co Nylon can be determined as 24.2, 21.2 and 15.0 Å, which signify 

the decreasing tendency of lamellar spacing, domain size and corresponding periodicity from 

Nylon 618 to Co Nylon. The Full Width at Half Maximum (FWHM) are 7.4 (Nylon 618), 7.0 

(Nylon 645) and 10.242 Å (Co Nylon), respectively. This suggests Nylon 645 has narrower 

distribution of its  mean spacing, while Co Nylon was the widest one, based on the coherence 

 

Figure 43. SXAS result of Nylon 618, Nylon 645 and Co nylon 
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length lcoh estimated by Sherrer equation(165). The shorter periodicity (smaller domain size) and 

more narrow distribution around the mean spacing will induce lower stress level, lower damage 

tolerance and lower fatigue resistance(165), which is identified in mechanical property test. 

 

The WAXS result is shown in Fig.44, in which both Nylon 645 and Co Nylon just have one peak 

at 2θ = ⁓ 21.0̊ with the reflection of (100) and relevant d spacing of 0.416 nm in γ phase. However, 

the WAXS spectrum of Nylon 618 has three peaks located at ⁓20.0̊ ⁓21.0̊ and ⁓22.8̊, respectively, 

among which the peak at ⁓ 21.0̊ is of (100) and 0.416 nm in γ phase as well, whereas the peaks at 

⁓20.0̊ and ⁓22.8̊ are of (200) reflection, 0.445 nm d spacing and (002)/(220) reflection, 0371 nm 

d spacing, belonging to α-phase (166). The WAXS spectrum of Nylon 618 can be interpreted as a 

blend of α and γ phases. The fraction of the individual phase can be estimated by the ratio of the 

intensity of corresponding sharp peak in the software Highscore. Thence, the amount of γ phase 

can be estimated as 38.7% in the crystal phase of Nylon 618. Likewise, the crystalline index (CI) 

defined as the ratio of the total intensity of crystalline reflections to the total observed intensity 

(crystalline + amorphous) normalized to the maximum crystalline index observed for each 

individual sample(146), is equal to the crystallinity and can be estimated by HighScore. Thus, the 

crystallinity derived from WAXS are 49.3%, 35.6% and 24.1% for Nylon 618, Nylon 645 and Co 
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Nylon, respectively, which is consistent with the trend of lamellar spacing, amorphous domain 

size and periodicity illuminated by SAXS. 

 

6.2 Differential Scanning Calorimetry (DSC) Analysis result.  

In order to understand the thermal behaviour of the materials being used for 3D printing and to 

assess whether the thermal behaviour of 3D printed filament changed after printing, differential 

scanning calorimetry (DSC) was performed. DSC tests were carried out at two different stages, 

the first was carried out before printing, the second carried out after the nylon filaments were 3D 

printed and the third carried out after the nylon gear step load test. It was found that the crystallinity 

of the filament before printing was slightly lower compared with the material after printing and 

material from gear tooth surface after testing, which was attributed to the annealing-like process 

 

Figure 44. WXAS result of Nylon 618, Nylon 645 and Co nylon 
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during 3D printing For example, the crystallinity of the Nylon 618 filament before printing was 

43% (Figure 45) and after printing was measured at 48% (the heat of fusion data on equilibrium 

∆Hf
O=196 J/g ). Nylon 645 exhibited similar crystalline behaviour, the crystallinity of which 

changed from 27.9% to 28.3% before and after printing Materials from the gear tooth surface 

showed a crystallinity of 47.4% (figure 45). DSC test results of glass transition temperatures (Tg) 

and melting temperature (Tm) remained relatively stable across the different stages, which at 

64.88 C̊ in the first cycle and 57.94 ̊C in the second cycle for Tg and 227.8 ̊C in the first cycle and 

223.4 C̊ in the second cycle for Tm  of Nylon 618. Likewise, Nylon 645 also can keep both the Tg 

(44.99 ̊C for first cycle and 44.89 ̊C for second cycle) and Tm (199.5 ̊C for first cycle and 200.8 ̊C 

for second cycle) stable before and after printing. Normally, a higher amorphous (but 

crystallisable) to high crystallization will lead to a more intense peak of crystallization temperature 

(Tch), whereas a highly crystalline material might not exhibit(167). Herein, the peaks of Tch of 

Nylon 645 in all cycles are more intense than those of Nylon 618, which shows the lower 

crystallinity of Nylon 645 than Nylon 618.  The results showed that both materials had relatively 

stable thermal behaviour and high repeatability of heating and cooling after being printed. Due to 

relatively poor performance in wear tests, alloy 910 and Markforged Nylon were not included in 

the DSC test. Nylon 66 (as used in the literature study of injection moulded gears) was included 

in the tests as a comparison material. Shown in Figure 45 below. 
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For polymer materials, composition and molecular structure can greatly affect crystallinity, and 

size of the crystallinity domain and therefore also the mechanical properties. For example, it was 

found that in semi-crystalline, branched poly(ethylene)-like materials yielded by polymerization 

of 1-octene, with different aluminium alkyls combined with various polymer microstructure, 

strongly affected the structure, thermal and mechanical polymer properties(125). In this research, 

to determine the difference of Nylon 618, Nylon 645 and Co Nylon regarding molecular structure, 

FTIR analysis was used with the result shown in Figure 46, while on the purpose of comparison, 

Nylon 66 was also investigated by FTIR. In Figure 46, the region from 3100 to 3500 cm-1 is 

sensitive to hydrogen bonding and is assigned to the hydrogen bonded NH stretch (amide A), thus 

the peaks at ⁓3250 cm-1 of all Nylon sample present N-H stretching while the peaks without that 

range at ⁓3020, ⁓2950, ⁓2840 cm-1 stand for CH stretches (C-H asymmetric stretching, CH2 

asymmetric stretching and CH2 symmetric stretching)(168). The obvious peaks at ⁓1630 and 

⁓1510 cm-1 are assigned to Amide I and Amide II band, respectively(168). The transmittance of 

 

Figure 45. DSC test result for Nylon 645. 
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peaks concerning N-H stretching arising out of amorphous fraction, decrease from Nylon 66, Co-

Nylon, Nylon 645 to Nylon 618 can predict the trend of their crystallinity. Meanwhile, the peaks 

set in the range from 900 to 400 cm-1 for N-H wagging, CH2 rocking, C-C deformation and O=C-

N bending can forecast the fraction of γ phase in the corresponding crystalline phase(166). For 

Nylon 66, at that range, only the intense peak of N-H wagging can be detected, which reveals the 

majority of α phase in that sample. Moreover, XRF was used to characterize the difference of these 

Nylon samples on composition. The main ingredient in these three samples is Nylon 66, and the 

elements in the additives to Nylon 66 are basically similar. The evident difference is the percent 

of Cl, Ca and Fe, which may be another factor inducing the difference on crystallinity of Nylon 

samples and will be studied further in the future. 

 

 

 

 

 

 

 

 

Figure 46. FTIR test result for Nylon 618, Nylon 645, and Co Nylon compare with Nylon 6. 
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Chapter. 7. Computational simulation of polymer spur gear. 

7.1 Establishing 3D spur gear static simulation 

In the previous chapters, the investigation of nylon gears has been well established, and stronger 

material such us PEEK could be investigated via similar method. However, due to the high cost of 

PEEK material, it is worthwhile to carry out a numerical simulation to have a basic understanding 

of PEEK gears before establishing experiments. 3D gear simulation has been built and 

accomplished, based on previous 2D gear simulation by MSc students at the University of 

Warwick. Considering the calculation cost, the rest of the gear body is replaced by coupling 

methods, which assumes as rigid body, showing in figure. 47(a). 4Nm torque is applied on the gear 

based on PEEK material. The result shows the contact stress acting on the gear was around 43.87 

MPa shown in figure 47 (b).  It is impossible to see the contact stress while the two gears are in a 

meshing position, hence only one gear is displayed.  Geometry is created based on Spur Gear 2M-

30T with 15mm face width.  

 

        

      (a)                                                                                     (b) 

Figure 47. (a) Coupling method in Abaqus and mesh generation, (b) 2D spur gear static contact simulation 
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To validate this simulation, an AGMA contact equation was used (169): 

𝜎 = 𝐶𝑃√𝑊𝑡𝐾0𝐾𝑉𝐾𝑆
𝐾𝑀𝐶𝐹

𝐷𝑃𝐹𝐼
                                                               (22) 

𝐸 = 𝑦𝑜𝑢𝑛𝑔′𝑠 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 = 4000𝐺𝑃𝑎 

𝑣 = 𝑝𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜 = 0.38 

Where, 𝐶𝑃 is the elastic coefficient, and 𝐶𝑃=
√

1

𝜋(
1−𝑣1

2

𝐸1
−

1−𝑣2
2

𝐸2
)

=27.27    

𝑊𝑡 , Transmitted load=400Nmm 

𝐷𝑃, Pitch diametral of pinion=30mm 

𝐾0, Overload factor=1 

 𝐾𝑉, Dynamic factor=1 

𝐾𝑆, Size factor=1 

𝐾𝑀, Load-distribution factor=1.508 

 𝐶𝐹, surface condition factor =1 

F, Face width=15mm 

 I, Geometry factor=0.08 

Therefore, 𝜎 can be calculated as follows.  

𝜎 = 𝐶𝑃√𝑊𝑡𝐾0𝐾𝑉𝐾𝑆
𝐾𝑀𝐶𝐹

𝐷𝑃𝐹𝐼
= 27.27√1.058 ×

1

30𝑚𝑚×15𝑚𝑚×0.08
×

400𝑁𝑚𝑚

60𝑚𝑚
= 45.57𝑀𝑃𝑎  (23) 
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the difference between simulation result and calculation result was 3.8%. Still, according to  

Abdelrhman et al. (170), in his simulation, the static gear was against a tooth shaped rigid element. 

When compared with Hertz equation and AGMA equation, the errors are 12.71% and 1.66% 

respectively. Hence, the accuracy was similar. However, in the simulation produced by 

Abdelrhman et al. the Hertz effect was not fully represented due to the different mechanical 

properties between the rigid body and gear body, while the full cycle of the gear tooth contact was 

not accomplished. 

7.2 Contact behaviour via geometry modification 

By considering reducing the weight of the gears, it is resendable to find the part of gear carried 

less stress, which can be reduced. To further reduce the weight and cost of material while 

maintaining similar rigidity, shape optimisation methods were used. According to the figure 48, 

PEEK was used in this shape optimisation. In terms of simulation gear loading criteria, the key 

hole was restricted in any direction. 4N load was distributed evenly on each gear tooth in order to 

represent the gear loading. According to the result, the blue part showed in figure 48（a）carried 

                               

                             (a)                                                                                  (b) 

Figure 48. (a) Load distribution within the polymer gear (b)load path criticality 
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less load, and the red shows the part carried more load. Hence, according to the figure 48(b) about 

13% of material can be removed by further design.  

7.3 Geometry modification by change in rim thickness.  

Removing the material of gear rim could further reduce the weight and cost per gear. According 

to G.D.Bible (171) bending stresses in thin rims spur gear tooth fillets and root areas differ from 

the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter 

for these gears. A reduction in material while maintaining the mechanical performance which need 

several simulations. The simulation was based on the influence of increase or re duction in rim 

thickness in terms of stress changing on gear tooth. Shown in Figure 49 below. 

 

There are 6 iterations of the rim thickness: 1.5mm, 2.5mm, 3.5mm, 4.5mm, 5.5mm, and 6.5mm, 

as the figures 50 below show. This simulation was based on polycarbonate. As the result, the stress 

acts in accordance to different rim thickness.According to the result of the simulation, the increase 

of the rim thickness can raise the stress of the gear tooth. However, after rim thickness was 

extended than 5.5mm, the stress remains similar.  

                    

                     (a)                                                           (b)                                                     (c) 

Figure 49. (a) Rim thickness 1.5m. (b) Rim thickness 4.5mm. (c) Rim thickness 6.5mm. 
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The result shows that the differences of the stress was determined by rim thickness. In addition, 

the simulation result indicates that a decrease in the rim thickness can increase the gear tooth 

rigidity. However, while rim thickness was greater than 5.5mm, the stress remains at 55.5Mpa. 

Moreover, when rim thickness is more than 3.5 mm, it will provide similar rigidity of the gear 

tooth compare with 5.5 mm thickness. To reduce volume of the gear can also reduce the 

computational cost in simulation due to less elements being analysed if the meshing size and other 

simulation parameters remain the same.   

 

7.4 Contact behaviours change regarding to different meshing position 

Misalignment usually happened when gear was loaded causing bending force acting on gear shaft, 

hence, a misalignment occurred on gears. Four different types of misalignment have been 

simulated: pitch misalignment, radial misalignment, yaw misalignment and axial misalignment. In 

the FEM simulation, there are several degrees or distances regarding different misalignment. 

Furthermore, to understand the behaviour of polymer material compared with steel gear in terms 

of misalignment, four types of misalignment were simulated both in polycarbonate (as example to 

 

Figure 50. Simulation result in maximum stress against rim thickness. 
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demonstrate the behaviour of polymer gear)and steel. Due to the stiffness of the material, the steel 

gear misalignment simulation used 20Nm and PC gear simulation used 4Nm torque.   

 

Figure 51. Four types of misalignment of spur gear pair. 

7.4.1 Axial misalignment  

In the Axial misalignment simulation, there are two gears were rotated along with z-axis at 

different distances: 0.5mm, 1mm, 1.5mm, and 2mm. Axial misalignment will remain the line 

contact with two gears.  Figure. 52 shows the steel gear and polymer gear contact stress changes 

under different rates of misalignment.  

 

            

                                       (a)                                                                                               (b) 

Figure 52. (a) Steel gear axial misalignment simulation with 20N load. (b) PC gear axial misalignment simulation with 4Nm 
torque. 
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7.4.2 Radial misalignment 

The ideal distance between gears centre is 60mm. Therefore, there was four central distances of 

the adjustments: 60.2mm, 60.4mm, 60.6mm, and 59.8 mm.  

 

7.4.3 Yaw misalignment  

Yaw misalignment is an angular misalignment. In these types of misalignment, line contact switch 

to point contact after the deformation of gear tooth, the point contact becomes the surface contact 

again.  In the yaw misalignment, gear shaft occurs an angle along z-axis that starts from 0.5 degree 

to 2 degree and increased 0.25 degree in each iteration for PC gear. For steel the gear yaw 

simulation misalignment sets from 0.5 to 1 degree.   

 

     

                                       (a)                                                                                      (b) 

Figure 53. (a) Steel gear axial misalignment simulation with 20Nm torque. (b) PC gear Radial misalignment simulation 
with 4Nm torque. 
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7.4.4  Pitch misalignment  

Pitch misalignment simulation performed in steel gear starts from 0.25 degree and ends up with 

0.5 degree, and PC gear misalignment was from 0.25 degree to 1.25 degree with 0.25-degree 

increments.  

According to the simulation Figure 55, pitch misalignment provides the essential influence to the 

gear meshing. Even small degree of rotation can dramatically change the position and shapes of 

the contact area and push towards the edge of the tooth flank. This simulation claims a similar 

result as Jones et al. (34).  

Radial misalignment can change the involute contact and, therefore, increase the friction, and may 

increase the noise when operating. Considering the axial misalignment can reduce the contact area 

of the gear tooth and produce the moment between two gears, with the small amount of radial 

misalignment, the effects of the moment can be ignored. Yaw misalignment can be caused by the 

    

                                       (a)                                                                                         (b) 

Figure 54. (a) Steel gear yaw misalignment simulation with 20Nm torque. (b) PC gear yaw misalignment simulation with 4N 
load. 
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bending of the gear shaft due to the load applied to the gear. To reducing yaw misalignment, it is 

plausible to apply an external shaft rotation. In addition, misalignment can appear in more than 

one form. For example, when applying the yaw misalignment, an introduction of a small amount 

of radial misalignment is always necessary in order to avoid overlay, shown in figure 55.  

 

 

         

                                       (a)                                                                                                (b) 

Figure 55 (a) Steel gear pitch misalignment simulation with 20N load. (b) PC gear pitch misalignment simulation with 4N 
load. 
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7.5 Fibre reinforcement composite static simulation 

To investigate the concept of fibre reinforcement to polymer gear, a rectangular cantilever was 

used to simplify the structure of gear tooth. The fibre reinforce simulation was based on cantilever 

beam bending by changing the orientation of the fibre filler within the matrices by three different 

positions: 30 degrees (Figure 56 (b)), 45 degrees (figure 56 (a)) and 60 degrees ((figure 57(b)).  

                                                                    

                                                               

                                     (a)                                                                                                   (b) 

Figure 56.(a) Raw PEEK cantilever beam with deflection of 0.2475mm. (b) Reinforcement 30-degree fibre filler in PEEK with 
deflection of 0.127mm. 

                                                       

                                                      

                                 (a)                                                                                                  (b) 

Figure 57. Reinforcement 45 degree fibre in PEEK with deflection of 0.145mm (a) Reinforcement 60 degree fibre in PEEK with 
deflection of 0.148mm (b) 
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The size of the PEEK matrices is 5.8mm ×1mm×1mm, and that of the carbon fibre filler is 0.1mm 

diameter with 1mm length. The cantilever beam was fixed on one side and load of 0.5 N was aplied 

on the other side while the number of fibre fillers remained the same in each simulation. 

According to the previous figure, less angle of fibre could reduce the deflection of cantilever beam. 

However, further simulation with horizontal and vertical fibre orientation was carried out. 

Simulation compared different combinations of carbon fibre in the cantilever at 0 degree and 90 

degrees Figure 58 (a) (b).  

 

                         

                         

                                  (a)                                                                                              (b) 

Figure 58. (a) Reinforcement 90 degree fibre in PEEK with deflection of 0.085mm. (b) Reinforcement 90 degree fibre in 
PEEK with deflection of 0.067mm. 
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From the cantilever beam fibre filler reinforcement simulation, it is possible to assume that the 

alignment of carbon fibre perpendicular to the gear contact surface could provide a better result in 

terms of reinforcement performance. Therefore, the static loading simulation of carbon fibre 

reinforcement PEEK gear was carried out as the figure 59 below shows. There is 15Nm torque 

applied to the gear.  

                                        

                                        

Figure 59. Carbon Fibre reinforcement of PEEK spur gear fibre orientation and gears contact position. 

 

(a)                                                        (b)                                                    (c) 

Figure 60. (a) Stress distribution on PEEK matrices and fibre filler. (b). Stress distribution on fibre filler. (C). Stress distribution on PEEK matrices 
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As shown in figure 59, the stress acting on the reinforcement gear was 66.02 MPa. By analysis the 

contact stress acting on peek and fibre separately could reflected the contribution of fibre in terms 

of reinforced. understand and the stress action on the PEEK matrices was below 5 MPa. Hence, as 

the figure 59 shown that most of the stress was applied to carbon fibre filler, hence the PEEK 

matrices was only carried 1.57MPa.   

By analysis the simulation of cantilever beam simulation, the carbon fibre reinforcement improved 

the mechanical properties to reduce the deflection dramatically. According to Gupta It has been 

also claimed that low volume fraction of CNT results in a large increase in elastic modulus. Tibor 

et al (25) modelled the tribological performance of composite polymer with steel counterpart and 

analyed by real world experiment and FEM simulation.  A steel sphere was slid across the carbon 

fibre reinforcement polymer, in three different orientation, moreover, best performance provided 

with the fibre orientation parallel to the sphere, which is similar to the cantilever beam simulation. 

In the cantilever beam simulation, the fibre filler orientation parallel to the cantilever beam could 

provide better performance (26).  

When considering the carbon fibre reinforcement gear simulation, stress acting on the PEEK 

matrices was decreased by 40 times. However, this simulation was only aimed at understanding 

the distribution of stress acting on the filler, hence, the proportion of the carbon fibre was not 

considered. 
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7.6. Polymer spur gear thermal dynamic simulation 

Dynamic and thermal effects simulation were successfully carried out by Abaqus Explicit. 

Simulation was carried out a pair of PEEK 450 spur gears was meshed with 1500 rpm with 4 Nm 

torque in 2 seconds. Due to complexity of the simulation, This 2 seconds simulation were take to 

month to complete. The initial material and ambient temperature were 20 degrees.  Moreover, in 

this simulation, the thermal properties were considered, including conductivity, expansion, and 

specific heat. Due to the rotation of two me 

shing gears, all gear tooth modelled, and the rest of the gear body using the coupling method to 

transform into the rigid body. The contact stress of the gear was shown in figure 61 below.  

 

 

 

 

Figure 61. Flash temperature simulation. Master Gear (left) and Slave Gear (right) unit: °𝐶 
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Figure 62 shows, the result of the dynamic simulation contact stress is 46.07 MPa, and the peak 

contact stress obtained at the edge between top land and addendum tooth face. Compare to the 

AGMA calculation result, the difference was only 0.9%. However, due to the dynamic affect, the 

contact stress was not constant. Still, due to the separation during the high-speed operation at some 

point, the gear was not in contact at all. Moreover, the stress was increasing at beginning of the 

rotation due to inertia.   

According to the figure 62, the flash temperature after 2 seconds was 46 °C. The higher flash 

temperature on master gear was obtained at the edge between the top land and addendum tooth 

face, and heat generated on the slave gear was located at the pitch line of the gear tooth.  

In terms of rotational speed of the gear, 1500 rpm and 50 revolutions were performed. Hence, it is 

acceptable that the flash temperature increased 20 Celsius in 2 second while this simulation was 

not yet validated by theoretical calculations and bulk temperature was not considered. However, 

by thermal camera test in section 4.6, in the first two second this simulation was followed in similar 

behaviour.  

 

Figure 62.Contact temperature of dynamic simulation. unit: °𝐶 
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Chapter 8.  Conclusions  

In this report, different analyses of spur gear were carried out based on the Abaqus simulation and 

validated by hand calculation. The 3D simulation has been established which could provide 

satisfactory accuracy.  Moreover, by using Fusion360, possible shape optimisation was provided, 

and by considering the shape optimization, the mechanical behaviour change via changes in the 

thickness of the gear rim was analysed. A misalignment simulation was carried out in this report. 

However, misalignment is usually caused by gear shaft bending, hence, by adding gear shaft 

connected with gear could make those simulations more realistic. Misalignment in the real world 

it could be multiple types of misalignment, and often comes with more than one misalignment 

situation, and hence it is useful to simulate the different combination of the misalignment.   

Simulation of fibre reinforcement cantilever beam could provide a basic idea of how the filler 

could improve the mechanical performance, moreover, a reasonable orientation of the fibre filler 

could provide better mechanical results. By simulation of carbon fibre reinforcement PEEK, the 

way that carbon filler contributes to the mechanical performance was understood. However, 

carbon fibre normally comes in a much smaller scale compared to the simulation in the previous 

section, hence, this sub structure may not be accurate enough. Hence, in this simulation it is more 

important to focus on effect of the position of the carbon fibre within the PEEK gear, and the 

rigidity contribution to the gear tooth. Moreover, simulating gear meshing dynamically was overly 

complex, and considering only with thermal affect simulation was not enough to predict the 

performance of the gear, as wear and fatigue also need analysing.    

Moreover the additive manufacturing process could be a key process to solve the fibre filler 

orientation problem in the fibre reinforcement polymer gear, as in the earlier stage of the additive 
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manufacture of polymer gear, there are still some improvements to be considered, for example, 

there was still small amount of peeling (bottom shrinkage) when printing the Nylon gear.   

There were five different 3D printed materials tested: including Nylon 618, Nylon 645, alloy 910, 

Onyx and Markforged nylon. Comparisons between literature values for injection moulded nylon 

66 gears and the five 3D printed gear types have been carried out. Nylon 618 provided better results 

when low to medium torque was applied compared with injection moulded gears. Different wear 

behaviour and wear patterns on the gear tooth were recorded by SEM. Interestingly, wear only 

occurred on the pitch line of 3D printed gear and for the Nylon 618 printed gears, parts of the gear 

tooth surface were melted but no materials were peeled off from the tooth, while the other four 

printed materials exhibited peeling of material from the gear tooth. In DSC tests, Nylon 66 and 

Nylon 618 showed relatively better thermal behaviour in terms of higher glass transition 

temperatures, higher melting temperatures and higher crystallinity when compared to the other 

materials tested. It is thus hypothesized that the superior Nylon 618 friction and wear performance 

(when compared to the other printed materials) is mainly dependent on the thermal behaviour and 

the level of sintering effect between each layer.   

A set of experimental data was designed by sobol sequence, providing relatively higher tolerance 

and covering a much larger range of input data with minimal test data being required. Four 3D 

printing parameters were selected via specific requirement of polymer gears which require rigidity 

and light weight. A prediction model of 3D printed gears was carried out using with three models 

including an ANN model, a GA based ANN model and a leave one cross validation applied GA 

based ANN model. The results show that all models provide a relatively accurate prediction result 

and provide satisfactory fitting to the test data.  A leave one cross validation applied model 

provides the strongest correlation with test results, with Pearson’s r equal to 0.97 and R2 equal to 



106 
   

0.956 respectively. Moreover, by simulating an experiment, the printing parameters have been 

optimised to increase the performance of the 3D printed polymer gears. The results suggest an 

optimised setting of the 3D printer of printing temperature equal to 250°C, a printing speed of 

70mm/s, a bed temperature of 25 °C and infill percentage of 80 %.  The operational time of the 

resultant 3D printed polymer gear was increased more than 3 times compares with one produced 

using the default print settings. Sensitivity analysis performed by Garson’s algorithm indicated 

that infill percentage has most influence on the performance of a 3D printed gear and bed 

temperature has the least influence on the test result.   

Based on previous works, the parameters including printing speed, printing temperature, bed 

temperature and infill percentage have been separately investigated, and the result of the different 

parameters were correlated to the sensitive analysis which is shown by restricting three parameters 

and varying the infill percentage, which could increased optimised result by 25 hours compare 

with unoptimized result . Bed temperature could affect gear operational time by 4.5 hours, printing 

temperature could change result by 13.5. Meanwhile, printing speed could potentially change gear 

performance time by 20 hours. Moreover, the response of operational time to printing infill 

percentage can be modelled by a Boltzmann equation. Furthermore, bed temperature and printing 

temperature shown a sine response, and a peak appeared in certain temperature range. This 

discovery could be beneficial to the additive manufacturing process in terms of defining priorities 

printing task while retain reasonable quality. Infill percentage was the critical parameter to define 

gear body rigidity, hence a higher infill percentage could decrease the gear defamation and hence 

maintain the gear performance.  

There are five different methods were used here to analyse the nylon materials: DSC, SAXS, 

WAXS, FTIR and XRF. Even though the manufacture of each printing filament could not provide 
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detail properties of each Nylon materials sufficiently, the detailed material characterization can be 

realized through above tests. A DSC test was carried out to analyse the crystallinity and phase 

transition temperature, while a WAXS test was also performed to illustrate the crystallinity which 

is similar to the DSC test. The domain size of the crystallinity for three different nylon filaments 

has been studied by SAXS, among which Nylon 618 has the largest domain size and so the 

optimum mechanical performance can be predicted. FTIR is employed to characterize the 

molecular structure of each material, which can affect the microstructure of Nylon materials. XRF 

points out the main ingredient of each materials is nylon, whereas, for each material there were 

minor difference in Cl, Ca and Fe elements.  

There are five targets suggested which including Simulating polymer composite gear contact 

dynamically; Find suitable way to combine the dynamic simulation to predict gear 

performance, Simulate fibre reinforcement gear dynamically. Carry out testing of 3D printed gear 

via pre-examinations (Shrinkage, Porosity, and Crystallinity) and Improve gear performance by 

control the parameter of 3D printing process. In this section seven, different analyses of spur gears 

were carried out based on the Abaqus simulation and validated by hand calculation. 3D simulation 

was established which could provide higher accuracy.  Moreover, possible shape optimisation was 

provided using Fusion360 and by considering the shape optimization, the mechanical behavioural 

change via changes the thickness of the gear rim was analysed. Misalignment simulation was 

carried out in this report, however, to increase the accuracy of the simulation, the gear shaft will 

be considered which will be more realistic, and misalignment in the real world will never be a 

single type of misalignment, and it often comes with more than one misalignment situation, and 

hence it is practical to simulate the different combination of misalignment.   
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The simulation of the fibre reinforcement cantilever beam could provide a basic idea of how the 

filler could improve the mechanical performance, moreover, a reasonable orientation of the fibre 

filler could provide better mechanical results. In the simulation of carbon fibre reinforcement 

PEEK, the way that carbon filler contributes to the mechanical performance was understood. 

However, carbon fibre normally comes in a much smaller scale compared to the simulation in the 

previous section, hence, this sub structure may not be accurate enough. Hence, in this simulation 

it is more important to focus on effect of the position of the carbon fibre within the PEEK gear, 

and also the rigidity contribution to the tear tooth. Moreover, simulating the gear meshing 

dynamically was overly complex, considering only with thermos affect simulation was not enough 

to predict the performance of the gear, the wear and fatigue simulation also need to be analysed.    

Moreover, additive manufacturing processes could be key to solve the fibre filler orientation 

problem in fibre reinforcement polymer gear, as in the earlier stage of the additive manufacture of 

polymer gear, there is still some improvement to be considered, for example, there was still a small 

amount of appealing (bottom shrinkage) when printing the nylon gear.   

 

8. 1 Limitations and future scope  

The main limitation of this study is the lack of conventional materials information provided by the 

filament manufacturers. Both 3D printing filament manufacturers claim that the materials are 

based on Nylon 66 or a Nylon mixture, however no other compositional information is provided. 

It is noted that this area of 3D printed gears is certainly an area requiring future study. Firstly, 

further material analysis of available printing materials is required to give a better understanding 

of the key factors that influence the wear behaviour. Secondly, an investigation into optimisation 

methods for 3D printing parameters to enhance the performance of 3D printed gears is required. 
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Thirdly, a much wider analysis and comparison of the characteristics of polymer gears 

manufactured by different manufacturing processes including injection moulding, machine cutting 

and 3D printing is required.  

Due to the unique characteristic of the ANN process, true correlation between each parameters 

was not fully studied. Moreover, more data points added to the model could increase accuracy of 

the simulation. There are several possible directions based on this research. Firstly, to carry out 

the study of the polymer molecular structure to explain the influence of different parameter 

settings. Secondly, investigating several other 3D printed materials in order to understand the 

correlation between different materials and create model to predict the performance of gears 

produced using different material and elicit the required print parameters.  
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Appendices: key MATLAB codes developed in this work. 

 

A1. Sobol sequence generate. 

 

clear all 

close all 

clc 

  

X=i4_sobol_generate(4,70,0); 

Temperature=230+X(1,:)*45; 

Speed=25+X(2,:)*50; 

BedT=30+X(3,:)*40; 

Infill=20+X(4,:)*60; 

Input(:,1)=Temperature'; 

Input(:,2)=Speed'; 

Input(:,3)=BedT'; 

Input(:,4)=Infill'; 

save('Input.dat', '-ascii', 'Input') 

 

A2. Artificial neural network model. 

 

% code to establish machine learning model  

clear all 

close all 

clc 

  

% Input data 

  

input=xlsread('test rig input.xlsx'); 

%test1=xlsread('test1.xlsx'); 

output=xlsread('test rig output.xlsx'); 

  

%Divide training set and test set  

k=rand(1,50); 

[ m, n]=sort(k); 

input_train= input(:,n( 1:45)); 

output_train = output(:,n(1: 45)); 

input_test= input(:,n(46:50)); 

output_test=output(:,n(46:50)); 

  

  

%without Divide training set and test set  

%input_train= input(1:18); 

%output_train = output(1: 18); 

%input_test= input(19:21); 

%output_test=output(19:21); 
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%Normalised%% 

[intrain, ps_input] = mapminmax(input_train,0,1); 

intest= mapminmax('apply',input_test,ps_input); 

  

[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

% build net %%%%% 

hiddenSizes =7; % default 10 

trainFcn = 'trainlm'; % default trainlm(LM) trainbfg(newton) 

net=feedforwardnet(hiddenSizes,trainFcn); 

% net.trainParam.lr=0.1; 

% net.performFcn = 'mae';  

% net.trainparam.epochs=6000; %max epochs 

% net.trainparam.goal=0.00001; %target perfromance error 

  

  

[net,tr]=train(net,intrain,outtrain); 

test_out=sim(net,intest); 

  

%%Simulation 

test_out1=sim(net,test1); 

  

  

data_real=input(1,length(input)-2:end); 

  

  

  

%Renormalised%% 

T_sim = mapminmax('reverse',test_out,ps_output); 

  

  

  

  

%The evaluation of preformance  

% 1.error 

error = abs(T_sim - output_test)./output_test; 

  

% 

% 2. R^2 

R2 = (5 * sum(T_sim .* output_test) - sum(T_sim) * sum(output_test))^2 

/ ((5 * sum((T_sim).^2) - (sum(T_sim))^2) * (5 * sum((output_test).^2) 

- (sum(output_test))^2));  

  

  

% 

% 3. Comparsion  

result=[output_test' T_sim' error']; 

  

%extract necwork weight 

answ=net.iw; 

ansb=net.b; 
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% Figure 

figure 

plot(1:5,output_test,'b:*',1:5,T_sim,'r-o') 

legend('Real value','Predicted value') 

xlabel('Sample') 

ylabel('S/N Ratio') 

string = {'Comparsion';['R^2=' num2str(R2)]}; 

title(string) 

 

A3. Artificial neural network with genetic algorithm.  

 

%%%% code to establish machine learning model  

clear all 

close all 

clc 

  

%%%% Input data 

  

input=xlsread('test rig input.xlsx'); 

output=xlsread('test rig output.xlsx'); 

  

  

k=rand(1,50); 

[ m, n]=sort(k); 

input_train= input(:,n( 1:45)); 

output_train = output(:,n(1: 45)); 

input_test= input(:,n(46:50)); 

output_test=output(:,n(46:50)); 

%%Normalised%% 

  

  

%%Normalised%% 

[intrain, ps_input] = mapminmax(input_train,0,1); 

intest= mapminmax('apply',input_test,ps_input); 

  

[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Selecting the optimal hidensize%% 

for i=1:20 

     

  

hiddenSizes =i;  

trainFcn = 'trainlm';  

net=feedforwardnet(hiddenSizes,trainFcn); 

  

  

[net,tr]=train(net,intrain,outtrain); 

test_out=sim(net,intest); 
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%%Renormalised%% 

T_sim = mapminmax('reverse',test_out,ps_output); 

  

  

  

error = abs(T_sim - output_test)./output_test; 

%error = abs(T_sim - output_test); 

%error1=error 

%error=error(1)+error(2)+error(3); 

a1(i)=error; 

a(i)=1/error; 

S(i,:)=T_sim; 

  

end 

  

num=size(a,2); 

max_grad=0; 

index=1; 

for i=1:size(a,2) 

    max_grad=a(i); 

    for j=1:size(a,2) 

        if j~=i 

            if a(j)>=max_grad 

                max_grad=a(j); 

                index=j; 

                 

            end 

             

        end 

         

    end 

   

end 

  

fprintf('The optimal hiddensize is %-5f',index); 

  

error=a1(index); 

%error=error/3; 

  

T_sim = S(index,:) 

  

  

  

%%Structure of network 

inputnum=4; 

hiddennum=index; 

outputnum=1; 

  

%%Genetic algorithm 

  

hiddenSizes =index;  

trainFcn = 'trainlm';  
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net=feedforwardnet(hiddenSizes,trainFcn); 

  

%%Iteration number  

maxgen=100; 

%%Population size 

sizepop=5; 

%%Cross probability  

pcross=[0.4]; 

%%Mutation probability 

pmutation=[0.2]; 

  

%%Toatal joint number 

numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum; 

  

lenchrom=ones(1,numsum); 

bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; 

  

%%Structure of population 

individuals=struct('fitness',zeros(1,sizepop),'chrom',[]); 

avgfitness=[]; 

bestfitness=[]; 

bestchrom=[]; 

  

%%Calculation of individual fitness 

for i=1:sizepop 

     

    individuals.chrom(i,:)=Code(lenchrom,bound); 

     

    x=individuals.chrom(i,:); 

    

individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,intrain,

outtrain); 

end 

FitRecord=[]; 

  

[bestfitness bestindex]=min(individuals.fitness); 

bestchrom=individuals.chrom(bestindex,:);   

avgfitness=sum(individuals.fitness)/sizepop; % 

  

  

trace01=[avgfitness bestfitness]; 

  

  

for i=1:maxgen 

     

    %%Selection 

    individuals=select(individuals,sizepop); 

     

    %%Cross 

    

individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,boun

d); 
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    %%Mutation 

    

individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepo

p,i,maxgen,bound); 

     

    %%Calculating fitness 

    for j=1:sizepop 

        x=individuals.chrom(j,:); 

        

individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,intrain,

outtrain); 

    end 

        %%Finding optimal individual 

        [newbestfitness,newbestindex]=min(individuals.fitness); 

        [worestfitness,worestindex]=max(individuals.fitness);  

         

        %%Updating optimal individual 

        if bestfitness>newbestfitness 

            bestfitness=newbestfitness; 

            bestchrom=individuals.chrom(newbestindex,:); 

       

        individuals.chrom(worestindex,:)=bestchrom; 

        individuals.fitness(worestindex)=bestfitness; 

        end  

        %%Calculating fitness of optimal individual 

        avgfitness=sum(individuals.fitness)/sizepop; 

       trace01=[trace01;avgfitness bestfitness]; 

    FitRecord=[FitRecord;individuals.fitness]; 

    end 

  

     

   %%Results analysis 

 figure(1) 

[r c]=size(trace01); 

plot([1:r],trace01(:,2),'b--'); 

title(['Error Fitness ' 'Final iteration' num2str(maxgen)]); 

xlabel('Iteration number');ylabel('Fitness'); 

legend('Average fitness','Optimal fitness'); 

disp('Fitness                   varibale'); 

  

    %%Assigning optimal individual to network 

   x=bestchrom 

   w1=x(1:inputnum*hiddennum); 

   B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum); 

   

w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hidde

nnum*outputnum); 

   

B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hidde

nnum+hiddennum+hiddennum*outputnum+outputnum); 
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   net=configure(net,intrain,outtrain) 

    

   net.iw{1,1}=reshape(w1,hiddennum,inputnum); 

   net1w{2,1}=reshape(w2,outputnum,hiddennum); 

   net.b{1}=reshape(B1,hiddennum,1); 

   net.b{2}=B2; 

    

    

  

%%Training network   

%%Parameters of network 

net.trainParam.epochs=100; 

net.trainParam.lr=0.1; 

net.trainParam.goal=0.00001; 

  

  

%%Training network 

[net,tr]=train(net,intrain,outtrain); 

test_out=sim(net,intest); 

  

%%Renormalised%% 

T_sim = mapminmax('reverse',test_out,ps_output); 

  

%%figure 

%figure 

%plot(1:4000,input_train,'bo');hold on; 

%plot(1:2000,input_test','go'); 

%plot(1:4000,output_train,'k+'); 

%plot(1:2000,T_sim,'r*'); 

  

answ=net.iw; 

ansb=net.b; 

  

%%Simulation 

%test_out1=sim(net,Orthogonal expeimental test.xlsx); 

%data_simulation=input(1,length(input)-2:end); 

  

  

%%The evaluation of preformance  

%% 1.error 

%error = abs(T_sim - output_test)./output_test; 

  

%% 

% 2. R^2 

R2 = (5 * sum(T_sim .* output_test) - sum(T_sim) * sum(output_test))^2 

/ ((5 * sum((T_sim).^2) - (sum(T_sim))^2) * (5 * sum((output_test).^2) 

- (sum(output_test))^2));  

  

%% 

% 3. Comparsion  

%result=[output_test' T_sim' error']; 

%% Figure 
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figure 

plot(1:5,output_test,'b:*',1:5,S(index,:),'r-o') 

legend('Test value','Predicted value') 

xlabel('Sample') 

ylabel('Time(Hour)') 

string = {'Comparsion';['error=' num2str(error)]}; 

title(string) 

  

  

  

%%%%simulation 

%%%%application%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

simulation_test=xlsread('simulation 5 digites.xlsx'); 

%Normalised 2%% 

%[simulation_test1, ps_input] = mapminmax(simulation_test,0,1); 

  

%[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Simulation 

test_out1=sim(net,simulation_test); 

%Renormalised%% 

%simulation_result = mapminmax('reverse',test_out1,ps_output); 

%result%% 

abssimulation_result=abs(test_out1); 

%simulation_test=xlsread('test1.xlsx'); 

  

%Normalised 2%% 

%[simulation_test1, ps_input] = mapminmax(simulation_test,0,1); 

  

%[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Simulation 

  

%test_out1=sim(net,simulation_test1); 

  

%Renormalised%% 

  

simulation_result = mapminmax('reverse',test_out1,ps_output); 

 

 

 

 

A4. Artificial neural network with genetic algorithm and leave one cross validation. 

 

%%%% code to establish machine learning model  
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clear all 

close all 

clc 

  

%%%% Input data 

  

input=xlsread('test rig input.xlsx'); 

output=xlsread('test rig output.xlsx'); 

  

  

k=rand(1,50); 

[ m, n]=sort(k); 

input_train= input(:,n( 1:49)); 

output_train = output(:,n(1: 49)); 

input_test= input(:,n(50:50)); 

output_test=output(:,n(50:50)); 

%%Normalised%% 

  

  

%%Normalised%% 

[intrain, ps_input] = mapminmax(input_train,0,1); 

intest= mapminmax('apply',input_test,ps_input); 

  

[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Selecting the optimal hidensize%% 

for i=1:20 

     

  

hiddenSizes =i;  

trainFcn = 'trainlm';  

net=feedforwardnet(hiddenSizes,trainFcn); 

  

  

[net,tr]=train(net,intrain,outtrain); 

test_out=sim(net,intest); 

  

%%Renormalised%% 

T_sim = mapminmax('reverse',test_out,ps_output); 

  

  

  

error = abs(T_sim - output_test)./output_test; 

%error = abs(T_sim - output_test); 

%error1=error 

%error=error(1)+error(2)+error(3); 

a1(i)=error; 

a(i)=1/error; 

S(i,:)=T_sim; 

  

end 
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num=size(a,2); 

max_grad=0; 

index=1; 

for i=1:size(a,2) 

    max_grad=a(i); 

    for j=1:size(a,2) 

        if j~=i 

            if a(j)>=max_grad 

                max_grad=a(j); 

                index=j; 

                 

            end 

             

        end 

         

    end 

   

end 

  

fprintf('The optimal hiddensize is %-5f',index); 

  

error=a1(index); 

%error=error/3; 

  

T_sim = S(index,:) 

  

  

  

%%Structure of network 

inputnum=4; 

hiddennum=index; 

outputnum=1; 

  

%%Genetic algorithm 

  

hiddenSizes =index;  

trainFcn = 'trainlm';  

net=feedforwardnet(hiddenSizes,trainFcn); 

  

%%Iteration number  

maxgen=100; 

%%Population size 

sizepop=5; 

%%Cross probability  

pcross=[0.4]; 

%%Mutation probability 

pmutation=[0.2]; 

  

%%Toatal joint number 

numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum; 

  

lenchrom=ones(1,numsum); 
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bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; 

  

%%Structure of population 

individuals=struct('fitness',zeros(1,sizepop),'chrom',[]); 

avgfitness=[]; 

bestfitness=[]; 

bestchrom=[]; 

  

%%Calculation of individual fitness 

for i=1:sizepop 

     

    individuals.chrom(i,:)=Code(lenchrom,bound); 

     

    x=individuals.chrom(i,:); 

    

individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,intrain,

outtrain); 

end 

FitRecord=[]; 

  

[bestfitness bestindex]=min(individuals.fitness); 

bestchrom=individuals.chrom(bestindex,:);   

avgfitness=sum(individuals.fitness)/sizepop; % 

  

  

trace01=[avgfitness bestfitness]; 

  

  

for i=1:maxgen 

     

    %%Selection 

    individuals=select(individuals,sizepop); 

     

    %%Cross 

    

individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,boun

d); 

     

    %%Mutation 

    

individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepo

p,i,maxgen,bound); 

     

    %%Calculating fitness 

    for j=1:sizepop 

        x=individuals.chrom(j,:); 

        

individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,intrain,

outtrain); 

    end 

        %%Finding optimal individual 

        [newbestfitness,newbestindex]=min(individuals.fitness); 
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        [worestfitness,worestindex]=max(individuals.fitness);  

         

        %%Updating optimal individual 

        if bestfitness>newbestfitness 

            bestfitness=newbestfitness; 

            bestchrom=individuals.chrom(newbestindex,:); 

       

        individuals.chrom(worestindex,:)=bestchrom; 

        individuals.fitness(worestindex)=bestfitness; 

        end  

        %%Calculating fitness of optimal individual 

        avgfitness=sum(individuals.fitness)/sizepop; 

       trace01=[trace01;avgfitness bestfitness]; 

    FitRecord=[FitRecord;individuals.fitness]; 

    end 

  

     

   %%Results analysis 

 figure(1) 

[r c]=size(trace01); 

plot([1:r],trace01(:,2),'b--'); 

title(['Error Fitness ' 'Final iteration' num2str(maxgen)]); 

xlabel('Iteration number');ylabel('Fitness'); 

legend('Average fitness','Optimal fitness'); 

disp('Fitness                   varibale'); 

  

    %%Assigning optimal individual to network 

   x=bestchrom 

   w1=x(1:inputnum*hiddennum); 

   B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum); 

   

w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hidde

nnum*outputnum); 

   

B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hidde

nnum+hiddennum+hiddennum*outputnum+outputnum); 

  

   net=configure(net,intrain,outtrain) 

    

   net.iw{1,1}=reshape(w1,hiddennum,inputnum); 

   net1w{2,1}=reshape(w2,outputnum,hiddennum); 

   net.b{1}=reshape(B1,hiddennum,1); 

   net.b{2}=B2; 

    

    

  

%%Training network   

%%Parameters of network 

net.trainParam.epochs=100; 

net.trainParam.lr=0.1; 

net.trainParam.goal=0.00001; 
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%%Training network 

[net,tr]=train(net,intrain,outtrain); 

test_out=sim(net,intest); 

  

%%Renormalised%% 

T_sim = mapminmax('reverse',test_out,ps_output); 

  

%%figure 

%figure 

%plot(1:4000,input_train,'bo');hold on; 

%plot(1:2000,input_test','go'); 

%plot(1:4000,output_train,'k+'); 

%plot(1:2000,T_sim,'r*'); 

  

answ=net.iw; 

ansb=net.b; 

  

%%Simulation 

%test_out1=sim(net,Orthogonal expeimental test.xlsx); 

%data_simulation=input(1,length(input)-2:end); 

  

  

%%The evaluation of preformance  

%% 1.error 

%error = abs(T_sim - output_test)./output_test; 

  

%% 

% 2. R^2 

R2 = (1 * sum(T_sim .* output_test) - sum(T_sim) * sum(output_test))^2 

/ ((1 * sum((T_sim).^2) - (sum(T_sim))^2) * (1 * sum((output_test).^2) 

- (sum(output_test))^2));  

  

%% 

% 3. Comparsion  

%result=[output_test' T_sim' error']; 

%% Figure 

figure 

plot(1:1,output_test,'b:*',1:1,S(index,:),'r-o') 

legend('Test value','Predicted value') 

xlabel('Sample') 

ylabel('Time(Hour)') 

string = {'Comparsion';['error=' num2str(error)]}; 

title(string) 

  

  

  

%%%%simulation 

%%%%application%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

simulation_test=xlsread('simulation 5 digites.xlsx'); 

%Normalised 2%% 
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%[simulation_test1, ps_input] = mapminmax(simulation_test,0,1); 

  

%[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Simulation 

test_out1=sim(net,simulation_test); 

%Renormalised%% 

%simulation_result = mapminmax('reverse',test_out1,ps_output); 

%result%% 

abssimulation_result=abs(test_out1); 

%simulation_test=xlsread('test1.xlsx'); 

  

%Normalised 2%% 

%[simulation_test1, ps_input] = mapminmax(simulation_test,0,1); 

  

%[outtrain, ps_output] = mapminmax(output_train,0,1); 

  

%%Simulation 

  

%test_out1=sim(net,simulation_test1); 

  

%Renormalised%% 

  

simulation_result = mapminmax('reverse',test_out1,ps_output); 
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