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Abstract: A new comprehensive analytical approach based on single-particle inductively coupled 

plasma-sector field mass spectrometry (spICP-SFMS) and electrical asymmetric-flow field-flow-

fractionation combined with multi-angle light scattering detection (EAF4-MALS) has been exam-

ined for the characterization of galactosamine-terminated poly(N-hydroxyethyl acrylamide)-coated 

gold nanorods (GNRs) in two different degrees of polymerization (DP) by tuning the feed ratio 

(short: DP 35; long: DP 60). spICP-SFMS provided information on the particle number concentra-

tion, size and size distribution of the GNRs, and was found to be useful as an orthogonal method 

for fast characterization of GNRs. Glycoconjugated GNRs were separated and characterized via 

EAF4-MALS in terms of their size and charge and compared to the bare GNRs. In contrast to spICP-

SFMS, EAF4-MALS was also able of providing an estimate of the thickness of the glycopolymer 

coating on the GNRs surface. 

Keywords: gold nanorods; gold nanorods conjugated with synthetic glycopolymers; high-resolu-

tion single-particle inductively coupled plasma-mass spectrometry; electrical asymmetric-flow 

field-flow-fractionation combined with multi-angle light scattering 

 

1. Introduction 

Gold nanorods (GNRs) have promising biomedical applications, mainly because of 

their unique optical properties dominated by the localized surface plasmon resonance 

(LSPR) phenomenon: their anisotropic shape causes a splitting of their optical absorption 

bands into two peaks, corresponding to the transverse and longitudinal plasmon reso-

nances. The longitudinal resonance peak position is highly shape and size dependent and 

is highly sensitive to refractive index changes in the local environment, such as those 

caused by binding of biomolecules to the rod surface [1]. Moreover, it is shifted from the 

visible to the near-infrared (NIR) region with increasing aspect ratio (length/width) [2,3] 

where biological tissues have the highest optical transparency. This makes the GNRs ap-

propriate for in vivo and in vitro applications [4]. They have shown promising results in 

cancer diagnostics (using GNRs for enhancing two-photon excited luminescence) [5] and 
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treatment (using Plasmonic photothermal therapy and Photodynamic therapy) [6–11]. 

Furthermore, they have been investigated for gene therapy and drug delivery applications 

[12,13]. GNRs-based LSPR sensors have been applied in the context of in vitro diagnostics 

involving a wide variety of disease-specific biomarker targets [14–16].  

The utilization of GNRs for biomedical applications requires an appropriate func-

tionalization to provide chemical stability and biocompatibility, and to recognize target 

molecules in a biological environment. It has been demonstrated that the chemical nature, 

the linker length, as well as the grafting density of the polymer coating used, has a dra-

matic impact on the outcomes of glyco-nanoparticle biosensing performance, enabling ag-

gregative versus non-aggregative outputs and providing a dose-dependent optical re-

sponse even in complex biological environments [16]. However, the synthesis and char-

acterization of GNRs with well-defined sizes, shapes, and bioconjugated surfaces remains 

an important challenge. Techniques employed by different research groups for the char-

acterization of gold nanoparticles, as well as GNRs and bioconjugated GNRs are (high-

resolution) transmission electron microscopy (HRTEM), Scanning transmission electron 

microscopy/Energy-dispersive X-ray spectroscopy/High-angle annular dark-field imag-

ing (STEM/EDXS/HAADF), Fourier transform infrared spectroscopy (FTIR), UV-Visible 

spectroscopy (UV-Vis), dynamic light scattering (DLS) and ζ-potential measurements [17–

19]. Nanoparticle tracking analysis (NTA) and differential centrifugal sedimentation 

(DCS) have also been used for GNRs characterization [20]. 

As these techniques have their own limitations, complementary analytical tech-

niques, such as single-particle inductively coupled plasma-mass spectrometry (spICP-

MS), single particle time-of-flight ICP-MS (spTOF-ICP-MS), hollow-fiber flow field-flow 

fractionation and asymmetric-flow field-flow-fractionation combined with multi-angle 

light scattering detection (HF5-MALS and AF4-MALS, respectively) may present interest-

ing alternatives (Figure 1).  

 

Figure 1. Overview of analytical techniques potentially applicable for the characterization of gold 

nanorods conjugated with synthetic glycopolymers. 

In recent years, spICP-MS has emerged as a reliable tool allowing one to distinguish 

between ionic and particulate signals, and providing information on particle number con-

centration, particle size and size distribution [21]. However, its use for the complex nano-

particle (NP) samples with different functionalization is limited. The major advantages of 

spICP-MS over other techniques for NP characterization and quantification are the mini-
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mal sample preparation, the superior sensitivity and the element specificity [22]. How-

ever, the technique also exhibits drawbacks, such as the limited multi-element capabilities 

or the complete absence thereof when using quadrupole-based ICP-MS systems, which 

are the most common type of mass analyzers in ICP-MS instrumentation. However, the 

new generation of high-resolution spICP-MS (spICP-SFMS) instrumentation provides 

much faster detection capabilities in comparison to other types [23]. Despite its excellent 

sensitivity, detection power in terms of minimum NP size is still lacking and highly ma-

terial-dependent (for most nanoparticles in the range of 10–20 nm or even higher). Alt-

hough considerable progress has been made, spICP-MS still needs further development 

with numerous opportunities for optimization, e.g., in the context of GNRs [24].  

Finally, field-flow-fractionation separation (e.g., asymmetric flow field flow fraction-

ation, hollow-fiber flow-field-flow fractionation-HF5) represents a powerful analytical 

tool providing high-resolution separation of particles in the size range of 1 nm to several 

micrometers. When combined with an adequate detection approach, it provides infor-

mation on particle size, size distribution, shape, and chemical composition (stoichiometry) 

of the particles studied [25]. In addition, electrical asymmetric-flow field-flow-fractiona-

tion hyphenated to a multi-angle light scattering detector (EAF4-MALS) combines high-

resolution separation with surface charge (Zeta potential) measurement [26,27]. As such, 

it presents a promising tool for characterization of GNRs conjugated with synthetic gly-

copolymers.  

The main aim of this work is to propose a new set of analytical tools (methods) for 

physicochemical characterization of GNRs conjugated with short and long synthetic gly-

copolymers for biosensing of lectins in terms of particle size, coating thickness and/or sur-

face charge in comparison with the bare GNRs based on the use of spICP-SFMS and EAF4-

MALS.  

2. Materials and Methods 

2.1. Chemicals and Materials 

All chemicals used in this study were of analytical purity. For spICP-SFMS, ultra-

pure water (18.2 MΩ cm) was obtained from a Milli-Q system (Millipore, Burlington, Mas-

sachusetts, USA). High-purity (optima grade) 14 M HNO3 and 12 M HCl were obtained 

from Fisher Chemical (Loughborough, UK). Appropriate dilutions of 1000 mg L−1 Au Cer-

tipur®  (Merck, Darmstadt, Germany) in 2 M HNO3 traceable to SRM from NIST H(AuCl₄) 

were used for method development and spICP-SFMS calibration purposes. Suspensions 

of spherical gold nanoparticles (GNPs) with a diameter of 27.6 (NIST SRM 8012) and 56.0 

nm (NIST SRM 8013) (National Institute of Standards and Technology NIST, USA) [28,29] 

were used to determine the transport efficiency (TE) based on the particle size method 

[30]. 

Citrate-stabilized GNRs (further referred as GNRs) of 10 nm width and 38 nm length 

were purchased from Nanopartz (Loveland, USA/Canada). Monomer N-hydroxyethyl 

acrylamide (97%, HEA), 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid pen-

tafluorophenyl ester (98%, PFP-DMP) and D-(+)-galactosamine were all purchased from 

Sigma-Aldrich (Steinheim am Albuch, Germany). Poly(N-hydroxyethyl acrylamide) 

(PHEA) was synthetized by photo-initiated reversible addition-fragmentation chain 

transfer (RAFT) polymerization in two lengths, corresponding to a different degree of 

polymerization of 35 and 60; then they were functionalized with D-(+)-galactosamine 

achieving the glycopolymers Gal-PHEA35 and Gal-PHEA60, as previously described [20]. 

Pure water (15 MΩ cm) for EAF4-MALS carrier solution preparation was obtained 

from an Elix 3 Advantage system (Merck, Darmstadt, Germany). Sodium nitrate, ≥99.5% 

purity was purchased from Merck, Darmstadt, Germany. Precut 5 kDa cutoff polyether 

sulfone (PES) membranes were obtained from Wyatt Technology Europe, Dernbach, Ger-

many [31]. For effective channel height calibration, 20 nm gold nanoparticles (BAM-N004, 

Bundesanstalt für Materialforschung und-prüfung, Berlin, Germany) were used. 
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2.2. Preparation of Glycoconjugated GNRs 

Preparation of glycoconjugated GNRs (GNR-Gal-PHEA35 and GNR-Gal-PHEA60) 

has been previously described by Pancaro et al. [20]. Briefly, poly(N-hydroxyethyl acryla-

mide) (PHEA) was synthesized by photo-initiated RAFT polymerization and modified 

with galactosamine (Gal) [16]. RAFT installs sulfur-containing end-groups which have 

high affinity for gold surfaces [32–34] and enables installation of a glycan conjugation unit 

at the opposing end-group [35,36]. The glycopolymers used in this study have two differ-

ent degrees of polymerization (DP = 35, 60) determined by proton nuclear magnetic reso-

nance analysis in methanol-d4. Moreover, narrow monomodal molecular weight distri-

butions determined by size exclusion chromatography were observed with low dispersity 

values (ĐM≤1.3) indicating a controlled photo-polymerization (Synthetic Method S1, ESI). 

Citrate-GNRs were functionalized with 4 mg of each glycopolymer (Figure 2) dis-

solved in 200 µL of water and mixed by pipetting with 800 µL of GNRs suspension at 10 

OD. After 1 h of incubation at room temperature in the dark, the particles were sonicated 

for 1 min using an ultrasonic bath at 40 kHz (Branson 1800 series CPX1800H), centrifuged 

at 12000 RCF and 20 °C for 15 min using a Sigma 3-30KS centrifuge. Subsequently, the 

supernatant was removed. This was followed by three cycles of resuspension in 1 mL of 

water, centrifugation and decanting. The particles were finally resuspended in 1 mL of 

water and stored in polypropylene graduated tubes at 4 °C until use. The samples were 

characterized using UV-Vis, ζ-potential, DLS, DCS and NTA confirming the successful 

attachment of the glycopolymers to the particle surface (Table S1, ESI). Retention of the 

pentafluoro phenyl end-group during polymerization and its displacement at the α-ter-

minus [37] after galactosamine installation was confirmed via fluorine-NMR and FTIR 

measurements [16]. 

 

Figure 2. Functionalization of citrate-stabilized gold nanorods using Gal-PHEA telechelic homopol-

ymers of different chain lengths (n). Note, RAFT agent cleavage can occur during functionalization 

depending on the excess used, but does not affect GNR immobilization. 

2.3. Instrumental Analysis 

2.3.1. UV-Visible Spectroscopy 

UV-Vis absorption spectra were acquired at room temperature (25 °C) using a CLAR-

IOstar Plus spectrophotometer (BMG LABTECH, Cary, North Carolina, USA). The ab-

sorbance spectra were recorded in a wavelength range of λ = 400–1000 nm with 1 nm 

resolution and 30 s of plate shaking at 100 RPM applied before measurement. Results were 

smoothed using a Savitzky-Golay filter (order 4, window width 31). Peak maxima were 

determined from the zero crossings of the derivative of the smoothed data. All measure-

ments were performed at least in triplicate (n ≥ 3). 

2.3.2. Nanoparticle Tracking Analysis (NTA) 

 A NanoSight NS500 instrument (Malvern Panalytical, Worcestershire, UK) in scatter 

mode with a laser output of 75 mW at 532 nm (green) and sCMOS camera (camera level 

set at 15) was used. The samples were analyzed in duplicate at 25 °C and three videos of 

60 s were recorded (1499 frames with 25 frames per second) for each sample. The number 

of particles/frame ranged from 30 to 90 for the GNR samples, and none were detected in 
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the buffer control. The samples were diluted to 108–109 particles per mL in Milli-Q water. 

For calibration, 100 nm polystyrene (PS) microspheres were used. The mode was derived 

from a particle number concentration-based size distribution using the NTA software ver-

sion 3.0. 

2.3.3. Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) was measured on a Zetasizer ZS (Malvern Panalyti-

cal, Worcestershire, UK). Measurements were carried out using a 4 mW He-Ne 633 nm 

laser module operating at 25 °C at an angle of 173° (back scattering), and results were 

analyzed using Malvern DTS 7.03 software. All determinations were repeated in triplicate 

with at least three measurements recorded for each run. 

2.3.4. Differential Centrifugal Sedimentation (DCS) 

Differential centrifugal sedimentation (DCS) was performed to assess the binding of 

the glycopolymers on the GNR surface by measuring the peak size distribution of the 

particles. For this purpose, a CPS DC24000 disc centrifuge was used with an 8–24% (w/w) 

sucrose gradient and a rotation speed of 24000 RPM. Before each run, well-defined, poly-

vinyl chloride latex beads (239 nm) were used as calibration standard to ensure accuracy 

of the measurements. All the measurements were performed at least in duplicate (n ≥ 2). 

The settling of particles is shape-dependent; for the GNRs, application of a ‘non-sphericity 

factor’ of 2.85 in the CPS software provided a light scattering function close to the correct 

scattering function for the particles. 

A model to analyze data for protein shell-coated particles was developed by Monop-

oli et al. [38]; it enables the biocorona thickness to be estimated from DCS data. Briefly, 

the particles are treated as a high-density metallic core with a lower-density shell of bio-

molecules. A core-shell mathematical model can be used to calculate the shell thickness 

from the shift in particle sedimentation time before and after functionalization, knowing 

the size and density of the core nanoparticle. Moreover, it is important to point out that 

the binding of biomolecules onto the GNRs’ surface increases the particles’ size, but low-

ers their overall density. The DCS analysis assumes a constant particle density, so over-

estimating the particle density brings about an under-estimation of the particle size [39]. 

For this reason, the binding of polymers or biomolecules to the GNRs results in an appar-

ent decrease in the particle size reported by CPS. 

Characteristics of the bare GNRs, GNR-Gal-PHEA35 and GNR-Gal-PHEA60 based 

on DCS (Figure S1) are given in Table 1. 

Table 1. Characteristics of the GNRs, GNR-Gal-PHEA35 and GNR-Gal-PHEA60. 

 Peak Size (nm) 
Calculated Coating  

Thickness (nm) 

GNRs a 22.0 ± 0.1 n/a 

GNR-Gal-PHEA35 b 19.7 ± 0.1 1.5 ± 0.1 

GNR-Gal-PHEA60 19.2 ± 0.1 1.8 ± 0.1 
a,b Particle size distribution measured using DCS as previously reported by Pancaro et al. 2021 [20]. 

N = 2, mean ± SD. 

2.3.5. spICP-SFMS 

All samples were analyzed with a Nu Attom ICP-MS (Nu Instruments Ltd., Wrex-

ham, UK). This instrument is equipped with a double-focusing sector field mass spec-

trometer, with forward (Nier-Johnson) geometry. In single-particle mode, a single m/z 

value is monitored (i.e., the magnetic field and the acceleration voltage are fixed). For the 

measurement of GNRs, the instrument was operated at low resolution (R∼300). Samples 

were introduced using a conventional sample introduction system, consisting of a glass 

concentric nebulizer with a nominal uptake rate of 300 μL min−1 (self-aspirating) mounted 
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onto a quartz cyclonic spray chamber. The actual uptake rate was determined by weighing 

the mass of water before and after transfer of sample into the system by the peristaltic 

pump for 10 min. spICP-SFMS was used in the time-resolved analysis (TRA) mode, with a 

dwell time of 40 µs and an acquisition time of 60 s (Table 2). 

Table 2. ICP-MS instrument settings and data acquisition parameters. 

Parameter  

Radio frequency power 1300 W 

Plasma gas flow rate 13 L min−1 

Carrier gas flow rate 0.93 L min−1 

Measurement mode TRA 

Nuclide monitored 197Au 

Dwell time 40 µs 

Acquisition time 60s 

Nebulizer MicroMist 

Spray chamber Cyclonic 

Data acquisition and data treatment were performed using the combination of NuAttoLab and 

NuQuant sofware (Nu Instruments, Wrexham, UK). 

2.3.6. EAF4-MALS 

Particle fractionation and particle sizing was carried out using an Eclipse EAF4 Sep-

aration System (Wyatt Technology, USA) and an Agilent 1260 high-performance liquid 

chromatograph (HPLC) unit equipped with a quaternary pump with integrated degasser 

and vialsampler (Agilent Technologies, USA). A DAWN 18-angle MALS detector operat-

ing with a 660 nm laser (Wyatt Technology, Santa Barbara, USA) was coupled to the frac-

tionation system and the signal was monitored under a 90° angle. A precut 5 kDa cutoff 

polyether sulfone (PES) membrane and a 350 μm height spacer were introduced inside 

the Mobility Channel. The carrier solution consisted of a 0.5 mM sodium nitrate aqueous 

solution (pH = 8.42). For separation, the cross-flow was maintained at 0.5 mL min−1 for 30 

min. The detailed separation settings for the EAF4 experiments are summarized in Table 

3. 

The duration of a representative EAF4 run was 45 min with the data acquisition in-

terval set to 0.5 s. For mobility measurements, an amperage of −0.1 mA (bottom electrode 

negatively charged) was applied during separation. Data were collected and analyzed in 

VISION®  software (Wyatt Technology, Santa Barbara, USA). The dilution factor with pure 

water was chosen for each sample individually, aiming to have a final Au concentration 

of approximately 2–3 mg L−1. Typically, 300 µL of bare GNRs suspension or 30 µL of gly-

coconjugated GNRs suspension were injected per run to obtain similar signal intensities 

for all samples. Sample recovery was calculated based on the 90° light scattering (LS) sig-

nal peak area compared to flow-through injections of the samples without focus step and 

without cross-flow or electrical field applied during elution. 

Table 3. Settings for EAF4 Separation. 

Parameter  

Tip to tip channel length 26.5 cm 

Spacer 350 μm 

Focus flow rate 1 mL min−1 

Injection flow rate 0.2 mL min−1 

Injection time 3 min 

Focus time 2 min 

Elution time 30 min 

Detector flow rate 1 mL min−1 
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Cross-flow rate 0.5 mL min−1 

Membrane PES, 5 kDa 

Carrier 0.5 mM sodium nitrate 

3. Results 

3.1. Characterization of GNRs and Glycoconjugated GNRs by spICP-SFMS 

The spherical equivalent diameter and particle size distribution data of GNRs, GNR-

Gal-PHEA35 and GNR-Gal-PHEA60 (Figure 3, Table 4) were determined in order to exa-

mine the possibility of using spICP-SFMS to derive the thickness of the glycopolymers 

layer bound onto the GNRs surface. 

Figure 3. Particle size distributions of GNRs, GNR-Gal-PHEA35 and GNR-Gal-PHEA60 as obtained 

using spICP-SFMS. 

Table 4. spICP-SFMS results of bare and glycoconjugated GNRs (N = 2, mean +/- SD). 

 
Spherical Equivalent Di-

ameter (nm) 

Particle Number Concentration 

(Particles per mL) 

GNRs 21.0 ± 0.5 1.83 × 107 ± 1.30 × 106 

GNR-Gal-PHEA35 21.0 ± 0.4 4.78 × 107 ± 1.10 × 106 

GNR-Gal-PHEA60 22.0 ± 0.0 5.27 × 107 ± 4.29 × 106 

For the primary particles, spICP-SFMS measurements provided a similar size as did 

the TEM analysis reported by Pancaro et al. [20] shown in Figure S2. In addition, spICP-

SFMS provided the particle number concentration (Table 4). We observed that the particle 

size result for the bare GNRs (21.0 ± 0.5 nm) was similar to that for the GNRs bond with 

Gal-PHEA35 on the surface (21.0 ± 0.4 nm). In case of binding with long glycopolymers 

(GNR-Gal-PHEA60), the spherical equivalent diameter increased to 22.0 ± 0.0 nm. As a 

result, it is clear that these data do not provide a reliable assessment of the thickness of 

the glycopolymer layer conjugated to the GNRs surface. Therefore, we conclude that 

spICP-SFMS is not able to provide information on the thickness of the glycopolymers 

bound to the GNR surface. The most plausible explanation for this observation is that 

spICP-SFMS measurements are based on single particle detection via the 197Au ion signal 

and that the coating thickness of 1.5–1.8 nm as estimated from DCS data, will not play a 
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role in the GNRs particle size detection. However, from the size distributions it was evi-

dent that both short and long glycopolymers did not affect the colloidal stability of GNRs. 

This information is an important factor in biomedical applications as the localized surface 

plasmon resonance signal generated by GNRs is shape- and size-dependent [5,6]. Com-

paring the particle size distribution as obtained for the bare GNRs with those for GNR-

Gal-PHEA35 and GNR-Gal-PHEA60, demonstrates that spICP-SFMS is very useful as an 

orthogonal method for accurate determination of GNRs size distribution, as well as for 

providing information on possible particle colloidal instability after binding with syn-

thetic glycopolymers [40]. Therefore, the EAF4-MALS method was further applied to ex-

amine the thickness of the glycopolymers bound on the GNRs surface. 

3.2. Characterization of GNRs and Glycoconjugated GNRs Using EAF4-MALS 

3.2.1. Optimization of EAF4-MALS Method 

Systematic evaluation of the composition of the carrier solution with varying concen-

trations of sodium nitrate (10 mM, 8 mM, 4 mM, 2 mM, 1 mM, 0.5 mM) showed that the 

ionic strength, thus also the pH, have a large impact on the GNR recovery. Bare GNRs do 

not elute at sodium nitrate concentrations of 4 mM or higher. The highest recovery was 

obtained at 0.5 mM sodium nitrate, the concentration thus used for all further EAF4 runs. 

The effect of carrier ionic strength and composition on the resolution, recovery, and re-

producibility of AF4 fractionation of citrate-stabilized gold nanoparticles has been shown 

before [41]. In EAF4, the choice of carrier composition is limited, because additives that 

could form unwanted reaction products via electrode reaction should be avoided. While 

the recovery of bare GNRs was still low under the optimized conditions, the glycoconju-

gated GNRs showed much higher recoveries of approximately 85% (Table 5), indicating 

a changed surface chemistry. 

Table 5. Recovery of bare and glycoconjugated GNRs. The data are calculated from AF4-MALS 

fractograms. 

 GNRs GNR-Gal-PHEA35 GNR-Gal-PHEA60 

Injected Mass (µg) 0.84 0.06 0.06 

LS peak area Flow Through  

(cm−1 min−1) 
2.617 × 10−5 1.053 × 10−5 1.443 × 10−5 

LS peak area Separation run  

(cm−1 min−1) 
4.431 × 10−6 8.786 × 10−6 1.242 × 10−6 

Recovery (%) 16.9 83.4 86.1 

 

3.2.2. Performance of EAF4-MALS Method 

The size of GNRs was assessed using EAF4-MALS runs without an amperage applied 

during separation (Figure 4). The retention time could then be directly related to the hy-

drodynamic size of the particles. We observed an increased retention time of glycoconju-

gated GNRs compared to the bare GNRs (Figure 4) indicating an increase in hydrody-

namic size, which was highest for the longest glycopolymers. In addition, spICP-SFMS 

results have shown that Au signals of the bare GNRs and glycoconjugated GNRs were 

not affected. Therefore, the increase in hydrodynamic diameter can be attributed to the 

glycoconjugation of the GNRs. This confirmed successful coating of GNRs [20]. In addi-

tion, orthogonal information obtained from spICP-SFMS (Table 4) and EAF4-MALS (Ta-

ble 6) can also be used to estimate the coating thickness of glycoconjugated GNRs and the 

results thus obtained correspond well to the coating thicknesses reported for GNR-Gal-

PHEA35 (0.3–0.8 nm) and GNR-Gal-PHEA60 (1.1–1.6 nm) based on the use of DCS (Table 

1). As such, the combination of EAF4-MALS with spICP-SFMS presents a reliable ap-

proach for characterization of gold nanorods conjugated with synthetic glycopolymers. 
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The surface charge of GNRs is assessed by comparing EAF4-MALS runs with (−0.1 

mA) and without (0.0 mA) an amperage applied during separation. Shifts towards a 

higher retention time of up to 0.5 min are observed for each sample when applying −0.1 

mA. This indicates that GNRs carry a negative charge, both before and after glycoconju-

gation, confirming the ζ-potential results measured using a ZetaView-Twin instrument 

(Particle Metrix, Inning am Ammersee, Germany) [20]. However, accurate determination 

of electrophoretic mobility and zetapotential would require extensive EAF4 runs at 3–4 

different amperages. 

 

Figure 4. 90° light scattering fractograms of GNRs, GNR-Gal-PHEA35 and GNR-Gal-PHEA60. 

Table 6. Hydrodynamic diameter Dh determined via EAF4-MALS. 

 GNRs GNR-Gal-PHEA35 GNR-Gal-PHEA60 

Dh (nm) 17.0 21.3 22.1 

3.3. spICP-SFMS and EAF4-MALS as a Complementary Techniques to DLS, DCS and NTA 

As mentioned in the introduction, the characterization of gold nanorods conjugated 

with synthetic glycopolymers is of high importance. Thus, in this work we used well-

characterized GNRs and GNRs conjugated with synthetic glycopolymers in terms of par-

ticle size and coating thickness. 

The combination of spICP-SFMS and EAF4-MALS as complementary techniques to 

DLS, NTA and DCS was demonstrated here to be of high value in this context. 

All the techniques used here provide the strong evidence that bare-GNRs and gly-

coconjugated GNRs are properly dispersed in solution and have been successfully func-

tionalized: the UV-Vis red shift of the LSPR band (Figure S3) is a result of a change of the 

local refractive index due to glycopolymers binding; DLS, DCS and NTA showed an in-

crease in particle size after polymer addition (Table S1). 

Dynamic light scattering (DLS) is a widely employed technique for nanoparticle size 

analysis. DLS measures the diffusion coefficient of the particle dispersed in a colloidal 

solution, which is dependent on the mass, the shape and the surface chemistry of the par-

ticles [42]. These parameters affect the particle–solvent interactions, and therefore, the 

Brownian motion. DLS generally assumes spherical shaped particles but also non-spheri-

cal shapes such as nanorods have been characterized by multiple angles or depolarized 

DLS measurements [43,44] and fixed angle DLS [45]. The DLS results of the samples 

showed two peaks (Figure 5): the small-sized peak, usually misinterpreted as the presence 

of smaller particle impurities, is attributed to the rotational diffusion arising from the 

GNRs anisotropic shapes [46,47]. It is not an actual dimension of the nanorods and it has 

been demonstrated to be strongly dependent on the aspect ratio [45]. GNRs, GNRs-Gal-

PHEA35 and GNRs-Gal-PHEA60 have a rotational diffusion coefficient equivalent to the 

translation diffusion coefficient of a spherical particle with an average diameter of 7, 13 

AF4 fractograms

time (min)

5.0 10.0 15.0 20.0

N
o

rm
a

li
z
e

d
 I

n
te

n
si

ty

0.0

0.2

0.4

0.6

0.8

1.0

GNRs GNR-Gal-PHEA35 GNR-Gal-PHEA60

LS



Nanomaterials 2021, 11, 2720 10 of 13 
 

 

and 15 nm, respectively, and the same diffusion coefficient as a spherical gold nanoparti-

cle with a hydrodynamic diameter of 49 nm, 81 nm and 105 nm, respectively. Correct 

interpretation of DLS results for the determination of the size and coating thickness of 

gold nanorods requires careful analysis of the results obtained. 

 

Figure 5. Intensity-weighted DLS size distributions of GNRs-Gal-PHEA35 and GNRs-Gal-PHEA60 

compared to bare GNRs. 

NTA also measures nanoparticle size distribution of samples in liquid dispersion 

(Figure S4), at a lower concentration detection limit than DLS. Moreover, while DLS stud-

ies an ensemble of particles, NTA tracks single particles. It has been reported that the 

NTA-determined hydrodynamic size of low-aspect-ratio (3.6) GNRs stabilized with cit-

rate correlate closely with GNR length, with greater accuracy and precision than attaina-

ble with DLS [48]. In our case, the increasing size after polymer addition correlated well 

with UV-Vis LSPR shift. 

DCS measures particle size based on its sedimentation rate, which depends on their 

size and density. While DLS is a lower resolution analysis method, DCS offers a high res-

olution and can be used to characterize particles within a wide range of sizes (2 nm to 50 

μm) and made of any material, the density of which is different from that of the solvent 

[49,50]. With this method, it is possible to measure non-spherical particles and it can also 

be used to determine the ligand shell thickness as previously mentioned [38,51]. However, 

an independent determination of the shape and aspect ratio of nanorods is required. Alt-

hough DCS is reported to be more precise than either DLS or NTA, and is less prone to 

artifacts, in some cases it may underestimate the coating shell thickness [52]. 

The combined use of different techniques could yield significant insights regarding 

size and coating thickness of the gold nanorods studied. 

4. Conclusions 

A comprehensive characterization of GNRs conjugated with synthetic glycopoly-

mers presents an added value in biomedical applications. Therefore, development of com-

plementary analytical techniques that can provide reliable information on particle size, 

shape, number concentration and coating thickness is crucial. The current study achieved 

its main goals concerning the characterization of the GNRs conjugated with short and long 

synthetic glycopolymers by using a combination of spICP-SFMS and EAF4-MALS. The 

GNRs were separated and characterized via EAF4-MALS on the basis of size and surface 

charge, while spICP-SFMS provided information on the particle number concentration, 

size and size distribution. In addition, EAF4-MALS appeared to be suitable for estimating 

the coating thickness of glycoconjugated GNRs. Finally, knowing that a universal analyt-

ical method for particle characterization still does not exist, further research is needed to 

prove the significant advantage offered by joining the capabilities of spICP-SFMS and 
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EAF4-MALS (e.g., reproducibility) and possibly AF4-UV/VIS-fluorescence-MALS-ICP-

MS for the characterization of GNRs conjugated with synthetic glycopolymers when com-

pared to more common characterization methods, such as UV-VIS and DCS. 

Supplementary Materials: The following supplementary materials are available online at 

www.mdpi.com/article/10.3390/nano11102720/s1, Synthetic Method S1. Photo-polymerization of 

N-(2-hydroxyethyl) acrylamide (HEA) via photo-initiated RAFT and end-group modification of 

PFP-poly(N-hydroxyethyl acrylamide) (PFP-PHEA) homopolymers using galactosamine. Figure 

S1. Differential centrifugal sedimentation analysis results for GNRs (blue line), GNRs-Gal-PHEA35 

(orange line) and GNRs-Gal-PHEA60 (green line). Representative examples out of three replicates 

of relative weight as a function of particle diameter (micrometer). Inset: zoomed view of the peaks, 

Figure S2. Representative dry-state TEM image of GNRs-Gal-PHEA35, Figure S3. Representative 

example of UV-Vis absorption spectra for GNRs (blue line), GNRs-Gal-PHEA35 (orange line) and 

GNRs-Gal-PHEA60 (green line). Inset: zoomed view on the LSPR peak bands, Figure S4. Particle 

number-based size distribution for GNRs (blue line), GNRs-Gal-PHEA35 (orange line) and GNRs-

Gal-PHEA60 (green line) as determined by NTA, Table S1. Characterization of Glycopolymer-

coated GNRs. UV-Vis LSPR peak (nm), ζ-potential (mV), and peak diameter (nm) by DCS and mode 

(nm) by NTA for citrate-GNRs and glycopolymer-coated GNRs. 

Author Contributions: Conceptualization, M.V., A.P., K.T. and I.N.; methodology, R.M., C.J., M.V, 

A.P. and P.G.G.; software, not applicable; validation, M.V, A.P., R.M. and P.G.G.; formal analysis, 

M.V; A.P., R.M. and P.G.G.; investigation.; resources, F.V, I.N., K.T., M.I.G. and C.J.; writing—orig-

inal draft preparation, M.V., A.P. and R.M.; writing—review and editing, all; visualization, M.V; 

A.P., R.M. and P.G.G.; supervision, F.V, I.N., K.T., M.I.G. and C.J.; project administration, M.V; A.P., 

R.M. and P.G.G.; funding acquisition, F.V., K.T., I.N. and M.I.G. All authors have read and agreed 

to the published version of the manuscript. 

Funding: Milica Velimirovic is a senior postdoctoral researcher of the Research Foundation—Flan-

ders (FWO project number 12ZD120N). Alessia Pancaro, Panagiotis G. Georgiou, Inge Nelissen and 

Matthew I. Gibson thank the European Union’s H2020-MSCA-ITN programme under Grant Agree-

ment N° 814236 (NanoCarb). 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Conflicts of Interest: Robert Mildner and Christoph Johann are employees of Wyatt Technology 

Europe GmbH, whose products are used in this study. The funders had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the 

decision to publish the results. 

References 

1. Cao, J.; Sun, T.; Grattan, K.T.V Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuators 

B Chem. 2014, 195, 332–351. 

2. Smith, M.; Mancini, M.C.; Nie, S.M. Bioimaging second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711. 

3. Zhu, K.; Yong, T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L.L.; Swihart, M.T.; He, G.S.; Cui, Y.P.; Prasad, P.N. Additive controlled 

synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 2010, 21, 285106. 

4. Haine, A.T.; Niidome, T. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery. Chem-

ical and Pharmaceutical Bulletin 2017, 65, 625–628. 

5. Li, J.L.; Gu, M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of 

cancer cells. Biomaterials 2010, 31, 9492–9498. 

6. Dickerson, E.B.; Dreaden, E.C.; Huang, X.H.; El-Sayed, I.H.; Chu, H.H.; Pushpanketh, S.; McDonald, J.F.; El-Sayed, M.A. Gold 

nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 

269, 57–66. 

7. Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cell imaging and photothermal therapy in the near-infrared region 

by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120. 

8. Okuno, T.; Kato, S.; Hatakeyama, Y.; Okajima, J.; Maruyama, S.; Sakamoto, M.; Mori, S.; Kodama, T. Photothermal therapy of 

tumors in lymph nodes using gold nanorods and near-infrared laser light. J. Control. Release 2013, 172, 879–884. 

9. Kuo, W.S.; Chang, C.N.; Chang, Y.T.; Yang, M.H.; Chien, Y.H.; Chen, S.J.; Yeh, C.S. Gold nanorods in photodynamic therapy, 

as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem. Int. Ed. 2010, 49, 2711–2715. 

10. Li, L.; Chen, J.Y.; Wu, X.; Wang, P.N.; Peng, Q.A. Plasmonic gold nanorods can carry sulfonated aluminum phthalocyanine to 

improve photodynamic detection and therapy of cancers. J. Phys. Chem. B 2010, 114, 17194–17200. 



Nanomaterials 2021, 11, 2720 12 of 13 
 

 

11. Chen, C.C.; Lin, Y.P.; Wang, C.W.; Tzeng, H.C.; Wu, C.H.; Chen, Y.C.; Chen, C.P.; Chen, L.C.; Wu, Y.C. DNA-gold nanorod 

conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 2006, 128, 3709–3715. 

12. Huang, H.C.; Barua, S.; Kay, D.B.; Rege, K. Simultaneous enhancement of photothermal stability and gene delivery efficacy of 

gold nanorods using polyelectrolytes. ACS Nano 2009, 3, 2941–2952. 

13. Nusz, G.J.; Curry, A.C.; Marinakos, S.M.; Wax, A.; Chilkoti, A. Rational selection of gold nanorod geometry for label-free plas-

monic biosensors. ACS Nano 2009, 3, 795–806,. 

14. Guo, Y.J.; Sun, G.M.; Zhang, L.; Tang, Y.J.; Luo, J.J.; Yang, P.H. Multifunctional optical probe based on gold nanorods for detec-

tion and identification of cancer cells. Sens. Actuators B Chem. 2014, 191, 741–749. 

15. Truong, P.L.; Cao, C.; Park, S.; Kim, M.; Sim, S.J. A new method for non-labeling attomolar detection of diseases based on an 

individual gold nanorod immunosensor. Lab A Chip 2011, 11, 2591–2597. 

16. Georgiou, P.G.; Baker, A.N.; Richards, S.J.; Laezza, A.; Walker, M.; Gibson, M. Tuning aggregative versus non-Aggregative 

lectin binding with glycosylated nanoparticles by the nature of the polymer ligand. J. Mater. Chem. B 2019, 8, 136. 

17. Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Vladimirova, A.A.; Mamchenkova, P.V.; Tugarova, A.V. Fourier Transform 

Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: 

Sample Preparation Effects. Molecules 2021, 26, 1146. 

18. Kamnev, A.A. Infrared Spectroscopy in Studying Biofunctionalised Gold Nanoparticles. In Nanomaterials Imaging Techniques, 

Surface Studies, and Applications. Springer Proceedings in Physics; Fesenko, O., Yatsenko, L., Brodin, M., Eds.; Springer: New York, 

NY, USA, 2013; Volume 146. 
19. Wojnarowska-Nowak, R.; Polit, J.; Sheregii, E.M. Interaction of gold nanoparticles with cholesterol oxidase enzyme in bionano-

complex—determination of the protein structure by Fourier transform infrared spectroscopy. J. Nanopart. Res. 2020, 22, 107. 

20. Pancaro, A.; Szymonik, M.; Georgiou, P.G.; Baker, A.N.; Walker, M.; Adriaensens, P.; Hendrix, J.; Gibson, M.I. The polymeric 

glyco-linker controls the signal outputs for plasmonic gold nanorod biosensors due to biocorona formation, Nanoscale 2021, 13, 

10837–10848. 

21. Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for 

Nanoanalysis. Anal. Chem. 2014, 86, 2270–2278. 

22. Montaño, M.D.; Olesik, J.W.; Barber, A.G.; Challis, K.; Ranville, J.F. Single particle ICP-MS: Advances toward routine analysis 

of nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. 

23. Shaw, P.; Donard, A. Nano-particle analysis using dwell times between 10 μs and 70 μs with an upper counting limit of greater 

than 3 × 107 cps and a gold nanoparticle detection limit of less than 10 nm diameter. J. Anal. At. Spectrom. 2016, 31, 1234–1242. 

24. Kálomista, I.; Kéri, A.; Ungor, D.; Csapó, E.; Dékány, I.; Prohaska, T.; Galbács, G. Dimensional characterization of gold nanorods 

by combining millisecond and microsecond temporal resolution single particle ICP-MS measurements. J. Anal. At. Spectrom. 

2017, 32, 2455–2462. 

25. Marassi, V.; Casolari, S.; Roda, B.; Zattoni, A.; Reschiglian, P.; Panzavolta, S.; Tofail, S.A.M.; Ortelli, S.; Delpivo, C.; Blosi M.; 

Costa, A.L.; Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and 

metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. J. Pharm. Biomed. Anal. 2015, 106, 92–99. 

26. Drexel, R.; Siupa, A.; Carnell-Morris, P.; Carboni, M.; Sullivan, J.; Meier, F. Fast and Purification-Free Characterization of Bio-

Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field-Flow Fractionation Hyphenated with Multi-Angle 

Light Scattering and Nanoparticle Tracking Analysis Detection. Molecules 2020, 25, 4703. 

27. Johann, C.; Elsenberg, S.; Schuch, H.; Rösch, U. Instrument and method to determine the electrophoretic mobility of nanoparti-

cles and proteins by combining electrical and flow field-flow fractionation. Anal. Chem. 2015, 87, 4292–4298. 

28. National Institute of Standards and Technology (NIST). Report of Investigation, Reference Material 8012, Gold Nanoparticles, 

Nominal 30 nm Diameter. Available online: https://www-s.nist.gov/srmors/certificates/8012.pdf (accessed on 1 June 2021). 

29. National Institute of Standards and Technology (NIST). Report of Investigation, Reference Material 8013, Gold Nanoparticles, 

Nominal 60 nm Diameter. Available online: https://www-s.nist.gov/srmors/certificates/8013.pdf (accessed on 1 June 2021). 

30. Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining transport efficiency for the pur-

pose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry Anal. Chem. 2011, 

83, 9361–9369. 

31. Johann, C. WP2606: Exosome Characterization with FFF-MALS-DLS; Wyatt: Dernbach, Germany, 2018. 

32. Pereira, S.O.; Barros-Timmons, A.; Trindade, T. Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Bi-

odetection. Polymers 2018, 10, 189. 

33. Beija, M.; Marty, J.-D.; Destarac, M. RAFT/MADIX Polymers for the Preparation of Polymer/Inorganic Nanohybrids. Prog. 

Polym. Sci. 2011, 36, 845–886. 

34. Boyer, C.; Bulmus, V.; Davis, T.P.; Ladmiral, V.; Liu, J.; Perrier, S. Bioapplications of RAFT Polymerization. Chem. Rev. 2009, 109, 

5402–5436. 

35. Richards, S.-J.; Gibson, M.I. Optimization of the Polymer Coating for Glycosylated Gold Nanoparticle Biosensors to Ensure 

Stability and Rapid Optical Readouts. ACS Macro Lett. 2014, 3, 1004–1008. 

36. Won, S.; Richards, S.-J.; Walker, M.; Gibson, M.I. Externally Controllable Glycan Presentation on Nanoparticle Surfaces to Mod-

ulate Lectin Recognition. Nanoscale Horiz. 2017, 2, 106–109. 

37. Lawrence, J.; Emrick, T. Pentafluorophenyl Ester-Functionalized Nanoparticles as a Versatile Platform for Selective and Cova-

lent Inter-nanoparticle Coupling. ACS Appl. Mater. Interfaces 2016, 8, 2393–2398. 



Nanomaterials 2021, 11, 2720 13 of 13 
 

 

38. Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K.A. Physical−Chemical Aspects 

of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534. 

39. Jamison, J.A.; Krueger, K.M.; Yavuz, C.T.; Mayo, J.T.; LeCrone, D.; Redden, J.J.; Colvin, V.L. Size-dependent sedimentation 

properties of nanocrystals. ACS Nano 2008, 2, 311–319. 

40. Kruszewska, J.; Kulpińska, D.; Grabowska-Jadach, I.; Matczuk, M. Joint forces of direct, single particle, CE– and HPLC–induc-

tively coupled plasma mass spectrometry techniques for the examination of gold nanoparticle accumulation, distribution and 

changes inside human cells. Metallomics 2020, 12, 408–415. 

41. Cho, T.J.; Hackley, V.A. Fractionation and characterization of gold nanoparticles in aqueous solution: Asymmetric-flow field 

flow fractionation with MALS, DLS, and UV–Vis detection. Anal. Bioanal. Chem. 2010, 398, 2003–2018. 

42. Carpenter, D.K. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Berne, Bruce, J.; Pecora, Rob-

ert). J. Chem. Educ. 1977, 54, A430. 

43. Lehner, D.; Lindner, H.; Glatter, O. Determination of the Translational and Rotational Diffusion Coefficients of Rodlike Particles 

Using Depolarized Dynamic Light Scattering. Langmuir 2000, 16, 1689–1695. 

44. van der Zande, B.M.I.; Dhont, J.K.G.; Böhmer, M.R.; Philipse, A.P. Colloidal Dispersions of Gold Rods Characterized by Dy-

namic Light Scattering and Electrophoresis. Langmuir 2000, 16, 459–464. 

45. Liu, H.; Pierre-Pierre, N.; Huo, Q. Dynamic light scattering for gold nanorod size characterization and study of nanorod–protein 

interactions. Gold Bull. 2012, 45, 187–195. 

46. Rodríguez-Fernández, J.; Pérez-Juste, J.; Liz-Marzán, L.M.; Lang, P.L. Dynamic Light Scattering of Short Au Rods with Low 

Aspect Ratios. J. Phys. Chem. C 2007, 111, 5020–5025. 

47. Khlebtsov, B.N.; Khlebtsov, N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid 

J. 2011, 73, 118–127. 

48. Mehtala, J.G.; Wei, A. Nanometric Resolution in the Hydrodynamic Size Analysis of Ligand-Stabilized Gold Nanorods, Lang-

muir 2014, 30, 13737–13743. 

49. Ramirez-Garcia, S.; Chen, L.; Morris, M.A.; Dawson, K.A. A new methodology for studying nanoparticle interactions in biolog-

ical systems: Dispersing titania in biocompatible media using chemical stabilisers. Nanoscale 2011, 3, 4617–4624. 

50. Dieckmann, Y.; Cölfen, H.; Hofmann, H.; Petri-Fink, A. Particle Size Distribution Measurements of Manganese-Doped ZnS 

Nanoparticles. Anal. Chem. 2009, 81, 3889–3895. 

51. Krpetić Ž.; Davidson, A.M.; Volk, M.; Lévy, R.; Brust, M.; Cooper, D.L. High-Resolution Sizing of Monolayer-Protected Gold 

Clusters by Differential Centrifugal Sedimentation ACS Nano 2013, 7, 8881–8890. 

52. Bell, N.C., Minelli, C., Shard, A. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. 

Anal. Methods 2013, 5, 4591–4601. 

 


