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prediction model for short-
term mortality after palliative 
radiotherapy for patients having 
advanced cancer: a cohort study 
from routine electronic medical 
data
Shing fung Lee1, Hollis Luk1, Aray Wong1, chuk Kwan ng1, frank chi Sing Wong1 & 
Miguel Angel Luque-fernandez2,3*

We developed a predictive score system for 30-day mortality after palliative radiotherapy by using 
predictors from routine electronic medical record. Patients with metastatic cancer receiving first course 
palliative radiotherapy from 1 July, 2007 to 31 December, 2017 were identified. 30-day mortality 
odds ratios and probabilities of the death predictive score were obtained using multivariable logistic 
regression model. Overall, 5,795 patients participated. Median follow-up was 39.6 months (range, 
24.5–69.3) for all surviving patients. 5,290 patients died over a median 110 days, of whom 995 (17.2%) 
died within 30 days of radiotherapy commencement. The most important mortality predictors were 
primary lung cancer (odds ratio: 1.73, 95% confidence interval: 1.47–2.04) and log peripheral blood 
neutrophil lymphocyte ratio (odds ratio: 1.71, 95% confidence interval: 1.52–1.92). The developed 
predictive scoring system had 10 predictor variables and 20 points. The cross-validated area under curve 
was 0.81 (95% confidence interval: 0.79–0.82). The calibration suggested a reasonably good fit for the 
model (likelihood-ratio statistic: 2.81, P = 0.094), providing an accurate prediction for almost all 30-day 
mortality probabilities. The predictive scoring system accurately predicted 30-day mortality among 
patients with stage iV cancer. oncologists may use this to tailor palliative therapy for patients.

Many patients with metastatic cancer receive oncological treatment, and radiotherapy (RT) is an important 
component of palliative treatment1. RT can be an effective tool for palliation of symptoms arising from cancer, 
including pain from bone metastases or neurological compromise from brain or spinal metastases with cord or 
nerve root compression. The aim of palliative RT is to alleviate symptoms and improve quality of life. Evidence 
has shown that palliative RT was received by approximately 10% of patients who died of cancer near their end 
of life2,3. In one population-based study that included 15,287 patients who received RT in the last month of life, 
17.8% received more than 10 days of treatment4. This finding corroborates with a German study which showed 
50% of patients spent more than 60% of remaining 30 days of life receiving RT4.

RT can be delivered via different dosing regimens (e.g., single fraction on one day versus multiple fractions 
for weeks)5–9. The use of multi-fractionation (split up the total dose into small fractions) is often perceived 
to be associated with less long-term complications and need for retreatment4. While larger fraction size by 
single-fractionation theoretically has an increased risk of late-onset radiation toxicity. Beside radiobiological con-
sideration, medical training and experience, departmental policies, and insurance reimbursement all influence 
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the decision on the dose-fractionation regimens. Use of hypofractionation or single fractionation is associated 
with a perceived poor prognosis by the oncologist. Protracted courses of RT can become considerable demand 
and burden on terminal cancer patients7. Their symptoms can be aggravated by transportation to the RT facility 
and repeated positioning in the treatment suite. It is also costly to the healthcare system but might also preclude 
the trigger for end-of-life measures for this group of patients.

As highlighted in the statement by the American Society of Clinical Oncology in 2011, transition from focus-
ing on cancer-directed therapy to palliative care often occurs within days of death10. This is possibly related to 
the poor accuracy of clinicians at predicting prognosis and survival of patients with advanced malignancies11–13. 
An accurate and practical short-term mortality prediction score for patients with metastatic cancer receiving 
palliative RT can assist clinicians in tailoring palliative RT use and for delivering appropriate dose-fractionations 
according to the expected short-term risk of death. Furthermore, an earlier and more thorough assessment of 
patient management options, goals, and preferences to facilitate personalized palliative care along the disease tra-
jectory will be possible. When a cure is not possible, the goals of treatment change appropriately from prolonging 
life to controlling symptoms and improving quality of life. However, evidence has shown that clinician estimates 
of survival tend to be optimistic and poorly reproducible11. Prognosis overestimates may have contributed to 
mismatched fractionation schedules, and lots of patients needing to discontinue therapy.

The determination of prognosis and life expectancy is critical to the care of patients with advanced cancer. 
Prognostic factors and predictive tools have been explored and developed to improve the estimation of life expec-
tancy over the clinician’s estimation. However, most of these studies are based on small study samples and hospital 
settings with short follow-up and survival times (in terms of weeks) or based on single tumor sites and are not 
specific to patients referred for RT14–17. Some studied the prognostic factors for survival time after palliative RT 
but did not develop a predictive model3,18. Palliative RT rarely affect survival time but often improves quality of 
life19,20. To improve palliative RT delivery and resource allocation optimization, we conducted a cohort study 
using routinely collected electronic data from patients with metastatic cancer receiving their first course of palli-
ative RT. We studied the factors associated with short-term mortality and developed a predictive score model for 
30-day mortality.

Methods
Data source. We retrieved data for our patient cohort on April 1, 2019. All RT episodes were identified using 
the MOSAIQ information system42, which archives and integrates RT planning and treatment details. These data 
were then linked to the entries maintained by the Clinical Data Analysis and Reporting System, which is an 
electronic medical record (EMR) database operated by the Hospital Authority of Hong Kong. The International 
Classification of Diseases, ninth revision (ICD-9), was used for disease coding. We followed the transparent 
reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guideline for 
model development and validation43,44. The Research Ethics Committee, New Territories West Cluster, Hospital 
Authority, Hong Kong approved the study on October 1, 2018, and waived patient consent requirement (reference 
no: NTWC/REC/18093). The research was conducted in accordance with the 1964 Declaration of Helsinki and 
its later amendments.

patients, data, and settings. We included patients with metastatic cancer who received palliative RT at 
Tuen Mun Hospital, Hong Kong, between July 1, 2007 and December 31, 2017, and had not received palliative 
radiotherapy at the center before July 1, 2007. The definition of first course palliative RT fraction was based on a 
combination of the receipt of an identified palliative dose-fractionation and the treating oncologist’s indication; a 
RT course is defined as one or more fractions of external beam RT, delivered to a defined area.

Short-term mortality predictive risk factors. To transform raw EMR data into variables usable in a 
prediction model, we first collected all data from the 180- to 365-day period (depending on particular variables), 
ending the day before palliative RT initiation (we did not exclude patients based on absence of data during the 
period). Raw data were aggregated into potential predictors in the following categories: demographics, prescribed 
medications, comorbidities and other grouped ICD-9 diagnoses, surgical procedures, health care resource use, 
and laboratory results. No data on the first course palliative RT itself (e.g., dose-fractionation and techniques) 
were used in the predictive model. More precise information on the variables used as short-term mortality pre-
dictors are provided in Appendix 1 and Supplementary Table 3.

outcomes. Our primary outcome was 30-day overall mortality, which was calculated from the start of the 
first course palliative RT until death or when censored (April 1, 2019). The start date of RT was used because it 
was closer to the date when the clinical decision to treat was made than that of the end of treatment and provides 
a uniform time point across all fractionation regimens.

Model selection, performance, and scoring. We used multivariable logistic regression models to eval-
uate the predictive performance of the primary outcome, 30-day mortality45,46. The model’s predictor functions 
were pre-specified a priori based on subject matter knowledge (Table 2). We assumed a pattern of randomness 
and created one imputed dataset using a fully conditional specification based on a multivariate normal distribu-
tion47. Different combinations of the 13 covariates were chosen for the regression models (Table 2). The 13 covari-
ates were age, sex, Royal College of Surgeons modified comorbidity score48, log peripheral white blood cell count, 
log peripheral blood neutrophil lymphocyte ratio (NLR), log plasma urea, log serum bilirubin, serum albumin, 
lactate dehydrogenase (LDH), red cell distribution, attendance to emergency room, sites receiving palliative RT, 
and primary lung cancer.
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Data-adaptive methods based on cross-validation and mean absolute error for predictions (MAE) were used 
to evaluate the predictive performance of different model specifications. We used ten-fold cross-validation to 
reduce the risk of overfitting the final model to the training set49. The cross-validation procedure involved fitting 
a candidate model for the primary outcome, using data from nine of the ten blocks (the “derivation set”), and 
evaluating its performance in the held-out block (the “validation set”). We repeated this process ten times, each 
time using a different block as the validation set, and then averaged the performance over the ten validation sets.

As the overall performance metric, we used the MAE, which measures the average of the difference between 
predicted and observed outcome in the test, i.e., the average prediction error50. This represents the closeness of 
the prediction to the eventual outcomes. Our measure of model discrimination was the cross-validated areas 
under the receiver operating characteristic (ROC) curves51,52. An ROC curve is a plot of the sensitivity of a model 
(the vertical axis) vs 1 minus the specificity (the horizontal axis) for all possible cut-off values that might be used 
to classify patients predicted to have 30-day mortality compared with patients who will not die within 30 days51. 
Given any 2 random patients, one died within 30 days and one did not, the probability that the model will cor-
rectly classify the patient with the outcome as higher risk is equal to the area under the ROC curve (AUC)53. We 
calculated 95% confidence intervals (CIs) of the AUC following the method of DeLong et al.54. We evaluated the 
model calibration by observing the agreement between observed outcomes and predictions55. We used a graphical 
assessment of calibration, with predictions on the x-axis and the observed outcome on the y-axis. We performed 
a sensitivity analysis to evaluate the robustness of model performance by testing different model specifications.

Variables
Complete cohort 
(n = 5,795)

Age (years)

Median (interquartile range) 64 (55–75)

<55 years [cases (%)] 1,310 (22.6)

55–64 years [cases (%)] 1,680 (29.0)

65–74 years [cases (%)] 1,354 (23.4)

≥75 years [cases (%)] 1,451 (25.0)

Sex [cases (%)]

Male 3,582 (61.8)

Female 2,213 (38.2)

Royal College of Surgeons modified Charlson score [cases (%)]

0 comorbidity 3,194 (55.1)

1 comorbidity 1,691 (29.2)

≥2 comorbidities 910 (15.7)

Primary cancer sites [cases (%)]

Head and neck cancers 318 (5.5)

Upper GI cancers 799 (13.8)

Lower GI cancers 588 (10.1)

Lung and thoracic cancers 2,299 (39.7)

Breast cancers 579 (10.0)

Soft tissue and skin cancers 76 (1.3)

Genitourinary cancers 693 (12.0)

Hematological cancers 121 (2.1)

CNS cancers 64 (1.1)

Other cancers 258 (4.5)

Radiotherapy fractionations [cases (%)]

1 900 (15.5)

2–4 418 (7.2)

5 2,611 (45.1)

6–9 680 (11.7)

≥10 1,186 (20.5)

Preceding radical/adjuvant radiotherapy [cases (%)]

Yes 525 (9.1)

No 5270 (91.0)

Treatment-free interval [cases (%)]

<6 months 109 (20.8)

6–12 months 98 (18.7)

>12–24 months 136 (25.9)

>24 months 182 (34.7)

Table 1. Patient characteristics for model derivation. Abbreviation: CNS, central nervous system.
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Finally, we produced a point score system from the best model we developed. In the system, points were 
assigned based on the predictor values for a patient; the total scores correspond to the risks of the 30-day overall 
mortality56. The steps to develop the point score system have been summarized in the Appendix 2. For each point 
score we summarized the positive predictive value (PPV) and negative predictive value (NPV) which respectively 
represented the probability that the disease is present given a positive test result and that the disease is absent 
given a negative test result57.

Statistical analysis. Descriptive analyses were conducted to describe the cohort of patients receiving first 
course palliative RT. We used frequencies and proportions for categorical variables and means with standard 
deviations (when normally distributed) or medians with interquartile ranges (when not normally distributed) 
for continuous variables. To describe the association between patient factors and an increased or decreased 
short-term mortality, we reported odds ratios (OR) from univariable and multivariable logistic regressions with 
their respective 95% CI.

The analysis was performed using Stata v.15.1 (StataCorp LLC, College Station, Texas, USA) and R v. 3.6.1 (R 
Foundation for Statistical Computing, Vienna, Austria)58,59.

Results
Description of the cohort. We identified 5,795 patients who commenced palliative RT between July 1, 2007 
and December 31, 2017. Patient characteristics are summarized in Table 1. The median age was 64 (interquartile 
range: 55–75) years; 61.8% were male. Patients with lung cancer (39.7%) constituted the highest proportion of 
the cohort. In all, 55.1%, 29.2%, and 15.7% were classified as having score 0, 1, and ≥2, according to the Royal 
College of Surgeons modified Charlson score, respectively. A total of 5,291 patients died during the follow-up 
period (median follow-up 3 months), of which 995 patients (17.2%) died within 30 days from the start of RT. 
Data were complete except for those on albumin, peripheral blood cell counts, urea, bilirubin, and LDH, which 
were imputed21.

thirty-day mortality and model performance. Of the 5,795 patients receiving their first course palli-
ative RT, 995 (17.2%) died within 30 days. Model 2 was chosen as the best performing model among candidate 

Variables
Univariable OR 
(95% CI)

Model 1: Adjusted 
OR (95% CI)

Model 2: Adjusted 
OR (95% CI)

Model 3: Adjusted 
OR (95% CI)

Model 4: Adjusted 
OR (95% CI)

Age, per one-year increase 1.01 (1.01–1.02) — — 1.00 (1.00–1.01) 1.00 (1.00–1.01)

Sex, male vs. female 1.45 (1.25–1.68) — — 1.13 (0.95–1.34) 1.13 (0.96–1.35)

RCS comorbidity score 0.95 (0.87–1.05) — — — 0.87 (0.78–0.97)

Log peripheral white blood cell count 
(109 cells/L) 4.64 (3.98–5.40) 1.52 (1.25–1.84) 1.40 (1.14–1.70) 1.40 (1.15–1.71) 1.39 (1.14–1.70)

Log peripheral neutrophil lymphocyte 
ratio 2.84 (2.60–3.10) 1.76 (1.57–1.97) 1.71 (1.52–1.92) 1.72 (1.53–1.93) 1.72 (1.53–1.93)

Log plasma urea (mmol/L) 2.06 (1.78–2.39) 1.53 (1.30–1.78) 1.55 (1.32–1.82) 1.49 (1.26–1.76) 1.53 (1.29–1.81)

Log serum bilirubin (µmol/L) 1.75 (1.58–1.94) 1.40 (1.25–1.57) 1.49 (1.33–1.67) 1.48 (1.32–1.66) 1.49 (1.32–1.68)

Serum albumin (g/dL) 0.87 (0.85–0.88) 0.91 (0.89–0.92) 0.90 (0.89–0.91) 0.90 (0.89–0.91) 0.90 (0.89–0.91)

Lactate dehydrogenase (IU/L) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Red cell distribution, per % increase 1.08 (1.06–1.11) 1.23 (1.03–1.46) 1.30 (1.09–1.56) 1.31 (1.09–1.57) 1.31 (1.09–1.57)

Attendance to emergency room 1.70 (1.54–1.88) — 1.43 (1.28–1.60) 1.43 (1.28–1.59) 1.44 (1.29–1.61)

Sites receiving palliative radiotherapy, 
whole brain or spinal RT vs otherwise 1.16 (1.01–1.34) — 1.45 (1.23–1.71) 1.46 (1.24–1.73) 1.45 (1.23–1.72)

Primary lung cancer, yes vs no 1.41 (1.20–1.62) — 1.73 (1.47–2.04) 1.69 (1.43–2.00) 1.67 (1.42–1.98)

Model Performance Model 1 Model 2 Model 3 Model 4

Cross-validated AUCs (10-fold) 0.80 (0.78–0.81) 0.81 (0.79–0.82) 0.81 (0.79–0.82) 0.81 (0.79–0.82)

MAEs (10-fold) 0.22865794 0.22170616 0.22357565 0.22318065

Log-likelihood -2139.5312 -2087.5888 -2086.2183 -2082.9179

P-value of likelihood ratio test (1 vs. 2) <0.0001

P-value of likelihood ratio test (1 vs. 3) <0.0001

P-value of likelihood ratio test (1 vs. 4) <0.0001

P-value of likelihood ratio test (2 vs. 3) 0.2540

P-value of likelihood ratio test (2 vs. 4) 0.0251

P-value of likelihood ratio test (3 vs. 4) 0.0102

Table 2. Comparison of different model specifications. AUC: area under curve; CI: confidence interval; MAEs: 
Mean absolute error for predictions (observed – predicted). OR: odds ratio; RCS: Royal College of Surgeons. 
Missing values needing imputation: log peripheral white blood cell count n (%) = 243 (4.2%), log peripheral 
neutrophil lymphocyte ratio n (%) = 378 (6.5%), log plasma urea n (%) = 177 (3.1%), log serum bilirubin n 
(%) = 132 (2.3%), serum albumin n (%) = 198 (3.4%), lactate dehydrogenase n (%) = 2,730 (47.1%), red cell 
distribution n (%) = 243 (4.2%).
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models 1–4 from the regression analyses (Table 2). The most important predictors of short-term mortality were 
primary lung cancer (OR: 1.73, 95% CI: 1.47–2.04), log peripheral blood NLR (OR: 1.71, 95% CI 1.52–1.92), and 
log plasma urea (OR: 1.55, 95% CI: 1.32–1.82).

Figure 1 shows good model discriminations from the candidate models by the ROC curves. Figure 2 shows the 
10-fold cross-validated receiver-operating characteristics (cv-ROC) curve for 30-day mortality prediction from 
the best model (model 2 in Table 2). Model 2 showed the highest discrimination, i.e., its predictive accuracy was 
good, with a cross-validated-area under curve (cvAUC) of 0.81 (95% CI: 0.79–0.82) (Figs. 1,2).

Tables 3 and 4 show the point score and average predicted probabilities of 30-day mortality based on model 
2, respectively. For ease of interpretation, values of the predictors in log-scale were back-transformed to their 
original scale. A point score cut-off value of 6 (positive predictive value: 33.0%; negative predictive value: 94.2%; 
sensitivity: 80.3%; specificity: 66.2%) showed the greatest Youden’s index (46.5), corresponding to maximum joint 
sensitivity and specificity on the ROC curve.

Supplementary Figure 1 shows the predicted probabilities of 30-day mortality by mortality status. The model 
calibration suggests a reasonably good fit for the model (Supplementary Fig. 2, likelihood-ratio statistic: 2.81, 
P = 0.094), which provides accurate predictions for almost the entire range of the death probability. The predicted 
probabilities stay close to the ideal calibration line for low and high probabilities of death. Sensitivity analyses 
showed no association between comorbidities and 30-day mortality or interaction between comorbidities and 
age; no association between systemic treatments, including chemotherapy, and null increase in predictive perfor-
mance was observed, regardless of whether comorbidity was included in the model. Additionally, in sensitivity 
analysis we assessed whether our model was consistent to different windows of time (0–29, 0–35 and 0–45 days) 

Figure 1. Model discriminations from the four candidate models by the receiver-operating characteristics 
(ROC) curves, as shown by the respective areas under curve. (created using Stata v.15.1, https://www.stata.
com/).

Figure 2. 10-fold cv-ROC curves for 30-day mortality prediction from the best candidate model (model 2), 
which has a cv-area under curve of 0.811. SD: standard deviation; cv-ROC: cross-validated receiver-operating 
characteristics. (created using Stata v.15.1, https://www.stata.com/).
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and we applied our point score system to predict 3- and 6-month mortality in the same patient cohorts. We found 
similar values of NPV and PPV (Supplementary Tables 1 and 2).

Discussion
We found that primary lung cancer, peripheral blood NLR, and plasma urea were strong predictors of short-term 
mortality among patients with stage IV cancer. Our score system was a good predictor of short-term mortality; 
performance metrics by ROC curves and calibration curves showed high model discrimination and calibration, 
respectively.

More recent and successful studies on predictive models for survival after palliative RT in patients with 
advanced cancer were conducted by Chow et al. and Kristnan et al.22–24. These studies are similar; however, ours 
has important advantages. We developed a scoring system that uses objective measurements (complete blood 
counts, liver and renal function tests within 180 days) to determine the 30-day mortality of patients receiving pal-
liative RT. Furthermore, our data were obtained from routine practice; this increased the model’s clinical applica-
bility, unlike those by Chow et al., whose Radiotherapy Rapid Response Programme was established with an aim 

Predictors Transformed values Points

Log peripheral white blood 
cell count (109 cells/L)

  0–1.9 0–6.7 0

  >1.9–2.3 >6.7–10.0 1

  >2.3–2.9 >10.0–18.2 1

Log peripheral blood neutrophil-lymphocyte ratio

  -2.3–1.1 0.1–3.0 0

  >1.1–1.6 >3.0–5.0 2

  >1.6–2.3 >5.0–10.0 3

  >2.3–3.3 >10.0–27.1 3

Log plasma urea (mmol/l)

  -0.2–1.4 0.8–4.1 0

  >1.4–1.8 >4.1–6.0 1

  >1.8–2.4 >6.0–11.0 1

Log serum bilirubin (µmol/L)

  0–3.2 0–25 0

  >3.2–4.1 >25–60 2

  >4.1–6.4 >60–602 3

Serum albumin (g/dL)

  11–33 — 5

  34–38 2

  39–52 0

Lactate dehydrogenase (IU/L)

  74–347 — 0

  348–798 0

  799–1,774 1

Red cell distribution

  11.2–13.3 — 0

  >13.3–14.0 1

  >14.0–14.7 1

  >14.–15.8 1

  >15.8–21.8 3

Attendance to emergency room

  0 time — 0

  1 time 1

  ≥2 times 1

Sites receiving palliative RT

  Whole brain or spinal RT — 1

  Otherwise 0

Primary lung cancer

  Yes — 1

  No 0

Table 3. Points score system for probability of 30-day mortality for patients with metastatic cancer receiving 
first course palliative radiotherapy based on model derived.
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to provide quick palliative RT for patients with terminal cancer mostly referred from medical oncologists and pal-
liative care doctors22,23. Our model for prediction of 30-day mortality was developed based on a large population 
of unselected adults referred for palliative RT (5,795 patients versus 395 in Chow et al. and 862 in Krishnan et al.). 
The concordance (C)-statistic is a measure of goodness-of-fit for binary outcomes in a logistic regression model. 
It represents the probability that the predicted and observed outcomes are concordant for a randomly selected 
pair of patients in the predictive model25. The C-statistic for TEACHH model and Chow’s model based on 3 
risk factors were 0.59 and 0.65 respectively23,24, while the AUC (equivalent to C-statistic) in our model was 0.81 
which is better. The AUC was cross-validated which reduces the optimism bias of the other two and was inter-
nally validated to provide higher consistency in absence of an external validation. It is an easy-to-calculate tool 
for patients with metastatic cancer who were referred for palliative RT and who account for 20–40% of patients 
treated in radiation oncology departments26–29. Furthermore, given the mandatory status of death certification in 
Hong Kong and the automated nature of RT and vital status data collection, data on the dates of the first course of 
palliative RT and death were reliable. The referring clinician’s indication was included in our definition of pallia-
tive RT, which was better than merely using predefined dose and fractionation schedules. Our model performed 
reasonably well across a range of cancer types and other variables, despite lacking genetic data, cancer-specific 
biomarkers, or any detailed information beyond EMR. This emphasized that commonly available data in EMR 
contain important predictors to identify clinically relevant outcomes in patients with cancer under palliative care. 
Most of the inputs to the model are standard structured data components in EMR. The model’s algorithm could 
easily integrate into existing clinical management systems, importing the data directly from the EMR without 
specialized infrastructure. Additionally, implementing the tool can continuously and independently validate the 
predictive power from an ongoing prospective cohort. This is important to reflect the secular trend in cancer 
epidemiology changes, treatment variations, and referral patterns in an evolving real-world setting.

The model outperformed clinician estimates of survival to guide appropriate clinical judgment in treatment, 
resource allocation, and early palliative care referrals with advanced care planning30. The NPV exceeded 90% 
which means patients have very high chance of staying alive beyond 30 days if predicted so by the model. This 
could be a better standpoint to start dialogue with patients. Realistic and honest disclosure of prognosis can 
encourage shared decision-making between the patient and the care team, with which the patient can settle 
personal, family, and financial issues earlier, instead of embarking on another course of treatment based on inac-
curate prognosis. However, after thorough discussions with the patient and family, if the patient still opts for RT 
despite reasonable chance of early mortality, we argue that hypofractionation is preferred to avoid a protracted 
course of RT near death, given the well-documented evidence for equivalent effects in a range of symptoms31.

Regarding the choice of covariates and development of the model, patients referred for palliative RT often 
received oncological treatment and blood work before; hence, we included commonly performed biochemical 
or hematological markers. Clinical experience has shown that patients with lung cancer generally die earlier 
than patients with other cancers, such as breast cancer14, and patients with certain sites of metastases (e.g., bone 
only) live longer than patients with others, such as brain and spinal metastases with cord compression32–35. Since 
no data were available on sites of metastatic diseases, we substituted with irradiation data. Hence, we included 

Points 
total

Probabilities of 
30-day mortality Sensitivity in % (95% CI) Specificity in % (95% CI)

Positive predictive 
value in % (95% CI)

Negative predictive 
value in % (95% CI)

Youden 
Index

0 0.006308607 100.0 (99.6–100.0) 0.3 (0.2–0.5) 17.2 (16.3–18.2) 100.0 (80.6–100.0) 0.3

1 0.010683368 100.0 (99.6–100.0) 2.0 (1.6–2.4) 17.5 (16.5–18.5) 100.0 (96.1–100.0) 2.0

2 0.018036781 99.5 (98.8–99.8) 6.3 (5.7–7.1) 18.0 (17.1–19.1) 98.4 (96.3–99.3) 5.8

3 0.030296585 98.7 (97.8–99.2) 16.3 (15.3–17.3) 19.6 (18.6–20.8) 98.4 (97.2–99.0) 15.0

4 0.050461291 96.6 (95.3–97.5) 31.4 (30.1–32.8) 22.6 (21.4–23.9) 97.8 (96.9–98.4) 28.0

5 0.082899786 92.0 (90.1–93.5) 49.3 (47.9–50.7) 27.3 (25.9–28.9) 96.7 (96.0–97.4) 41.3

6 0.133264410 80.3 (77.7–82.7) 66.2 (64.8–67.5) 33.0 (31.1–34.9) 94.2 (93.3–94.9) 46.5

7 0.207310609 65.0 (62.0–67.9) 79.5 (78.4–80.7) 39.7 (37.4–42.1) 91.6 (90.8–92.4) 44.5

8 0.307884580 49.3 (46.2–52.4) 88.9 (88.0–89.7) 47.9 (44.9–51.0) 89.4 (88.5–90.3) 39.6

9 0.430737634 33.7 (30.8–36.7) 94.9 (94.3–95.5) 58.0 (53.9–61.9) 87.3 (86.4–88.2) 28.6

10 0.562753168 20.3 (17.9–22.9) 98.0 (97.6–98.4) 68.0 (62.5–73.1) 85.6 (84.6–86.5) 18.3

11 0.686440139 11.5 (9.6–13.6) 99.4 (99.1–99.5) 78.6 (71.3–84.5) 84.4 (83.4–85.3) 10.9

12 0.788300949 4.8 (3.7–6.3) 99.8 (99.6–99.9) 81.4 (69.6–89.3) 83.5 (82.5–84.4) 4.6

13 0.863644966 1.4 (0.8–2.3) 100.0 (99.8–100.0) 87.5 (64.0–96.5) 83.0 (82.0–84.0) 1.4

14 0.915063165 0.5 (0.2–1.2) 100.0 (99.9–100.0) 100.0 (56.6–100.0) 82.9 (81.9–83.8) 0.5

15 0.948253778 0.1 (0.0–0.6) 100.0 (99.9–100.0) 100.0 (20.7–100.0) 82.8 (81.9–83.8) 0.1

16 0.968915142 0.1 (0.0–0.6) 100.0 (99.9–100.0) 100.0 (20.7–100.0) 82.8 (81.9–83.8) 0.1

17 0.981487838 0.0 (0.0–0.4) 100.0 (99.9–100.0) * 82.8 (81.8–83.8) 0.0

18 0.989032894 0.0 (0.0–0.4) 100.0 (99.9–100.0) * 82.8 (81.8–83.8) 0.0

19 0.993523083 0.0 (0.0–0.4) 100.0 (99.9–100.0) * 82.8 (81.8–83.8)

20 0.996181981 0.0 (0.0–0.4) 100.0 (99.9–100.0) * 82.8 (81.8–83.8)

Table 4. Probabilities of the outcome (30-day mortality) that correspond to the points total. *Not applicable, 
because no patient is classified as positive for the outcome.
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primary cancer site and irradiation site in the score determination. Age may influence not only recommendations 
for treatment but also prediction of remaining lifespan, analyzed in our model. Moreover, clinician estimates of 
survival were excluded because they were likely based on experience and training, poorly reproducible, and not 
commonly recorded in routine electronic database.

Our study had limitations. First, the prediction model was built on data from patients treated with RT and 
might not be accurate for untreated patients. Second, our procedure for categorizing the predictor variables may 
not identify the cutoff values with the best discriminating capacity. Third, some important prognostic factors may 
have been omitted. For example, data on performance status and patient quality of life evaluations using validated 
scales, or of their frailty status36,37, considered prognostic in previous studies, were not analyzed22. However, we 
introduced patient comorbidities as proxy for patient frailties. Fourth, palliative RT use was at the oncologists’ 
discretion in some cases when curative and palliative intent treatment could not be distinguished (e.g., patients 
having limited metastasis receiving higher dose RT for better local control). Finally, we considered the patients for 
first course palliative RT without considering the effects of subsequent RT courses and other treatments.

A prediction tool using EMR data, retrieved from routine clinical practice, can accurately predict short-term mor-
tality among patients with advanced cancer starting radiotherapy. Such tool could facilitate shared decision-making 
among the patients, family, and medical care team. Additionally, it could help clinicians identify patients unlikely to 
benefit from RT beyond 30 days and those who may instead benefit from earlier palliative care referral and end-of-life 
planning. Machine learning techniques have the potential to improve clinical decision-making by identifying those at 
increased risk of poor mortality38. In 3 studies summarized by a systematic review, machine learning techniques are 
better than routine logistic regression in building model for mortality prediction in older and/or hospitalized adults, if 
enough data are obtained38–41. Future research is needed to incorporate machine learning techniques and to determine 
the generalizability and feasibility of the application of prediction tool in clinical settings.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 28 November 2019; Accepted: 11 March 2020;
Published: xx xx xxxx

References
 1. Jacob, S., Wong, K., Delaney, G. P., Adams, P. & Barton, M. B. Estimation of an optimal utilisation rate for palliative radiotherapy in 

newly diagnosed cancer patients. Clin. Oncol. 22, 56–64, https://doi.org/10.1016/j.clon.2009.11.003 (2010).
 2. Park, K. R. et al. Palliative radiation therapy in the last 30 days of life: A systematic review. Radiotherapy oncology: J. Eur. Soc. 

Therapeutic Radiology Oncol. 125, 193–199, https://doi.org/10.1016/j.radonc.2017.09.016 (2017).
 3. Spencer, K. et al. 30 day mortality in adult palliative radiotherapy–A retrospective population based study of 14,972 treatment 

episodes. Radiother. Oncol. 115, 264–271, https://doi.org/10.1016/j.radonc.2015.03.023 (2015).
 4. Gripp, S., Mjartan, S., Boelke, E. & Willers, R. Palliative radiotherapy tailored to life expectancy in end-stage cancer patients: reality 

or myth? Cancer 116, 3251–3256, https://doi.org/10.1002/cncr.25112 (2010).
 5. Hartsell, W. F. et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J. Natl 

Cancer Inst. 97, 798–804, https://doi.org/10.1093/jnci/dji139 (2005).
 6. Rades, D. et al. Is short-course radiotherapy with high doses per fraction the appropriate regimen for metastatic spinal cord 

compression in colorectal cancer patients? Strahlenther. Onkol. 182, 708–712, https://doi.org/10.1007/s00066-006-1578-9 (2006).
 7. Chow, E., Harris, K., Fan, G., Tsao, M. & Sze, W. M. Palliative radiotherapy trials for bone metastases: a systematic review. J. Clin. 

oncology: Off. J. Am. Soc. Clin. Oncol. 25, 1423–1436, https://doi.org/10.1200/JCO.2006.09.5281 (2007).
 8. Rades, D., Lohynska, R., Veninga, T., Stalpers, L. J. A. & Schild, S. E. Evaluation of 2 whole-brain radiotherapy schedules and 

prognostic factors for brain metastases in breast cancer patients. Cancer 110, 2587–2592, https://doi.org/10.1002/cncr.23082 (2007).
 9. Dobbs, J. & Barrett, A. In Practical Radiotherapy Planning 62–70 (Taylor & Francis, 2009).
 10. Peppercorn, J. M. et al. American society of clinical oncology statement: toward individualized care for patients with advanced 

cancer. J. Clin. Oncol. 29, 755–760, https://doi.org/10.1200/jco.2010.33.1744 (2011).
 11. Chow, E. et al. How accurate are physicians’ clinical predictions of survival and the available prognostic tools in estimating survival 

times in terminally ill cancer patients? A systematic review. Clin. Oncol. 13, 209–218 (2001).
 12. Christakis, N. A. & Lamont, E. B. Extent and determinants of error in doctors’ prognoses in terminally ill patients: prospective 

cohort study. BMJ 320, 469–472 (2000).
 13. Glare, P. et al. Predicting survival in patients with advanced disease. Eur. J. Cancer 44, 1146–1156, https://doi.org/10.1016/j.

ejca.2008.02.030 (2008).
 14. Hardy, J. R., Turner, R., Saunders, M. & A’Hern, R. Prediction of survival in a hospital-based continuing care unit. Eur. J. Cancer 30, 

284–288, https://doi.org/10.1016/0959-8049(94)90242-9 (1994).
 15. Christakis, N. A. & Escarce, J. J. Survival of Medicare patients after enrollment in hospice programs. N. Engl. J. Med. 335, 172–178, 

https://doi.org/10.1056/nejm199607183350306 (1996).
 16. Lassen, U. et al. Long-term survival in small-cell lung cancer: posttreatment characteristics in patients surviving 5 to 18+ years–an 

analysis of 1,714 consecutive patients. J. Clin. Oncol. 13, 1215–1220, https://doi.org/10.1200/jco.1995.13.5.1215 (1995).
 17. Gwilliam, B. et al. Development of Prognosis in Palliative care Study (PiPS) predictor models to improve prognostication in 

advanced cancer: prospective cohort study. BMJ 343, d4920, https://doi.org/10.1136/bmj.d4920 (2011).
 18. Williams, M., Woolf, D., Dickson, J., Hughes, R. & Maher, J. Routine clinical data predict survival after palliative radiotherapy: an 

opportunity to improve end of life care. Clin. Oncol. 25, 668–673, https://doi.org/10.1016/j.clon.2013.06.003 (2013).
 19. Spencer, K., Parrish, R., Barton, R. & Henry, A. Palliative radiotherapy. BMJ 360, k821–k821, https://doi.org/10.1136/bmj.k821 (2018).
 20. Lutz, S. T., Jones, J. & Chow, E. Role of radiation therapy in palliative care of the patient with cancer. J. Clin. oncology: Off. J. Am. Soc. 

Clin. Oncol. 32, 2913–2919, https://doi.org/10.1200/JCO.2014.55.1143 (2014).
 21. Rubin, D. B. Multiple Imputation for Nonresponse in Surveys. (Wiley, 2009).
 22. Chow, E. et al. A predictive model for survival in metastatic cancer patients attending an outpatient palliative radiotherapy clinic. 

Int. J. Radiat. Oncol. Biol. Phys. 53, 1291–1302, https://doi.org/10.1016/s0360-3016(02)02832-8 (2002).
 23. Chow, E. et al. Predictive model for survival in patients with advanced cancer. J. Clin. oncology: Off. J. Am. Soc. Clin. Oncol. 26, 

5863–5869, https://doi.org/10.1200/JCO.2008.17.1363 (2008).
 24. Krishnan, M. S. et al. Predicting life expectancy in patients with metastatic cancer receiving palliative radiotherapy: the TEACHH 

model. Cancer 120, 134–141, https://doi.org/10.1002/cncr.28408 (2014).

https://doi.org/10.1038/s41598-020-62826-x
https://doi.org/10.1016/j.clon.2009.11.003
https://doi.org/10.1016/j.radonc.2017.09.016
https://doi.org/10.1016/j.radonc.2015.03.023
https://doi.org/10.1002/cncr.25112
https://doi.org/10.1093/jnci/dji139
https://doi.org/10.1007/s00066-006-1578-9
https://doi.org/10.1200/JCO.2006.09.5281
https://doi.org/10.1002/cncr.23082
https://doi.org/10.1200/jco.2010.33.1744
https://doi.org/10.1016/j.ejca.2008.02.030
https://doi.org/10.1016/j.ejca.2008.02.030
https://doi.org/10.1016/0959-8049(94)90242-9
https://doi.org/10.1056/nejm199607183350306
https://doi.org/10.1200/jco.1995.13.5.1215
https://doi.org/10.1136/bmj.d4920
https://doi.org/10.1016/j.clon.2013.06.003
https://doi.org/10.1136/bmj.k821
https://doi.org/10.1200/JCO.2014.55.1143
https://doi.org/10.1016/s0360-3016(02)02832-8
https://doi.org/10.1200/JCO.2008.17.1363
https://doi.org/10.1002/cncr.28408


9Scientific RepoRtS |         (2020) 10:5779  | https://doi.org/10.1038/s41598-020-62826-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

 25. Austin, P. C. & Steyerberg, E. W. Interpreting the concordance statistic of a logistic regression model: relation to the variance and 
odds ratio of a continuous explanatory variable. BMC Med. Res. Methodol. 12, 82, https://doi.org/10.1186/1471-2288-12-82 (2012).

 26. Coia, L. R. et al. Practice patterns of palliative care for the united states 1984–1985. Int. J. Radiat. Oncology*Biology*Physics 14, 
1261–1269, https://doi.org/10.1016/0360-3016(88)90405-1 (1988).

 27. Huang, J. et al. Factors affecting the use of palliative radiotherapy in Ontario. J. Clin. Oncol. 19, 137–144, https://doi.org/10.1200/
jco.2001.19.1.137 (2001).

 28. Janjan, N. A. An emerging respect for palliative care in radiation oncology. J. Palliat. Med. 1, 83–88, https://doi.org/10.1089/
jpm.1998.1.83 (1998).

 29. McCloskey, S. A., Tao, M. L., Rose, C. M., Fink, A. & Amadeo, A. M. National survey of perspectives of palliative radiation therapy: 
role, barriers, and needs. Cancer J. 13, 130–137, https://doi.org/10.1097/PPO.0b013e31804675d4 (2007).

 30. Maher, E. J. How long have I got doctor? Eur. J. Cancer 30, 283–284, https://doi.org/10.1016/0959-8049(94)90241-0 (1994).
 31. Stevens, R., Macbeth, F., Toy, E., Coles, B. & Lester, J. F. Palliative radiotherapy regimens for patients with thoracic symptoms from 

non‐small cell lung cancer. Cochrane Database of Systematic Reviews, https://doi.org/10.1002/14651858.CD002143.pub3 (2015).
 32. Chen, J. The prognostic analysis of different metastatic patterns in advanced liver cancer patients: A population based analysis. PLOS 

ONE 13, e0200909, https://doi.org/10.1371/journal.pone.0200909 (2018).
 33. Perez, J. E. et al. Bone-only versus visceral-only metastatic pattern in breast cancer: analysis of 150 patients. A GOCS study. Grupo 

Oncologico Cooperativo del Sur. Am. J. Clin. Oncol. 13, 294–298, https://doi.org/10.1097/00000421-199008000-00005 (1990).
 34. Yamashita, K. et al. Breast cancer with bone-only metastases. Visceral metastases-free rate in relation to anatomic distribution of 

bone metastases. Cancer 68, 634–637, 10.1002/1097-0142(19910801)68:3<634::aid-cncr2820680332>3.0.co;2-b (1991).
 35. Kimura, T. Multidisciplinary Approach for Bone Metastasis: A Review. Cancers 10, 156 (2018).
 36. Coates, A., Porzsolt, F. & Osoba, D. Quality of life in oncology practice: prognostic value of EORTC QLQ-C30 scores in patients with 

advanced malignancy. Eur. J. cancer 33, 1025–1030, https://doi.org/10.1016/s0959-8049(97)00049-x (1997).
 37. Loprinzi, C. L. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer 

Treatment Group. J. Clin. Oncol. 12, 601–607, https://doi.org/10.1200/jco.1994.12.3.601 (1994).
 38. Storick, V., O?Herlihy, A., Abdelhafeez, S., Ahmed, R. & May, P. Improving palliative care with machine learning and routine data: a 

rapid review [version 2; peer review: 3 approved]. HRB Open Research 2, https://doi.org/10.12688/hrbopenres.12923.2 (2019).
 39. Einav, L., Finkelstein, A., Mullainathan, S. & Obermeyer, Z. Predictive modeling of U.S. health care spending in late life. Science 360, 

1462–1465, https://doi.org/10.1126/science.aar5045 (2018).
 40. Makar, M., Ghassemi, M., Cutler, D. M. & Obermeyer, Z. Short-term Mortality Prediction for Elderly Patients Using Medicare 

Claims Data. Int. J. Mach. Learn. Comput. 5, 192–197, https://doi.org/10.7763/IJMLC.2015.V5.506 (2015).
 41. Sahni, N., Simon, G. & Arora, R. Development and Validation of Machine Learning Models for Prediction of 1-Year Mortality 

Utilizing Electronic Medical Record Data Available at the End of Hospitalization in Multicondition Patients: a Proof-of-Concept 
Study. J. Gen. Intern. Med. 33, 921–928, https://doi.org/10.1007/s11606-018-4316-y (2018).

 42. Elekta. MOSAIQ®  Radiation Oncology,https://www.elekta.com/software-solutions/care-management/mosaiq-radiation-
oncology/#mosaiq-radiation-oncology-ar.

 43. Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann. Intern. Med. 162, 55–63, https://doi.org/10.7326/m14-0697 (2015).

 44. Moons, K. G. et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): 
explanation and elaboration. Ann. Intern. Med. 162, W1–73, https://doi.org/10.7326/m14-0698 (2015).

 45. Armitage, P., Berry, G. & Matthews, J. N. S. Statistical methods in medical research. 4th edn, (Blackwell Science, 2002).
 46. Cox, D. R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B Stat Methodol. 34, 187–220 (1972).
 47. Carpenter, J. & Kenward, M. Multiple Imputation and its Application. (Wiley, 2012).
 48. Brusselaers, N. & Lagergren, J. The Charlson Comorbidity Index in Registry-based Research. Methods Inf. Med. 56, 401–406, https://

doi.org/10.3414/me17-01-0051 (2017).
 49. Hastie, T., Tibshirani, R. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Ed edn, 

(Springer, 2009).
 50. Willmott, C. J. & Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in 

Assessing Average Model Performance. Clim. Res. 30, 79, https://doi.org/10.3354/cr030079 (2005).
 51. Meurer, W. J. & Tolles, J. Logistic Regression Diagnostics: Understanding How Well a Model Predicts OutcomesLogistic Regression 

Diagnostics Logistic Regression Diagnostics. JAMA 317, 1068–1069, https://doi.org/10.1001/jama.2016.20441 (2017).
 52. Steyerberg, E. W. et al. Assessing the performance of prediction models: a framework for traditional and novel measures. 

Epidemiology 21, 128–138, https://doi.org/10.1097/EDE.0b013e3181c30fb2 (2010).
 53. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 

29–36, https://doi.org/10.1148/radiology.143.1.7063747 (1982).
 54. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the Areas under Two or More Correlated Receiver Operating 

Characteristic Curves: A Nonparametric Approach. Biometrics 44, 837–845, https://doi.org/10.2307/2531595 (1988).
 55. Hilden, J., Habbema, J. D. & Bjerregaard, B. The measurement of performance in probabilistic diagnosis. II. Trustworthiness of the 

exact values of the diagnostic probabilities. Methods Inf. Med. 17, 227–237 (1978).
 56. Sullivan, L. M., Massaro, J. M. & D’Agostino, R. B. Sr. Presentation of multivariate data for clinical use: The Framingham Study risk 

score functions. Stat. Med. 23, 1631–1660, https://doi.org/10.1002/sim.1742 (2004).
 57. Wong, H. & Lim, G. H. Measures of Diagnostic Accuracy: Sensitivity, Specificity, PPV and NPV. Proc. Singap. Healthc. 20, 316–318, 

https://doi.org/10.1177/201010581102000411 (2011).
 58. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC. 2017.
 59. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

URL https://www.R-project.org/. (2019).

Acknowledgements
We thank the clinicians and staff members at Tuen Mun Hospital who collected the data, and Mr. KF Tsang for 
clerical support and data retrieval. There was no explicit funding for the development of this project. MALF is 
supported by a Miguel Servet I Investigator Award (grant CP17/00206 EU-FEDER) from the National Institute 
of Health, Carlos III (ISCIII), Madrid, Spain. His funders had no role in the study design, data collection, data 
analysis, data interpretation, or writing of the report.

Author contributions
S.F.L. wrote the first draft of the manuscript under M.A.L.F.’s guidance. S.F.L., H.L., A.W. and M.A.L.F. were 
involved in the study design; S.F.L. and M.A.L.F. interpreted the data; S.F.L., C.K.N., F.C.S.W. and M.A.L.F. 
reviewed the manuscript. S.F.L. is the guarantor. S.F.L. attests that all listed authors meet authorship criteria and 
that no others meeting the criteria have been omitted.

https://doi.org/10.1038/s41598-020-62826-x
https://doi.org/10.1186/1471-2288-12-82
https://doi.org/10.1016/0360-3016(88)90405-1
https://doi.org/10.1200/jco.2001.19.1.137
https://doi.org/10.1200/jco.2001.19.1.137
https://doi.org/10.1089/jpm.1998.1.83
https://doi.org/10.1089/jpm.1998.1.83
https://doi.org/10.1097/PPO.0b013e31804675d4
https://doi.org/10.1016/0959-8049(94)90241-0
https://doi.org/10.1002/14651858.CD002143.pub3
https://doi.org/10.1371/journal.pone.0200909
https://doi.org/10.1097/00000421-199008000-00005
https://doi.org/10.1016/s0959-8049(97)00049-x
https://doi.org/10.1200/jco.1994.12.3.601
https://doi.org/10.12688/hrbopenres.12923.2
https://doi.org/10.1126/science.aar5045
https://doi.org/10.7763/IJMLC.2015.V5.506
https://doi.org/10.1007/s11606-018-4316-y
https://www.elekta.com/software-solutions/care-management/mosaiq-radiation-oncology/#mosaiq-radiation-oncology-ar
https://www.elekta.com/software-solutions/care-management/mosaiq-radiation-oncology/#mosaiq-radiation-oncology-ar
https://doi.org/10.7326/m14-0697
https://doi.org/10.7326/m14-0698
https://doi.org/10.3414/me17-01-0051
https://doi.org/10.3414/me17-01-0051
https://doi.org/10.3354/cr030079
https://doi.org/10.1001/jama.2016.20441
https://doi.org/10.1097/EDE.0b013e3181c30fb2
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.2307/2531595
https://doi.org/10.1002/sim.1742
https://doi.org/10.1177/201010581102000411
https://www.R-project.org/


1 0Scientific RepoRtS |         (2020) 10:5779  | https://doi.org/10.1038/s41598-020-62826-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62826-x.
Correspondence and requests for materials should be addressed to M.A.L.-F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-62826-x
https://doi.org/10.1038/s41598-020-62826-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Prediction model for short-term mortality after palliative radiotherapy for patients having advanced cancer: a cohort study ...
	Methods
	Data source. 
	Patients, data, and settings. 
	Short-term mortality predictive risk factors. 
	Outcomes. 
	Model selection, performance, and scoring. 
	Statistical analysis. 

	Results
	Description of the cohort. 
	Thirty-day mortality and model performance. 

	Discussion
	Acknowledgements
	Figure 1 Model discriminations from the four candidate models by the receiver-operating characteristics (ROC) curves, as shown by the respective areas under curve.
	Figure 2 10-fold cv-ROC curves for 30-day mortality prediction from the best candidate model (model 2), which has a cv-area under curve of 0.
	Table 1 Patient characteristics for model derivation.
	Table 2 Comparison of different model specifications.
	Table 3 Points score system for probability of 30-day mortality for patients with metastatic cancer receiving first course palliative radiotherapy based on model derived.
	Table 4 Probabilities of the outcome (30-day mortality) that correspond to the points total.




