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The traceability of components on a supply-chain from a production facility to deployment and maintenance depends upon its
irrefutable identity. There are two well-known identification methods: an identity code stored in the memory and embedding
custom identification hardware. While storing the identity code is susceptible to malicious and unintentional attacks, the
approach of embedding a custom identification hardware is infeasible for sensor nodes assembled with Commercially-
Off-the-Shelf (COTS) devices. We propose a novel identifier - Acoustic PUF based on the innate properties of the sensor
node. Acoustic PUF combines the uniqueness component and the position component of the sensor device signature. The
uniqueness component is derived by exploiting the manufacturing tolerances, thus making the signature unclonable. The
position component is derived through acoustic fingerprinting, thus giving a sticky identity to the sensor device. We evaluate
Acoustic PUF for Uniqueness, Repeatability, and Position identity with a deployment spanning several weeks. Through our
experimental evaluation and further numerical analysis, we prove that Acoustic PUF can uniquely identify thousands of
devices with 99% accuracy while simultaneously detecting the change in position. We use the physical position of a device
within a synthetic sound-field both as an identity measure as well as to validate physical integrity of the device.
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1 INTRODUCTION
The pervasiveness of electronic sensor devices in critical sectors like avionics and automotive is increasing[46][4][7].
In the avionics domain, the sensor devices are used in control as well as infotainment systems. Many of the fully
mechanical systems are incorporating sensor devices. As an example, there is an increased interest in creating
smart aircraft latches, in particular, overhead stowage bins mounted with sensor nodes to detect accidental
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opening and pilferage [41][5]. Similarly, in the automotive domain, the sensor devices are used in power train, 
chassis and body control, as well as infotainment. This increased usage is driving the improvement in efficiency, 
safety, and overall user experience[46][3].

As the usage of sensor devices in critical sectors increases, it becomes imperative that these sensor devices are 
trustworthy and traceable. There is an unmet need for traceability of components and subsystems. Traceability 
is the mechanism to ensure compliance with operational standards and materials content [17]. Specifically, 
traceability mandates that: (i) the components being used to manufacture the system are traceable to a genuine 
source. This is addressed by procuring the components through trusted channels, either directly from semicon-
ductor manufacturers or through authorised distributors. Additionally, the semiconductor manufacturer can 
keep track of parts delivered to end customers through the authorised distributors. This facilitates traceability 
of counterfeits and compliance to export control. (ii) well-established production processes are being followed 
during the assembly of systems and documented at each stage [17](iii) in post-production, the sensor device 
is traceable from the production site till installation and even further during maintenance. Once a system is 
integrated at a trusted manufacturing facility, the system is tracked throughout its lifetime.
Our work focuses on the traceability of deployed systems (post-production). Firstly, we have to ensure that 

the sensor device delivered to the customer is the same as the one which was inspected. Secondly, we must 
ensure that the device which has delivered a critical message into the workflow is the same that was installed 
and has not been replaced, either unintentionally or deliberately. Hence it is vital that the devices are identified. 
This irrefutable identity bootstraps the traceability of the device. Furthermore, it is essential to derive such 
identification "on the fly" by executing a software Application Programming Interface (API).

One approach to establish the irrefutable identity of the device is through a stored identifier. The identifier is a 
digital code written into the memory of the device. This identifier could be queried and read back to confirm the 
identity of the device. Other recent alternatives include dielets[33], DNA fingerprinting[45] and PUFs[22].
An alternate approach that makes use of innate properties of the sensor devices themselves is the use of 

Physically Unclonable Functions (PUFs). While most of the other solutions attach an "external" identity to the 
device, PUFs exploit the inherent variations in the manufacturing process to generate unique identification for the 
devices. Thus, the PUF identity is intrinsic to the device. Semiconductor fabrication involves multiple processes 
like photolithography, etching, deposition, etc. Due to the inherent tolerances in these processes, the physical 
and material properties of the semiconductor components differ slightly from one another. This leads to variation 
in electrical characteristics of components such as operating frequency, threshold voltage, current consumption, 
etc. These variations are exploited to generate signatures. Some prominent examples of PUFs discussed in the 
literature include Ring oscillator PUF (RO-PUF)[42][25], Arbiter PUF[24] and Memory PUFs [20][44]. While 
memory PUFs need power cycling [44] to generate the unique signature, other conventional PUFs generate keys 
through a custom circuit introduced during the silicon manufacturing process. However, limited study has been 
done on generating PUF signatures for systems assembled from Commercially-Off-the-Shelf (COTS) components.
Acoustic techniques have been used to generate fingerprints for device identification [52] [12]. In [52], the 

android phone generates series of cosine waves from 14 kHz to 21 kHz with a 100 Hz gap between neighbour 
frequency points. The microphone of the phone itself records the acoustic signal. The spectrum of the recording is 
analysed to derive the fingerprints of the device. Similarly, in [12], different audio excerpts, including instrumental, 
human speech and songs are given as stimuli. Fifteen different features of the recorded signals, including the 
signal strength as well as spectral features, are analysed. While these approaches exploit the manufacturing 
variations in the acoustic components, they do not fingerprint the underlying microcontroller.

We propose a novel Acoustic PUF for the identification of devices. A coustic PUF is non-invasive, i.e., it does 
not need power cycling for generating the identifier. They are attractive because they are amenable to in-situ 
identification. Furthermore, A coustic PUF works with sensor nodes created from COTS components and thus 
requires no special hardware. This makes the proposed solution generic enough to be used for bespoke low
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volume sensor nodes. Since the signature is not integrated into the device during silicon manufacturing, the
proposed solution does not solicit any support from the semiconductor manufacturer. Further, in our approach, the
microphone does not contribute to the signature. Instead, our approach fingerprints the underlyingmicrocontroller,
which is typically the most important component in the system.

In this paper, we propose Acoustic PUF, consisting of a𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and a 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , that can
differentiate between two device instances of the same type; as well as differentiate when the device is moved from
its installed position. In our proposed scheme, the interrogator with an acoustic source gives out periodic pulses
of sound. The sensor device, embedded with a microphone, captures these pulses and generates the Acoustic
PUF. The identity component is extracted by making use of the device process variations, whilst the position
component is derived through acoustic fingerprinting. Since the Acoustic PUF is derived through the physical
characteristics of the manufactured sensor device, it is extremely difficult to replicate the signature, and thus
we believe it is a viable solution for identifying these devices while being tracked through the supply chain. We
evaluated Acoustic PUF across three properties: repeatability, uniqueness and position identity. Specifically, our
work demonstrates the robustness of Acoustic PUF for small-scale and mid-scale deployments, and we make
the following unique contributions:

• Wepropose a novel Acoustic PUF, capable of identifying the instance of sensor devicewhilst simultaneously
confirming that the device is indeed at its designated position.

• We implement a non-invasive Acoustic PUF using commercial off-the-shelf components.
• We evaluate the efficacy of Acoustic PUF against the three properties viz. repeatability, uniqueness and
position identity from the results of our deployment of 34 devices.

• We prove the scalability of Acoustic PUF for up to 10,000 devices through numerical simulations.

2 ACOUSTIC PUF PROPERTIES AND USE CASES

2.1 Overview
Since Acoustic PUF is derived from the innate properties of the sensor node based on manufacturing variations,
a similar identifier cannot be systematically created. Further, the probability of two devices having the same
identifiers is minimal for a deployment of about 10,000 sensor nodes. This characterises the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 property
of Acoustic PUF.
Another important property of Acoustic PUF is its ability to provide 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . Thus Acoustic PUF

not only tells who I am but also provides information about where I am. The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is obtained at no
additional expense and provides a sticky identity to the sensor device. It checks that the sensor device has not
moved unexpectedly from its installed position, thus providing it with an additional dimension of security. The
novel use of acoustic channel enables the simultaneous generation of𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 signatures. Similar
usage of RF channel while provides the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 information, it fails to provide any information regarding
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. We believe this is the first work providing an integrated approach to generate𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
signature using PUF.
We envisage that the generated 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 could be used to: (i) Further strengthen the identity and (ii)

Enable novel applications that combine𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 information together to drive anomaly detection.
In Section 2.2, we present one such use-case for detecting the unauthorised opening of armed latches, such as
stowage bin latch in an aircraft.
Many applications demand the deployment of multiple sensors of similar types at different positions. Any

replacement of a calibrated sensor with an uncalibrated one or accidental swapping in the position of sensors may
cause incorrect decisions leading to potential safety hazards. As an example, in an aircraft, there are multiple fuel
tanks with their respective gauges to indicate the fuel level. It is critical to confirm the calibration status of the
sensor and its position before undertaking any action based on the alert issued by the sensor. As another example,
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physical movement of sensitive oscilloscopes, used in the production and testing of semiconductor ICs, is enough 
to render them miscalibrated. By deploying Acoustic PUF, any unauthorised movement will immediately be 
detected and the oscilloscope will be disallowed from further participation on the production line, avoiding 
significant reputational and financial losses by preventing a product recall. To return to service, the oscilloscope 
will have to be recalibrated and a new Acoustic PUF identity generated to confirm fitness-for-purpose before it 
is returned to the production workflow. We will systematically discuss this example as a use-case in Section 2.3.

2.2 Usecase – Stowage bin latch
We construct a smart aircraft latch integrating the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 signatures. Such a device is a subject 
of ongoing studies [41][5]. Our work takes the existing body of work further by proposing a solution wherein 
the same sensor device could also be used to secure the latches while the aircraft is parked.

We consider a scenario when the aircraft is parked in the bay for maintenance. Typically, the periodic C-check 
for an aircraft is performed after a specified number of flying hours. This check involves individual systems and 
components limited to the Electronic and Equipment (E&E)-bay. However, reports indicate that the overhead 
stowage latches in the cabin area are found to be tampered. Our proposed approach has the ability to detect the 
opening of stowage bins by a suitable mechanical mounting arrangement of sensor nodes that get displaced from 
their armed positions in the event of a latch tamper.
We propose that the existing speakers are used as acoustic sources. While the aircraft is getting parked, the 

sensor devices are armed, and the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 and the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 signatures for all the sensor devices are collected. 
The highlight of the proposed solution is that the sensor devices need not stay armed during the entire duration 
when the aircraft is parked, i.e., they could be powered down. Before the next flight of the aircraft, the sensor 
devices are reactivated during the security check. Any change in 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 not only detects the opening 
of the stowage bin but also provides information about the specific stowage bin that was tampered with. Our 
evaluation shows that a displacement of as small as 5 cm could generate a detectable difference in 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . 
Thus the tamper detection and position of the stowage bin could be obtained by the interrogator in real-time and 
does away with manual checks. Further, the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 avoids any attempted pilferage. If the original 
sensor device is replaced by a fake device with an intention to bypass the check, such a replacement could be 
detected through the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . Thus by combining the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 
of the Acoustic PUF, the overhead stowage bins are secured.

2.3 Use case – Monitoring the calibration-integrity of an IoT/sensor-network deployment
As IoT deployments become pervasive, the reliability of their operation becomes an important safety requirement. 
Calibration is an important and necessary step that bootstraps system reliability. Understanding when a subset 
or whole of an IoT deployment enters the miscalibrated state is therefore important for the system operator. As 
deployment scales, it can get challenging for the operator to ensure calibration of a deployment. Mapping device 
measurements back to the device’s calibration status requires unambiguous identification of the device, which 
motivates the use of a PUF.

Ensuring calibration within a deployment is challenging. First, the scale of deployments may exceed the ability 
of the manual calibration regimes where each device is calibrated against a more accurate device. Second, between 
periodic calibration cycles, the devices may enter a miscalibrated status due to intentional or unintentional 
failures. Acoustic PUF effectively solves the challenge of monitoring the calibration status of a deployment by 
actively monitoring device identities as a function of each device’s physical integrity within a deployment.
Calibration is the process of comparing a measurement or instrumentation device against a more accurate 

device to understand its deviation profile. By applying appropriate offsets to measurements generated by the 
device, the deviations from “true readings” are minimised, thus increasing reliability. Periodic calibration is
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Fig. 1. Monitoring the calibration-integrity of sensor-network deployment using Acoustic PUF

usually required to refresh the deviation profile and generate fresh calibration offsets to minimise measurement
uncertainty.
However, periodic calibration guards against miscalibration only when the physical integrity of the device

is not compromised [6, 35, 37]. There are primarily two sub-classes of failures that can compromise physical
integrity – unintentional failures (stochastic events) and intentional failures (attacks). First, unintentional failures
such as physical shocks or careless swapping out of devices by operators may result in uncalibrated devices
entering the workflow. In the case of sensitive devices, the merely shifting devices may render them uncalibrated
[6, 43] as a small force is enough to disturb physical integrity. Second, intentional miscalibration is caused by an
attacker such as a malicious or disgruntled employee. Attackers seek plausible deniability to protect themselves
from attribution, motivating a preference for stealthy attacks. We note that inducing miscalibration can be done
stealthily by simply moving the target device from its calibrated location or subjecting it to physical shocks
(which involves temporary device movement as well).

In both unintentional failures and (stealthy) intentional failures, we note that the target device experiences
location movement. We posit that monitoring location movement can offer useful information about physical
integrity and hence calibration status. While this is easy enough for purpose-built devices, how can we carry
out reliable location-inference for devices within existing deployments? Acoustic PUF positively identifies a
device based both on its physical and location characteristics, making it a suitable mechanism for detecting
when a subset of a deployment is entering miscalibration status. Figure 1 shows one such scenario wherein
Acoustic PUF is used to detect the deployment entering miscalibration when an attacker moves or replaces a
calibrated device. During installation, Acoustic PUF is generated using the acoustic infrastructure consisting
of the speakers in the room and the microphones on the calibrated instrument. Periodically, the signature is
regenerated to confirm the calibration integrity. The location change is detected by the altered 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ,
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whereas𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 detects any replacement. Moreover, Acoustic PUF is a fully passive technique and
can work on-the-fly without operator initiative beyond the initial mechanism configuration process.

2.4 Acoustic PUF properties
We evaluate Acoustic PUF across the following key properties:
1) Repeatability: There is little variation in the signature of the device if queried repeatedly due to the inherent
device and measurement noise. This intra-device signature variation should lie within an acceptable threshold.
2) Uniqueness: Each device should generate a signature that is different from the other device. The inter-device
signature variation should be large enough so that thousands of devices could be uniquely identified. The
uniqueness of the device is captured in the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 part of Acoustic PUF.
3) Position identity: The sensor device should convey information about its position as part of the signature.
If the sensor device is displaced, the signature should change. The position of the device is captured in the
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of the Acoustic PUF.

Acoustic PUF combines𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 to create a strong device identity.

2.4.1 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for Acoustic PUF. Clock is ubiquitous in all digital systems, and all activities are
synchronised over the clock ticks. Most of the modern microcontrollers have more than one independent clock
source [11][32]. Further, clock dividers and phase-locked loops (PLLs) are used for generating derived clocks.

Due to variations in the manufacturing process of these clock sources and dividers, the clock frequency varies
from one device instance to another. The variation is typically in the range of a few hundred ppm for crystal-based
clocks and extends up to ±8% for internal on-chip oscillator clocks [32]. Hence if the count of clock ticks viz.,
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 is measured across two different clock devices for the same time duration, this number would
be slightly different. We generate the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 exploiting this difference in clocks. Specifically, we
generate single tones spaced at 16 sec and measure this time duration using the timer circuit in the sensor
device. The single tones are broadcasted by the interrogator through an acoustic source and captured by the
sensor devices through a microphone. Two independent clocks, viz. crystal oscillator and internal oscillator,
are used by the timer circuit as a source for the measurement. Further, to improve the uniqueness, aggregation
over a sliding window of eight such successive counts is performed to create the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . As an
example, 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 with sequence numbers 1-8 are aggregated to generate the first𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 with sequence numbers 2-9 are aggregated to generate the next𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . We also note
the temperature to account for variation in the count with respect to temperature. Hence𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a
tuple defined as

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

( 8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 ,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
; (1)

where, 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑖𝑛𝑡 represent the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 for crystal oscillator and internal os-
cillator, respectively. Figure 2 shows the histogram of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 measured over a duration of 16 sec for 
two different devices of the same hardware for 700 readings. The two devices have identical embedded software 
code. The x-axis represents the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 and the y-axis represents the number of iterations. The red line 
indicates the statistical mean. Device 1 has an average of 256151190, and Device 2 has an average of 256153112 
with a standard deviation within 100. The small standard deviation proves the repeatability property. Thus, it is 
possible to distinctly identify these two devices based on the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generated by accumulating the 
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 .
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(a) Device 1: 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

2.561528 2.561531 2.561534
Countidentity 1e8

0

50

100

150

Nu
m

be
r o

f I
te

ra
tio

ns

(b) Device 2: 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

Fig. 2. Histogram of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 for two devices

2.4.2 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for Acoustic PUF. Consider a setup where two fixed acoustic sources are kept at a
distance from each other at predetermined points S1 and S2. The source at point S1 generates a tone followed by
the source at point S2. A sensor device at position D receives the two tones and calculates the time difference
between their arrivals. This time difference of arrival (TDOA) would differ based on the relative position of D with
reference to S1 and S2. We exploit this difference in TDOA to create fingerprints for the positions. Specifically,
we generate three fingerprints viz., 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 using four acoustic sources. Two such sets of three 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 each
are obtained from two independent oscillators together forming 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . We also note the temperature
to account for variation in the count with respect to temperature. Section 4.2 provides further details regarding
the methodology for signature generation. Hence 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a tuple defined as

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =
(
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃4,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃5,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃6,

𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
; (2)

where,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃𝑖𝑃 𝑗 and𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃𝑖𝑃 𝑗 represent the𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 between pulses 𝑖 and 𝑗 for crystal oscillator
and internal oscillator, respectively. We observe that the𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 varies from one position to another, generating
distinct 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for each position.
Figure 3 shows the histogram of 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 for the same sensor device installed at two different positions 50

cm apart. The x-axis represents the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 , and the y-axis represents the number of iterations. The red line
indicates the statistical mean. We observe that the average count at position 1 is 32108946, and the average count
at position 2 is 32085052. The standard deviation of the count at both positions is within 50 counts. The small
standard deviation proves the repeatability property. Thus it is possible to identify the position uniquely through
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generated by 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 .

2.5 Parameters impacting Acoustic PUF:
There are two parameters to be configured while generating Acoustic PUF, viz., the timer frequency and the
accumulation count.

2.5.1 Timer Frequency. As the clock frequency increases, the timer accumulates more counts within the same time
duration. In many microcontrollers, this clock frequency is programmable. Figures 4a and 4b plot 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
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(a) Position 1: 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠
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(b) Position 2: 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠

Fig. 3. Histogram of 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 for two positions
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(b) 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 for 2 devices at 16MHz
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(c) 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 for 2 devices with no accumulation
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(d) 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 for 2 devices with accumulation=8

Fig. 4. Impact of timer frequency and accumulation on 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
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Fig. 5. Monte Carlo simulations for ring oscillator

over 16-sec duration for clock frequencies of 1 MHz and 16 MHz, respectively, using a crystal oscillator as the
source. The standard deviation is within five counts for 1 MHz and within 40 counts for 16 MHz. However, the
statistical mean count is of the order of 16000000 for 1 MHz and 256000000 for 16 MHz. Thus, while the standard
deviation has scaled eight times, the statistical mean for both devices has scaled 16 times, providing an improved
separation. Hence we recommend using a higher clock frequency for generating the signatures.

2.5.2 Accumulation Count. As discussed in Section 2.4.1, we accumulate eight𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 counts for generating
the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . Figures 4c and 4d demonstrate the impact of accumulation count. In Figure 4c, no
accumulation is done. In Figure 4d, eight 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 counts are accumulated to create the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .
The statistical mean for the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 in Figure 4c is of the order of 256100000, and in Figure 4d the statistical
mean of the accumulated 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 is of the order of 2049000000. The corresponding standard deviations are
within 90 and 270, respectively. Thus, the statistical mean has scaled eight times, whereas the standard deviation
has scaled three times. This demonstrates that the separation improves with the increase in accumulation. When
N number of accumulations are performed, while the mean scales linearly with N, the standard deviation scales√
𝑁 . Thus, the coefficient of variation decreases to improve the repeatability [47].
In summary, improved separation could be achieved by increasing the timer frequency and accumulation

count. Increasing the timer frequency improves the signature without increasing the time required for signature
generation. However, increasing the accumulation count increases the latency for signature generation. On
the contrary, while the timer frequency is limited by the hardware, the accumulation count may be increased
arbitrarily within acceptable signature generation time limits. We further discuss the impact of accumulation
count while discussing scalability in Section 6.
While we have discussed the impact of timer frequency and accumulation on𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , there is a

similar impact on 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . For our experimental evaluation, we have considered a timer frequency of
16MHz and an accumulation count of 8.

3 THE THEORY BEHIND ACOUSTIC PUF

In this section, we demonstrate the working principle of Acoustic PUF through sample simulations.
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Fig. 6. Principle of 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generation

3.1 Circuit simulations for 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generation
The variation in clock frequency across devices is exploited for the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generation. We present 
circuit simulations to understand how the device variations impact the frequency of a clock oscillator. We use a 
3-stage ring oscillator architecture for the clock, as shown in Figure 5a. Each stage consists of an inverter and a 
capacitive load. This is one of the standard architectures for oscillator implementation [51]. The clock oscillator 
generates a 32.768kHz clock during a typical simulation. The circuit design is implemented and simulated using 
an industry-standard LTspice simulator[13].
The values of the capacitors and the physical dimensions of the transistors (W, L) are modeled to have a

tolerance of 10%. We performed Monte Carlo simulations for 1000 iterations; each iteration represents a separate 
device with capacitance value and transistor dimensions picked up randomly, drawn through uniform distribution 
within the specified tolerance range. More details about the Monte Carlo simulation methodology are available in 
[14]. Figure 5b plots the histogram of clock frequency distribution across 1000 devices from the circuit simulation 
of the clock oscillator. The bin width considered for the histogram is 100Hz. From Figure 5b, we observe that the 
frequency varies from 30kHz to 36kHz with a 3𝜎 deviation of 10.2% and a statistical mean of 32.8kHz. If this ring 
oscillator is considered as a clock source to timer across different devices, the number of counts measured in a 
certain duration will have identical distribution. The devices falling within the same bin could be differentiated 
further by accumulating the clock counts and considering multiple clock sources, as discussed in Section 2.5. 
The Monte Carlo simulations of a ring oscillator with 0.18um devices from UMC report a similar frequency 
variation[47].

3.2 Numerical simulation for 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 generation
We present numerical simulations in MATLAB to demonstrate the change in 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 when the sensor 
device is displaced. The setup considered is as shown in Figure 6a. Two acoustic sources, S1 at (0,0) and S2 at 
(65,0), are placed 65 cm apart. The sensor device D is at a perpendicular distance d from the line connecting 

S1 and S2. The distance S1-D is 𝐷𝑖𝑠𝑡𝑆1−𝐷 = 
√
𝑑12 + 𝑑2. Similarly, the distance S2-D is 𝐷𝑖𝑠𝑡𝑆2−𝐷 = 

√
𝑑22 + 𝑑2. In this case, the TDOA is 𝑇𝑇 𝐷𝑂𝐴 = (𝐷𝑖𝑠𝑡𝑆1−𝐷 − 𝐷𝑖𝑠𝑡𝑆2−𝐷 )/𝑣 where 𝑣 is the velocity of sound. The corresponding 

difference in 𝐶 𝑜𝑢𝑛𝑡𝑝𝑜𝑠 is 𝑇𝑇 𝐷 𝑂𝐴 ∗ 𝑓  where 𝑓  is the frequency of the clock oscillator on the sensor device. 𝑓  is 
assumed as 16MHz for this simulation and 𝑣 is 340 m/sec.

Figure 6b plots the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 values when Device D is moved in the X direction from (0,d) to (65,d) parallel to 
the line connecting S1 and S2. d is assumed as 50 cm for this simulation. Similarly, Figure 6c plots the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 
values when the Device D is moved in the Y direction from (55,0) to (55,100). Plots 6b and 6c show that when D is 
displaced in the XY plane, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 are generated due to a difference in TDOA values.
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Fig. 7. Components of sensor device

As explained in Section 2.4.2, we generate 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 using four different acoustic sources. This ensures
that the position is uniquely identified in a 2-D plane. This approach could be further extended to identify the
position uniquely in a 3-D plane by the appropriate placement of more acoustic sources.
RF signal Vs. Acoustic signal for 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 : The velocity of a sound wave in air is 340 m/sec. The

velocity of an RF wave in air is 300x106 m/sec, thus six orders higher than a sound wave. Thus the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with
an RF wave would be six orders lower than the corresponding 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 generated through a sound wave. Hence
generating distinct 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 using an RF wave is practically infeasible. In Figure 6b, the sensor device
D will have the same 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 of 0 across all positions on the line connecting S1 and S2 if an RF signal is used
instead of an acoustic signal.

4 SYSTEM OVERVIEW
In this section, we discuss the setup infrastructure used to carry out the experiments. We provide details about
the hardware devices and the software APIs used.

4.1 Sensor devices
The embedded sensor devices typically consist of (i) Sensor, (ii) Analog signal conditioning circuit, (iii) Micro-
controller core, (iv) Power regulation circuit, and (v) Communication module. Most of these sensor devices are
built from commercially off the shelf (COTS) components, chosen and assembled together on a PCB to meet the
required functionality and performance specifications.
The sensor device used in our experiments is as shown in Figure 7. The microphone used is ICS-40618 from

Invensense[21]. The microphone is connected to the microcontroller board through a custom signal conditioning
board. The signal conditioning board has an amplifier and a filter circuit. The output of the signal conditioning
board connects to one of the analog comparator inputs on the microcontroller board. The microcontroller board
detects a pulse when the input acoustic signal crosses a preset threshold value.
Specifically, for our experiments, we have considered 34 sensor devices from two different microcontroller

device families
(1) Device type D1: 18 numbers of custom boards with nRF52840 microcontroller from Nordic semiconductors.

The nRF52840 microcontroller has an internal high and low-frequency oscillator, PLL, and comparator [32].
(2) Device type D2: 16 numbers of custom boards with nRF52832 microcontroller from Nordic semiconductors

[31].

4.2 Experimental setup
Figure 8 shows the installation of sensor devices and speakers laid out in a grid fashion over a 2.88m X 5.6m
area. The grid arrangement of sensor devices evaluates the generic nature of the proposed approach to generate
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . The X and Y numbers in Figure 8a indicate the (X,Y) coordinates of the speakers and the sensor
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Fig. 9. Timing of audio pulses

devices measured in centimetres; the origin indicated by (0,0). All the sensor devices are in the same XY plane 
with Z coordinate = 0. Figure 8b shows that four speakers viz. SPK1, SPK2, SPK3 and SPK4, used as acoustic 
sources are installed at positions (-144,-15), (-144,-259), (144,-15) and (144,259); all with Z coordinate = 200. The 
experimental setup does not assume a line of sight between the acoustic sources and the sensor nodes, thus 
accounting for the multipath environment. This mimics the deployment conditions in the field.
The speakers are driven through a single controller, viz. nRF52832-DK development board for Nordic 52832 

microcontroller[39]. The usage of a single microcontroller eliminates any need for synchronisation across different 
acoustic sources. The embedded board driving the speakers is programmed to generate a pulse train with a 1kHz 
tone for specified durations and at specific intervals, as shown in the timing diagram Figure 9. The crystal-based 
clock source is used for generating the timings, thus reducing the tolerance and jitter during pulse generation.
Figure 9 shows the timing diagram of the pulse pattern used for the generation of signatures. Speaker SPK1 

generates start pulse P1 of 1 sec followed by two pulses P2 and P3 of 0.1 sec each, separated by 16 sec. Speaker 
SPK2 generates a pulse P4 of 0.1 sec, 2 sec after P3. Similarly, speakers SPK3 and SPK4 generate pulses P5 and P6, 
separated by a 2 sec interval. During the pulse duration, the corresponding speaker sends out a single tone of 1 
kHz. The duration of 16 sec has been chosen heuristically. A longer duration causes better distinction amongst 
the devices at the expense of increased time for signature generation.

We have developed an API to extract the sensor device signatures. The functionality of the API is captured in 
the state diagram in Figure 10. To avoid false triggering due to external noise sources, a threshold determined 
empirically is used. The presence of an input tone is detected by the comparator whenever the 1kHz input signal
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Fig. 10. State diagram of API for extraction of signatures

crosses the preset threshold. Every crossing of input cycle causes an interrupt. The start of signalling is indicated
by a start pulse P1. The detection of 700 input cycles corresponding to 0.7 sec is recognised as a valid start pulse.
Pulse P2 triggers the signature generations by starting the internal timer T1. The T1 count is noted when pulses
P3, P4, P5 and P6 are detected. Another timer T2 is used for disabling the interrupt for specific intervals between
the pulses. The interrupts are disabled for 1.5 sec during 2 sec intervals (e.g., between P1 and P2), and 13 sec
during 16 sec intervals (between P2 and P3) to prevent interrupts from being caused by spurious signals. The
count difference between P2 and P3 provides the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and the count differences between P3-P4, P3-P5
and P3-P6 provide the three 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 viz. 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑃3𝑃4,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑃3𝑃5 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑃3𝑃6 for 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .
The 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 are measured for both internal oscillator and crystal oscillator during alternate
cycles, adding to the robustness of signatures.
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4.3 Usage model
During the pre-deployment phase, the positions of the sensor devices and the acoustic sources are carefully 
planned based upon the application. The sensor devices are connected to a master device over a communication 
channel, either wired or wireless. The trained machine learning (ML) model is deployed in the master device.

During the deployment phase, the sensor devices count the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 and communicate them 
to the master device. The master device runs the ML algorithm and performs the identification and positioning of 
the sensor devices. Any further action, like creating alerts, is taken by the master device.

The implementation of ML algorithms for resource-constrained embedded nodes is now supported [23]. Thus 
alternatively, the ML algorithm could also be executed locally in the sensor nodes, and the final identification and 
position information could be communicated to the master device.

5 EXPERIMENTAL EVALUATION AND RESULTS
In this section, we evaluate the Uniqueness, Position identity, Repeatability and Accuracy of Acoustic PUF.

Data collection: Figure 8 captures the picture of the setup during the deployment. We deployed 34 sensor 
devices in the indoor environment distributed over an area of 2.88m X 5.6m, exposed to the ambient temperature. 
The ambient temperature varied between 15◦𝐶 and 45◦𝐶 during the deployment duration. To manage the existing 
hardware resources, the devices were split into batches and data was collected for each batch for two weeks 
over a period of three months. Over this deployment duration, we have collected more than 400K datapoints 
for each of the counts. Specifically, 400K values each of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 , 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟 𝑦−𝑃3𝑃4, 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟 𝑦−𝑃3𝑃5, 
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟 𝑦−𝑃3𝑃6, 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑖𝑛𝑡 , 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4, 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6 were collected 
along with corresponding temperatures. The 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 were computed from these 
values by aggregation of eight successive counts over a sliding window.

5.1 Uniqueness and repeatability of Acoustic PUF
We present the results to show the uniqueness of Acoustic PUF. Figures 11a and 11b plot the daily averages for 
accumulated 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 and accumulated 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑖𝑛𝑡 respectively over the deployment duration. The 
x-axis represents the time in days, and the y-axis represents the daily average of accumulated 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 . Each 
line represents a separate device. We observe that: (i) Due to the tolerance in the manufacturing process, the 
accumulated 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 varies from one device to another. This confirms the uniqueness property of Acoustic 
PUF. (ii) For each device, the daily average varies minimally. This confirms the repeatability property of Acoustic 
PUF. (iii) There is some overlap for certain devices. As an example, in Figure 11a, we observe that Device 1 and 
Device 5 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 curves overlap. However, the same devices show distinct 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑖𝑛𝑡 curves in 
Figure 11b. Thus, their 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 are distinct.

5.2 Position identity and repeatability of Acoustic PUF
We present the results to show the position identity of Acoustic PUF. Figure 11c and Figure 11d plot the daily 
averages of 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟 𝑦−𝑃3𝑃4 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4 across five positions over the deployment duration. The 
x-axis represents the time in days and the y-axis represents the daily average of 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 over days. Each line 
represents a different position. We observe that: ( i) The 𝐶 𝑜𝑢𝑛𝑡𝑝𝑜𝑠 varies from one position to another. This 
confirms the position identity property of A coustic PUF. (ii) For each individual position in the installation, 
the daily average varies minimally over days. This confirms the repeatability property of A coustic PUF. (iii) 
Figure 11c shows little noise in the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟 𝑦−𝑃3𝑃4, i.e., variation in values over days. However, we discuss in 
Section 5.3 that the position is identified accurately despite the noise since six 𝐶 𝑜𝑢𝑛𝑡𝑝𝑜𝑠 are considered together 
for generating the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .



Sensor identification via Acoustic Physically Unclonable Function (PUF) • 1:15

1 3 5 7 9 11 13
Days

2.048028

2.048030

2.048032

2.048034

2.048036

8 1
Co

un
t id

en
tit

y
cr

y

1e9

Device 1
Device 2
Device 3
Device 4
Device 5

(a) Variation in daily averages of accumulated identity count
of crystal oscillator - 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦

1 3 5 7 9 11 13
Days

2.025

2.030

2.035

2.040

2.045

2.050

2.055

2.060

8 1
Co

un
t id

en
tit

y
in

t

1e9

Device 1
Device 2
Device 3
Device 4
Device 5

(b) Variation in daily averages of accumulated identity count
of internal oscillator - 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡

1 3 5 7 9 11 13
Days

3.190

3.195

3.200

3.205

3.210

Co
un

t p
os

cr
y

1e7

Device 1
Device 2
Device 3
Device 4
Device 5

(c) Variation in daily averages of position count of crystal
oscillator - 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦

1 3 5 7 9 11 13
Days

2.9

3.0

3.1

3.2

3.3

3.4

Co
un

t p
os

in
t

1e7

Device 1
Device 2
Device 3
Device 4
Device 5

(d) Variation in daily averages of position count of internal
oscillator - 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡

Fig. 11. Repeatability and uniqueness for identity and position signatures

5.3 Accuracy of𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

In this section, we evaluate the accuracy of Acoustic PUF to identify a sensor device and its position.
We have collected more than 400K data points across the sensor devices. We use a Machine learning (ML)

classification model to confirm the efficacy of 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . Specifically, we use a
kNN model with k=30 and perform 10-fold cross-validation to evaluate the accuracy. We perform analysis under
three different cases by redefining𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and further evaluate the impact of a
subset of features for each of the cases. The accuracy numbers for each of the cases are summarised in Table 1
and Table 2.

5.3.1 Case 1 - No accumulation: In this case, the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a tuple of
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 without accumulation. The signatures at one single temperature are considered
as features, i.e.,

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =
(
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦,𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 ,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
; (3)
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Features Case-1 Case-2 Case-3
All features: Internal osc, crystal osc and temperature 76.8 89.7 99.4
No crystal osc, only internal osc and temperature 50.6 58.54 99
No internal osc, only crystal osc and temperature 21.7 35.7 89.3
No temperature, only internal osc and crystal osc 57.1 71.7 95.4

Table 1. Accuracy percentage output from ML: 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for different cases

Features Case-1 Case-2 Case-3
All features: internal osc, crystal osc and temperature 98.5 99.7 99.9
No crystal osc, only internal osc and temperature 85.2 91 99.4
No internal osc, only crystal osc and temperature 96.9 97.2 99.4
No temperature, only internal osc and crystal osc 98.5 99.5 99.8

Table 2. Accuracy percentage output from ML: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for different cases

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =
(
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃4,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃5,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃6,

𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5,𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
. (4)

As observed in Table 1 and Table 2, the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 yields an accuracy of 76.8% and
98.5%, respectively when all the features are considered. The𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 accuracy reduces significantly
when only two features are considered. The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 in comparison stays greater than 85% even when
one of the features is excluded.

5.3.2 Case 2 - Accumulation of 8: In this case, the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 are tuples gener-
ated by accumulating eight corresponding 𝐶𝑜𝑢𝑛𝑡𝑠 . The signatures at one single temperature are considered as
features, i.e.,

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 ,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
; (5)

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃6,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
. (6)

From the ML output shown in Table 1 and Table 2, the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 yields an accuracy of 89.7%, and the 
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 yields an accuracy of 99.7% when all the features are considered. The impact on accuracy due to 
the exclusion of one of the features is lesser as compared to Case-1.

5.3.3 Case 3 - Accumulation of 8, Two temperatures: In this case, the accumulated counts at two different 
temperatures are considered along with the corresponding temperatures. Thus, the 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a tuple 
with six features, and the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a tuple with 14 features.
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𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 ,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 1

,(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 ,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 2

; (7)

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =

(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃6,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 1

,(
8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦−𝑃3𝑃6,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃4,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃5,

8∑
1
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡−𝑃3𝑃6,𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

)
𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 2

. (8)

The𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 at two different temperatures are separated by 6◦𝐶 − 10◦𝐶 . The
𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 yields an accuracy of 99.4%, and the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 yields an accuracy of 99.9% when all
the features are considered.

5.3.4 Observations related to Accuracy: From Table 1 and Table 2, we note that:
(1) The accuracy improves from Case 1 to Case 2 and further to Case 3 for𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 as well as 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. Thus,

accuracy improves with accumulation. The accuracy further improves when signatures at two distinct
temperatures are considered.

(2) For𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , we observe that the accuracy is better with 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 as input as compared
to𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦 . The variation in internal oscillator frequency across devices is higher than the variation
in a crystal oscillator. Hence internal oscillator based signature has better distinction across devices.

(3) To achieve an accuracy of greater than 95% for 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 , the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 with accumulation at
two different temperatures (Case 3) are required.

(4) The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 accuracy is 98.5% when all the features are considered, even without accumulation.
Hence no accumulation (Case 1) is required for 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .

(5) The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 with 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦 gives better accuracy as compared to 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡 . The intra-
device variation of 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑐𝑟𝑦 is smaller than 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠−𝑖𝑛𝑡 . Hence the crystal-based signatures have
better distinction across positions.

5.4 Variation of Acoustic PUF with microphone sensor
The Acoustic PUF should represent the digital core and hence must be independent of the microphone sensor.
Figure 12a plots the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for three different devices. Four different microphone devices are used
for every device to record the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . The vertical lines in the plot represent the change in the
microphone. The standard deviation of the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 across different microphones is within 500 counts.
This is comparable to the standard deviation of 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 taken through a single microphone. Thus
we observe that the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 remain unchanged with a change in microphone. Figure 12b plots the
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(b) Variation in 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 due to change inmicrophone

Fig. 12. Independence of Acoustic PUF with respect to microphone sensor
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(b) 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 at different positions

Fig. 13. Setup and plots showcasing the sensitivity of 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for three devices connected with different microphones kept at the same position. The x-axis 
represents iterations, and the y-axis represents the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . The three lines represent three different 
devices. The y-axis scale represents 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 corresponding to 10 cm. We observe that the difference in the 
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 obtained through three microphones is within 0.5 cm. Figure 12 confirms that the microphone 
sensor has a negligible impact on Acoustic PUF.

5.5 Sensitivity of Acoustic PUF with distance
To evaluate the position sensitivity of Acoustic PUF, we experimented by moving the microphone sensor. We 
assume that the acoustic sources are throughout in fixed positions. Figure 13a illustrates one such change; wherein 
the microphone sensor was moved in increments of 5 cm from position A to positions B, C and D. Figure 13b 
plots the corresponding signatures. We observe that a displacement of 5 cm is detected through 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .
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(a) Variation in 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 with temperature
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(b) Variation in 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with temperature

Fig. 14. Variation in Acoustic PUF with temperature

5.6 Time and current consumption for Acoustic PUF generation
As shown in Figure 9, the time required for the generation of a single pair of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 is 25
sec. Since eight 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 are accumulated to generate a single𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , the latency to generate
the first𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is 200 sec. The subsequent signatures are generated every 25 sec by accumulating
the previous eight 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 . The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is a tuple of multiple 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 , and hence a new value is
generated every 25 sec.

The current consumption during regular device operation for device type D1 as well as device type D2 is 2mA.
We found that the current consumption remains the same during signature generation. Thus Acoustic PUF is
generated with negligible current overhead.

5.7 Impact of temperature variations on Acoustic PUF

We deployed the sensor devices in an enclosure subjected to variation in ambient temperature from 15◦𝐶 to 45◦𝐶 .
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 were recorded along with the corresponding temperatures.

Figure 14a and Figure 14b plot the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and the 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with respect to temperature for 5 sample
devices. The x-axis represents the temperature, and the y-axis represents the corresponding 𝐶𝑜𝑢𝑛𝑡 . We observe
that the𝐶𝑜𝑢𝑛𝑡𝑠 vary almost linearly with temperature. To account for the variation in𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠
with respect to temperature, we measure temperature and provide it as one of the inputs to the ML model. The ML
model learns the mappings between the𝐶𝑜𝑢𝑛𝑡𝑠 and temperature and hence performs the classification accurately.

Further, the temperature coefficient, i.e., the variations in𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with respect to temperature
are different across devices. The ML model treats the temperature coefficients as additional features when
𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 at two different temperatures are given to the model. Hence, as observed
in Section 5.3, the identification accuracy improves when the 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 and 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 at two
different temperatures are considered.

5.8 Impact of voltage variations on Acoustic PUF

For three devices, we varied the supply voltage nominally set at 3V by ±10% to 3.3V and 2.7V and noted the
corresponding 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 . Multiple measurements were taken at each supply voltage. Figure 15a
and Figure 15b plot the scatter plots of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with respect to voltage. The x-axis represents
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(b) Variation in 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with voltage

Fig. 15. Variation in Acoustic PUF with voltage

the voltage, and the y-axis represents the corresponding 𝐶𝑜𝑢𝑛𝑡 . We observe that the variations in the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 
as well as 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 with respect to voltage, are comparable to the intra-device variations at a single voltage 
across the measurements. Hence we conclude that 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 are agnostic to variation in supply 
voltage. The three devices were kept in close proximity causing identical 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 readings across devices in 
Figure 15b.

6 SCALABILITY ANALYSIS FOR ACOUSTIC PUF
In the previous sections, we have shown that deployment of 34 sensor devices creates distinct 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . 
In this section, we show the scalability of 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 by evaluating its efficacy for the deployment of 
thousands of devices.

As the number of devices increases, the likelihood of multiple devices having the same 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for 
Acoustic PUF also increases. This is due to the fact that the manufacturing variation is bounded. The circuit 
designs for the real semiconductor parts are the intellectual property of the part manufacturers, and therefore 
there is difficulty in performing the Monte Carlo simulations to analyse the scalability. Further, it is practically 
infeasible to evaluate the scalability through the physical deployment of thousands of devices. Hence we perform 
numerical analysis to check the scalability of 𝑈 𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 .
Numerical model generation: To create a realistic model, we have extracted the statistical distribution 

of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦 from the real-world deployment. Specifically, we h ave e xtracted i ntra-device s tandard de-
viation, inter-device standard deviation and the range of temperature coefficients for 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑐𝑟 𝑦 and 
𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡 𝑦−𝑖𝑛𝑡 . The intra-device standard deviation characterises the distribution of measurements for a single 
device at a specific temperature. The inter-device standard deviation characterises the distribution of measure-
ments across multiple devices at a specific temperature. The range of temperature coefficients characterises the 
distribution of temperature coefficients across devices.

We have performed a MATLAB simulation to spawn out multiple devices from the numerical model. For each 
device, the model generates multiple values over a temperature range of 20◦C to 40◦C in steps of 0.25◦C. At 
each temperature, 100 readings are generated for every device. The model first generates the mean values of all 
devices at nominal temperature (30◦C) from a normal distribution with the expected value (i.e., 256000000) as 
mean and the inter-device standard deviation. Temperature coefficient for each device is generated through a 
uniform distribution from the range of observed temperature coefficients. In the next step, the means (across 
measurements) for every device at each temperature across the temperature range are computed based on the
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Fig. 16. Comparison of identification accuracy from the real-world deployment with the identification accuracy obtained
from model

temperature coefficient of the device and the mean at the nominal temperature. Finally, the measurements for all
the devices at every temperature is generated through Gaussian distribution using the mean at that temperature
and the intra-device standard deviation. This mimics the 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑐𝑟𝑦 and 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦−𝑖𝑛𝑡 measurements
from the actual deployment taken across devices over the temperature range. The 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 data generated
by the MATLAB model is used to compute𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 through accumulation.
Numerical model verification: To validate the model, we spawn out 34 devices. The 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

data generated by the model for 34 devices is used as input to the Machine Learning classification model. The ML
model is a kNN model with k=30, the same as the one used to analyse experimental data in Section 5.3. Three
different cases, as discussed in Section 5.3, are considered.

(1) Case 1:𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is same as 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 , i.e., no accumulation is done. 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 at a single
temperature is considered as a feature, see equation 3.

(2) Case 2:𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is obtained by accumulating eight𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 . The accumulated𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
at a single temperature is considered as a feature, see equation 5.

(3) Case 3:𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is obtained by accumulating eight𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 . The accumulated𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
at two different temperatures are considered as a feature, see equation 7. The two temperatures are 6◦C to
10◦C apart.

The accuracy numbers predicted by the model are 75.7%, 91.3% and 99.2%. Figure 16 shows that the results are
comparable to those obtained from the deployment. This confirms that our numerical model accurately captures
the distribution of 𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 from the real-world deployment of devices.
After validating the model, we spawn out 100, 1000 and 10000 devices using the model. Multiple values of

𝐶𝑜𝑢𝑛𝑡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 for each of the devices across the temperature range of 20 ◦C to 40 ◦C are generated. The generated
values are used to train the ML model, and the identification accuracy is checked through 10-fold cross-validation.

Number of devices = 100: Figure 17a shows the identification accuracy for 100 devices for (i) No accumulation,
(ii) Accumulation count = 8, (iii) Accumulation count = 16, (iv) Accumulation count = 16 at two different
temperatures. We observe that as the accumulation count increases from 1 to 16, the identification accuracy
improves from 46.7% to 86.3%. The accuracy further improves to 98.3% if𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is generated with
accumulated counts at two distinct temperatures.
Number of devices = 1000: As the number of devices increases to 1000, we observe in Figure 17b that higher

accumulation is required to achieve the same accuracy. The accuracy is 44% for the accumulation count of
16 (as against 86.3% for 100 devices) and improves to 85.62% for the accumulation count of 64. The accuracy



1:22 • Girish Vaidya, T.V.Prabhakar, Nithish Gnani, Ryan Shah, and Shishir Nagaraja

Case1 Case2 Case3 Case4
 Case 1: Accumulation=1, Single Temp 
 Case 2: Accumulation=8, Single Temp 
 Case 3: Accumulation=16, Single Temp 
 Case 4: Accumulation=16, Two Temp

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 P
er

ce
nt

ag
e

(a) Variation in accuracy for 100 devices
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(b) Variation in accuracy for 1000 devices
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(c) Variation in accuracy for 10000 devices

Fig. 17. Variation in identification accuracy with respect to accumulation count

further improves to 99.67% if𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is generated with an accumulation count of 64 at two distinct
temperatures.
Number of devices = 10000: The impact of accumulation for 10000 devices is shown in Figure 17c. As the

number of devices increases to 10000, the accuracy is 44% for an accumulation count of 64. The accuracy improves
to 73.9% with an accumulation count of 256 and further improves to 99% if𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 is generated with
an accumulation count of 256 at two distinct temperatures.
Thus we can achieve an identification accuracy of 99% even for 10000 devices. The increase in accumulation

count improves accuracy. The hypothesis is that as the accumulation is increased by N times, the mean of the
measurements for𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 for a given device is scaled by N times; however, the standard deviation
across measurements is scaled by

√
𝑁 . This increases the inter-device separation and hence improves the

distinction across devices. Initial signature generation requires 256 counts, whereas subsequent generation
requires one additional count. Therefore, the time required for Acoustic PUF generation remains the same due to
successive accumulation across the sliding window. However, the increase in accumulation comes at the expense
of increased latency for 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . As an example, if 256 counts are accumulated, the first Acoustic
PUF would be generated after 256*25 sec, and thereafter, a new value is generated every 25 sec.
The accuracy also improves by considering the accumulated count for the devices at different temperatures.

The hypothesis is that the devices have different temperature coefficients. Hence, two devices having comparable
signatures at one temperature may have distinct signatures at a different temperature. We propose that the device
stores intermittent Count and temperature values. While calculating the signature at two different temperatures
(as in case 4), any of the earlier stored readings could be used.

7 DISCUSSION AND FUTURE WORK
• 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 : The uniqueness of identity signature holds the promise that the inspected component
at a manufacturing facility is the same as the one being delivered and integrated into the production
workflow. We have shown that the Acoustic PUF based identity not only scales to thousands of devices
but also remains invariant to the ambient conditions and support hardware such as microphones. The
architected solution is generic enough to support any custom or commercial embedded devices.

• 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 : The results related to the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 as discussed in Section 5, assumes that the
number and the position of acoustic sources are fixed, and it could be argued that the signatures would vary
if these sources are moved. Such a change in their position could be trivially identified by a simultaneous
change in 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of all the sensor devices. Further, the sensitivity of the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 discussed
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Fig. 18. Setup for tuning the sensitivity of 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

in Section 5.5, as well as its range, could be enhanced by carefully selecting the number of acoustic sources
and placing them appropriately. On the contrary, if the application is such that a slight change in position
of devices is expected during the normal functionality, the sensitivity of 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 could be tuned.
In such applications, collecting data to encompass the real-world displacements for training the model will
serve the purpose. As an example, we collected 𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 by displacing three devices kept at three different
positions. Each device was moved across three places, together considered as data for the same position,
as shown in Figure 18. 600 data-points were collected for each position. The ML model was trained with
𝐶𝑜𝑢𝑛𝑡𝑝𝑜𝑠 values across the places. We observed that the accuracy of detecting positions stays greater than
99%. The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 could be leveraged independent of the𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 during a maintenance
schedule to identify the displacement of installed sensor devices as discussed in Section 2.

• Impact of Multipath: The repeatability of signatures, as discussed in Sections 5.1 and 5.2, depends upon the
path between acoustic sources and the microphone. The experiments were conducted indoors, where the
sensor devices would experience multipath reception due to several reflecting surfaces. Thus, we believe
that our solution is agnostic to the presence of multipath.

• Similarity to Localisation: The method of generating 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 as discussed in Section 3.2, although
appears similar to the time-difference-of-arrival (TDOA) [34][19] localisation technique, the goal is to
identify the change in position rather than localising the sensor device. Thus, it differs from localisation
in the following manner: (a) The native clock count and its associated precision are exploited. (b) The
difference in the clock counts generated from the two tones is used as the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 . Therefore, while
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 requires output in terms of the difference in clock count for the purpose of fingerprinting,
TDOA directly uses the time difference output. (c) Further, our methodology uniquely combines the device
identity information along with 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 to create a robust Acoustic PUF.

8 LIMITATIONS AND MITIGATION

8.1 Ageing
The experiments discussed in Section 5 were conducted for a duration of 15 days over three months and later
resumed after a break of two months. We did not observe any significant difference between the batch of readings
collected before and after the break. To further understand the impact of ageing, we compared two datasets
collected one year apart. The devices were inactive during the intermediate duration. The data was collected for
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six sample devices for a duration of one week. We used the old dataset for training a kNN model and verified the 
accuracy by using the new dataset as test data. The accuracy was 93%, which is comparable with the accuracy 
when the same dataset was used for training and testing with a 50%-50% split.

However, it is unclear from the results whether there is any gradual change in signatures caused by drift in 
component values due to ageing over a longer duration. Accelerated life tests must be conducted to confirm the 
ageing drift.
Analysis and Mitigation: In the event of an ageing drift, we propose the following mitigation mechanisms. In 

our proposed system, the number of clock ticks between the audio pulses are counted to generate the signatures. 
Thus, signature ageing depends primarily upon the ageing of the oscillators. The oscillators may be (i) On-chip 
crystal oscillators, where the internal active circuit is connected to the external crystal, (ii) Precise external 
oscillators and (iii) Internal oscillators.

Typically, an on-chip crystal oscillator with an external crystal is used. A high precision, highly stable external 
crystal could be connected with the active circuit internal to the controller. While the typical ageing drift for 
the crystal is in the range of 1-2 ppm/year[27], highly stable crystals with ageing less than 0.5ppb/day are also 
available[29]. Such a crystal could be integrated into a highly stable oscillator. Alternatively, precise external 
oscillators like high stability crystal oscillators with 125ppb change over 2.25 years are available and could be 
used [28].
For our application, we propose an oscillator with a drift of 0.1ppm/year ageing. As discussed in Section 2.5, 

with a 16MHz crystal oscillator and 16 sec duration between the pulses, we expect a pulse count of 256,000,000. A 
crystal oscillator with an ageing specification of +/- 0.1ppm/year would change the pulse count by merely 26 
pulse counts. From Figure 2, we see that the standard deviation for successive pulse counts is in the range of 100 
counts. Thus, a change of +/-26 pulse counts due to ageing will have minimal impact on signatures from our PUF. 
A recalibration every two years might be sufficient to account for ageing. Further, if the inter-device variation 
between the devices is ‘sufficient’, the change due to ageing drift may not cause a misidentification of devices. 
Thus, the recalibration duration could be proportionately extended.

The ageing phenomenon for the internal oscillator is not well studied and is expected to depend upon the 
specific circuit implementation in the silicon. However, the corresponding standard deviation for successive 
counts for the internal oscillator in our device is in the range of 70000 counts, thus around 700 times more than 
the crystal oscillator. We believe that a similar recalibration might be sufficient for the internal oscillator.

We could further complement the hardware approach through machine learning techniques. In the ML context, 
if the statistical properties of the target variable (device ID in our case) gradually change with time, it is known as 
concept drift [49]. Concept drift is a well-studied phenomenon, and newer techniques like incremental learning 
are emerging to address concept drift[50]. Concept drift and incremental learning could be further studied and 
adopted to address the ageing degradation for PUF.

9 RELATED WORK
Multiple approaches have been suggested in the literature for the generation of the identity of an embedded 
sensor device. For a device connected over a network, signature analysis and behaviour profiling of protocols 
have been implemented. IoT Sentinel [30] and ProfilIoT [26] propose extracting features across different protocol 
layers. The work in [2] uses temporal properties by extracting inter-arrival time between consecutive packets 
and applying deep learning for the classification of devices. While these approaches successfully identify a class 
of devices, they fail to perform identification at the device instance level.

For identification at the device instance level, storage of unique identity in the non-volatile memory has been 
one of the practised approaches. However, identity thefts have been reported for this approach. The identity could 
be stolen through scanning electron microscopy [10] or altered through fault injection attacks [38]. Approaches
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like tagging the devices through plant DNA [45] or usage of dielets [33] during the manufacturing of devices
have been proposed to secure the identity. However, these approaches are expensive and impossible to implement
for systems created from commercially off the shelf devices.

For device instance level identification, Physically Unclonable Functions (PUFs) have been studiedwidely [22][36].
Different variants of Ring oscillator PUF [42][25][1] use the difference in RO frequencies for the generation of
signatures. Arbiter PUF [24] uses the variation in delay paths. Custom analog circuits exploit the mismatch in
differential pairs [15] and comparator offsets [8] for generating signatures. These PUFs need a custom circuit
implementation. The memory PUF [20] uses the startup values of RAM as a signature. However, the generation of
signatures demand power cycling and hence are invasive. The usage of offset for ADC-DAC combination has been
proposed as PUF in [16]. This PUF requires DAC for implementation. Fingerprinting of devices through acoustic
means have been based on the anomalies introduced by the microphone while recording the sound [52][12].
However, these approaches fingerprint the sensor rather than the digital core.
Sensor device position is widely studied from a localisation perspective [40]. The existing literature suggests

several methods for sound source localisation. The approaches include the Received Signal Strength approach
(RSS), Time of Arrival(TOA), Time Difference Of Arrival(TDOA) [9]. Localisation of microphones using sound
sources at known locations has been discussed in [19][18][48]. The proposed approaches primarily rely on a
combination of TOA and TDOA methods. We have adapted the TDOAs native clock count approach, included
signature profiling and combined the device signature to create a unique device identity together with position.

10 CONCLUSION
In this paper, we presented a novel way to secure the identification of sensor devices and thus facilitated supply
chain traceability from manufacturing facility to deployment. We proposed Acoustic PUF, which combines the
identity component and the position component, creating a strong signature. Acoustic PUF is derived from
the innate properties of sensor nodes and is hence unclonable. Our Acoustic PUF does not require custom
circuits. Our experimental evaluation and simulations have shown that Acoustic PUF is a scalable and promising
alternative to generate a hardware root of trust.
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