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Abstract: Image captioning aims to generate a corresponding description of an
image. In recent years, neural encoder-decoder models have been the dominant
approaches, in which the Convolutional Neural Network (CNN) and Long
Short TermMemory (LSTM) are used to translate an image into a natural lan-
guage description. Among these approaches, the visual attention mechanisms
are widely used to enable deeper image understanding through fine-grained
analysis and even multiple steps of reasoning. However, most conventional
visual attention mechanisms are based on high-level image features, ignoring
the effects of other image features, and giving insufficient consideration to the
relative positions between image features. In this work, we propose a Position-
Aware Transformer model with image-feature attention and position-aware
attention mechanisms for the above problems. The image-feature attention
firstly extracts multi-level features by using Feature Pyramid Network (FPN),
then utilizes the scaled-dot-product to fuse these features, which enables our
model to detect objects of different scales in the imagemore effectively without
increasing parameters. In the position-aware attentionmechanism, the relative
positions between image features are obtained at first, afterwards the relative
positions are incorporated into the original image features to generate captions
more accurately. Experiments are carried out on the MSCOCO dataset and
our approach achieves competitive BLEU-4, METEOR, ROUGE-L, CIDEr
scores compared with some state-of-the-art approaches, demonstrating the
effectiveness of our approach.

Keywords: Deep learning; image captioning; transformer; attention;
position-aware

1 Introduction

Image captioning [1] aims to describe the visual contents of an image in natural language,
which is a sequence-to-sequence problem and can be viewed as translating an image into its
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corresponding descriptive sentence. With these characteristics, the model not only needs to be able
to identify objects, actions, and scenes in the image, but also to be powerful enough to capture and
express the relationships of these elements in a properly-formed sentence. This scheme analogically
simulates the extraordinary abilities of humans to convert large amounts of visual information
into descriptive semantic information.

Earlier captioning approaches [2,3] used some unsophisticated templates and two auxiliary
modules object detector and attribute detector. The two detectors filled the blank items of the
templates to generate a complete sentence. According to the great successes achieved by deep
neural networks [4] in computer vision [5,6] and natural language processing [7,8], a broad
collection of image captioning methods has been proposed [1,9,10]. Based on the neural encoder-
decoder framework [1], these methods use the Convolutional Neural Network (CNN) [4] to encode
the input image into image features. Subsequently, the Recurrent Neural Network (RNN) [11] is
applied to decode these features word-by-word into a natural language description of the image.

However, there are two major drawbacks in the plain encoder-decoder based models as
follows: (1) the image representation does not change during the caption generation process;
(2) The decoder processes the image representation from a global view, rather than focusing on
local aspects related to parts of the description. The visual attention mechanisms [12–15] can
solve these problems by dynamically attending to different parts of image features relevant to the
semantic context of the current partially-completed caption.

RNN-based caption models have become the dominant approaches in recent years, but the
recurrent structure of RNN makes models suffer from gradient-vanishing or gradient-exploding
with the growth of sentence and precludes parallelization within training examples. Recently, the
work of Vaswani et al. [16] shows that the transformer has excellent performance on machine
translation or other sequence-to-sequence problems. It is based on the self-attention mechanism
and enables models to be trained in parallel by excluding recurrent structures.

Human-like and descriptive captions require the model to describe primary objects in the
image and also present their relations in a fluent style. While image features obtained by CNN
commonly correspond to a uniform grid of equally-sized image regions, each feature only contains
information in its corresponding region, irrespective of the relative positions with any other
features. Thus, it is hard to get an accurate expression. Furthermore, these image features are
mainly visual features extracted from a global view of the image, and only contain a small amount
of local visual features that are crucial for detecting small objects. Such limitations of image
features keep the model from producing more human-like captions.

In order to obtain captions of superior quality, a Position-aware Transformer model for image
captioning is proposed. The contributions of this model are as follows: (1) To enable the model
to detect objects of different scales in the image without increasing the number of parameters, the
image-feature attention is proposed, which uses the scaled-dot-product to fuse multi-level features
within an image feature pyramid; (2) To generate more human-like captions, the position-aware
attention is proposed to learn relative positions between image features, making features can be
explained from the perspective of spatial relationship.

The rest of this paper is organized as follows. In Section 2, the previous critical works about
image captioning and the transformer architecture are briefly introduced. In Section 3, the overall
architecture and the details of our approach are introduced. In Section 4, the results of the
experiment on the COCO dataset are reported and analyzed. In Section 5, the contributions of
our work are concluded.
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2 Related Works

2.1 Image Captioning and Attention Mechanism
Image captioning is the task of generating a descriptive sentence of an image. It requires

an algorithm to understand and model the relations between visual and textual elements. With
the development of deep learning, a variety of methods based on deep neural networks have
been proposed. Vinyals et al. [1] firstly proposed an encoder-decoder framework, which used
the CNN as the encoder and the RNN as the decoder. However, the input of RNN was a
consistent representation of an image, and this representation was generally analyzed from an
overall perspective, thus leading to a mismatch between the context of visual information and the
context of semantic information.

To solve the above problems, Xu et al. [12] introduced the attention mechanism for image
captioning, which guided the model to different salient regions of the image dynamically at
each step, instead of feeding all image features to the decoder at the initial step. Based on
Xu’s work, more and more improvements in attention mechanisms have been developed. Chen
et al. [13] proposed spatial and channel-wise attention, in which the attention mechanism cal-
culated where (spatial locations at multiple layers) and what (channels) the visual attention was.
Anderson et al. [14] proposed a combined bottom-up and top-down visual attention mechanism.
The bottom-up mechanism chose a set of salient image regions through the object detection
technology, the top-down mechanism used task-specific context to predict attention distribution of
the chosen image regions. Lu et al. [15] proposed adaptive attention by adding a visual sentinel,
determining when to attend to an image or the visual sentinel.

2.2 Transformer and Self-Attention Mechanism
Recurrent models have some limitations on parallel computation and have gradient-vanishing

or gradient-exploding problems when trained with long sentences. Vaswani et al. [16] proposed the
transformer architecture and achieved state-of-the-art results for machine translation. Experimen-
tal results showed that the transformer was superior in quality while being more parallelizable and
requiring significantly less time to be trained. Recently, the work in [17,18] applied the transformer
to the task of image captioning and improved the model performance. Without recurrence, the
transformer uses the self-attention mechanism to compute the relation of two arbitrary elements
of a single input, and outputs a contextualized representation of this input, avoiding the vanishing
or exploding gradients and accelerating the training process.

2.3 Relative Position Information
Most attention mechanisms for image captioning attend to CNN features at each step [12,13],

while CNN features do not contain relative position information. This makes relative position
information unavailable during the caption generation process. However, not all the words have
corresponding CNN features. Consider Fig. 1a and its ground truth caption “A brown toy horse
stands on a red chair”. The words “stand” and “on” do not have corresponding CNN features,
but can be determined by the relative position information between CNN features (see Fig. 1b).
Therefore, we developed the position-aware attention to learn relative position information during
training.

3 The Proposed Approach

To generate more reasonable captions, a Position-aware Transformer model is proposed to
make full use of the relative position information. It contains two components: the image encoder,



2068 CMC, 2022, vol.70, no.1

and the caption decoder. As shown in Fig. 2, the combination of the Feature Pyramid Network
(FPN) [19], image-feature attention, and position-aware attention is regarded as the encoder to
obtain visual features. The decoder is the original transformer decoder. Given an image, the
FPN is first leveraged to obtain two kinds of image features, one is high-level visual features
containing the global semantics of the image, the other is low-level visual features which are local
details of the image [19]. These two kinds of features are fed into the image-feature attention
and position-aware attention to get fused features containing relative position information. Finally,
the transformer takes the fused features and the start token <BOS> or the partially-completed
sentence as input, and then outputs probabilities of each word in the dictionary being the next
word of the sentence.

(a) (b)

Figure 1: Original image and relative position (a) Original image (b) Red arrows represent relative
position information

Figure 2: Overall structure of our proposed approach
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3.1 Image-Feature Attention for Feature Fusion
The input of image captioning is an image. Traditional methods use a pre-trained CNN model

on the image classification task as the feature extractor and mostly adopt the final conv-layer
feature map as the image representation. However, not all objects in the image have corresponding
features stored in this representation, particularly for those small-sized objects. As shown in Fig. 3.

(a) (b)

(d) (e)

(c)

Figure 3: Original image and its features (a) Original image (b) The first-level feature (c) The
second-level feature (d) The third-level feature (e) The fourth-level feature

Fig. 3a is the original image, and the others are image features having semantics from low-
level to high-level. The lower the feature is, the more information it contains, and the weaker
semantics it presents. Weaker semantics are harmful to the model to grasp the topic of the image;
less information is negative for capturing the local details of the image. As a result, determining
an optimal level of image features invariably leads to an unwinnable trade-off. To recognize image
objects at different scales, we use the FPN model to construct a feature pyramid. Features in the
pyramid combine low-resolution, semantically strong features with high resolution, semantically
weak features via a top-down pathway and lateral connections. In this work, the feature pyramid
has four feature maps in total. The first two are high-level features and the rest are low-level
features.

Predicting on each level feature of a feature pyramid has many limitations, especially the
inference time will increase considerably, making this approach impractical for real applications.
Moreover, training deep networks end-to-end on all features is infeasible in terms of memory.
To build an effective and lightweight model, we choose one feature from high-level features and
low-level features respectively: Vlow = {vl1, . . . , vlm}, vli ∈Rdmodel and Vhigh = {vh1, . . . , vhn}, vhj ∈Rdmodel ,
dmodel is the hidden dimension of the model. Because low-level features are still too large to use
(e.g., 4 times more than high-level features in spatial size), the image-feature attention is then used
to fuse such two features according to Fig. 4.
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Figure 4: The structure of image-feature attention

As shown in Fig. 4, the image-feature attention takes Vlow and Vhigh as input and firstly uses
Eq. (1) to calculate the relevance-coefficients matrix C between elements in Vlow and Vhigh.

C =
(
VhighWQ

) (
VlowWK

)T
√
dmodel

(1)

The relevance-coefficients matrix C is then used to compute attention weights W according
to Eq. (2).

W = softmax (C) (2)

Finally, the attention weights W are applied to calculate a weighted sum of Vlow, and the
fused feature Vfused is computed by Eq. (3).

Vfused =VlowWT +Vhigh (3)

where dmodel is the hidden dimension of our approach, WQ, WK , WV are learnable parameters
during the training process.

3.2 Position-Aware Attention
RNN networks capture relative positions between input elements directly through their recur-

rent structure. However, the recurrent structure is abandoned in the transformer to support the use
of self-attention, and CNN features do not contain relative position information. As we mentioned
earlier, relative position information is helpful for achieving an accurate expression, so introducing
it explicitly is a considerably important step. When dealing with the machine translation task,
the transformer manually introduces position information to the model using sinusoidal position
coding. But sinusoidal position coding might not work for image captioning, because images
and language sentences are two very different ways of describing things, images mainly contain
visual information, while sentences mainly contain semantic information. In this work, rather than
using an elaborated handwritten function as the transformer does, the position-aware attention is
proposed to learn relative position information during training.
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Because an image is split into a uniform grid of equally-sized regions from the perspective
of image features, in this sense, we model the image features as a normative directed graph, see
Fig. 5. Each vertex (the blue block in the image) stands for the feature of a certain image region,
and each directed edge (the red arrows) denotes the relative position between two vertices. Note
that in this graph all the edges are direct, because the relative positions from feature A to B are
different from the relative positions from feature B to A.

Figure 5: The directed graph model of image features

The position-aware attention takes two inputs, Vfused , and an edge matrix E in which each
element Eij represents the edge starts from vertex Si to vertex Sj. In this case, we use Eq. (4) to

calculate the relevance-coefficients within elements of Vfused .

C =
(
VfusedWQ

) (
VfusedWK +E

)T
√
dmodel

(4)

Then obtain a new representation of Vfused through incorporating relative position informa-
tion according to Eq. (5).

Vfused =
(
Vfused +E

)
(softmax (C))T +Vfused (5)

Given a feature map of size m×n, the directed graph model has mn vertices, and each vertex
has edges that directly connect any other vertices, so the position-aware attention has to maintain
O

(
m2n2

)
edges, which are redundant in most cases because objects are usually located sparsely in

the image. Moreover, maintaining edges with space complexity O
(
m2n2

)
leads to parameters to

be trained increasing significantly.

In order to reduce space complexity, the locations of two vertices in horizontal and vertical
directions are leveraged to construct the relative positions between these two vertices. As shown in
Fig. 6, the vertices are placed in a cartesian coordinate, and each vertex has an unique coordinate.
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Figure 6: Using differences in horizontal and vertical directions to construct the relative positions

Algorithm 1: Calculate Edge Matrix Emn for each element in m × n size feature map

Instead of using the edge that directly connects two vertices (the dashed line in Fig. 6), the
coordinates of these two vertices are utilized to compute the edge. For example, Si has coordinate
(2, n) and Sj has coordinate (4, n− 3), their distance (from Si to Sj) in horizontal direction is −2,

in vertical direction is 3, and their relative position (from Si to Sj) Eij is represented by Erow3 +Ecol−2.
In practice, in order to get a compact computation process, we use Algorithm 1 to get an edge
matrix E for each element.
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The model needs to store two kinds of edges in this way, one is Erow =
(
Erow−(m−1), . . . , Erow0 , . . . ,

Erow
(m−1)

)
, and the other is Ecol =

(
Ecol−(n−1), . . . , Ecol0 , . . . , Ecol

(n−1)

)
, there are 2 · (m+ n− 1) edges in

total. For a feature map of size m × n, we reduce the space complexity of storing edges from
O

(
m2n2

)
to O (max (m, n)) by using coordinates of two vertices to compute their edge.

4 Experimental Results and Analysis

4.1 Metrics
Our caption model was evaluated in several different evaluation metrics, including BLEU [20],

CIDEr [21], METEOR [22], and SPICE [23], etc. These metrics focus on different aspects of
generated captions and give a scalar evaluation value quantitatively. BLEU is a precision-based
metric and is traditionally used in machine translation to measure the similarity between the
generated captions and the ground truth captions. CIDEr measures consensus in generated cap-
tions by performing a Term Frequency-Inverse Document Frequency weighting for each n-gram.
METEOR is based on the explicit word to word matches between the generated captions and the
ground-truth captions. SPICE is a semantic-based method that measures how well caption models
recover objects, attributes and relations shown in the ground truth captions.

4.2 Loss Functions
Given the ground truth sentence Sgt = {y0, y1, . . . , yt} and its corresponding image I , the

sentence Sgt was split into two parts Starget = Sgt [0 : − 1] and Starget_y = Sgt [1 : ]. The model was
trained by minimizing the following cross-entropy loss:

Lcross−entropy (θ)=−log (
pθ

(
Starget_y | Starget; θ ; I

))
(6)

where θ was the parameters of the model. At the training stage, the model was trained to generate
the next ground-truth word given the previous ground-truth words, while during the testing phase,
the model used the previously generated words from the model distribution to predict the next
word. This mismatch resulted in error accumulation during generation at test time, because the
model had never been exposed to its own predictions. To make a fair comparison with recent
works [24]. At the beginning, the model was trained with standard cross-entropy loss for 15
epochs. After that, the pre-trained model continued to adjust its parameters under the proposed
Reinforcement Learning (RL) method described in [24] for another 15 epochs.

This method can relieve the mismatch between training and testing by minimizing the negative
expected reward:

L (θ)=−Eωs∼pθ
[
r
(
ωs)] (7)

where ωs= (
ωs
1, . . . , ωs

T

)
was the generated sentence and r was the CIDEr score of the generated

sentence.

4.3 Dataset
The MSCOCO2014 dataset [25], one of the most popular datasets for image captioning,

was used to evaluate the proposed model. This dataset contains 123,287 images in total (82783
training images and 40504 validation images respectively), each image has five different captions.
To compare our experimental results with other methods precisely, the widely used “Karpathy”
split [26] was adopted for MSCOCO2014 dataset. This split has 112,387 images for training, 5000
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images for validation and 5000 images for testing. The performance of the model was measured
on the testing set.

4.4 Data Preprocessing
The images were normalized to mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225],

and the captions with length larger than 16 got clipped. Subsequently, a vocabulary was built
with three tokens <BOS>, <EOS>, <UNK> and the words that occurred at least 5 times in
the preprocessed captions. The token <UNK> represented words appearing less than 5 times, the
token <BOS> and <EOS> indicated the start and the end of a sentence. Finally, the captions
were vectorized by the indices of words and tokens in the vocabulary. During the training process,
for the convenience of transformation between words and indices, two maps wtoi and itow were
maintained. wtoi maps a word or token to its corresponding index, and itow maps an index to
the word or token.

4.5 Inference
The inference was similar to RNN-based models, and the word would be generated one by

one at a time. Firstly, the model began with the sequence S0 that only contained the start token
<BOS>, and obtained the dictionary probability yi ∼ p (yi | S0; θ ; I) through the first iteration.
Afterwards, some sampling methods such as the greedy method or the beam search method were
used to generate the first word y1. Then, y1 was fed back into the model to generate the next word
y2. This process would continue until the end token <EOS> or the max length L was reached.

4.6 Implementation Details
A FPN from a pretrained instance segmentation model [27] was used to produce features at

five levels. Experiments were carried out based on the second and the fourth features. The spatial
size of the second feature was set to 14 × 14 and the other was set to 28 × 28 via adaptive
average pooling. We did not train the fine-tune model, thus, the parameters of the two features
were fixed in the whole training process.

In Tab. 1, the hyperparameter settings of the position-aware transformer model trained with
standard cross-entropy loss are presented.

For our model trained with standard cross-entropy loss, we used 6 attention layers, dmodel =
256, 4 attention heads, dhead = 64, 1024 feed forward inner-layer dimensions, and Pdropout = 0.1.
This model was trained for 15 epochs, each epoch had 12000 iterations and the batch size was 10.
The initial learning rate of the model was 5×10−4, the warmup strategy with warmupsteps = 20000
was used to speed up the training and the same weight decay strategy as in [16] was adopted for
learning rate adjustment. The Adam optimizer [28] with β1 = 0.9, β2 = 0.98, and ε = 10−9 was
used to update parameters of our model. During training, we employed label smoothing of value
labelsmoothing = 0.1 [29]. At the inference stage, the beam search method with a beam size of 3
was chosen for better caption generation. The Pytorch framework was adopted to implement our
model for image captioning.

For our model optimized by CIDEr optimization (Initializing from the pretrained cross-
entropy trained model), it was trained for another 15 epochs to adjust parameters. The initial
learning rate was set to 1× 10−5, and both warmup and weight decay options were turned off.
The rest of the settings were identical to the cross-entropy model.
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Table 1: Hyperparameter settings of the model

Parameter Value

epochs 15
learning_rate 0.0005
label_smoothing 0.1
warmup_steps 20000
adamβ1 0.9
adamβ2 0.98
sample_method beam_search
beam_size 3
dmodel 256
num_head 4
dhead 64
Pdropout 0.1

4.7 Ablation Studies
In this section, we conducted several ablative experiments for the position-aware transformer

model on the MSCOCO datasets. In order to further verify the effectiveness of the sub-modules
in our model, a Vanilla Transformer model for image captioning was implemented. It regarded
the CNN and the transformer encoder as the image encoder and the transformer decoder as the
caption decoder. Based on the vanilla transformer model, the other two models (FPN Transformer
and Position-aware Transformer) were implemented as follows:

FPN Transformer: a model equipped with the image-feature attention sub-module and
employed image features built by the FPN.

Position-aware Transformer: a model equipped with the image-feature attention and position-
aware attention sub-modules. This model also used the image features built by the FPN.

In the experiments, Vanilla Transformer model used the ResNet to encode the given image I
to the spatial image feature and the image feature was obtained from the 5th pool layer of the
ResNet. The ResNet was pre-trained on the ImageNet dataset. We then apply adaptive average
pooling to obtain an image spatial feature V = {v1, . . . , v14x14}, vi ∈Rdmodel , where 14 × 14 is the
number of regions, and vi represents a region of the image. FPN Transformer used the same
FPN network as in [27] to encode the given image I and the image feature attention to fuse
image features built by the FPN to size of 14 × 14 too. Position-aware Transformer was the
proposed approach described in Fig. 2. All hyperparameters of the three models stayed the same
if possible. In Tab. 2, the test results of the Vanilla Transformer, FPN Transformer and Position-
Aware Transformer on BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L, CIDEr
metrics are presented, and the validation results of the three models are shown in Fig. 7.

As shown in Tab. 2, through image-feature attention and position-aware attention, the Vanilla
Transformer model can achieve better performance in terms of BLEU-1, BLEU-2, BLEU-3,
BLEU-4, METEOR, ROUGE-L and CIDEr.
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Table 2: The performance of our models optimized by standard cross-entropy loss

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Vanilla transformer 74.9 58.2 44.6 34.1 27.1 55.4 107.6
FPN transformer 76.2 60.0 46.3 35.6 27.6 56.7 113.9
Position-aware transformer 76.7 60.8 46.9 36.0 27.8 56.5 114.9

Figure 7: Validation results of several metrics
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From Fig. 7, it turns out that FPN Transformer has better performance compared with
Vanilla Transformer on all metrics, which is due to the fact that the FPN produces a multi-scale
feature representation in which all levels are semantically strong, including the high-resolution
levels. This enables a model to detect objects across a large range of scales by scanning the model
over both positions and pyramid levels. Also, it can be noticed that the combination of image-
feature attention and position-aware attention provides the best performance, mainly because that
the position-aware attention makes features can be explained from the perspective of spatial
relationship.

SPICE is a semantic-based method that measures how well caption models recover objects,
attributes and relations. To investigate the performance improved by the proposed sub-modules,
we report SPICE F-scores over various subcategories on the MSCOCO testing set in Tab. 3
and Fig. 8. When equipped with the image-feature attention, the FPN Transformer increases the
SPICE-Objects metric by 2.2% compared with the Vanilla Transformer, exceeding the relative
improvement of 1.85% on the SPICE-Relations metric and the relative improvement of 0.15%
on the SPICE metric. It shows that the image-feature attention can improve the performance in
terms of identifying objects. After incorporating the position-aware attention, the Position-aware
Transformer shows more remarkable relative improvement of 9.0% on the SPICE-Relations metric
than the relative improvements on the SPICE and the SPICE-Objects metrics, demonstrating that
the position-aware attention improves the performance by identifying the relationships between
objects.

Table 3: SPICE F-scores over various subcategories on the MSCOCO test set

Metric SPICE SPICE-objects SPICE-relations

Vanilla transformer 20.1 36.2 5.4
FPN transformer 20.1 37.0 5.5
Position-aware transformer 20.9 37.8 6.0

Figure 8: Performance comparison of different transformers
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4.8 Comparing with Other State-of-the-Art Methods
The experimental results of the Position-aware Transformer and previous state-of-the-art mod-

els on the MSCOCO testing set are shown in Tab. 4. All results are produced by models trained
with standard cross-entropy loss. The Soft-Attention model [12], which uses the ResNet-101 as
the image encoder, is our baseline model.

Table 4: Experimental results of our approach compared with other methods (optimized by
standard cross-entropy loss)

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Soft-attention [12] 70.7 49.2 34.4 24.3 23.9 – –
Hard-attention [12] 71.8 50.4 35.7 25.0 23.0 – –
Adaptive [15] 74.2 58.0 43.9 33.2 26.6 – 108.5
Bottom-up [14] 77.2 – – 36.2 27.0 56.4 113.5
Position-aware transformer 76.7 60.8 46.9 36.0 27.8 56.5 114.9
Relative improvement −0.07% – – 0.06% 3% 0.1% 1.2%

In contrast to recent state-of-the-art models, our model shows a better performance. When
compared with the Bottom-Up model, the METEOR score, ROUGE-L score and CIDEr score
increase from 27.0 to 27.8, 56.4 to 56.5, 113.5 to 114.9 respectively, the BLEU-1 score and
BLEU-4 score obtain similar results. Among these metrics, METEOR, ROUGE-L and CIDEr are
specialized for image captioning tasks, which validates the effectiveness of our model.

The experimental results of the Position-aware Transformer and Bottom-up model that trained
with CIDEr optimization on the MSCOCO testing set are shown in Tab. 5.

As shown in Tab. 5, our model improves the BLEU4 score from 36.3 to 38.4, METEOR
score from 27.7 to 28.3, ROUGE-L score from 56.9 to 58.4 and CIDEr score from 120.1 to 125.5
respectively. In addition, we can also see that all the metrics increase, specifically, the CIDEr metric
gets 4.5% relative improvement. This shows that the proposed approach has better performance.

Table 5: Experimental results of our approach compared with the bottom-up (optimized by
CIDEr optimization)

Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Bottom-up [14] 79.8 – – 36.3 27.7 56.9 120.1
Position-aware transformer 79.8 64.7 50.2 38.4 28.3 58.4 125.5
Relative improvement 0% – – 5.8% 2.1% 2.6% 4.5%

5 Conclusion and Future Work

A position-aware transformer with two attention mechanisms, i.e., the position-aware attention
and image-feature attention, is proposed in this work. To generate more accurate and more fluent
captions, the position-aware attention enables the model to make use of relative positions between
image features. These relative positions are modeled as the directed edges in a directed graph in



CMC, 2022, vol.70, no.1 2079

which vertices represent the elements of image features. In addition, to make the model be able
to detect objects of different scales in the image without increasing the number of parameters,
the image-feature attention brings multi-level features through the FPN and uses the scaled-dot-
product to fuse multi-level features. With these innovations, we obtained a better performance
than some state-of-the-art approaches on the MSCOCO benchmark.

At a high level, our work utilizes multi-level features and position information to increase
performance. While this suggests several directions for future research: (1) The image-feature
attention pick up features of particular levels for fusion. However, in some cases, determining
these features depends on the specific image. For some images, all the objects may be large objects,
so the fusion of low-level features may bring inevitable noises to the prediction process of the
model due to the weak semantics of low-level features; (2) The position-aware attention uses the
relative positions between features to infer the words with abstract concepts in descriptions, but
not all such words are related to spatial relationships. Based on these issues, further research will
be carried out subsequently, and we will apply this approach to the image retrieval based on text
information.
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