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Abstract

Ionic liquids (IL) are promising electrolytes for electrochemical applications due to their re-

markable stability and high charge density. Molecular dynamics simulations are essential

for better understanding the complex phenomena occurring at the electrode–IL interface. In

this work, we have studied the interface between graphene and 1-ethyl-3-methyl-imidazolium

tetrafluoroborate IL, using density functional theory-based molecular dynamics simulations

at variable surface charge densities. We have disassembled the electrical double layer poten-
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tial drop into two main components: one involving atomic charges and the other – dipoles.

The latter component arises due to the electronic polarisation of the surface and is related

to concepts hotly debated in the literature, such as the Thomas–Fermi screening length,

effective surface charge plane, and quantum capacitance.

Introduction

The ever-growing, world energy consumption has created a demand for higher capacity en-

ergy storage devices.1 Supercapacitors were developed to meet that demand by storing energy

in the electrical double layer (EDL) – at the interface between an electrode and an elec-

trolyte.2–4 Processability and a low cost are essential characteristics when choosing electrode

material for supercapacitors. That is why one of the most widely used electrode material is

graphitic carbon.5 To allow for the accumulation of more charge, the specific surface area of

graphitic carbon is increased via chemical or thermal activation, 6–8 resulting in capacitance

as high as 120, 300, and 245 F/g in organic, aqueous, and ionic liquid (IL) electrolytes, re-

spectively.9,10 In addition to activated carbon, the potential usage of nanostructured carbon

and graphene (Gr) are gaining broad interest. 11–14 However, all carbon-based materials have

a limitation due to their quantum properties. Upon an increase of a specific surface area, the

electrode thickness reduces to the size of a space-charge region. That, in turn, reduces the

number of mobile charge carriers, which decreases the energy storage capacity. 6 In general,

the capacitance of a Gr electrode–electrolyte interface is limited by the capacitance of Gr. 15

In particular, the electronic structure of Gr directly relates to the characteristic capacitance

minimum near the potential of zero charge.16 Still, by choosing a suitable electrolyte, one can

enhance the energy storage capacity. For example, by widening the electrochemical stability

window with the use of an IL electrolyte, the storage capacity of the supercapacitors can be

improved. That is why thermally stable and moisture resistant room temperature ILs are

promising electrolytes for electrochemical application. 1,17
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Because macroscopic quantities such as capacitance arise from the microscopical pro-

cess taking place in the EDL, an understanding of the structure and dynamics of inter-

faces is crucial for the development of supercapacitors. The properties of ILs near surfaces

have been actively studied since 2007.17,18 Numerous computational studies have focused on

the interfacial structure, dynamics, and properties of ILs, using classical molecular dynam-

ics (CMD),19–25 density functional theory (DFT),26–30 and DFT-based molecular dynamics

(DFT-MD).31–34

For the electrode model, different carbon-based materials were examined; for the elec-

trolyte model, various imidazolium-based ILs were investigated. Specific attention was

given to the interface between a Gr sheet and 1-ethyl-3-methylimidazolium tetrafluorob-

orate (EMImBF4) because of the high specific surface area of Gr coupled with the large

electrochemical stability window of EMImBF4.35 Previously, several capacitor models con-

sisting of carbon-based electrode and EMImBF4 were studied with CMD by Shim et al.,36

Merlet et al.,37 and Paek et al.32 Shim and co-workers noticed that interfacial capacitance

is higher for the positively charged electrode due to the size differences between the ions.

Merlet et al. reproduced the results of the earlier atomistic simulation using a coarse-grained

model of EMImBF4.37 Paek et al. conducted, in addition to CMD, a 1.5 ps-long DFT-MD

simulation using a model made up of 15 EMImBF4 ion pairs and a Gr sheet of 60 atoms. By

comparing the potential profiles, Paek et al. concluded that the polarisation effects should

be included when evaluating the interfacial capacitance. 32

In this study, we have examined the Gr–EMImBF4 interface with large-scale DFT-MD

simulations focusing on its microscopic (electrode charge screening and polarisation) and

macroscopic (surface charge density and potential drop) characteristics. We show how the

analysis of the obtained electronic and geometric structures leads to the estimation of the

central quantity – the potential drop across the EDL.
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Computational methods

Classical molecular dynamics simulations

To run CMD simulations of the Gr–EMImBF4 interface, we used a model with two rigid,

parallel Gr sheets with an area of 3.408×3.4433 nm2. The 10.472 nm space between the

sheets was filled with 450 EMImBF4 ion pairs using Packmol.38 All the simulations were run

using Gromacs 5.1.439,40 software and NaRIBaS scripting framework.41 OPLS-AA force field

was used with an effective dielectric constant of 1.6.42 Each system was pre-equilibrated for

0.1 ns, annealed at 1000, 900, 800 K for 3 ns to produce three replicas, and simulated in

the NV T ensemble for 10 ns at 450 K, which was controlled by the v-rescale thermostat.43

In between the pre-equilibration and annealing, the electrodes were equally but oppositely

charged within 2 ns. The surface charge densities (σ) of 0 and ±0.5 e/nm2 were set as point

charges of equal magnitude on the surface atoms. All other parameters were set the same

as in Ref. 44.

DFT-based molecular dynamics simulations

All model systems used in the DFT-MD simulations were cut out from the last step of the

CMD trajectory. Figure 1 illustrates the DFT-MD simulation cell, where one side of the

cell is the Gr sheet (448 carbon atoms) in contact with IL, which consists of 400 ions. To

have a similar σ as in the CMD simulations, an excess of EMIm+ cations or BF−4 anions was

introduced to cause a natural charge redistribution between IL and Gr. Periodic boundary

conditions were applied in x,y-directions, parallel to the surface. A vacuum layer was added

to extend the z-axis along the surface normal of Gr from 5 to 8 nm. In this manner, two

replicas were created for two systems with the charged electrode and three replicas for the

system with the neutral electrode. The exact number of ions in each system are given in Fig-

ure 1. The DFT-MD simulations at 353 K, in the NV T ensemble, were performed with CP2k

software package versions 2.6 and 5.0,45 implementing the Gaussian plane wave method.46
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The computations were carried out using the energy cut-off of 600 Ry for the plane wave

grid, Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional, 47 optimised double-

zeta basis set, with corresponding Goedecker–Teter–Hutter (GTH) pseudopotentials, 48–50

and the D3 dispersion correction by Grimme et al.51 It was previously shown in Refs. 52–56

that the PBE+D3 combination gives accurate interaction energies for IL ion pairs. The

duration of the simulations was from 2.3 to 8.1 ps with a time step of 0.5 fs. Within the

0.5–1 ps the bond lengths and angles relaxed from the values given by the CMD force field

to the ones consistent with the PBE+D3/GTH/DZVP-MOLOPT theory level. For further

analysis 32–37 random snapshots were chosen after 2 ps of simulation for charge analysis

with Chargemol 3.5 software implementing the sixth version of density derived electrostatic

and chemical (DDEC6) partitioning approach that shows accurate reproduction of the elec-

trostatic potential for a variety of periodic and non-periodic systems. 57–59 The averages over

these snapshots were used for the system characterisation.
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Figure 1: a) Snapshot of the system used within simulations in the current work. The EMIm+

cations, BF−4 anions and Gr electrode are colored in red, blue, and gray, respectively. b) The
charge distribution of carbon atoms in Gr at different surface charge densities, where each
point depicts one carbon atom of Gr. c) The number of ions in the studied systems.

Density of States calculation

Unlike in the CMD simulations, DFT calculations explicitly account for the electronic density

distribution, which can be used for the calculation of the projected density of states (pDOS).

Based on the pDOS of Gr, one can estimate σ as

σDOS =
n(e−)

S
−
∫ ∞
−∞

D(E)P (E)dE, (1)

where D(E) is the projected density of states for Gr at the energy level E, P (E) the occu-

pancy of the level, n(e−) the number of carbon atoms’ valence electrons in case of neutral
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Gr in vacuum, and S the surface area of Gr in contact with IL. The additional potential

resulting from electronic density redistribution in Gr caused by charging can be estimated

from the DOS,60

∆φDOS =
E0

F − Eσ
F

e
, (2)

where Eσ
F is the Fermi energy of the Gr sheet with a surface charge density σ, E0

F the energy

at the minimum in the DOS shown in Figure 3, and e the elementary charge.

Using the pDOS of Gr, it is also possible to evaluate the Thomas–Fermi screening length

of Gr using the equation:61

lTF =
ε0h̄

4e2

√
2EF
πmen

, (3)

where the concentration of mobile charge carriers (n) in Gr can be estimated as

n =

∫ EF

−∞
D(E)[1− f(E − EF, T )] dE +

∫ ∞
EF

D(E)f(E − EF, T )] dE. (4)

In Eq. 4 f(E−EF, T ) stands for the Fermi–Dirac distribution function
[
exp

(
E−EF
kBT

)
+ 1
]−1

.

Overscreening and potential drop

To quantify the overscreening phenomenon, we used the overscreening factor (β):

β(z) = − 1

σ

∫ z

0

ρ(z′)dz′, (5)

where ρion(z) is the ionic charge density at distance z from the electrode, and σ is the surface

charge density. The surface charge is screened when β = 1 and overscreened when β > 1.

To calculate the potential drop, we used the charge density obtained by the means of

DDEC6 analysis and Poisson’s equation. When studying the potential drop in a direction

perpendicular to the Gr surface, integration of Poisson’s equation yields the expression for
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electrostatic potential at a point z from the electrode:

φ(z) = − 1

ε0

∫ z

0

(z − z′
)ρ(z

′
)dz

′
(6)

The potential drop (φion) between the electrode and the electrolyte was calculated as

∆φion = φGr − φelectrolyte. (7)

where φGr is electrostatic potential at the geometric centre of the Gr sheet (z = 0) and

φelectrolyte is an average of electrostatic potential in IL 2.5–4.0 nm from the electrode.

When estimating the potential drops, instead of mean average, we chose the weighted

average approach to reduce the influence of noise on the resulting values. First, we calculated

the potential drop for each replica by finding the mean average of the potential drops over

its snapshots. Then, taking the inverse square of the standard deviation of the potential

drops of a replica as a weighting factor, we estimated the potential drop of a system with σ

as the weighted average over the replicas.

Results and discussion

Overscreening phenomena

One of the main motivations of the presented study was to provide a DFT-level examination

of the overscreening phenomena. While overscreening naturally appears in the CMD, previ-

ously it was not clear how it is affected by the polarisation inherent at the DFT level. For

instance, calculations of Valencia et al. indicated a possibility of charge transfer between the

contact ions and the surface,26 which in principle should diminish the overscreening.

DDEC6 analysis revealed no charge transfer between the electrode surface and the ions

in the first layer – the charges of anions and cations of −0.82e and +0.82e, respectively, were

the same for ions in contact with the surface and 2.5–4 nm away from it. Also, within the
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length of the obtained trajectories, we did not notice any statistically significant changes

in the potential profiles (shown in Figure 2a) that would indicate the disappearance of the

alternate layering.

As an example of density fluctuations, Figure 2d illustrates how the layering arises due

to geometric constraint on ions caused by the neutral Gr surface. 62 The first layer of the

IL, which is considered to start at the van der Waals radius for carbon (0.17 nm from the

surface), is 0.40 nm broad and the second layer is 0.42 nm wide. Herewith, near the neutral

electrode, the layers contain almost the same number of anions and cations so that the

densities of the layers equal the bulk density of 1.24 g/cm3.35,63

The densities of the layers become different from the bulk one when the electrode charging

causes the overscreening and segregation of anions and cations into distinct layers. Changes

in the overscreening parameter β, shown in Figure 2b and e, reflect the alternation of ionic

layers. As can be seen in Figures 2c and f, β values are larger than one for both negative

and positive electrodes implying dense packing of counter-ions and overscreening. Due to

the smaller size of BF−4 , a denser (2.74 ions/nm2) and more ordered structure appears at

the positive electrode than at the negative one (1.75 ions/nm2). Herewith, in all cases the

non-uniform ion distribution correlates with the non-uniform surface charge distribution on

the Gr electrode as indicated in Figures 1b, 2c and 2f.

Overall, Figures 2a–f illustrate that the overscreening phenomena is not an artifact of the

CMD simulations as it persists in the more realistic DFT-MD simulations with implicitly

included polarisation.

Interfacial potential drop

Figure 2a shows the weighted average potential (φ(z)) profiles in a perpendicular direction to

the Gr surface. As follows from Figure 2a, the potential drop occurs mostly within 0.3 nm of

the Gr surface. Then the potential continuously changes until 2.5 nm with pronounced fluc-

tuations. At larger distances, the fluctuations dampen and the potential reaches a plateau.
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Figure 2: a) The average electrostatic potential (φ) profiles of the systems with σ = 0
and ±0.5 e/nm2. b) and e) The average charge screening factor profiles of IL in case of a
charged Gr electrode. The bar charts show the averaged values of β in 0.15 nm wide bins,
to emphasise the dampening of oscillations away from the interface. d) The average number
density profile of IL in case of a neutral Gr electrode, where number density is re-scaled
by dividing with the number density of the bulk. c) and f) The distribution of ions within
0.4 nm from the charged Gr in one snapshot. The EMIm+ and BF−4 ions are colored in red
and blue, respectively.

Table 1 presents values for two corrections to the potential drop that can be evaluated

from the DFT data. The difference between levels defined in Eq. 2 and shown in Figure

3b describes the additional work done to bring an electron into Gr. In addition to DOS,

the potential change due to electronic density redistribution can also be calculated from

the DDEC6 analysis providing dipoles and quadruples in addition to point charges. The

dipoles characterise well the uneven distribution of charge shown in Figure 3a. Thus, at first

approximation, to incorporate the electrode polarisation, the correction term (∆φdip) can be
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calculated from the electrode dipole moment in z-direction and added to Eq. 7:

∆φdip =
pz
ε0S

, (8)

where pz is the average of dipole moments of the Gr atoms in z-direction and S is area of

the electrode. The comparison between the correction terms in Table 1 reveals a similarity

in their values caused by the interrelation between the filling of electron levels and the

dipole moment formation. Small differences between the correction terms arise due to the

constraints of the DDEC6 and DOS analyses. Furthermore, the potential correction terms

can be recalculated into the position of the effective surface charge plane (l) along the z-axis

relative to the center of the electrode:

l =
ε0∆φ

σ
. (9)

Theoretically, the surface charge plane should be located one-half of an interplanar spacing.

Due low concentration of mobile charge carriers, in Gr the plane is shifted by the Thomas–

Fermi screening length towards the surface.64 Comparison of the theoretical a/2 − lTF and

obtained ldip/DOS reveals significant difference, yet shows similar σ-dependence.

Table 1: Average potential drops φion and correction terms calculated from dipoles ∆φdip or
Gr density of states ∆φDOS at different σ. All φ are expressed in V, σ in elementary charge
per square nanometer (e/nm2), and all lengths lTF/dip/DOS in nm.

σ
−0.5 0.0 +0.5

σion −0.41 0.005 0.43
φion −1.87 −0.05 1.85

∆φdip −0.65 −0.01 0.60
ldip 0.086 0.062 0.073

σDOS −0.38 0.00 0.31
∆φDOS −0.60 0.00 0.60
lDOS 0.087 −0.005 0.105

a/2− lTF 0.16 0.05 0.15

To the best of our knowledge, the dipole correction term is defined for the first time in
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the context of the electrode–IL interface and computer simulations. Earlier Kornyshev and

Schmickler suggested estimating the effect of electric field on the electrode by evaluating

the effective charge density plane from electronic density distribution at the DFT level of

theory.65 A similar approach was used to correct the MD simulations results by Ruzanov et

al.29 Using the DOS, Paek et al. accounted for the potential drop within the electrode to

express the interfacial capacitance as 1/Ctotal = 1/CGr + 1/CIL.66 Dufils et al. also used the

DOS to evaluate Thomas–Fermi screening length, which they used to tune the metallicity of

electrodes in MD simulations.67 The suggested dipole correction provides an alternative way

to evaluate the potential drop within the electrode. Similarly to the mentioned works 29,65–

67, the dipole correction can be expressed as an average quantity for a surface as a whole.

In that case, a separate calculation is required to obtain a value of dipole correction for

each field, potential, or surface charge value. Alternatively, a correlation between the dipole

moment and charge on individual surface atoms (shown in Figure 3c) can be used. Atomic

charges can be already self-consistently calculated using the constant potential method, for

example developed or used in Refs.68–75 Applying the dipole correction over the atomic

charges opens a door for the low-cost augmentation of the CMD simulations to account for

the electrode polarisation.
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a) b) c)

Figure 3: a) Electron density difference at positive Gr surface relative to neutral Gr in a
vacuum for a single snapshot. Areas of the electrode, which have lower electron density than
neutral Gr are indicated with red color, while higher density is shown with blue color, respec-
tively at ±2.68 e/nm3. IL is represented by transparent red-blue ions. b) The correlation
between the partial charges (q) and dipole moments of the Gr carbon atoms in a direction
perpendicular to surface of the electrode (µ). Red, green, and blue points correspond to
negative, neutral, and positive system, respectively. c) Calculated DOS of Gr in contact
with IL. The energy is given relative to neutral Gr Fermi level.

Conclusions

In this work, we used DFT-based MD to explore the Gr–1-ethyl-3-methyl-imidazolium

tetrafluoroborate interface to examine the charge distribution and polarisation on the Gr

surface accounting for the dynamics of ions near the surface. The results indicate that over-

screening is preserved upon the inclusion of quantum effects. No indication of the charge

transfer between the IL and the electrode was seen and the layered structure in the IL near

the Gr surface remained stable during up-to 8 ps long DFT-based MD simulation.

The analysis showed that the atomic charges on the electrode are distributed non-

uniformly due to electronic lateral polarisation of the electrode. Polarisation and redistri-

bution of Gr electron density in the direction perpendicular to the surface induces a surface

dipole that significantly affects the interfacial potential drop.

To reconcile the differences between classical and DFT-based MD simulations, we intro-

duced a correction term, which quantifies the redistribution of the Gr electron density using
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atomic dipoles that correlate with the atomic charges. That correction term accounts for the

effect of polarisation on the interfacial potential drop and can be used in classical molecular

dynamics simulations.
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