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ABSTRACT

The paper focuses on explaining the outputs of deep-learning based
non-intrusive load monitoring (NILM). Explainability of NILM net-
works is needed for a range of stakeholders: (i) technology devel-
opers to understand why a model is under/over predicting energy
usage, missing appliances or false positives, (ii) businesses offering
energy advice based on NILM as part of a broader energy home
management recommender system, and (iii) end-users who need
to understand the outcomes of the NILM inference.

CCS CONCEPTS

« Computing methodologies — Neural networks; Machine
learning; - General and reference — Reliability; Verification;
Validation.
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1 INTRODUCTION

Recent years have seen significant research in defining, at a high
level, how inference models can be designed to be explainable to
end-users. Explainablity leads to trust in data-driven Al systems
ensuring that complex machine learning (ML) models underpinning
these systems are understandable to the end user and decisions
or recommendations are transparent. Despite a large number of
publications from different disciplines, including many tutorial and
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feature articles [1, 3, 5, 6, 8, 11], most explainable Al implementa-
tions focus on technology designs, e.g., for the purpose of removing
the bugs in the code or improving the models, while other potential
users of the technology are neglected. Furthermore, the bulk of the
literature tends to focus on explainability of image processing and
natural language processing, while raw time-series sensor signals
processing, e.g. energy measurements, is almost non-existent.

In this paper, we focus on the explainability of deep-learning
based non-intrusive load monitoring (NILM) [7] of electrical smart
meter data that provides feedback to householders or building man-
agers about energy consumption of individual appliances [14], [4].
NILM has been researched for over 40 years and has been embed-
ded in energy management recommender systems by providing
appliance-specific energy outcomes. We demonstrate, using the
popular sequence2point deep learning NILM architecture [4], how
heatmaps can be used to explain NILM outputs.

We refer to a model being interpretable if it is possible to math-
ematically predict its output, and interpretability as the ability to
support user comprehension of the model decision making process
and predictions. We refer to explainability as the ability to explain
the underlying model and its reasoning with accurate and user com-
prehensible explanations. Explainablity is essential when assessing
effects of biases in the data, degrees of fairness and other ethical
implications of research, since the methods need to be replicated
and tested in a new environment (using different, potentially biased
dataset), and its decisions need to be mathematically tractable [5].

There have been only few attempts to explain time-series data
models [12], where it is challenging to relate decisions to raw sig-
nals, and hence explanations have mainly been related to quantify-
ing the importance of each feature; however, with deep learning
models that take raw signals and integrate the feature engineer-
ing steps, this is often impossible. Similarly, there have been no
attempts to explain NILM specifically besides [10], which targeted
tech developers by visualising trained network weights at the early
layers.

NILM or load disaggregation refers to estimating individual ap-
pliance load contributing to the metered household aggregate en-
ergy consumption without submetering. Numerous approaches for
NILM have been used previously, and a review can be found in [14].
To illustrate explainability tools for NILM, we use a sequence2point
network of [4] that is a widely used for benchmarking deep learning
based NILM work. We note that the approaches presented apply
to other architectures also. The architecture of [4, 13], is a novel


https://doi.org/10.1145/3486611.3492410
https://doi.org/10.1145/3486611.3492410
https://doi.org/10.1145/3486611.3492410

FATEsys "21, November 17-18, 2021, Coimbra, Portugal

sequence2point approach for NILM, based on convolutional neu-
ral networks (CNN) that extracts meaningful latent features with
appliance transfer learning and cross-domain transfer learning. A
sliding window of the aggregate is mapped into a single middle
value point of the targeted appliance, this way predicting the ap-
pliance consumption value for each sample in time. [4] presents
results showing excellent performance of the proposed approach
for a range of appliances on three datasets.

2 EXPLAINABILITY OF NILM

We illustrate how NILM deep learning models can be interpreted
and explained using the washing machine, considered a challenging
appliance to disaggregate, due to multiple consumption states, with
power values similar to numerous other appliances. To explain how
the model makes decisions, we occlude (null values) part of the
raw input and slide the occlusion window across the data. For each
window position, we estimate the model’s singular point output.
This is used to generate a heat map as shown in Figure 1 (bottom).
This methodology makes no changes to the network’s internals
unlike methods such as Attention Networks which require the
addition new methods/layers.

In Figure 1 (top) we show an example of the input aggregate sig-
nal, target signal (washing machine), and predicted (non-occluded)
signal. The horizontal axis shows sample number and vertical, con-
sumed power. In this case we show a true positive result on the ECO
dataset [2], the model being trained on the REFIT dataset [9]. The
occlusion window blocks 50 consecutive samples and is stepped
across the input window from index 0 to 549. This is then used to
generate the heat map in Figure 1 (bottom). For a fixed sample point
(horizontal axis), vertically, the values in the map correspond to
the network output for different starting positions of the occluding
window (from 0 to 549).

The heat map should be read diagonally to keep the occluded
window stationary as we move along the sample axis, due to the
network targeting the centre point of the window. The heat map is
aligned with the top plot along the x-axis to better indicate where
the target point is, with the colour representing consumption esti-
mation at a given point. The horizontal bar across the centre of the
heat map represents where the centre point of the input sequence
window is occluded, e.g., samples 249 to 299. When this occurs the
network struggles to predict, as the input at the target sample is
null. Importantly, this leaves the model vulnerable should errors
occur around the window centre, and makes a case for explaining
how data is filled/processed to end users.

The ellipses in the heat map represent three key features. Ellipse
1 shows what we consider the main feature of the washing machine,
the heating element turn on, around sample 705700; when this is
occluded the predicted load drops significantly. Inversely, when
occluding the area just before the heating element turns on, we
see the highest load values, higher than the non-occluded input.
This appears as multiple true and false positives, and highlights
a weakness with multiple high power appliances being used one
after another. After the heating and spin cycles, there is a period
where draining occurs with the occasional spin. Shown in Ellipse 2,
the lowest load estimate occurs when this feature is fully occluded
highlighting its importance. The third ellipse highlights the spin
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cycle. In this case, the occluded section, which is not fully captured
by ellipse 3, shows distinct band of blue which begins shortly af-
ter the washing machine heating element has turned off, but not
immediately, indicating that the model is taking time into account.

In Figure 2, we show an example that illustrates the limitation of
the trained model to handle overlapping activations, where a num-
ber of appliances are used simultaneously. In this example, another
appliance usage occurs at the end of the washing machine heating
cycle (sample 575500). When occluding this area, we expect a truer
estimate of the previous load. Indeed, the result is a much higher
network prediction, shown by ellipse 1 in the heat map. Ellipse
2 shows the importance of the draining cycle in order to detect
washing machine uses. If this segment is even partially occluded,
the estimated consumption drops to near 0. Additionally, there
is another appliance which overlaps this feature (Sample 575700,
end of area 2); this, along with the second overlapping appliance,
helps us to explain why the network likely missed this activation.
Finally, Ellipse 3 corresponds to the detection of the spin cycle
that in Figure 2 has a number of unknown appliance uses causing
network confusion. Ellipse 3 in the heat map plot shows a false
positive occurring if the end of the second appliance is occluded,
e.g., the network thinks that a second heating cycle is in progress.
This mistake (the network does not detect this activation unless an
occlusion window is applied) shows the trained networks inability
to cope with overlapping appliances.

Heat maps provide a model agnostic way to visually interpret
time series results, working with both sequence-to-sequence and
sequence-to-point style networks. Depending on the complexity
of the input and target signals, the number of learned features
will become apparent when occluding the input signal. Depending
on the size of the target signal, the size of the occluding signal
can highlight features, and shrinking the occluding window can
show what the model considers the most impactful features. This
methodology could also be used to discover adversarial examples
in which outputs are vastly influenced by a single point in the
input window. The visualisation of stacked plots, allows those not
familiar with the field to understand features which are considered
important, and could help to create a “stress testing" set of tricky
examples to be used for trained model benchmarking.

Figures 1 and 2 also report the MAE, SAE and NDE performance
measures for these particular uses as defined in [4]. The values
of all three metrics are lower for Figure 1 compared to those of
Figure 2, which is expected since the former is a TP sample whilst
the latter is a FN. However, these measures do not clearly have a
range of values that are comparable. While interpretability explains
the decisions made by the model, it is often not understandable by
the end user, e.g., a householder trying to understand their appliance
consumption estimate in regards to their electricity bill. Thus we
provide explainability by attempting to explain the measures in
relation to the top plot in Figure 2. Clearly, the predicted of the
consumption of the appliance is under-estimated compared to the
actual. The MAE is the only metric that captures this wide difference
in reconstructing the signal, compared to the other two metrics but
does not necessarily explain the underestimation, which would not
provide a realistic consumption to the end-user trying to understand
the real consumption of their appliance. Over the entire dataset,
however, MAE is less explainable as the MAE value becomes lower
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Figure 1: The heat map generated for the Washing Machine in the ECO dataset, house 1. The model is trained using the entire
REFIT dataset. The obtained performance measures for this sample are: MAE:292.73, SAE:0.62, NDE:0.45.
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Figure 2: The heat map generated for the Washing Machine in the ECO dataset, house 1. The model is trained using the entire
REFIT dataset. The obtained measures for this sample are: MAE:383.18, SAE:0.83, NDE:0.79.
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due to the fact that appliances spend a significant period turned off.
Therefore, we wish to highlight that these metrics, commonly used
for evaluating the performance of deep learning approaches in the
recent NILM literature, are not truly explainable since they are not
necessarily intuitive.

3 CONCLUSION

In summary, we propose heat maps to help explain performance
metrics and reconstructed appliance signatures. For the purposes of
explainability, metrics for validation and evaluation of performance
need to be application-specific for comparison with other methods
and understandable by the end-user.

However, we recognise that heat maps may be difficult to explain
to the end-user, who has little to no domain knowledge. Therefore,
further studies with end users and non-AlI specialist building sys-
tems experts will be needed, e.g. through interactive workshops to
evaluate different levels of explainability. Furthermore, a separate
study to analyse input data to address bias, in terms of patterns
of use for example, is needed especially when testing on unseen
datasets.
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