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Abstract: Vehicle-to-grid services make use of the aggregated capacity available from a fleet of
vehicles to participate in energy markets, help integrate renewable energy in the grid and balance
energy use. In this paper, the critical components of such a service are described in the context of
a commercial service that is currently under development. Key among these components is the
prediction of available capacity at a future time. In this paper, we extend a previous work that
used a deep learning recurrent neural network for this task to include online machine learning,
which enables the network to continually refine its predictions based on observed behaviour. The
coronavirus pandemic that was declared in 2020 resulted in closures of the university and substantial
changes to the behaviour of the university fleet. In this work, the impact of this change in vehicles
usage was used to test the predictions of a network initially trained using vehicle trip data from
2019 with and without online machine learning. It is shown that prediction error is significantly
reduced using online machine learning, and it is concluded that a similar capability will be of critical
importance for a commercial service such as the one described in this paper.

Keywords: V2G; vehicle-to-grid; deep learning; machine learning; online machine learning; coronavirus

1. Introduction

Effective management of electricity networks at a distribution level is increasingly
important to prevent system issues due to an increase in distributed generation, for example
from renewable energy systems, and demand driven in part by the upsurge in electric
vehicles (EVs) [1,2]. However, enhanced system management also provides additional
benefits such as the possibility of eligible assets to participate in energy markets, for
example EVs through vehicle-to-grid (V2G) or smart charging [3–6].

V2G services enable electric vehicles to generate an income from participating in
electricity trading during the prolonged periods they are not being used for their primary
transportation purpose. At an aggregated level, energy loads can be traded on the power
exchanges and previous research has shown that significant revenues can be derived from
these services [7]. Commercial services capitalising on this opportunity are beginning to
emerge. Octopus Energy has developed Powerloop, which provides participants with a
bi-directional charger and a Nissan LEAF vehicle enabling them to receive financial rewards
for making their vehicle available during times of peak demand [8]. Kaluza, an Ovo Energy
company, has completed a large-scale trial of V2G technology to provide grid balancing
services through their smart energy platform concluding that users could save substantial
amounts on their electricity bills [9]. Nuvve has developed a V2G platform that makes
use of bi-directional chargers and a cloud-based control platform, to enable the use of V2G
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technology for commercial fleets [10]. EV8 Technologies are piloting and developing the
EV8 Live Service, introduced in this paper, to enable V2G for consumers and fleets [11].

A key factor in V2G services is the complexity arising from the underlying storage
being mobile rather than fixed, which raises two important issues: (1) the aggregation
provider cannot typically enforce connectivity—the owner or user can unplug at any time;
(2) to access the V2G value pool through the power exchange markets, understanding and
managing the availability of storage, rate of discharge possible and disconnection risk is
central to solving the challenge. Successfully managing this complexity requires prediction
and adaptation to changing circumstances.

Such prediction is required at multiple levels. For example, a machine learning
framework was introduced in [12] that predicted available capacity from a vehicle fleet
based on the learned behaviour of simulated user types, their willingness to participate
in proposed V2G events and their reliability in making their vehicles available at agreed
times. In [13], an automated machine learning was used to predict the parking locations
of a fleet of vehicles and their proximity to V2G charging locations. This capability could
provide a V2G service with a set of vehicles ranked by risk, that may be available at
the time of potential future trading opportunities. A deep learning neural network was
used in [14] that predicted the available capacity for trading opportunities from a fleet of
vehicles operated by the University of Nottingham (UoN) in the United Kingdom. The
state-of-charge of individual vehicles was simulated given observed fleet behaviour and
the neural network was shown to be able to predict aggregated capacity available from
the fleet at future times while adapting to discharge events resulting from the actions
of the aggregator executing market trades. However, this work used data from a fleet
with relatively consistent schedules and the ability of the predictive system to adapt to
substantial deviations from these schedules is an outstanding question.

The coronavirus pandemic that was declared by the World Health Organisation in 2020
resulted in unprecedented changes to the lives and routines of individuals and organisations
across the world. During large periods of the year in the UK, people were instructed to
stay at home, only essential businesses remained operational and university campuses were
largely closed. This systemic shock also had a profound impact on the usage of vehicles
with traffic reduced and fleet activity altered. At the University of Nottingham, for example,
vehicles that were previously used for catering and estates services were required to support
the coronavirus testing facilities on campus and thus the entire fleet was impacted. Such
dramatic change provided a unique opportunity to assess the ability of a predictive tool to
adapt to changing conditions—a critical requirement for a successful V2G service.

In this work, we build upon the deep learning neural network introduced in [14],
which was used to predict the capacity available to a V2G service from UoN’s vehicle
fleet. This network consisted of a convolutional neural network layer (CNN) coupled
with a long-short term memory (LSTM) layer. Networks such as these have been used
with success for multiple time-series prediction applications including natural language
processing [15], visual recognition [16], residential energy consumption [17] and the routing
of EVs to manage their impact on the electrical distribution system [18].

We extend the initial work to support ongoing adaptation in which the learning model
is updated using new data as they arrive sequentially. Such online machine learning has
received much attention for a wide range of applications [19]. Most of this work focusses
on learning shallow models, however, the use of online machine learning for deep models
has received increasing attention [20,21]. In this paper, we compare predictive performance
of the CNN-LSTM model during 2020 with and without online machine learning and
demonstrate a highly statistically significant improvement using the latter. To the best
of our knowledge, this is the first successful application of online machine learning to
predicting available capacity for a V2G service and adapting to a significant change in the
behaviour of the underlying vehicles, such as that caused by the coronavirus pandemic.

The remainder of the paper is structured as follows: in the following section we
place the work in the context of the Live Service that is under development by EV8



Energies 2021, 14, 7176 3 of 16

Technologies [11], describe the dataset and introduce the recurrent neural network at the
heart of the predictive engine. We then show and discuss the accuracy of its predictions
using 2020 data with and without online machine learning.

2. Materials and Methods
2.1. Live Service Description

The system described in this section, called the Live Service, was developed to simulate
income potential from participation in energy market trading using EVs connected to V2G
equipment. Data collected through telematics sources were used to simulate EV operators
participating in V2G market mechanisms, whilst preserving the minimum level of transport
utility from the vehicles. This system simulated the end-to-end application from vehicle
management and owner interface through to energy market integration for trading of the
stored energy. A whole system diagram of where the Live Service sits in the energy market
is shown in Figure 1, and the process of making an energy trade using the aggregated fleet
is shown in Figure 2.
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The focus of this paper is on point 3 in Figure 2 and is on specifically supporting the
service in deciding on whether to trade in the following 24 h period given the predicted
available capacity from the aggregated vehicle fleet.

2.2. Vehicle Dataset

The University of Nottingham operates a fleet of vehicles to support the various
functions of the university, including estates management, security, mailroom, transport,
grounds, and catering services. During the study period, most of the vehicles were powered
by internal combustion engines, however, nine electric vans were also in operation. Many
of the vehicles were equipped with Trakm8 telematics equipment [22] that provided
information on the trips made including start and end locations and the distance travelled.
Data from 48 of these vehicles were used from the start of 2019 to the end of 2020 as the
input dataset for this work, thus providing a detailed profile of a real fleet during the study
period.

For each trip, the Global Navigation Satellite System (GNSS) coordinates and time at
the start and end of each trip were recorded along with the trip distance. This resulted in a
total of over 330,000 rows in the trip dataset each representing a single trip by an individual
vehicle, an excerpt from which is shown in Table 1.

Table 1. Anonymised excerpt from the trip dataset, where v is the vehicle ID.

v Start Time Start
Latitude

Start
Longitude End Time End

Latitude
End

Longitude Distance (m)

1 2019-09-07
09:55:27 51.93866 −1.17032 2019-09-07

10:01:34 51.94276 −1.17109 1109

1 2019-09-07
11:10:27 51.94274 −1.17107 2019-09-07

11:28:25 51.93907 −1.15245 4411

15 2020-12-25
09:52:06 52.93844 −1.17129 2020-12-25

09:57:34 52.93224 −1.16588 1714

15 2020-12-25
11:01:26 52.93231 −1.16586 2020-12-25

11:12:39 52.93883 −1.19858 4336

This dataset included a period of typical university operations until March 2020
followed by a period until the end of 2020 that was significantly impacted by the coron-
avirus pandemic, which resulted in university closures and in some cases a repurposing
of university vehicles to support the response to the pandemic such as the vaccination
program.

Analysis of the trips allowed the stationary location and dwell time of each vehicle
throughout the 2-year period to be determined. Adopting the approach introduced in [13]
and [14], if a vehicle was stationary for a full half-hour period within 100 m of the simulated
location of one of six V2G chargers on the university campuses it was deemed to be available
to the V2G aggregation service for that period. This process resulted in a dataset for each
vehicle of consecutive half-hour periods indicating whether the vehicle was available. The
total distance travelled for each trip was recorded for the half-hour period in which it
was completed. The fleet operated differently during weekends or holidays and these
features were therefore also added to the dataset. The combined vehicle availability dataset
contained approximately 1.7 million rows, almost 57% of which represented half-hour
periods in which a vehicle was available. An anonymised excerpt representing the trips
shown in Table 1 assuming that the vehicles were parked close to a simulated V2G charger
is provided in Table 2.
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Table 2. Vehicle availability dataset for the trips shown in Table 1, where Av is the availability of
vehicle v and distance is the total number of metres for trips completed in that period.

v Day Half-Hour Weekend Holiday Av Distance (m)

1 250 19 1 0 0 0
1 250 20 1 0 0 1109
1 250 21 1 0 1 0
1 250 22 1 0 0 4411

15 360 19 0 1 0 1714
15 360 20 0 1 1 0
15 360 21 0 1 1 0
15 360 22 0 1 0 4336

The vehicle availability dataset was used as input to state-of-charge simulations, which
calculated reductions in battery state-of-charge (SoC) resulting from any trips made and
increases in state-of-charge during stationary periods in which a vehicle was available and
charging. This process, developed in [14] and reproduced in Appendix A and Equation (1),
resulted in a state-of-charge for each vehicle at each half-hour period.

For some of the 48 vehicles, the SoC dropped to zero during the simulated period,
which indicated that the vehicle was not parked close to the simulated V2G charger
locations with enough regularity to allow the charge to be replenished. In these cases, it
was assumed that the vehicles would be charged elsewhere and not available to the V2G
service until they again were parked in a simulated V2G charger location. It was also
assumed that on return, their SoC remained zero, i.e., the externally provided charge was
enough to allow any trips taken but not enough for the vehicles to return to the service
with surplus charge.

The output of this simulation was then used to determine the available capacity from
each vehicle at each half-hour period as follows:

Chh
v = Max

(
SoChh−1

v − 0.5, 0
)
× 40 × Av (1)

where Chh
v is the available capacity in kWh from vehicle v at half-hour period hh, Av is the

availability of vehicle v in this period and SoChh−1
v is the state-of-charge, ranging from 0

to 1 of vehicle v at the end of the preceding half-hour period. This equation ensured that
capacity was only available when the state-of-charge exceeded a minimum value of 0.5
and assumed the total battery capacity of a vehicle was 40 kWh, which mirrored that of
some fleet electric vehicles at the time of the study. The maximum capacity available from
each vehicle during a given half-hour period was therefore 20 kWh.

The final step of data preparation was to create an aggregated dataset for the fleet. The
total available capacity for each half-hour period was calculated by summing the available
capacity from each of the 48 vehicles for that period. This resulted in an available capacity
dataset consisting of approximately 35,000 rows, one for each half-hour period during 2019
and 2020. This dataset was used as input to the predictive model.

2.3. Model Training

The CNN-LSTM model, developed in [14] and described in detail in Appendix B, was
also used as the predictive model for this work. These networks utilize a convolutional
neural network to encode the input, which is presented to a long short-term memory neural
network that utilises recurrent connections and parameters enabling both short-term and
long-term memory [23]. They are thus well suited for learning sequences in time-series
data, such as those from vehicle activity over an extended period.

The CNN-LSTM network took data from the previous 24 h period as input and
produced as output the predicted available capacity for the subsequent 24 h period. Thus,
to produce a prediction at a given half hour period the previous 48 consecutive rows
of the available capacity dataset were presented to the network, which then produced
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a 48-element vector representing the predicted capacity for each half-hour period in the
subsequent 24 h. These outputs were then compared to the observed available capacity
allowing prediction errors to be ascertained and minimized using the Adam optimizer [24]
with mean squared error across all predictions in the training dataset as the loss function.

An initial model was trained using data from 2019, which was representative of typical
university operations. The first 280 days of the 2019 data were used for training and the
subsequent 85 days used as an independent test dataset. Batches of 48 inputs, representing
one 24 h period, were presented to the network before each model update and training was
run for a maximum of 100 epochs, i.e., cycles through the full training dataset. However,
each training run was typically shorter than this due to an early-stopping feature that was
used to protect against overtraining. Loss on the test set was assessed at the end of every
epoch and if this did not improve for 10 epochs, training was stopped, and the best model
seen to date used.

Two different approaches were investigated to assess the model’s ability to predict
available capacity for 2020. First, predictions were made for each day of the year without
further model updates. Second, online machine learning was implemented in which the
model was updated following each week of the year. In this case, predictions were made
for each day sequentially as previously. However, after each 7-day period the training set
was expanded to include the data for the preceding week and the model re-trained for an
additional 2 epochs. Thus, the model was updated 52 times during 2020.

2.4. Model Testing

The model was used to predict available capacity for each half-hour period within
each day of 2020 with and without online machine learning. Although the model supported
predictions up to 24 h in advance, the results presented in this paper focus on predictions
half an hour in advance, which allowed the impact of the changes in fleet behaviour
to be determined. Longer-term predictions were qualitatively similar with a gradually
decreasing accuracy for both approaches. Mean absolute error (MAE) was calculated for
each day as follows:

MAEd =
∑48

hh=1

∣∣∣PChh
d − AChh

d

∣∣∣
48

(2)

where PChh
d is the predicted available capacity for half-hour period hh on day d and AChh

d
is the observed available capacity for that period.

3. Results
3.1. Fleet Behaviour

The impact of the pandemic on the operation of the university fleet was analysed by
comparing the trips taken in 2019 and 2020. Figure 3 shows the total number of trips taken
by the fleet on each day over these two years.

In both years, a higher number of trips were typically taken by the fleet during the
working week with much reduced activity at the weekends. A cyclical pattern is therefore
evident reflecting this behaviour. On 23 March 2020 (day 83), a national lockdown was
announced by the UK government with an instruction to “stay at home” wherever possible.
This strict lockdown stayed in force until a gradual reduction in restrictions began on the
1 June (day 153) with the phased re-opening of schools, followed by the opening of non-
essential shops on the 15 June (day 167) and the introduction of more general relaxation in
restrictions from the 23 June (day 175). A second wave of infections however prompted a
tightening of restrictions from the 14 September (day 258) and a second national lockdown
starting on the 5 November (day 310), which lasted for four weeks.

The impact of the first national lockdown on the behaviour of the fleet can be clearly
seen in the figure. Many fewer trips were taken immediately following the announcement,
however, despite the ongoing upheaval and changes in national restrictions no obvious
correlation between fleet behaviour and the subsequent key events was apparent. This
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was likely because most staff continued to work at home during this period, with online
teaching dominating. However, the start of the new academic year on 21 September (day
265) saw a return to more usual patterns of trips, albeit at a reduced level. Fleet activity was
greatly reduced during closure of the university for Christmas holidays at the end of both years.
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3.2. Available Capacity

A typical pattern of simulated available capacity for a pre-pandemic week during 2019
is shown in Figure 4. During the working day, available capacity was typically reduced as
vehicles were used more regularly with a consistent spike corresponding to lunch break.
Available capacity was far greater during overnight periods and during the weekends
when vehicles tended to be more stationary.
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The available capacity for all half-hour periods during each day was summed to yield
the total daily available capacity, which is shown over the 2-year period in Figure 5. In
contrast to total trips shown in Figure 3 the peaks in this graph represent the weekends
and the troughs working days.
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Figure 5. Total available capacity from the fleet for each day during 2019 and 2020. Pre-lockdown,
post-lockdown and new academic term periods are identified as for Figure 3.

The impact of the lockdown announcement on day 83 is again evident in the figure.
Available capacity in 2020 followed a pattern consistent with the previous year up until this
date following which there was a fundamental change. Available capacity was typically
reduced but less variable suggesting that vehicles became more static as the activity of the
fleet reduced during the post-lockdown phase and that they were parked away from V2G
charger locations more frequently. A pattern more consistent with 2019 was again evident
at the start of the new academic year until the Christmas holidays, when available capacity
was greatly reduced in 2020 compared to 2019 despite a similarly reduced number of trips.
This suggested that the stationary location of the vehicles differed, and they were more
frequently parked away from the V2G charger locations. An example weekly profile from
the post-lockdown and new term phases are compared with an example week from the
pre-lockdown phase in Figure 6.

3.3. Static Model

A series of 10 independent runs were performed to train a CNN-LTSM model on the
2019 dataset. The resulting networks thus represented typical pre-pandemic behaviour
of the fleet. Following training, each network was tested using the 2020 dataset, which
included the fluctuations in fleet behaviour resulting from the pandemic. Online machine
learning was not enabled, and thus the model remained static throughout this period. Daily
mean absolute error, MAEd, for each day of 2020 was calculated as described in Section 2.4.
Average results for the 10 models are shown in Figure 7.

Prediction errors during weekends were typically much lower than during weekdays
as fleet behaviour was typically more static and predictable. However, the figure reveals a
dramatic increase in prediction errors following the start of lockdown on day 83. Average
MAEd for the pre-lockdown phase was 16.2 kWh (s = 4.6), which more than doubled to
33.7 kWh (s = 15.8) for the post-lockdown phase before reducing to 22.1 kWh (s = 7.4) for
the new term when fleet activity more closely reflected 2019 behaviour. Prediction errors
again increased as the holiday period began, which was due to the different pattern of
available capacity in 2020 revealed in Figure 3.
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Further insight into model performance was gained by analysing the detailed predic-
tions for four typical calendar weeks: one each during the pre-lockdown and new term
phases and two at different times during the post-lockdown phase as shown in Figure 8.
In the pre-lockdown phase, week beginning 6 January 2020, model predictions followed
actual capacity closely and MAE during this period was 15.8 kWh (s = 16.2). However,
these errors grew substantially in the post-lockdown week beginning 30 March 2020 and
MAE increased to 40.1 kWh (s = 43.2). Similar prediction errors were also apparent later in
the post-lockdown period, week beginning 1 June 2020, when MAE was 37.1 kWh (s = 35).
As fleet behaviour returned to patterns more representative of the previous year in the new
term, week beginning 28 September 2020, MAE reduced to 21.8 kWh (s = 26.8).
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3.4. Online Machine Learning Model

The same 10 independent models trained and tested in Section 3.3 were used to
directly compare performance with online machine learning. MAEd was again calculated
for each day of 2020 sequentially. However, following each 7-day period, the models
were re-trained for two epochs with a training dataset that was expanded to include the
additional data collected during that period as described in Section 2.3. Average results for
the 10 models are shown in Figure 9.
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Average MAEd for the pre-lockdown phase was 16.1 kWh (s = 4.4), which was similar
between both models. Following lockdown, performance of the online machine learning
model also decreased; however, prediction errors were quickly reduced and the overall
MAEd during this period was only slightly higher than pre-lockdown at 16.5 kWh (s = 6.9).
This was a 51% improvement over the model without online machine learning. A Welch’s
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t test was performed to determine the statistical significance between the models with
and without online machine learning, which revealed that the improved prediction errors
of the online model were highly statistically significant (p < 0.001). Performance of the
online model during the new term phase also improved over the static model with an
average MAEd of 17.1 kWh (s = 6.3), which was a 22.6% improvement and again a highly
statistically significant result (p < 0.001).

Detailed predictions for the same four weeks detailed in Section 3.3 are shown in
Figure 10. MAE for the pre-lockdown week rose slightly for the online model to 18.98
kWh (s = 15.4), primarily due to a small overestimation of available capacity during the
overnight periods. However, this was not a statistically significant change (p = 0.05). The
post-lockdown week beginning on 30 March 2020, was the second full week of lockdown in
the UK and therefore the model had been updated once with training data representative
of this period at the end of the first week. Even with such limited post-lockdown training
data, MAE was considerably lower than the static model at 29.58 kWh (s = 28.6)—a
26.2% improvement. However, this again was not statistically significant (p = 0.07). Clear
improvements had, however been made by the post-lockdown week beginning on 1
June 2020. MAE for the online model was 15.76 kWh (s = 17.6), which was a 57.5%
improvement over the static model and a highly statistically significant result (p < 0.001).
MAE for the new term week beginning on 28 September 2020 was 14.77 kWh, which was a
29.4% improvement over the static model. However, this result did not reach statistical
significance for this week (p = 0.12).
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4. Discussion

The pandemic that was declared in 2020 was an extreme example of the need for the
predictive models at the heart of a V2G service to adapt to changes in the behaviour of
participating vehicles and in available capacity. However, such abrupt changes may also
occur due to other events such as company re-organisations, repurposing of vehicles or
refreshing a vehicle fleet at the end of its lifetime. In more usual times, smaller variations
may also occur due to less dramatic events as patterns of vehicle behaviour gradually
evolve over time due to schedule changes for example. The results presented in this paper
demonstrated the ability of the CNN-LSTM model to quickly adapt to the most abrupt
of changes with a limited amount of retraining; only two additional epochs were used
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following each new week in 2020 and the predictive performance of the network was
recovered within several weeks of the changes in fleet behaviour resulting from national
lockdown. This was achieved by extending the training set each week during 2020 before
updating the models initially trained using data from 2019. This approach was manageable
given that only 52 additional weeks were used in the study. However, for ongoing operation
of a V2G service over many years this approach is not scalable as the dataset would become
too large and the neural network too expensive and time-consuming to retrain. This is of
particular concern for networks such as the LSTM, which have a relatively large number
of trainable parameters. This need for scalability is likely to necessitate the use of other
techniques, therefore. One approach is to use a rolling window such that the training
dataset remains the same size, this would also result in network predictions being more
strongly influenced by the more recent past. Periods that in retrospect are deemed to
be more representative of typical fleet behaviour could also be favoured for re-training.
However, such pruning of the data risks discarding important knowledge embedded in
the training dataset such as infrequent but impactful events or, as in this study, data that is
more representative of long-term vehicle behaviour.

Another potential issue when retraining the network is that of catastrophic forgetting
in which the network loses the ability to make predictions for historical events due to
the adaptations to new data [25]. This issue was addressed in [26] through use of an
elastic weight consolidation algorithm inspired by synaptic consolidation in biological
neural networks, which slowed down learning of weights that were important to previous
tasks. Dynamically expandable networks were also introduced in [21], which selectively
retrained parts of the network and extended it where necessary. The hedge backpropagation
algorithm [20] and autonomous deep learning [27] allow the network architecture to grow
from shallow to deep driven by the demands of the data and to learn from streaming data
without need for any mini-batch learning phase. Approaches such as these are likely to be
of value in the efficient operation and ongoing adaptation of the predictive models at the
heart of a V2G service to changes in vehicle behaviour.

Vehicles are operated by people and used to satisfy their needs and schedules. The
impact of user behaviour is thus of critical to the performance of a V2G service. Quantifying
and adapting to individual users is of particular importance when a V2G aggregator targets
individual vehicle owners rather than fleets, which are more likely to have well defined
patterns of activity. An early example of such work was developed in [12], in which a
learning algorithm was introduced to adapt to changes in factors influencing a user’s
decision making and a user’s reliability in making their vehicle available to the service. A
methodology was also developed in [28] using behavioural analysis to assess the potential
of a fleet to transition to electric vehicles and V2G.

The scale of the increases in prediction error resulting from changes in underlying
fleet behaviour without online machine learning emphasises the need for V2G services,
such as the Live Service introduced in this work, to learn and adapt to changes at multiple
different levels to confidently participate in energy markets and fully realise the promise of
the technology.

5. Conclusions

In this paper, we explored the use of online machine learning within a V2G service to
adapt to significant disruptions in the behaviour of the underlying fleet of vehicles due to
the coronavirus pandemic declared in 2020. A deep recurrent neural network was trained
using data representative of typical fleet behaviour and then tested using vehicle data from
the pandemic with and without online machine learning. A highly statistical improvement
in prediction error of 51% was demonstrated using the latter in the period following the
disruptions. While the adopted approach was successful for the relatively short period
considered in this work, scalability over the many years of operation of a V2G service is an
important consideration and a fruitful avenue for subsequent research.
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Appendix A. State-of-Charge Simulation

A simplified charging and discharging model, developed in [14], was used without
modification in this work to simulate expected charging behaviour and ensure SoC was
kept within a range that allowed vehicles to fulfil their primary transportation role while
supporting V2G market trading [29]. It was assumed that a vehicle would use rapid
charging to a maximum 80% during the typical working day from 07:30 to 19:00, which
would allow vehicle batteries to recharge as quickly as possible while not charging to a
level that is typically inefficient for rapid charging. It was also assumed that slow charging
would be used when vehicles were often stationary for extended periods between 19:30 to
07:00, which would allow vehicles to charge to 100% where possible while reducing the
impact on battery degradation.

The initial battery SoC was set to fully charged, i.e., 1.0, and each half hour period was
processed in chronological order. The state-of-charge for each vehicle for a half-hour period
(SoChh

v ) was calculated as follows, where SoChh−1
v is the state-of-charge of vehicle v for the

immediately preceding half-hour period, rapid_rate is the rapid DC charging rate of 50 kW,
slow_rate is the slow charging rate of 6 kW, battery_capacity is the simulated battery size of
each vehicle set to 40 kWh, charging_η is the efficiency of the charging process set to 90%,
i.e., 0.9 and vehicle_η is the energy used per km travelled by a vehicle set to 0.2 km/kWh:

1. For each half hour period, a vehicle was available (Av = 1) during the day from 07:30
to 19:00:

SoCδ =
rapid_rate × 0.5 × charging_η

battery_capacity
(A1)

SoChh
v = Min

(
SoChh−1

v + SoCδ, 0.8
)

(A2)

2. For each half hour period, a vehicle was available (Av = 1) overnight from 19:30 to
07:00:

SoCδ =
slow_rate × 0.5 × charging_η

battery_capacity
(A3)

SoChh
v = Min

(
SoChh−1

v + SoCδ, 1.0
)

(A4)

3. For each half hour period in which a trip was completed, i.e., where distance in km >
0:

SoCδ =
vehicle_η × km
battery_capacity

(A5)

SoChh
v = Max

(
SoChh−1

v − SoCδ, 0
)

(A6)
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4. For all other half hour periods, the SoC was unchanged:

SoChh
v = SoChh−1

v (A7)

Appendix B. CNN-LSTM Model

The architecture of the CNN-LSTM model, which was developed in [14] and used
without modification in this work, is shown in Figure A1. The role of the network lay-
ers shown in Figure A1a was to encode the input features and the role of the layers in
Figure A1b was to decode and learn temporal dependencies.
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Figure A1. Architecture of the forecasting model. A convolutional neural network was used to
encode the input (a), which was decoded using a stacked-LSTM network (b).

For a give timestep, the network operated as follows:

1. The previous 24 h of data from the available capacity dataset were used as input. This
resulted in 48 rows, i.e., one row for each half-hour period.

2. A two-row filter (or kernel) was used, which traversed the input data one row at
a time and produced an output at each step using a rectified linear unit (ReLU)
activation function. The input data were zero-padded, which ensured that 48 outputs
were produced for each filter. This process was repeated for each of 64 filters, thus
producing a 48 × 64 output supporting the representation of different features in the
input data.

3. A one-dimensional max pooling layer with a pool size of two was used to reduce
the dimensionality of this data and help make the representation more invariant to
differences in the specific location of the input features.

4. These data were then flattened or concatenated to form a single vector of size 1 × 1536,
which represented the encoded features from the previous 24 h.
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5. This encoding was then duplicated to produce 48 copies. A copy was required for
each of the subsequent 48 half-hour periods for which available capacity was to be
predicted.

6. A 100-unit LSTM layer [23] was used with the aim of learning the temporal sequences
and dependencies between encoded features. Each of these recurrent units produced
48 outputs.

7. A stacked LSTM layer was then used with the aim of learning any higher-level
dependencies. Each of these 10 units also produced 48 outputs representing each of
the predicted half-hour periods.

8. A final fully connected dense layer with a ReLU activation function was then used.
This was a time-distributed layer, such that each of the 48 outputs from the previous
layer were input in sequence and an output produced for each. This resulted in a
48-element vector representing the total predicted available capacity for the fleet for
the next 48 half-hour periods.
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