
Carboxylated-xyloglucan and peptide

amphiphile co-assembly in wound healing

Alessia Ajovalasit1,2,3, Carlos Redondo-Gómez2,3, Maria Antonietta
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Abstract

Hydrogel wound dressings can play critical roles in wound healing protecting the wound from

trauma or contamination and providing an ideal environment to support the growth of endogenous

cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can

assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix.

To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a pep-

tide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable

molecular composition, structure, and properties. Transmission electron microscopy and circular

dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hy-

drophobic and electrostatic interactions and further aggregate into nanofibre bundles and net-

works. At a higher concentration, CXG and PA-H3 yield hydrogels that have been characterized for

their morphology by scanning electron microscopy and for the mechanical properties by small-

amplitude oscillatory shear rheological measurements and compression tests at different CXG/PA-

H3 ratios. A preliminary biological evaluation has been carried out both in vitro with HaCat cells

and in vivo in a mouse model.
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Introduction

In the last decades, the field of skin tissue engineering has made

significant advancements towards faster wound healing and resto-

ration of skin structure, functionality and aesthetics. Various types

of skin substitutes have been proposed to support skin regenera-

tion: scaffolds designed to provide the ideal environment for

recruiting the patient’s own cells [1], temporary skin substitutes

containing allogeneic skin cells [2], or permanent substitutes con-

taining autologous cells such as fibroblasts, keratinocytes or stem

cells [3, 4]. The combination of autologous cells with biodegradable

scaffolds is probably the most popular strategy. This approach offers

the possibility of partially controlling the colonization of the scaffold

in vitro prior to any implantation procedure or, indeed, to proceed im-

mediately with the implantation post-seeding. It also limits the risks of

an immune response.

Hydrogels are extensively investigated as scaffolds for their ability

to mimic the extracellular matrix (ECM) in providing support and

biochemical cues to the cells, enhance cell adhesion and accelerate
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structural repair [5–9]. Hydrogels are also commercially used as

wound dressings, for their ability to supply water and molecular oxy-

gen to the wound bed, protect the wound from impact and abrasion,

and absorb and lock exudates away from the wound bed reducing

maceration. With respect to gauze materials, hydrogels are softer and

more conformable; they allow more intimate contact with the wound

surface, reducing ‘dead space’ where bacteria may reside, and can be

removed without causing damage to the newly formed skin. Hydrogel

dressings can also be loaded with antimicrobial compounds to treat

infected wounds, or with growth factors to accelerate the healing pro-

cess [10–15]. Moreover, degradable hydrogels are used as resorbable

dressings to combine scaffolding functions with the haemostatic and

protective functions typical of wound dressings [16].

Molecular self-assembly, the process by which individual com-

ponents spontaneously assemble through non-covalent interactions

into well-defined and reproducible higher ordered structures, is an

attractive methodology to produce hydrogel dressings because of the

capacity to display desirable ECM signals in a controlled manner

[17]. This approach avoids the need for purification steps from cata-

lysts and unreacted crosslinking agents [18]. Peptide amphiphiles

(PAs) are a particularly promising family of self-assembling peptides

[19], characterized by a lipid hydrophobic group, a b-sheet forming

peptide and a hydrophilic peptidic segment. These molecules recre-

ate the nanofibrous structure of the natural ECM and can easily be

designed to display terminal bioactive segments to guide cell behav-

iours [20], tailor structural properties [21] and interact with other

macromolecules [22, 23]. Taking advantage of the modular nature

of PAs and the opportunities of multicomponent self-assembly [24],

we have developed co-assembling strategies to generate PA-

macromolecule composite materials with improved mechanical

properties [25], structural hierarchy [26, 27] and the capacity to rec-

reate complex biological environments [28, 29].

Building on this supramolecular toolkit, here we report on the

co-assembly of a cationic PA with a carboxylated variant of the tam-

arind seed xyloglucan. Xyloglucan (XG) is a non-ionic, water-solu-

ble polysaccharide composed of a b-(1,4)-D-glucan backbone,

partially substituted by a-(1,6)-linked xylose unit. Some of the xy-

lose residues are b-D-galactosylated at the O-2 (for the chemical

structure see Supplementary Fig. S1) [30]. XG is FDA approved

for use as food additive, due to its ability to act as thickener and sta-

bilizing agent, and widely investigated as pharmaceutical excipient

[31–33]. Moreover, it has also been demonstrated to have intrinsic

anti-inflammatory properties and potential beneficial effects in skin

re-epithelization and remodelling [34, 35]. Thermo-reversible

hydrogels can be obtained from a partially degalactosylated variant

of XG (dXG). Injectable, in situ gelling dXG-based formulations,

loaded with adipose stem cell spheroids, have been demonstrated to

enhance cell viability and stemness properties [36, 37]. Hydro-

alcoholic physical hydrogels based on XG or XG/polyvinyl alcohol

blends have been evaluated as wound dressings for their favourable

mechanical properties and biocompatibility [38–40]. These hydro-

gels have also been integrated with inexpensive, lightweight, ultra-

high frequency radio-frequency identification (UHF RFID) sensor

tags that can battery-less monitor temperature and moisture level of

the dressing as well as wireless transmit the measured data to an off-

body reader [39].

Co-assembly of cationic PAs with other anionic polysaccharides

has been reported to generate delicate fibrous structures in the form

of sacs or membranes, which are structurally advantageous for skin

applications but have a limiting factor in their relatively poor me-

chanical properties [22, 27].

By co-assembling PAs with XG, we aim to develop more robust

and resilient hydrogels that still exhibit fibrous, skin ECM-like ar-

chitecture and can demonstrate adequate durability to survive pro-

longed exposure to biological fluids. Moreover, we can expect

good cellular adhesiveness owing to the galactose residues present

in the CXG sidechains that can interact with galectin receptors

involved in the modulation of cell-matrix interactions and wound

healing [41, 42].

In order to provide XG with electric charges, carboxylation was

pursued via a TEMPO-mediated oxidation reaction [43–46]. The

degree of carboxylation, related changes in molecular weight and

surface charge density of the oxidized XG variant (CXG) were in-

vestigated via infrared spectroscopy and acid-base titration, gel per-

meation chromatography, static light scattering and f-potential

measurements. A cationic (at physiologic pH) PA, characterized by

the hydrophobic palmitoyl chain, the -(Val)3(Ala)3- b-sheet forming

motif and the (His)3 amino terminal acid sequence, was synthetized

according to an established procedure and named after PA-H3 (for

the chemical structure, see Supplementary Fig. S2) [47]. To the best

of our knowledge, PA-H3 has never been used before in co-assembly

with polysaccharides.

As a preliminary screening, the best co-assembly procedure and

the most convenient pH of both PA-H3 and CXG solutions were

identified by visual inspection of the hydrogels obtained mixing the

two solutions at 1:1 volume ratio and 1%w concentration. Then,

the co-assembly structures obtained by mixing the PA-H3 solution

with different volumes of CXG solution were investigated at low

concentration, by circular dichroism (CD) and transmission electron

microscopy (TEM), to have an insight into the co-assembly mecha-

nism. The macroscopic hydrogels obtained at higher concentration

were characterized for their morphological and mechanical proper-

ties by scanning electron microscopy (SEM), dynamic mechanical

rheological analysis, and uniaxial quasi-static compression tests.

Selected hydrogels were also evaluated in terms of fibroblast cell via-

bility and adhesion, and ability to promote wound closure in vivo.

Materials and methods

Materials
XG was purchased from Megazyme International (Ireland). Sugar

composition is xylose 34%w; glucose 45%w; galactose 17%w; arabi-

nose and other sugars 4%w, as provided by the supplier. Fmoc-

protected amino acids and MBHA Rink Amide resin were purchased

from Novabiochem Corporation (UK). 1-hydroxybenzotriazole hy-

drate (HOBT) was purchased from Carbosynth Limited. Palmitic acid

was purchased from Calbiochem. Piperidine and triisopropylsilane

(TIS) was purchased from Alpha Aesar. N,N0-diisopropylcarbodii-

mide (DIC), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), polydime-

thylsiloxane (PDMS, SYLGARDVR 184 kit) acid, the Kaiser test kit

(phenol 80% in ethanol, KCN in H2O/pyridine and ninhydrin 6% in

ethanol), trifluoracetic acid (TFA), sodium bromide (NaBr), sodium

hypochlorite solution, sodium borohydride (NaBH4), dichlorome-

thane (DCM), N,N-dimethylformamide (DMF), diethyl ether and eth-

anol were all purchased from Sigma Aldrich. Dulbecco’s modified

Eagle’s medium (DMEM), Hank’s balanced salt solution (HBSS), pen-

icillin/streptomycin (P/S), foetal bovine serum (FBS) were obtained

from Gibco (Life Technologies). All the reagents were employed as

received.
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Methods
Synthesis and characterization of CXG

In a typical carboxylation reaction, 150 ml of 0.2%w XG aqueous

dispersion was placed in an ice bath and deaerated with gaseous ni-

trogen for 30 min while stirring. To this system, 3 mg of TEMPO,

12.5 mg NaBr and 720 ll of 15%w sodium hypochlorite aqueous

solution were added. During the oxidation process, small volumes

of 0.1 M NaOH were added to maintain the pH at about 9. The re-

action was stopped after 4 h, by adding 22.8 mg of NaBH4. The

polymer was then recovered by precipitation in cold ethanol fol-

lowed by freeze dying.

CXG was characterized by infrared spectroscopy (FTIR) with

Spectrum Two FTIR spectrometer, (Perkin Elmer) in its fully pro-

tonated form. Spectra were collected by accumulation of 32 scans

between 4000 and 450 cm�1, with a resolution of 4 cm�1. All spec-

tra have been normalized with respect to the peak correspondent to

the stretching of methylene groups (2956 cm�1). The quantitative es-

timation of carboxyl groups in CXG was performed by acid–base

titration.

The average weight molecular weight (Mw) of XG and CXG

were assessed through Zimm plot analysis of static light scattering

(SLS) data from measurements carried out at different angles and

polymer concentrations after filtration with 0.45mm syringe filters,

using a Brookhaven BI-9000 correlator and a 50 mW He–Ne laser

(MellesGriot) tuned at k¼632.8 nm and BI200-SM goniometer.

The measurements were performed at 25 6 0.1�C. The refractive in-

dex increment (dn/dc) of XG and CXG in solution, measured by us-

ing a Brookhaven Instruments differential refractometer at

k¼620 nm, were of 0.155 6 0.005 ml/g and 0.150 6 0.004 ml/g, re-

spectively. The electric surface charge density of CXG in HEPES at

pH 7.4 and in water at various pHs was measured in triplicate, by

laser Doppler velocimetry using a Zetasizer Instrument (NANO-ZS

ZEN3600, Malvern Instruments, UK) at 25�C.

Distributions of hydrodynamic volumes were determined by gel

filtration chromatography (GFC) conducted using a Shodex SB HQ

(804 and 806) columns coupled with an Agilent 1260 Infinity HPLC

with a refractive index detector. Prior to injection in the column, the

polymer aqueous solutions were filtered with 0.8 mm cellulose ace-

tate (Millipore) syringe filters. Chromatograms of the samples were

compared with chromatograms of pullulan standard (Sigma

Aldrich) solutions.

Synthesis and characterization of PA-H3

PA-H3 was prepared on a 0.5 mmol scale using MBHA Rink Amide

resin, following a modified variant of a previously published proto-

col [48]. All amino acid couplings were performed using four equiv-

alents (4 mmol) of Fmoc-protected amino acids, four equivalents of

HOBT and six equivalents of DIC dissolved in DMF. Fmoc groups

were removed with a 20%v piperidine solution in DMF and the

Kaiser test kit was used to confirm Fmoc removal. A palmitoyl tail

was attached using four equivalents of palmitic acid, four equiva-

lents of HOBT, and six equivalents of DIC in DMF/DMC (3:2). The

reaction was carried out overnight. Then, the resin was washed sev-

eral times with DCM and DMF, and PA-H3 was cleaved from the

resin by washing with TFA/TIS/water (95:2.5:2.5) for 3 h at room

temperature. The solution was then collected by filtration and all

washings were combined and roto-evaporated to remove residual

TFA. The crude PA-H3 solution was precipitated by addition of an

excess of cold (�20�C) diethyl ether. The precipitate was collected

by centrifugation, washed several times with cold diethyl ether and

dried overnight under vacuum.

For the purification, the crude PA-H3 was dissolved in water and

freeze-dried before preparative high-performance liquid chromatogra-

phy (HPLC) purification. The solid was then dissolved in deionized wa-

ter at 5 mg/ml and purified using a 2545 binary gradient preparative

High-Performance Liquid Chromatographer (Waters, USA) with a

2489 UV/Visible detector (Waters, USA) using a C18 column (Atlantis

Prep OBD T3 Column, Waters, USA) and a water/acetonitrile (0.1%

TFA) gradient. Purified fractions of were finally lyophilized and stored

as dry powder. The molecular mass of the product was confirmed by

electrospray ionization mass spectrometry (ESI-MS, Thermo LXQ,

Thermo Scientific, USA). The electric surface charge density of PA-H3

in HEPES at pH 7.4 and in water at various pHs was measured in tripli-

cate, by laser Doppler velocimetry using a Zetasizer Instrument

(NANO-ZS ZEN3600, Malvern Instruments, UK).

Co-assembled CXG/PA hydrogel preparation

Hydrogels were initially prepared by placing in contact a given vol-

ume of 1%w CXG in isotonic 10 mM HEPES buffer solution

(HEPES buffer) with the same volume of HEPES buffer containing

1% w of PA-H3. Different contacting methodologies were assessed:

(i) side-by-side contacting; (ii) dropping PA-H3 solution on CXG so-

lution and vice versa; (iii) injecting PA-H3 solution inside CXG solu-

tion and vice versa (Supplementary Fig. S3). The solutions were

deposited on PDMS coated surfaces and incubated at 28�C and

38% relative humidity for 24 h before visual inspection.

With the best performing contacting methodology (PA-H3 solu-

tion injection inside CXG solution), the influence of pH of the two

solutions in the range 4–8 was investigated.

Hydrogels were also prepared at different volume ratios (1:1,

2:1, 3:1 and 5:1) between 1%w CXG/HEPES buffer at pH 7–8 and

1%w PA-H3/HEPES buffer at pH 4–5. The systems are coded as

CXG_PA-H3 x: y, where x: y is the volume ratio of the two solu-

tions. For comparison, an only PA-H3-containing hydrogel was pre-

pared injecting the PA-H3/HEPES buffer at pH 4–5 inside an equal

volume of isotonic PBS. Hydrogel formation was visually captured

using a Leica MZ 12-5 microscope (10x).

Characterization of co-assembled CXG/PA-H3 systems at low

concentration

CXG and PA-H3 solutions were prepared in HEPES buffer at

0.01%w. The pH of the CXG solution was adjusted to 7–8, while

the pH of PA-H3 solution was adjusted to 4–5. The solutions of

were mixed at different volume ratios (1:1, 2:1, 3:1 and 5:1).

Samples were left equilibrate for circa 15 min before circular dichro-

ism measurements. CD spectra were acquired between 190 and

260 nm with a step size of 0.5 nm, under a constant flow of nitrogen

at constant pressure of 0.7 MPa and temperature of 25�C, with a

Pistar-180 spectropolarimeter (Applied Photophysics, Surrey, UK).

Spectra are obtained by averaging three consecutive measurements.

For transmission electron microscopy analysis, CXG and PA-H3

solutions (0.05%w in HEPES buffer) were freshly mixed at different

volume ratios (1:1, 2:1, 3:1 and 5:1), then casted onto plasma-

etched holey carbon-coated copper grids (Agar Scientific, Stansted,

UK) and let stand for 5 min. Excess was blotted out using filter pa-

per before incubation with 2%w uranyl acetate for 30 s. Grids were

then washed with ultrapure water for 30 s and air dried for 24 h at

room temperature. Bright-field TEM imaging was performed on a

JEOL 1230 Transmission Electron Microscope operated at an accel-

eration voltage of 80 kV. All the images were recorded by a Morada

CCD camera (Image Systems).
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Co-assembled CXG/PA-H3 hydrogels characterization

Hydrogels were characterized for their morphology by scanning

electron microscopy after removal of salts by repeated washings

with MilliQ water, freezing in liquid nitrogen and freeze-drying.

Samples were mounted on aluminium stabs, coated with a gold layer

(JEOL JFC-1300 coater) for 90 s at 30 mA and imaged with a Field

Emission Scanning Electron Microscope (FESEM-JEOL) at an accel-

erating voltage of 10 kV.

The mechanical properties of the hydrogels were evaluated by

small angle oscillatory shear measurements and compression tests.

In particular, TA Instruments AR-G2 rheometer was used to per-

form oscillatory frequency sweeps with a parallel plate geometry

(8 mm diameter) in the range of angular frequencies between 1 and

100 rad/sec, using a fixed strain of 0.5% and at 25�C. The chosen

strain value was within the linear viscoelastic region of all systems,

as previously determined by strain sweep tests performed at 1 Hz

frequency. Compression tests were carried out using an Instron

5967 testing machine on hydrogels kept in DMEM complete me-

dium. A preload of 0.5 mN was used to contact the sample and de-

termine the gauge length. Samples were compressed to 20% strain

at a rate of 1% s�1 and maintained at this deformation level for

120 s. The hydrogel shape was approximated to a sphere. 1%w aga-

rose hydrogel spheres were used for comparison. Compression mod-

uli reported are averaged on eight measurements [49].

Biological evaluations
Cell culture conditions

Cell culture experiments were conducted with HaCat keratinocytes

cell line. HaCat were cultured with DMEM medium supplemented

with 10%v/v FBS, 1%w/v penicillin and 1%w/v streptomycin. Cells

were maintained in a humidified 5% CO2 atmosphere at

37.0 6 0.1�C.

Cell viability assays

Hydrogels were prepared under sterile conditions and washed three

times with DMEM complete medium before the experiments.

HaCat cells were seeded on top of the hydrogels (10 000 cells in a

96 well plate). After seeding, samples were put under agitation for

30 min at 200 rpm and then cultured for maximum 7 days. After

2 days and 7 days, the cells were stained with LIVE/DEADVR

ThermoFisher reagent and incubated for 30 min at room tempera-

ture before analysis with Leica TCS SP2 confocal microscope. Cell

counting was performed via processing of confocal images using the

software imageJ [50].

Cell incorporation

For cell incorporation experiments, HaCat cells were suspended in

1%w PA-H3/HEPES buffer. Hydrogels were rapidly formed by in-

jection of the PA-H3 solution containing 10 000 cells into 1%w

CXG/HEPES buffer. After 10 min, DMEM complete medium was

added and the constructs were cultured for maximum 7 days with

medium changes every two days. After 2 days and 7 days of culture,

cells were stained with LIVE/DEADVR ThermoFisher reagent before

confocal analysis.

Cell attachment

For the cell attachment assay, HaCat cells were seeded in serum-free

medium on top of the hydrogels. After cell seeding, the samples

were put under agitation for 30 min at 100 rpm at 37�C and then

maintained in static culture conditions in order to allow cell

attachment on hydrogel surfaces. After 4 h, the serum-free medium

was replaced with fresh DMEM complete medium. Samples were

cultured for further 24 h. Cells were then fixed and stained with

40,6-diamidino-2-phenylindole (DAPI, cell nuclei staining) and phal-

loidin 555 (F-Actin staining) and visualized by confocal microscopy.

In vivo wound closure evaluation

Ten-week-old male CD1 mice were anesthetized by isofluorane in-

halation, and the dorsal skin was shaved and sterilized with an alco-

hol swab. Two full-thickness circular 5 mm biopsy punch excisions

(surface area of 19.63 mm2) were made using a Biopsy Punch

(Stiefel). The wounds were made approximately 1 cm apart on the

dorsum of mice and left to heal by secondary intention. Wounds

were left untreated or had a hydrogel added to the wound bed.

Hydrogels were UV irradiated (300 000 microJoules per cm2) prior

to application. The wounds were covered by Tegaderm (3 M) trans-

parent wound dressing, which was secured at the edges by Vetbond

Tissue Adhesive (3 M). Mice received a single intramuscular injec-

tion of buprenorphine (Vetergesic) at 0.03 mg/kg immediately fol-

lowing surgery as an analgesic. Following the surgery, mice were

housed individually with access to food and water ad libitum. All

experiments were reviewed and approved by the animal use commit-

tee at Queen Mary University of London and were conducted in ac-

cordance with licenses granted by the United Kingdom Home

Office. Wounds were collected at day 8 post-wounding. The area of

the wounds was calculated using the formula to determine the area

of an ellipse (A¼p� r1� r2), where r1 and r2 are the minor and the

major radii, respectively. The percent wound closure was calculated

as follows [1�(measured wound area/original wound area)]. Five

mice were randomly allocated to each treatment group. Data from

all mice were included in the final experimental analysis.

Results and discussion

Synthesis of CXG, PA-H3 and preliminary screening of

CXG/PA-H3 co-assembly procedure
The introduction of carboxyl groups in XG chains was qualitatively

assessed by FTIR spectroscopy and quantified by acid–base titration.

The FTIR spectrum of the fully protonated CXG (Supplementary Fig.

S4) shows a peak at 1737cm�1 (carbonyl stretch for carboxylic acids)

that is not present in XG. The concentration of carboxyl groups from

titration is of circa 1.0–1.2 mmol per gram of polymer. Alongside

with functionalization, TEMPO oxidation causes chain scission,

hence a reduction of molecular weight. The weight average molecular

weight, as determined from Zimm plot analysis of static light scatter-

ing data (Supplementary Fig. S5), decreases from the initial value of

1185 kDa for XG to 400 kDa. The calculated degree of primary hy-

droxyl group substitution is equal to about 706 5%. GFC analysis

shows that CXG, likewise the parent XG, is characterized by a broad

molecular weight distribution (Supplementary Fig. S6). HEPES buffer

was chosen as both PA-H3 and CXG solvent because it is cell-friendly

and does not induce gelation of the two individual solutions prior to

mixing, neither at room temperature nor at human body temperature.

As described in Section ‘Co-assembled CXG/PA hydrogel prepa-

ration’, several methodologies for contacting the two solutions were

investigated: (i) side-by-side contact; (ii) dropping one solution on

top of the other; (iii) injecting one solution inside the other. In gen-

eral, the injection of PA-H3 solution inside CXG solution led to the

best results. The first method, in the best case, produced curved

membranes and the second method donut-like structures. Moreover,
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injecting PA-H3 solution inside CXG solution, rather than CXG so-

lution inside PA-H3 solution, led to the most reproducible results in

terms of hydrogel shape.

The influence of both CXG and PA-H3 solution pH on hydrogel

formation was also investigated by hydrogel visual inspection and

handling, varying the pH of the solutions in the range 4–8 (see Fig.

1a). When the pH of the PA-H3 solution was 8, no macroscopic ge-

lation was observed regardless the pH of CXG solution, while for

pH 7 and below of PA-H3 solutions gel formation was always ob-

served. The most uniform and compact hydrogels were obtained

from PA-H3 solutions at pH 4 and 5 and CXG solutions at pH 7

and 8. The average surface charge density from f-potential measure-

ments (see Supplementary Table S1) were the most negative for

CXG at pH 7–8 (circa �26 mV) and the most positive for PA-H3 at

pH 4–5 (þ44 mV). Similarly to what is observed for other PA/poly-

electrolyte couples, stronger constructs are obtained from strong op-

positely charged building blocks [22, 26, 51, 52]. On the basis of

these results, HEPES solutions corrected to pH 4 for PA-H3 and to

pH 8 for CXG were used for the subsequent experiments.

The gel formation process was monitored as function of the time

within 24 h (Fig. 1b). A delicate spherical membrane is formed im-

mediately after the introduction of the PA-H3 droplet inside the

CXG droplet. The membrane gradually evolves into a compact hy-

drogel particle, reaching full maturation after 24 h of incubation at

28�C and 38% RH. No significant increase in size or change in

shape is observed during this process.

The interaction between CXG and PA-H3 was also observed with

the side-by-side contact methodology inside a PDMS open channel

(Fig. 1c) [53]. After filling one part of the channel with the PA-H3 so-

lution, the CXG solution was inserted from the opposite side of the

channel. As mentioned before, a curved membrane is immediately

formed, preventing the rapid mixing of the two solutions and fast pH

equilibration. The membrane grows in thickness over time.

A similar fast assembly behaviour has been described by Capito

et al. [22] when the aqueous solutions of hyaluronic acid (HA,

Mw�2 MDa and f-pot��60 mV at pH 7) and a positively charged

PA enter in contact. In their approach, the contact between the two

solutions was obtained by dropping a given volume of the negatively

charged HA onto an equal volume of the positively charged PA solu-

tion. The fast co-assembly of HA and PA at the interface between

the two solutions leads to the formation of a sac-like structure. The

HA/PA interfacial layer grows in thickness outwardly over time and

leaves a polymer-depleted inner cavity. The sac has a nanofibrous

structure and the formation of the nanofibres has been ascribed to

the electrostatic screening of PA charges by the negative charges of

HA, leading to aggregation of polyaminoacid sequences in b-sheets.

In our case, of PA-H3 solution injection inside the CXG solution,

the same rapid formation of an interfacial membrane between the

two solutions is observed, but the gradual diffusion of CXG through

the membrane inside the sac results in a full hydrogel particle.

Noticeable differences between the two systems are the lower abso-

lute values of f-potential and molecular weight of CXG with respect

to HA. On the account of the lower electric charge present on CXG,

the electrostatic complexation of CXG and PA-H3 requires a larger

number of polymer chains. Therefore, the co-assembly continues af-

ter the formation of the interfacial layer through interdiffusion of

CXG and PA-H3. Full hydrogel particles were also obtained at the

increase of the volume ratio between CXG and PA-H3 solutions

(1:1, 2:1, 3:1, 5:1). The pH of the resulting systems is always in the

range 5–6.

In depth investigation of CXG and PA-H3 co-assembly
The interaction between CXG and PA-H3 was investigated by TEM

and CD spectroscopy analyses carried out at low concentration

while varying the CXG/PA-H3 ratio. TEM analysis shows that PA-

H3 (Fig. 2a) forms short and homogeneously dispersed single fibres

of about 10 nm diameter.

CXG_PA-H3 1:1 presents regions with single fibres and small

aggregates and regions with larger aggregates (Fig. 2b–b0). These

aggregates are formed by branched or interconnected nanofibres.

From TEM images at higher magnification (Fig. 2b00), the inner or-

dered nanostructure, probably resulting from b-sheet association of

the PA-H3 peptide sequence, is clearly evident. Upon increasing the

CXG content, more nanofibres are adjoined together to yield longer

fibre bundles that, in turn, aggregate in extended microfibre networks

(Fig. 2c–e). Interestingly, the aligned planar sheet nanostructure

Figure 1. Optical microscopy images of co-assembled structures obtained by injection of PA-H3 solutions in CXG solutions of different pH (a); structure develop-

ment after injection of pH 4 PA-H3 solution inside pH 8 CXG solution upon incubation at 28�C and 38% RH (b) and for the same systems placed in contact inside a

PDMS channel (c)
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progressively fades to disappear (see Fig. 2e0 for CXG_PA-H3 5:1).

These evidences suggest that CXG is able to bind to the nanofibres

formed by PA-H3 self-assembly, yielding to larger microfibre three-

dimensional networks (see Fig. 2f for pictorial representation). The

extent of networking increases at the increase of CXG content but,

when CXG largely exceeds PA-H3, it starts to interfere with the PA-

H3 self-assembly itself reducing the degree of structural ordering.

CD spectroscopy was performed to investigate how the secondary

structure of PA-H3 is affected by the interaction with CXG. In Fig.

3a–d, CD spectra of the various CXG_PA-H3 systems together with

the spectra of PA-H3 and CXG at the same concentration as in the

corresponding mixtures are reported. For CXG, no ellipticity was ob-

served. All PA-H3 spectra show a negative peak near 220 nm indicat-

ing the presence of the b-sheet secondary structure [54]. The peak

position, hence the characteristic features of this structural element,

are not dependent on PA-H3 concentration, as in micellar systems

above their critical micelle concentration. The CXG_PA-H3 1:1 mix-

ture shows a decreased intensity for the negative band and a slight red

shift (þ4 nm) with respect to the spectrum of PA-H3. These spectral

changes are also present in the CD spectra of CXG_PA-H3 2:1 and

CXG_PA-H3 3:1 systems, although less pronounced, while there is no

decrease of intensity for CXG_PA-H3 5:1. The observed changes can

be attributed to absorption flattening and differential scattering phe-

nomena that occur when the peptide chromophores are sequestered in

domains with high local density [55, 56]. These effects are then

expected to be more important with increasing the size of b-pleated

aggregates. Indeed, in good agreement with TEM observations, they

are more pronounced for the CXG_PA-H3 1:1 system, which also

shows the highest degree of structural ordering. Interestingly, no spec-

tral changes are observed when PA-H3 is mixed with XG

(Supplementary Fig. S7), thus confirming the importance of electro-

static interaction in PA-H3/CXG co-assembly.

The morphology of freeze-dried CXG_PA-H3 hydrogels from

SEM analysis is reported in Fig. 4, together with the morphologies

of the freeze-dried PA-H3 hydrogel formed in PBS buffer and the

1%w CXG solution, for comparison. The PA-H3 hydrogel does not

show a porous structure, probably due the structural collapse of the

network (Fig. 4a). When observed at low magnification, the

Figure 2. TEM micrographs for PA-H3 (a); CXG_PA-H3 1:1 (b, b0, b00); CXG_PA-H3 2:1 (c); CXG_PA-H3 3:1 (d); CXG_PA-H3 5:1 (e, e0). Pictorial representation of PA-

H3 nanofibre and nanofibre aggregates into microfibre networks (f)
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morphology of CXG solution is highly heterogeneous with thick

slabs and fragmented porous regions that are probably generated by

the freeze-drying process itself (Fig. 4b). No features are evident at

higher magnifications (Fig. 4b0). On the contrary, all CXG_PA-H3

hydrogels show micro-porosity that decreases in size at the increase

of PA-H3 content in the mixture. Moreover, we observe a change in

pore architecture, from multi-layered and oriented for CXG_PA-H3

3:1 (Fig. 4e) and CXG_PA-H3 5:1 (Fig. 4f), as observed also for

non-carboxylated XGs [37, 38, 57, 58], to isotropic and intercon-

nected for CXG_PA-H3 1:1 (Fig. 4c) and CXG_PA-H3 2:1 (Fig.

4d). The SEM micrographs of the mixtures at higher magnification,

shown in Fig. 4c0–f0, evidence that the pore walls are formed by

dense micro-fibrous networks. Both fibre length and thickness in-

crease at the increase of the CXG content, in analogy with the TEM

observations at low concentration. Likewise, the PA-H3 hydrogels

at high magnification do not show a fibre network but only the pres-

ence of protruding short fibres (Fig. 4a0). Therefore, CXG is able to

stabilize the PA-H3 nanofibres favouring their organization in

microfibres, while PA-H3 effectively screens the electric charge on

CXG chains acting as a crosslinking agent. The co-assembly of these

two components allows to obtain hierarchical structures resembling

the architecture of the ECM of skin tissues.

Mechanical properties of CXG_PA-H3 hydrogels
Small angle oscillatory shear measurements were performed on the

various CXG_PA-H3 and PA-H3 hydrogels. Storage (G0) and loss

modulus (G00) curves as function of frequency are shown in Fig. 5a.

For all systems, G0 curves are higher than G00 and almost invariant

with the frequency in the investigated range, indicating a predomi-

nantly elastic behaviour typical of relatively ‘strong’ hydrogels [59].

CXG_PA-H3 hydrogels show higher G0 values at the increase of

CXG content, as expected from the evidence of stronger fibrous net-

works formed. Their relatively high G00 values reflect the activation

of energy dissipation mechanisms from the disengagement of the

hydrophobes from their associations, as observed also for other

hydrophobically modified hydrogels [60, 61].

The role of CXG in creating interconnections among the PA-H3

nanofibres is key for the activation of these dissipation mechanisms,

which explains the much lower G0 and G00 values for the PA-H3 hy-

drogel. Both CXG_PA-H3 and PA-H3 hydrogels were also subjected

to uniaxial compression deformation. It is also worth highlighting

the reinforcement effect of PA-H3 nanofibers. Indeed, the G0 values

of temperature-responsive, partially degalactosylated tamarind seed

xyloglucan hydrogels formed at 1%w in various media are generally

in the range of 10–100 Pa [37].

Figure 3. CD spectra of 0.01%w mixtures of CXG/PA-H3 at volume ratios 1:1 (a), 2:1 (b), 3:1 (c) and 5:1 (d). Spectra of CXG and PA-H3 at the same concentration as

in the mixtures are provided as reference
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The compression moduli for all CXG_PA-H3 hydrogels are

higher than for PA-H3 hydrogel with no significant differences

among them (Fig. 5b).

Biological evaluation
Cell viability and cell attachment were studied in order to evaluate

the suitability of CXG_PA-H3 systems as scaffolds for wound heal-

ing applications. CXG_PA-H3_1:1 was excluded from the in vitro

biological evaluation because of its slightly inferior mechanical per-

formance and less developed micro-fibrous morphology. Prior to all

biological assessments, the hydrogels were incubated at 37�C in

complete cell culture medium up to 45 days to assess their stability

in cell culture conditions (Supplementary Fig. S8). CXG_PA-H3

hydrogels did not show appreciable changes of their appearance

during the first 10 days of incubation and progressively swelled dur-

ing the following 35 days. On the contrary, PA-H3 hydrogel started

to disassemble in small pieces after 1 day of incubation and was

completely dissolved after 5 days.

Cell viability was investigated with two different set-ups; in one

set-up HaCat cells were seeded on top of pre-formed CXG_PA-H3

hydrogels while in the other set-up they were incorporated in the

hydrogels. In both cases, hydrogels were stained with LIVE/DEADVR

assay staining and observed by confocal microscopy after 2 days and

7 days of incubation. The obtained results are summarized in Fig. 6a

and b. After 2 days, the cell viability is comparable to the control.

No statistically relevant differences are observed among the systems.

After 7 days, with the only exception of the CXG_PA-H3 2:1 sys-

tem, the condition of cells seeded on top of the hydrogel led to about

25% reduction of cell viability. When cells were incorporated in the

hydrogels, they showed the same cell viability of the control system

after 2 days of incubation and about 20% higher after 7 days.

For the evaluation of cell attachment, cells were seeded on top of

the hydrogels. After 24h from seeding, numerous cells were attached

Figure 4. SEM microscopies of PA-H3 hydrogel (a, a0); CXG solution (b, b0); CXG_PA-H3 1:1 (c, c0), CXG_PAH3 2:1 (d, d0), CXG_PA-H3_3:1 (e, e’) and CXG_PA-

H3_5:1 (f, f0)
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on the surface of the CXG_PA-H3 hydrogels (Fig. 7b–d), and signifi-

cantly more than those attached on the surface of PA-H3 hydrogel

(Fig. 7a). Cells on the surface of the hydrogels adopted a flattened

spread morphology with a distribution in clusters. This observation

confirms that CXG favours cell attachment due to the presence of

galectin-7 receptors in HaCat cells that can recognize the galactose

residues present in CXG sidechains. Galectins are a class of b-galacto-

side-binding receptors involved in the modulation of cell–matrix inter-

actions and re-epithelization of wounds by carbohydrate-based

recognition [41, 42]. Moreover, it has been clarified that galectins pro-

mote skin re-epithelization by influencing cell migration without

stimulating cell proliferation. This implies that, differently from some

epidermal growth factors used in the treatment of non-healing epithe-

lial defects, they should not be causing epithelial hyperplasticity [42].

A preliminary in vivo evaluation of wound closure with the ap-

plication of the PA-H3, CXG_PA-H3 2:1 and CXG_PA-H3 5:1

hydrogels was performed by clinical assessment after 7 days from

the excision. A group of mice whose wound was not covered with

the hydrogel (Non tt) were used as control. A secondary dressing,

Tegaderm film, was always applied on top of all wounds, with or

without the underlying hydrogel slab, to protect the wound bed

from contamination of the Non tt group and to ensure close contact

Figure 5. Dynamic mechanical analysis of PA-H3 and CXG_PA-H3 hydrogels. Solid symbol: storage modulus; open symbol: loss modulus (a). Compression mod-

uli of the same systems determined by quasi-static compression tests (b)

Figure 6. Confocal images and corresponding histograms from cell count of HaCat cells stained with calcein-AM (live indicator; green) and ethidium homodimer-

1 (dead indicator; red) after 2 days and 7 days from seeding of on top of (a) or incorporated in (b) the hydrogels
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between hydrogel and wound for all other groups. The results of the

image analysis of the gross morphology of the skin wounds on day 8

post-wounding are reported in Fig. 8. All wounds treated with the

hydrogels showed a statistically relevant increase in the wound clo-

sure percentage with respect to the control system. No significant

difference in wound closure percentage among all hydrogels was ob-

served at the time point of the analysis.

Conclusions

The co-assembly of the anionic CXG with cationic PA-H3 was in-

vestigated with the aim to produce biocompatible hydrogel scaffolds

for wound healing. PA-H3, characterized by three terminal histidine

amino acids that confer a positive electric surface to the PA, when

injected inside the CXG solution, rapidly forms a delicate membrane

around the droplet that gradually evolves into a compact hydrogel

particle due to interdiffusion and co-assembly of the two solutes. By

screening the electrostatic interactions of PA-H3, CXG triggers the

self-assembly of the peptide sequence into b-sheets and the confine-

ment of the hydrophobic tails inside the nanofibre. Several nanofi-

bres are stacked and bound together to form microfibres. Increasing

the CXG content, the size of the b-pleated aggregates increases, and

the nanofibres become thicker, longer and more interconnected,

yielding an extended micro-fibrous network. At a higher concentra-

tion, when macroscopic gelation occurs, SEM analysis reveals an-

other level of hierarchical organization, with large pores whose

walls are formed by the micro-fibrous network already observed

with TEM at low concentration. The shape of the pores is controlled

by the CXG content in the mixture; smaller and randomly oriented

pores for the systems containing a lower amount of CXG, larger and

columnar pores at higher CXG content. The CXG_PA-H3 hydrogels

are characterized by relatively high values of both storage and loss

moduli, much higher than for hydrogels formed by only PA-H3 in

PBS buffer or by the partially degalactosylated variant of XG upon a

Figure 7. HaCat cells attachment on PA-H3 (a), CXG_PA-H3 2:1 (b), CXG_PA-H3 3:1 (c) and CXG_PA-H3 5:1 (d) hydrogels

Figure 8. In vivo experiments percentages of wound closure at day 8 post-

wounding
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temperature increase. This evidence supports the synergic role of the

two components in the co-assembled structures. The CXG_PA-H3

hydrogels integrity is preserved for 35 consecutive days of incuba-

tion at 37�C in cell culture medium. From the preliminary biological

evaluation carried out, 100% cell viability for incorporated kerati-

nocytes is proven. These cells are also able to adhere on the hydrogel

surface, the better the higher is the CXG content, probably due to

the presence of galectin-7 receptors that can recognize the galactose

residues of CXG sidechains. In vivo studies show a significant in-

crease of wound closure percentage when the wound was covered

with these hydrogels. Altogether, these results demonstrate the po-

tential of CXG_PA-H3 hydrogels to mimic the morphological fea-

tures of the various layers of skin ECM by tuning the CXG/PA-H3

ratio and to serve as in vitro cell microenvironments for skin tissue

engineering as well as wound dressings.
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[20]. Rubert Pérez CM, Stephanopoulos N, Sur S et al. The powerful func-

tions of peptide-based bioactive matrices for regenerative medicine. Ann

Biomed Eng 2015;43:501–14.
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