Evaluating the influence of progesterone concentration and time of exposure on in vitro 1 2 endometrial decidualisation Sutham Suthaporn^{1,2}, Kanna Jayaprakasan³, Jim G Thornton¹, Kate F Walker¹, Marcos Castellanos⁴, 3 4 Sean May⁴, Juan Hernandez-Medrano¹, Walid E Maalouf^{1*}, 5 ¹Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK, ² Department of Obstetrics and Gynaecology, Police General Hospital, 6 7 Bangkok, Thailand. ³Derby Fertility Unit, Royal Derby Hospital, Derby, UK, ⁴Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Nottingham, UK 8 Sutham Suthaporn: Email: msxss46@nottingham.ac.uk (+44 (0)7397235495): ORCiD number: 0000-9 10 0002-1649-5744 *Correspondence author, Juan Hernandez-Medrano: Email: juan.hernandez-11 medrano@exmail.nottingham.ac.uk (+44 (0) 1158230683) 12 13 The University of Nottingham provided financial support for this study. The authors declare that they have nothing to disclose. 14 15 Email: msxss46@exmail.nottingham.ac.uk (Sutham Suthaporn), kanna.jayaprakasan@nhs.net (Kanna Jayaprakasan), jim.thornton@nottingham.ac.uk (Jim G Thornton), kate.walker@nottingham.ac.uk 16 (Kate F Walker), juan.hernandez-medrano@nottingham.ac.uk (Juan Hernandez Medrano), 17 sbzmc3@exmail.nottingham.ac.uk (Marcos Castellanos), sbzstm@exmail.nottingham.ac.uk (Sean 18 May), walid.maalouf@nottingham.ac.uk (Walid Maalouf) 19 20 21

22

24 Highlights

•	A high progesterone concentration is associated with improvement in the decidualisation
	process.
•	The most functionally and morphologically active part of the decidualisation process occurred
	7-9 days after progesterone exposure.
•	According to a pathway enrichment analysis, inhibition of cell cycle progression is the major
	effect of progesterone on Human Endometrial Stromal Cells (HESC).
	•

Abstract

35	This study aimed to evaluate the influence of progesterone (concentration and time of exposure) on
36	endometrial decidualisation using an in vitro model cell line: Human Endometrial Stromal Cells
37	(HESCs). HESCs exposed to progesterone (1 and 10 μ M) had higher percentages of decidualised cells
38	and higher expression of the decidual marker (Insulin Like Growth Factor Binding Protein 1
39	(IGFBP1)) compared with those exposed to (0.1 μM) . Among those HESCs cultured with 1 μM
40	progesterone for 11 days, the highest rate of morphological differentiation (40-50%) occurred
41	between days 7-9 and IGFBP1 peaked on day 7. The cell-cycle pathway was significantly down-
42	regulated in HESCs exposed to at least 1 μ M progesterone regardless of the incubation period. We
43	conclude that exposure to high progesterone concentration for 7-9 days is essential to maximise the
44	process of decidualisation.
45	Keywords: progesterone, endometrium, implantation window, decidualisation, human endometrial

46 stromal cells, microarray.

47 **1. Introduction**

48 The endometrium is a highly dynamic tissue undergoing extensive growth and repeated regeneration in a cyclical manner (Henriet, Chevronnay and Marbaix, 2012, Petracco, Kong, Grechukhina et al., 49 50 2012). The endometrium undergoes a cycle of dislodgment, proliferation, and secretory differentiation 51 regulated by the sequentially timed interplay of circulating steroid hormones. Oestrogen is necessary 52 for inducing expression of progesterone receptors (PR) and increasing endometrial thickness in the 53 proliferative phase (Hamilton, Arao and Korach, 2014, Koos, 2011). Progesterone plays an important 54 role in the secretory transformation of the endometrium and receptivity to the implanting embryo (Okada, Tsuzuki and Murata, 2018). Decidualisation occurs during the implantation window during 55 56 the secretory phase corresponding to the physiological peak in progesterone concentrations in the 57 menstrual cycle (Reed and Carr, 2015). 58 Decidualisation is a progesterone-dependent differentiation process of endometrial stromal cells 59 characterised by differentiation from elongated fibroblast-like mesenchymal cells in the stromal compartment into rounded epithelioid-like cells during the secretory phase (Coulam, 2016). The peak 60 of morphological differentiation during the secretory phase is observed during the implantation 61 window (Luesley and Kilby, 2016). Decidualisation process is a prerequisite for successful embryo 62 63 implantation and provides nutritional support for the implanting blastocyst (Su and Fazleabas, 2015). The decidualisation process provides both a protective function to limit trophoblast invasion and a 64 supportive role in placentation by secreting growth factors and cytokines that assist remodel the 65 implantation site and the maternal vasculature to promote embryo implantation and growth 66 67 (Ramathal, Bagchi, Taylor et al., 2010). Insulin Like Growth Factor Binding Protein 1 (IGFBP1) is a major product of decidualised endometrial stromal cells and may regulate endometrial differentiation 68 69 and implantation thus it is considered a preferred molecular marker of human decidualisation (Tseng, 70 Gao, Chen et al., 1992, Gellersen and Brosens, 2003). Furthermore, IGFBP-1 produced by 71 decidualised endometrium can directly stimulate endometrial stromal cell decidualisation by 72 interacting with $\alpha 5\beta 1$ integrin on the surface of endometrial stromal cells (Matsumoto, Sakai and 73 Iwashita, 2008). It has been shown that defective decidualised stromal cells secrete lower IGFBP1

Formatted: Font color: Auto

74	(Garrido-Gomez, Dominguez, Quiñonero et al., 2017). With this concept, although there is no cut-off
75	level of IGFBP1 and no randomised controlled trial indicating lower levels of IGFBP1 is associated
76	with impaired decidualisation; lower expression of IGFBP1 compared with the reference or control
77	samples is commonly considered as possible indicator of poor decidualisation in the scientific
78	literature (Vinketova, Mourdjeva and Oreshkova, 2016). Impairment of decidualisation is associated
79	with various reproductive disorders, such as infertility, recurrent miscarriages, and uteroplacental
80	disorders (Garrido-Gomez et al., 2017, Wu, Kimura, Zheng et al., 2017, Cha, Sun and Dey, 2012).
81	
82	Progesterone supports endometrial receptivity and decidualisation. Abnormally low serum
83	progesterone concentrations during the implantation window have been shown to be associated with
84	poorer pregnancy rates in both natural cycles (Jordan, Craig, Clifton et al., 1994, Radwanska,
85	Hammond and Smith, 1981, Hull, Savage, Bromham et al., 1982) and frozen-thawed cycles
86	(Basnayake, Volovsky, Rombauts et al., 2018, Labarta, Mariani, Holtmann et al., 2017, Cédrin-
87	Durnerin, Isnard, Mahdjoub et al., 2019). In frozen-thawed cycles, the number of days of
88	progesterone exposure prior to embryo transfer is based on the stage of the frozen embryos to be
89	transferred. Too early or delayed progesterone administration results in a poorer pregnancy rate
90	(Sharma and Majumdar, 2016). Those finding suggests that both progesterone concentrations and
91	timings of exposure are critical factors to achieve implantation.
92	Decidualisation can be artificially induced using progesterone supplementation. In vitro studies using
93	artificial decidualisation models have allowed us to improve our insights into the effect of
94	progesterone on the process of decidualisation. The in vitro model offers a controlled environment to
95	define the particular genes differentially expressed under the influence of progesterone with stratified
96	datasets based on time and concentration and it can be used to identify progesterone-associated
97	pathways. Human Endometrial Stromal Cells (HESC) respond to progesterone stimulation and show
98	the morphological pattern and biochemical endpoints of decidualisation (Krikun, Mor, Alvero et al.,

- 99 2004). These cells are karyotypically, morphologically, and phenotypically similar to the primary
- 100 parent cells retrieved from the human uterus. The consistency and reproducibility of results is also the

101	major advantage of HESC culture, as HESC can be cultured and tested repeatedly. Importantly, the
102	exact progesterone concentration and timing of exposure can be controlled precisely under in vitro
103	conditions, Therefore in vitro models of artificial decidualisation are an excellent model to study the
104	effect of progesterone on decidualisation and the potential for implantation (Krikun et al., 2004).
105	Defective decidualisation has been found as a root cause for implantation failure and subsequent early
106	embryo miscarriage (Gellersen and Brosens, 2014, Kommagani, Szwarc, Vasquez et al., 2016). If we
107	know the optimal progesterone concentration and duration of progesterone exposure that maximises
108	decidulisation process, it could guide how to improve this process by adjusting progesterone
109	administration. We aim to investigate the impact of different progesterone concentrations and
110	different timings of progesterone exposure on the decidualised endometrium using endometrial
111	morphology, decidual markers, and global gene expression using microarray-based technology.

112 **2. Objectives**

113	To study endometrial HESC gene expression profiles and endometrial morphology following in vitro
114	incubation for 3, 7, and 11 days with increasing concentrations of progesterone (0.1, 1, and 10µM)).

115 **3. Methods**

116 3.1 Characterisation and culture of HESCs

117 This study consisted of morphological and functional assessments of HESCs. HESCs decidualisation in response to progesterone was assessed morphologically (change from elongated to rounded cells) 118 and by expression of a decidualisation marker (IGFBP1). The day of peak expression of IGFBP1 (day 119 7) was used as a reference to compare the whole transcriptomic profile of HESCs between different 120 121 progesterone concentrations and between different incubation periods using microarray (Figure 1). 122 The human endometrial stromal cells (HESCs; ATCC CRL-4003; American Type Culture Collection Co., Virginia, USA) were cultured in Dulbecco's modified Eagle's medium and Ham's F-12 medium 123 (DMEM/F12, Sigma, Poole, UK) supplemented with 1% ITS+ Premix (Thermo Fisher Scientific, 124

Loughborough, UK), 500 ng/mL puromycin (Thermo Fisher Scientific, Loughborough, UK), 10%
charcoal/dextran treated fetal bovine serum (HyClone, Thermo Fisher Scientific, Loughborough, UK)
at 37°C in a humidified chamber with 5% CO2. The medium was changed every 48 hours (Huang,
Yu, Li et al., 2017).

129

130 To induce in vitro decidualisation, HESCs were incubated in DMEM/F12 medium supplemented with 131 2% CS-FBS, 10 nM β-oestradiol, 0.5 mM 8-Bromoadenosine 3',5'-cyclic monophosphate sodium salt (8-Br-cAMP, Sigma, Poole, UK) and increasing concentrations of progesterone (P4, 0.1, 1 and 10 132 133 µM; 4-pregnene-3,20-dione; Sigma, Poole, UK) (Li, Kang, Qiao et al., 2017). The progesterone concentration of 1 µM is the standard concentration of HESC decidualisation in vitro (Krikun et al., 134 135 2004). These doses were based on a preliminary dose-response experiment (data not presented), 136 showing that doses above 30 uM, decreased survival within 48 hours. A dose of 20 uM decreased 137 survival in some replicates after 96 hours. A dose of 10 uM did not decrease cell survival in a period 138 of 11 days, this concentration was used as the highest concentration in this experiment. A light microscope was used to differentiate rounded (decidualised) cells from elongated stromal cells. The 139 percentages of decidualised HESCs were visually estimated in 10 fields at 10X magnification and 140 expressed as the average percentage from the total cells in each field on days 3, 5, 7, 9, and 11. 141 142 143 Moreover, IGFBP1 expression, a marker of decidualisation and endometrial receptivity (Tseng et al., 1992, Gellersen and Brosens, 2003), was assessed by PCR following incubation for 3, 5, 7, 9, and 11 144 days, to determine the incubation time required to induce decidualisation in HESC under increasing 145 concentrations of progesterone, similar to morphological assessment. The day of peak expression of 146 IGFBP1 was used as a reference for microarray analysis. 147

148

149 3.2 Determining whole transcriptomic profile by microarray

150	The experimental design for the microarray experiment is presented in Figure 1. To determine the
151	effect of different progesterone concentrations on endometrial transcriptomics, the gene expression of
152	HESCs treated with 0.1, 1, and 10 μM progesterone was analysed on day 7 (peak IGFBP1 based on
153	our findings (Figure 3)). To evaluate the effect of the incubation period, the global gene expression of
154	HESCs treated with a standard concentration of progesterone (1 $\mu M)$ was studied on days 3, 7, and 11
155	of incubation (Li et al., 2017). The standard progesterone concentration of 1 μ M was taken from the
156	standard protocol of HESC decidualisation in vitro (Krikun et al., 2004). Differentially expressed
157	genes with fold changes were obtained from the comparison of gene expression between HESCs
158	exposed to progesterone in a particular concentration and incubation period (intervention groups) and
159	HESCs cultured in the medium without progesterone for the same period (control groups). On a
160	corresponding day, media was collected and lysis buffer added (150 $\mu L/\text{well}),$ followed by scrapping
161	to remove cells. Lysis buffer containing the cells was pipetted into an Eppendorf tube (1.5ml) and
162	stored at -80°C until RNA extraction. Each treatment was run in triplicate.

165 Figure 1: Diagram representing HESCs treated with increasing progesterone concentrations (0.1 µM,

166 1 μ M, and 10 μ M) and different incubation periods (3, 7, 11 days).

169	The whole-genome transcriptome analysis of HESCs treated with different progesterone
170	concentrations at specific incubation periods was conducted at the Nottingham Arabidopsis Stock
171	Centre (NASC). The RNA concentration and quality were assessed using the Agilent 2100
172	Bioanalyzer (Agilent Technlogies Inc., Palo Alto, CA, USA) and the RNA 600 Nano Kit (Caliper Life
173	Sciences, Mountain View, CA, USA). Samples with a minimum RNA concentration of 100 $ng/\mu l$ and
174	RNA Integrity Number (RIN) \geq 8 were used for gene expression analysis. Single-stranded
175	complementary DNA was prepared from 200 ng of total RNA as per the GeneChipTM WT PLUS
176	Reagent Kit (Applied Biosystems and Affymetrix, Loughborough, UK). Total RNA was first
177	converted to cDNA, followed by in vitro transcription to make cRNA. Single-stranded cDNA was
178	synthesized, end-labeled, and hybridized for 16 h at 45°C to Clariom [™] S Assay arrays (Thermo
179	Fisher Scientific, Loughborough, UK).
180	
181	3.2.2 Expression array analysis
181 182	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between
181 182 183	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data
181 182 183 184	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files
181 182 183 184 185	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2
181 182 183 184 185 186	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially
181 182 183 184 185 186 187	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially expressed genes (DEG) were identified by a two-way ANOVA. DEGs were considered significant if
181 182 183 184 185 185 186 187 188	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially expressed genes (DEG) were identified by a two-way ANOVA. DEGs were considered significant if p-value with FDR was ≤ 0.05 and fold change of >1.5 or <-1.5.
181 182 183 184 185 186 187 188 189	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially expressed genes (DEG) were identified by a two-way ANOVA. DEGs were considered significant if p-value with FDR was ≤ 0.05 and fold change of >1.5 or <-1.5. Venn diagrams were generated to display the number of overlapping genes among three different
181 182 183 184 185 186 187 188 189 190	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially expressed genes (DEG) were identified by a two-way ANOVA. DEGs were considered significant if p-value with FDR was ≤ 0.05 and fold change of >1.5 or <-1.5. Venn diagrams were generated to display the number of overlapping genes among three different progesterone concentrations and three different incubation periods. Gene Ontology (GO) and
181 182 183 184 185 186 187 188 189 190 191	3.2.2 Expression array analysis Gene expression data and pathway analysis were used to compare endometrial response between HESC exposed to different progesterone concentrations and incubation periods. Gene expression data were analysed using Partek Genomics Suite 6.6 software (Partek Incorporated). The raw CEL files were normalized using the RMA background correction with quantile normalization, log base 2 transformation, and mean probe-set summarization with adjustment for GC content. Differentially expressed genes (DEG) were identified by a two-way ANOVA. DEGs were considered significant if p-value with FDR was ≤ 0.05 and fold change of >1.5 or <-1.5. Venn diagrams were generated to display the number of overlapping genes among three different progesterone concentrations and three different incubation periods. Gene Ontology (GO) and pathways enrichment analyses were carried out by using the webgestalt web tool

- $\label{eq:constraint} 193 \qquad \mbox{deposited in the NBCI Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo), accession}$
- 194 number: GSE146777. Microarray validation was carried out by RT-PCR on four significantly

upregulated (IGFBP1, SPP1, GPX3, and MAOA) and four downregulated genes (IFIT1, MOXD1,

- 196 CDK15, and CDC20) in all progesterone concentrations on days 3, 7, and 11.
- 197

198 3.2.3 RNA preparation and PCR

- 199 Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, Manschester, UK) following the
- 200 manufacturer's indications. Quantification of RNA was assessed using a Nanodrop
- 201 Spectrophotometers (Thermo Fisher Scientific, Loughborough, UK). After extraction, a High-
- 202 Capacity cDNA Reverse Transcription Kit with RNase inhibitor (Catalog number: 4374967, Thermo
- 203 Fisher Scientific, Loughborough, UK) was used to prepare the cDNA template. A mixture of 1.5 µL
- 204 of cDNA, 0.75 μL of TaqMan Assays, 7.5 μL TaqMan fast universal mastermix; and 5.25 μL RNAse-
- 205 Free Water was prepared to perform PCR. To determine the expression of the genes of interest, the
- 206 following Taqman primers (Thermo Fisher Scientific, Loughborough, UK) were used as appropriate:
- 207 SPP1 (Hs00959010_m1), GPX3 (Hs00173566_m1), MAOA (Hs00165140_m1), IGFBP1
- 208 (Hs00236877_m1), IFIT1 (Hs03027069_s1), MOXD1 (Hs01026922_m1), CDK15
- 209 (Hs00287045_m1), and CDC20 (Hs00961704_g1). All PCR reactions were performed in triplicate.
- 210 The PCR was performed with a heating step at 95°C for 20 minutes and then cycled 40 times at 95°C
- 211 for 3 seconds followed by 60°C for 30 seconds on the ABI 7500 fast real-time PCR system (Thermo
- 212 Fisher Scientific, Loughborough, UK). A housekeeping gene expression (18S, Hs99999901_s1), was
- 213 used to normalise the gene expression data. The gene expression was expressed as the n-fold
- 214 difference relative to the control.
- 215

216 3.3 Statistical analysis

- 217 Statistical analysis was performed using SPSS (v26; IBM; Portsmouth, UK). A two-way ANOVA
- 218 was conducted to compare the effect of progesterone concentrations and incubation periods on
- 219 decidualisation. A one-way ANOVA was performed to examine the effect of three different
- 220 progeterone on the number of decidualised cells. Student's t-test was used to determine the difference

221	of expression of selected genes between control and experimental groups for microarray validation. A
222	p-value < 0.05 was considered to be statistically significant.
223	
224 225 226	
227 228	4 Results
229	4.1 Decidualisation in vitro
230	The morphology of non-decidualised and decidualised HESCs are shown in Figure 2A and 2B,
231	respectively. There was a difference in the mean percentage of decidualised cells between
232	progesterone concentrations (p < 0.001) and incubation periods (p < 0.001), with an interaction
233	between these $(p < 0.001)$ (Figure 2). Decidualised cells were present on days 3 and 5, but the
234	percentage increased from day 7 onwards, peaking on day 11. This was similar across all progesterone
235	concentrations (0.1, 1, 10 μ M; Figure 2C). On days 7, 9, and 11, higher progesterone concentrations
236	allowed higher accumulative percentages of decidualised cells (Figure 2C). The findings suggest that
237	higher progesterone concentration and a longer incubation period increase the percentage of
238	decidualised cells. Furthermore, there was a statistically significant difference between the three
239	concentrations on days 7, 9, and 11 (Figure 2C). Therefore, the number of decidualised cells cultured with 10
240	uM are higher than those cultured with 0.1 and 1 uM. A concentration of 1 uM progesterone resulted in a higher
241	number of decidualised cells than 0.1 uM progesterone.
242	

Figure 2: Non-decidualised cells present a fusiform shape (2A), while decidualised cells (arrows) are
characterised by a round shape (2B), 10 x magnification. The accumulative percentages of
decidualised cells following an incubation period of 7, 9, and 11 days with progesterone are shown in
Figure 2C, the percentage was calculated from the average percentages of 10 fields. There was an
effect of progesterone (P) concentration (p < 0.001), incubation time (p < 0.001) and its interaction (p
< 0.001). * = significant difference between groups, p < 0.001 for all comparison.
4.2 IGFBP1 expression

253 The IGFBP1 expression increased as progesterone concentrations increased, the highest concentration

 $(10 \ \mu M)$ showed the highest (p < 0.001) expression of IGFBP1 (Figure 3). The IGFBP1 expression

255 peaked on day 7, regardless of progesterone concentration (Figure 3).

257

Figure 3: Mean (±s.e.m) IGFBP1 expression in human endothelial stromal cells (HESC) cultured in
media containing increasing progesterone concentrations (0.1 μM, red bars; 1 μM, green bars; and, 10
μM, purple bars) for 11 days. There was an effect of progesterone (P) concentration (p < 0.001),
incubation time (p < 0.001), however its interaction was not statistically significant (p = 0.15).

263 4.3 Pathway enrichment analysis

264

265 The results of pathway enrichment analysis were unique depending on different progesterone

- 266 concentrations/incubation periods (Figure 4). The pathway related to cell cycle was significantly
- 267 down-regulated in most experimental conditions, except when cells were incubated with 0.1 µM
- 268 progesterone on day 7 (Figure 4). A full list of differentially expressed genes in each condition was
- 269 provided in Supplementary 1.
- 270
- 271 To determine the gene expression trend of cell cycle-regulated genes, the overlapping cell cycle-
- 272 regulated genes between different concentrations (16 genes) and incubation periods (14 genes) were
- 273 extracted (Figure 5) and the change of their gene expression was evaluated in Figure 6. With HESC

274	exposed to $10 \mu\text{M}$ progesterone, genes that are associated with cell-cycle regulation had higher
275	negative fold change compared with HESCs exposed to 1 μ M (Figure 6). The majority of cell cycle-
276	regulated genes (12/14 genes) were expressed the most on day 3 compared with days 7 and 11. A list
277	of cell cycle-regulated genes with fold changes in each condition was provided in Supplementary 2.
278	
279	We further examined the gene expression trend of decidualisation-related genes, as described by (Liu
280	and Wang, 2015), between different concentrations and incubation periods. We found that four out of
281	the 12 decidualisation-related genes were significantly up-regulated in all experimental conditions
282	regardless of concentrations or incubation periods (PRL, VIM, IL1B, and FOXO1). The expression of
283	these and IGFBP1 increased with increasing progesterone concentrations (Figure 7). The highest fold
284	change was observed on day 3 and decreased thereafter (Figure 7). A list of decidualisation-regulated
285	genes with fold changes in each condition was provided in Supplementary 3.

287 4.4 Microarray validation by RT-PCR

288 Microarray results were validated by RT–PCR. All genes selected showed a similar pattern to that
289 observed in the microarray analysis (Supplementary 4).

290

²⁹⁹

Figure 4: Bar charts representing pathway analysis between (A) increasing progesterone concentrations on day 7 (0.1, 1 and 10 μ M) and (B) different

301 incubation periods (3, 7 and 11 days). P=progesterone concentration and D=incubation day

- **Figure 5**: Overlap of cell cycle-regulated genes between different progesterone concentrations on day 7 (A; 0.1,1, and 10 μ M) and on different incubation periods (B; 3, 7 and 11 days). P = progesterone
- concentration; D = incubation day.

- Figure 7: Gene expression of decidualisation-related genes between different progesterone
- concentrations (A; 0.1,1, and 10 μ M); and the progesterone concentration of 1 μ M between different
- incubation periods (B; 3, 7, and 11 days). P = progesterone concentration; D = incubation day.

336 **5. Discussion**

337

The results indicate that endometrial decidualisation is regulated by progesterone in a time and 338 339 concentration-dependent fashion- Morphological differentiation was initially visualised on day 7. On day 7, 9, and 11, lower progesterone concentrations induced lower accumulative percentages of 340 decidualised cells and lower expression of the decidualisation marker, IGFBP1. The findings suggest 341 342 that lower progesterone concentration is potentially associated with impaired decidualisation. Several 343 studies showed that women with low serum progesterone during the window of implantation had a significantly lower pregnancy rate in a natural cycle (Radwanska et al., 1981, Hull et al., 1982), fresh 344 IVF cycle (Kaur, Naidu, Kumkum et al., 2018), IUI cycle (Labarta et al., 2017, Hansen, Eisenberg, 345 Baker et al., 2018, Warne, Tredway, Schertz et al., 2011) and frozen-thawed embryo transfer cycle 346 347 (Basnayake et al., 2018, Labarta et al., 2017). Therefore, adequate progesterone concentration is required during implantation to enhance the potential for implantation. Although the cut-off value is 348 349 uncertain, a previous report from our group (Suthaporn, Jayaprakasan, Thornton et al., 2020) and 350 other authors suggest a progesterone threshold ranging between 10 and 15 ng/ml. Our results suggest that lower progesterone concentration are potentially associated with compromised decidualisation, 351 352 resulting in implantation failure.

354	In fact, spatio-temporal changes are required to transform the endometrium from a non-receptive to a
355	receptive stage during the implantation window (Paria, Lim, Das et al., 2000, Aghajanova, Hamilton
356	and Giudice, 2008). The peak of morphological differentiation during the secretory phase is observed
357	during the implantation window following progesterone exposure for 7-9 days post-ovulation in a
358	natural cycle (Luesley and Kilby, 2016). In this in vitro study, the expression of IGFBP1 peaked at
359	day 7 and the greatest change of morphological differentiation occured between days 7 to 9 (40-50%)
360	suggesting that the peak of decidual change in HESCs occurred 7-9 days following progesterone
361	exposure which is consistent to the physiological findings observed in a natural cycle. Because
362	ovulation typically occurs on day 14 of the menstrual cycle in women with a 28-day cycle. 7-9 days

363	after ovulation is approximately days 21-23 which is the period of implantation window (Harper,
364	1992, Wilcox, Baird and Weinberg, 1999), This suggests that the increased morphological
365	differentiation could be associated with improved implantation potential. In a conception cycle,
366	decidualisation spreads throughout the entire endometrium (Salamonsen and Evans, 2018). It is
367	plausible that a greater number of decidualised cells will provide a larger area for blastocyst
368	implantation, therefore higher progesterone concentration that allows a greater number of
369	decidualised cells would be more favourable for implantation.

371	Decidualisation is characterised by stromal cell differentiation from fibroblast-like into larger and
372	rounder decidual cells. This process is regulated by progesterone which promotes cell cycle arrest and
373	inhibits proliferation before the cells start the differentiation process into decidual cells (Logan,
374	Steiner, Ponnampalam et al., 2012). In this study, higher progesterone concentrations (1 and 10 μ M)
375	were associated with significant downregulation of the cell-cycle pathway, whereas the lowest
376	concentration (0.1 μ M) was not. In addition, higher progesterone concentrations activate higher
377	expression of cell cycle-regulated genes (down-regulation) suggesting that greater progesterone
378	concentration more effectively inhibits cell cycle progression, potentially resulting in a higher chance
379	that cells stop cycling in order to further differentiate. Higher progesterone concentration also allows
380	higher expression of decidualisation-regulated genes (PRL, IGFBP1, VIM, IL1B, and FOXO1; up-
381	regulation). This suggests that after cell cycle progression is stopped, higher progesterone
382	concentrations effectively promote stromal cell differentiation leading to higher chance of cells
383	undergoing decidualisation. These mechanisms explain why the highest percentages of differentiated
384	cells and the decidualisation marker, IGFBP1, were observed in HESCs exposed to the highest
385	progesterone concentration.
386	
207	The pathway involved in the call avale was the only pathway significantly down regulated on all

387	The pathway involved in the cell cycle was the only pathway significantly down-regulated on all
388	incubation periods (days 3, 7, and 11). In comparing the expression of cell cycle-regulated genes
389	between those three conditions, it was found that the majority of those genes $(12/14 \text{ genes})$ had the

390	highest expression (down-regulation) on day 3 suggesting that cell cycle progression was actively
391	inhibited early on day 3, but increasingly inactivated on days 7 and 11. Interestingly, the highest
392	expression of decidulisation-related genes (PRL, IGFBP1, VIM, IL1B, and FOXO1) also occurred on
393	day 3 and subsequently reduced corresponding to the gene expression pattern of cell cycle-regulated
394	genes. The findings indicate that the functional regulation of cell cycle arrest and differentiation was
395	actively regulated in the early stage on day 3 after progesterone exposure consistent with the study by
396	Takano et al. (Takano, Lu, Goto et al., 2007). In the study by Lucus et al., single-cell RNA
397	sequencing (scRNA-seq) was used to assess temporal transcriptomic changes every 2 days for a
398	period of 8 days in HESCs treated with progesterone, 5/12 decidualisation-regulated genes according
399	to the study by (Liu and Wang, 2015), were significantly expressed on day 2 in response to
400	progesterone (PGR, FOXO1, STAT3, VIM, and FN1) before morphological differentiation was
401	observed, subsequently, those genes were less expressed in the later stage (Lucas, Vrljicak, Muter et
402	al., 2020). Similarly, in this study, after extensive activation of decidualisation-related genes in an
403	early stage on day 3 in response to progesterone, it takes a few days to generate morphological
404	differentiation identified by light microscopy on day 7. After initiation of morphological
405	differentiation, it is possible that extensive inhibition of cell cycle progression and activation of
406	decidualisation-related genes is no longer needed, therefore the expression of those genes decreases
407	on days 7 and 11.
408	
409	The limitation of the study is that the conversion method of progesterone concentration in vitro to in
410	vivo is not well-established. A concentration of 0.1, 1, and 10 uM can be converted to 31.5, 314.5,
411	and 3144.6 ng/ml. The concentration of 0.1 uM (31.5 ng/ml) is close to physiologic serum
412	progesterone during implantation. The higher concentration of 1 and 10 uM is supraphysiologic levels
413	that are unlikely to occur in a natural cycle, yet 1 uM has been proposed as a standard concentration in
414	vitro (Krikun et al., 2004). Therefore, this study provides informative details regarding the favourable
415	trend of endometrial progesterone concentrations (high or low) and duration of progesterone exposure
416	that maximises decidulisation process rather than point out an exact cut-off for progesterone
1	

417 concentration. We believe that more research is needed to translate progesterone concentration from

418 <u>in vitro to in vivo study.</u>

419

420 **6.** Conclusion

- 421 Decidualisation is modulated by progesterone exposure in a time and concentration-dependent
- 422 manner. Exposure to below toxic (30 μM) but high (10 μM) progesterone concentration for 7-9 days is
- 423 essential to maximise the process of decidualisation. <u>Further pieces of evidence are required to</u>
- 424 determine whether higher decidualisation will translate into better clinical outcomes.

425

- 426
- 427

428 Funding

429 The University of Nottingham provided financial support for this study.

430 **Disclosure of interests**

431 The authors declare that they do not have any conflict of interest.

432 Authors' contributions

- 433 WEM conceived this research project. SS, WEM, and JHM designed the study. SS, MC, and SM
- 434 performed the experiments, processed the experimental data, and performed the analysis. SS, WEM,
- 435 JHM, KFW, JGT, and KJ assisted in writing the paper.

436 Acknowledgments

- 437 We are grateful to all the women who participated in this study. We would also like to thank Iqbal
- 438 Khan and Li Guo for assistance in cell culture and microarray techniques.

440 References

- 441[1]Henriet, P., Chevronnay, H.P.G. and Marbaix, E., 2012. The endocrine and paracrine control442of menstruation, Molecular and cellular endocrinology. 358, 197-207.
- Petracco, R.G., Kong, A., Grechukhina, O., Krikun, G. and Taylor, H.S., 2012. Global gene
 expression profiling of proliferative phase endometrium reveals distinct functional
 subdivisions, Reproductive sciences. 19, 1138-1145.
- Hamilton, K.J., Arao, Y. and Korach, K.S., 2014. Estrogen hormone physiology: reproductive
 findings from estrogen receptor mutant mice, Reproductive biology. 14, 3-8.
- 448[4]Koos, R.D., 2011. Minireview: putting physiology back into estrogens' mechanism of action,449Endocrinology. 152, 4481-4488.
- 450 [5] Okada, H., Tsuzuki, T. and Murata, H., 2018. Decidualization of the human endometrium,
 451 Reproductive medicine and biology. 17, 220-227.
- 452[6]Reed, B.G. and Carr, B.R., 2015. The normal menstrual cycle and the control of ovulation,453Endotext [Internet]. MDText. com, Inc.
- 454 [7] Coulam, C., 2016. What about superfertility, decidualization, and natural selection?, Journal
 455 of assisted reproduction and genetics. 33, 577-580.
- [8] Su, R.-W. and Fazleabas, A.T., 2015. Implantation and establishment of pregnancy in human and nonhuman primates, Regulation of Implantation and Establishment of Pregnancy in Mammals. Springer, pp. 189-213.
- Ramathal, C.Y., Bagchi, I.C., Taylor, R.N. and Bagchi, M.K., 2010. Endometrial decidualization:
 of mice and men, Seminars in reproductive medicine. NIH Public Access, pp. 17.
- [10] Tseng, L., Gao, J.-G., Chen, R., Zhu, H.H., Mazella, J. and Powell, D.R., 1992. Effect of
 progestin, antiprogestin, and relaxin on the accumulation of prolactin and insulin-like growth
 factor-binding protein-1 messenger ribonucleic acid in human endometrial stromal cells,
 Biology of reproduction. 47, 441-450.
- 465 [11] Gellersen, B. and Brosens, J., 2003. Cyclic AMP and progesterone receptor cross-talk in 466 human endometrium: a decidualizing affair, The Journal of endocrinology. 178, 357-372.
- 467 [12] Matsumoto, H., Sakai, K. and Iwashita, M., 2008. Insulin-like growth factor binding protein-1
 468 induces decidualization of human endometrial stromal cells via α5β1 integrin, MHR: Basic
 469 science of reproductive medicine. 14, 485-489.
- 470 [13] Garrido-Gomez, T., Dominguez, F., Quiñonero, A., Diaz-Gimeno, P., Kapidzic, M., Gormley,
 471 M., Ona, K., Padilla-Iserte, P., McMaster, M. and Genbacev, O., 2017. Defective
 472 decidualization during and after severe preeclampsia reveals a possible maternal
 473 contribution to the etiology, Proceedings of the National Academy of Sciences. 114, E8468474 E8477.
- Vinketova, K., Mourdjeva, M. and Oreshkova, T., 2016. Human decidual stromal cells as a
 component of the implantation niche and a modulator of maternal immunity, Journal of
 pregnancy. 2016.
- Wu, D., Kimura, F., Zheng, L., Ishida, M., Niwa, Y., Hirata, K., Takebayashi, A., Takashima, A.,
 Takahashi, K. and Kushima, R., 2017. Chronic endometritis modifies decidualization in human
 endometrial stromal cells, Reproductive Biology and Endocrinology. 15, 16.
- [16] Cha, J., Sun, X. and Dey, S.K., 2012. Mechanisms of implantation: strategies for successful
 pregnancy, Nature medicine. 18, 1754.
- [17] Jordan, J., Craig, K., Clifton, D.K. and Soules, M.R., 1994. Luteal phase defect: the sensitivity
 and specificity of diagnostic methods in common clinical use, Fertility and sterility. 62, 54-62.
- 485 [18] Radwanska, E., Hammond, J. and Smith, P., 1981. Single midluteal progesterone assay in the 486 management of ovulatory infertility, The Journal of reproductive medicine. 26, 85-89.

- Hull, M.G., Savage, P.E., Bromham, D.R., Ismail, A.A. and Morris, A.F., 1982. The value of a
 single serum progesterone measurement in the midluteal phase as a criterion of a
 potentially fertile cycle ("ovulation") derived from treated and untreated conception cycles,
 Fertility and sterility. 37, 355-360.
- 491 [20] Basnayake, S.K., Volovsky, M., Rombauts, L., Osianlis, T., Vollenhoven, B. and Healey, M.,
 492 2018. Progesterone concentrations and dosage with frozen embryo transfers–What's best?,
 493 Australian and New Zealand Journal of Obstetrics and Gynaecology. 58, 533-538.
- Labarta, E., Mariani, G., Holtmann, N., Celada, P., Remohi, J. and Bosch, E., 2017. Low serum
 progesterone on the day of embryo transfer is associated with a diminished ongoing
 pregnancy rate in oocyte donation cycles after artificial endometrial preparation: a
 prospective study, Human Reproduction. 32, 2437-2442.
- (22) Cédrin-Durnerin, I., Isnard, T., Mahdjoub, S., Sonigo, C., Seroka, A., Comtet, M., Herbemont,
 C., Sifer, C. and Grynberg, M., 2019. Serum progesterone concentration and live birth rate in
 frozen-thawed embryo transfers with hormonally prepared endometrium, Reproductive
 biomedicine online. 38, 472-480.
- Sharma, S. and Majumdar, A., 2016. Determining the optimal duration of progesterone
 supplementation prior to transfer of cryopreserved embryos and its impact on implantation
 and pregnancy rates: a pilot study, International journal of reproductive medicine. 2016.
- Krikun, G., Mor, G., Alvero, A., Guller, S., Schatz, F., Sapi, E., Rahman, M., Caze, R., Qumsiyeh,
 M. and Lockwood, C.J., 2004. A novel immortalized human endometrial stromal cell line with
 normal progestational response, Endocrinology. 145, 2291-2296.
- 508 [25] Gellersen, B. and Brosens, J.J., 2014. Cyclic decidualization of the human endometrium in 509 reproductive health and failure, Endocrine reviews. 35, 851-905.
- [26] Kommagani, R., Szwarc, M.M., Vasquez, Y.M., Peavey, M.C., Mazur, E.C., Gibbons, W.E.,
 Lanz, R.B., DeMayo, F.J. and Lydon, J.P., 2016. The promyelocytic leukemia zinc finger
 transcription factor is critical for human endometrial stromal cell decidualization, PLoS
 genetics. 12, e1005937.
- 514[27]Huang, J.-Y., Yu, P.-H., Li, Y.-C. and Kuo, P.-L., 2017. NLRP7 contributes to in vitro515decidualization of endometrial stromal cells, Reproductive Biology and Endocrinology. 15,51666.
- Li, Y., Kang, Z.-L., Qiao, N., Hu, L.-M., Ma, Y.-J., Liang, X.-H., Liu, J.-L. and Yang, Z.-M., 2017.
 Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells,
 Biological trace element research. 177, 10-15.
- 520[29]Liao, Y., Wang, J., Jaehnig, E.J., Shi, Z. and Zhang, B., 2019. WebGestalt 2019: gene set521analysis toolkit with revamped UIs and APIs, Nucleic acids research. 47, W199-W205.
- 522[30]Liu, J.-L. and Wang, T.-S., 2015. Systematic analysis of the molecular mechanism underlying523decidualization using a text mining approach, PLoS One. 10, e0134585.
- [31] Kaur, J., Naidu, P., Kumkum, R. and Mahajan, N., 2018. Impact of mid-luteal serum
 progesterone levels on pregnancy outcome in fresh and frozen embryo transfer cycles in
 women of Indian ethnicity, The Onco Fertility Journal. 1, 30.
- [32] Hansen, K.R., Eisenberg, E., Baker, V., Hill, M.J., Chen, S., Talken, S., Diamond, M.P., Legro,
 R.S., Coutifaris, C. and Alvero, R., 2018. Midluteal progesterone: A marker of treatment
 outcomes in couples with unexplained infertility, The Journal of Clinical Endocrinology &
 Metabolism. 103, 2743-2751.
- [33] Warne, D.W., Tredway, D., Schertz, J.C., Schnieper-Samec, S., Alam, V. and Eshkol, A., 2011.
 Midluteal serum progesterone levels and pregnancy following ovulation induction with
 human follicle-stimulating hormone: results of a combined-data analysis, The Journal of
 reproductive medicine. 56, 31-38.
- Suthaporn, S., Jayaprakasan, K., Thornton, J., Walker, K., Medrano, J.H., Castellanos, M.,
 May, S., Polanski, L., Raine-Fenning, N. and Maalouf, W.E., 2020. Suboptimal mid-luteal

- 537 progesterone concentrations are associated with aberrant endometrial gene expression, 538 potentially resulting in implantation failure, Reproductive BioMedicine Online.
- 539 [35] Paria, B., Lim, H., Das, S., Reese, J. and Dey, S., 2000. Molecular signaling in uterine
- 540 receptivity for implantation, Seminars in cell & developmental biology. Elsevier, pp. 67-76.
- 541[36]Aghajanova, L., Hamilton, A. and Giudice, L., 2008. Uterine receptivity to human embryonic542implantation: histology, biomarkers, and transcriptomics, Seminars in cell & developmental543biology. Elsevier, pp. 204-211.
- 544 [37] Harper, M.J., 1992. 10 The implantation window, Bailliere's clinical obstetrics and 545 gynaecology. 6, 351-371.
- 546[38]Wilcox, A.J., Baird, D.D. and Weinberg, C.R., 1999. Time of implantation of the conceptus and547loss of pregnancy, New England Journal of Medicine. 340, 1796-1799.
- 548[39]Salamonsen, L.A. and Evans, J., 2018. Menstruation and endometrial repair, Encyclopedia of549Reproduction. Academic Press, pp. 320-325.
- Logan, P.C., Steiner, M., Ponnampalam, A.P. and Mitchell, M.D., 2012. Cell cycle regulation
 of human endometrial stromal cells during decidualization, Reproductive sciences. 19, 883 894.
- Takano, M., Lu, Z., Goto, T., Fusi, L., Higham, J., Francis, J., Withey, A., Hardt, J., Cloke, B. and
 Stavropoulou, A.V., 2007. Transcriptional cross talk between the forkhead transcription
 factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation
 and differentiation in human endometrial stromal cells, Molecular endocrinology. 21, 2334 2349.
- Lucas, E.S., Vrljicak, P., Muter, J., Diniz-da-Costa, M.M., Brighton, P.J., Kong, C.-S., Lipecki, J.,
 Fishwick, K.J., Odendaal, J. and Ewington, L.J., 2020. Recurrent pregnancy loss is associated
 with a pro-senescent decidual response during the peri-implantation window,
 Communications biology. 3, 1-14.