
1

Semantic Querying and Search in Distributed Ontologies

A thesis submitted to the London Metropolitan University

For the degree of Doctor of Philosophy

By

Sharjeel Aslam

School of Computing and Digital Media

London Metropolitan University

166-220 Holloway Road, London, N7 8DB

 September 2021

2

Acknowledgement

Firstly, I start with respectful thanks to Almighty GOD, who helped to carry out this work.

There were many difficulties and stresses at times. However, he opened new gates that settled

my mind and personality to look back afresh at my studies.

I must thank my supervisors, Dr Vassil Vassilev, Professor Karim Ouazzane and Professor

Hassan Kazemian, for taking me on as a PhD student in computing after a data mining degree.

Dr Vassi vast experience in this area helped me a lot during my four years of research. This

research under his supervision was interesting, and without his support and patience, it would

have been not easy to achieve. I am indebted to Professor Karim Ouazzane and Professor

Hassan Kazemian for their encouragement, pushing, and support during difficulties and

downtime. I also want to thank the Computing and Digital Media department at London

Metropolitan University for providing me with the opportunity to complete this research.

I must express very profound gratitude to my family. Each of them has played a significant

role by providing me with unfailing support and continuous encouragement throughout my

years of studying and through the process of researching and writing this thesis. Not forgetting

my friends and colleagues, their support has helped me immensely.

Finally, I would also like to say a massive thank you to my parents, wife and lovely daughter

for their patience and incredible support during this journey, and this accomplishment would

not have been possible without them. By obtaining this degree, I hope that I can rejoice with

them and add some small pleasure to their life and that I can put a little smile on their faces.

3

Abstract

We have observed in recent years a continuous growth in the quantity of RDF data accessible

on the web. This evolution is primarily based on increasing data on the web by different sectors

such as governments, life science researchers, or academic institutes. RDF data creation is

mainly developed by replacing existing data resources with RDF, changing relational databases

into RDF. These RDF data are usually called qualified linked data URIs and endpoints of

SPARQL. Continuous development that we are experiencing in SPARQL endpoints requires

accessing sets of distributed RDF data repositories is getting popularity. This research has

offered an extensive analysis of accessing RDF data across distributed ontologies. The existing

approaches lack a broad mix of RDF indexing and retrieving of distributed RDF data in one

package. In addition, the efficiency of the current methods is not so dynamic and mainly depend

on manual fixed strategies for accessing RDF data from a distributed environment. The

literature review has acknowledged the need for a robust, reliable, dynamic, and comprehensive

accessing mechanism for distributed RDF data using RDF indexing. This thesis presents the

conceptual framework that demonstrates the SPARQL query execution process, which

accesses the data within distributed RDF sets across a stored index. This thesis introduces the

semantic algebra involved in the conversion of traditional SPARQL query language into

different phases. The proposed framework elaborates the concepts included in selecting,

projection, joins, specialisation and generalisation operators. These operators are usually in

assistance during the process of processing and converting a SPARQL query. This thesis

introduces the algorithms behind the proposed conceptual framework, which covert the main

SPARQL query into sub-queries, sending each subquery to the required distributed repository

to fetch the data and merging the sub queries results.

4

This research demonstrates the testing of the proposed framework using the unit and functional

testing strategies. The author developed and utilised the Museum ontology to test and evaluate

the developed system. It demonstrates all how the complete developed and processed system

works. Different tests have been performed in this thesis, like the algebraic operator's test (e.g.,

select, join, outer join, generalisation, and specialisation operators test) and test the proposed

algorithm. After comprehensive testing, it shows that all developed system units worked as

expected, and no errors found during the testing of all phases of the tested framework. Finally,

the thesis presents implemented framework's performance and accuracy by comparing it to

other similar systems. Evaluation of the implemented system demonstrated that the proposed

framework could handle distributed SPARQL queries very effectively. The author selected

FedX, ANAPSID and ADERIS existing frameworks to compare with developed system and

described the results in a graphical format to illustrate the performance and accuracy of all

systems.

5

List of Publication(s)

• Parallel Querying of Distributed Ontologies with Shared Vocabulary.Sharjeel Aslam,

Vassil Vassilev, Karim Ouazzane. ICMSO 2019: International Conference on

Metadata, Semantics and Ontologies

Best Paper Award

6

List of Abbreviations
HTML

Hypertext Mark-up Language

OWL-S

Web Ontology Language for Services

RDF

Resource Description Framework

RDFa

RDF in attributes

RDFS

RDF Schema language

RIF

Rule Interchange Format

SPARQL

SPARQL Protocol and RDF Query

Language

SWRL

Semantic Web Rule Language

URI

Universal Resource Identifier

URL

Universal Resource Locator

XML

Extensible Mark-up Language

OWL

Web Ontology Language

7

Table of Contents

1. Introduction ..13

1.1 Aim and Objectives of the Research ..17

1.2 Hypothesis ..18

1.3 Assumptions ..19

1.4 Research Contributions ...19

1.5 Limitations ..20

1.6 Structure of Thesis..21

1.7 Chapter Summary...23

2. Background and Related work ...24

2.1 Introduction ..24

2.2 Semantic Web..25

2.2.1 RDF..25

2.2.2 Ontology Web Language..31

2.2.3 SPARQL ...33

2.3 Distributed Data Integration:..45

2.4 Federated Database Management Systems ..49

2.5 Optimised query plans for Query Processing Systems ..52

2.6 Query Execution Techniques ..55

2.7 Query Federation Systems ...59

2.8 Adaptive Query Operators ...64

Distributed Query Processing Systems ...66

2.9 Research Gaps and Proposed Research ..72

2.10 Chapter Summary...73

3. Research Methodology: Design Science Research 75

3.1 Introduction ..75

3.2 Research Paradigm ...76

3.3 Research Methodology..77

3.4 A Design Science Research Process Model..78

3.4.1 Awareness of Problem/Objective: ..79

3.4.2 Suggestion: ..81

8

3.4.3 Development: ...81

3.4.4 Evaluation:...82

3.4.5 Conclusion: ..83

3.5 Chapter Summary:..84

4. Conceptual Framework of Querying Distributed RDF85

4.1 Introduction ..85

4.2 Conceptual Framework ...86

4.3 Semantic Algebra ...88

4.3.1 Operators ...89

4.4 Algorithms...91

4.4.1 SPARQL Query into Algebraic expression..93

4.4.2 Converting main SPARQL query into subqueries...94

4.4.3 Execution of SPARQL queries in distributed ontologies..95

4.4.4 Combining results ...97

4.5 Chapter Summary...98

5. Framework Testing .. 100

5.1 Introduction: ... 100

5.2 Comparison of Unit and Functional Testing .. 102

5.3 Jena Framework ... 104

5.4 Ontology Development Methodology .. 110

5.5 Ontology Justification - Virtual Museum Exhibition .. 110

5.6 Framework Testing ... 111

5.7 Test Results Analysis: .. 161

5.8 Critical analysis:.. 166

5.9 Chapter Summary:.. 167

6. Framework Evaluation ... 169

6.1 Introduction .. 169

6.2 Performance .. 170

6.3 Results .. 173

6.4 Chapter Summary... 187

7. Conclusion and Future work .. 188

7.1 Summary of the thesis... 188

9

7.2 Originality and Contribution ... 192

7.3 Limitations and Future Recommendations ... 194

References.. 196

Appendix A: Museum Ontology.. 204

Appendix B: Ontology indexing code .. 226

Appendix C - Query conversion code... 236

Appendix D – Query integration code ... 241

Appendix E – Setup and Testing Screenshots.. 244

10

List of Tables

Table 2.1 - SPARQL ...35

Table 2.2 - SPARQL 2 ..36

Table 2.3: Relevant systems characteristics..72

Table 3.1 - Design Science Research Process Model ..79

Table 4.1: Algorithm 1 - SPARQL query into Algebraic expression ..94

Table 4.2: Algorithm `2 SPARQL query into Algebraic expression ...95

Table 4.3: Algorithm 3 Execution of SPARQL queries in distributed Ontologies96

Table 4.4: Algorithm 4. Combining results ...98

Table 5.1 - SPARQL query .. 113

Table 5.2:Algebraic notions ... 113

Table 5.3: Cache .. 114

Table 5.4: Identifying sources .. 114

Table 5.5: subqueries ... 115

Table 5.6: case 2 SPARQL query ... 116

Table 5.7: case 2 algebraic notation .. 116

Table 5.8: case 2 cache ... 116

Table 5.9: case 2 identifying resources .. 117

Table 5.10: case 2 sub-queries and merging results... 118

Table 5.11: case 3 SPARQL query.. 119

Table 5.12: case 3 algebraic notation .. 119

Table 5.13: case 3 cache ... 119

Table 5.14: case 3 identifying sources ... 120

Table 5.15: case 3 subqueries .. 121

Table 5.16: case 4 SPARQL query.. 121

Table 5.17: case 4 algebraic notation .. 122

Table 5.18: case 4 cache ... 122

Table 5.19: case 4 identifying sources ... 123

Table 5.20: case 4 subqueries .. 124

Table 5.21: case 5 SPARQL query.. 124

Table 5.22: case 5 algebraic notation .. 125

Table 5.23: case 5 cache ... 125

Table 5.24: case 5 identifying sources ... 126

Table 5.25: case 5 subqueries .. 127

Table 5.26: case 6 SPARQL query.. 128

Table 5.27: case 5 algebraic notation .. 128

Table 5.28: case 6 cache ... 128

Table 5.29: case 6 identifying sources ... 129

Table 5.30: case 6 subqueries .. 130

Table 5.31: case 7 SPARQL query.. 130

Table 5.32: case 7 algebraic notation .. 131

11

Table 5.33: case 7 cache ... 131

Table 5.34: case 7 identifying sources ... 132

Table 5.35: case 7 subqueries .. 133

Table 5.36: case 8 SPARQL query.. 134

Table 5.37: case 8 algebraic notation .. 134

Table 5.38: case 8 cache ... 135

Table 5.39: case 8 identifying sources ... 136

Table 5.40: case 8 subqueries .. 137

Table 5.41: case 9 SPARQL query.. 138

Table 5.42: case 9 algebraic notation .. 139

Table 5.43: case 9 cache ... 140

Table 5.44: case 9 identifying sources ... 141

Table 5.45: case 9 subqueries .. 142

Table 5.46 - Testing table .. 165

Table 6.1 - Details of endpoints .. 171

Table 6.2 - Features of Participated Systems .. 172

Table 6.3 - Patterns of Queries... 172

12

List of Figures

Figure 2.1 - RDF Triple ..26

Figure 2.2 - Different RDF triples ..27

Figure 2.3 - Blank Node 1 ..28

Figure 2.4 - LOD cloud (Sakellariou, 2019) ...44

Figure 4.1 - Proposed Framework. ..88

Figure 5.1 - Apache Jena framework9 (Jani and Dr. V.M. Chavda, 2011) 105

Figure 5.2 – case 10 - output of the query.. 145

Figure 5.3 - case 11 - Select operator query result... 146

Figure 5.4 - caee 12 - Join query result .. 149

Figure 5.5 - case 12 - Outer join query result .. 152

Figure 5.6 - Generalisation output .. 159

Figure 6.1 - Query 1 validation results ... 174

Figure 6.2 - Query 2 validation results ... 176

Figure 6.3 - Query 3 validation results ... 177

Figure 6.4 - Query 4 validation results ... 179

Figure 6.5 - Query 5 validation results ... 180

Figure 6.6 - Query 6 validation results ... 181

Figure 6.7 - Query 7 validation results ... 183

Figure 6.8 - Query 8 validation results ... 185

Figure 6.9 -Query 9 validation results.. 187

13

 Chapter 1

1. Introduction

At the start of this chapter, the researcher provides the aim and objectives of the research. It is

critical to establish that the study aims to come up with an improved structure. The author

highlights the hypothesis and assumptions made to arrive at the pre-determined goals of the

research. However, the problems encountered in developing a better framework also needs to

be documented. Chapter 1 hence spells out the goal and the underlying challenges to help

other researchers and academicians understand the study's limitations and findings. The

author highlights the contributions to help others to interpret it as intended by the new

framework. Further, in Chapter 1, the author identified clarity on the research question that is

being addressed. The thesis is structured across seven chapters, and Chapter 1 provides an

insight into what each chapter addresses. The author also summarises Chapter 1 before

proceeding to subsequent chapters to take readers along his research journey. The accessing

of data from RDF indexes across various ontologies is one of the biggest concerns in this

field of semantic querying (Fazzinga and Lukasiewicz, 2010). Years of research and study

have brought several techniques and methods that have been implemented to resolve this

problem. Chapter 1 of this research on semantic querying puts forth the motivations behind

this research that it aims to gratify. It also elaborates on the research question, problems, and

the contributions involved in doing this research. The last few years have shown a steady

increase in quantifiable data accessible and available on the internet through different

formats- spreadsheets, HTML tables, and PDF documents, among many others. While

accessing data can seem as simple as the click of a button, the sub-processes underlying this

14

process suggest otherwise. A popular model or format of data accessibility is a framework

that acts as the cornerstone for the Semantic Web, known as the Resource Description

Framework or RDF. It is a set of recommendations proposed by the W3C(World Wide Web

Consortium). The RDF, thus, is a primary concept that lays down the groundwork for our

thesis. RDF data is obtainable through the concept of an HTTP protocol- which can be

implemented through RESTful services that accept and interpret queries arranged in a query

language called SPARQL. Note that the queries posed must themselves be under a prescribed

SPARQL protocol that the W3C recommends.

The SPARQL code manifests the required information in the format of endpoints. Endpoints

are resources that not only communicate with a network but also back up data. During

interlinkage, these endpoints are contained within non-exhaustive lists. The lists are compiled

to secure such endpoints, but the reader may find that it is not uncommon to find outdated and

not maintained lists. These include lists like the CKAN1, The Data Hub, the W3C, and many

more. As mentioned, the RDF entails many sets of data within its structure. These data sets are

linked amongst themselves. It can be viewed in the Linked Open Data diagram(LOD). The

LOD represents a distinctive, figurative expression of how complicated queries are formed by

the navigation of individual data across distributed sets to combine with other data. It is not a

far reach to define the LOD as a massive collection of interlinked data sets. Records show that

the LOD diagram reported listings of over 200 data sets by September 2015. These data sets

were further individually linked to some of their counterparts and shared vocabularies with

others. An elaborate expression shows that data sets have as many as 25,200,042,902 triples in

addition to the 437,205,908 connections they have made over time. This estimate is not

inclusive of the 395,499,690 connections made to them by other data sets. The connections to

and from a group are regarded separately as each association has its value. It allows for the

federation of queries through the properties of varying sets of data. The specific nature of these

15

queries, in turn, encourage the return of complete sets of results. Unfortunately, the LOD only

serves as a diagrammatic representation of the process and doesn't guarantee the practicality of

its methods. Certain predominant SPARQL conditions prove that semantic querying is not as

easy as the expectations crafted from a LOD. A significant limitation threatens the application

of SPARQL 1.0 upon data sets. How can one define and execute a complex query on distributed

data sets when the query is only stood up against a single SPARQL endpoint that restricts the

information that can and should be returned to the query? Alternate solutions to this limitation

have been produced wherein such queries for distributed RDFs have been federated through

language extensions and other protocols. Another limitation that blocks the smooth

advancement of this study is the lack of access to add extensions that serve heterogeneous data

access purposes. Instead, we are forced to succumb to the use of federation extensions included

in the existing working drafts of the SPARQL 1.1. The federation extension in use can be

expressed through two separate operators: SERVICE and BINDINGS, written in a query

language. One can specify with ease a SPARQL query endpoint within another SPARQL query

through these distributed queries.

This SPARQL query endpoint can record and recall information about the timing at which a

query was constructed. This characteristic of recognising and consuming knowledge about

specific queries enables the SERVICE operator to specify the endpoint's IRI, likely facing

future execution. On the other hand, a variable can also be compelled to identify the query's

execution time after implementing an earlier SPARQL query fragment in the RDF, as

mentioned earlier, enabled data catalogues. BINDINGS are operators utilised in transferring

and inferring results from other sequences to restrict a query within a solution framework.

BINDINGS are startlingly similar models of a human brain's experiential memory. They use

results from earlier implementations of other semantic queries and adopt restrictions similarly

placed within the user interface at the time. However, the issue is soon fixed by converting the

16

inflicted limitations into SPARQL queries. By adapting to such contextual processes, the query

language and optimisation semantics assume significant roles in data extraction by distributing

queries and processing them across different streams. Querying distributed data sets is not a

technological miracle, or even close to one- its arduous nature supports the statement. The

already complex process becomes more challenging as problems come and go while posing

queries. However, limitations are unavoidable, and a system must be designed to act

accordingly and deal respectfully with challenges. For instance, network latency problems and

server availability issues seem to be reoccurring in the system. It does not help the case of

remotely placed data, which can vary based on the nuances of servers and consequently affect

the quantum of data received for a given query. It has been found that a routine function of

SPARQL endpoints is to restrict all the data received to calculate 1000 to 5000 results carefully.

This technique is a default procedure that respective endpoints are to follow for every query.

Due to the minimal nature of the measure of resultant data, it is not necessary that a query plan

must be optimised to access such data. The same cannot be applicable in an opposite case where

hundreds of thousands of data is allowed to return in response to a query. This can put a user

in a disadvantageous position where the process is costly and difficult to transfer over a

network.

This thesis, thus, formalises an approach to distributed RDF data sets by dealing with them

through federal extension semantics that read queries in SPARQL 1.1. Additionally, we also

define the limitations of semantic querying in SPARQL. It is essential to be aware of and list

these limitations to be considered, observed and solved when the study requires practical

examination over several query evaluators. In such an event where the utilisation of a variable

whilst specifying the endpoints of SPARQL is initiated, it can be inferred that implementation

would have to pass via entire endpoints of SPARQL over the Internet to pursue a query

fragment before a practically unfeasible result is delivered. The author defines service-related

17

limitations and service security during its execution, thereby ensuring the access of the

SERVICE operator is done through a safe and sound process. Additionally, this thesis also

leverages the concept of well-designed patterns and indulges in static optimisations that

effectively optimise queries about the OPTIONAL operator, which is the most cost-intensive

operator in the context of SPARQL. This benefits significant effects for several tuples that can

be transferred into federated queries, which gives the implementation an obvious advantage.

Notably, other complementary works deploy techniques for adaptive query processing that

adhere to a more dynamic approach. This author, thus, introduces a new implementation

mechanism for accessing RDF data. It describes and distinguishes two kinds of repositories of

RDF data: RDF index and remote RDF data repositories. The present RDF index delivers

RDF-based permission to read XML files, text files, relational databases, and thesauri. The

author focuses on both kinds of repositories to gain access to data through a faster, more

straightforward approach.

1.1 Aim and Objectives of the Research

This section describes the aim and objectives of this research. This research aims to develop a

framework that enables one to access a distributed RDF (Resource Description Framework)

and the test environment to validate the framework. The author builds the test environment to

measure the performance and accuracy of a developed framework that processes the distributed

SPARQL queries.

The aims objectives can be summarised as follows:

• To investigate the current state of research in distributed RDF and identify the main

problems, existing approaches, and available methods for accomplishing distributed

RDF accessing mechanisms with improved performance. See chapter 2 for further

information.

18

• To develop an indexing mechanism to store the RDF repositories. See chapter 4 for

further information.

• To develop a mechanism to convert the main SPARQ query into subqueries that can

be executed in a distributed RDF environment. See chapter 4 for further information.

• To develop a test environment to check the accuracy and performance of the

developed framework. See chapter 5 for further information.

• To evaluate the test results and compare the proposed framework with existing

approaches. See chapter 6 for further information.

Thus, the research objectives can enforce an original contribution through which a user can

index and compile RDF data from various sources for analysis. This RDF indexing attains

placement in an advanced and reliable framework that uses its reach to retrieve and combine

results from RDF resources that stretch across dif ferent data sets. In turn, these results are

thoroughly evaluated and utilised to compare the proposed framework with an existing

framework that determines the success of this thesis.

1.2 Hypothesis

By taking into consideration all the factors at stake in congruency with this research, the author

strives to prove the following hypothesis through the course of this research:

We are revealing the semantic dependencies within the components of the SPARQL queries.

We can formulate a semantic algebra that can be used to translate the queries into a set of

subqueries to be executed locally. After aggregating their results, we can obtain a semantically

equivalent response to the original query.

19

1.3 Assumptions

Research assumptions are made to achieve the desired objectives. The assumptions involved

in examining our hypothesis are listed below.

• One of the distinctive qualities of current technology is that ontologies are perceived to

be monolithic by inference engines while they are distributed. It is resolved by adopting

a common practice that develops a unified global ontology.

• Storing, organisation and maintenance of the ontologies do not account for the domain

knowledge, which can be resolved by semantic indexing.

• The current search engines do not account for the semantics of the queries and provide

answers that contain irrelevant information.

1.4 Research Contributions

The due process of this research aimed to provide a solution that enables the accessing of

distributed RDF data. This process is followed by combining the results attained to test the

validity of the research. This thesis contribution can be summarised as follows:

• Design and implementation of an efficient framework using indexing technique

for querying ontologies.

• Formal Specification of a semantic algebra of the ontological queries.

• The algorithm for translating the global SPARQLqueries into algebraic

expressions.

• The algorithm for splitting the global SPARQL queries into a set of independent

subqueries that can be executed locally by translating them into expressions of

semantic algebra.

• The algorithm for aggregating the results of the execution of the subqueries.

20

The process was refined by addressing the need to aggregate all relevant information from

various RDF sources instead of throwing up just one result. It was made possible by breaking

up the main SPARQL query into sub-queries –the individual answers produced a

comprehensive response. The basic RDF pattern of <Subject, Object, Predicate> triple model

was employed, which illustrates that Subject S has property P, which holds O value. While

Subject and Predicate are described as identical resource indicators (URIs), the object is literal.

This simple semantic triple helped to optimise the RDF data and create indexing for all

participant RDF data sets instead of indexing in the memory. A step-by-step process was

adopted. Multiple algorithms were developed to translate the SPARQL query into an algebraic

expression, convert the main SPARQL query into subqueries, and carry out SPARQL queries

in distributed ontologies. Finally, the author formulated an algorithm to combine the subqueries

results. Thus, triples and variables are stored in the cache and identified by the system to carry

out the queries, which is more efficient than finding data each time from the source. Two new

operators, Generalisation and Specialisation, were proposed to access RDF data. This

suggestion contributed by diversifying the methods of access. More precisely, it helps to fetch

parent and child nodes. In conclusion, the distributed ontology system allows dynamic

indexing, sourcing data from distributed RDF sets, identifying resources from cache, merging,

specialisation, generalisation, fetching vertical and horizontal search results. All these features

are not present together in other systems.

1.5 Limitations

This research has contributed by proposing and developing a framework for accessing data

from different RDF resources across several indexes. However, the author would like to

mention that the proposed and developed framework works very well in homogeneous

environments where the same ontology's structure is used across all sites. However, the same

framework cannot be applied to the heterogeneous environment where different ontology

21

structures are used. Therefore, there is scope for more research on how to go about indexing

data sets across different domains. Applying the same proposed framework to heterogeneous

environments did not produce good results as the developed system works best only when the

ontology structure is the same in all sites. Perhaps the answer lies in deriving data from different

structures, like XML document object structure, relational structure. We relied mainly on the

Object-Oriented Model. We have taken the first step in fetching similar(homogeneous) domain

data, indexing them on local or remote servers, to be fetched intelligently in response to a single

query. The subsequent real challenge would be to retrieve all the participant data from cross

domains(heterogeneous) and index them locally and update this stored data dynamically as and

when it changes at the source. e.g. writing an algorithm to make a dynamic link between a data

source and indexed data. It is a general limitation as such a heterogeneous environment is not

a part of this thesis. However, there is a need for the development of different mapping

algorithms that work in heterogeneous environments.

1.6 Structure of Thesis

As mentioned in previous sections, the chapter introduces the research motivation and specifies

both the research problem and the scope. The entire thesis has been organised in the following

manner:

• Chapter 2 (Background and Literature Review): This chapter gives the reader an

introduction to the semantic web and an overview of its architecture. Furthermore, it

discusses the processes involved in accessing data from RDF data. This chapter also

discusses existing RDF data accessing frameworks. The chapter concludes with an

overview of existing approaches that help in accessing the distributed RDF ontology

22

• Chapter 3 (Research Methodology): This chapter elucidates the research methodology

used in this thesis. It also discusses and justifies the different stages of the thesis that

lead to its conclusion.

• Chapter 4 (Conceptual Framework): Chapter 4 introduces a framework that indexes the

RDF data into the central repository. This chapter discusses how any SPARQL query

can be transformed into its representative algebraic expression and divided into

directional sub-queries. Furthermore, it proposes the semantic algebra that forms a

significant part of the research and provides details for all the framework's algorithms.

• Chapter 5 (Framework testing): This chapter presents the implementation and testing

of the proposed framework. It holds and supplies all information about a case study

applied for comparison: Museum, which demonstrates all the stages of the proposed

framework. The chapter includes the testing implementation and details about how

converting SPARQL query into sub-queries can catalyse fetching and combining

results. It discusses the testing strategy used in this thesis to test the given developed

system. It demonstrates all how the complete developed and processed system works.

• Chapter 6 (Evaluation): This chapter elaborates on the evaluation of the developed

system. Furthermore, the presented developed system is also compared with other

similar techniques to show the accuracy and performance of the developed system that

the research suggests.

• Chapter 7 (Conclusion): The final chapter is involved in reflecting on the research

developed in this thesis. It discusses and recalls the aims and objectives identified in

the first chapter and considers whether they have been achieved or not. It concludes the

study with a discussion about the limitations incurred in the system and counters them

with recommendations for future use.

23

1.7 Chapter Summary

Chapter 1 ends on a note of anticipation directed towards the rest of the research. This chapter

discussed and evaluated the motivations behind the research and the objectives to be achieved

throughout the thesis. It has also provided a perspective on the limitations that have untimely

effects on the study and how appropriate solutions are in order. It has created, for the reader, a

sense of the study by setting specific standards and expectations that is to be met by the given

criteria. It has laid down the basic outline of how its author has carried out this thesis. The

second chapter follows these ideals by providing a discussion about the existing accessible

RDF frameworks. It creates a background for the study by specifying existing works and

contributing to this research architecture.

24

 Chapter 2

2. Background and Related work

2.1 Introduction

In this chapter, the author presents the existing cutting-edge in querying distributed RDF

information repositories. Besides, we offer an analysis of existing techniques, tools and

systems for accessing distributed RDF and non-RDF data, highlighting their main

characteristics. Lastly, we evaluate the current work for querying distributed RDF information

sources and incorporating them. We evaluate the approaches and strategies employed in these

approaches. This chapter provides an authentic explanation of the futuristic approach employed

to query repositories of RDF data within this thesis. At the same time, it takes a step back from

conventional viewpoints, tools, techniques and systems that have previously contributed to the

accessing of distributed RDF data and instead tests new theories that may bring in results in

their more advanced form. Apart from defining how this thesis deviates from current

approaches towards data, this chapter helps the reader to understand the existing computational

field better by reviewing the extensive research that has already been done in the area of RDF

data source integration.

This chapter explains some details on the Semantic Web and a brief overview of the nuances

of its concepts before moving onto RDF, which constitutes the wide world of the Semantic

Web. This chapter provides an overview of the technical background and a detailed literature

review. It specifically talks about the types and approaches of data integration . Distributed

Query Processing System generates optimised query plans for Distributed Query Processing

(ZHANG and XU, 2009). The chapter touches upon and explicates other Query Execution

techniques before moving onto the investigation of a Query Federation system of data

25

processing and introspect on its various archetypes and then briefly discusses Adaptive Query

Operators. Subsequently, the chapter delves deep into Ontology-Based Data Integration and

Query Processing Systems, such as ANAPSID, ADAERIS, SYMMETRIC INDEX HASH

JOIN, SPLENDID, SemWIQ, DARQ. After briefly detailing the challenges and limitations of

this study, the chapter then summarises what has been discussed so far.

2.2 Semantic Web

This thesis is a result of the study of one too many complex structures of the Semantic Web.

The Semantic Web is a place on the internet that is structured and tagged in a readable way by

computers (Arul and Prakash, 2020). It is essential that we understand the core concepts of the

Semantic Web, as they contribute heavily to our search. The following sections examine such

concepts as the Web Ontology Language, RDF Schema, RDF, RDF Query Language, and the

SPARQL.

2.2.1 RDF

The Resource Description Framework, better known as the RDF, is an elementary data model

that constitutes the extensive and vast world of the Semantic Web. RDF is a method of

decomposing knowledge into small parts, with some guidelines about the semantics of those

parts. The motive is to express any fact in a structured way. Previously, RDF was used for

representing metadata, i.e. data about data. Now, it has evolved and is used for representing

two things. RDF represents information about things in the real world (like people, pla ces,

concepts) and relationships. Metadata represented by RDF can also act as background

information through which the authenticity of the data can be verified. The RDF is usually

expressed through URIs or the Uniform Resource Identifiers (these are usually portrayed

through link formats like 'HTTP.' or 'mailto'). URIs help a framework by extending any Internet

link into its deeper roots to identify its ends (Shadbolt, Berners-Lee and Hall, 2006).

26

RDF is the elementary Semantic Web data model. RDF uses URIs to extend the Internet’s link

structure to identify two ends, typically known as a triple shown in Figure 2.1. The model

facilitates the exposing, mixing and sharing of structured as well as semi-structured data.

Notably, this information is modelled within the RDF.

Figure 2.1 - RDF Triple

Due to the scale of the structure of the RDF, it is outlined by predominantly existing RDF

specifications that are used to model data in an orderly fashion so that they may be better

perceived (Heath, 2010). The existing RDF specification has been categorised into six

recommendations from W3C:

• The RDF Primer elaborates on the elementary RDF concepts. It elucidates defining

vocabularies via the RDF Schema or Vocabulary Description Language.

• RDF Concepts and Abstract Syntax specify a syntax abstract premised on RDF that

links its specific syntax with previous semantics. In addition, it includes analysis of key

concepts, design goals, character normalisation, data typing and handling of URI

references

• XML syntax for RDF is identified by RDF/XML Syntax Specification based on XML

Namespaces, XML Base and the XML Information Set.

• RDF Semantics defines semantics as well as corresponding rules systems of RDF and

RDF(S).

• (RDF Schema explains accurate semantics for the RDF and RDF Schema (RDFS) and

corresponding complete inference rules systems.

• RDF Test Cases elaborates on the deliverable of Test Cases for RDF concerning Core

Working Group.

27

The following RDF graph features a triple concept (a link existing between its two endpoints

in a server) in which the subject, predicate and the object of a destination are accordingly

denoted in the format of < s, p, o > (Heath, 2010).

The RDF graph features a triple concept of the subject, predicate and object denoted by < s, p,

o >. The example mentioned in Figure 2.2 shows that all three aspects are found in the URI of

foaf:name, http://example.org/me and Bob. The following lines resemble a complex graph of

RDF graph as per Turtle syntax:

Figure 2.2 - Different RDF triples

The data established within the graph above uses a combination of six statements or sentences

to define a triple. In statements that are executed in the RDF, only the resources are applied as

'subjects.' In the above URI, the given http://example.org/me caters to predicates provided by

a person to retrieve specific data. The predicates included in the example are foaf:homepage,

foaf:name and foaf:mbox. In turn, these predicates are assigned with specific values, each sent

back to a related subject. The values are http://www.example.org/, Peter and

mailto:peter@example.com. These are the details specified by the graph in Figure 2. The other

elements constituting an RDF graph include nodes and data typed literals (Khozoie, 2012).

Nodes: Nodes refer to a point in a diagrammatic network at which two pathways meet or

intersect. Within graphical representation, nodes signify a resource, its relation and

contribution to the RDF. Consequently, blank nodes are not mentioned in a URI because

28

these nodes are blank and do not have a related URI to connect and fetch data from. A blank

node represents an unknown resource that is only capable of being utilised as an RDF triple

in the form of either an object or a subject (Khozoie, 2012).. Figure 2.3 portrays a way in

which blank nodes can be used.

Figure 2.3 - Blank Node 1

RDF Literals: RDF literals are indicated through either typed literals or plain literals. Typed

literals feature their own tag of data type, and they are denoted through a string and a data

type. Let us exemplify this through an illustration: as per Turtle syntax, "12.34" ̂ ^xsd:float

denotes the actual number, '12.34'. Thus, these literals denote the elements of a value space in

a data type. Typed literal tags that define custom data types are can also abstract data types

through the language of an XML Schema. On the other hand, Plain literals feature a provided

language tag for the corresponding language in which it is written. For example, the

following literal: "It is written in Spanish" @enis a direct indication that Spanish is the literal

language in which the plain text is expressed. Inversely, typed literals can also be interpreted

as plain literals that have a substantial XML language tag (Heath, 2010)

Note that one can also serialise the RDF into four distinct formats if required. This is made

possible mainly because two of such distinct formats are simply subsets of other supported

formats. For instance, the XML/RDF format provides serialisation of XML concerning RDF

29

data. It is signified as an initial serialisation format, which is the serialisation format that is

recommended as compulsory according to the given RDF requirements. In addition, the W3C

further elaborates on this distinction through the Notation 3 (N3) format, which acts as an easy-

to-read format intended for humans. Notation 3, in turn, factors into N-Triples and Turtles,

which, utilizing being N3 subsets, can be applied to RDF triples for their easy description.

We then establish formal notions primarily taken from that can also be found here:

http://www.w3.org/TR/rdf-schema/.Additionally, it is assumed that the infinite set called V has

disintegrated variables from their respective sets, leaving UNBOUND in the form of a reserved

symbol that is not incorporated into any of the sets mentioned in the above sections or

elsewhere in the document (Heath, 2010).

RDF Schema: It is important to remember that RDF Schema refers to the elementary

vocabulary of RDF(S), which contains several predefined concepts; these include rdfs:Property

and rdfs:Class that define custom classes and properties.

The list of classes relevant in the RDF(S) includes:

rdfs:Resource: This shows the category of different things that the RDF mentions.

According to the W3C, everything that is described by RDF- called resources- are a part of

this class. The rdfs:Resource function is the ruling class. All other listed classes are subsets

of this class.

rdfs:Class: This class denotes a resource in the form of a class. It dictates other classes.

rdf:Property: This class indicates the different properties of a class, including range and

a channel domain.

30

rdfs:Literal: This class takes into consideration literal values such as strings and integers.

It includes RDF literals that can be typed or plain and property values such as textual strings

under its definition.

rdfs:Datatype: It refers to the particular class of data types, and sometimes, their

subclasses. All instances of rdfs:Datatype are a subsection of rdfs:Literal.

rdf:XMLLiteral: It represents the typed literal values' (XML) class.

The list of RDF(S) property includes:

rdfs:range: It mentions a data type, or the class of a particular object within a triple,

followed by the subject, which portrays a predicate.

rdfs:domain: This property mentions the class of a respective subject. In such an instance,

the predicate automatically becomes the subsequent component of a given triple.

rdfs:subPropertyOf: It shows an instance of rdf:Property, and mentions that all resources

that find connections with a property are also connected by and to each other. Thus, it is

not just classes but also resource properties that are interlinked to a network.

rdfs:label: It signifies an rdf:Property instance that can be utilised for producing the name

version, a readable label of a written resource in a language understandable by humans.

rdfs:subClassOf: It allows for a clear-cut declaration of class hierarchies. This property

may be used to define classes as subclasses of each other.

rdfs:comment: This class calls upon an instance of rdf:Property to produce an explanation

of resources that humans can read.

31

Put succinctly, RDF(S) contains a diversified vocabulary that allows for human interaction

with the different classes and properties of an RDF(S) element. People are allowed to engage

with aspects like properties, inheritance, typing, or classes, thereby providing elementary

components that form more complicated linkages between RDF data elements and enable us

to understand them (Khozoie, 2012).

2.2.2 Ontology Web Language

Ontologies are used to model real-world entities and relations among them in a taxonomic

structure. They are nowadays the backbone for Semantic Web applications. Several languages

are developed for the formal representation of ontologies. RDF Schema (RDFS) was the first

attempt towards developing an ontology language, and it became a W3C recommendation in

2004. RDFS was built upon RDF. It extends the RDF vocabulary with additional classes and

properties such as rdfs:Class and rdfs:subClassOf (Simperl, 2009).The latest W3C

recommendation for ontology languages is the Web Ontology Language (OWL). OWL further

extends RDFS by providing additional features such as cardinality constraints, equality,

disjoint classes, efficient reasoning support and much more (Heath, 2010). The OWL language

has OWL-Lite, OWL-DL and OWL-Full sub-languages. OWL-Lite and OWL-Full are not

widely used because the former is too restricted, and the latter does not guarantee efficient

reasoning. OWL-DL provides maximum expressibility with a complete and decidable

reasoning support

The Ontology Web Language- OWL, in short- is a language that represents knowledge based

on a system of formalist and descriptive logic. It utilises more remarkable and more significant

expression profiles to elaborate on domain knowledge that is defined outside of RDF Schema

support. This articulation also suggests the onset of more formal semantics and a broader

vocabulary within the scope of knowledge. Consequently, this feature illustrates cardinalities

32

concerning properties, curtailments on existential and universal properties/classes, algebraic

characteristics, and other valuable information. The OWL system accommodates something

called an Open World Assumption, a concept that provided knowledge in any context is always

deemed an incomplete measure of existing knowledge. This belief is unlike the Closed World

Assumption, which has its morals rooted in the opinion that all knowledge that is not mentioned

is false or non-existent, compared to information established in a knowledge base- which is

considered valid (Heath, 2010). Take the case of the following function: < ex: me, rdf: type, f

oaf: Human >, which shows that the concerned individual is a human but does not explicitly

identify this human as an engineer or student. It does not attribute any property whatsoever to

the human. For this reason, whilst querying the information for all engineers who are engineers,

one of the findings should be ex:me. On the other hand, no results must show up while querying

the same resources within a relational database (because all engineers are human, but the

function of ex:me does not consider a human to be an engineer).

The OWL does not list distinctive name assumption as one of its features. This is because it

employs a unique assumption, which states that different identifiers are required to refer to

several entities within the actual, natural world (Siddiqui and Alam, 2011). In other words,

ex:me cannot be said to be the same as < http: //example.org/bob>, as it does not touch on real-

world elements. Additionally, it utilises special predicates to assess the resources' equivalence

in a specific particular case about reality (Hong, 2016). OWL is also known to deliver results

in various language flavours. OWL 1 covers the following variants premised on the axioms

and expressiveness of the language that are used within the ontology framework. These include

the following factors: OWL DL, OWL Lite and OWL full. The situational difference of OWL1

from OWL 2 is that the latter applies profiles belonging to other language profiles and make a

contribution through various stages of expressiveness, such as:

33

OWL EL encapsulates the power of expression that comes from being utilised by several

ontologies; it is a specific subset of OWL 2 that identifies which elementary reasoning

challenges regarding the ontology's size can be undertaken during a polynomial time.

OWL 2 QL implement conjunctive query responses through traditional methods in relational

database systems. It is possible to perform and arouse a complete and sound conjunctive query

response as long as a feasible reasoning methodology through LOGSPACE is employed. This

methodology usually focuses on the data size as it works and is often referred to as an assertion.

OWL 2 RL is aimed at satisfying applications of OWL 2. These applications can trade the

language's comprehensive clarity in exchange for efficiency in functioning and RDF(S)

applications that need further expressivity. It is possible to incorporate reasoning systems of

OWL 2 RL using rule-driven reasoning-related engines. The applications ensure that the class-

expression satisfaction, ontology's consistency, answering conjunctive queries, and instance

checking can be addressed during a polynomial time. OWL 2 is different from its first

counterpart. It incorporates new and fresh flavours into the existing language, whose varying

profiles are subjected to the setbacks arising from more restrictions than OWL DL. In addition,

OWL 2 introduces new features which can be used to simplify complicated statements and

make them more feasible (for example, Disjoint Classes, Disjoint Union, Negative Data

Property Assertion and Negative Object Property Assertion). Other integrated features

constitute constructs that heighten the expressivity factor, support for expanded data,

fundamental meta-modelling capabilities, and annotations' expanded capabilities (Siddiqui and

Alam, 2011).

2.2.3 SPARQL

Since SPARQL became an official W3C recommendation in 2008, it is currently the most

widely used semantic query language. A SPARQL query consists of conjunctions and

34

disjunctions of triple patterns similar to RDF triples. Despite its simplicity, the usability of

SPARQL is limited for the end-user (Kurgaev, 2018). First of all, formulating a query requires

considerable time and effort, even for the most straightforward query. Secondly, domain

knowledge is required, i.e. the exact names of classes and properties need to be known in

advance.

SPARQL is a semantic query language whose function is to extract and redefine information

stored in the RDF. The SPARQL has been generous with its execution. As it is one of the only

languages compatible with the RDF to a large extent, the SPARQL is somewhat of a blessing.

This definition implies that the responsibility of SPARQL is huge in magnitude. To ensure the

effective implementation of its definition, SPARQL-WG, or the SPARQL Working Group, has

been consistently supporting the language (Song, Huang and Sun, 2017). In this section, The

author views a SPARQL graph pattern that resonates similarly within the RDF boundaries. Let

us pause momentum and refer back to Figure 2 as mentioned above, which gives us the name

of a person- Bob. It is unlikely that anyone wants to stop accessing data after gathering the

name. As a user enters queries to procure more knowledge about Bob, SPARQL works on the

same tangent to supply the user with more information. The manner of the SPARQL

mechanism is as follows:

Based on certain SPARQL queries, all the triples with specific subjects are selected, and

predicates are determined using the source graph to identify properties. As the query object is

somewhat of a free spirit and is not challenged by strict boundaries, it could be attributed to

any valid values that the RDF graph assigns to it. Notably, question marks are used to represent

SPARQL variables before characterising them with a name (Jagvaral, Lee, Kim and Park,

2015). The syntax of triples utilised by the formats of Notation 3 and Turtle remains

unwavering through the execution. There is also a linkage between the variable? Person and

three additional resources. These resources continue to serve as existing objects. To give a clear

35

picture of the SPARQL language, we have illustrated the code in a well-structured and well-

defined table as presented below. The given table 1 elaborates on specific findings of a query.

As the distribution of these solutions is typical to an unordered multiset, the order of elements

is irrelevant. The empty rows, then, indicate the corresponding variable (unbounded).

Meanwhile, the solutions can constitute a multiset using three facilitated solution mappings

that draw their basis from query variables and inhibit their respective values.

?human

<http://example.org/alan>

<http://example.org/alice>

<http://example.org/carl>

 Table 2.1 - SPARQL

The graph is thereby restricted to a set of only three items conforming to a pattern. The lowest

possible pattern about the characteristic restrictive triple is? p? s? o.In turn, this variable

determines how the entire graph is to be introduced and manipulated to maximise the

information to be gathered for a specific purpose. Note that the outcomes of their respective

queries that are reflective and inclusive of all triple patterns belonging to a particular graph are

demonstrated in the following manner:

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

36

@prefix ex: <http://example.org/>.

ex:mefoaf:name "Peter".

ex:mefoaf:knowsex:alan .

ex:mefoaf:knowsex:mark .

ex:mefoaf:knowsex:carl .

ex:alicefoaf:name "Mark" .

ex:alicefoaf:knowsex:alice .

ex:alanfoaf:name "Alice".

Table 2.2 - SPARQL 2

Graph Patterns: In the graphical instance mentioned above, we examined and obtained the

URI of resources from only the previous example, which, unfortunately , does not cater to the

assumptions and values for humans- and is not rendered as applicable. This makes the use of

adding a new triple pattern by selecting the property of foaf:name, concerning every ?person

to help in our pursuit of identifying the names of the corresponding resources (Abdelaziz,

Harbi, Khayyat and Kalnis, 2017). We can accomplish a similar feat by enlisting the Basic

Patterns Of Graph or the BGP, which also deals in distinctive triple patterns. Additionally, the

BGP is then depicted as a graph representing a group of RDF triples.

Matches: As the inconvenience of the lack of a related foaf:name with respect to a single

individual within the source graph has been instantiated, there are only a couple of available

solutions, based on the earlier instance. In this regard, it is possible to use the OPTIONAL

37

keyword in case the result is capable of optionally including a person's name but continues to

comprise of their URI:

{ <http://example:org/me>foaf:knows ?person .

OPTIONAL {?person foaf:name ?name.} }

Based on optional semantics, we can infer the mappings created by the initial BGP and utilise

them in combination with another BGP (Kurgaev, 2018). This means that if there is an

inconsistency incurring between both the binding elements, the ones on the left would be

streamed as given:

?person ?name

<http://example.org/alan> "Alan"

<http://example.org/alice> "Alice"

<http://example.org/carl>

The SPARQL union denotes a theoretical conjoining of two distinct sets of results. Therefore,

the SPARQL is not the same as SQL union, which only adjoins two more SELECT statements.

The columns of either side of the union need to be motorised into compatibility in SQL, which

is not required in SPARQL. Notably, both BPGs are capable of sharing standard variables

throughout fusing BGPs with the union's functioning (Dubinin et al., 2020). They are also

capable of having independent variable sets. THUS, the SPARQL union signifies the first and

38

the second solution mappings of the BGP. The below illustration showcases SPARQL's union

when compared with the earlier graph:

The result of the above query showcases the union of two BGP findings. Notably, the first and

second BPG choose individuals known by way of http://example.org/me, to be inclusive of

their names. Finally, SELECT is the sole category of query in action and is functioning through

self-reliance. However, take note that it is possible to make use of other categories just as

efficiently. SPARQL contains several query forms that enable the creation of distinct types of

queries based on a matching graph pattern (Rakhmawati and Fadzilah, 2019). The query elements

can be selected from the entire data by using just the SELECT query. Similarly, data is provided

about resources that can ensure congruity between graphic patterns utilizing the DESCRIBE

query, which shows a clear-cut RDF graph (Dubinin et al., 2020). Subsequently, the

CONSTRUCT query returns a graph based on the answers developed by utilising the graph

?person ?name

<http://example.org/ alan>

<http://example.org/alice>

<http://example.org/carl>

<http://example.org/Mark> "Mark"

<http://example.org/alice> "Alice"

<http://example.org/carl>

<http://example.org/me> "Robert"

39

pattern within the query itself. Ultimately, ASK queries provide finality in returning results by

stating either false or true based on its solvability.

The W3C SPARQL Working Group developed an upgrade called SPARQL 1.1 in response to

the limitations and inadequacies that outlined the operation of the initial SPARQL language.

Undeniably, SPARQL 1.1 is a visible improvement from its predecessor. It has a b rand-new

reach into elements that its previous version was to exercise. SPARQL 1.1 branches into

different components, including subqueries, aggregation operators, other languages and

protocols that are to be used in the interpretation of RDF graphs. A total of 11 documents-

published by the W3C- provide an insight into the additional contemporary features

accompanying SPARQL 1.1. It is possible to identify relevant documents in the W3C portals,

divided into titles based on their activity jurisdictions (Dubinin et al., 2020). These documents

include the likes of Service Description, SPARQL 1.1 Update, Protocol, Entailment Regimes,

JSON, Property Paths CSV, Federated Query and the TSV query result. The SPARQL 1.1,

thus, is a query language, defined by its resident advancement over SPARQL 1.0., as a novel

recovery from the complications existing in the latter. Consequently, this evolution of

SPARQL 1.0 can be addressed through the previously redundant functions re -established in

the primary documents of SPARQL 1.1. One such popular addition is collectively called

aggregation functions. This document stipulates that aggregation functions can count over the

columns of results, compute the average of the minimum and maximum values in a unit and

solve other problems in a numerical context.

However, the most significant change characterising the new SPARQL 1.1 is possibly the

incorporation of subqueries. Subqueries were a previously much-needed trait in qualified query

processing, seeing as their presence in SPARQL 1.1 helps classify and clarify information

under other queries. A subquery makes it possible to nest the findings of a specific query under

the name of another. For instance, consider a blog website with many articles or pieces

40

scattered all over, with no clear distinction to define them. This can be resolved using a

subquery, by which one can identify a recent blog post under a weblog that is based on, let us

say, the name of an author. The same works for the many other blog posts included in the log.

The feature of 'denial', which was earlier exhibited- through implicitly- in the SPARQL 1.0

language, reappears in both the NOT EXISTS filter and the MINUS keyword of SPARQL 1.1.

The NOT EXISTS filter noticeably pertains to negation testing. It implies that th ings that are

attributed to specific bindings have been cemented through the pattern of a particular query,

regardless of what pattern is evident towards the end. The NOT EXISTS filter compares two

existing patterns and removes matches based on the results. On the other hand, the MINUS

keyword takes a relatively upbeat approach. The keyword takes into consideration the fact that

a query has determined specific bindings. Based on the given bindings, MINUS accepts and

evidences the existence of pattern matches. If nothing in common is found, then no bindings

are eliminated (Dubinin et al., 2020). On the other hand, project expressions remain

unrestricted. They function through SELECT queries, which help the project expressions

emerge. The SELECT queries can go beyond the format of variables to p roject a SPARQL

expression. Thus, apart from being simply expressed, a project expression can expose itself

through different personas: a constant literal, a variable, URI, or even an arbitrary expression

on constants and variables.

The SPARQL 1.1 Update extension works as an updated language for understanding RDF

graphs. It derives its roots from syntax in SPARQL 1.0. In simple terms, the update function

interacts with a collection of Graphs, which form a Graph Store. The update function can create,

update, and remove graphs from a Graph Store in its operations. The update function also

showcases features that enable a user to insert new RDF triples within a data set highlighted

by a SPARQL endpoint. In turn, the SPARQL endpoint facilitates access to the operations

41

above. These operations include insertions and deletions of loading an RDF graph, clearing

and forming new RDF graphs obtained from the Graph Store's endpoint address, etc.

SPARQL 1.1 Protocol, developed by the W3C Working group, defines SPARQL protocols

and the corresponding RDF query language. It outlines a process to communicate SPARQL

queries to a SPARQL processing service (the RDF query language, in this case), and retrieving

the required information through an 'http' format, and links the results back to the client or

entity that requested the (Dubinin et al., 2020). It explains how and why the SPARQL language

is suitable to perform and execute these processes for accessing data. It is possible to view the

SPARQL Protocol in two ways: (1) An abstract feature lacking concrete application and

binding over a different system and its protocols, or (2) A HTTP binding specific to an

interface.

SPARQL 1.1 Service Description is a design for representing information about SPARQL

mechanisms. This is entailed in a document that portrays knowledge regarding a method to

discover and a vocabulary to describe SPARQL services that can be enlisted through a

SPARQL 1.1 RDF Protocol (ZHANG and YANG, 2011). The function of service description

serves an important agenda: to make popular the awareness of SPARQL services (Dubinin et

al., 2020). The well-stung-out methods and techniques of description enable clients or end-

users to gather more information regarding SPARQL services. Such information may include

service extension functions or details about data sets.

SPARQL 1.1 Regimes of Entailment outline the fundamental entailment structure for

SPARQ query language. RDF triples are usually portrayed through graphs. While both the

RDF and the OWL have come with strategies to help interpret these graphs to f orm relations

between n the given assertions and additional RDF statements, such graphs can only be

computed through the SPARQL mechanism, through entailment regimes. Importantly,

SPARQL endpoints can lend certain types of entailment, which includes entailment towards

42

the RDFS. Thus, whist putting forth a query at the remote endpoint, it is possible for users to

obtain findings reflecting on all the possible RDFS ramifications (ZHANG and YANG, 2011).

SPARQL 1.1 Graph Store HTTP Protocol elucidates how an HTTP protocol can be used to

organise and manage a set of RDF graphs. This function is more or less similar to the SPARQL

1.1 Update protocol but provides an alternative on the off chance that some clients or users

may prefer its interface to that of the Update function, as it is easier to work with (ZHANG and

YANG, 2011). This function also puts RDF graphs outside of a graph store in an advantageous

position to be maintained under HTTP operations.

SPARQL 1.1 Federated Query is put into use on the basis that RDF data is distributed across

the web over several SPARQL endpoints. The Federated Query function strives to translate a

query among various data sources accordingly. This document elaborates on the semantics and

the syntax relating to SPARQL 1.1 Federated Query extensions to circle queries over several

SPARQL endpoints. Notice that the keyword - SERVICE - expands SPARQL 1.1 to support

queries that merge information distributed all over the Internet.

SPARQL 1.1 Property Paths defines property paths that match SPARQL queries without

inflicting any change upon the queries. Property paths provide the platform to draw out basic

graph patterns briefly. A property path is simply a feasible path between two distinct graph

nodes. A trivial case of property paths is represented through an approximate length of 1,

representing a triple pattern.

SPARQL 1.1 Query Results CSV and TSV Formats refer to a definition of comma-

separated values (CSV) and tab different values (TSV). They are simple, easy to use, and

perfect for the transmission of tabulated data. This function also entails the usage of these

formats to combat SELECT queries with more SPARQL findings.

43

SPARQL 1.1 Query Results JSON Format involves a set of recommendations concerning

the query, update, and access data. This document describes how ASK and the SELECT

functions are to be used to gather results through JSON.

In the vast RDF structure, unknown data sets with no relational history remain unrecognised

and non-existent while we are at it (ZHANG and YANG, 2011). This is because the RDF is

essentially a chain of data resources that are connected through common properties that prevail

amongst themselves. Therefore, the Web of data or the Semantic Web is inclusive of all such

kinds of data and considers the process analogous to connecting documents through similar

material. Tim Berners-Lee, the World Wide Web inventor, proposed the following principles

concerning the Semantic Web.

1. HTTP URIs can be utilised to make identifying things easier.

2. It is necessary to base valuable data on specific standards (SPARQL, RDF) to cater to the

possibility that the user may look at the URI.

3. Given information must be followed by extra semantic links that pinpoint other URIs to lead

people along a chain of additional information.

Under the first guideline, URIs are required to identify resources and things. By leveraging a

URI, one can use it as an identifier to directly access a particular object or reference them

through the providence of additional resources (Hammami, Bellaaj and Kacem, 2018). This

increases data source credibility. The second rule corresponds to the first one, a supplementary.

It claims that HTTP URI's must be promulgated to the user through specific standards so that

data sources may remain viable and identifiable (as given in the first rule) (ZHANG and

YANG, 2011). Standards form an essential aspect of both the WWW and the Internet of Data.

One feasible means of accomplishing the goal of accessibility can be achieved through the

utilisation of standards. Meanwhile, the fourth and last rule implies that we can lead a user

through portals of unseen information by attaching URI links to provided data .

44

Figure 2.4 displays the latest condition of the LOD cloud and depicts how possible sets of data

on the internet can be retrieved through SPARQL endpoints. The figure given below entertains

the idea of distinctions in the LOD cloud by expressing it through its topology. The topology

of a LOD cloud is categorised into six distinct groups based on data types. These data types are

namely: media data, government data, geographic data, life sciences data and cross-domain

data, among others. The entire data cultivate the principles of the Web of Data- propounded by

Tim Berners-Lee- into its functioning. As a result, it becomes highly possible to uncover new

data content by following the connections established between different data sets. As per the

LOD cloud, the DBPedia data set, manifesting at the cloud centre, is one of the most frequently

referenced nodes. Interestingly, DBPedia represents the Wikipedia RDF with its numerous

links about a massive bundle of data sets.

Figure 2.4 - LOD cloud (Sakellariou, 2019)

45

2.3 Distributed Data Integration:

To help propagate a better understanding of this thesis, the author study and elaborate on the

existing relevant system. This section discusses the onsets and the pre-sets of data integration-

the primary conceptual root of this thesis. Data integration is a process through which data is

combined, integrated from the various sources from which it is derived. Data integration uses

this combination of data and projects them into a unified and comprehensive view to the

respective users (Shah, 2016).Data integration provides to be highly useful in the Semantic

Web, as it enables the focusing of data into a standard structure that is insightful and

informative to a user. Bringing together various data under one construction also makes the

entire process of data accessing efficient. The primary concern of data integration is that it has

to gain access to several data that is distributed across numerous data sources. In the Semantic

Web, gaining access is not as simple as it sounds in a world where all data is locked into a

protective and safe framework (data integration in the distributed information systems, 2012).

Thus, data integration needs to draw from the federation, indexing, and materialisation

approaches to gather objective data. These approaches take form through the following

functions:

• Read-only views: A Read-only view, in simple terms, is an integrated and readable (it

cannot be manually manipulated) view of multiple databases on a single platform.

Read-only views are popularly facilitated by "mediators" in data integration, which are

components deployed on a different computer. A mediator works in a unique way by

which it gives users a view of data whilst keeping them locked in their respective data

sources.

The mediator integrates data through the design of a single schema, also known as a

global schema, which becomes a unique entry point for all queries mandated against it.

Semantic mappings existing in between the mediator and the corresponding data

46

sources help execute this process. A mediator can also be deployed by utilising several

techniques, including materialised views, virtual data integration, and hybrids born out

of the two. It must be noted that these views can possess information from a plethora

of sources and several other mediators (Retracted: Semantic Information Integration

with Linked Data Mashups Approaches, 2015).

 A unique global schema can be manufactured through both the GAV (Global as View)

and the LAV (Local as View). The expression of global schema takes residence in data

sources through the virtual and material viewpoints inhibited by them. These views are

subsequently based on all the data and information gathered from the source before

being mapped to a global schema. The following requirement is to transform global

schemas into local schemas (facilitated through mapping) to supply a query with data

from various sources. Thus, both the GAV and the LAV approaches operate on the

same objectives (Retracted: Semantic Information Integration with Linked Data

Mashups Approaches, 2015). While the global schema itself does not rely upon its data

sources, the links between both components can be established by defining a global

schema to its analogous data sources.

• Information sharing between multiple databases: The framework of federated

architectures is the opposite of data integration because numerous databases can be

introduced within a federation. In addition, every database has the feature of extending

its personalised schema as a federation member . This characteristic allows the database

to facilitate various data subsets across members of other databases. In most instances,

this system of support is lent to virtualised data integration approaches.

• Read-write views in an integrated manner: This function expands a mediator's

architecture by attributing it with the ability to update upon choice. Updating, thus,

begins to play a crucial role as it allows the processing of new queries into the entire

47

system, including those regarding concurrency and consistency. Such feature can be

achieved by outlining the concerning architecture and specifying it.

• Arranged multiple databases: Multiple databases are well resourced by big

organisations that require the help of copious amounts of data repositories to represent

their tens of thousands of data tables. Not only are numerous databases advantageous

in terms of quantifying extensive data, but they also rotate a spectrum of functions that

are embedded in a firm. In this regard, workflows assume importance in mathematical

models of life sciences and data-intensive applications. Notably, workflow paradigms

can explain the contact established between databases from a semantic standpoint.

As previously illustrated, several approaches can be used to determine and classify the flow of

data integration. This section aims to inform and elaborate upon the two major approaches to

integration. One of them draws a hard line between materialised and virtualised data

integration, while the other approach differentiates between declarative and procedural data

integration(Zangenehpour, Ali Seyyedi and Mohsenzadeh, 2012).

Material/Virtualised Data Integration: Material and virtual views are two approaches that

effectively support data integration. Regarding material views, the system becomes an interface

between the source and the user trying to access it. This structure finds appliance in distributed

databases, multi-databases, as well as open systems. Inversely, extracting a query response for

virtual integration enlists query rewriting techniques and provision of access directly into a

source whilst query evaluation (Mishra and Mishra, 2017). In addition to being a much-

complicated process compared to the material view, a virtual integration is typically bound to

cost more. Meanwhile, the system also maintains a replicated version of an access point in the

second instance to promote its objective of data warehousing and data system re-engineering.

However, it must be remembered that maintaining materialised views can also be a cost-

48

intensive process concerning keeping the views updated (Mishra and Mishra, 2017). There

exist several techniques for facilitating materialisation views:

• Extract/Transform/Load withdraws information from at least one data source,

transforms it, and finally saves the finding in a separate source of data.

• Replication creates and maintains a distinct copy of all logfiles; it generally does that

on a differential basis.

• Caching tracks, presents, and stores the query findings for future use.

• Search provides a solution and creates one specific index for data to be eventually

integrated. This approach is commonly adopted in unstructured data; it is also reflective

of partial materialisation, considering that the index generally defines relevant

documents dynamically requested by the user.

Procedural/Declarative Data Integration: This is a classified data integration approach that

presents a holistic perspective through the combination of declarative and procedural data.

Under the procedural approach, data integration takes place haphazardly to cater to several

requirements predated by predefined information (Tomaszuk and Hyland-Wood, 2020). The

idea behind the procedural approach is to create feasible software modules that can access data

sources in compliance with the pre-set information demands. In contrast, the declarative

approach strives to model the data using a feasible language whose objective is to obtain the

answers to a query. The system fulfils this requirement by utilising complementary materialised

views, which establishes a feasible unified model that propagates a given query to the

worldwide information system (Yang, Guo and Wei, 2017). Notably, the current declarative

approach accommodates the global nature of data sources and considers it a reusable system

element for consecutive data integration.

49

2.4 Federated Database Management Systems

This section has grips on explaining the query federation mechanisms underlying a declarative

and virtualised approach. Federated database management systems, also known as FDMBS,

refer to a set of database systems that cooperate on a heterogeneous or homogenous normative

basis to diversify the data integration framework. It may be worth remembering that the system

lacks any sense of centralised control within it due to its replacement through DBS components,

which, in their wake, display a significant level of control over data access mechanisms (Hitzler

and Janowicz, 2010). The following points entail an examination of specific FDMS attributes

that overlook the management of databases:

• Distribution: It is possible to distribute data over several databases. These given

databases, in their miscellany, are capable of being stored on one or multiple computers.

They can be situated at the exact location or in geographically different directions whilst

being linked through a communication system. This distribution feature allows for

connectivity between databases.

• Autonomy: Only those who can extend significant control over a particular database

can grant others access to data. Additionally, they can also regain control and retrieve

the right of a user to access if they please. The authors of a database can exercise

different types of control over their documents (Hitzler and Janowicz, 2010). Different

levels of autonomy are attributed to different levels of control and can be specified as

follows:

✓ Communication autonomy: This refers to a component of DBMS’s ability to

discern whether or not to engage with other components and when to do it.

✓ Design autonomy: The design autonomy dictates the DBS’ ability in choosing an

independent design, regardless of the cause. Usually, DPS components’ designs are

attributed to their heterogeneous structures.

50

✓ Association autonomy: This component enables a DBS to determine whether its

resources and functionalities can be distributed among other members of the

federation document. By the association autonomy function, one can also determine

the extent of the sharing, i.e., limits perceiving a shareable about of data can be

placed on specific quantities of data.

✓ Execution autonomy: The execution autonomy component enables a DBMS to

carry out its functions through local operations without any intervening extraneous

operations that may disrupt the function execution in hazardous ways(FDBMSs or

DBMSs submit). By adopting execution autonomy, a DBMS component can also

determine the order in which external operations are to be executed.

When focusing on schemas, five levels for managing data integration exist in the system:

• Component schema: It is extracted by translating local schemas to a standard or

canonical data model (CDM).

• Local schema: It denotes the conceptual schema of DBS.

• Federated schema: This is where a multitude of export schemas get integrated. In

addition, the federated schema is inclusive of information relating to the distribution of

data generated whilst carrying out the integration of export schemas

• Export schema: An export schema is essentially a component schema’s subset. The

endeavour of describing export schemas would be to begin control as well as

management of related autonomy.

• External Schema: This is specifically intended for an application, a user, or a group of

applications/users.

FDMS Architectures: FDBMS architectures can be used to describe the structure of a database

(Appreciation to distributed and parallel databases reviewers, 2018). FDBMS architectures are

51

likely to be structured according to centralized, decentralized, or hierarchical mechanisms. In

addition, the architecture mechanisms can be tightly or loosely couples:

• Tightly coupled mechanisms are famous for their promotion of interdependent and

closely-knit architecture. In these mechanisms, export schemas get established by

implementing a negotiation between the federation DBA and its component DBA.

Notably, the latter component, DBA, influences any elements implemented into the

export schemas. The typical role played by the DBA federation in this process is

granting permits to decipher the regulatory component schemas and read into the type

of information constituted in these components (Babu, 2012). Once a specific type of

information is confirmed, the federation DBA begins negotiations, leading to export

schemas for forging connections. The external schemas validate their part in the

equation by carrying out an arrangement between federation users (a group of

federation users) and the federation DBA. However, the federation DBA still has

authority over any information that may be delegated to external schemas and can

determine the access and permissions about such information.

• In an FDBS that is represented by a loosely coupled mechanism, independence is

prioritized. Components of such a design are usually lean, single, and micromanaged

by individual entities to revoke maximum responsiveness. In loosely coupled

architecture, every federation user has the power to administrate their federated schema.

This can be empowering in a way that a user can determine one’s benefits.

Consequently, a federal user can evaluate the available export schemas and ascertain

the type of data they want to initially access. After that, a federation’s user extends

their preferences over the federated schema by importing objects from an export

schema through an application program (Babu, 2012). In addition, a schema can be

employed, by use of which one can define a language query in multi-database referring

52

to a schema’s export. The user can access change within an export federated schema

and assess its semantic heterogeneity. Additional information can be referenced from

either DBMS dictionaries or the “DBMS dictionary (federated)”. This federated

schema is initially licensed under the behest of a federal user’s owner but can be

removed and referenced anytime by the concerned federation user.

Critical aspects outlining the functioning and processes of FDBMS architecture include:

• Schemas being inclusive of the locally stored data descriptions.

• Mapping and defining database schemas as functions that link objects.

• Processors filter, transform, manipulate, access and build data. These processors could

easily connect through their wide range of functionalities and generate new

architectures to manage data.

2.5 Optimised query plans for Query Processing Systems

This section undertakes a review of some current techniques to generate optimised query plans

for Distributed Query Processing (DQP), such as deterministic algorithms and randomised

algorithms. The dynamic programming optimisation algorithm recursively divides a problem

into more straightforward subproblems. It can be implemented when the sub problems are not

independent of each other (Development of a CUBRID-Based Distributed Parallel Query

Processing System, 2017). After that, such sub problems are resolved on just one occasion,

saving all solutions in a table before combining them to reach the overall solution. Characterise

the overall structure of the best possible solution.

• Recursively define its optimal value.

• Calculate its value in a bottoms-up manner.

• Devise an optimal solution based on the computed information.

53

In the case of deterministic algorithms, all algorithms are known to develop a solution

incrementally. It may be noted that such algorithms are either applied heuristically or through

an exhaustive search. A dynamic programming algorithm is presented for distributed query

processing and heuristics to adopt the most feasible query plan. Under a dynamic programming

algorithm, it is possible to discard a plan if an alternative plan performs the same/additional

work by incurring a lower cost (Kaneko and Chishiro, 2018). The positive attribute of dynamic

programming is its ability to produce the best possible plans based on costs. In the event, these

costs are sufficiently accurate. The algorithm can then identify the best possible query plan.

Meanwhile, the shortcoming of dynamic programming is that it is ridden with exponential

time/space complexities. Therefore, the complexity of dynamic programming could be

prohibitive, particularly in a distributed environment.

The Deterministic approach also exploits other algorithms that employ heuristic science to

identify some of the best possible query plans that execute queries within distributed

frameworks. Heuristics usually involve operator selectivity information in constructing a

fundamental process. This is because heuristics is essentially a practical and “hands-on” subject

of study. Additionally, heuristics works wonders in RDF-based languages, bridging the gap

between language properties, subjects, and even RDF characteristics. However, it is normative

that even Heuristics is bound to leave the deterministic algorithms with subpar or sub -optimal

query plans (excused because the dynamic approach procures the best possible plans and

pathways for queries) (Rabhi and Fissoune, 2019). In the deterministic argument of algorithms,

cost is an essential factor to consider. Costs are creditable because the performance of every

executive algorithm is based on the costs incurred by them to carry out activities for the

processing of queries. For instance, take data transmission process- a very much necessitated

process, as it helps retain information within two points of an algorithm.

54

Consequently, sending data from one node to another within an algorithm is bound to incur

some cost. Other functional features in an algorithm also work on this same principle. Take the

event of an algorithm, wherein node A witnesses the performance of a scan. Consequently, the

data extracted from that very scan becomes transferable because of its f easible nature, and other

algorithms are likely to extract this sequence for themselves. This transfer of data, which is

usually executed in between two nodes, has a set cost. Naturally, all deterministic query

processing algorithms would prefer to incur the lowest cost possible in all their functional

activities (Kaneko and Chishiro, 2018).There are various models used across different

algorithms to estimate and reduce costs while maximising efficiency:

Cost Estimation for Plans: The typical manner for estimating a query plan’s final cost can be

initiated by ascertaining the cost of all possible operators within the set plan. This model allows

us to have a precise computation of all individual costs (concerning their respective operators),

challenging an algorithm. Consequently, the utility of the cost associated with a given operation

is assessed through its corresponding cost metrics, including examining factors like time-cost

balance, cost variance between budgeted and initiated costs, curating an analogous report of

the performance statistics and the costs invested. Thus, cost metrics can be acquired from

reading RDF triples involved in query assessment or resource consumption. In their turn, RDF

triples are based on costs incurred during functions (as mentioned previously) like CPU

consumption or data transmission. Finally, costs can be weighted to model the effect of

fast/slow machines and communication links. Usually, costs incurred over transmission are

expressed per byte or through any other fixed cost unit.

 Response Time Models: The Response Time Model estimates costs based on their

association with two kinds of operators: those that are concurrently executed and earmarked

for possible execution if an optimum solution has not been arrived at. When queries are divided

into sub-queries, they are directed into parallel systems like in which they are processed

55

simultaneously whenever such an instance is presented to them. A cost model working within

such a parallel system gauges the operator’s overall resource consumption and the effectiveness

of comprehensive shared resources by a group of operators. This computational system

assumes the significance of different resources and their consumption level and compares the

resultant data to find the best possible solution. The possible result is realized from a resource

that has the lowest response time to a query. An entire group o f operators’ response time

denotes the total consumption of resources (both individual operators’ and overall usage of

shared resources). Ultimately, the most optimal and cost-effective query plan can be

determined by using dynamic or randomized algorithms. Consecutively, dynamic algorithms

are perpetuated through a distinct set of steps that are targeted to move at the intersecting edges

of various solutions. An “edge” can be introduced in between two solutions by transforming

one solution to another through precisely one move (Kaneko and Chishiro, 2018). Once an

“edge” has formed, dynamic programming algorithms test the applicability of such an edge by

carrying out a random walk-through along its surface, i.e. the path of this edge is traced until

the edge is deemed as leading to a dead-end. The system follows through with such termination

when a given time frame of work has been exceeded.

To summarize, if an edge fails to lead to a solution within a time limit, it is instantly terminated

by the algorithm and replaced by a new plausible solution. This is why the most optimum

solution is said to occur within dynamic algorithms. Their flexible nature allows for a “trial-

and-error” methodology that cannot be employed in a deterministic algorithm- where every

pathway continues to be considered a means to an end despite evidencing otherwise.

2.6 Query Execution Techniques

Apart from the models of cost estimation covered previously, other query execution techniques

in distributed databases are gaining popularity through a specific focus on enforcing

56

connectivity between nodes through distributed database tables (tyagi, 2015). That is to say

that these methods aim to link information across distributed database tables and to establish

how the resultant data from the connections made are to be distributed between two nodes. For

this purpose, the following techniques can be utilised:

Row blocking: In Row Blocking, any communication between distributed database tables can

be done so according to communication protocols, which state that information can go from

one node to another through the form of loads. “Loads” refer to the capability of transferring

multiple messages within a network. These loads are represented through “tuples”, which are

single-handed records for a given table row (tyagi, 2015). Consequently, this technique of

collecting tuples transported in blocks results in much lower network overhead than sending

fewer, more independent messages.

Communication Cost Optimisation: The technique of Communication Cost Optimization

has its basis for operation commonly in a data federation background. Data federation, an

alternative approach to data sharing, enables most data to retain their primary source locations

until they are required to satisfy downstream needs. In such cases, the network configuration

accepts more responsibility than the data itself. Thus, the costs faced to undertake this

technique could depend on the number of nodes and the middle ground between them that is

to be covered (Sasak and Brzuszek, 2010). This process is filtered into its most optimal form

using an optimiser- which finds the cheapest transmission route via the network nodes.

 Multi-threaded Execution: Multi-threading Execution in a distributed database is an efficient

route for quick functional execution. This technique uses the operating system's support and

generates multiple threads of execution through its Central Processing Unit (or CPU). This

technique optimizes itself by dividing queries into sub-queries and characterising them with a

thread. Each expedites query execution. Such multi-threads could give query execution an edge

when combined with query parallelisation (Sasak and Brzuszek, 2010).

57

 Horizontally Partitioned Data Joins: Primarily, Horizontally Partitioned Data positions

rows separately, rather than splitting them into columns. Several rows of horizontally

partitioned data tables can form a union or joins based on specific logical protocols. These

protocols include the need for the combining tables to be concurrently horizontally partitioned

(Poovammal and Ponnavaikko, 2010). For instance, if Table A is partitioned horizontally, in a

way that is compliant to B, they can be calculated in the following possible manners:

• (A1 UNION A2).B

• (A1.B) UNION (A2.B)

An optimiser is required to consider the factors required for such an integration, as this

technique does not find value in an uncontrolled environment like the Web of Data.

Semi-joins: The Semi joins technique is based on the principle of transmitting only the

necessary columns to perform a joins operation, i.e., a semi-join returns columns only from

Input A or does not return anything at all. Through this function essentially prevents any

duplication error from occurring within the tables (Daenen et al., 2016). It is similar to a regular

join in that it returns a column from one join Input (A), only if it matches at least one column

from another join Input (B). The remaining but necessary tuples, discarded during the execution

of a join, are dealt with later.

Double-Pipelined Hash Joins: The Double Pipelined Hash Join system is an augmentation to

the symmetric hash algorithm. Compared to a partitioned join, this system requires less source

knowledge to optimize its data. This is because its technique simplifies the query execution

process. Like other join techniques, the double piped hash join system is initialized by creating

a joint between Input A and Input B. Once the join is executed, a couple of empty in -memory

hash tables are produced (Tang et al., 2019). These hash tables are elementarily equivalent to

their Input counterparts. To begin with, tuples from Input A get processed by identifying

whether they share similarities with the hash table B. If it is found that a tuple from A matches

58

table B in its characteristics, then this tuple is outputted and formatted into its respective hash

table A. The same procedure is employed in the processing of tuples from B. Once matching

tuples are established in their concurrent hash tables, they are rechecked to verify whether they

identify with each other and satisfy the findings belonging to the created join in general. With

the procedure being established, these hash tables can also carry potentially harmful

consequences in tow. When gathering data into hash tables, there is always a detrimental

chance of incrementing them with excessive data. This overloading could pose a threat to the

central database memory (Tang et al., 2019). Such a scenario can be avoided if the system

integrates memory backup into its functioning.

Bindings: Bindings limit the findings of a sub-query into a respective, specific database within

data federation operating systems. This foundation of prohibition or restriction fixes a given

sub-query within its four surrounding walls and necessitates its performance only to return

solutions for low-level queries. This enables the regulation of a copious number of sub-queries

that can otherwise return excessive results together. Thus, one sub-query is specific only to its

database, while another query is restricted to a different database. Let us imagine a query, which

contains a remote query execution that is unrestrained and may release unwarranted results into

a database. This can be highly inconvenient in a database that is not competent enough to return

these results. This negated nature of a database may render even the application of query

planners ineffective (Moeller and Frings, 2014). This is because, while the query may

disintegrate into subsequent queries, its solutions would be dispatched to a remote database,

which could get saturated with the results of even a single query. In turn, this optimization

through a remote database could ultimately lead to a network overload.

Top/bottom queries: Through the onset of top/bottom queries, a user can sort his final query

results as he pleases. At this stage, the user controls a particular movement of the query results

as per their choice (Zhu, 2015). The user can do so by selecting top or bottom queries and

59

executing specific values on them. As a consequence, this would generate additional movement

among the solutions. For instance, Stop operators can be implemented to avoid unnecessary

data exchange between different nodes in the database.

Streaming results: Once a database begins to generate results, it ships them to various

federations. Here, the data gets transferred between various nodes within the federation itself.

This facilitates the streamlining of results- which is essentially a positive segment of data

transmission wherein a node keeps producing data simultaneously as and when another node

consumes it.

 Different nodes receive different functional benefits while streaming continuously. For

instance, some nodes may flourish on execution efficiency, while others may be helped by

reducing memory overheads. In the following sub-section, the focus is shifted to client-server

architectures (Zhu, 2015). The primary traits of these architectures are described before their

classification.

2.7 Query Federation Systems

This section investigates a Query Federation system of data processing and introspects on its

various archetypes. Query federation is an information retrieval-based platform that can search

for and combine data from various sources (Almourad, 2013). We strive to define and map out

set routes through which several resources are utilized on this platform. The author discusses

the many query optimisation techniques that are executed upon this foundation. The following

architectures of Query foundation contribute to data processing in this model:

Peer-to-peer: The peer to peer (or P2P) is a novel distribution approach. Each site is limited

to its functioning within a “server” capacity that activates the entire federation in this

architecture. This server installs some aspects of the database into relevant sites. However, it

is not just the server that these sites are limited as well. Sites also act under their clients' capacity

and provide search result information by returning them to the federation (Almourad, 2013).

60

This peer to peer architecture enables communication within sites by their common attribution

to a server. This server, in turn, defines policies that dictate communication protocols.

Client-server: In a client-server architecture, every site in the federation is fixed with a

particular role, a specific part whose duties it must fulfil within the federation. The two fixed

roles that are alternately employed to each site is either the client or the server. The client-

server architecture also postulates that a client must operate within its capacity and not engage

with other clients (Korneva and Khorev, 2018). However, where the P2P system had a standard

server of engagement, that is not the case with a client-server federation model- so all

engagement is strictly prohibited. This restriction extends to servers, which are not even

allowed to establish a means of communication with each other.

Middleware, multitier: The multitier middleware architecture creates a hierarchy among sites,

dictated by their different levels of processing. Every site within this federation can operate on

the scale of either a client or a server. However, its identity is decided by its position within the

federation and the site seeking engagement with it. Notably, a site inhibits its capacity to

communicate as a client only by doing so with other client-sites on the same level.

Alternatively, it can find engagement with a server through nodes- but only if the latter acts in

its ability as a lower-level server. Thus, sites cannot communicate with each other at the same

level or even a different level.

There has been much debate regarding a query execution regarding where a specific query must

be stored- a client site or a server site? A general argument is that databases stored in and by

the server sites of the federation feature better computing resources in terms of quantity

compared to the client machines—more the rate of resources, less the communication costs.

Thus, the differing range of federation servers and clients gives us a choice between them based

on resourcefulness and communication costs (Chahal and Singh, 2021)

61

. The indicated question is to determine where it would be most optimal to implement a query

with redundant costs yet excellent service. Would it be helpful to shift the data to the client

machines from the resource-cantered servers, or would it be more prudent to shift the query to

the data, considering all associated communication costs? Several alternatives appear in this

context to help resolve this issue of query storage and execution. They are as follows:

Query shipping: Query shipping aims to establish a safe pathway between clients and the

servers themselves. Queries that are to be dispatched from one to another follow the set

pathway format for execution. Due to the constant nature of this exchange, a query returned

from a client to a server or vice versa retains a much more intensive state than when it was

initialised. Every “exchange” within the federation requires that a query experiences execution

at the lowest level of a hierarchy of its objects, from where it gradually increments. The

“exchange” of query that occurs is in between the client and the server. Once a client departs

with a query, a server site gains remote access at a correspondingly lower level. Once

processed, the query is shipped back, to the client, from where it would be returned, and so on.

Suppose the given execution of a query occurs within the setting of multiple server

configuration systems (Korneva and Khorev, 2018). In that case, a pre-existing middle layer

(which could constitute either server or gateways) facilitates the transfer of queries between

the client and server sides.

- Data shipping: In applications, data shipping is a general process that brings data

closer to the applications to arrange interaction between the two elements. Data

shipping is a similar yet raw version of this process. In data shipping models within a

federation, the queries imposed exist within the client-side database. The general

objective is to ship the required data from servers to the queries. Thus, this process

provides a quick alternative for the middleware, multitier approach by storing the query

62

in clients while executing the needed data from the servers . Notably, the data gets

cached at the client's machines, either on disk or main memory.

- Hybrid shipping: Hybrid shipping completely redefines shipping by combining two

powerful query and data shipping methods. This shipping process fuses the underlying

mechanisms of the prior mentioned systems and multiplies their effectiveness. In

response, query operators either get executed on client or server sides based on their

optimisation efficiency. Concurrently, the alternative platform allows clients to perform

data caching (Korneva and Khorev, 2018). However, specific optimisation techniques

can maximise the characteristic usefulness of client-server systems and their

architectures. We describe the techniques of query optimisation for systems that

implement these architectures.

Site selection: The Site selection alternative refers to selecting a site where an operator

belonging to a specific query is to be possibly executed. The selection of a site for this purpose

remains commonly emulating the process of data transfer. Thus, Site Selection allows the

modelling of query shipping, data shipping, and hybrid shipping with in its processes. The

shipping is carried out through the same options used to select a site for execution. In such an

event, note that a site annotation characterizes every operator in the field . The respective

operator is attuned to this particular site, where it is about to be executed. The selection of sites

for Query execution depends on factors such as network latency, the characteristics of servers,

and the volume of data that is to be shipped or transferred (Abid, Rouached and Messai, 2019).

Optimisation: Optimisation is a phenomenon that can be carried out within various nodes

because the client must choose the right node to execute the query. This aspect of node selection

is an increasingly perplexing set of decisions to make. For instance, the node selection required

to determine where a query plan is to be optimized is a heavy choice because every node is

bound to multiple others (Devulapalli and Bagui, 2018). This means that one node knows a

63

diverse set of many more nodes, making it hard to decide among the different opportunities for

execution available within the federation. A helpful option for deciding upon a site for query

optimisation is to input a query into the client side. Inversely, prompting query optimisation

and plan refinement within the server side is also a tempting option. Choosing by implementing

a query into the server-side can provide more excellent knowledge about the system's current

condition. This server contains just the correct information on the federation to curate the best

possible query plan. No servers possess comprehensive knowledge of the entire system in such

a configuration involving multiple servers.

When to optimise a query: The process of query optimising can diverge into multiple ways,

which are all efficient within their spectrum. One such possibility is to facilitate query

optimisation at the compile time of the system. The compile-time refers to a point wherein

query operations meet source codes for execution. Currently, there is usually a considerable

range of information available relating to data nodes, upon which query optimisation can be

determined. However, the time may crash in unforeseen circumstances, and the query

optimisation plan would fail altogether. Another possibility of query planning leaves much

room for progress in optimising queries within the run time of data through a dynamically

chosen or compiled plan (Devulapalli and Bagui, 2018).. As a general procedure, the execution

of a query plan within this system is usually observed and regulated. If any mishaps or errors

are found to occur within the query plan on the run time, the query plan is remodelled in a

different direction.

Meanwhile, a different approach towards dynamic query optimisation aims to split the

optimisation/execution into two distinct and operational phases. The first phase constitutes the

breakdown or decomposition of a specific query into its respective sub queries. The resultant

amplified quantity of subqueries is capable of being executed through a single server.

Consequently, this feature allows for the parallelisation of single queries by establishing

64

linkages between the findings of subqueries (Devulapalli and Bagui, 2018).. The selectivity

cost of joins collectively incurred to combine the subquery results is usually determined by the

speed at which the servers link queries to find and yield results.

2.8 Adaptive Query Operators

Adaptive query operators are a quick, authentic and untraditional way of getting queries

executed within a federation. While conventional operators function loose based upon a trial

and error method across various models, ADPs are flexible enough to adapt and mould

themselves to the need of the hour. For instance, one of the many functions of an ADP includes

analysing real-time query run statistics and using this information to create customized

optimisations (Chavan and Phulpagar, 2016). An adaptive query operator quickly facilitates

the ease of execution as per a query executor’s situation-specific demands. These demands are

commonly met in the following ways.

 Symmetric Hash Join Operators: The systematic hash join operator method is a part of the

join algorithm mentioned previously in this section. It popularly operates under the double

pipelined has join model. Like its ancestry, the Systematic Has Join Operators usually maintain

two hash tables, each of which is attributed to a different relation. These operators usually await

the arrival of data into their respective tables before processing them to yield results. Once

Symmetric Hash Join stores the tuples into their related table, they are investigated against the

table positioned at the opposite end, i.e., the data prevailing from different inputs are put in

congregational tables compared to confirm their similarity values (Oguz et al., 2017). Thus,

depending on the availability of a match between the tables, the operator processes the data

from both inputs. Additionally, the operator also undertakes the performance of frequent

symmetrical movements within a system (Sinuraya, Rezky, & Tarigan, 2019). Frequent

symmetrical movements refer to specific points which enable altering join orders without

consecutively affecting the correctness of data.

65

 However, note that the join operator exhibits limitations within its features of adaptability. In

an event where input data become unavailable due to communication loss or network traffic,

the query plan execution cannot be undergone. Thus, it is essential to remember that this

method is not the best configuration in a stream-based architecture, i.e., the disabilities

inhibited by this model necessitate a severe evaluation and reconsideration of the operators and

their functions in the system (Sinuraya, Rezky, & Tarigan, 2019). The biggest drawback of

such a join operator is its high memory usage, as the hash tables also need to be constructed on

more significant input relations.

Eddy: The founding notion of this concept is to employ a method of execution wherein the

tuples of data get routed via operators. Such a model would also be operational in altering the

sequence by which tuples get collectively routed into the system. This gives Eddy the leverage

to track tuple execution and make router-related decisions for them.

Symmetric Hash Joins/MJoin: The Symmetric Hash Joins/ MJoin is a final integration of the

above listed Symmetric Hash Join and Eddy operators that contributively outline the AQP

system. Conclusively, MJoin signifies the generalisation of Symmetric Hash Join for more than

one joint. The operator constructs one relational hash index on each join ing attribute (each

input side) within the concerned query. It incorporates a light tuple router—the tuple router

aids in accelerating the process of touring tuples between the different hash tuples. Whenever

a new tuple is introduced to the existing system, the initial response is to solidify it within hash

tables, which are investigated against each other to find a match among the tuples within them.

As expressed previously, a memory index must be constructed for all input joins misaligns with

the hash joins’ inclination to consuming high memory. This provides to be a key challenge to

this operator (Chen et al., 2018).

Meanwhile, memory consumption represents a vital challenge of this operator, given the fact

that a memory index must be constructed for all input joins. AQP addresses challenges that are

66

not confronted in conventional query processing systems in the presence of statistics,

availability of servers and the constancy of costs during execution time. AQP confronts the

problems generated from not lacking previous information: unexpected correlations, missing

statistics, dynamic data and unpredictable costs using feedback to tune the execution. In

addition, AQP can be generalised to several other contexts, especially during the intersection

of query processing. Ontology-Based Data Integration is a process that uses ontology to

combine data (Osman, Ben Yahia and Diallo, 2021). What sets Ontology-based data integration

apart is their involvement of multiple heterogeneous sources during the execution of this

procedure (Zhang, 2014). This section of the dissertation focuses on integrating RDF data and

discusses how processing distributed data queries can do this. RDF is standardized as a standard

data model, and rather than consuming it like a heterogeneous source, it finds no use in being

mapped out to integrate various data sources. Naturally, it facilitates the onset of ontolo gy-

based data integration for itself. The final execution of the query is then performed by accessing

several RDF sets through a Query Federation system (Achichi et al., 2019).

Distributed Query Processing Systems

The processing of SPARQL 1.1 is heavily engineered and supported by specific standard

systems. Such systems commonly employed to derive value from the official SPARQL 1.1

federation extension include ARQ, RDF- Query, Rasqal RDF query Library or ANAPSID. We

are more or less likely to come across these engines as often as possible within a query

processing duration. Meanwhile, note that other systems can also run a query processing system

for SPARQL 1.1, the most popular of Networked Graphs, DARQ, FedX, ADERIS,

SPLENDID, and many other engines. However, these processing systems often fail to mandate

the SPARQL 1.1 federation language, possibly due to the comprehensive protocols across

which it stretches. Thus, they are unlikely to find proper compliance with the SPARQL 1.1

federation extension. However, they fail to comply with the specification of the SPARQL 1.1

67

Federation. The other system which lends support to distributed RDF querying is illustrated.

However, this system is not considered in this study since it uses SeRQ instead of SPARQL.

Below is a general discussion on some popular query processing engine systems that contribute

to queries in the SPARQL 1.1 federation extension.

ANAPSID: ANAPSID implements agjoin and adjoin query operators. While the former

incorporates a hash join apart from saving join tuples for joining operators, it can be seen that

the adjoin operator masks the delays attributed to the data sources. After decomposing the

SPARQL queries (federated) into several source queries, ADERIS integrates the results using

a couple of techniques: 1) adaptive join re-order; and 2) optimisation of succeeding queries to

the various data sources in order to retrieve additional data. ADERIS implements a greedy

algorithm to optimise these queries, facilitating identifying the most optimal query plan (Acosta

et al., 2011). After that, index nested loop joins utilise an index related to join attributes to

explore tuples from appropriate inputs and outputting corresponding tuples to the subsequent

operator.

ADAERIS: This query processing engine is known for using optimization as a means to a

successful query plan. The process begins with the decomposition of SPARQL queries, which

are entirely federated into various source queries to lighten the load of an extensive and

complicated SPARQL query. Once the breakdown of the query has been performed , then the

decomposed queries return several results. Which are combined for interpretation using a

different technique, some of which include: 1) adaptive join reordering; and 2) optimisation of

succeeding queries to the various data sources in order to retrieve additional data. An optimal

combined query plan is formulated for execution after attaining a maximum optimisation level

(Kim et al., 2017). This plan is then followed up by index nested loop joins, which utilize their

respective indexes (standard join attributes bind that) to explore tuples from inputs across the

68

system. They also determine the output of specifically connected tuples to their relative

operators.

Symmetric Index Hash Join: The original symmetric index hash join was implemented by

Ladwig et al. to perform as an engineering algorithm in the query processing system. The

Symmetric Index Hash Join system uses an integral combination of queries with remote

SPARQL endpoints. Remote SPARQL endpoints are inhibited with access to RDF data stores

that are only situated within a local dimension. This access to remote endpoints by the system

makes it a quick and recommendable hash join approach. This is because the Data derived from

the localised RDF data set is saved within an internalized hash structure. The close distance of

this existing data makes it possible to obtain speedier access whilst implementing a join that

utilises remote data (Liu, He and Meng, 2018). In addition, the authors share cost models

concerning their preceding work, where they used non-blocking operators to join the data.

SPLENDID: This query engine processing system goes beyond the scale of ‘Sesame’ in query

federation. SPLENDID operates its query processing by executing them through a join re-

ordering system, whose functioning is based on the order of the gathered statistics. SPLENDID

also premises its operations by following joint reordering rules through participation in a cost-

reductive mode. The statistics used in the query processing functions are collected through

VoID descriptions. This accurate measurement of data acts as a medium for the efficient

implementation of join re-ordering (Saleem et al., 2016).

SemWIQ: The SemWIQ is a query processing system that utilizes a channel of mediator

wrapper upon which it bases its operations. The mediator wrapper primarily behaves as an

agency or instrument that accesses heterogeneous data sources -such as RDF data sets, or CSV

files, or relational databases- an efficient and straightforward process. Mediums appear to be

SemWIQ’s forte because a SPARQL processor called ARQ(of Jena) soon comes into play to

69

help the SemWIQ utilize them and write query plans before implementing its optimisers. These

optimisers exhibit a general set of rules that must be regulated within the process of shifting all

the filters or unary operators within the boundaries of a query plan itself (Langegger and Wöß,

2008). Thus, unlike the join reordering system, which depends mainly on the given statistics,

this processing method executes operations within a query space.

DARQ: DARQ goes on to extend the Jena SPARQL processor called ARQ. This necessitates

the attachment of a configuration file into the existing query, including information about the

L vocabulary of SPARQ, endpoint and statistics. DARQ implements both physical and logical

optimisations that concentrate on using rules to rewrite the original query prior to planning the

query (to blend elementary graph patterns at the earliest possible opportunity) and shifting

constraints into subqueries to reduce the intermediate results’ size. The other major drawback

is that DARQ’s ability is restricted to executing queries involving bound predicates.

Meanwhile, Networked Graphs are known to produce graphs to depict content from different

RDF graphs, facilitating graph sets that are then supposed to be queried (Quilitz and Leser,

2008). This implementation takes into consideration, optimisations including the deployment

of optimisation algorithms (semi-join).

FedX: Extending Sesame, FedX premises its optimisations on grouping joins directed at the

same endpoints (SPARQL) and a join optimiser based on specific rules. This subsequently

orders groups of these patterns following a heuristics-based guideline. In addition, FedX

reduces the likelihood of joins at an intermediate level by grouping mappings within a single

subquery by leveraging the constructs of SPARQL UNION before dispatching it to relevant

data sources (Qudus, Saleem, Ngonga Ngomo and Lee, 2021). Hartig and his peers suggested

a model that attempts to take advantage of the Web of Data’s navigational structure by applying

executing queries. The authors have uncovered new URIs based on the first set of SPARQL

query before populating a localised RDF repository. The query is then repeated in order to

70

seek new answers for the initial query. Meanwhile, more recently, Hartig propounded a

heuristic to identify a feasible order to execute queries and incorporate a primary memory index

elucidated.

Existing frameworks summary: This section gives a summarised information about the

existing systems, which are relevant to our research are discussed in this section.

ANAPSID:

• ANAPSID finds use in steering the SPARQL 1.1 federation by implementing query

operators called the ‘agjoin’ and the ‘adjoin’.

• ANAPSID becomes a valuable asset in the adaptability of its features, contributing to

the increasing success of remote query executions (Acosta et al., 2011).

ADAERIS:

• This query processing engine is known for using optimization as a means to a successful

query plan.

• Once the breakdown of the query has been performed, the decomposed queries return

numerous results to the various data sources to retrieve additional data.

• An optimal combined query plan is formulated for execution at a maximum level of

optimization of these queries (Kim et al., 2017)..

SYMMETRIC INDEX HASH JOIN:

• The original symmetric index hash join was implemented to perform as an engineering

algorithm in the query processing system.

• Remote SPARQL endpoints are inhibited with access to RDF data stores that are only

located within a local domain.

71

• The authors share cost models about their preceding work where they used non-

blocking operators to join the data (Liu, He and Meng, 2018).

SPLENDID:

• This query engine processing system goes beyond the scale of ‘Sesame’ in terms of

query federation.

• SPLENDID operates its query processing by executing them through a join re-ordering

system.

• This accurate measurement of data acts as a medium for the efficient implementation

of join re-ordering (Saleem et al., 2016).

SemWIQ:

• The SemWIQ is a query processing system that utilizes a channel of mediator wrapper

upon which it bases its operations.

• The system acts according to a featured registry catalogue, which indicates the sources

for querying and the vocabulary about which they must be executed (Langegger and

Wöß, 2008).

DARQ:

• DARQ goes on to extend the Jena SPARQL processor called ARQ.

• DARQ implements both physical and logical optimisations that concentrate on using

rules.

• This implementation considers optimisations, including the deployment of optimisation

algorithms (semi-join) (Quilitz and Leser, 2008).

Some significant difference between Fedx, ANAPSID, ADERIS according to features are given below:

72

Features FedX ANAPSID ADERIS

Indexing in Memory Yes Yes Yes

Stored Index No No No

Dynamic Indexing No No No

Generating algebraic No No NO

Cache Yes Yes Yes

Decomposing main

query

NO NO Yes

Static Generalization Yes Yes Yes

Dynamic

Generalization

NO No No

Static Specialization Yes Yes Yes

Dynamic Specialization No No No

Table 2.3: Relevant systems characteristics

2.9 Research Gaps and Proposed Research

This section elaborates upon the gaps prevailing in the existing research and consecutively

identifies and introduces a thesis to cover the gaps surrounding the present research dynamics

concerning RDF distribution. The following Research gaps have been identified after

reviewing existing work related to the accessing distributed RDFs:

• Process and index RDF data into a centralised repository.

• Conversion of main SPARQL query into sub-queries is missing.

73

• While the sub queries bring back multiple data files, there is a necessity to merge all

the given sub-queries results into one result to answer the main query.

This research aims to propose the framework for accessing distributed RDF (Resource

Description Framework) and developing a test environment that measures the performance and

accuracy of the proposed framework for processing the distributed SPARQL queries.

The proposed framework includes the following parts:

• To develop a novel technique to index the RDF data from different sources to analyse

the data

• To develop a robust, reliable, and comprehensive framework that can bring RDF

indexing, SPARQL query conversion, searching and combining results from different

RDF resources under one umbrella.

• To evaluate the results and compare the proposed approach with existing approaches.

2.10 Chapter Summary

This chapter has discussed the ins and outs of the foundation technology behind the semantic

web. Furthermore, it has included a detailed review of the existing work done by other authors

and a critical review of their work. It talks explicitly about data integration approaches, FDMS

Architectures; Distributed Query Processing System generates optimised query plans for

Distributed Query Processing, various Response Time Models. Then, the chapter touches upon

and explicates other Query Execution techniques before moving on to investigating a Query

Federation system of data processing. Briefly discussed Adaptive Query Operators.

Subsequently, we discussed Ontology-Based Data Integration and Query Processing Systems,

such as ANAPSID, ADAERIS, SYMMETRIC INDEX HASH JOIN, SPLENDID, SemWIQ,

74

DARQ. After briefly specifying the challenges and limitations of this study, the chapter then

summarises what has been discussed so far.

75

 Chapter 3

3. Research Methodology: Design

Science Research

3.1 Introduction

This research is exalted through its methodology- the core processor of a developed system.

The methodology that fuels the proposed framework have been highlighted in this chapter. The

researcher uses analytical and constructive analogies to create a system founded on authentic

and solid proof. The constructive style generally requires a form of validation that does not

need to be as empirically supported as other types of research (including explanatory research).

However, despite their unfounded nature, constructive methodologies must be looked at from

a goal-oriented perspective. The methodology used by the author of the research to achieve

them have been suggested in this chapter. This research developed the framework for accessing

distributed RDF (Resource Description Framework) and developing a test environment that

measures the performance and accuracy of the proposed framework for processing the

distributed SPARQL queries. Thus, Design Science Research methodology, a combination of

analytical and constructive methodologies, has been used, which is consists of the five stages:

Awareness of problem, Suggestions, Development, Evaluation and Conclusion,

In this chapter, an analysis of the research design and methodology is presented. The following

section presents the research paradigm employed in the current study and then describes the

research methodology and the theoretical framework. The quantitative and qualitative

approaches applied in different chosen research methodology stages. Design Science Research

Methodology constitutes two substances, the "Design Science" and "Research Methodology",

76

to better comprehend this principle and further relate them to Information Systems and

Computer Science research as a methodology. Before explaining what appropriate literature is

saying about Design Science Research Methodology in the Computer Science and the

Information Systems research study, we need to comprehend these substance words. Firstly,

the author looks at some definitions and a short description of "Design Science" and "Research

Methodology". Design Science is developed in 1957 by R. Buckminster Fuller and is viewed

as an organized type of designing and is interested in an understanding acquisition that connects

to styles and their activity. Design Science emphasizes systematic, testable and communicable

techniques (Carstensen and Bernhard, 2018). Design Science is also seen as an outcome-based

method that offers a specific guide for assessing and versioning a task. The design science as a

paradigm has its root in engineering and science of the artefact, its essentially on resolving the

problem through imaginative innovations which specify the concepts, practices, technical

abilities, and products in which analysis, style, implementation, and details system usage which

can be efficiently and effectively reached

3.2 Research Paradigm

Before choosing a proper research methodology, the author picks a suitable paradigm for the

current study. The research paradigm that a scientist selects to follow influences each research

action, from the decision of the research study issue to be investigated to information analysis

and analysis. A research paradigm can be characterised as an 'essential set of presumptions or

benefits that direct a research study procedure. In social sciences, there is a series of paradigms

that reveal variations in their underpinning philosophical hypotheses. For that reason, before a

researcher defines a suitable research paradigm, it is essential to study its philosophical

presumptions and clarify that it is suitable for his/her research. So far, there are three primary

philosophical presumptions: methodology, epistemology, and ontology. Methodology refers to

research methods or methods utilized in order to acquire knowledge. Epistemology explains

77

the type of relationship between the knower and what can be understood. Lastly, ontology

suggests the type of truth and what can be known about it. The author provides the paradigm

applied in the current research study and justifies why it is followed in the subsequent

paragraph.

3.3 Research Methodology

The author used the Design Science Research methodology, an outcome-based information

technology research methodology that provides assessment and version guidelines within

research projects. Design science research concentrates on the advancement and performance

of (designed) artefacts with the explicit intention of enhancing the functional performance of

the artefact. Design science research study is usually applied to classifications of artefacts,

algorithms, computer interfaces, design methodologies, and languages. Its application is most

noteworthy in the Engineering and Computer Science disciplines, though it is not limited to

these and can be discovered in many disciplines and fields. In design science research study or

constructive research, academic research objectives are more practical than a descriptive

science research study (Carstensen and Bernhard, 2018).. A research study in these disciplines

can be seen as a quest for understanding and improving performance. Such prominent research

institutions as MIT's Media Lab, Stanford's Centre for Design Research, Carnegie-Mellon's

Software Engineering Institute, Xerox's PARC and Brunel's Organization and System Design

Centre use the Design Science Research approach. The primary objective of design science

research is to establish knowledge that professionals can create for their field problems.

This objective can be compared to the 'explanatory sciences', like the natural sciences and

sociology, to develop understanding to describe, explain and anticipate. The primary

function of design science research is to understand a problem domain by structure and

application of a created artefact. Design Science Research (DSR) develops and evaluate IT

artefact planned to fix the determined organizational issues. Design Science Research (DSR)

78

has been seen to make up the third kind of science, "Artificial", in addition to the natural

sciences and the human sciences. The Design Science Research Methodology is a new

Information Systems and Computer Science technique because of its fast growth in the

discipline. Design Science Research Methodology basic reasoning of discovery is deductive

because an unsolved issue is taking and tries to find justificatory knowledge which assists in

solving the issue. Design Science Research Methodology (DSR) is seen as the opposite of IS

research study cycle that develops, evaluates information Technology artefacts intended to

solve problems recognized in an organization. In IS design science, research represents the

essential elements of the Information System (IS) research study landscape. The Design

Science Research study contribution in Information Systems is a step in how it is applied

to organization requirements in a proper environment. It adds to the content of the knowledge

base for more research to solve an existing problem (Carstensen and Bernhard, 2018).

3.4 A Design Science Research Process Model

In this section, a design of the primary procedure followed by a design science

research study in its multiplicity of as-practised variations is explained. This model is an

adaptation of a computable design process design developed by Takeda et al. Even (Carstensen

and Bernhard, 2018). Though the different phases in a design process and a design science

research procedure are comparable, the activities carried out within these phases

are substantially different. Likewise, what makes the Design Science Research study process

model different from the corresponding design process design. The standard design science

research phases continue as follows:

79

Table 3.1 - Design Science Research Process Model

3.4.1 Awareness of Problem/Objective:

This section of the Design Research Methodology describes the goal of this research

and the research problems. The objectives of this research, discussed in section 1.2, is to design

the framework that can access a distributed RDF (Resource Description Framework) by

encouraging developing a test environment. The test environment, chapter 6, is designed to

supply the research with the appropriate resources to measure the performance and accuracy

of the proposed framework that assists in processing the distributed SPARQL queries. Thus,

Knowledge Process Outputs

Flows Steps

 Awareness of
 Problem -Chapter 1,2

 Suggestion –Chapter 4

 Circumscription

 Development – Chapter 5 Framework Testing

 Evaluation – Chapter 6 Performance Measures

 Design Science

 Knowledge

 Conclusion – Chapter 7 Results

Knowledge

Contribution

Needs

Design / Models

80

the research problem discussed in chapter 1 is used to enforce an innovative technology through

which a user can index and compile RDF data from various sources for examination and

analysis. In turn, these results are thoroughly evaluated in chapter 7 and utilized to compare

the proposed framework with an existing framework that determines the success of this thesis.

By taking into consideration all the factors at stake in congruency with this research, the author

attempts to prove the following hypothesis, in chapter 4, through the track of this thesis:

“Formalising the process of Semantic Querying through the algebraic conversion and the sub-

querying of the SPARQL query language have a positive effect on the speed and accuracy of

accessing data from across distributed data sets in the Resource Description Framework

(RDF).” Storing and indexing Semantic data under a familiar domain is a significant

assumption. This aspect of storage can intervene in the correct assessment and interference of

data and must be carefully examined to determine the standard of research.

Thus, the semantic web search should address the different lexical, semantically restricted and

structural issues in Ontology Development to transmit efficient research that is not restricted

by advancing the given drawbacks.

In chapter 2 author explained the futuristic approach employed to query repositories of RDF

data within this research. At the same time, it takes a step back from conventional viewpoints,

tool, techniques, and systems that have previously contributed to accessing distributed RDF

data. Instead, it tests new theories that may bring in results in their more advanced form. To

better understand the current study by reviewing the broad research that has already been done

in RDF data source integration. It precisely talks about the types and approaches of data

integration. The chapter touches upon and explicates other Query Execution techniques before

moving on to investigating a Query Federation system of data processing and then briefly

discussing what Adaptive Query Operators require. Subsequently, chapter 2 explores deep into

81

Ontology-Based Data Integration and Query Processing Systems, such as ANAPSID,

ADAERIS, SYMMETRIC INDEX HASH JOIN, SPLENDID, SemWIQ, DARQ.

3.4.2 Suggestion:

 This section of the Design Research Methodology presents the suggestions required to

solve the problems identified in the earlier stage (Carstensen and Bernhard, 2018).. The

suggestion is an innovative action where the proposed design is developed. Chapter 4 proposes

the methods, technologies, and elements to achieve the required framework. Stage 2,

suggestions, introduces the framework, operators involved in developing the system and how

each of these elements combines and complement each other to achieve the common goal of

validating the research hypothesis. Chapter 4 proposes the conceptual framework, which

presents the query execution process by gaining access to the data within distributed RDF sets

across a database. This chapter also presents the elements like the semantic algebra involved

in converting the traditional query language. Chapter 4 also elaborates the concepts included

in the selection, projection, joins specialisation, and generalisation operators. The suggested

algorithms, in chapter 4, include the RDF indexing algorithm, the converting main SPARQL

query into the sub-queries algorithm and merging the results algorithm. These three algorithms

work collectively to start and end to facilitate the developed query processing system.

3.4.3 Development:

The developed design is implemented and tested in this stage to check the accuracy of

the system (Carstensen and Bernhard, 2018). The methods for proposed algorithms

implementation vary depending on the framework to be created. Chapter 5 demonstrates the

implementation and testing of the framework that index the RDF data into the central

repository. This includes discussing how any SPARQL query can be converted into its

representative algebraic expression and be separated into directional sub queries. It holds and

82

supplies all information about a case study applied for the comparison: Museum ontology,

which is used to demonstrate all the stages of the proposed framework. This includes

implementing and details how converting SPARQL query into sub-queries can help fetch and

combine results. To implement the framework author used the apache Jena framework. It

provides a programmatic environment for RDF, RDFS, OWL, and SPARQL and includes a

rule-based inference engine Apache Jena framework.

Apache Jena is an open-source Semantic Web framework for Java. It provides an API

to extract data from and write RDF graphs. The graphs are represented as an abstract "model".

A model can be sourced with data from files, databases, URLs, or a combination of these. A

model can also be queried through SPARQL. Jena framework is used to build semantic web

and linked data applications. Chapter 5 clarifies how to create Resource Description Framework

(RDF) data with Jena and query the data (running SPARQL queries). In chapter 5 author tested

all the data by using unit testing. Data of museum ontology is tested and evaluated through

different phases. It tests all how the complete developed and processed system works. This

chapter has done different tests, like a select test, join the test, outer join test, generalization

test, and algorithm testing. The tested system uses the index mechanism to store all participated

RDFs data sets. Tests showed that all the developed system units worked as expected and no

errors during the testing of all units as a whole.

3.4.4 Evaluation:

 This section of the Design Research Methodology presents the evaluation of the

implemented framework through comparison with existing similar systems (Carstensen and

Bernhard, 2018). In chapter 6, the author evaluated the system's performance and accuracy

compared to other similar systems. All chosen systems under this evaluation have implemented

the triple pattern for the SPARQL endpoints, which bears similarity with our proposed system.

Functionalities of this system prevent the user from starting the URL to fetch data from

83

distributed resources instead of overwhelming network traffic. This chapter assessed the

proposed framework's outcomes and execution with other specific frameworks that handle

distributed SPARQL queries. This undertaking aims to show that the proposed framework can

productively deal with distributed queries on distributed RDF stores. Evaluation of the existing

framework with our developed framework exhibited that the proposed framework handles the

distributed SPARQL queries adequately. The author chose FedX, ANAPSID and ADERIS

systems to compare with our developed framework and presented the outcomes in a graphical

format. Different distributed SPARQL queries have been tested against the developed

framework to evaluate the systems

3.4.5 Conclusion:

This last phase of the Design Research Methodology concludes all research and discussion

about how it fits the research objectives (Carstensen and Bernhard, 2018). In chapter 7, the

author presented the contribution that specifically addresses the research problems. One of the

challenges faced in this research was to extract distributed ontology through SPARQL.

Retrieving data effectively from distributed RDF data sources is time-intensive. An optimised

and proper structure was required because SPARQL queries are sent to the distributed end to

retrieve data. After examining the existing system, it is apparent that they are looking to extract

data from distributed RDF data sources directly, which can be efficient for a few distributed

data sets. However, these systems do not work as efficiently if we require data from many

distributed sources. After evaluating the existing system, the author concluded that these

systems work well with limited RDF data sources. Chapter 7 concluded that our approach is

better than other frameworks, e.g., converting the main SPARQL query into algebraic

expression before extracting triples and variables information to store them inside the cache.

The author discussed the limitation of this research as a developed framework worked very

84

well on the homogeneous environment and recommended that research be done in the

heterogeneous environment where data can have different formats.

3.5 Chapter Summary:

 Chapter 3 ends on a note of the chosen research methodology, Design Science

Research Methodology. This chapter has discussed the Design Science Research process’s

model, where each phase of this process model has been explained. In the first phase, awareness

of the problem is a starting point of this research, where research problems have been discussed,

and chapter 1,2 belongs to this phase. Phase 2 of the research process model, suggestions

contains information about the development of the proposed framework. Chap ter 4 hold all

information about this framework where all semantic algebraic and algorithms have been

discussed. Chapter 5 belongs to the third phase, Development/Testing, of this process model,

where the designed framework has been developed and tested to prove the accuracy of the

proposed algorithms. The next phase of this research methodology is Evaluation. Chapter 6

presented the evaluation process where a comparison of the developed/tested framework with

existing frameworks has been discussed, determining the success of this research. The

conclusion is the last phase of the chosen research process model. The author presented the

conclusion in chapter 7, concluding that the proposed framework is better than other

frameworks, e.g., converting the main SPARQL query into algebraic expression before

extracting triples and variables information store them inside the cache. The chapter also

discussed the limitation of this research and recommended that research be done in a

heterogeneous environment where data can have different formats.

85

 Chapter 4

4. Conceptual Framework of Querying

Distributed RDF

4.1 Introduction

This chapter proposes the authors' methods, technologies, and elements to achieve the desired

outcome. Not only does Stage 2 introduce to us the framework and operators involved in

developing the system, but it also shows us how each of these elements combine s and

complement each other to achieve the common goal of validating the research hypothesis. This

chapter, thus, proposes the conceptual framework upon which the research methodology

functions to help in the query execution process by gaining access to the data existing within

distributed RDF sets across a database. The methodology to be used also involves elements

significant to the developed system. This chapter also introduces us to such elements as the

semantic algebra involved in converting a traditional query language. Chapter 4 also elaborates

upon the concepts included in the selection, projection, joins, specialisation and generalisation

operators. These operators are usually in assistance during the process of processing and

converting a query. After applying these operators, the system converts a query into its basic

algebraic expression. Accordingly, this chapter proposes the algorithms behind the conceptual

framework. The algorithms substantiated in this chapter include the procedural RDF indexing

algorithm, converting the main SPARQL query into the sub-queries algorithm, and joining the

results algorithm. These three algorithms work collectively to start and end to facilitate the

developed query processing system.

86

4.2 Conceptual Framework

The conceptual framework used by the author of the research is generally based on a query

processing language known as SPARQL. The W3C usually suggests the SPARQL to access

RDF components, which is incidentally the objective that the researchers aim to obtain as these

elements are essential for enabling the querying of data sets. The results about the main

SPARQL query are consecutively provided in an RDF graph format, which requires another

translation algorithm. To summarize, this query mechanism system proposed by the researcher

for development follows the given primary stages:

1. To define the Semantic Algebra of the query.

2. To create an RDF index.

3. To access distributed RDF stores using SPARQL’s subqueries generated from the

single SPARQL query.

4. To create new RDF data after fetching and linking information from distributed sources.

This query system does not aim only to produce single query results. Instead, the researchers

propose a model that fetches deeply rooted, meaningful and linked information from RDF

sources that are distributed across the database. This can thoroughly evaluate and answer a

query. In order to process the objective based on reality, the propositioned framework fulfils

the agenda by converting the single main query into manageable sub queries that succeed in

retrieving the information they need. The fundamental pattern of RDF information executes

this strategy of query processing. A given RDF set uses a relevant <Subject, Object, Predicate>

tuple model to duplicate the different parts. For instance, the subject is portrayed by S, and a

given subject has a property P, which holds the value defined through O. The given Subject

and Predicate of a sentence are described through URIs. An Object O can relatively go under

the URI classification or exist as a literal. This strategy thereby acts as a straightforward and

straightforward way of assessing information and expressing it in readable form, thereby

87

achieving query handling optimization of the RDF store. Figure 4.1 is given to portray an

accurate representation of the researchers’ technique and the design of their model. This

segment outlines and depict the significance of utilizing the query analysis process to retrieve

RDF data in a distributed atmosphere, which can be alternatively translated as the primary

objective or goal that the researchers sought to accomplish. The principal segment makes up

the heart of our SPARQL query structure. This structure is represented in the form of a

centralised storage strategy. In this storage space, the indexing of RDF triples is carried out.

RDF triples are indexed after fetching the required information, after which the centralised

processing system links and communicates with distributed sources to extract information.

The fundamental function of this centralized processing system within the proposed framework

is to investigate or analyse a given query in the form of broken and small chunks. By dividing

a query into smaller chunks, the processing system directs these queries into remote areas.

Information is returned to the central repository, where it is correspondingly addressed for

assessment. The researchers then create a client interface that takes input as a string. This input

then is processed on a centralised method via an HTTP URI. The author of the research then

arranges indexes. These indexes hold essential data, which is essential and is used to form

associations with RDF stores later. A centralized process performs the entire procedure. The

framework is thus, represented through the stages. In summary, all the participated RDF data

firstly is indexed in a centralized server. Following this process, the main SPARQL query is

converted into its relational algebraic expression. The Subject, Object and Predicate parts are

stored into a freshly created temporary cache. This cache identif ies the relevant data and

information by searching the stored RDF indexes. Subqueries are created and directed to the

RDF store to get the required information. Finally, the results returned through the subqueries

combine and form an output to display to the main SPARQL query.

88

Figure 4.1 - Proposed Framework.

4.3 Semantic Algebra

Semantic algebra is also known as the symbolic mathematical language that is used to represent

semantic data. In simpler terms, semantic algebra functions to break down semantic

information into the most basic, raw form of mathematical data that can make inference

accurately by a computerized system (XU and HONG, 2012). Semantic algebra essentially

helps in detailing systems down to a microscopic level. This is precisely why the technology

of semantic algebra plays such a significant role in the research. The application of semantic

algebra converts a SPARQL query into its algebraic notations. This process is usually done by

using semantic operators, which this section discusses with an explanation and examples.

89

4.3.1 Operators

Semantic operators refer to operators that perform their tasks based on the semantic context of

information. This implies that semantic operators can manipulate a given text and convert it

into its semantic algebraic notation. For this research, semantic operators have been used to

convert SPARQL queries into their algebraic forms. The operators used in the research are

discussed below.

4.3.1.1 Project:

𝝅 Sign is used for the project operator. This operator takes the Subject (S), Object (O), and

Predicate (P) as inputs and implements them into a source, usually a Schema.

Syntax:

𝝅
[𝑺?
𝑶?

]
(𝒔𝒐𝒖𝒓𝒄𝒆)

As explained previously, an RDF triple is made up of three elements: theSubject, Predicate

and Object. In this case, the Project operator extracts information relating to the subject and

the object from the source, a schema, and collectively bundles the three triple elements by

source, replacing them with a single schema name.

4.3.1.2 Select:

𝝈 sign is used to indicate the Select operator.

Syntax:

𝝈[𝒍𝒐𝒈𝒊𝒄](𝒔𝒐𝒖𝒓𝒄𝒆)

The select operator selects and brings all required sources or nodes that meet the condition

imposed by the SPARQL query. Arithmetic, Comparison or Boolean operators can be utilized

90

along with constants or strings inside the, after which they are source replaced with a schema

name.

4.3.1.3 Join

The ⋈ Sign is used to represent a join operator.

Syntax:

𝜋[?𝑋 ,?𝑌] 𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

⋈

𝜋[?𝑋 ,?𝑍]𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

As identified by its name, the join operator joins or combines triples from single or multiple

source points according to the conditions requested to be met by the main SPARQL query.

The researchers employ the operators, Project and Select, in their syntax for query processing

into algebraic notation. The Project operator considers two parameters, “?X “and “?Y”. These

parameters represent the different elements evaluated by the operator. As a triple consists of

three aspects: “theSubject”, Predicate, and Object, the operator uses the parameters “?X” to

“representthesubject” and“?Y” to represent the object accordingly. The Select operator is used

for a condition requiring arithmetic, Comparison, or Boolean operators to be utilized along

with constants or strings. These constants or strings are then source replaced with the schema

name.

4.3.1.4 Generalization:

Generalization involves extracting common characteristics from one or more classes and

combining them into a generalized superclass. It is used to establish hierarchies of classes and

subclasses in ascending order, up to the most defined level. For this research, however,

91

generalization is only applied to reach Level 1 in the hierarchy. The syntax for the

generalization operator is as follows.

𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒐𝒖𝒓𝒄𝒆)

As established, any RDF triple at a given point consists of three essential elements, Subject,

Predicate and Object. Note that the Subject and object elements always represent classes or

subclasses within a system. The Generalization operator is then used upon these elements to

extract the parent class of a mentioned class (?class) up to the first level in the hierarchy, i.e.

Level 1. The source is then replaced with a schema.

4.3.1.5 Specialization:

The existing Specialization operator is the complete opposite of what constitutes

Generalization. Where generalization was used in the research to retain the parent class from a

subclass, the specialization operator is utilized in creating new subclasses from an existing

class. In this research, the authors have gone from the bottom up to Level 1.

Syntax:

𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒄𝒉𝒆𝒎𝒂)

RDF triple has only three elements, namely: the Subject, Predicate and Object. Consecutively,

the subject and object elements represent classes or subclasses within an RDF database . The

Specialization operator is then used to dispense the Subject and Object to extract child classes

up to 1 level of a mentioned class (?class). Finally, the source is replaced with the schema

name, as with all the operators previously established.

4.4 Algorithms

This section of the research examines and elaborates on the proposed framework algorithms

and how these algorithms work in the conceptualized framework.

92

An algorithm is a particular technique for solving a well-defined computational issue. The

advancement and analysis of algorithms are fundamental to all aspects of computer science:

expert system, databases, graphics, networking, operating systems and security. Algorithm

creation is more than simply programming. It needs to understand the alternatives available for

solving a computational issue, consisting of the hardware, networking, programming language,

and efficiency restrictions that accompany any specific solution. It also requires understanding

what it indicates for an algorithm to be "correct" because it fully and effectively fixes the issue

at hand. Computational intricacy is a continuum in that some algorithms require linear time

(that is, the time necessary boosts directly with the number of items or nodes in the list, chart,

or network being processed). In contrast, others require quadratic or perhaps exponential time

to complete (that is, the time required boosts with the number of items squared o r with the

exponential of that number). At the back of this continuum lie the muddy seas of severe

problems-- those whose options can not be effectively executed. Computer system researchers

seek to find heuristic algorithms that can practically solve the issue and run in a sensible

quantity of time (Rahim et al., 2017). The operational processes of every utilized algorithm

have been evaluated in a step-by-step measure for maximum comprehension. The algorithms

involved are used for converting queries and searching them in distributed ontologies. They

are as follows.

93

4.4.1 SPARQL Query into Algebraic expression

Through this algorithm, the author initiated converting the main SPARQL query into algebraic

expressions for computerized comprehension. In the following, Table 4.1, the author initialises

String and a list of models. The String variable holds the main SPARQL query and a list of the

model used for holding the initialised models. Next, Function, transformToAlgebricForm, has

been created, which receives the two parameters, initialised String and list of models. Next, a given

SPARQL query has been created using the QueryFactory’s method. After that pattern has been

established for the SPARQL query, and a new object, Op, has been created to compile the SPARQL

query and optimise the algebra expression. Next, declared a variable varMap as HashMap and

allocated memory to process the SPARQL query into an algebraic expression. In the last, created

n new object NodeTransform and called the function transformToAlgebricForm, which convert

SPARQL query into semantic algebraic’s expression. The algorithm steps are evident in table

4.1.

Algorithm 1.Translating SPARQL query into Algebraic expression

Step1. Initialise String for SPARQL query

Step2. Initialise list of models

Step3. Create Function transformToAlgebricForm, which receive queryString and

model

Step4. Create Query of given SPARQL query string using create the method of

QueryFactory.

Step5. Create the pattern element of created Query

Step6. Create an Op object to compile the query.

Step7. Optimize the Algebra expression

94

Step8. Initialize variable varMap as HashMap and allocate memory to Vars and put

those into varMap

Step9. Create an object of NodeTransform with varMap

Step10. Call Function transformToAlgebricForm to get query into semantic algebraic form

Table 4.1: Algorithm 1 - SPARQL query into Algebraic expression

4.4.2 Converting main SPARQL query into subqueries

The author converted the main SPARQL query into sub-queries directed to various ontologies

to retrieve information in this algorithm. Each subquery was fired against its subsequent data

set in order to identify and capture the information. The author creates a function

generateSubQry which receive Linked Hash Map of triplePath and set of Strings containing

required models. Next, initialised variable, parentModels, as a set of Model and assigned

keySet of MaodelMap. After that, a new variable modelTripleMap has been declared with key

Model and allocated value as a LinkedHashSet of TriplePath. In the end, For loop has been

used to process the parentModels to generate the subqueries. All the algorithm steps are evident

in table 4.2.

Algorithm 2. Converting main SPARQL query into subqueries

Step1. Create function generateSubQry which receive Linked Hash Map of triplePath and

set of Strings containing required model names

Step2. Declare variable parentModels as Set of Model and assign keySet of ModelMap

Step3. Declare variable modelTripleMap with key Model and value as LinkedHashSet of

TriplePath

95

Step4. Declare variable triplesForModel as LinkedHashSet<TriplePath>

Step5 Begin For loop

get the key of entry into tripleName

get the value of entry into a set of String

if modelSet contains modelname

Add triplename to triplesForModel

end if

Step6. Save the model and triplesForModel to map modelTripleMap

Step7. End of for

Table 4.2: Algorithm ̀ 2 SPARQL query into Algebraic expression

4.4.3 Execution of SPARQL queries in distributed ontologies

Through this algorithm, the researchers executed the converted sub-queries. After converting

the main SPARQL query into sub-queries, each subquery was fired against required data sets

to capture information. The author creates a function runqueryonModel, which takes

modelTripleMap and modelcollection as receiving parameters. Next, declared a model as a

parentmodel and initialised a variable, Map<String, String>subQryDetails which holds the

sub-queries details. The author used the Loop to process the parentModel to identify the

required distributed sources and sent each sub-query to all identified resources to get the data.

All the steps that make up this algorithm are displayed in Table 4.3.

96

Algorithm 3 - Execution of SPARQL queries in distributed ontologies

Step1. Create function runqueryonModel, which takes modelTripleMap and

modelcollection as input

Step2. Declare parentmodel

Step3. Declare variable Map<String, String>subQryDetails

Step4. Begin loop // for each model existingModel from parentModel

Step5. Get the model name of existingModel and prefix of ExistingModel

Step6. Execute the query using queryExecution engine to receive the resultset of

an executed query

Step7. if ResultSet has the next element,

add model name and query to subQryDetails

split the model name with “.” and store it into array fname

create an object of file with “subquery” appended to fname

Step8. End if

Step9 End Loop

Step10 End function

Table 4.3: Algorithm 3 Execution of SPARQL queries in distributed Ontologies

97

4.4.4 Combining results

This algorithm is formulated and utilized once every individual subquery has been fired against

data sets to extract information. After this step, it is a vast requirement that the results returned

by the sub queries are merged and produced into a single result to display to the main SPARQL

query, which is essentially what this algorithm represents. The author creates a function

runQueryonModels which takes model collection and String, querFinal, as receiving

parameters. Next created a function, createReadableIndex, and initialised Map variable, which

holds the details of the sub-queries results. Next, started the For Loop, which processes each

model from the parentModel and combines all sub-queries result into one result. All the steps

of the algorithm are entailed below in Table 4.4.

Algorithm 4 - Combining results

Step 1 Create function runQueryonModels(List<Model>modelCollection, String

queryFinal)

Step 2 get substring of query with index of select and last index

Step 3 Declare Function ReadableIndex.createReadableIndex(FileFilter)

Step 4 Declare variable Map<String, String>subQryDetails

Map<String, String>subQryDetails = new HashMap<>();

Step 5 Begin For loop –for each model existingModel from parentModel

Step 5.1. : get model name of existingModel

Step 5.2. :get the prefix of ExistingModel

Step 5.3. : Execute the query using queryExecution engine

Step 5.4. : get the resultset of an executed query

Step 5.5. : if ResultSet has next element

98

step 5.5.1. : add model name and query to subQryDetails and return it

step 5.5.2. : split the model name with “.” and store it into array fname

step 5.5.3. : create an object of file with “subquery” appended to fname

step 5.5.4. : create fileoutputstream of above-mentioned file

step 5.5.5. : write above result to mentioned file usingResultSetFormatter

Step 5.6:end if

Step 6. Step close fileoutputstream and queryEngine.

Step 7.End loop.

Step 8. get Map<String, String>subQryDetailsi.e-list of subqueries

Step 9. combine subqueries with string append operation

Step 10.get the list of models

Step 11 iterate over each model and execute the appended query using query engine

Step 12 create an object of file writer and write query results to CSV file.

Table 4.4: Algorithm 4. Combining results

4.5 Chapter Summary

Chapter 4 concludes after an intensive discussion about various aspects involved in preparing

the research for implementation. This chapter is sectioned into different parts, each of which

explains the various concepts combined to give the reader an insight into how different parts

of a database overlay to execute an almost negligible process that plays a significant role in

their everyday internet life. The chapter explains the conceptual framework that allows the

methodology to access data from distributed RDF sets and consequently satisfy the main

objective of the research. It also discusses semantic algebra and elaborates upon how semantic

algebra is carried out through its underlying operators. The chapter also discussed the concepts

and working mechanisms involved in selecting projection, joining, specialization, and

99

generalization operators. Following the description of the operators, the chapter proceeds to

inform the reader about the algorithms that the researchers fixed to execute conversions and

translations within their proposed framework. As discussed in Section 4.4, include the RDF

index algorithm, converting the main SPARQL query into the sub-queries algorithm and

joining the results algorithm. Chapter 4, thus, lays down the primary methodology in

excruciating detail and gears the reader up for the testing and evaluation of these strategies.

The testing of the proposed framework, as expressed in Chapter 5, is to test the viability of the

methodology.

100

 Chapter 5

5. Framework Testing

5.1 Introduction:

In this chapter designed framework is tested by unit testing and functional testing techniques.

Museum ontology is used to test and evaluate the developed system. The testing strategy used

in this chapter to test the algorithms demonstrates how the complete developed and processed

system works. In this chapter, different types of tests have been performed like algebraic

operator’s test (e.g., select, join, outer join, generalization, and specialisation operators test)

and test the proposed algorithm. Tests showed that all developed system units worked as

expected, and no errors found during the testing of all phases of the tested framework. The

purpose behind the test is that the developed system should function and fulfil all the objectives

specified in chapter 1 and perform what it is expected to do. Generally, testing has been performed

throughout the development process to determine whether the developed system fulfils the specified

requirements. Testing has been performed by running the whole functionality of the system. This

ensures that the developed system fulfils the requirements. It can also be determined to show that the

developed software satisfies its purpose when positioned in a specific environment. This process replies

to the question, “Are we developing the right product or not?”. With this unit testing technique, testing

has become very much easier because each part or unit of the developed system has been tested first,

and then the whole program has been tested. In unit testing, the author examined each phase of the

developed system individually in a sequence.

The Apache Jena framework has been used for accessing the data from distributed RDF

(Resource Descriptive Framework) data sets. The RDF is an elementary data model. It

implements the semantic algebraic expressions, data dictionary, cache, conversion of main

SPARQL query into sub-queries, and merging the results. Algebraic semantics involves the

101

algebraic specification of data and language constructs. The essential idea of the algebraic

approach to semantics is to call the various kinds of objects and , therefore, the objects'

operations and use algebraic axioms to explain their characteristic properties. An ontology

model is an extension of the Jena RDF model, providing extra capabilities for handling

ontologies.

Moreover, Jena provides an open platform to use both built-in and third-party inference

engines. Based on RDFS and OWL ontology languages, Inference API provides “reasoners”

that could be registered to the Model and produce additional resources on top of the asserted

statements. Different operations have been performed on the RDF models.

Furthermore, it also discusses the methodology used behind the developed museum’s ontology

which is used as a case study. We also used the Simplified Agile Methodology

(SAMOD) methodology for Museum’s ontology Development. CRM (Conceptual Reference

Model) has been used to develop the museum’s ontology , an ontology model for the social

heritage domain, developed by the "COM/CIDOC" Standards Group. All these different

techniques and methodologies are used to output the result. The primary research is on the

museum and creation of museum ontology utilizing Protégé, a functional ontology for creating

and testing the distributed query methods. Protégé supports different platforms, the extension

of different unique interfaces has linked the "open knowledge base connectivity" (OKBC)

model. It has the power to work as RDBMS, RDF, and XML. Many research groups and

individuals are part of this tool. By using these different techniques, gathered data is divided

into classes and subclasses by their properties. This chapter presents the process of the

implementation of the proposed framework. It holds and supplies all information about a case

study that is applied for comparison: Museum, which is used to demonstrate all the stages of

the proposed framework. The chapter includes the implementation and details about how to

convert SPARQL queries into sub-queries and combining results. Moreover, here data

102

dictionary has been used to store the data. Data Dictionary reference is utilized as a focal

territory as it stores all ordered data from all RDF data sources. Data dictionary reference holds

data about the subject, object, predicate, property, sub-property, classes, and subclasses.

5.2 Comparison of Unit and Functional Testing

The author used the unit testing and functional testing technique as the proposed framework have

different individual units which work together. Other testing techniques exist as well, e.g., functional

testing, integration testing, system testing, regression testing, acceptance testing, component testing,

performance testing. Before selecting testing techniques, the author compared chosen testing strategies

with other testing techniques as every testing method has its advantages and disadvantages. However,

most software testing unit testing is used because this type of testing is beneficial in the debugging

process of the software (Sam, 2019). The main difference between unit testing and functional testing is

that functional testing is conducted based on the client's point of view, and unit testing is based on the

programmer's point of view. Therefore, unit testing is more helpful for programmers to understand the

software's logic compared to functional testing. The major difference between unit testing

and integration testing is that integration testing includes testing multiple parts of the software with a

direct effect on each other, and in the case of unit testing, every unit of software is tested without any

interruption in the working of any other unit under testing. This shows that unit testing is far more

effective in debugging and modification of software than integration testing. In comparing unit testing

with system testing, unit testing conducts testing on small modules or units of the software (Divyani

Shivkumar Taley, 2020). In contrast, in the case of system testing, the software is tested as a whole to

examine that it is functioning correctly or not. The main difference between unit and regression

testing is that unit testing performs tests on small program units.

In contrast, regression testing is the combination of both integration testing and unit testing. Regression

testing is more costly than unit testing, as it is a collection of both unit and integration testing. The

significant deviation between unit testing and acceptance testing is that acceptance testing determines

whether the software fulfils all the requirements of the user or not. Acceptance testing is more tiring

103

than unit testing. We are now comparing unit testing with automated unit testing (Mohammad

Shahabuddin and Prasanth, 2016). Automated is almost like unit testing but functions without the

participation of human beings. Unit testing is better than automated unit testing because it involves the

participation of human beings and is also cost-effective. The main difference between unit testing

and component testing is that every individual modules or component’s functionality is tested in

component testing. All the parts are replaced by the natural objects of all the classes. Component

testing is more complex than unit testing. Now we are coming to the comparison of unit testing and end

to end testing. End to end testing is different from unit testing. In this testing, the software is tested in a

single piece as if the user is using that software. This method is helpful when a programmer wants to

observe the working of software from the user’s end. However, in end-to-end testing, debugging is very

difficult and complex, whereas, in unit testing, errors and bugs can be located in no time (Anwar and

Kar, 2019). Now a significant deviation between unit testing and performance testing. Performance

testing is used when the developers want to analyze how the software reacts under high load. This

testing is usually used to check the sustainability of the software and is nonfunctional. Both unit testing

and performance testing different from each other and have different features. The main difference

between unit testing and smoke testing is that smoke testing includes fast and elementary tests to check

the software's functionality. This type of testing is usually beneficial for newly developed

software. Smoke testing sometimes becomes more expensive than unit testing.

We are now analyzing the differences between unit testing and exploratory testing.

In exploratory testing, the subsequent versions of the software are tested for bugs and errors.

This testing assures that any previous bugs do not occur in the following versions. This testing

is more valuable than unit testing, as it develops creativity and experience in the software

engineers and developers. We are now comparing the unit testing with scripted

testing. Scripted testing is one of the most well-known testing methods. In this type of testing,

the tester writes a script or a path. This script is followed to test the software according to the

specifications written in the script or path (Anwar and Kar, 2019). Besides these characteristics,

104

unit testing is still better than scripted testing because it has a shortcoming that we can only get

the desired result due to the specifications of the script or path. Suppose we compare our chosen

testing technique, unit testing, with modular testing deeply. Both unit testing and modular

testing are almost the same. Besides this, these two methods of software testing have some

differences. Usually, the software engineers of the software conduct unit testing. However, in

the case of modular testing, the tests are conducted by another tester. Unit testing requires less

pricey than modular testing, as no separate tester is required.

5.3 Jena Framework

The author used the Apache Jena framework for a java programming language for developing

semantic web in the form of java libraries. It helped the author to manage the various semantic

components of the semantic web and linked-data application to conform to the standards of the

W3C. Since 2000, Jena is an open-source project developed by researchers at HP Laboratories

in Bristol city in the UK and later became popular in used widely (Jani and Dr. V.M. Chavda,

2011). It was a success to become part of the Apache Software Foundation in November of the

year 2010. The Apache Jena architecture is shown in figure 5.1.

105

Figure 5.1 - Apache Jena framework9 (Jani and Dr. V.M. Chavda, 2011)

Data in the Jena framework is structured in sets of RDF triples called RDF Graph. An RDF

graph is simply a set of triples (S, P, O), where P names a binary predicate over (S, O)

Jena supports several serialization languages like RDF/XML, N3, N-triple and turtle. It also

has an option for memory, file-based or database RDF persistence. Jena architecture provides

different persistent, inference RDF, Ontology, Query and related API’s that could be invoked

using Java programming language and over the web using HTTP and SPARQL query language

(Jani and Dr. V.M. Chavda, 2011).

Ontology API: Jena is based on RDF data structure, and the choice for ontology languages is

restricted to compatibility with RDF. The most straightforward ontology language compatible

with RDF is RDF Schema. (RDFS). Jena is also compatible with the three different OWL

ontology language levels- OWL Lite, OWL DL, OWL Full. Jena Ontology API provides a

language-neutral interface that can use a profile to set specific java classes and properties. For

106

instance, the URI for “ObjectProperty” in DAML (DARPA Agent Markup Language) profile

is daml: ObjectProperty, while OWL is owl: ObjectProperty. The same URI in RDFS is null

as there is no “ObjectProperty” implementation in the RDFS profile. Jena accepts the essential

characteristic of polymorphism at the RDF level by considering that the Java abstraction

(OntClass, Restriction, DatatypeProperty) is just a view or facet of the resource (Jani and Dr.

V.M. Chavda, 2011).

. For example, if we declare a resource #DigitalCamera as an ontology class, a java instance

of OntClass could represent.

 <owl:Classrdf:ID="DigitalCamera">

</owl:Class>

This same resource can be an OWL Restriction that proves no unique mapping between RDF

resources and Java abstraction.

 <owl:Classrdf:ID="DigitalCamera">

<rdf:typeowl:Restriction/>

</owl:Class>

Jena provides as() method to create a new facet on run-time depending on the resource

property. The following example creates a resource (res) and instantiates two facets of the same

resource that shows the flexibility of Jena in managingOntology.

Resource res = myModel.getResource(myNS + "DigitalCamera");

OntClasscls = res.as(OntClass.class);

Restriction rest = cls.as(Restriction.class);

An ontology model is an extension of the Jena RDF model, providing extra capabilities for

handling ontologies. Ontology models are created through the Jena ModelFactory

// create ontology model

107

Model model = ModelFactory.createOntologyModel();

This creates an ontology with the following default settings:

• OWL-Full language

• In-memory storage

• RDF inference (i.e. entailments from sub-class and sub-property)

If the ontology model is for a simple model display, then inferencing is unnecessary , and a

model should be created with no reasoned (OWL_MEM) (Siddiqui and Alam, 2011).

OntModel model = ModelFactory.createOntologyModel(OntModelSpec.OWL_MEM

);

To create an ontology model with a built in or custom specification ModelFactory should be

invoked as follows.

OntModel m = ModelFactory.createOntologyModel(<model spec>);

In OWL a meta-data about the ontology can be set in the ontology using owl:Ontology.

 <owl:Ontologyrdf:about="SpaceKnowledgeManagement">

<rdfs:comment>SpaceManagement Ontology</rdfs:comment>

<rdfs:label>MappingRelational Databases</rdfs:label>

<owl:versionInfo>1.0</owl:versionInfo>

</owl:Ontology>

The resources represented in the Ontology create a taxonomical hierarchy. The relationship

between the different classes, properties, relations, restrictions, axioms create a direct

(asserted) and indirect (inferred) link amongst the Ontology components.

The distinction between the asserted and inferred relationships helps to organise the Ontology

into “facts” and “deductions”. Jena’s listRDFTypes()is one of the methods to list different types

of resources in the Ontology.

// Shows direct relationships only if direct=true,

108

// else shows indirect relationships

listRDFTypes(boolean direct)

Reasoners: Jena provides an open platform to use both built-in and third-party inference

engines. Based on RDFS and OWL ontology languages, Inference API provides “reasoners”

that could be registered to the Model and produce additional resources on top of the asserted

statements. ModelFactory is used to associate reasoners with a Model. The inference is

implemented at the Graph SPI level so the different model interfaces could share the result

(Jani and Dr. V.M. Chavda, 2011). Ontology API provides OntModelS to link reasoners to

models. Jena also provides InfModel, an extension of the Model that provides additional

control over the underlying Graph. Methods like createRDFSModel provide built-in RDFS

inference rules with basic implementation. For different built-in and generic reasoning systems,

Reasoners are required. ReasonerRegistry static class is used to register reasoners dynamically,

ranging from built-in transitive, RDFS, OWL to generic user-defined rule reasoners.

• getOWLReasoner(): prebuilt standard OWL inference reasoner

• getRDFSReasoner(): prebuilt standard RDFS inference reasoner

• getTransitiveReasoner(): prebuilt subclass and subproperty transitive closure reasoner

• Generic User-defined: different forward/backward chaining and hybrid executions

The example below shows an excerpt of a Jena inference implementation using OWL Ontology

Schema, RDF Data and a built-in OWL.

//Read Ontology

Model schema = FileManager.get().loadModel("file:source/mappedSchema.owl");

//Read Data

Model data = FileManager.get().loadModel("file:source/mappedData.rdf");

109

//Get built-in OWL Reasoner

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

//Bind Reasoner to Ontology

reasoner = reasoner.bindSchema(schema);

//Create Model using Reasoner

InfModelinfmodel = ModelFactory.createInfModel(reasoner, data);

A similar Jena implementation below shows an inference program excerpt using user-defined

rule instead of a built in reasoner.

//Read Ontology

Model schema = FileManager.get().loadModel("file:source/mappedSchema.owl");

//Read Data

Model data = FileManager.get().loadModel("file:source/mappedData.rdf");

/* Set User-defined rule*/

String ruleString = [transiveChainSubClassOf: (?xrdfs:subClassOf ?y),(?y

rdfs:subClassOf ?z) -> (?x rdfs:subClassOf ?z)];

//Parse Rule

List rules = Rule.parseRules(ruleString);

//Create User-defined Reasoner

Reasoner reasoner = new GenericRuleReasoner(rules);

//Bind Reasoner to Ontology

reasoner = reasoner.bindSchema(schema);

//Create Model using Reasoner

InfModel inf = ModelFactory.createInfModel(reasoner, data);

110

5.4 Ontology Development Methodology

Museum ontology has been developed, and Simplified Agile Methodology (SAMOD)

methodology has been adopted for Museum’s ontology Development (Appendix A) to test the

developed framework. SAMOD focuses on iterative tests to ensure that the developed ontology

is consistent and matches the requirements. These tests have been performed on this ontology,

and these tests are model tests, data tests and query tests. This methodology is very lightweight,

and it has the following three stages (Abdelghany, Darwish and Hefni, 2019)

• Understanding the requirements

• Merging the Ontology

• Refactoring the main ontology branch

5.5 Ontology Justification - Virtual Museum Exhibition

CRM (Conceptual Reference Model) has been used to industrial museum’s

ontology, an ontology model for the societal legacy sphere, and it is developed by

"COM/CIDOC" Standards Group. The author employed the CIDOC Conceptual Reference

Model (CRM), a theoretical and practical technique for information integration within cultural

heritage. It can help scientists, controllers, and the public check out complex queries regarding

our history across numerous and distributed datasets (Gaitanou and Gergatsoulis, 2012). The

CIDOC CRM achieves that by simply providing meanings and a proper design for explaining

the implicit and specific concepts and relationships employed in cultural heritage

documentation and vital interest for querying and exploring such details. Such designs are also

described as formal ontologies. These formalistic explanations enable the combination of

information from several sources in software and schema-agnostic fashion. It emphasizes

concepts and connections in an object-oriented way of cultural domain. It covers a profound

111

measure of events, antiques and people recognized in the museum domain (Gaitanou and

Gergatsoulis, 2012).

Appendix A represents the distributed historical museum ontology utilizing protégé to test the

distributed environment. This museum case study has been selected and developed for the

demonstration as it provides the flexibility to demonstrate all developed proposed framework’s

operations. Protégé support different platforms; an extension of different unique interfaces has

linked the "open knowledge base connectivity" (OKBC) model. It has the power to work as

RDBMS, RDF and XML. Many research groups and individuals are part of this tool.

5.6 Framework Testing

In this section, the author tested proposed algorithms against different predefined selected

cases.Appendix E presents the screentshots of different phases of testing. We have different

phases in our proposed architecture. In the first phase, we indexed all participated data sets in

a local and centralised server. In phase 2, we converted our main SPARQL query into an

algebraic expression. In phase 3, the local cache holds the information about the subject,

predicate, object, and filters. In phase 4, we identified the required data sets repositories

required to fetch the data with the help of a temporary cache. In Phase 5, we converted our

main SPARQL query into subqueries. In phase 6, we sent each subquery to different data sets

repository, which we identified in the local cache. In phase 7, we combined the sub queries

results and produced the required output. All phases are clear with each case.

Following the list of cases, the author tested against the proposed algorithms.

1. Case 1: Parent class is a child class in another repository

2. Case 2: Child class is a parent class in another repository

3. Case 3: Parent property is a sub Property in another repository

4. Case 4: sub Property is a parent property in another repository

5. Case 5: Subject is an abject in another repository

112

6. Case 6: Object is a subject in another repository

7. Case 7: Repository 1’s property, P1, between subject and an object is a sub Property of

Property, P2, in another repository between Subject 1 of the first repository and Object 2

of another repository

8. Case 8: Property, P2, in the second repository is a sub Property of repository 1’s property,

P1, between repository 2’s subject and repository 1’s object

9. Case 9: Property, P2, in the second repository is a sub Property of repository 1’s property,

P1, between repository 2’s subject and repository 1’s object, and repository 2-s subject is

a subclass of repository 1’s subject

One data dictionary is created after indexing all participated rdf files, which holds the index

information about all rdf files and help locate the appropriate rdf resources and produce inner

queries built on recognised rdf sources.

The data dictionary is used as a central point as it stores all indexed information from all RDF

repositories. Data dictionaries hold information about subject, object, predicate, property,

subProperty, classes and subclasses.

Case 1: Parent class is a child class in another repository.

Query 1: Show all paintings where Artefact’s craft is wood

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 7, is for case 1 and is converted to Algebraic

notions

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?painting ,?Artefacts, ?craft

WHERE {

 ?artefacts rdf:represented-by m:Craft

113

 FILTER {?craft ,''wood"}

 }

Table 5.1 - SPARQL query

Algebraic notions: Table 5.1, SPARQL query, is converted into the following algebraic

expression, table 5.2.

(∏ (?painting ,?artefacts, ?craft)

 (⨝

 (𝝈

 (?artefacts rdf:represented-by m:Craft)

 (?painting rdf:usedMaterial ?material)

 (?craft ,''wood")

)

))

Table 5.2:Algebraic notions

Cache: The cache is used to store information about the subject, object and predicate. For

instance, the following table 5.3 is the example of cache for case 1.

Subject Predicate Object Specializat

ion

Generalizati

on

Conditions

114

?Artefact rdf: represented-

by

?craft

?wood rdf: is-a ?craft (?craft "wood")

Table 5.3: Cache

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories. As we can see in the following cache, table 5.4, a new column,

data source, which is added after identification of required sources

Subject Predicate Object Conditions Special

ization

Generali

zation

Data

Source

?Artefact rdf:

represented-by

?craft Ds 1, Ds 2

?wood rdf: is-a ?craft (?craft

"wood")

 Ds 1, Ds 2

Table 5.4: Identifying sources

Subqueries and merging results: According to identified data sources, subqueries are

generated. From the above table 5.4, we can see that the required subject and object exist

inside the data sources mentioned in the data source column. Each subquery is sent to the

identified data source to get the required data, and then results are combined through the

union. As stated in the data source column, the following subqueries, table 5.5, are generated.

Sub Query for Data Source 1

SELECT ?artefact ?painting ?craft

Sub Query for Data Source 2

SELECT ?artefact ?painting ?craft

115

WHERE {

?artefactrdf:represented-by m:craft

 FILTER {?craft ,wood"}

 }

WHERE {

?artefactrdf:represented-by m:craft

 FILTER {?craft ,wood"}

 }

Table 5.5: subqueries

Case 2: Child class is a parent class in another repository

Query 2: Show parent details of all artists where the artist wrote handwritten

documents.

Firstly, Algebraic notions are produced from the main SPARQL query, and a cache is created

to store Algebraic notions information, which helps name the required RDF files. For instance,

the following SPARQL query, table 5.6, is for case 2 and is converted to Algebraic notions

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Parent, ?father, ?mother ?artist, ?writer, ?HandwrittenDocuments

WHERE {

?father : rdfs:subClassOf :parent.

 ?mother : rdfs:subClassOf :parent.

 ?writer : rdfs:subClassOf :artist.

?artist rdf:hasParents m: ?Parents

 ?writer rdf:writes m: ?HandwrittenDocuments

 }

116

Table 5.6: case 2 SPARQL query

Algebraic notions: Above case 2 SPARQL query is converted into the following algebraic

expression, table 5.7.

(∏ (?Parent, ?artist, ?HandwrittenDocuments)

 (⨝

 (𝝈

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒓𝒆𝒏𝒕)𝟏,)

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒂𝒓𝒕𝒊𝒔𝒕)𝟏,)

 ?artist rdf:hasParents m: ?Parents

 ?writer rdf:writes m: ?HandwrittenDocuments

)

))

Table 5.7: case 2 algebraic notation

Cache: the cache is utilized To store information about the subject, object and predicate. For

instance, the following table 5.8 is the example of cache for case 2.

Subjec

t

Predicate Object Specializatio

n

Generalizati

on

Condition

s

? Artist rdf:

hasParents

? Parents Artist,1:

Parents,1

?Writer rdf: writes ?

HandwrittenDocuments

Table 5.8: case 2 cache

117

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories. As we can see in the following cache, table 5.9, a new column,

data source, is added after identifying required sources.

.Subje

ct

Predicate Object Specializati

on

Generalizati

on

Conditio

ns

DS

?

Artist

rdf:

hasParent

s

? Parents Artist,1:

Parents,1

 Ds 1,

Ds 2

?Write

r

rdf: writes ?

HandwrittenDocumen

ts

 Ds 1,

Ds 2

Table 5.9: case 2 identifying resources

Subqueries and merging results: According to identified data sources, subqueries are

generated from the above table 5.9. We can see that compulsory subject and object exist

inside data sources mentioned in the data source column. Each subquery is sent to the

identified data source to get the required data, and then results are combined through the

union. As stated in the data source column, the following subqueries, table 5.10, are

generated.

Sub Query for Data Source 1

SELECT ?Parent, ?father, ?mother ?artist,

?writer, ?HandwrittenDocuments

Sub Query for Data Source 2

SELECT ?Parent, ?father, ?mother ?artist,

?writer, ?HandwrittenDocuments

118

WHERE {

?father : rdfs:subClassOf :parent.

?mother : rdfs:subClassOf :parent.

?writer : rdfs:subClassOf :artist.

?artistrdf:hasParents m: ?Parents

?writerrdf:writes m:

?HandwrittenDocuments

 }

WHERE {

?father : rdfs:subClassOf :parent.

?mother : rdfs:subClassOf :parent.

?writer : rdfs:subClassOf :artist.

?artistrdf:hasParents m: ?Parents

?writerrdf:writes m: ?HandwrittenDocuments

 }

Table 5.10: case 2 sub-queries and merging results

Case 3: Parent property is a subProperty in another repository

Query 3: Show all museums addresses where the city is London

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 5.11, is for case 3 and is converted to Algebraic

notions

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?museum , ?address ,?city

WHERE {

 ?Museum rdf:hasAddress m:Address

 ?Place rdf: hasCity ?city

 FILTER {city ,''London"}

119

 }

Table 5.11: case 3 SPARQL query

Algebraic notions: Above case 3 SPARQL query is converted into the following algebraic

expression, table 5.12.

(∏?museum , ?address ,?place,?city)

 (⨝

 (𝝈

 (?Museum rdf:hasAddress m:Address)

 (?Place rdf: hasCity ?city)

 (?City ,''London")

)

))

Table 5.12: case 3 algebraic notation

Cache: the cache is used to store information about the subject, object and predicate. For

instance, the following table 5.13 is the example of cache for case 3.

Subject Predicate Object Specializati

on

Generalizati

on

Conditions

?Museu

m

rdf:

hasAddress

?Addres

s

?Place rdf: hasCity ?City (?City

"London")

Table 5.13: case 3 cache

120

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories, as we can see in table 5.14, cache new column, data source, which

is added after identifying required sources.

Subject Predicate Object Specializati

on

Generalizati

on

Condition

s

Data

Source

?Museu

m

rdf:

hasAddress

?Addres

s

 Ds 1 , Ds

2

?Place rdf: hasCity ?City (?City

"London")

Ds 1 , Ds

2

Table 5.14: case 3 identifying sources

Subqueries and merging results: According to identified data sources, subqueries are

generated. From the above table 20, we can see that the required subject and object exist

inside the data source column's data sources. Each subquery is sent to the identified data

source to get the required data, and then results are combined through the union. As stated in

the data source column, table 5.14, 2 following subqueries are generated as shown in table

5.15.

Sub Query for Data Source 1

SELECT ?Museum ?Address ?City

WHERE {

?Museumrdf:hasAddress m:Address

 FILTER {?City ,''London"}

Sub Query for Data Source 2

SELECT ?Museum ?Address ?City

WHERE {

?Museumrdf:hasAddress m:Address

 FILTER {?City ,''London"}

121

 }

 }

Table 5.15: case 3 subqueries

Case 4: subProperty is a parent property in another repository.

Query 4: Show parent details of all artists where parent’s beliefs are Christianity

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps to name the required RDF files.

For instance, following table 4.16, the SPARQL query is for case 4 and is converted to

Algebraic notions

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Parents, ?father, ?mother ?artist, ?beliefs

WHERE {

?father : rdfs:subClassOf :parents.

 ?mother : rdfs:subClassOf :parents.

?artist rdf:hasParents m: ?Parents

 ?parents rdf:hasBeliefs m: ?Beliefs

 FILTER {? Beliefs ,''Christianity"}

Table 5.16: case 4 SPARQL query

Algebraic notions: Above case 4 SPARQL query, table 5.16, are converted into the

following algebraic expression, table 5.17.

(∏ (?Parents, ?father, ?mother ?artist, ?beliefs)

 (⨝

122

 (𝝈

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒓𝒆𝒏𝒕)𝟏,)

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒂𝒓𝒕𝒊𝒔𝒕)𝟏,)

 ?artist rdf:hasParents m: ?Parents

 ?parents rdf:hasBeliefs m: ?Beliefs

 ? Beliefs ,''Christianity"

)

))

Table 5.17: case 4 algebraic notation

Cache: The cache is used to store information about the subject, object and predicate. For

instance, the following table 5.18 is an example of cache for case 4.

Subjec

t

Predicate Object Specializatio

n

Generalizati

on

Condition

s

? Artist rdf:

hasParents

? Parents Parents,1

?Parent

s

rdf:

hasBeliefs

?Beliefs Christianit

y

Table 5.18: case 4 cache

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories. As we can see in the following cache, table 5.19, a new column,

data source, is added after identifying required sources.

123

Subje

ct

Predicate Object Specializati

on

Generalizati

on

Conditio

ns

DS

?

Artist

rdf:

hasParent

s

? Parents Parents,1 Ds 1,

Ds 2

?Paren

ts

rdf:

hasBelief

s

? Beliefs Ds 1,

Ds 2

Table 5.19: case 4 identifying sources

subqueries and merging results: According to identified data sources, subqueries are

generated from the above table 5.19, and we can see that the required subject and object exist

inside the data source column's data sources. Each subquery is sent to the identified data source

to get the required data, and then results are combined through the union. As stated in the data

source column following subqueries are generated; table 5.20.

Sub Queries:

Sub Query for Data Source 1

SELECT ?Parents, ?father, ?mother ?artist,

?beliefs

WHERE {

?father : rdfs:subClassOf :parents.

?mother : rdfs:subClassOf :parents.

?artistrdf:hasParents m: ?Parents

?parentsrdf:hasBeliefs m: ?Beliefs

Sub Query for Data Source 2

SELECT ?Parents, ?father, ?mother ?artist,

?beliefs

WHERE {

?father : rdfs:subClassOf :parents.

?mother : rdfs:subClassOf :parents.

?artistrdf:hasParents m: ?Parents

?parentsrdf:hasBeliefs m: ?Beliefs

124

 FILTER {? Beliefs

,''Christianity"}

 }

 FILTER {? Beliefs ,''Christianity"}

 }

Table 5.20: case 4 subqueries

Case 5: Subject is an abject in another repository

Query 5: Show all exhibition’s artefacts where used craft is an oil painting, and

material is gold

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 5.21, is for case 5 and converted to algebraic

notions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?exhibition, ?artefacts, ?craft, ?material

WHERE {

?exhibition rdf:contains m: ?artefacts

 ?artefacts rdf:hasMaterial m: ?material

 ?artefacts rdf:representedBy m: ?craft

 FILTER {? craft, ''OilPainting"}

 {? material, ''gold"}

 }

Table 5.21: case 5 SPARQL query

125

Algebraic notions: Above case 5 SPARQL query, table 5.21, is converted into the following

algebraic expression, table 5.22.

(∏ (?exhibition, ?artefacts, ?craft, ?material)

 (⨝

 (𝝈

 ?exhibition rdf:contains m: ?artefacts

 ?artefacts rdf:hasMaterial m: ?material

 ?artefacts rdf:representedBy m: ?craft

 ? craft, ''OilPainting"

 ? material, ''gold"

)

Table 5.22: case 5 algebraic notation

Cache: The cache is used to store information about the subject, object and predicate. For

instance, the following is the example of cache, table 5.23, for case 5.

Subject Predicate Object Specializati

on

Generalizati

on

Conditio

ns

?

exhibition

rdf: contains ?

artefacts

? artefacts rdf: hasMaterial ? material gold

? artefacts Rdf:

representedBy

?craft oilPaintin

g

Table 5.23: case 5 cache

126

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories, as we can see in the following cache, table 5.24, a new column,

data source, which is added after identifying required sources.

Subject Predicate Object Specializat

ion

Generalizat

ion

Conditi

ons

DS

?

exhibitio

n

rdf: contains ?

artefacts

 Ds

1,

Ds

2

?

artefacts

rdf: hasMaterial ?

material

 gold Ds

1,

Ds

2

?

artefacts

Rdf:

representedBy

?craft oilPainti

ng

Ds

1,

Ds

2

Table 5.24: case 5 identifying sources

Subqueries and merging results: According to identified data sources, subqueries are

generated. From the above table 5.24, we can see that the required subject and object exist

inside the data source column's data sources. Each subquery is sent to the identified data

source to get the required data, and then results are combined through the union. As stated in

the data source column, table 5.24, 2 following subqueries are generated as shown in table

5.25.

127

Sub Queries

Sub Query for Data Source 1

SELECT ?exhibition, ?artefacts, ?craft,

?material

WHERE {

?exhibitionrdf:contains m: ?artefacts

?artefactsrdf:hasMaterial m: ?material

?artefactsrdf:representedBy m: ?craft

 FILTER {? craft, ''OilPainting"}

 {? material, ''gold"}

 }

Sub Query for Data Source 2

SELECT ?exhibition, ?artefacts, ?craft,

?material

WHERE {

?exhibitionrdf:contains m: ?artefacts

?artefactsrdf:hasMaterial m: ?material

?artefactsrdf:representedBy m: ?craft

 FILTER {? craft, ''OilPainting"}

 {? material, ''gold"}

 }

Table 5.25: case 5 subqueries

Case 6: Object is a subject in another repository.

Query 6: Show all details of museums management who manage the exhibition

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 5.26, is for case 6 and is converted to Algebraic

notions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?museum, ?exhibition, ?management

WHERE {

128

?museumrdf:hasManagement m: ?Management

?managementrdf:manages m: ?Exhibition

 }

Table 5.26: case 6 SPARQL query

Algebraic notions: Above case 6 SPARQL query, table 5.26, is converted into the following

algebraic expression, as we can see in table 5.27.

(∏ (?Parent, ?artist, ?HandwrittenDocuments)

 (⨝

 (𝝈

 ?museum rdf:hasManagement m: ?Management

 ?management rdf:manages m: ?Exhibition

)

))

Table 5.27: case 5 algebraic notation

Cache: The cache is used to store information about the subject, object and predicate, for

instance, the following. Table 5.28 is the example of cache for case 6.

Subject Predicate Object Specializati

on

Generalizati

on

Conditio

ns

?museum rdf:

hasManagement

?

Managemen

t

?Managemen

t

rdf: manages ? exhibition

Table 5.28: case 6 cache

129

Identifying sources: Cache’s predicate are searched inside the data dictionary To identify

required data repositories. As we can see in the following cache, table 5.29, a new column,

data source, is added after identifying required sources.

.Subject Predicate Object Specializat

ion

Generalizat

ion

Conditi

ons

DS

?museum rdf:

hasManagem

ent

?

Manageme

nt

 Ds

1,

Ds 2

?Manageme

nt

rdf: manages ?

exhibition

 Ds

1,

Ds 2

Table 5.29: case 6 identifying sources

Subqueries and merging results: According to identified data sources, subqueries are generated

from above table 5.29. We can see that the required subject and object exist inside the data

source column's data sources. Each subquery is sent to the identified data source to get the

required data, and then results are combined through the union. As stated in the data source

column, table 5.29, 2 following subqueries, table 5.30, is generated.

Sub Query for Data Source 1

SELECT ?museum, ?exhibition,

?management

WHERE {

?museumrdf:hasManagement m:

?Management

Sub Query for Data Source 2

SELECT ?museum, ?exhibition, ?management

WHERE {

?museumrdf:hasManagement m: ?Management

?managementrdf:manages m: ?Exhibition

130

?managementrdf:manages m: ?Exhibition

 }

 }

Table 5.30: case 6 subqueries

Case 7: Repository 1’s property, P1, between subject and an object is a sub -property of

Property, P2, in another repository between Subject 1 of the first repository and Object 2 of

another repository

Query 7: Show all the Museums place and city’s address where the region is Asia and Museum

category is science

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, following table 5.31, the SPARQL query is for case 7 and is converted to Algebraic

notions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Museum, ?Place, ?City ?Address

WHERE {

? address: rdfs: subClassOf: city.

? place rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 FILTER {? museum, ''science"}

 }

Table 5.31: case 7 SPARQL query

131

Algebraic notions: The above case 7 SPARQL query is converted into table 5.32, algebraic

expression.

∏ (?Museum, ?Place, ?City ?Address)

 (⨝

 (𝝈

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒊𝒕𝒚)𝟏,)

? place rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum, ''science"

)

))

Table 5.32: case 7 algebraic notation

The cache is to store information about the subject, object and predicate. For instance, the

following table 5.33 is the example of cache for case 7.

Subject Predicate Object Specializati

on

Generalizati

on

Conditio

ns

? Place rdf: hasCity ? City City,1

?Museu

m

rdf:

hasAddress

?

Address

 science

Table 5.33: case 7 cache

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories. As we can see in the following table 5.34, cache new column, the

data source is added after identifying required sources.

132

Subject Predicate Object Specializat

ion

Generalizat

ion

Conditi

ons

DS

? Place rdf: hasCity ? City City,1 Ds

1,

Ds

2

?Museu

m

rdf:

hasAddress

?

Address

 science Ds

1,

Ds

2

Table 5.34: case 7 identifying sources

Subqueries and merging results: According to identified data sources, subqueries are

generated. From the above table 5.34, we can see that the required subject and object exist

inside the data source column's data sources. Each subquery is sent to the identified data source

to get the required data, and then results are combined through the union. As stated in the data

source column, table 5.34, 2 following subqueries, table 5.35, are generated.

Sub Query for Data Source 1

SELECT ?Museum, ?Place, ?City ?Address

WHERE {

? address: rdfs: subClassOf: city.

? place rdf:hasCity m: ?city

 ? museum rdf:hasAddress m:

?address

Sub Query for Data Source 2

SELECT ?Museum, ?Place, ?City ?Address

WHERE {

? address: rdfs: subClassOf: city.

? place rdf:hasCity m: ?city

 ? museum rdf:hasAddress m:

?address

133

 FILTER {? museum, ''science"}

 }

 FILTER {? museum, ''science"}

 }

Table 5.35: case 7 subqueries

Case 8: Property, P2, in the second repository is a sub-property of repository 1’s property,

P1, between repository 2’s subject and repository 1’s object

Query 8: Show museum addresses of Europe region wh ich holds the artefacts of Asian’s artist.

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 5.36, is for case 8 and converted to algebraic

notions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Museum, ?Address, ?Region, ?Place, ?City, ?Country, ?Atrist,

?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

134

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 }

Table 5.36: case 8 SPARQL query

Algebraic notions: Above case 8 SPARQL query, table 5.36, is converted into the following

algebraic expression.

(∏ (?Museum, ?Address, ?Region, ?Place, ?City, ?Country, ?Atrist, ?Atrefacts)

 (⨝

 (𝝈

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒂𝒅𝒅𝒓𝒆𝒔𝒔)𝟏,)

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒍𝒂𝒄𝒆)𝟏,)

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

 {? region, ''Europe"}

 {? artist, “Asian"}

)

))

Table 5.37: case 8 algebraic notation

Cache:

The cache is used to store information about the subject, object and predicate. For instance, the

following table 5.38 is the example of cache for case 8.

135

Subject Predicate Object Specializati

on

Generalizatio

n

Conditions

? Place rdf: hasCity ? City Address,1:

Place,1

?Countr

y

rdf: hasCity ? City

?Museu

m

rdf:

hasAddress

?Address

?Museu

m

rdf:

hasArtefacts

?Artefact

s

 {? region, ''Europe"}

?Artist rdf:

hasCountry

?Country {? artist, “Asian"}

Table 5.38: case 8 cache

Identifying sources: Cache’s predicates are searched inside the data dictionary To identify

required data repositories. As we can see in the following cache, table 5.39, a new column,

the data source, is added after identifying the required sources.

Subje

ct

Predicat

e

Objec

t

Specializ

ation

Generaliz

ation

Conditions DS

?

Place

rdf:

hasCity

? City Address,1:

Place,1

 Ds 1,

Ds 2

?Coun

try

rdf:

hasCity

? City Ds 1,

Ds 2

136

?Muse

um

rdf:

hasAddr

ess

?Addr

ess

 Ds 1,

Ds 2

?Muse

um

rdf:

hasArtef

acts

?Artef

acts

 {? region,

''Europe"}

Ds 1,

Ds 2

?Artis

t

rdf:

hasCoun

try

?Coun

try

 {? artist,

“Asian"}

Ds 1,

Ds 2

Table 5.39: case 8 identifying sources

According to identified data sources, subqueries are generated. From the above table 5.39, we

can see that the required subject and object exist inside the data sources mentioned in the data

source column. Each subquery is sent to the identified data source to get the required data, and

then results are combined through the union. As stated in data source column table 5.39, 2

following subqueries, table 5.40, are generated.

Sub Queries:

Sub Query for Data Source 1

SELECT ?Museum, ?Address, ?Region,

?Place, ?City, ?Country, ?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

Sub Query for Data Source 2

SELECT ?Museum, ?Address, ?Region,

?Place, ?City, ?Country, ?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

137

 ? museum rdf:hasAddress m:

?address

 ? museum rdf:hasArtefacts m:

?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 }

 ? museum rdf:hasAddress m:

?address

 ? museum rdf:hasArtefacts m:

?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 }

Table 5.40: case 8 subqueries

Case 9: Property, P2, in the second repository is a sub-property of repository 1’s property,

P1, between repository 2’s subject and repository 1’s object, and repository 2’s subject is a

subclass of repository 1’s subject.

Query 9: Show all museum addresses of the European region, which holds the artefacts of

Asian’s artists who used oil painting craft for paintings.

Firstly, Algebraic notions are produced of the main SPARQL query, and a further cache is

created to store Algebraic notions information, which helps name the required RDF files. For

instance, the following SPARQL query, table 5.41, is for case 9 and converted to algebraic

notions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Painter,? Painting, ?Craft, ?Museum, ?Address, ?Region, ?Place, ?City, ?Country,

?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

138

 ? place: rdfs: subClassOf: region.

 ? painter: rdfs: subClassOf: artist.

 ? oilpainting: rdfs: subClassOf: painting.

 ? oilpainitng: rdfs: subClassOf: craft.

 ? painter rdf:draws m: ?painting

 ? place rdf:hasCity m: ?city

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 {? painting, “oilpainting"} }

Table 5.41: case 9 SPARQL query

Algebraic notions: Above case 9 SPARQL query, table 5.41, is converted into table 5.42,

algebraic expression.

(∏ (?Painter,? Painting, ?Craft, ?Museum, ?Address, ?Region, ?Place, ?City, ?Country, ?Atrist,

?Atrefacts)

 (⨝

 (𝝈

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒂𝒅𝒅𝒓𝒆𝒔𝒔)𝟏,)

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒍𝒂𝒄𝒆)𝟏,)

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒊𝒏𝒕𝒆𝒓)𝟏,)

 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒐𝒊𝒍𝒑𝒂𝒊𝒏𝒕𝒊𝒏𝒈)𝟏,)

139

 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒓𝒂𝒇𝒕)𝟏,)

 ? painter rdf:draws m: ?painting

 ? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

 {? region, ''Europe"}

 {? artist, “Asian"}

 {? painting, “oilpainting"}

)

))

Table 5.42: case 9 algebraic notation

Cache: the cache is used to store information about the subject, object and predicate. For

instance, the following table 5.43 is the example of cache for case 9.

Subject Predicate Object Specializati

on

Generalizatio

n

Conditions

? Place rdf: hasCity ? City Craft,1 Address,1:

Place,1:

Painter,1:

Oilpainting,1

?painter rdf: draws ?Painting

140

?Countr

y

rdf: hasCity ? City

?Museu

m

rdf:

hasAddress

?Address

?Museu

m

rdf:

hasArtefact

s

?Artefact

s

 {? region, ''Europe"}

?Artist rdf:

hasCountry

?Country {? artist, “Asian"}

Table 5.43: case 9 cache

Identifying sources: Cache’s predicates are searched inside the data dictionary to identify

required data repositories. As we can see in the following cache, table 5.44, a new column,

the data source, is added after identifying the required sources.

Subject Predicate Object Specializati

on

Generalizati

on

Conditio

ns

DS

? Place rdf:

hasCity

? City Craft,1 Address,1:

Place,1:

Painter,1:

Oilpainting,1

 Ds 1,

Ds 2

?painter rdf: draws ?Painting Ds 1,

Ds 2

?Countr

y

rdf:

hasCity

? City Ds 1,

Ds 2

141

?Museu

m

rdf: has

Address

?Address Ds 1,

Ds 2

?Museu

m

rdf:

hasArtefact

s

?Artefact

s

 {? region,

''Europe"

}

Ds 1,

Ds 2

?Artist rdf:

hasCountry

?Country {? artist,

“Asian"}

Ds 1,

Ds 2

Table 5.44: case 9 identifying sources

Subqueries and merging results: According to identified data sources, in table 5.44,

subqueries are generated. We can see that the required subject and object exist inside the data

source column's data sources. Each subquery is sent to the identified data source to get the

required data, and then results are combined through the union. As stated in the data source

column, table 5.44, 2 following subqueries, table 5.45, are generated.

Sub Query for Data Source 1

SELECT ?Painter,? Painting, ?Craft,

?Museum, ?Address, ?Region, ?Place, ?City,

?Country, ?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

 ? painter: rdfs: subClassOf: artist.

Sub Query for Data Source 2

SELECT ?Painter,? Painting, ?Craft,

?Museum, ?Address, ?Region, ?Place, ?City,

?Country, ?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

 ? painter: rdfs: subClassOf: artist.

142

 ? oilpainting: rdfs: subClassOf:

painting.

 ? oilpainitng: rdfs: subClassOf:

craft.

 ? painter rdf:draws m: ?painting

 ? place rdf:hasCity m: ?city

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m:

?address

 ? museum rdf:hasArtefacts m:

?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 {? painting, “oilpainting"}

 }

 ? oilpainting: rdfs: subClassOf:

painting.

 ? oilpainitng: rdfs: subClassOf:

craft.

 ? painter rdf:draws m: ?painting

 ? place rdf:hasCity m: ?city

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m:

?address

 ? museum rdf:hasArtefacts m:

?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 {? painting, “oilpainting"}

 }

Table 5.45: case 9 subqueries

Semantic operators Testing: Semantic operators refer to operators that perform their tasks

based on the semantic context of information. This implies that semantic operators can

143

manipulate a given text and convert it into its semantic algebraic notation. In this section,

semantic operators have been tested to convert SPARQL queries into their algebraic forms.

Semantic Algebra: Semantic algebra is also known as the symbolic mathematical language

that is used to represent semantic data. In simpler terms, semantic algebra functions to break

down semantic information into the most basic, raw form of mathematical data that can identify

inference accurately by a computerized system. Semantic algebra essentially helps in detailing

systems down to a microscopic level. This is precisely why the technology of semantic algebra

plays such a significant role in the research (XU and HONG, 2012).. The application of

semantic algebra converts a SPARQL query into its algebraic notations. This process is usually

done by using semantic operators, which this section discusses with an explanation and

examples. Semantic operators refer to operators that perform their tasks based on the semantic

context of information. This implies that semantic operators have the capacity to manipulate a

given text and convert it into its semantic algebraic notation. In the following section, semantic

operators have been tested to convert SPARQL queries into their algebraic forms. The

operators tested in the section are discussed below.

Project Test: 𝝅 sign is used for a project which takes S O and P as input, and the source is

schema

Syntax:

𝝅
[𝑺?
𝑶?

]
(𝒔𝒐𝒖𝒓𝒄𝒆

Triplet has three elements, Subject, Predicate and Object. The project operator, 𝝅 , extracts

information about the subject and object from schema and source replace with the schema

name.

144

Case 10: Exhibit a list of resources from Museum about the writer and handwritten documents

𝝅
[?𝒘𝒓𝒊𝒕𝒆𝒓 ?𝑺
 ?𝑯𝑫−𝑫𝒐𝒄 ?𝑶

]
(𝑺𝒄𝒉𝒆𝒎𝒂

As we can see, that we are using? Writer as a subject and? HD-Doc as an object inside Project

operator, 𝝅.We aim to get information about the writer and handwritten documents from the

required schema. We can see that schema have many different classes, subclasses, properties,

sub Properties, Domain and range. Our query asks about just writer and hand -written

documents, so it brings results to the required information. As we know, the predicate is used

to make sense between subject and object, so the predicate is displayed, which links them.

Results in Triplets from Museum schema

The writer writes Handwritten-document 1

The writer writes Handwritten-document 2

The writer writes Handwritten-document 3

Model

W

D1 D2 D3

W = Writer

wr = writes

D1 = Document 1

D2 = Document 2

D3 = Document 3

wr wr

wr

145

Figure 5.2 – case 10 - output of the query

Figure 5.2 represent the output of our query. In the diagram, we can see the link between writer

and HRD.

Select Test: 𝝈 Sign is used to select and bring all required sources or nodes which meets the

condition. Arithmetic, Comparison, or Boolean operators can be utilized along with constants

or strings inside the "𝒍𝒐𝒈𝒊𝒄" and source replace with the schema name.

Syntax:

𝝈[𝒍𝒐𝒈𝒊𝒄](𝒔𝒐𝒖𝒓𝒄𝒆)

Case 11: Exhibit all paintings of OilPainting from Schema

𝜎𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔=𝑜𝑖𝑙𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 (𝑆𝑐ℎ𝑒𝑚𝑎)

We aim to get information about all paintings which come under the OilPainting category from

the required schema.We can see that schema has many different classes, subclasses, properties,

sub Properties, Domain, and range. Our query asks about just OilPainting paintings to bring

results related to the required information. In the following diagram, we have created the

146

instances of OilPainting to represent the output. As we know, that predicate is used to make

sense between subject and object so that predicate is displayed, which links them.

Output from Museum schema

Painting 1 Represented-By OilPainting

Painting 2 Represented-By OilPainting

Painting 3 Represented-By OilPainting

Model

Figure 5.3 - case 11 - Select operator query result

OP

rp rp rp

P1 = Painting 1

P2 = Painting 2

P3 = Painting 3

OP = Oil Painting

rp = Represented-By

P1 P2 P3

147

 Figure 5.3 represent the output of our query. In the diagram, we can see

different instances of OilPainting, OLP1, OLP2 and OLP3.

Join Test: ⋈ The sign is used for a join. It combines triplets from single or multiple sources

according to the requested query. We are using both operators, Project and Select, in our syntax.

The project operator takes two parameters, “?X” and “?Y”. As the triplet has three elements,

Subject, Predicate and Object, so ?X represent the subject and ?Y represent an object. The

select operator, 𝝈, is used for a condition and Arithmetic, Comparison, or Boolean operators

can be utilized along with constants or strings inside the "𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏" and source replace with

the schema name.

Syntax:

𝜋[?𝑋 ,?𝑌] 𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

⋈

𝜋[?𝑋 ,?𝑍]𝝈[𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏](𝒔𝒐𝒖𝒓𝒄𝒆)

Case 12: Exhibit all paintings of all painters from schemas where used crafts is watercolour

𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔,?𝑐𝑟𝑎𝑓𝑡] 𝝈[𝒄𝒓𝒂𝒇𝒕=′𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒍𝒐𝒖𝒓′](𝑺𝒄𝒉𝒆𝒎𝒂 𝑨)

⋈

𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 ,?𝑐𝑟𝑎𝑓𝑡] 𝝈[𝑩.𝒄𝒓𝒂𝒇𝒕=𝑨.𝒄𝒓𝒂𝒇𝒕](𝑺𝒄𝒉𝒆𝒎𝒂 𝑩)

148

We are using a join operator (⋈) to join the sources. We aim to get information about all

painter’s paintings where used craft is watercolour. We can see that schema have many

different classes, subclasses, properties, sub Properties, Domain and range. Our query is asking

about painting where used craft is watercolour as we have two homogeneous schemas. The

first query fetches information about craft from Schema A, where used craft is watercolour.

The second query fetches information from schema B where the used craft is the same as in

schema A. Join operator joins both results display as an output, as shown in the following

example.

Schema A

?Painter ?Painting ?Craft

Shaz Painting 1 Water Colour

Dr Vasil Painting 2 Water Colour

John Painting 3 Water Colour

David Painting 4 Water Colour

Schema B

?Painter ?Painting ?Craft

Peter Painting 5 Water Colour

Tony Painting 6 Water Colour

Alexander Painting 7 Water Colour

A ⋈ B

?Painter ?Painting ?Craft

149

Shaz Painting 1 Water Colour

Dr Vasil Painting 2 Water Colour

John Painting 3 Water Colour

David Painting 4 Water Colour

Peter Painting 5 Water Colour

Tony Painting 6 Water Colour

Alexander Painting 7 Water Colour

Model

Figure 5.4 - caee 12 - Join query result

C = Craft

OP = Oil Painting

WC = Water Colour

Wood = Wood

HRD =Hand written Documents

rpb = Represented By

C

Painter

OP

Wood

WC

HRD

Is-a

Is-a
Is-a

rpb

Draws

Painting

150

Outer Join Test: We are using an outer join operator (⋈) to join the not-matched triplets. We

aim to get information about all painter’s paintings where used craft is watercolour . We can

see that schema have many different classes, subclasses, properties, sub Properties, Domain

and range. Our query is asking about painting where used craft is watercolour as we have two

homogeneous schemas. The first query fetches information about the craft from schema A

where the used craft is watercolour. The Second query fetches information from schema B

where the used craft is the same as in schema A. outer join operator joins both results plus

unmatched triplets from Schema B and display as an output as shown in the following example.

𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔,?𝑐𝑟𝑎𝑓𝑡] 𝝈[𝒄𝒓𝒂𝒇𝒕=′𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒍𝒐𝒖𝒓′](𝑺𝒄𝒉𝒆𝒎𝒂 𝑨)

− ⋈ −

𝜋[?𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ,?𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔 ,?𝑐𝑟𝑎𝑓𝑡] 𝝈[𝑩.𝒄𝒓𝒂𝒇𝒕=𝑨.𝒄𝒓𝒂𝒇𝒕](𝑺𝒄𝒉𝒆𝒎𝒂 𝑩)

Schema A

?Painter ?Painting ?Craft

Shaz Painting 1 Water Colour

Dr Vasil Painting 2 Water Colour

John Painting 3 Water Colour

David Painting 4 Water Colour

Schema B

?Painter ?Painting ?Craft

Peter Painting 5 Water Colour

151

Tony Painting 6 Water Colour

Alexander Painting 7 Water Colour

Rosy Painting 8 Wood

Raja Painting 9 Stone

A - ⋈ - B

?Painter ?Painting ?Craft

Shaz Painting 1 Water Colour

Dr Vasil Painting 2 Water Colour

John Painting 3 Water Colour

David Painting 4 Water Colour

Peter Painting 5 Water Colour

Tony Painting 6 Water Colour

Alexander Painting 7 Water Colour

Rosy Painting 8 Wood

Raja Painting 9 Stone

152

Model

Figure 5.5 - case 12 - Outer join query result

Case 13: Exhibit all-female writer's origin and handwritten documents where used craft is

wood

𝜋?𝑊𝑟𝑖𝑡𝑒𝑟 ,?𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐻𝑅𝐷,𝐺𝑒𝑛𝑑𝑒𝑟 [𝜎𝐺𝑒𝑛𝑑𝑒𝑟=′𝑊𝑜𝑚𝑒𝑛^ 𝑐𝑟𝑎𝑓𝑡 =′𝑤𝑜𝑜𝑑′](Schema A)

⋈

𝜋?𝑊𝑟𝑖𝑡𝑒𝑟 ,?𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐻𝑅𝐷,𝐺𝑒𝑛𝑑𝑒𝑟 [𝜎𝐺𝑒𝑛𝑑𝑒𝑟=𝐴.𝐺𝑒𝑛𝑑𝑒^𝑐𝑟𝑎𝑓𝑡 =𝐴.𝑐𝑟𝑎𝑓𝑡](Schema B)

We are using join operator (⋈) to join the sources. In this example, we require females writer's

origin and handwritten documents where the used craft is wood. We can see that schema have

many different classes, subclasses, properties, sub Properties, Domain and range. Our query

asks about the females' writer's origin and handwritten documents where the used craft is wood.

153

The first query fetches information about writers, writers' origins, handwritten documents,

gender and restricted women and woodcraft from Schema in this scenario. The second query

fetches information from schema B where writers, writer's origin, handwritten documents,

gender are similar to the first query's output. The following example is found in the following

example: join operator joins both results and display as output and eliminate duplicate entry.

Schema A results:

?Writer Hand Written Document Craft ?Country ?Gender

Zain HRD1 Wood UK Women

Taby HRD2 Wood UK Women

Tara HRD3 Wood America Women

Valin HRD4 Wood America Women

Schema B Results:

?Writer ?Hand Written

Document

?Craft ?Country ?Gender

Zain HRD1 Wood UK Women

Mauna HRD5 Wood UK Women

A ⋈ B

?Writer Hand Written Document Craft ?Country ?Gender

Zain HRD1 Wood UK Women

Taby HRD2 Wood UK Women

Tara HRD3 Wood America Women

Valin HRD4 wood America Women

154

Mauna HRD5 wood UK Women

Case 14: Exhibit all artefacts where used material is cooper and origin is Pakistan and India

𝜋?𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠,?𝑂𝑟𝑖𝑔𝑖𝑛,?𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 [𝜎𝑂𝑟𝑖𝑔𝑖𝑛 𝐼𝑁′(𝑃𝑎𝑘,𝐼𝑁𝐷)^𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐼𝑁 (𝑐𝑜𝑜𝑝𝑒𝑟,𝑏𝑟𝑜𝑛𝑧𝑒)′](SCHEMA A)

⋈

𝜋?𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠,?𝑂𝑟𝑖𝑔𝑖𝑛,?𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 [𝜎𝑂𝑟𝑖𝑔𝑖𝑛=′𝐴.𝑜𝑟𝑖𝑔𝑖𝑛^𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙=𝑎.𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙′] (SCHEMA B)

In this example, we require all artefacts where used material is cooper and origin is Pakistan

and India. The query is asking about all artefacts where used material is cooper and origin is

Pakistan and India. In this scenario, the first query fetches information about Artefacts, Origin,

used material, and restrict Pak and India's origin from Schema A. The second query fetches

information from schema B Artefacts, Origin, and used material is similar to the first query's

output. Join operator joins both results and display as output and eliminate duplicate entry, as

shown in the following example.

Schema A output

Artifacts Material Origin

Painting 1 Cooper Pak

Painting 2 Cooper Pak

HRD 1 Cooper Pak

Schema B output

Artifacts Material Origin

155

Painting 1 Cooper Pak

Painting 3 Cooper IND

HRD 1 Cooper IND

HRD7 Bronze Pak

HRD8 Bronze Pak

A ⋈ B

Artifacts Material Origin

Painting 1 Cooper Pak

Painting 2 Cooper Pak

Painting 3 Cooper IND

HRD 1 Cooper IND

HRD7 Bronze Pak

HRD8 Bronze Pak

Case 15: Exhibit all artefacts where their artist's beliefs are Buddhism and region is America

𝜋?𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠,?𝐴𝑟𝑡𝑖𝑠𝑡𝑠,?𝑅𝑒𝑔𝑖𝑜𝑛,?𝐵𝑒𝑙𝑖𝑒𝑓𝑠 [𝜎𝐵𝑒𝑙𝑖𝑒𝑓=′𝐵𝑢𝑑𝑑𝐻𝑖𝑠𝑚,^𝑅𝑒𝑔𝑖𝑜𝑛 𝐼𝑁 (𝐴𝑚𝑒𝑟𝑖𝑐𝑎,𝐴𝑠𝑖𝑎)′](SCHEMA A)

⋈

𝜋?𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡𝑠,?𝐴𝑟𝑡𝑖𝑠𝑡𝑠,?𝑅𝑒𝑔𝑖𝑜𝑛,?𝐵𝑒𝑙𝑖𝑒𝑓𝑠 [𝜎𝐵𝑒𝑙𝑖𝑒𝑓=′𝐴.𝐵𝑒𝑙𝑖𝑒𝑓,^𝑅𝑒𝑔𝑖𝑜𝑛=𝐴.𝑅𝑒𝑔𝑖𝑜𝑛′](SCHEMA B)

Query aim is to get information about all Artefacts where Artist's beliefs are Buddhism and

Regions are America and Asia. Schema has many different classes, subclasses, properties, sub

Properties, Domain and range. Our query asks about all Artefacts where Artist's beliefs are

Buddhism and Region are America and Asia. Before joining, the first query fetches information

156

about Artefacts, Artist's beliefs and Origin from Schema A where beliefs are Buddhism and

Region are America, Asia and Second query fetches the same information from schema B

before joining them. The join operator joins both results and displays as an output, as shown in

the following example.

Schema A Output

Artefacts Artists Region Beliefs

HRD 2 Smith America Buddhism

Schema B Output

Artefacts Artists Region Beliefs

Painting 9 Shaby Asia Buddhism

Painting 10 Tabby America Buddhism

HRD 2 Smith America Buddhism

A ⋈ B

Artefacts Artists Region Beliefs

HRD 2 Smith America Buddhism

Painting 9 Shaby Asia Buddhism

Painting 10 Tabby America Buddhism

HRD 2 Smith America Buddhism

Generalization Test: Generalization is the process of extracting common characteristics from

one or more classes and combining them into a generalized superclass. It is used to get

hierarchies of classes and subclasses in up level, up to defined level. In our case , we are going

up to 1 level. Triplet has three elements, Subject, Predicate and Object. Subject and object

157

always represent classes or subclasses. The generalization operator extracts parent class up to

1 level of mentioned class (?class). The source is replaced with the schema.

𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒐𝒖𝒓𝒄𝒆)

Case 16: Exhibit all the hierarchies of painting at level 1

𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒊𝒏𝒕𝒊𝒏𝒈)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂)

 In the query, we are asking about show the parent class of painting at level 1. The

required schema has many classes. The query starting point is ?painting at level 1, which we

have mentioned in the query, 𝑮𝒆𝒏(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒑𝒂𝒊𝒏𝒕𝒊𝒏𝒈)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂), the operator (𝑮𝒆𝒏) fetches

and displays the painting's superclass as shown in the following output and graphical

representation of the schema. According to our Museum schema, Painting has just 1 level up,

so we get the following triplet:

Output triplet from Museum schema

Painting is-a an Artefact.

158

Model:

 M

 contains

A

has

F

W P

Paint Doc

Wood

M = Museum

A =Artefact

F = Founder

P = Painter

W = Writer

Paint = Painting

Doc = Documents

OP = Oil Painting

WC = Water Colour

Wood = Wood

C = Craft

writes
draws

rp

OP

rp

W C

is-a is-a

is-a

C

159

6.3.1.1 Graphical representation of Generalization

Figure 5.6 - Generalisation output

Specialization Test: Specialization is the reverse process of Generalization, which means

creating new subclasses from an existing class. In our case, we are going bottom-up to 1 level.

Abstract from Museum schema:

Triplets:

<Place is-a Region>

<Place has City>

<Country has City)

<Museum hasAddress Address>

<Artist is-a Founder>

<Founder is-a Person>

<Painter is-a Artist>

<Writer is-a Artist>

160

<Address is-a City>

<Museum hasManagement Management>

<Management manage Exhibition>

<Exhibition contains Artifacts>

<Artifacts hasMaterial Material>

<Artifacts represented-By Craft>

<OilPainting is-a Craft>

<Watercolour is-a Craft>

<Wood is-a Craft>

<Painting is-a Artifacts>

<HandWrittenDocuments is-a Artifacts>

<HandWrittenDocuments represented-

through Wood>

<Painting hasPic Picture>

<HandWrittenDocuments hasPic Picture>

<Artifacts has Artist>

<Artist hasSpouse Spouse>

<Artist hasFather Father>

<Artist hasMother Mother>

<Father is-a Parents>

<Mother is-a Parents>

<Parents is-a Man>

<Parents is-a Women>

<Man is-a Gender>

<Women is-a Gender>

<Person hasGender Gender>

<Person hasBelief Belief>

<Person hasNationality Nationality>

<Person hasPlaceOfBirth Place>

Syntax:

𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒍𝒂𝒔𝒔),𝒏−𝒍𝒆𝒗𝒆𝒍)(𝑺𝒄𝒉𝒆𝒎𝒂)

Triplet holds three elements, Subject, Predicate and Object. Subject and object always represent

classes or subclasses. The operator (𝑺𝒑𝒆𝒄) extracts child classes up to 1 level of mentioned

class (?class). The source is replaced with the schema

161

Case 17: Exhibit all the hierarchies of the craft down to 1 level (bottom)

𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒓𝒂𝒇𝒕)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂)

 In the query, we are asking about show the child classes of craft class at level 1. The

required schema has many classes. The query starting point is? craft at level 1, which we have

mentioned in the query, 𝑺𝒑𝒆𝒄(𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔(?𝒄𝒓𝒂𝒇𝒕)𝟏,)(𝑺𝒄𝒉𝒆𝒎𝒂) . 𝑺𝒑𝒆𝒄 operator fetches and displays

the craft's subclasses at level 1 as shown in the following output and graphical representation

of the schema. According to our requirement, query fetches information at 1 level down from

Museum schema so that we get the following triplets:

Abstract from Museum schema

<OilPainting is-a Craft>

<Watercolour is-a Craft>

<Wood is-a Craft>#

5.7 Test Results Analysis:

This section includes the analysis of all tests that we performed to check the accuracy of the

developed system according to this thesis's aims and objectives. The first part of the test was

that the main SPARQL query should be converted into the algebraic expression, and we noticed

during the test that this part worked as expected without any errors. The next part system had

to store the subject, object, and predicate into the cache memory. According to tests, it stored

all subjects, objects, and predicates of the query into the cache memory. It has been mentioned

that unit testing and functional testing strategies were used in this test. All units of the

developed system need to check individually and as a whole system. The developed system

uses the index mechanism to store all participated RDFs data sets. In the next part, after storing

subjects, objects and predicates into cache memory, the system had to check and identify

required RDF data repositories from the indexed data. Tests results showed that this section

162

worked well without any errors. The next part was crucial and vital as the main SPARQL query

converted into subqueries according to the identified RDF data sources. Test results showed

the conversion of the SPARQL query into multiple subqueries. The next part was to send each

generated subquery to the required source to get the data, join all subqueries results into a single

result, and display it to the end-user. Tests showed that all developed system units worked as

expected, and no errors during the testing of all units. Following table 52 illustrates the testing

outcomes.

163

Testing table:

Test ID Algo-786 Description The author test the proposed/developed framework. The developed

framework can retrieve the RDF data from distributed homogeneous

ontologies. Homogeneous ontologies mean that all distributed

ontologies structures should be the same. The developed framework

has multiple stages, and for each stage, a unique algorithm has been

created. The author tested each algorithm to check efficiency and

accuracy. Different algorithms are as follows: converting SPARQL

queries into an algebraic expression, storing subject, object, and

predicate into a cache, searching the index to identify the required

distributed RDF repositories, converting subqueries, and merging the

subqueries results.

Developed By Sharjeel Aslam Version Final

164

Tester's Name Sharjeel Aslam Date 23-10-2019 Test Result Pass

S # Prerequisites:

S

Test framework stages - Algorithms

1 Distributed museum ontologies

1 Converting SPARQL query into an algebraic expression
2 Windows 10 Laptop with Intel®

Core™ i7, RAM: 16 GB, Quad-
core, 1.8 GHz / 4.9 GHz

2 Storing subject, object, and predicate into a cache

3 Apache Jena framework for a java
programming language

3 Identifying distributed RDF repositories from the index

4 Protégé – Ontology editor

4 Converting main SPARQL query into subqueries

5 Tester 5 Sending each subquery to the required distributed RDF

repository
 6 Merging the multiple subqueries results into one result

165

Test Scenario The tester checked the validity of the developed framework, which can retrieve
data from the homogeneous RDF repositories.

Step # Details Expected Results Actual Results Pass / Fail

/ Not
executed /
Suspended

1 Converting SPARQL query into
an algebraic expression

After triggering the main
SPARQL query, the query must
be converted into an algebraic
expression

Main SPARQL query converted into algebraic expression
successfully

Pass

2 Storing subject, object, and
predicate into a cache

Subject, object and predicate
must be stored inside the
cache

Subject, object and predicate stored inside the cache
successfully

Pass

3 Identifying distributed RDF
repositories from the index

Must match the stored cache
data against the stored index
to identify the distributed RDF
repositories

Identified the distributed RDF repositories after matching
the stored cache data against the index data

Pass

4 Converting main SPARQL
query into subqueries

The main SPARQL query must
be converted into multiple
subqueries according to the
identified distributed RDF
repositories

Generated multiple subqueries successfully after identifying
the distributed RDF sources

Pass

5 Sending each subquery to the
required distributed RDF
repository

Each subquery must be
triggered against the
distributed RDF repository

Each subquery triggered against the required distributed
RDF source successfully to fetch the data

Pass

6 Merging the multiple
subqueries results into one
result

Subqueries results must be
merged semantically into one
result

Each subquery results were merged into one result
successfully.

Pass

Table 5.46 - Testing table

166

5.8 Critical analysis:

In this chapter, proposed framework testing has been done with distributed museum RDF

ontologies. It was a complex procedure to obtain a result, as multiple algorithms were in a

sequence to perform the complete task. Starting algorithm’s task was to convert the main

SPARQL query into an algebraic expression, challenging and essential. The subsequent

algorithm had to take the algorithm's output as an input to perform the further task. Test results

showed that the relevant algebraic expression of the main SPARQL query was converted

successfully. The indexing mechanism had a leading role. It had to index all predefined selected

RDF distributed repositories, and irrelevant entries into the index could lead to a wrong match

between the cache algorithm, where we stored all subject, object, and predicate of SPARQL

query. The caching algorithm helped us to identify the distributed RDF repositories which hold

the required information. The subqueries’ algorithm had to generate multiple subqueries based

on this data, which had to retrieve data from the required RDF repositories. Combining the

returned results of subqueries into a single semantic output was tricky as one wrong result of

the subquery could lead to irrelevant data into the joining result. The author had to face

challenges during the data retrieval from a heterogeneous environment. Data belongs to

different formats in the heterogeneous environment, such as relational data, XML data, NoSQL

data, and RDF data. The author discussed the limitation of this research in chapter 1. The

proposed framework only works in a homogeneous environment where all participated

ontologies have to be in the same format. For this purpose, we used CRM (Conceptual

Reference Model) to develop our museum ontology structure and format.

167

The author used RDF, apache Jenna framework, SPARQL query and many more techniques

related to them. Jena architecture provides different persistent, inference RDF, Ontology,

Query, and related API’s that could be invoked using Java programming language and over the

web using HTTP and SPARQL query language. In RDF, a reified triple is a description of a

triple-token using other RDF triples.RDF reification was intended to make provenance

statements and other statements about RDF triples with a unique vocabulary that includes ref:

Statement. An ontology model is an extension of the Jena RDF model, providing extra

capabilities for handling ontologies. Ontology models are created through the Jena Model

Factory. It specifically talks about the types and approaches of data integration . Simplified

Agile Methodology (SAMOD) methodology has been adopted for the Museum’s ontology

Development. In this thesis, CRM (Conceptual Reference Model) has been used to develop the

museum’s ontology. Protégé has been used to implement the museum’s ontology. All the

gathered data is divided into class and subclass. On these data, after applying different query

and sub-queries. The data is divided into different forms by applying different properties. These

separate all the data according to nature and properties. It was furthermore classified into

different groups. Data dictionary holds information about the subject, object, predicate,

property, sub Property, classes, and subclasses. The cache’s predicate was used to search inside

the data dictionary. It implements the semantic algebraic expressions, data dictionary, cache,

conversion of main SPARQL query into sub-queries, and merging.

5.9 Chapter Summary:

Several significant challenges and approaches have been identified throughout this chapter

concerning the semantic web in distributed ontologies. This chapter discussed the testing of the

conceptual framework using the Jena framework, unit testing and functional testing to access

and test the data from distributed museum RDF data sets. Furthermore, it also discussed the

methodology used behind the developed museum’s ontology used as a case study. The first is

168

the trade-off in ontology language. A step-by-step process was adopted. Multiple algorithms

were tested, translating the SPARQL query into an algebraic expression, converting the main

SPARQL query into sub queries, and carrying out SPARQL queries in distributed ontology’s.

Finally, another algorithm was tested to combine the results. Thus, triples and variables are

stored in the cache and identified by the system to carry out the queries, which is more efficient

than sourcing data each time from the source. Simplified Agile Methodology (SAMOD)

methodology has been adopted for Museum’s ontology Development. Jena is also compatible

with the three different OWL ontology language levels- OWL Lite, OWL DL, OWL Full. Jena

Ontology API provides a language-neutral interface that can use a profile to set specific java

classes and properties. Jena uses OWL for providing extra capabilities for handling onto logy.

Ontology models are created through the Jena Model Factory. In the Apache Jena framework,

Jena provides an open platform to use built-in and third-party inference engines. In this chapter,

the author executed proposed algorithms against various test cases. The framework had

multiple stages where the main SPARQL query converted into algebraic expression and cache

had to hold the information about the subject, object and predicate. Later, cache data matched

with index data to identify the required RDF repositories as, based on this information, multiple

subqueries had to generate to retrieve the data from distributed sources. Finally, subqueries

returned data had to combine into one semantic result.

169

 Chapter 6

6. Framework Evaluation

6.1 Introduction

This chapter evaluates the performance of the implemented framework and its accuracy

compared to other similar systems. Against this backdrop, the evolution aim is to demonstrate

that the proposed system can efficiently handle distributed SPARQL queries. In particular, the

chapter shall compare the proposed system with other similar systems. These include FedX,

ANAPSID and ADERIS, which we reviewed in section 2.9. The author selected these systems

because of their similar functionalities proposed in our system. All chosen systems under this

evaluation have implemented the triple pattern for the SPARQL endpoints, which bears

similarity with our proposed system. These systems' functions prevent the client from stating

the URL to fetch data from distributed resources instead of overwhelming network traffic.

Given that our research topic is very trendy, many other systems propose and implement a

distributed extension to SPARQL. The selection choice is based on the fact that these systems

focus on Sesame, and their models implemented the join. Generally, the system’s efficiency

goes down when adding or merging more RDF data sources. The selected system's query plan

includes statistics from the triple pattern, and query performance goes up when all RDF sources

are mentioned in the SPARQL query. However, as we discussed the limitations and gaps of

these systems during the literature review in section 2.10 when these systems try to add more

RDF sources after query results, the results are not as accurate as they are perceived to be.

These systems first get results from RDF sources which frequently get a no-connect error if the

required data source is unavailable.

170

6.2 Performance

In this section, the author evaluates the results and performance of our proposed system with

other particular systems that provide distributed SPARQL query processing mechanism. This

endeavour aims to demonstrate that the proposed system can efficiently handle distributed

queries on distributed RDF data stores. For the demonstration, the author used the Virtual

Exhibition Museum domain specifically for this purpose. All validations were completed in

the windows system with an i7 processor and 8 GB of memory.

Virtual Exhibition Museum Data Description: The virtual exhibition museum holds 3600

triples in 12 RDF museum data sets. We used RDF museum data sets: London Museum,

Scotland Museum, Birmingham Museum, Manchester Museum, Wales Museum, Chester

Museum, Taxila Museum, Peshawar Museum, Multan Museum, Chitral Museum, Lahore

Museum and Sawat Museum. The following table 53 provides the details of endpoints.’The

following table 6.1 shows the namespace column, which organises all participated distributed

museum ontologies. We can also see that all museums have the same triples. We are using a

homogeneous environment where all participated ontologies have to be in the same format. For

this purpose, we used CRM (Conceptual Reference Model) to develop our museum ontology

format and created the same ontology multiple times to execute identical SPARQL queries.

171

Museums Triples Namespace

London Museum 300 http://allahm.museum.org/museum#

Scotland Museum 300 http://allahm.museum.org/museum#

Birmingham Museum 300 http://allahm.museum.org/museum#

Manchester Museum 300 http://allahm.museum.org/museum#

Wales Museum 300 http://allahm.museum.org/museum#

Chester Museum 300 http://allahm.museum.org/museum#

Taxila Museum 300 http://allahm.museum.org/museum#

Peshawar Museum 300 http://allahm.museum.org/museum#

Multan Museum 300 http://allahm.museum.org/museum#

Multan Museum 300 http://allahm.museum.org/museum#

Lahore Museum 300 http://allahm.museum.org/museum#

Sawat Museum 300 http://allahm.museum.org/museum#

Table 6.1 - Details of endpoints

Following Tables 6.2 and 6.3 outlines the features of participated systems as the author

discussed the features of these systems in section 2.9.

Features FedX ANAPSID ADERIS Our System

Indexing in Memory Yes Yes Yes NO

Stored Index No No No Yes

Dynamic Indexing No No No Yes

Generating algebraic No No NO Yes

Cache Yes Yes Yes Yes

172

Decomposing main

query

NO NO Yes Yes

Static Generalization Yes Yes Yes Yes

Dynamic

Generalization

NO No No Yes

Static Specialization Yes Yes Yes Yes

Dynamic Specialization No No No Yes

Table 6.2 - Features of Participated Systems

The following table 6.3 provides details on queries patterns, Generalization, Specialization,

Joins, and Filters.

Query Specialization Generalization Joins Filters Variables

1 No No Yes Yes Yes

2 Yes No Yes Yes Yes

3 No No Yes Yes Yes

4 Yes No Yes Yes Yes

5 No No Yes Yes Yes

6 No No Yes No Yes

7 Yes No Yes Yes Yes

8 No Yes Yes Yes Yes

9 Yes Yes Yes Yes Yes

Table 6.3 - Patterns of Queries

173

6.3 Results

This validation aims to demonstrate how the proposed system can handle and retrieve

information from distributed resources. In this regard, the author used nine SPARQL queries

to exemplify this objective, starting from section 6.3 Results. Author used Protégé software to

build Virtual Museum Exhibition's ontology and used Intel i7 with two core and 16GB RAM.

Additionally, the author configured Apache Jena Fuseki 3, a SPARQL server, to handle our

queries. To derive correct performance results, the author executed each query 10 times for the

accurate result. Autor used CRM (Conceptual Reference Model) to develop museum ontology

format and created the same ontology multiple times to execute identical SPARQL queries.

Autor stored all distributed ontologies locally in different endpoints but under the same

namespace to create the distributed environment. The author used the Apache Jena framework

for a java programming language to develop the test environments in java libraries.

The first query demonstrates fetching data if the Parent class is a subclass in other repositories.

Query 1 shall include all artefacts of woodcraft. All other systems, FexX (Qudus, Saleem,

Ngonga Ngomo and Lee, 2021), ANAPSID (Acosta et al., 2011) and ADERIS (Kim et al.,

2017)., used the memory index technique and our system indexed all repositories in a local

server. All systems, including us, used cache storage, where systems stored the subject, object

and predicate. Cache storage helped to identify the resources as cache data was matched with

the indexed data. Other systems did not generate subqueries after identifying the resources.

They sent the main SPARQLquery to distributed repositories to fetch the data. Our system

converted the main SPARQL query into multiple subqueries, and then each subquery triggered

against the distributed repository to fetch the data. Figure 6.1 shows the results of this query

from all systems, given that FedX took less time to execute. The memory index of FedX is

much faster than other systems. The main SPARQL query has only four variables and one

filter.

174

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?painting ,?Artefacts, ?craft

WHERE {

?artefacts rdf:represented-by m:Craft

 FILTER {?craft ,''wood"}

 }

Figure 6.1 - Query 1 validation results

The second query shows how to fetch and handle data if the child class appears as a parent

class in other RDF repositories. The query is asking about parents’ details of all artists who

wrote handwritten documents. All other systems did not have dynamic indexing, where they

can not add more RDF repositories if required. Our system had the dynamic index mechanism

where we first indexed all repositories locally then added more repositories into the index when

required. Other system had static specialisation where they could only search in the local

repository one by one for the parent class of the child class.

0

1

2

3

4

5
3.7

3.22

4.13

3.37

Query 1 (ms)

Query 1 (ms)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Query 1 (ms)

Query 1
(ms)

175

In contrast, our system had dynamic specialisation, and it searched not only locally but also in

other distributed repositories. FexX, ANAPSID,ADERIS, used the memory index technique

and our system indexed all repositories in a local server. All systems, including us, used cache

storage, where systems stored the subject, object and predicate. Cache storage helped to

identify the resources as cache data was matched with the indexed data. Other systems did not

generate subqueries after identifying the resources. They sent the main SPARQLque ry to

distributed repositories to fetch the data. Our system converted the main SPARQL query into

multiple subqueries, and then each subquery triggered against the distributed repository to fetch

the data. For this purpose, we have introduced a new operator Spec (specialisation) that extracts

specific subclasses of parent class Figure 6.2 illustrates the results of this query from all

systems since OurSystem took less time to execute. This is because our system uses dynamic

specialisation features, something that does not exist in other systems. Query only has six

variables without any filters and specialisation functions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Parent, ?father, ?mother ?artist, ?writer, ?HandwrittenDocuments

WHERE {

?father : rdfs:subClassOf :parent.

?mother : rdfs:subClassOf :parent.

?writer : rdfs:subClassOf :artist.

?artist rdf:hasParents m: ?Parents

?writer rdf:writes m: ?HandwrittenDocuments

 }

176

Figure 6.2 - Query 2 validation results

Under the third query, we demonstrate how to fetch and handle data if the parent property is a

sub-property in other RDF repositories. This query covers all museum addresses of London

city. All other systems. FexX, ANAPSID, ADERIS, used the memory index technique and our

system indexed all repositories in a local server. All systems, including us, used cache storage,

where systems stored the subject, object and predicate. Cache storage assisted in identifying

the information as cache information was matched with the indexed data . Other systems did

not generate subqueries after detecting the resources. They sent the primary SPARQLquery to

distributed repositories to bring the information. Our system transformed the main SPARQL

query into multiple subqueries, and then each subquery was activated versus the distributed

repository to bring the information. Figure 6.3 shows the results of this query from all systems.

The OurSystem and FedX took less time to execute as the OurSystem fetches information from

the stored index first instead of indexing in memory. FedEx did indexing in memory but

performed well as required data was limited to few repositories. The query has only three

variables and one filter.

0

1

2

3

4

5

2.5

4.52 4.24
4.77

Query 2 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.5

4.52 4.24
4.77

0

1

2

3

4

5

6

Query 2 (ms)

OurSystem

FedX

ANAPSI

ADERIS

177

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?museum , ?address ,?city

WHERE {

?Museum rdf:hasAddress m:Address

?Place rdf: hasCity ?city

 FILTER {city ,''London"}

 }

Figure 6.3 - Query 3 validation results

Under the fourth query, we demonstrate how to fetch and handle data if a sub-property is a

parent property in other RDF repositories. Here, we are asking parents’ details of all artists

where parent’s beliefs are Christianity. For this purpose, we have introduced a new operator

Spec (specialisation) to extract the sub-property of the parent property. Other systems had static

specialisation where they could only search in the local repository for sub-property

relationships. In contrast, our system had dynamic specialisation, and it searched not only

0

1

2

3

4

2.3 2.13

3.36 3.55

Query 3 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.3 2.13

3.36 3.55

0
0.5

1
1.5

2
2.5

3
3.5

4

Query 3 (ms)

OurSystem

FedX

ANAPSI

ADERIS

178

locally but also in other distributed repositories. FexX, ANAPSID,ADERIS, used the memory

index technique and our system indexed all repositories in a local server. All systems, including

us, used cache storage, where systems stored the subject, object and predicate. Cache storage

helped to identify the resources as cache data was matched with the indexed data. Other systems

did not generate subqueries after identifying the resources. They sent the main SPARQLquery

to distributed repositories to fetch the data. Our system converted the main SPARQL query

into multiple subqueries, and then each subquery triggered against the distributed repository to

fetch the data. This can be seen in Figure 6.4, which shows the results of this query from all

systems. We can see that our system took less time to execute because OurSystem used

dynamic specialisation features that do not exist in other systems. The query has only five

variables, one filter and one dynamic specialisation function.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Parents, ?father,?mother ?artist, ?beliefs

WHERE

?father : rdfs:subClassOf :parents.

?mother : rdfs:subClassOf :parents.

?artistrdf:hasParents m: ?Parents

?parentsrdf:hasBeliefs m: ?Beliefs

 FILTER {? Beliefs ,''Christianity"}

 }

179

Figure 6.4 - Query 4 validation results

In the fifth, we show how to fetch and handle data if the Subject is an Object in other RDF

repositories. This query asks about artefacts from all repositories where oil painting is the craft,

and the used material is gold. Other systems used the memory index technique, and our system

indexed all repositories in a local server. All systems used cache storage, where systems s tored

the subject, object and predicate. Cache storage helped to identify the resources as cache data

was matched with the indexed data. Other systems did not generate subqueries after identifying

the resources. They sent the main SPARQLquery to distributed repositories to fetch the data.

Our system converted the main SPARQL query into multiple subqueries, and then each

subquery triggered against the distributed repository to fetch the data. Figure 6.5 illustrates the

results of this query from all systems. It can be seen that our system took less time to execute

as OurSystem fetched information from the stored index first instead of memory indexing. The

query has only four variables and one filter.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?exhibition, ?artefacts, ?craft, ?material

WHERE {

?exhibitionrdf:contains m: ?artefacts

0
1
2
3
4
5

2.61

4.34
3.71 3.44

Query 4 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.61

4.34
3.71 3.44

0
1
2
3
4
5

Query 4 (ms)

OurSyste
m

FedX

ANAPSI

ADERIS

180

?artefactsrdf:hasMaterial m: ?material

?artefactsrdf:representedBy m: ?craft

 FILTER {? craft, ''OilPainting"}

 {? material, ''gold"}

 }

Figure 6.5 - Query 5 validation results

In the sixth query, we show how to fetch and handle data if the Object is a Subject in other

RDF repositories. This query asks about the museum's management details, which manages

the exhibition from all repositories. Other systems used the memory index technique, and our

system indexed all repositories in a local server. All systems had the cache storage functionality

to store the subject, object and predicate. Other systems did not generate subqueries after

identifying the resources. They sent the main SPARQLquery to distributed repositories to fetch

the data. Our system converted the main SPARQL query into multiple subqueries, and then

0
1
2
3
4
5

2.71
3.21

4.34

3.12

Query 5 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.71
3.21

4.34

3.12

0
1
2
3
4
5

Query 5 (ms)

OurSystem

FedX

ANAPSI

ADERIS

181

each subquery triggered against the distributed repository to fetch the data. Figure 6.6 shows

the results of this query from all systems as we can see that our system took less time to execute

as OurSystem fetched information from stored index first instead of doing live indexing. The

query has only three variables and no filters.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?museum, ?exhibition, ?management

WHERE {

?museumrdf:hasManagement m: ?Management

?managementrdf:manages m: ?Exhibition

 }

Figure 6.6 - Query 6 validation results

Under the seventh query, we check the relationship of properties between one repository’s

subject and object to another repository's subject and object. This would cover Asia's science

0

1

2

3

4

2.26
2.63

3.87
3.21

Query 6 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.26
2.63

3.87
3.21

0

1

2

3

4

5

Query 6 (ms)

OurSyste
m

FedX

ANAPSI

ADERIS

182

museums city's addresses. For this purpose, we have introduced a new operator Spec

(specialisation), which extract the sub-property of parent property and child class of the parent

class. Other systems did not generate subqueries after identifying the resources. They sent the

main SPARQLquery to distributed repositories to fetch the data. Our system converted the

main SPARQL query into multiple subqueries, and then each subquery triggered against the

distributed repository to fetch the data. Other systems used the memory index technique, and

our system indexed all repositories in a local server. Figure 6.7 illustrates the results of this

query from all systems. We can see that our system took less time to execute as OurSystem

used dynamic specialisation features that do not exist in other systems. The query has only four

variables, one filter and a dynamic specialisation function.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Museum, ?Place, ?City ?Address

WHERE {

? address: rdfs: subClassOf: city.

? place rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 FILTER {? museum, ''science"} }

183

Figure 6.7 - Query 7 validation results

In the eighth query, we observe that Property in the second repository is a sub-property of

repository 1’s property between repository 2’s subject and repository 1’s object. Here, we are

asking about all European museum's addressees which hold Asian's artist artefacts. For this

purpose, we introduced and used a new operator Gen (generalization) which extract common

characteristics between classes, subclasses, properties and sub-properties. All other systems

did not have dynamic indexing, where they could not add more RDF repositories if required.

Our system had the dynamic index mechanism where we first indexed all repositories locally

then added more repositories into the index when required. Other systems had static

generalization where they could only search in the local repository one by one for the child

class of the parent class.

In contrast, our system had dynamic generalization, and it searched not only locally but also in

other distributed repositories. Other systems used the memory index technique, and our system

indexed all repositories in a local server. All systems used cache storage, where systems stored

the subject, object and predicate. Cache storage helped to identify the resources as cache data

was matched with the indexed data. Other systems did not generate subqueries after identifying

the resources. They sent the main SPARQLquery to distributed repositories to fetch the data.

Our system converted the main SPARQL query into multiple subqueries, and then each

0

1

2

3

4
2.81

3.67
3.31 3.11

Query 7 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.81

3.67
3.31 3.11

0
0.5

1
1.5

2
2.5

3
3.5

4

Query 7 (ms)

OurSystem

FedX

ANAPSI

ADERIS

184

subquery triggered against the distributed repository to fetch the data. For this purpose, we

have introduced a new operator Gen (generalization), which extracts the subclasses' specific

parent class. Figure 6.8 shows the results of this query from all systems. It can be seen that our

system took less time to execute as OurSystem used dynamic generalization features that do

not exist in other systems. The query has only eight variables, two filters, and a dynamic

specialisation function

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Museum, ?Address, ?Region, ?Place, ?City, ?Country, ?Atrist, ?Atrefacts

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 }

185

Figure 6.8 - Query 8 validation results

In the ninth query, we extend the eight queries to add more filters to demonstrate both Gen

(generalization) and Spec (specialisation) operators. Here, we ask about all European museum's

addresses holding Asia's artist artefacts who used oil painting craft. For this purpose, we used

both operators, Gen (generalization) and Spec (specialisation), to extract common

characteristics between classes, subclasses, properties and sub-properties. Other systems had

static specialisation and generalization functionalities to search for sub-property and parent

property relationships in the local repository. In contrast, our system had dynamic

specialisation/ generalization, and it searched locally and in other distributed repositories.

Figure 6.9 illustrates the results of this query from all systems. It can be seen that our system

took less time to execute since OurSystem used dynamic specialisation and generalization

features that do not exist in other systems. The query has only 11 variables, three filters and

dynamic specialisation and generalization functions.

PREFIX m:<http://allahm.museum.org/museum#>

SELECT ?Painter,? Painting, ?Craft, ?Museum, ?Address, ?Region, ?Place, ?City,

?Country, ?Atrist, ?Atrefacts

0
0.5

1
1.5

2
2.5

3
3.5

2.11

3.28 3.11 3.22

Query 8 (ms)

OurSystem

FedX

ANAPSI

ADERIS

2.11

3.28 3.11 3.22

0

0.5

1

1.5

2

2.5

3

3.5

Query 8 (ms)

OurSystem

FedX

ANAPSI

ADERIS

186

WHERE {

? address: rdfs: subClassOf: city.

 ? place: rdfs: subClassOf: region.

 ? painter: rdfs: subClassOf: artist.

 ? oilpainting: rdfs: subClassOf: painting.

 ? oilpainitng: rdfs: subClassOf: craft.

 ? painter rdf:draws m: ?painting

 ? place rdf:hasCity m: ?city

? place rdf:hasCity m: ?city

 ? country rdf:hasCity m: ?city

 ? museum rdf:hasAddress m: ?address

 ? museum rdf:hasArtefacts m: ?artefacts

 ? artist rdf:hasCountry m: ?Country

 FILTER {? region, ''Europe"}

 {? artist, “Asian"}

 {? painting, “oilpainting"}

187

Figure 6.9 -Query 9 validation results

6.4 Chapter Summary

This chapter undertook a discussion on the implemented framework’s performance and

accuracy compared to other similar systems. Evaluation of the implemented system

demonstrated that the proposed system could handle distributed SPARQL queries very

efficaciously. As we discussed in section 2.9, we selected FedX, ANAPSID and ADERIS to

compare with our developed system and depicted the results in a graphical format to exemplify

the performance and accuracy of all systems. We used the virtual exhibition museum’s

ontology that held 3600 triples for evaluation purposes and existed in 12 different RDF

museum data sets. We used nine SPARQL queries against systems to demonstrate how the

system responds to such queries. We required a robust machine for this evaluation, which is

why we leveraged Intel i5 with two core and 8GB RAM. In addition, we utilised Protégé

software to build the ontology of the Virtual Museum Exhibition. Finally, we configured

Apache Jena Fuseki 3, a SPARQL server, to handle the queries

0
0.5

1
1.5

2
2.5

3
3.5

4

1.29

2.65
3.21

3.87

Query 9 (ms)

OurSystem

FedX

ANAPSI

ADERIS

1.29

2.65
3.21

3.87

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Query 9 (ms)

OurSyste
m

FedX

ANAPSI

ADERIS

188

 Chapter 7

7. Conclusion and Future work

7.1 Summary of the thesis

In this thesis, we have presented a contribution that addresses the research problems explicitly.

One of the challenges this research faced was extracting required semantic data from

distributed RDF repositories through SPARQL. Retrieving data from distributed RDF data

sources is time-intensive. An optimised and proper structure is required because SPARQL

queries are triggered to the distributed end to retrieve data. As the author discussed in chapter

2, the existing system clarifies that they retrieve data directly from distributed RDF repositories

without using a centralised index mechanism. Direct access to RDF repositories without using

a centralised index mechanism can not be adequate for an unlimited number of distributed RDF

repositories. The author compared the proposed system, in chapter 6, with other similar

systems. Other similar systems were FedX, ANAPSID and ADERIS. After validating the

chosen systems, we can conclude that these systems work well with limited RDF data sources.

The author discussed in chapter 2 the ins and outs of the foundation technology behind the

semantic web. The author included a detailed review of the existing work done by other authors

and a critical review of their work. It talks explicitly about data the types and approaches of

data integration, and Distributed Query Processing System generates optimised query plans for

Distributed Query Processing, various Response Time Models. Then, the chapter touches upon

and explicates other Query Execution techniques before moving onto the investigation of a

Query Federation system of data processing and introspect on its various standards and then

briefly discuss what Adaptive Query Operators require. Consequently, section 2.9 explores

189

deep into Query Processing Systems, such as ANAPSID, ADAERIS, SYMMETRIC INDEX

HASH JOIN, SPLENDID, SemWIQ and DARQ.

Given that one of the thesis aims was to put forward the complete architecture to fetch RDF

data from distributed sources efficiently, we discussed all our phases of the proposed

architecture. As a case in point, we discussed indexing, algebraic notations, introducing

Specialisation and Generalisation operators, caching mechanism, identifying resources from

the cache, generating subqueries, and joining the subquery results. This thesis has provided all

algorithms of the planned architecture. For this purpose, we have utilized Apache Jena Fuseki

framework for handling SPARQL queries. For this purpose, Protégé software was used to

develop a virtual museum ontology. We undertook the development of a system using Java

under the planned algorithms to test our system. We chose nine different case scenarios in this

process, as presented in chapter 6, that fulfilled all distributed fetching from all angles, such as

dynamic indexing, fetching data from distributed RDF data sets, joins, merging, specialisation,

and generalisation.

We chose three different similar systems to make the comparisons. These systems are some of

the more popular ones to retrieve data from distributed RDF data sets. The architecture of these

systems is different from our proposed system. Query results very clearly point out that our

proposed system is better than other systems. The difference between our system and other

systems was that in our system, we first created the index for all participants given data sets,

and other systems were indexing directly in the memory, which is hugely time intensive. We

converted the main SPARQL query into algebraic expression in our proposed system before

extracting triples and variables information to store them inside the cache. This enabled the

system to identify the data source, where data exist, and subqueries generated according to

identified data sources. Other systems fetched the data directly from the data sources before

joining them, whereas our system used cache to identify data sources and generating

190

subqueries. We introduced two new dynamic operators, Specialisation and Generalisation, to

fetch the semantic data from parent and child nodes. The testing mechanism encompassed all

complex scenarios and helped us to evaluate our proposed system that effectively fetched

distributed RDF data sets.

Museum ontology was developed, and Simplified Agile Methodology (SAMOD) methodology

was adopted for Museum’s ontology Development (Appendix A). SAMOD focuses on iterative

tests to ensure that the developed ontology is consistent and matches the requirements.

Different tests were performed on this ontology, and these tests were model tests, data tests and

query tests. The purpose of choosing this methodology was that it was very lightweight, and it

had three simple stages: understanding the requirements, Merging the Ontology, and

Refactoring the main ontology branch. The author utilized the CIDOC Conceptual Reference

Model (CRM), a theoretical and practical technique for information integration within cultural

heritage. It can help scientists, controllers, and the public check out complex queries regarding

our history across numerous and distributed datasets. The CIDOC CRM achieves that by

simply providing meanings and a proper design for explaining the implicit and specific

concepts and relationships employed in cultural heritage documentation and primary interest

for querying and exploring such details.

The author used the Apache Jena framework for a java programming language to develop a

proposed framework in java libraries. It helped the author to manage the various semantic

components of the semantic web and linked-data application to conform to the standards of the

W3C. Since 2000, Jena is an open-source project developed by researchers at HP Laboratories

in Bristol city in the UK and later became widely used. It was a success to become part of the

Apache Software Foundation in November of the year 2010. The author used the unit and

functional testing techniques as the proposed framework have different individual units which

works together. Other testing techniques were compared to chosen testing strategies, e.g.,

191

integration testing, system testing, regression testing, acceptance testing, component testing

and performance testing. The unit testing and functional technique have tested the developed

framework. The author used the Museum ontology to test and evaluate the developed system.

It demonstrated all how the complete developed and processed system works. Different types

of tests have been performed in this thesis, like the algebraic operator’s test (e.g., select, join,

outer join, generalization, and specialisation operators test) and test the proposed algorithm.

Test results showed that all developed system units worked as expected, and no errors were

found during testing all phases of the tested framework.

The purpose behind the test was that the developed system should function and fulfil all the

objectives specified in chapter 1 and perform what it is expected to do. Generally, testing has

been performed throughout the development process to determine whether the developed

system fulfils the specified requirements. Testing has been performed by running the whole

phases of the framework. This ensured that the developed system fulfils the requirements. It

also determined to show that the developed software satisfies its purpose when arranged in a

specific environment. This process replied to the question, “Are we developing the right

product or not?”. Testing techniques had become very much more manageable because in the

unit and functional testing, each part or unit of the developed system was tested first, and after

this, the whole program was tested. In unit testing, the author examined each phase of the

developed system individually in a sequence. Finally, the author evaluated the performance of

the implemented framework and its accuracy with other related systems. Against this

framework, the evaluation demonstrated that the proposed system could efficiently handle

distributed SPARQL queries. In particular, the author compared the proposed system with

other similar subdivision of systems. These systems were FedX, ANAPSID and ADERIS.

These systems were selected because of their similar functionalities proposed in our system.

All chosen systems under this evaluation have implemented the triple pattern for the SPARQL

192

endpoints, which holds similarity with our proposed system. These systems' functions prevent

the user from starting the URL to fetch data from distributed resources instead of overwhelming

the amount of complex data. Our selection choice based on the fact that these systems are based

on Sesame and their models implemented the join. Generally, the other system’s proficiency

goes down when adding or merging more RDF data sources as they used memory index. The

selected system's query plan does include data from the triple pattern , and query performance

goes up when all RDF sources are mentioned in the SPARQL query. However, when these

systems tried to add more RDF sources after query results, they were not as accurate as they

were supposed to be. These systems first obtained results from RDF sources which frequently

got a no-connection error if the required data source was unavailable.

7.2 Originality and Contribution

This research aimed to offer an approach that enables the accessing of distributed RDF

information. This process is followed by combining the results obtained to evaluate the validity

of the research study. This research has made the following original contributions.

• Design and implementation of an efficient framework using indexing technique

for querying ontologies.

• Developed formal Specification of a semantic algebra of the ontological

queries.

• Developed algorithms for translating the global queries into algebraic

expressions.

• Developed algorithms for splitting the global queries into a set of independent

subqueries that can be executed locally by translating them into expressions of

semantic algebra.

193

• Developed algorithms for aggregating the results of the execution of the

subqueries.

The author presented the methods, technologies, and elements to achieve the desired outcome.

The author introduced the framework and operators involved in developing the system. It also

showed how each element was combined to achieve the common goal of validating the research

hypothesis. The author proposed the conceptual framework upon which the research

methodology functions to help in the query execution process by gaining access to the data

present within distributed RDF sets across a database. The methodology to be used also

involved elements significant to the developed system. Chapter 4 introduced such elements as

the semantic algebra involved in converting a traditional SPARQL query. The author

elaborated the concepts included in the selection, projection, joins, specialisation and

generalisation operators. These operators were usually in assistance during the process of

processing and converting a query. After applying these operators, the system converted a

query into its primary algebraic expression. Accordingly, chapter 4 proposed the algorithms

behind the conceptual framework. The algorithms as substantiated in this chapter included the

procedural RDF indexing algorithm, converting the main SPARQL query into the sub-queries

algorithm, and joining the results algorithm. These algorithms worked collectively to start and

end to facilitate the developed query processing system. Semantic algebra is the symbolic

mathematical language that was used to represent semantic data. In simpler terms, the function

of semantic algebra was to break down semantic information into the most basic, raw form of

mathematical data that could make inference accurately by a computerized system. Semantic

algebra essentially helped in detailing systems down to a mini level. This was precisely why

the technology of semantic algebra played such a significant role in the research. SPARQL

query was converted into its algebraic notations. This process was usually done by using

semantic operators. Semantic operators refer to operators that perform their tasks based on the

194

semantic context of information. This implies that semantic operators can manipulate a given

text and convert it into its semantic algebraic notation. For this research, semantic operators

have been used to convert SPARQL queries into their algebraic forms.

The process was refined by addressing the need to aggregate all relevant information from

various RDF sources instead of throwing up just one result. It was made possible by breaking

up the main SPARQL query into sub-queries –the individual answers produced a

comprehensive response. The basic RDF pattern of the <Subject, Object, Predicate> triple

model was employed. This simple semantic triple pattern helped to optimise RDF data in

creating indexing for all participant data sets instead of indexing in the memory. A step-by-

step process was adopted. Multiple algorithms were developed to translate the SPARQL query

into an algebraic expression, converted the main SPARQL query into subqueries, and carried

out the SPARQL queries search in distributed ontologies. Finally, the author formulated an

algorithm to combine the subqueries results. Two new operators, Generalisation and

Specialisation, were proposed to access RDF parent and child nodes. In conclusion, the

proposed/developed system allowed dynamic indexing, sourcing data from distributed RDF

sets, identifying resources from cache, merging results, specialisation, generalisation, fetching

parent and child nodes.

7.3 Limitations and Future Recommendations

This section discusses the research problems that continue to exist and does not form part of

this study. In this thesis, our main achievement is to index all the participated data sets and

propose a comprehensive mechanism of accessing distributed RDF data sets via the generation

of algebraic expression from the main query. All data was stored in a temporary cache.

Converting the main SPARQL query into sub-queries and then sending each subquery to

separate data sets before combining the returning results.

195

Future work may need to research how to index all different datasets as we successfully indexed

them in the homogeneous environment in this research. However, when we apply the same

proposed architecture to a heterogeneous environment, the results are inaccurate as they have

been with the homogeneous environment. There is also a need to research identifying ways of

retrieving data from different models; in this thesis, we used an objected -oriented model.

Proper research must fetch data from other formats, such as the relational model, XML format.

Eventually, the objective of semantic data is to generate interlink gigantic amounts of data. In

the semantic web world, millions of triplets are already connected and available on demand.

This research showed how to get all similar domain data sets in the first instance before

indexing them all on a local or remote server. However, more research needs to be conducted

on directly fetching all participated cross domains and different model from their location and

indexing them locally. Furthermore, there needs to be a mechanism that data must be updated

on the stored index if it is changed or updated.

196

References

Shadbolt, N., Berners-Lee, T. and Hall, W. (2006). The Semantic Web Revisited. IEEE

Intelligent Systems, 21(3), pp.96–101.

Heath, T. (2010). A taskonomy for the Semantic Web. Semantic Web, 1(1,2), pp.75–81.

Khozoie, N. (2012). Health Information Management On Semantic Web :(Semantic

HIM). International journal of Web & Semantic Technology, 3(1), pp.61–68.

Fazzinga, B. and Lukasiewicz, T. (2010). Semantic search on the Web. Semantic Web, 1(1,2),

pp.89–96.

Dubinin, A.V., Yang, C.-W. . and Vyatkin, V.V. (2020). THE USE OF SPARQL LANGUAGE

IN ONTOLOGICAL MODELING OF MULTI-AGENT SYSTEMS IN SEMANTIC

WEB. University proceedings. Volga region. Technical sciences, (1).

Siddiqui, F. and Alam, M.A. (2011). Web Ontology Language Design and Related Tools: A

Survey. Journal of Emerging Technologies in Web Intelligence, 3(1).

Yang, S., Guo, J. and Wei, R. (2017). Semantic interoperability with heterogeneous

information systems on the internet through automatic tabular document

exchange. Information Systems, 69, pp.195–217.

Simperl, E. (2009). Reusing ontologies on the Semantic Web: A feasibility study. Data &

Knowledge Engineering, 68(10), pp.905–925.

Hitzler, P. and Janowicz, K. (2010). Semantic Web – Interoperability, Usability,

Applicability. Semantic Web, 1(1,2), pp.1–2.

ZHANG, Z. and YANG, T. (2011). SPARQL ontology query based on natural language

understanding. Journal of Computer Applications, 30(12), pp.3397–3400.

197

Arul, U. and Prakash, S. (2020). Toward automatic web service composition based on

multilevel workflow orchestration and semantic web service discovery. International Journal

of Business Information Systems, 34(1), p.128.

Sakellariou, A.E. (2019). Job Position: Data steward. [online] Duchenne Data Foundation.

Available at: https://www.duchennedatafoundation.org/job-position-data-steward/ [Accessed

16 Jun. 2020].

Shah, V. (2016). Comparative Study Of Semantic Search Engines. International Journal Of

Engineering And Computer Science.

Retracted: Semantic Information Integration with Linked Data Mashups Approaches.

(2015). International Journal of Distributed Sensor Networks, 11(12), p.431342.

Development of a CUBRID-Based Distributed Parallel Query Processing System.

(2017). Journal of Information Processing Systems.

Chahal, P. and Singh, M. (2021). An Efficient Approach for Ranking of Semantic Web

Documents by Computing Semantic Similarity and Using HCS Clustering. International

Journal of Semiotics and Visual Rhetoric, 5(1), pp.45–56.

Hammami, R., Bellaaj, H. and Kacem, A.H. (2018). Semantic Web Services

Discovery. International Journal on Semantic Web and Information Systems, 14(4), pp.57–72.

Abid, A., Rouached, M. and Messai, N. (2019). Semantic web service composition using

semantic similarity measures and formal concept analysis. Multimedia Tools and Applications,

79(9-10), pp.6569–6597.

Appreciation to distributed and parallel databases reviewers. (2018). Distributed and Parallel

Databases, 36(1), pp.1–3.

198

Babu, S. (2012). Massively Parallel Databases and MapReduce Systems. Foundations and

Trends® in Databases, 5(1), pp.1–104.

Osman, I., Ben Yahia, S. and Diallo, G. (2021). Ontology Integration: Approaches and

Challenging Issues. Information Fusion, 71, pp.38–63.

Moeller, B. and Frings, C. (2014). Long-term response-stimulus associations can influence

distractor-response bindings. Advances in Cognitive Psychology, 10(2), pp.68–80.

Zhu, L. (2015). Processing Recommender Top-N Queries in Relational Databases. Journal of

Software, 10(2), pp.162–171.

Almourad, M.B. (2013). Measuring Database Objects Relatedness in Peer-to-Peer

Databases. International Journal of Computer and Communication Engineering, pp.289–293.

Korneva, L.A. and Khorev, P.B. (2018). Development of framework secure application with

client-server architecture. Informacionno-technologicheskij vestnik, 15(1), pp.112–119.

Devulapalli, K. and Bagui, S. (2018). Comparison of Hive’s query optimisation

techniques. International Journal of Big Data Intelligence, 5(4), p.243.

Sinuraya, J., Rezky, S. F., & Tarigan, M. (2019). Data Search Using Hash Join Query and

Nested Join Query. Journal of Physics: Conference Series, 1361, 012079.

https://doi.org/10.1088/1742-6596/1361/1/012079.

Chavan, Mr.Prashant.S. and Phulpagar, Prof.Dr.B.D. (2016). Adaptive Query Interface for

Database Search. International Journal Of Engineering And Computer Science.

Chen, H., Zeng, Q., Zhang, Y. and Tang, D. (2018). Performance evaluation of main -memory

hash joins on KNL. International Journal of Computational Science and Engineering, 1(1), p.1.

199

Achichi, M., Bellahsene, Z., Ellefi, M.B. and Todorov, K. (2019). Linking and Disambiguating

Entities Across Heterogeneous RDF Graphs. SSRN Electronic Journal.

Acosta, M., Vidal, M.-E., Lampo, T. and Castillo, J. eds., (2011). ANAPSID: An Adaptive

Query Processing Engine for SPARQL Endpoints. The Semantic Web - ISWC 2011 - 10th

International Semantic Web Conference At: Bonn, Germany, 7031.

Kim, B., Kim, D., Ko, G., Noh, Y., Lim, J., Bok, Lee, B. and Yoo, J. (2017). A Dis tributed

SPARQL Query Processing Scheme Considering Data Locality and Query Execution

Path. KIISE Transactions on Computing Practices, 23(5), pp.275–283.

Liu, Y., He, Z. and Meng, X.W. (2018). Accelerating Hash Join Performance by Exploiting

Data Distribution. International Journal of Computer Trends and Technology, 56(1), pp.6–20.

Saleem, M., Khan, Y., Hasnain, A., Ermilov, I. and Ngonga Ngomo, A.-C. (2016). A fine-

grained evaluation of SPARQL endpoint federation systems. Semantic Web, 7(5), pp.493–518.

Langegger, A. and Wöß, W. (2008). SemWIQ - Semantic Web Integrator and Query

Engine. 3rd International Applications of Semantic Web Workshop (AST’08)At: Munic,

Germany, Informatik 2008.

Quilitz, B. and Leser, U. (2008). Querying Distributed RDF Data Sources with

SPARQL. ESWC , volume 5021 of Lecture Notes in Computer Science, page 524-538.

Springer, (2008), p.

Mishra, J.P. and Mishra, S.K. (2017). Evaluating performance with implementation of

virtualised data in the cloud using metaheuristic approach. International Journal of Knowledge

Engineering and Data Mining, 4(3/4), p.187.

200

tyagi, G. (2015). Ontology Based Fuzzy Query Execution. American Journal of Networks and

Communications, 4(3), p.16.

Sasak, A. and Brzuszek, M. (2010). Speculative execution plan for multiple query execution

systems. Annales UMCS, Informatica, 10(2).

Poovammal, E. and Ponnavaikko, M. (2010). Utility Independent Privacy Preserving Data

Mining - Horizontally Partitioned Data. Data Science Journal, 9, pp.62–72.

Daenen, J., Neven, F., Tan, T. and Vansummeren, S. (2016). Parallel evaluation of multi-semi-

joins. Proceedings of the VLDB Endowment, 9(10), pp.732–743.

Tang, D., Zhang, Y., Zeng, Q. and Chen, H. (2019). Performance evaluation of main -memory

hash joins on KNL. International Journal of Computational Science and Engineering, 20(4),

p.425.

XU, S. and HONG, M. (2012). Translating SQL Into Relational Algebra Tree-Using Object-

Oriented Thinking to Obtain Expression Of Relational Algebra. International Journal of

Engineering and Manufacturing, 2(3), pp.53–62.

Rahim, R., Nurarif, S., Ramadhan, M., Aisyah, S. and Purba, W. (2017). Comparison Searching

Process of Linear, Binary and Interpolation Algorithm. Journal of Physics: Conference Series,

930, p.012007.

Qudus, U., Saleem, M., Ngonga Ngomo, A.-C. and Lee, Y.-K. (2021). An empirical evaluation

of cost-based federated SPARQL query processing engines. Semantic Web, pp.1–26.

201

Rakhmawati, N. and Fadzilah, L., 2019. Dataset Characteristics Identification for Federated

SPARQL Query. Scientific Journal of Informatics, 6(1), pp.23-33.

Kurgaev, A.F. (2018). New definition of the SPARQL — query language for the Semantic

Web. Reports of the National Academy of Sciences of Ukraine, (11), pp.19–31.

Kaneko, S. and Chishiro, E. (2018). Query Conversion for Aggregate Operations in Distributed

SPARQL Query Processing Using Summary Information. Journal of Information Processing,

26(0), pp.747–754.

Carstensen, A.-K. and Bernhard, J. (2018). Design science research – a powerful tool for

improving methods in engineering education research. European Journal of Engineering

Education, 44(1-2), pp.85–102.

Divyani Shivkumar Taley (2020). Comprehensive Study of Software Testing Techniques and

Strategies: A Review. International Journal of Engineering Research and, V9(08).

Anwar, N. and Kar, S. (2019). Review Paper on Various Software Testing Techniques &

Strategies. Global Journal of Computer Science and Technology, pp.43–49.

Jani, K. and Dr. V.M. Chavda, Dr.V.M.C. (2011). A Study on Semantic Web Framework:

JENA and Protégé. Indian Journal of Applied Research, [online] 4(1), pp.143–145. Available

at: https://www.worldwidejournals.com/indian-journal-of-applied-research-

(IJAR)/recent_issues_pdf/2014/January/January_2014_1388583791_ee78c_43.pdf [Accessed

1 Dec. 2019].

Abdelghany, A., Darwish, N. and Hefni, H. (2019). An Agile Methodology for Ontology

Development. International Journal of Intelligent Engineering and Systems, 12(2), pp.170–

181.

202

Gaitanou, P. and Gergatsoulis, M. (2012). Defining a semantic mapping of VRA Core 4.0 to

the CIDOC conceptual reference model. International Journal of Metadata, Semantics and

Ontologies, 7(2), p.140.

ZHANG, G. and XU, Q. (2009). Design of distributed search engine system for apparel based

on semantic Web services. Journal of Computer Applications, 29(6), pp.1601–1604.

Zangenehpour, S., Ali Seyyedi, M. and Mohsenzadeh, M. (2012). A New Framework for

Mapping Business Domain Ontologies. International Journal of Computer Applications,

55(12), pp.16–20.

Hong, J.L. (2016). Automated Data Extraction with Multiple Ontologies. International Journal

of Grid and Distributed Computing, 9(6), pp.381–392.

Jagvaral, B., Lee, W., Kim, K.-P. and Park, Y.-T. (2015). SPARQL Query Processing in

Distributed In-Memory System. Journal of KIISE, 42(9), pp.1109–1116.

Tomaszuk, D. and Hyland-Wood, D. (2020). RDF 1.1: Knowledge Representation and Data

Integration Language for the Web. Symmetry, 12(1), p.84.

Oguz, D., Yin, S., Ergenç, B., Hameurlain, A. and Dikenelli, O., 2017. Extended Adaptive Join

Operator with Bind-Bloom Join for Federated SPARQL Queries. International Journal of Data

Warehousing and Mining, 13(3), pp.47-72.

Song, S., Huang, W. and Sun, Y. (2017). Semantic query graph based SPARQL generation

from natural language questions. Cluster Computing, 22(S1), pp.847–858.

Rabhi, A. and Fissoune, R. (2019). WODII: a solution to process SPARQL queries over

distributed data sources. Cluster Computing.

203

Abdelaziz, I., Harbi, R., Khayyat, Z. and Kalnis, P. (2017). A survey and experimental

comparison of distributed SPARQL engines for very large RDF data. Proceedings of the

VLDB Endowment, 10(13), pp.2049–2060.

Mohammad Shahabuddin, S. and Prasanth, Y. (2016). Integration Testing Prior to Unit Testing:

A Paradigm Shift in Object-Oriented Software Testing of Agile Software Engineering. Indian

Journal of Science and Technology, 9(20).

Sam, K.M. (2019). Unit Testing to Support Reusable for Component-Based Software

Engineering. International Journal of Trend in Scientific Research and Development, Volume-

3(Issue-2), pp.638–640

204

Appendix A: Museum Ontology

Classes and Properties

This segment portrays the components of the MUSEUM ontology, which we are going to use

in our Virtual exhibitions.

Classes

Museum Ontology's Classes

Entities

Entity Class

Artefacts

205

Subclass None

Description It is a subclass of none and stores

information about artefacts of museums

Artefacts Class

Painting

Subclass Artefacts

Description It is a subclass of Artefacts and stores

information about paintings

Painting Class

Handwritten Documents

Subclass Artefacts

Description It is a subclass of Artefacts and stores

information about hand written documents

Handwritten Documents

Artist

Subclass Founder

Description It is a subclass of Founder class and stores

information about Artist

Artist Class

Painter

206

Subclass Artist

Description It is a subclass of Artist class and stores

information about painters

Painter Class

Writer

Subclass Artist

Description It is a subclass of Artist and stores

information about writers

Writer Class

Oil painting

Subclass Craft

Description It is a subclass of craft class and stores

information about oil paintings

Oil Painting Class

Water Colour

Subclass Craft

Description It is a subclass of craft class and stores

information about water colour

Water Colour Class

Wood

Subclass Craft

207

Description It is a subclass of craft class and stores

information about wood

Wood Class

Place

Subclass Region

Description It is a subclass of region class and stores

information about region

Place Class

Man

Subclass Gender

Description It is a subclass of gender class and stores

information about male category

Man Class

Women

Subclass Gender

Description It is a subclass of gender class and stores

information about women

Women Class

Father

Subclass Parents

Description It is a subclass parents of and stores

information about fathers

Father Class

Mother

208

Subclass Parents

Description It is a subclass of parent and stores

information about mothers

Mother Class

Belief

Subclass None

Description It is a subclass none of and stores information

about person's beliefs

Belief Class

Beginning-of-Existence

End-of-Existence

Temporalities

Actualities

209

Abstractions

Events

Situations

Actions

Agents

210

Works

Manifestations

Items

Time

Places

Properties

211

Museum Ontology's Properties

Manage

Sub Property TopObjectProperty

Domain Management

Range Exhibition

Description It connects Management and Exhibition and

make sense to triple

manage property

212

Contains

Sub Property TopObjectProperty

Domain Exhibition

Range Artefacts

Description It connects Exhibition and Artefacts and

make sense to triple

contains property

213

Draws

Sub Property TopObjectProperty

Domain Painter

Range Painting

Description It connects Painter and painting and make

sense to triple

draws property

214

hasAddress

Sub Property TopObjectProperty

Domain Museum

Range Address

Description It connects Museum and Address and make

sense to triple

hasAddress property

hasBelief

Sub Property TopObjectProperty

Domain Person

Range Belief

Description It connects Person and Belie and make sense

to triple

215

hasBelief property

hasGender

Sub Property TopObjectProperty

Domain Person

Range Gender

Description It connects Person and Gender and make

sense to triple

hasGender property

216

hasManagement

Sub Property TopObjectProperty

Domain Museum

Range Management

Description It connects Museum and Management and

make sense to triple

hasManagement property

217

hasMaterial

Sub Property TopObjectProperty

Domain Artefacts

Range Material

Description It connects Artefacts and Material and make

sense to triple

hasMaterial property

218

Sub Property TopObjectProperty

Domain Person

Range Country

Description It connects Person and Country and make

sense to triple

hasNationality

219

Sub Property TopObjectProperty

Domain Artist

Range Parents

Description It connects Artist and Parents and make sense

to triple

hasParents property

220

Sub Property hasParents

Domain Artist

Range Father

Description It connects Artist and father and make sense

to triple

hasFather Property

221

hasMother

Sub Property hasParents

Domain Artist

Range Mother

Description It connects Artist and Mother and make

sense to triple

hasMother property

222

hasPic

Sub Property TopObjectProperty

Domain Handwritten Documents , Painting

Range Picture

Description It connects and make sense to triple

hasPic property

223

hasSpouse

Sub Property TopObjectProperty

Domain Artist

Range Spouse

Description It connects Artist and Spouse and make

sense to triple

hasSpouse property

224

origins

Sub Property TopObjectProperty

Domain Artist

Range Place

Description It connects Artist and Place and make sense

to triple

origins property

225

represent by

Sub Property TopObjectProperty

Domain Artefact

Range Craft

Description It connects Artefact and Craft and make

sense to triple

represent by property

226

Appendix B: Ontology indexing code

package apache.apacheJena;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.List;

import java.util.Scanner;

import org.apache.jena.rdf.model.Model;

import org.apache.jena.rdf.model.ModelFactory;

import org.apache.jena.sparql.core.TriplePath;

import org.apache.jena.util.FileManager;

import org.apache.lucene.queryParser.ParseException;

public class Main {

 // File which you want to show in index file any file from Data directory

 static final String INPUTFILENAME = "/home/cis/Desktop/Data/Museum.rdf";

 // path of directory where you want data files to be kept

 static String outputDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\Data";

 // path of directory where you want index files to be kept1

 static String inputDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\index";

 static Tester tester = new Tester(inputDir, outputDir);

 public static String prefix = "PREFIX :<http://www.semanticweb.org/Sharjeel/ontologies/#>"

 + "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>"

227

 + "PREFIX owl:<http://www.w3.org/2002/07/owl#>" + "PREFIX

rdfs:<http://www.w3.org/2000/01/rdf-schema#>";

 static boolean optional = false;

 public static void main(String args[]) throws IOException {

 List<TriplePath> subqueries = new ArrayList<>();

 String queryString = "PREFIX :

<http://www.semanticweb.org/Sharjeel/ontologies/2017/10/untitled-ontology-6#>"

 + "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>"

 + "PREFIX owl:<http://www.w3.org/2002/07/owl#>" + "PREFIX

rdfs:<http://www.w3.org/2000/01/rdf-schema#>"

 + "SELECT distinct ?Subject ?Predicate ?Object WHERE { ?Predicate

rdf:type owl:ObjectProperty. ?Predicate rdfs:domain ?Subject. ?Predicate rdfs:range ?Object . }";

 String mergedQuery = "PREFIX :

<http://www.semanticweb.org/Sharjeel/ontologies/2017/10/untitled-ontology-6#>"

 + "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>"

 + "PREFIX owl:<http://www.w3.org/2002/07/owl#>" + "PREFIX

rdfs:<http://www.w3.org/2000/01/rdf-schema#>"

 + "SELECT distinct ?Subject ?Subject_subclasses ?Predicate

?Predicate_Domain ?Prdicate_Range ?Predicate_subProperty ?Object ?Object_Subclasses WHERE {

?Predicate rdf:type owl:ObjectProperty. ?Predicate rdfs:domain ?Subject. ?Predicate rdfs:range

?Object ."

 + "optional {?Subject_subclasses rdfs:subClassOf ?Subject.

?Subject_subclasses a owl:Class.}"

 + "optional {?Predicate rdfs:domain ?Predicate_Domain.}"

 + "optional {?Predicate rdfs:range ?Prdicate_Range.}"

 + "optional {?Predicate rdfs:subPropertyOf

?Predicate_subProperty.}"

228

 + "optional {?Object_Subclassesrdfs:subClassOf ?Object.

?Object_Subclasses a owl:Class.}}";

 // Show all sub-classes and superclasses of any class/entity

 String query1 = "select distinct ?class ?superclass ?subclass WHERE {{?class a

owl:Class }."

 + "optional {?class rdfs:subClassOf ?superclass. }" +

"optional{?subclass rdfs:subClassOf ?class}}";

 // Show all sub-classes and superclasses of any Woman(specific class)

 String query2 = "select distinct ?superclass ?subclass WHERE { ?superclass a

owl:Class. :Woman rdfs:subClassOf ?superclass."

 + "?subclass rdfs:subClassOf :Woman}";

 // Show all painters painting where used material is bronz

 String query3 = "select Distinct ?PaintingName ?MaterialName ?firstName

?lastName ?y where {?s a owl:NamedIndividual. {?s :Draws ?x.} ?x :Painting_Name ?PaintingName."

 + "?x :hasMaterial ?y. ?y :Material_Name 'Bronz'." + "?y

:Material_Name ?MaterialName."

 + "?s :First_Name ?firstName." + "?s :Last_Name ?lastName." + "}";

 //Show all the artefacts of exhibitions where used craft is oil painting and material is

gold

 String query4 =

 "select Distinct ?painting ?paintingName ?MaterialName

?craftName ?painterFname ?painterLname ?x where{"

 + "?s a owl:NamedIndividual. ?s :Craft_Name 'Oil Painting'. "

 + "?painting :usedCraft ?s. ?painting :Painting_Name

?paintingName."

 + "?s :Craft_Name ?craftName." + "?painting :hasMaterial

?material."

229

 + "?material :Material_Name 'Gold'." + "?material :Material_Name

?MaterialName."

 + "?x :Draws ?painting." + "?x :Last_Name ?painterFname." + "?x

:First_Name ?painterLname.}";

 //Show all addresses including cities of Museums where region is Europe and

Museum category is archaeology

 String query5 = "select Distinct ?RegionName ?addressOfMuseum

?countryOfMuseum ?categoryOfMuseum ?cityOfMuseum where{ "

 + "?s a owl:NamedIndividual. ?s :Region_Name 'Europe'." + "?s

:Region_Name ?RegionName."

 + "?category :Category_Name 'Archaeology'." + "?z :hasAddress

?address." + "?z :hasCity ?city."

 + "?z :hasCountry ?country." + "?z :hasCategory ?category."

 + "?address :Museum_Address ?addressOfMuseum." + "?city

:City_Name ?cityOfMuseum."

 + "?country :Country_Name ?countryOfMuseum." + "?category

:Category_Name ?categoryOfMuseum."

 + "}";

 //Show addresses of all museums in Europe region which holds the artefacts of

Asian’s artist whoused oil painting craft for paintings

 String query6="select ?CraftName ?PaintingName ?Artist_firstName

?Artist_LastName ?ArtistRegion ?Museum ?MuseumRegion ?cityOfMuseum where"

 +"{?s :Craft_Name 'Oil Painting'. ?x :usedCraft ?s."

 +"?s :Craft_Name ?CraftName."

 +"?Y :Draws ?x."

 +"?Y :First_Name ?Artist_firstName."

 +"?Y :Last_Name ?Artist_LastName."

 +"?Y :hasRegion ?ArtistReg."

 +"?ArtistReg :Region_Name ?ArtistRegion."

230

 +"?x :Painting_Name ?PaintingName."

 +"?Museum :hasArtifact ?x. ?Museum :hasRegion ?r."

 +"?Museum :hasAddress ?adress."

 +"?Museum :hasCity ?city."

 +"?city :City_Name ?cityOfMuseum."

 +"?r :Region_Name ?MuseumRegion."

 +"?r :Region_Name 'Europe'. }";

 ReadableIndex readableIndex = new ReadableIndex(outputDir, inputDir);

 Model model = readableIndex.createReadableIndex(new TextFileFilter());

 // Get List of Models in output directory.

 List<Model> modelCollection = new ArrayList<>();

 modelCollection = readableIndex.createModelList(new TextFileFilter());

 System.out.println("Total Models in Directory : " + modelCollection.size());

 try {

 tester.search("Painting");

 } catch (ParseException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 File file = new File(outputDir + "/" + "queries.txt");

 if (!file.exists()) {

 file.createNewFile();

231

 }

 FileWriter writer = new FileWriter(file);

 AlgebraExec transformer = new AlgebraExec();

 String algebraForm = null;

 // options for selecting query

 String queryFinal = null;

 int queryIndex;

 //do {

 readableIndex.queryExecutor(model, mergedQuery,

"IndexFile_Merged.csv");

 System.out.println("------------------------------");

 System.out.println("1. Show all sub-classes and superclasses of any

entity/class");

 /*System.out.println("2. Show all sub-classes and superclasses of specific

entity/class - woman");*/

 System.out.println(

 "3. Show all painters painting where used material is bronz

inclusing painting's image(3)");

 System.out.println(

 "4. Show all the artefacts of exhibitions where used craft is

oil painting and material is gold(8)");

 System.out.println(

 "5. Show all addresses including cities of Museums where

region is Europe and Museum category is archaeology(10)");

 System.out.println(

 "6. Show addresses of all museums in Europe region which

holds the artefacts of Asian’s artist whoused oil painting craft for paintings(11)");

 System.out.println("7. Press 7 to exit");

232

 System.out.println();

 System.out.println("Enter query(number) to be executed - ");

 Scanner input = new Scanner(System.in);

 queryIndex = input.nextInt();

 switch (queryIndex) {

 case 1:

 readableIndex.queryExecutor(query1, "IndexFile_query1.csv",new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query1,

model);

 queryFinal = query1;

 break;

 case 2:

 readableIndex.queryExecutor(query2, "IndexFile_query2.csv",new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query2,

model);

 queryFinal = query2;

 break;

 case 3:

 readableIndex.queryExecutor(query3, "IndexFile_query3.csv", new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query3,

model);

233

 queryFinal = query3;

 break;

 case 4:

 readableIndex.queryExecutor(query4, "IndexFile_query4.csv",new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query4,

model);

 queryFinal = query4;

 break;

 case 5:

 readableIndex.queryExecutor(query5, "IndexFile_query5.csv",new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query5,

model);

 queryFinal = query5;

 break;

 case 6:

 readableIndex.queryExecutor(query6, "IndexFile_query6.csv",new

TextFileFilter());

 algebraForm = transformer.transformToAlgebricForm(query6,

model);

 queryFinal = query6;

 break;

 case 7:

 System.exit(0);

234

 default:

 /*readableIndex.queryExecutor(modelCollection, mergedQuery,

"IndexFile_Merged.csv");

 algebraForm =

transformer.transformToAlgebricForm(mergedQuery, model);

 queryFinal = mergedQuery;*/

 break;

 }

 if (algebraForm != null && algebraForm.contains("project")) {

 algebraForm.replaceAll("project", "π");

 }

 // Writes the sparql query and its algebric form to the file.

 writer.write("\n" + queryFinal + "\n\n SPARQL Algebra :\n " + algebraForm);

 subqueries = transformer.getSubqueries(queryFinal);

 // get models for triples

 SubQueryGenerator generator = new SubQueryGenerator(subqueries);

 generator.getModelsForQuery(modelCollection);

 generator.runQueryonModels(modelCollection, queryFinal);

 writer.flush();

 writer.close();

235

 System.out.println("\nConsolidated and subquery results are present under

directory : " + outputDir);

 System.out.println();

 // } while (queryIndex != 7);

 System.exit(0);

 }

}

236

Appendix C - Query conversion code

package apache.apacheJena;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import org.apache.jena.graph.Triple;

import org.apache.jena.query.Query;

import org.apache.jena.query.QueryFactory;

import org.apache.jena.rdf.model.Model;

import org.apache.jena.sparql.algebra.Algebra;

import org.apache.jena.sparql.algebra.Op;

import org.apache.jena.sparql.algebra.Transform;

import org.apache.jena.sparql.algebra.op.Op2;

import org.apache.jena.sparql.algebra.op.OpConditional;

import org.apache.jena.sparql.algebra.op.OpJoin;

import org.apache.jena.sparql.algebra.op.OpLeftJoin;

import org.apache.jena.sparql.algebra.op.OpQuadPattern;

import org.apache.jena.sparql.algebra.optimize.Optimize;

import org.apache.jena.sparql.algebra.optimize.TransformFilterPlacement;

import org.apache.jena.sparql.core.TriplePath;

import org.apache.jena.sparql.core.Var;

237

import org.apache.jena.sparql.graph.NodeTransform;

import org.apache.jena.sparql.graph.NodeTransformLib;

import org.apache.jena.sparql.sse.SSE;

import org.apache.jena.sparql.syntax.Element;

import org.apache.jena.sparql.syntax.ElementPathBlock;

import org.apache.jena.sparql.syntax.ElementVisitorBase;

import org.apache.jena.sparql.syntax.ElementWalker;

import org.apache.jena.sparql.syntax.syntaxtransform.NodeTransformSubst;

public class AlgebraExec {

 static String outputDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\Data";

 // path of directory where you want index files to be kept

 static String inputDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\index";

 static Tester tester = new Tester(inputDir, outputDir);

 static List<TriplePath> subqueries= new ArrayList<>();

 public String transformToAlgebricForm(String queryString, Model model) throws

IOException {

 Query query = QueryFactory.create(Main.prefix+queryString);

 Element e = query.getQueryPattern();

 Op op = Algebra.compile(query);

 Transform transform = new TransformFilterPlacement();

 op = Optimize.apply(transform, op);

 // op = Optimize.optimize(op, new Context());

 Map<Var, Var> varMap = new HashMap<Var, Var>();

 varMap.put(Var.alloc("s"), Var.alloc("x"));

 NodeTransform nodeTrans = new NodeTransformSubst(varMap);

238

 op = NodeTransformLib.transform(nodeTrans, op);

 System.out.println("------------------------------");

 System.out.println(op);

 return op.toString();

 }

 public List<TriplePath> getSubqueries (String queryString){

 Query query = QueryFactory.create(Main.prefix+queryString);

 Element e = query.getQueryPattern();

 System.out.println("------------------------------");

 System.out.println("triple(s) from compiled query as below - ");

 ElementVisitorBase elementVisitor = new ElementVisitorBase() {

 int i = 1;

 @Override

 public void visit(ElementPathBlock el) {

 Iterator<TriplePath> iterator = el.getPattern().iterator();

 while (iterator.hasNext()) {

 TriplePath triplePath = iterator.next();

 System.out.println((i) + ": " + triplePath);

 //TriplePaths to list

239

 subqueries.add(triplePath);

 i++;

 }

 super.visit(el);

 }

 };

 ElementWalker.walk(e, elementVisitor);

 System.out.println("------------------------------");

 return subqueries;

 }

 // indexing and searching datasources

 // https://jena.apache.org/documentation/larq/

 public static void main(String[] args) throws IOException {

 /*

 * String queryString =

 * "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>"

 * +"PREFIX owl: <http://www.w3.org/2002/07/owl#>"

 * +"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>"

 * +"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>"

 * +"PREFIX clb: <https://www.caliberresearch.org/PhenotypeOntology#>"

 * +" SELECT ?subject WHERE { ?subject rdf:type

clb:subject_with_diabdiag_gprd_3_code ."

240

 * +" FILTER NOT EXISTS {?subject rdf:type

clb:subject_with_type_unknown_diabetes .}}"

 * ;

 *

 * (project (?subject) (filter (notexists (bgp (triple ?subject

 * <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 * <https://www.caliberresearch.org/PhenotypeOntology#

 * subject_with_type_unknown_diabetes>))) (bgp (triple ?subject

 * <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

 * <https://www.caliberresearch.org/PhenotypeOntology#

 * subject_with_diabdiag_gprd_3_code>))))

 *

 *

 *

 * SELECT ?patient ?phoneType ?phoneNumber WHERE { ?phoneType

 * rdfs:subPropertyOf example:phone . ?patient ?phoneType ?phoneNumber .

 * }

 *

 *

 * AlgebraExec queryTransformer = new AlgebraExec(); String

 * transformedQuery =

 * queryTransformer.transformToAlgebricForm(queryString);

 *

 * System.out.println("----- : " + transformedQuery);

 */}

}

241

Appendix D – Query integration code

package apache.apacheJena;

import java.io.IOException;

import org.apache.lucene.document.Document;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.search.ScoreDoc;

import org.apache.lucene.search.TopDocs;

public class Tester {

 //path of directory where you want index files to be kept

 String indexDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\index";

 //path of directory where rdf files are kept

 String dataDir = "E:\\ALLAHM\\sharjeel\\updated-17-2-2018\\Data";

 Indexer indexer;

 Searcher searcher;

 public Tester(String indexDir,String dataDir) {

 this.indexDir = indexDir;

 this.dataDir = dataDir;

 createIndex();

 }

// public static void main(String[] args) {

// Tester tester;

// try {

242

// tester = new Tester();

// tester.createIndex();

// // change keyword here which you want to search.

// tester.search("Painting");

// } catch (IOException e) {

// e.printStackTrace();

// } catch (ParseException e) {

// e.printStackTrace();

// }

// }

 private void createIndex() {

 try {

 indexer = new Indexer(indexDir);

 int numIndexed;

 long startTime = System.currentTimeMillis();

 numIndexed = indexer.createIndex(dataDir, new TextFileFilter());

 long endTime = System.currentTimeMillis();

 indexer.close();

 System.out.println(numIndexed + " File indexed, time taken: " + (endTime -

startTime) + " ms");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public void search(String searchQuery) throws IOException, ParseException {

 searcher = new Searcher(indexDir);

243

 long startTime = System.currentTimeMillis();

 TopDocs hits = searcher.search(searchQuery);

 long endTime = System.currentTimeMillis();

 System.out.println(hits.totalHits + " documents found. Time :" + (endTime -

startTime));

 for (ScoreDoc scoreDoc : hits.scoreDocs) {

 Document doc = searcher.getDocument(scoreDoc);

 System.out.println("File: " + doc.get(Constants.FILE_PATH));

 }

 searcher.close();

 }

}

244

Appendix E – Setup and Testing Screenshots

Setup:

1) Jdk 1.8 must be installed. Maven must be installed. Eclipse with Maven plugin must be

installed.

2) Open eclipse and go to File option from there choose import.

3) In import choose Maven in that select Existing maven projects into Workspace.

4) After that from browse select RDF-Jena folder. Where you have extracted it and click

on Finish.

5) Once it is completed right click on project go to Maven option and click on mvn install.

After you see build successful in console proceed further.

6) Open project and go to apache.apacheJena package.

7) Open Main.java file.

8) Make changes on Line number 26, 27 and 28 for location where you want to index and

location where rdf files are present respectively. (Files must have .rdf extention)

9) Then go to line number and put keyword which you want to search.

10) After changes save file then right click in code screen go to Run as.. and select Java

application.

11) In console you will see list of files which contain that keyword.

12) Also you will see new file with name IndexFile.txt which you want to show in Directory

where other RDF files are present.

245

Code screenshots :

246

247

Museum RDF format:

248

249

Musuems RDF data on distributed locations:

250

Testing screenshots:

Main screen :

