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Abstract— Photo response non-uniformity (PRNU) noise is a 

sensor pattern noise characterizing the imaging device. It has 

been broadly used in the literature for image authentication and 

source camera identification. The abundant information that the 

PRNU carries in terms of the frequency content makes it unique, 

and therefore suitable for identifying the source camera and 

detecting forgeries in digital images. However, PRNU estimation 

from smartphone videos is a challenging process due to the 

presence of frame-dependent information (very dark/very 

textured), as well as other non-unique noise components and 

distortions due to lossy compression. In this paper, we propose 

an approach that considers only the non-textured frames in 

estimating the PRNU because its estimation in highly textured 

images has been proven to be inaccurate in image forensics. 

Furthermore, lossy compression distortions tend to affect mainly 

the textured and high activity regions and consequently weakens 

the presence of the PRNU in such areas. The proposed technique 

uses a number of texture measures obtained from the Grey Level 

Cooccurrence Matrix (GLCM) prior to an unsupervised 

learning process that splits the feature space through training 

video frames into two different sub-spaces, i.e., the textured 

space and the non-textured space. Non-textured video frames are 

filtered out and used for estimating the PRNU.  Experimental 

results on a public video dataset captured by various smartphone 

devices have shown a significant gain obtained with the proposed 

approach over the conventional state-of-the-art approach. 

Keywords- Photo response non-uniformity noise; source 

smartphone identification; digital image forensics; texture 

analysis; Grey Level Co-occurrence Matrix (GLCM). 

I.  INTRODUCTION 

Over the last decade, many businesses, organizations and 

individuals utilize digital image and video devices in everyday 

life due to their undeniable advantages. A prime example of 

such device is smartphone, which incorporates a camera for 

taking good quality images /videos. As a result, videos that 

were recorded by a smartphone represent a reliable means for 

testifying incidents and providing legally acceptable evidence 

in courtroom. Nevertheless, videos can easily be changed 

using a low-cost editing software, which requires little work or 

knowledge. Therefore, with the intention of increasing the 

trustworthiness of digital videos, the process of authentication 

and copyright protection should be conducted. The field of 

image forensics is concerned with image authentication, 

integrity verification and Source Camera Identification (SCI) 

by processing digital images [1]. On the other hand, video 

forensics is concerned with video recorder identification and 

video authentication using digital videos. During the last 

decade, a significant number of attempts to extract features 

which characterize the camera device using the Photo 

Response Non-Uniformity noise obtained from digital images 

(PRNU) [2-19]. It is noteworthy that the PRNU characterise 

imperfections caused by the manufacturing process due to the 

lack of homogeneity of the silicon area in the imaging sensor 

[2]. The noise due to sensor imperfections is a weak signal of 

the same dimensions as the output image indicated here by 

𝐾 ∈  ℛ𝒲×𝒱, where  𝒲 ×  𝒱  represent the dimension of the 

sensor. Even though the sensor can be different from one 

device to another, the final digital image output can be 

expressed as [3],[4].   

                         𝐽 = 𝐽0 + 𝐽0𝐾 + 𝛩                             (1) 

Where 𝐽0 refers to the original input multimedia file, 

𝐽0𝐾 represents the PRNU term and Θ is a random noise factor.  

In the literature, there has been an increasing body of research 

devoted to image source camera identification using the 

PRNU. Lukas et al. [3], proposed a system to estimate the 

PRNU-pattern, the residual signal 𝑟𝑖  is obtained by denoising 

an image  𝐽𝑖  using wavelet-based de-noising filter. Next the 

residual signal is obtained from an image 𝐽𝑖  as 𝑟𝑖 = 𝐽𝑖 − 𝐹(𝐽𝑖) 

where the 𝐹(𝐽𝑖) is the de-denoised image. The PRNU, 𝐾, is the 

result of averaging 𝑁 of the residual signal, where 𝑁 refer to 

refers to the number of images used to estimate the PRNU. In 

[4], PRNU estimation technique based on  Maximum 

Likelihood Estimator (MLE) for SCI is provided. In this 

algorithm, the 𝐾 is given by: 

𝐾 =
∑ 𝑟𝑖𝐽𝑖

𝑁
𝑖=1

∑ (𝐽𝑖)2𝑁
𝑖=1

                                  (2) 

In [5], the authors proposed an improved locally adaptive DCT 

Filter followed by a weighted averaging to exploit the content 

of images carrying the PRNU efficiently. While several of 

forensic techniques were developed for digital images using 

PRNU [3-12], less research has been conducted towards the 

forensic analysis of videos. Chen et al. [13] were the first 

authors to extend their PRNU technique [3] from an image to 

video and demonstrated that PRNU can be used to link a video 

to its source camcorder effectively. In this approach, the 

PRNUs are extracted from both (training and testing) video 

clips using MLE as shown in (2). Then, the peak-to-correlation 

energy (PCE) is utilized as measurement to detect the presence 

of PRNU. The main idea behind PCE is to consider the 

correlation between the PRNU and shifted versions of the 

noise residue to lessen the similarity which may exist between 

the PRNU of a specific digital device and the noise residue of 



 

an image taken by a different camera. The PCE measure is 

defined in [4] and [13] as: 

𝑃𝐶𝐸(𝑥, 𝑦) =
𝐶𝑥𝑦

2 (0,0)
1

𝜔×𝑣−|𝐴|
 ∑ 𝐶𝑥𝑦

2  (𝑚1,𝑚2)𝑚1,𝑚2∉𝐴
               (3) 

where A is a small neighbor area of size 11 × 11 around the 

central point at (0,0), |𝐴| is the number of pixels in A, and C𝑥𝑦 

(𝑚1, 𝑚2) represents the circular cross-correlation. In [14]   

confidence weight PRNU based on image gradient magnitudes 

is proposed in order to improve PRNU estimation and evaluate 

the impact of video content on the performance of Chen et al. 

[13]. In [15] the video frames are resized to 512×512 using 

bilinear interpolation and the PRNU is extracted only from the 

green channel by averaging the residual signal over all frames. 

Current video coding standards such as H.264, MPEG, or 

latest version, use three types of video frames, which are intra-

coded frame (I-frame), predictive coded frame (P-frame), and 

bi-predictive coded frame (B-frames)[14]. Chuang et al. [16] 

analysed the video compression impact on PRUN estimation 

in the compressed domain and reported that extracting the 

PRNU from I-frames is more reliable than P-frames and B-

frames [14],[16]. Later, a PRNU-based technique for out-of-

camera stabilized videos, such as cropping, and rotation 

processing is proposed by Taspinar et al. [17]. In this technique 

also 50 I-frames are extracted from each video in order to 

estimate the PRNU. A smartphone may automatically rotate 

the video 180 degrees while recording videos with rolling 180 

degrees. The authors In [18] are focused on effect of cameras 

rolling ,whether videos with several rolling degrees, 0, 90, 180, 

and 270 degrees, can affect the PRNU analysis or not. In [19], 

a hybrid methodology that utilizes both videos and still images 

are introduced to estimate the PRNU. In this technique, the 

PRNUs are estimated from still images obtained by the source 

device, while the query PRNU is estimated from the video and 

subsequently linked with the reference to verify the possible 

match. In [20], the authors outlined the possible factors such 

as Compression, resolution and length of the video, which 

could influence a decrease of the PRNU's correlation value in 

videos. Although there have been previous studies [3]-[20] 

provided in order to improve the efficiency of  source 

smartphone identification based on PRNU, an efficient 

approach that takes into account the frame content is still 

lacking. Furthermore, existing techniques that consider the 

effect of lossy compression on the estimation of PRNU in the 

compressed domain requires full access to the right decoder in 

order to have separate I-frames at the estimation of the PRNU.  

This is not always handy given the large number of video 

codecs used in smartphones and released with different 

versions as standalone applications.   This paper addresses the 

problem of source smartphone video identification based on 

PRNU estimation. The traditional approach to estimate the 

PRNU in digital videos use all video frames 

[13],[14],[15],[17]. In this paper, a new approach based on 

detecting smooth video frames while discarding the textured 

ones for efficient PRNU estimation is proposed. Experimental 

results on a video dataset, acquired by various smartphones, 

have shown a significant gain obtained with the proposed 

approach over the conventional state-of the-art smartphone 

identification scheme using different sizes of frames. The rest 

of this paper is structured as follows; Section II describes the 

proposed method. Experimental results and analysis are 

provided in Section III. A conclusion is drawn in Section IV. 

II. PROPOSED PRNU ESTIMATION APPROACH 

 Fig. 1 illustrates the proposed source smartphone video 

identification and verification scheme. The rationale behind 

the proposed idea is that the PRNU is hard to estimate in 

textured and contoured regions [4],[14]. This is because the 

PRNU is intensively present in the high frequency range which 

also characterises the frequency content of textured and edged 

areas. Also, due to the lossy compression nature in which 

digital videos are stored, distortions mainly occur in such 

textured and edged regions since the human visual system is 

less sensitive to changes in such regions. As a result, the PRNU 

noise gets significantly affected in those regions and its 

estimation becomes inaccurate. Therefore, selecting frames 

based on their content would be sensitive to enhance the 

estimation of the PRNU. First, frames are extracted from each 

video and converted to grey level. Then, the proposed selection 

method is applied to separate the frames through feature 

extraction and machine learning into textured and non- 

textured frames. Next, only the non-textured frames are 

selected for PRNU estimation. Each smartphone PRNU is 

stored in a database to be used later for verification and 

identification. It is worth mentioning that, in this work, the 

proposed frame selection method is applied only in training 

stage. This is due the fact that, in real scenarios, the query 

video may be highly textured with very few or even without 

smooth frames.  Therefore, at the smartphone PRNU matching 

stage, the PRNU is estimated from all the available frames in 

the query video. In identification, a query video PRNU is 

compared to all PRNUs stored in the database using the PCE 

similarity measure. The closest PRNU is said to correspond to 

the smartphone which has been used to record the video. In 

smartphone verification, however, the similarity between the 

query video PRNU and the PRNU of a certain smartphone is 

compared to a given threshold in order to verify whether the 

video is recorded by that smartphone. The proposed frame 

selection method components will be discussed in more detail 

in the next subsections. 
 

A. Frame Texture Features 

  In the past decades, textural characteristics in images, have 

been broadly studied as one of the most important features 

present in pictures and can be used for classification, 

segmentation, feature extraction [21]. In this work, the features 

of grey level co-occurrence matrix (GLCM) [22] are used in 

order to extract second order statistical texture features for 

each frame.  
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Fig. 1. High-level of the proposed source smartphone video identification 

and verification system. 
 



 

GLCM can be seen as a matrix which characterises the 

relative frequencies of a pair of grey levels that appear at 

distance d (from 1 to size of image) apart and at a particular 

angle ϴ (0°, 45°, 90° and 135°). Fig. 2 illustrates how GLCM 

can be calculated from 4-by-5 image J for d =1 and ϴ=0° [23]. 

Fourteen features were obtained in [22] from the GLCMs to 

characterise texture, these features can be calculated at 

different angles. In this work, six texture features are used, 

which are: correlation, contrast, standard deviation,  

homogeneity, energy, and entropy [24]. Table I briefly 

describes these features and its formulas [25], where G refers 

for the number of the grey levels in the frame, 𝑃𝑑
𝜃(𝑖, 𝑗) refers 

to (𝑖, 𝑗)𝑡ℎ entry in the GLCM that represent the probability of 

existence of pixel pairs at certain angle and distance. The 

reader is referred to [22] for more information about GLCMs 

and its features. 

 

B. Frame selection method for PRNUs extraction. 
 

This method aims to discard the highly textured frames 

which may lead to contribute negatively to the estimation of 

the PRNU as discussed earlier. Fig. 3 illustrates the main 

components of the proposed frame selection method. 

 

 

 Fig. 2. GLCM calculation from 4-by-5 image I [23]. 

 

 

 In phase 1, frames taken from a large number of different 

training videos recorded by different devices, supposedly 

accessible to the forensic investigator, and then the GLCM is 

used to obtain the frame features (correlation, contrast, 

standard deviation, homogeneity, energy, and entropy). It is 

worth mentioning that the GLCM is used with a distance d that 

is equal to 1, while ϴ is considered in four directions ϴ (0°, 

45°, 90° and 135°). This process will give us four GLCM 

matrixes (one in each direction) in order to obtain more 

statistical information for each frame. Next, the mean of each 

of these GLCM features is calculated over the four directions. 

This process is repeated for each smartphone video frame, and 

then the GLCM feature vectors are used to feed a k-Means 

clustering algorithm [26] in order to separate them into two 

clusters (i.e., textured and non-textured frames). The value of 

k=2 here represents the two clusters of textured and non-

textured frames. The obtained k=2 centroids (one centroid for 

each cluster) will be used to identify non-textured frames in 

phase two for PRNU estimation. The purpose of the first phase 

is to split the feature space into two sub-spaces, i.e., textured, 

and non-textured sub-spaces via unsupervised learning using 

the GLCM texture features. The two obtained centroids are 

meant to represent the centers of the feature sub-spaces 

describing textured and non-textured frames. In the second 

phase, the GLCM features are extracted from each frame of the 

available smartphone videos for PRNU estimation in the same 

fashion. Unlike in phase 1, however, these videos are recorded 

by the same smartphone device. Then, each frame is classified 

into a textured or non-textured frame by calculating the 

Euclidean distance between GLCM features and the two 

centroids representing the two aforementioned clusters. The 

smallest distance is used to assign the frame to one of the 

existing clusters. Finally, only the non-textured frames are 

used to extract the PRNU. Once the PRNU is estimated for 

each smartphone device, the process of identification or 

verification is conducted as explained earlier (See Fig. 1). 

 

 

 

 

 

TABLE I. FEATURES OF  GLCM. 

Features Description Formulas 

Contrast is measure of the intensity contrast between a 

pixel and its neighbor over the whole frame. If there is a 

high amount of variation the contrast will be high. A value 

of 0 indicates a constant video frame. 

∑ ∑|𝑖 − 𝑗|2 𝑝𝑑
𝜃

𝐺−1

𝑗=0

𝐺−1

𝑖=0

(𝑖, 𝑗) 

Homogeneity gives a measure of the similarity in the 

frame. A value of 0 indicates a strong similarity in the 

video frame. 

∑ ∑
1

1 + (𝑖 − 𝑗)2
 𝑝𝑑

𝜃

𝐺−1

𝑗=0

𝐺−1

𝑖=0

(𝑖, 𝑗) 

Entropy is a statistical measure of randomness that could 

be utilized to characterize the texture of the video frame. − ∑ ∑ 𝑝𝑑
𝜃(𝑖, 𝑗)𝑙𝑜𝑔2

𝐺−1

𝑗=0

𝐺−1

𝑖=0

( 𝑝𝑑
𝜃(𝑖, 𝑗)) 

Energy can be used to measure the textural uniformity of 

the frame. It also can help to determine disorders in 

texture. 

∑ ∑[𝑝𝑑
𝜃(𝑖, 𝑗)]

2
𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

Correlation is to provide, how a pixel is correlated to its 

neighbouring pixels. ∑ ∑
𝑖𝑗 𝑝𝑑

𝜃 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦
 

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 



 

 

III. EXPERIMENTAL RESULTS 

In this section, the efficiency of the proposed approach is 

evaluated against the previously mentioned traditional 

approach. The assessment has been conducted using the Video 

Authentication and Camera Identification Database (Video-

ACID) [11]. Although this dataset contains videos from 

different devices such as smartphones, tablets, digital cameras 

and digital camcorders, the aim of this work is to examine the 

performance on videos with low resolutions that were recorded 

with smartphones. Table II demonstrates the ten smartphones 

which have been used in our experiments. The unsupervised 

learning process uses all frames from 200 randomly selected 

videos recorded by different smartphones. In order to estimate 

the PRNU, 50 videos per smartphone are used to estimate the 

PRNU, while the remaining videos are used in the testing 

stage. The extraction of PRNU has been carried out by 

considering cropped blocks from the frame with different 

sizes, i.e., 512 × 512 and 1024 × 1024. The blocks are cropped 

from the center of the full-size frame without affecting their 

content. Here, it is meant by the traditional approach the 

techniques that use all video frames to estimate the PRNU 

[13],[14],[15],[17]. The well-known wavelet-based Wiener 

filter [3] has been used to estimate the PRNU in both the 

traditional and proposed approaches. In the first set of 

experiments, we evaluate the changes in the peak (PCE values) 

that describes the similarity between two PRNUs of the same 

smartphones for each approach (the proposed vs traditional  
 

 

 

TABLE II. SMARTPHONES USED IN THE EXPERIMENTAL 

 

 

 
Fig. 4.  PCE values for the traditional and the proposed approach. 

 

approach), the PCE is calculated as shown in (3) between the 

PRNU estimated from query videos (about 1800 clips) and the 

actual PRNU estimated from reference videos. The results 

show that the proposed approach has the higher peaks in 

comparison to the traditional approach for most of the tested 

videos. The average PCE values for all testing videos in the 

traditional approach was 72, while in the proposed approach 

was around 83. This enhancement in the peak values is clear 

in Fig. 4, when about 100 videos are randomly selected. In the 

second set of experiments, we assess the performance of the 

proposed system in two different aspects, i.e., source 

identification and source verification. 
 

A. Source smartphone identification: 
 

 

In source smartphone identification, the forensic analyst 

possesses several smartphones, and the aim is to identify the 

smartphone used to take a video. Here, it is supposed that the 

video is acquired by one of the smartphones available. 

Consequently, a query video is assigned to a specific 

smartphone if the corresponding PRNU provides the highest 

PCE. Table III illustrates the false negative rate (FNR) for each 

smartphone using a frame size of 512×512 and 1024×1024. A 

clear enhancement is shown in most of smartphones for 

instance the FNR has been reduced from 64.74% to 26.01%, 

43.09% to 22.34 %, and from 20.77% to 4.35 %. when frame 

sizes are equal to 512×512. Furthermore, another example of / 

Additionally, as shown in table IV, the proposed technique 

leads to a reduction in the overall false positive rate (FPR) 

regardless of the size of the frame.  
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PCE values for the traditional and the proposed approach.

traditional approach proposed approach

Smartphone name Symbol number of videos 

Apple iPhone 8 plus M01 223 

Huawei Honor 6X (A) M02 238 

Huawei Honor 6X (B) M03 238 

LG Q6  M04 260 

LG X Charge  M05 234 

Samsung Galaxy J7 Pro (A) M06 239 

Samsung Galaxy J7 Pro (B) M07 169 

Samsung Galaxy S3  M08 230 

Samsung Galaxy S5  M09 257 

Samsung Galaxy S7  M10 206 
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Fig. 3.  The proposed frame selection method for video smartphone identification and verification system.    



 

 

   Although table III and table IV indicate that the proposed 

approach does not always give an improvement for every 

smartphone, the overall FNR and FPR of the proposed 

approach exceeds that with the traditional approach. This is 

true for all frame sizes as shown in table III and table IV. In 

addition, the proposed approach provides less miss-

identification rates when compared with the traditional one by 

approximately 50% regardless of the frame size, as shown 

through the mean of FNR and FPR (see table III and IV) 

calculated for each smartphone. The overall error has been 

reduced from 13.88% to 7.96% and from 14.93% to 7.92%, 

respectively. 
 

B. Source smartphone verification: 
 

In source smartphone verification, the task of the forensic 

analyst is to verify whether a smartphone has been acquired a 

video evidence by a given threshold. This threshold represents 

the least possible similarity between the reference PRNU of a 

smartphone and the PRNU of a video acquired by the same 

device. This mean that measuring the performance of the 

system by calculating the false positive rate and false negative 

rate for each threshold value. This leads us to use what is 

known in the literature as the Receiver Operating 

Characteristics (ROC) curve. In this section, 10 smartphones 

have been used to determine the PCE values of similarity 

between each smartphone PRNU and the PRNU of videos 

recorded by different smartphones. On the other hand, the PCE 

values of similarity between every smartphone PRNU and the 

PRNU of video acquired by the same smartphone have been 

calculated. This will enable us to determine the false positive 

rate and false negative rate for each threshold value and then 

draw the ROC. The ROC curve performance of the proposed 

approach along with the traditional approach is demonstrated 

in Fig. 5 and Fig. 6. The ROC curve show that the proposed 

method performs better than traditional approach. This is true 

for all frame sizes. 
 

 

 

Fig. 5. Overall ROC curve for 10 smartphones, frame size 512×512. 

 
Fig. 6. Overall ROC curve for 10 smartphones, frame size 1024×1024. 
 

TABLE III. FNR(%) FOR EACH SMARTPHONE USING THE TRADITIONAL AND PROPOSED APPROACH. 

frame 

size 
methods M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 

overall 

FNR 

512× 

512 

Traditional 

approach 
64.74 43.09 11.70 48.57 45.65 1.06 0.00 12.22 20.77 0.64 24.84 

Proposed 

approach 
26.01 22.34 4.26 69.52 5.98 1.06 0.00 7.78 4.35 0.64 14.19 

1024× 

1024 

Traditional 

approach 
64.74 60.11 14.89 29.05 64.09 2.12 0.00 9.44 20.77 2.56 26.78 

Proposed 

approach 
39.31 22.87 2.13 49.05 2.76 1.06 0.00 5.56 10.63 1.92 13.53 

 
TABLE IV. FPR(%) FOR EACH SMARTPHONE USING THE TRADITIONAL AND PROPOSED APPROACH. 

frame 

size 
methods M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 

overall 

FPR 

512× 

512 

Traditional 

approach 
0.68 0.12 0.19 0.38 11.18 0.19 2.21 3.10 8.00 3.05 2.91 

Proposed 

approach 
0.62 0.00 0.25 0.13 9.13 0.50 1.55 1.36 1.95 1.71 1.72 

1024× 

1024 

Traditional 

approach 
1.36 0.00 0.56 2.02 12.80 0.25 4.25 3.35 5.18 1.10 3.09 

Proposed 

approach 
1.24 0.06 0.37 0.25 7.76 1.12 1.44 0.31 2.40 1.16 1.61 

 



 

IV. CONCLUSION 

  In this paper, an efficient source smartphone identification 

and verification approach has been introduced. The residual 

signals extracted from video frames and used to estimate the 

PRNU are viewed as noisy observations of the PRNU, but the 

averaging process attenuate the effect of undesirable noise. 

Such undesirable noise can be due to frame characteristics 

(textured, edged, etc.) as well as distortions due to lossy 

compression that can mainly affect textured and edged frame 

contents. Different from the traditional approach, the proposed 

scheme aims to enhance the PRNU estimation by discarding 

the highly textured frames that may contribute negatively to 

the estimation of the PRNU. Experimental analysis covering 

two application scenarios in smartphone video forensics has 

shown the superiority of the proposed system over a related 

state-of-the-art technique. 
 

ACKNOWLEDGMENT  
 

This work was supported by NPRP grant # NPRP12S-0312-

190332 from the Qatar National Research Fund (a member of 

the Qatar Foundation). The statements made herein are solely 

the responsibility of the authors. 
 

REFERENCES 
 
 

[1] J. Lukás, J. Fridrich, and M. Goljan, "Digital" bullet 

scratches" for images," in IEEE International Conference 

on Image Processing 2005, 2005, vol. 3, pp. III-65: IEEE. 

[2] J. R. Janesick, Scientific charge-coupled devices. SPIE 

press, 2001. 

[3] J. Lukas, J. Fridrich, and M. Goljan, "Digital camera 

identification from sensor pattern noise," IEEE 

Transactions on Information Forensics and Security, vol. 

1, no. 2, pp. 205-214, 2006. 

[4] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, 

"Determining image origin and integrity using sensor 

noise," IEEE Transactions on information forensics and 

security, vol. 3, no. 1, pp. 74-90, 2008. 

[5] A. Lawgaly and F. Khelifi, "Sensor pattern noise 

estimation based on improved locally adaptive DCT 

filtering and weighted averaging for source camera 

identification and verification," IEEE Transactions on 

Information Forensics and Security, vol. 12, no. 2, pp. 

392-404, 2016. 

[6] X. Kang, Y. Li, Z. Qu, and J. Huang, "Enhancing source 

camera identification performance with a camera reference 

phase sensor pattern noise," IEEE Transactions on 

Information Forensics and Security, vol. 7, no. 2, pp. 393-

402, 2011. 

[7] A. Lawgaly, F. Khelifi, and A. Bouridane, "Image 

sharpening for efficient source camera identification based 

on sensor pattern noise estimation," in 2013 Fourth 

International Conference on Emerging Security 

Technologies, 2013, pp. 113-116: IEEE. 

[8] F. Ahmed, F. Khelifi, A. Lawgaly, and A. Bouridane, 

"Comparative analysis of a deep convolutional neural 

network for source camera identification," in 2019 IEEE 

12th International Conference on Global Security, Safety 

and Sustainability (ICGS3), 2019, pp. 1-6: IEEE. 

[9] M. H. Al Banna, M. A. Haider, M. J. Al Nahian, M. M. 

Islam, K. A. Taher, and M. S. Kaiser, "Camera model 

identification using deep CNN and transfer learning 

approach," in 2019 International Conference on Robotics, 

Electrical and Signal Processing Techniques (ICREST), 

2019, pp. 626-630: IEEE. 

[10] K. Bolouri, A. Azmoodeh, A. Dehghantanha, and M. 

Firouzmand, "Internet of things camera identification 

algorithm based on sensor pattern noise using color filter 

array and wavelet transform," in Handbook of Big Data 

and IoT Security: Springer, 2019, pp. 211-223. 

[11] B. C. Hosler, X. Zhao, O. Mayer, C. Chen, J. A. 

Shackleford, and M. C. Stamm, "The video authentication 

and camera identification database: A new database for 

video forensics," IEEE Access, vol. 7, pp. 76937-76948, 

2019. 

[12] Y. Zhao, N. Zheng, T. Qiao, and M. Xu, "Source camera 

identification via low dimensional PRNU features," 

Multimedia Tools and Applications, vol. 78, no. 7, pp. 

8247-8269, 2019. 

[13] M. Chen, J. Fridrich, M. Goljan, and J. Lukáš, "Source 

digital camcorder identification using sensor photo 

response non-uniformity," in Security, steganography, and 

watermarking of multimedia contents IX, 2007, vol. 6505, 

p. 65051G: International Society for Optics and Photonics. 

[14] S. McCloskey, "Confidence weighting for sensor 

fingerprinting," in 2008 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition 

Workshops, 2008, pp. 1-6: IEEE. 

[15] M. Al-Athamneh, F. Kurugollu, D. Crookes, and M. Farid, 

"Digital video source identification based on green-

channel photo response non-uniformity (G-PRNU)," 2016. 

[16] W.-H. Chuang, H. Su, and M. Wu, "Exploring 

compression effects for improved source camera 

identification using strongly compressed video," in 2011 

18th IEEE International Conference on Image Processing, 

2011, pp. 1953-1956: IEEE. 

[17] S. Taspinar, M. Mohanty, and N. Memon, "Source camera 

attribution using stabilized video," in 2016 IEEE 

International Workshop on Information Forensics and 

Security (WIFS), 2016, pp. 1-6: IEEE. 

[18] W.-C. Yang, J. Jiang, and C.-H. Chen, "A fast source 

camera identification and verification method based on 

PRNU analysis for use in video forensic investigations," 

Multimedia Tools and Applications, vol. 80, no. 5, pp. 

6617-6638, 2021. 

[19] M. Iuliani, M. Fontani, D. Shullani, and A. Piva, "Hybrid 

reference-based video source identification," Sensors, vol. 

19, no. 3, p. 649, 2019. 

[20] L. de Roos and Z. Geradts, "Factors that Influence PRNU-

Based Camera-Identification via Videos," Journal of 

Imaging, vol. 7, no. 1, p. 8, 2021. 

[21] J. Bigün, G. H. Granlund, and J. Wiklund, 

"Multidimensional orientation estimation with 

applications to texture analysis and optical flow," IEEE 

Transactions on Pattern Analysis & Machine Intelligence, 

vol. 13, no. 08, pp. 775-790, 1991. 

[22] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, 

"Textural features for image classification," IEEE 

Transactions on systems, man, and cybernetics, no. 6, pp. 

610-621, 1973. 

[23] S. Singh, D. Srivastava, and S. Agarwal, "GLCM and its 

application in pattern recognition," in 2017 5th 

International Symposium on Computational and Business 

Intelligence (ISCBI), 2017, pp. 20-25: IEEE. 

[24] D. Samanta, M. Paul, and G. Sanyal, "Segmentation 

technique of SAR imagery using entropy," International 

Journal of Computer Technology and Applications, vol. 2, 

no. 5, pp. 1548-1551, 2011. 

[25] M. O'Byrne, B. Ghosh, V. Pakrashi, and F. Schoefs, 

"Texture Analysis based Detection and Classification of 

Surface Features on Ageing Infrastructure Elements," in 

BCRI2012 Bridge & Concrete Research in Ireland, 2012. 

[26] S. Lloyd, "Least squares quantization in PCM," IEEE 

transactions on information theory, vol. 28, no. 2, pp. 129-

137, 1982. 

 


