
RESEARCH ARTICLE Open Access

The relationship between markers of
antenatal iron stores and birth outcomes
differs by malaria prevention regimen—a
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Abstract

Background: Iron deficiency (ID) has been associated with adverse pregnancy outcomes, maternal anaemia, and
altered susceptibility to infection. In Papua New Guinea (PNG), monthly treatment with sulphadoxine-
pyrimethamine plus azithromycin (SPAZ) prevented low birthweight (LBW; <2500 g) through a combination of anti-
malarial and non-malarial effects when compared to a single treatment with SP plus chloroquine (SPCQ) at first
antenatal visit. We assessed the relationship between ID and adverse birth outcomes in women receiving SPAZ or
SPCQ, and the mediating effects of malaria infection and haemoglobin levels during pregnancy.

Methods: Plasma ferritin levels measured at antenatal enrolment in a cohort of 1892 women were adjusted for
concomitant inflammation using C-reactive protein and α-1-acid glycoprotein. Associations of ID (defined as ferritin
<15 μg/L) or ferritin levels with birth outcomes (birthweight, LBW, preterm birth, small-for-gestational-age
birthweight [SGA]) were determined using linear or logistic regression analysis, as appropriate. Mediation analysis
assessed the degree of mediation of ID-birth outcome relationships by malaria infection or haemoglobin levels.

Results: At first antenatal visit (median gestational age, 22 weeks), 1256 women (66.4%) had ID. Overall, ID or
ferritin levels at first antenatal visit were not associated with birth outcomes. There was effect modification by
treatment arm. Amongst SPCQ recipients, ID was associated with a 81-g higher mean birthweight (95% confidence
interval [CI] 10, 152; P = 0.025), and a twofold increase in ferritin levels was associated with increased odds of SGA
(adjusted odds ratio [aOR] 1.25; 95% CI 1.06, 1.46; P = 0.007). By contrast, amongst SPAZ recipients, a twofold
increase in ferritin was associated with reduced odds of LBW (aOR 0.80; 95% CI 0.67, 0.94; P = 0.009). Mediation
analyses suggested that malaria infection or haemoglobin levels during pregnancy do not substantially mediate the
association of ID with birth outcomes amongst SPCQ recipients.
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Conclusions: Improved antenatal iron stores do not confer a benefit for the prevention of adverse birth outcomes
in the context of malaria chemoprevention strategies that lack the non-malarial properties of monthly SPAZ.
Research to determine the mechanisms by which ID protects from suboptimal foetal growth is needed to guide
the design of new malaria prevention strategies and to inform iron supplementation policy in malaria-endemic
settings.

Trial registration: ClinicalTrials.gov NCT01136850.

Keywords: Adverse birth outcomes, Iron stores, Iron deficiency, Iron supplementation, Infection, Intermittent
preventive treatment, Plasmodium falciparum

Background
Iron deficiency (ID) is the commonest nutritional defi-
ciency worldwide [1]. In 2017, it ranked fifth in the
causes of disability-adjusted-life-years in females [2].
Nearly 40% of pregnant women suffer from anaemia in
pregnancy, and ID is the principal cause [3]. Women
with ID anaemia have a higher risk of maternal morbid-
ity and mortality due to postpartum haemorrhage and
heart failure [4].
ID has been associated with adverse pregnancy out-

comes including low birthweight (LBW, birthweight <
2500g), preterm birth (PTB, birth before 37 gestational
weeks), babies measuring small-for-gestational-age
birthweight (SGA), and stillbirth [5, 6]. Infants of iron-
deficient mothers are more likely to experience short-
and long-term adverse health outcomes, including
impacts on neurodevelopment and behaviour [7, 8].
Daily iron supplementation with 30–60 mg of iron

plus 400 μg of folic acid is currently recommended for
all pregnant women [9]. In sub-Saharan African
countries with Plasmodium falciparum (P. falciparum)
transmission, women are additionally advised to use
insecticide-treated bed nets, take monthly intermittent
preventive treatment (IPTp) with sulphadoxine-
pyrimethamine (SP), and seek prompt diagnosis and
treatment when experiencing malaria symptoms [9]. Iron
supplementation may not be without risk. It has been as-
sociated with an increased risk of malaria-associated
hospital admissions and deaths amongst children [10],
malaria infection during pregnancy [11], and PTB
amongst women who took iron supplementation peri-
conceptionally [12].
Measurement of iron stores is essential for planning

effective nutritional antenatal interventions and gaining
an understanding of the relationship between maternal
iron stores and birth outcomes. Serum ferritin reflects
the size of total body iron stores and can be used to de-
tect ID, which in pregnant women is defined as a ferritin
<15 μg/L [13]. However, ferritin levels are affected by in-
flammation and infection, including malaria [14]. Conse-
quently, it is recommended to adjust serum ferritin
using one or more concurrently measured acute-phase

proteins, such as C-reactive protein (CRP) and α-1-acid
glycoprotein (AGP) [13, 15, 16].
Anaemia, ID, and malaria are common in pregnant

women residing in coastal Papua New Guinea (PNG), a
Southwest Pacific island nation with a high burden of
adverse maternal and neonatal outcomes [2, 17–19]. A
recent, secondary analysis of a PNG pregnancy cohort
study reported reduced odds of LBW and PTB, and a
higher mean birthweight, in women with ID at antenatal
enrolment, in particular in primigravidae [20]. Mediation
analysis suggested that this apparently protective effect
of ID was largely achieved through mechanisms inde-
pendent of maternal malaria infection or anaemia. It was
hypothesised that ID may confer a level of protection by
limiting the proliferation of pathogenic organisms (other
than malaria) that are associated with adverse birth out-
comes [21]. Others suggested that the observed effect
may relate to (unmonitored) iron supplementation in
iron-replete women, which could result in blood hyper-
viscosity and consequential deleterious impacts for foetal
growth [6, 22].
Participants in the aforementioned study received a

single dose of SP at antenatal enrolment, combined
with weekly chloroquine until delivery. A clinical trial
subsequently conducted in the same setting compared
IPTp with monthly SP plus azithromycin (SPAZ) with
a single course of SP plus chloroquine (SPCQ) at
antenatal enrolment for the prevention of LBW. IPTp
with SPAZ was associated with a marked reduction in
LBW risk, via a combination of anti-malarial and un-
known non-malarial mechanisms [23]. This finding
complements reports of monthly IPTp with SP pre-
venting LBW in women with highly resistant or no P.
falciparum infection in studies from sub-Saharan
Africa [24, 25].
The objective of the present study was to assess the re-

lationship of ID and ferritin levels at first antenatal visit
with adverse birth outcomes in women receiving SPAZ
or SPCQ and to explore the contributions of malaria in-
fection and haemoglobin (Hb) levels during pregnancy
to ferritin-birth outcome relationships through medi-
ation analysis.
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Methods
Study design
A secondary analysis was conducted of data and samples
from a large randomised controlled trial comparing
IPTp with SPAZ with a single treatment of SPCQ at
antenatal enrolment in PNG [23]. Women followed up
for birthweight, and for whom ferritin, Hb, inflammatory
markers, and malaria infection status at first antenatal
visit could be ascertained, were included in the present
analysis.

Study setting
The study setting is described in detail in the literature
[23, 26]. In brief, between November 2009 and February
2013, pregnant women attending one of nine health fa-
cilities in Madang Province, PNG, were recruited and
followed until birth. Study sites included the Alexishafen
health centre, the location of the previous study examin-
ing the relationship between antenatal iron status and
birthweight in PNG [20]. There is moderate perennial
transmission of P. falciparum and P. vivax in the area,
anaemia and ID in pregnancy are common, and more
than one-fifth of babies are LBW [20, 27]. At the time of
the study, the estimated HIV-1 prevalence at enrolment
to antenatal clinics was 1%. SPAZ significantly reduced
the risk of LBW (26% relative risk reduction; 95% confi-
dence interval [CI] 9, 40%) and PTB (38%, 95% CI 11–
57%) and was associated with a 42 g (95% CI 0, 84 g)
higher mean birthweight [23]. SPAZ reduced peripheral
malaria parasitaemia and active malarial infection on
placental histology, but Hb levels and prevalence of an-
aemia at birth were similar between trial arms [23].

Participants
Women were enrolled at 14–26 weeks’ gestation [23].
Screening exclusion criteria for the trial included a sym-
physis pubis fundal height >26 cm, known adverse reac-
tion to study medications, a permanent disability and
chronic medical conditions, known multiple pregnancy,
aged <16 years, and symptomatic severe anaemia (Hb <
60 g/L).
To be included in the present study, women had to

have completed follow-up to delivery. This included de-
livery of a singleton, congenitally normal live baby with
a measured birthweight using electronic scales (Cupid 1,
Charder Medical, Taiwan, accuracy of 10 g) [23].
Deliveries <22 gestational weeks were categorised as
miscarriages and excluded. All women had a venous
blood sample drawn at enrolment and at delivery, per-
ipheral blood smears were prepared, and Hb levels were
estimated (HemoCue Ltd, Angelholm, Sweden, accuracy
of 1 g/L).
Women were randomised to monthly SP (1500/75

mg) plus AZ (1 g twice daily for 2 days) or a single

treatment with SP and chloroquine (CQ, 450 to 600 mg,
daily for 3 days) at antenatal enrolment and received a
full treatment course at enrolment. All women were also
provided with insecticide-treated bed nets. Women with
symptomatic malaria infection were treated with quinine
(in the first trimester, 300 mg, 2 tablets orally 3 times
daily for 7 days) or artemether-lumefantrine (after the
first trimester, 20/120 mg, 4 tablets twice daily for 3
days) [23].
Women were provided with iron-folate supplementa-

tion (one tablet of ferrous sulphate 270 mg [87.4 mg
elemental iron] plus 400 μg folic acid) and advised to
take one tablet daily. Women with a Hb ≤90 g/L were
advised to take two iron-folate tablets and were provided
with albendazole, and scheduled for repeat Hb assess-
ment at 4 weeks. Iron-folate supplementation was not
monitored. Cases of symptomatic anaemia were referred
to the Madang Provincial Hospital.

Laboratory analyses
Ferritin concentrations were measured using a novel in-
house enzyme-linked immunosorbent assay (ELISA) that
was developed, validated, and published by our group
[28]. Acute-phase proteins CRP and AGP were mea-
sured in venous blood samples from enrolment using
commercially available ELISA kits with reference con-
trols (Human Quantikine ELISA kits; R&D Systems,
Minneapolis, MN, USA) [29]. Light microscopy of
Giemsa-stained thick and thin peripheral and placental
blood smears was used to detect Plasmodium spp. infec-
tion, and peripheral blood and placental samples were
additionally tested for P. falciparum and P. vivax infec-
tion by polymerase chain reaction (PCR) [30, 31]. Hist-
ology of placental biopsies was examined, as reported
previously [32].

Exposures and outcome measures
The exposures assessed were ferritin (defined as log base
2 [i.e. log2] ferritin) and ID, defined as plasma ferritin <
15 μg/L at first antenatal visit [13]. Log2 transformation
was the most appropriate as it resulted in a normal dis-
tribution and a linear relationship between ferritin and
birthweight, allowed for comparison with earlier re-
search [20], and was the most easily interpretable
transformation.
As ferritin (an acute-phase protein) increases during

systemic inflammation [15, 16, 33, 34], levels were ad-
justed using CRP and AGP as markers of inflammation
as recommended by the World Health Organization
[35]. To do so the “internal regression correction” ap-
proach described by the Biomarkers Reflecting the In-
flammation and Nutritional Determinants of Anemia
(BRINDA) project was used [16, 35]. Internal reference
values, i.e. threshold values above which ferritin
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adjustments are assumed to be required, were 0.2 mg/L
and 87 mg/L for CRP and AGP, respectively. BRINDA-
adjusted ferritin levels are presented except where stated
otherwise.
The birth outcomes of interest were birthweight,

LBW, PTB, and SGA (birthweight <10th centile for
babies of the same gestational age using
INTERGROWTH-21st standards) [36].

Statistical analysis
The distribution of key socio-demographic and baseline
clinical and laboratory characteristics are presented for
those who were ID and not ID at antenatal enrolment.
Associations of ferritin or ID with birthweight, LBW,

PTB, and SGA were assessed using multivariable linear
and logistic regression models, as appropriate. Multivari-
able regression models were adjusted for the following
variables identified a priori as confounders or prognostic
factors of birthweight: gravidity, season, number of ante-
natal clinic visits, clinic location, MUAC, stunting, ethni-
city, bed net use, smoking, betel nut use, and gestational
age at ferritin measurement (as estimated by fundal
height) [18, 23]. Time interval between birth and birth-
weight measurement to account for weight loss in breast-
fed newborns (analyses assessing impact on birth weight
only), sex of the newborn, treatment arm (overall analyses
only), and gestational age at ferritin measurement to ac-
count for physiological depletion of iron stores with ad-
vancing gestation, were also included in the multivariable
regression models, as appropriate. We assessed whether
gravidity and malaria prevention strategy (i.e. trial treat-
ment arm) during pregnancy modified the association be-
tween iron stores and the birth outcomes by fitting
models with interaction terms between iron status (ferritin
levels or ID) and gravidity, and models with interaction
terms between iron status (ferritin levels or ID) and trial
treatment arm; P-values for effect modification were de-
rived from likelihood ratio tests comparing models with
and without the interaction terms. Sensitivity analyses
were conducted using crude plasma ferritin levels, i.e. fer-
ritin levels unadjusted for concomitant inflammation.
Where associations were observed between iron defi-

ciency at enrolment and the outcomes, birthweight and
SGA, within each treatment arm (SPCQ and SPAZ), we
performed mediation analyses to estimate marginal in-
direct effects, that is, the effect of iron deficiency on
birth outcomes that is operating through the mediating
effects of peripheral malaria at enrolment, haemoglobin
level at enrolment, peripheral malaria at delivery, placen-
tal malaria at delivery and haemoglobin level at delivery,
and the marginal natural direct effects, that is, the part
of the effect that remains unexplained by the mediators
of interest. The mediation analyses were performed
using the paramed package in Stata. All mediation

analyses were adjusted for the confounders: gravidity,
season, number of antenatal visits, clinic location,
MUAC, stunting, ethnicity, bed net use, smoking, betel
nut use, and gestational age at ferritin measurement (as
estimated by fundal height).
Malaria infection was defined as the presence of per-

ipheral infection by light microscopy and/or PCR at en-
rolment or delivery, and placental malaria infection as
past or active infection on placental histology [23].
All statistical analyses were performed using Stata ver-

sion 16.1 (StataCorp, College Station, TX, USA).

Ethical considerations
Ethical approval for the study was obtained from the In-
stitutional Review Board of the PNG Institute of Medical
Research (0815), the PNG Medical Research Advisory
Council (8.01), and the Melbourne Health Human Re-
search Ethics Committee (2008.162). The parent trial
was registered with the United States National Institutes
of Health Clinical Trials Registry (Clinicaltrials.gov,
NCT01136850). Informed written consent was obtained
from all women. The study was conducted in accordance
with Good Clinical Practice guidelines (ICH GCP E6).

Results
Participant characteristics at antenatal enrolment
A total of 1892 women were included in the analysis
(Fig. 1). The median age at antenatal enrolment was 23
years (interquartile range [IQR] 20–28 years). Approxi-
mately 60% (n = 1125) of women resided in rural areas,
and the median gestational age at antenatal enrolment
was 22 weeks (IQR 19–24 weeks). Nearly one-third of
women exhibited signs of macronutrient undernutrition
(28.1% with MUAC <23 cm; 18.8% with height <150 cm)
and this was the first pregnancy for half of the women
(Table 1). A total of 937 (49.5%) and 955 (50.5%) of
women received SPCQ and SPAZ, respectively. Three
quarters of women (n = 1449; 76.6%) reported bed net
use during the preceding fortnight.
The mean ± standard deviation (SD) haemoglobin

(Hb) at the antenatal enrolment was 97 g/L ± 15 g/L. A
total of 61.5% (n = 1164) of women were anaemic (Hb
≤100 g/L, as per PNG guidelines [37]): 32.7% (n = 618)
had mild anaemia (Hb > 90 and ≤ 100 g/L), 24.7% (468)
had moderate anaemia (Hb >70 and ≤90 g/L), and 4.1%
(78) had severe anaemia (Hb ≤70 g/L). Plasmodium spp.
infections were detected in 13.3% of women at antenatal
enrolment (n = 252) (Table 1): P. falciparum was the
predominant species (n = 184; 9.7%), and half of infec-
tions were submicroscopic (n = 129; 6.8%).
Ferritin concentrations at antenatal enrolment were

low (median 9.8 μg/L; IQR 5.4–19.5 μg/L). Two-thirds
of women (n = 1256) had ID (ferritin <15 μg/L). Women
with ID more frequently chewed areca (betel) nut (84.7%
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vs. 79.6%), had an urban/peri-urban residence (42.4% vs.
35.5%), and were more commonly multigravid (53.5% vs.
44.8%). Women with ID had a higher median gestational
age at enrolment (23; IQR 20–25) compared to iron-
replete women (20; IQR 17–23), consistent with gesta-
tional depletion of iron stores (Table 1). Women with ID
were more likely to be anaemic compared to iron-replete
women (65.0% vs. 54.7%). Iron-deficient women were less
likely to be malaria-infected at enrolment (9.7% vs. 20.4%).
Using unadjusted ferritin levels to estimate ID yielded
similar results (Additional file 1: Table S1).

Birth outcomes
The mean birthweight in the cohort was 2943 g (SD 482
g), and 15.1% of babies (n = 285) were LBW. Amongst
women with ultrasound-dated pregnancies (n = 1243), the

median gestational age at birth was 38 weeks (IQR 38–40
weeks); 9.0% (112/1243) and 24.4% (303/1243) of women
delivered a PTB and SGA baby, respectively. At delivery, a
total of 6.3% (117/1867) of women had peripheral P. fal-
ciparum (68 mono-infections, three mixed infections with
P. vivax) or P. vivax (n = 46): 56 of these infections were
submicroscopic (3.0%). Amongst women with histology
data, 7.4% (98/1333) had active placental infection, and
11.2% (149/1333) had evidence of past infection. Fifty-five
percent of women were anaemic (931/1709) and the mean
Hb at birth was 101 g/L (SD 17 g/L).

Relationship of iron stores at antenatal enrolment with
birth outcomes
Results from fitting multivariable models examining
the study population as a whole showed that for a

Fig. 1 Participant flow chart. Of 2793 women enrolled in the parent trial, 1892 had plasma available for ferritin, alpha-1-acid glycoprotein, and C-
reactive protein and were included in the present analyses. Reasons for exclusion are indicated in the diagram. Abbreviations: AGP, α-1-acid
glycoprotein; CRP, C-reactive protein; IPTp, intermittent preventive treatment in pregnancy

Unger et al. BMC Medicine          (2021) 19:236 Page 5 of 13



Table 1 Characteristics of women at antenatal enrolment, overall and by presence or absence of iron deficiency. Madang Province,
Papua New Guinea, 2009–2013
Characteristic All women (N = 1892) Iron-deficient (ferritin <15 μg/L) (N = 1256) Iron-replete (ferritin ≥15 μg/L) (N = 636)

Age (years) 23 (20, 28) 24 (20, 28) 23 (20, 28)

Smoker

Yes 362 (19.1) 253 (20.1) 109 (17.1)

No 1528 (80.8) 1001 (79.7) 527 (82.9)

Missing data 2 (0.1) 2 (0.2) 0 (0.0)

Chews betel nut

Yes 1570 (83.0) 1064 (84.7) 506 (79.6)

No 312 (16.5) 184 (14.7) 128 (20.1)

Missing data 10 (0.5) 8 (0.6) 2 (0.3)

Ethnic origin

Lowland/Islands 1745 (92.2) 1166 (92.8) 579 (91.0)

Highlands 145 (7.7) 88 (7.0) 57 (9.0)

Missing data 2 (0.1) 2 (0.2) 0 (0.0)

Residence

Rural 1125 (59.5) 718 (57.2) 407 (64.0)

Urban/peri-urban 759 (40.1) 533 (42.4) 226 (35.5)

Missing data 8 (0.42) 5 (0.4) 3 (0.5)

Clinic

Alexishafen 326 (17.2) 210 (16.7) 116 (18.2)

Others 1566 (82.8) 1046 (83.3) 520 (81.8)

Gestational age (weeks)1* 22 (19, 24) 23 (20, 25) 20 (17, 23)

MUAC (cm)* 23.9 [2.6] 23.8 [2.5] 24.1 [2.6]

Height (cm)* 154 [6] 154 [6] 155 [6]

BMI (kg/m2)* 22.5 (20.9, 24.3) 22.5 (20.9, 24.2) 22.5 (20.8, 24.7)

Gravidity

Primigravid 932 (49.3) 582 (44.3) 350 (55.0)

Multigravid 957 (50.6) 672 (53.5) 285 (44.8)

Missing data 3 (0.2) 2 (0.2) 1 (0.2)

Malaria prevention

SPAZ 50.5 (955) 629 (50.1) 326 (51.3)

SPCQ 49.5 (937) 627 (49.9) 310 (48.7)

Used bed net during preceding fortnight

Yes 1449 (76.6) 971 (77.3) 478 (75.2)

No 438 (23.2) 282 (22.5) 156 (24.5)

Missing data 5 (0.3) 3 (0.2) 2 (0.3)

Haemoglobin (g/L) 97 [15] 96 [14] 99 [16]

Anaemia (g/L)

>100 728 (38.5) 440 (35.0) 288 (45.3)

>90 and ≤100 618 (32.7) 441 (35.1) 177 (27.8)

>70 and ≤90 468 (24.7) 322 (25.6) 146 (23.0)

≤70 78 (4.1) 53 (4.2) 25 (3.9)

Malaria infection2

Present 252 (13.3) 122 (9.7) 130 (20.4)

Absent 1640 (86.7) 1134 (90.3) 506 (79.6)

Note. Mean [standard deviation]; or median (interquartile range); or n (%). Ferritin levels were adjusted for concomitant inflammation using the BRINDA (Biomarkers Reflecting
Inflammation and Nutritional Determinants of Anemia) approach [16]
Abbreviations: AGP, α-1-acid glycoprotein; BMI, body mass index (kg/m2); CRP, C-reactive protein; MUAC, mid-upper arm circumference. P. falciparum, Plasmodium falciparum
1According to symphysis pubis fundal height in cm at antenatal enrolment
2Plasmodium (P.) falciparum and P. vivax infection in peripheral blood, as detected by light microscopy and polymerase chain reaction
*Gestational age (n = 1889), MUAC (n = 1852), height (n = 1861), and BMI (n = 1,856)
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twofold increase in ferritin levels, there was a de-
crease of 11 g (95% CI −27, 6; P = 0.19) in mean
birthweight (Table 2). Babies of women with ID were
on average 46 g (95% CI −0.4, 92 g; P = 0.052) heav-
ier compared to iron-replete women (Table 2). Fer-
ritin levels and ID were not associated with LBW
(Table 2). Associations of ferritin levels with birth-
weight appeared to be driven by impacts on foetal
growth rather than length of gestation. For a twofold
increase in ferritin levels, there were increased odds
of SGA (OR 1.11; 95% CI 0.99, 1.24; P = 0.066), and
ferritin levels or ID were not associated with preterm
birth (Table 2). Using unadjusted ferritin levels
yielded similar results (see Additional file 1: Table S2
[16, 36]).

Impact of malaria chemoprevention during pregnancy on
the relationship between antenatal iron status and birth
outcomes
Associations between ferritin levels at antenatal enrol-
ment and birthweight differed between women who
were treated with monthly SPAZ and those treated with
a single course of SPCQ (P = 0.041 for birthweight, P =
0.001 for LBW, and P = 0.02 for SGA; P-values for inter-
action terms) (Table 2). Amongst SPCQ recipients, for a
twofold increase in ferritin levels, there was a decrease
of 26 g (95% CI −50, −1; P = 0.041) in mean birthweight,
increased odds of LBW (aOR 1.15; 95% CI 1.00, 1.32; P
= 0.050), and increased odds of SGA (aOR 1.25; 95% CI
1.06, 1.46; P = 0.007). Conversely, in the SPAZ group,
for a twofold increase in ferritin levels, there was an in-
crease of 9 g (95% CI −13, 31; P = 0.45) in mean birth-
weight, reduced odds of LBW (OR 0.80; 0.67, 0.94; P =
0.009), and no difference in the odds of SGA (aOR 0.98;
95% CI 0.84, 1.15; P = 0.80) (Table 2). Associations be-
tween ferritin levels or ID with PTB were not modified
by malaria prevention regimen (P =0.91 for ferritin and
P = 0.62 for ID; P values for interaction terms). Analo-
gous associations were observed when ID was the expos-
ure of interest (Table 2). In women receiving SPCQ, ID
was associated with an increase of 81 g (95% CI 10, 152;
P = 0.025) in mean birthweight and reduced odds of
LBW (aOR 0.73; 95% CI 0.49, 1.08; P = 0.12) or SGA
(aOR 0.67; 95% CI 0.44, 1.04; P = 0.072). ID was not as-
sociated with birthweight, LBW, SGA, or preterm birth
in women randomised to SPAZ (all P > 0.1). Using un-
adjusted ferritin levels yielded similar results (Additional
file 1: Table S2 [16, 36]). When we stratified the rela-
tionship between iron deficiency and pregnancy out-
comes by gravidity, there were tendencies towards
stronger associations in primigravid than multigravid
women, but these were not statistically significant (Add-
itional file 1: Table S3 [16, 36]).

Mediation of iron-birth outcome relationships by malaria
infection and haemoglobin in SPCQ recipients
Mediation analysis was conducted to determine whether,
amongst SPCQ recipients, associations of ID with birth-
weight or SGA are mediated by malaria infection or
haemoglobin levels during pregnancy and at birth (Fig.
2, Table 3). There were protective effects of ID on birth-
weight that were not mediated by malaria infection (nat-
ural direct effect) (88.9 g; 95% CI 17.2, 160.8 g) or
haemoglobin at enrolment (78.9 g; 95% CI 7.8, 150.0 g),
with analogous directionality (not statistically significant)
observed when assessing for mediation by malaria infec-
tion status (peripheral or placental infection) or haemo-
globin at birth (Table 3). At the most, 13% (6.1 g of a
total protective effect of 46.8 g) of the association be-
tween ID and higher mean birthweight was mediated
through pathways that included placental infection
(Table 3). ID conferred a direct protective effect on the
odds of SGA not mediated by malaria infection (aOR
0.62; 95% CI 0.40, 0.95) or haemoglobin at enrolment
(aOR 0.65; 95% CI 0.42, 0.99), and similar trends were
observed in models examining indirect pathways via
malaria infection or anaemia at birth (Table 3).

Discussion
In a large pregnancy cohort in PNG, nearly two-thirds of
women were found to be iron deficient at antenatal en-
rolment. In analyses considering all women, there was a
decrease in mean birthweight and increased odds of
SGA associated with twofold increases in mid-pregnancy
ferritin levels (not statistically significant), with recipro-
cal increases in mean birthweight and reduction in the
odds of SGA amongst iron-deficient women. Associa-
tions between measures of antenatal iron stores and the
birth outcomes birthweight, LBW, and SGA were altered
by the type of malaria chemoprevention during preg-
nancy, but not by gravidity. Amongst women who re-
ceived SPCQ, ID was associated with increased mean
birthweight and lower odds of SGA; this was mirrored
by increased odds of SGA associated with a twofold in-
crease in ferritin. Conversely, in SPAZ recipients, a two-
fold increase in ferritin was associated with lower odds
of LBW. Ferritin and ID were not associated with PTB.
Malaria infection during pregnancy and Hb did not me-
diate associations between ID and birthweight or SGA
amongst SPCQ recipients.
Maternal ID and associated iron-deficiency anaemia

have been associated with adverse birth outcomes in-
cluding LBW, PTB, and SGA [38–40]. Meta-analysis
suggests that restoring or maintaining adequate maternal
iron stores through iron supplementation prevents ad-
verse pregnancy outcomes [3]. Benefits of iron supple-
mentation for the prevention of adverse pregnancy
outcomes may be more pronounced in settings with a
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Table 2 Associations of maternal ferritin at first antenatal visit with birthweight, low birthweight (n = 1840), small-for-gestational
age, and preterm birth (n = 1208), overall and stratified by malaria prevention regimen. Madang Province, Papua New Guinea, 2009–
2013

Overall Malaria prevention regimen

Adjusted mean difference (95%
CI); P

SPCQ (n = 898)
Adjusted mean difference (95%
CI); P

SPAZ (n = 934)
Adjusted mean difference (95%
CI); P

P interaction
parameter

Birthweight (grammes)

Iron stores (measured by ferritin)
(log2) μg/L

−11 (−27, 6); 0.19 −26 (−50, −1); 0.041 9 (−13, 31); 0.45 0.041

Iron deficiency

Ferritin <15 μg/L 46 (−0.4, 92); 0.052 81 (10, 152); 0.025 6 (−54; 66); 0.845 0.11

Ferritin ≥15 μg/L Reference Reference Reference

Adjusted OR (95% CI); P Adjusted OR (95% CI); P Adjusted OR (95% CI); P

Low birthweight (<2500 g)

Iron stores (measured by ferritin)
(log2) μg/L

1.00 (0.90, 1.11); 0.99 1.15 (1.00, 1.32); 0.050 0.80 (0.67, 0.94); 0.009 0.001

Iron deficiency

Ferritin <15 μg/L 0.86 (0.64, 1.15); 0.31 0.73 (0.49, 1.08); 0.12 1.10 (0.70, 1.73); 0.69 0.18

Ferritin ≥15 μg/L Reference Reference Reference

Preterm birth (<37 weeks) SPCQ (n = 586) SPAZ (n = 622)

Iron stores (measured by ferritin)
(log2) μg/L

1.03 (0.87, 1.20); 0.77 1.03 (0.84, 1.27); 0.79 0.98 (0.75, 1.28); 0.87 0.91

Iron deficiency

Ferritin <15 μg/L 0.85 (0.54, 1.34); 0.48 0.94 (0.51, 1.73); 0.84 0.82 (0.40, 1.65); 0.57 0.62

Ferritin ≥15 μg/L Reference Reference Reference

Small-for-gestational-agea

Iron stores (measured by ferritin)
(log2) μg/L

1.11 (0.99, 1.24); 0.066 1.25 (1.06, 1.46); 0.007 0.98 (0.84, 1.15); 0.80 0.02

Iron deficiency

Ferritin <15 μg/L 0.79 (0.59, 1.07); 0.12 0.67 (0.44, 1.04); 0.072 0.91 (0.60, 1.40); 0.77 0.19

Ferritin ≥15 μg/L Reference Reference Reference

Note. Linear regression analyses were performed for the outcome birthweight, with mean difference (95% CI) presented and logistic regression for the outcomes,
low birthweight, preterm birth, and small-for-gestational age, with odds ratios (95% CI) presented. Analyses were adjusted for gravidity, season, number of
antenatal visits, clinic location, mid-upper arm circumference (< 23cm, ≥ 23 cm), stunting (height <150 cm, ≥ 150 cm), ethnicity, bed net use, smoking, betel nut
use, and gestational age at enrolment, i.e. at ferritin measurement (as estimated by fundal height). Models also included the covariates sex of the newborn, timing
of birthweight measurement (analyses including birthweight only), and treatment arm (overall analysis only). Ferritin levels were adjusted for concomitant
inflammation using the BRINDA (Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia) approach [16]
Abbreviations: CI, confidence interval; OR, odds ratio; SPAZ, sulphadoxine-pyrimethamine plus azithromycin; SPCQ, SP plus chloroquine
aDefined as birthweight <10th centile of the Intergrowth-21 reference [36]

Fig. 2 Conceptual directed acyclic graph of mediation iron deficiency (ferritin <15 μg/L) and birthweight by malaria infection and maternal
haemoglobin. Peripheral malaria was defined as the presence of P. falciparum and/or P. vivax infections on light microscopy and/or polymerase
chain reaction, and placental malaria as active or past infection on histology
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higher prevalence of ID [41]. The WHO thus recom-
mends universal iron supplementation (and augmented
iron supplementation in anaemic women), one of sev-
eral key components of antenatal care globally [9]. The
WHO further recommends contemporaneous preven-
tion and treatment of endemic infections such as mal-
aria and hookworm, as they have been associated with
anaemia through blood loss, increased erythrocyte
turnover, and reduced red cell production [9]. However,
studies assessing relationships between markers of ma-
ternal iron reserves and birth outcomes do not consist-
ently report a reduction in adverse outcomes in iron-
replete women [42, 43]. Recent studies report possible
associations of ID during pregnancy with reduced risks
of adverse pregnancy outcomes and increases in mean
birthweight, as well as associations of iron supplemen-
tation during pregnancy with an increased risk of LBW
[20, 44–48].
Several mechanisms to explain the association between

an iron-replete state with reductions in birthweight have
been proposed [20–22, 45]. Iron deficiency may lead to
decreased reticulocyte numbers, and thus in malaria-
endemic settings such as PNG, ID may confer a level of
protection from P. falciparum infection. This is due to
invasion of, and proliferation in, older red blood cells be-
ing poor, whilst supplementation may result in reticulo-
cytosis, increasing numbers of available young
erythrocytes [49–53]. ID was associated with reduced
malaria risk in pregnant women in a 2014 meta-analysis,
and in one study, iron supplementation in pregnancy
was associated with an increased risk of P. vivax infec-
tion [11]. In the earlier PNG cohort study, ID was not
associated with malaria risk, and modelling suggested a

substantial direct “protective” effect of ID on the risk of
low birthweight (risk ratio 0.44; 95 CI 0.25, 0.79) that
was not mediated through protection against peripheral
malaria at enrolment, anaemia, and placental malaria
[20]. The authors hypothesised that an iron-deficient
state may confer protection against infectious pathogens
other than malaria that are associated with reduced
birthweight [21], given the crucial role iron plays in their
metabolism and survival [54, 55].
Women in the present study were randomised to two

markedly different malaria prevention strategies, and
ferritin-birth outcome relationships differed between
trial arms. Women either received a single malaria clear-
ance treatment with SPCQ at antenatal enrolment
(reflecting previous PNG malaria policy) or intermittent
preventive treatment (IPTp) with monthly SPAZ.
Monthly IPTp prevents LBW even in women without
malaria or in settings where SP has lost its anti-malarial
efficacy due to drug resistance [24, 56, 57]. These non-
malarial benefits of SP, which are substantial and may
relate to the prevention of other infections, could be of
importance. Broad antimicrobial properties of SP, or of
SPAZ, could abrogate the putative risk that iron supple-
mentation (or an iron-replete state) may pose for infec-
tions that cause adverse birth outcomes. SPAZ was
found to nullify the association between inflammation
(as measured by CRP and AGP) and adverse birth out-
comes [29]. Non-malarial benefits of SP may explain
why in clinical trials of iron supplementation conducted
in Kenya and Tanzania iron supplementation improved
birthweight, as supplementation was given alongside
IPTp with SP [41, 58]. Similarly, higher mid-trimester
ferritin levels were associated with reduced odds of LBW

Table 3 Mediation of the association between iron deficiency (ferritin <15 μg/L) at enrolment and the birth outcomes birthweight
and SGA for pregnant women in the SPCQ treatment group. Madang Province, Papua New Guinea, 2009–2013

Mediator

Peripheral malaria at
enrolment

Haemoglobin at
enrolment

Peripheral malaria at
delivery

Placental malaria at
delivery

Haemoglobin at
delivery

Outcome—birthweight
(grammes)

Mean difference (95%
CI); n = 901

Mean difference (95%
CI); n = 901

Mean difference (95%
CI); n = 893

Mean difference (95%
CI); n = 747

Mean difference (95%
CI); n = 815

Total effect 79.0 (1.0, 157.1) 78.6 (7.5, 149.7) 68.3 (−5.5, 142.1) 46.8 (−35.6, 129.2) 58.7 (−15.5, 132.9)

Natural direct effect 88.9 (17.2, 160.8) 78.9 (7.8, 150.0) 67.6 (−2.9, 138.0) 40.7 (−39.1, 120.6) 57.2 (−17.3, 131.7)

Indirect effect −9.9 (−21.5, 1.6) −0.3 (−2.0, 1.5) 0.7 (−1.7, 3.1) 6.1 (−3.3, 15.4) 1.5 (−5.8, 8.8)

Outcome—small for
gestational agea

OR (95% CI); n = 589 OR (95% CI); n = 589 OR (95% CI); n = 583 OR (95% CI); n = 486 OR (95% CI); n = 538

Total effect 0.64 (0.41, 1.00) 0.65 (0.42, 0.99) 0.65 (0.42, 1.00) 0.71 (0.43, 1.17) 0.56 (0.36, 0.89)

Natural direct effect 0.62 (0.40, 0.95) 0.65 (0.42, 0.99) 0.66 (0.43, 1.02) 0.71 (0.44, 1.15) 0.59 (0.37, 0.93)

Indirect effect 1.04 (0.93, 1.16) 1.00 (0.99, 1.01) 0.98 (0.90, 1.06) 1.00 (0.86, 1.17) 0.96 (0.89, 1.03)

Note. Analyses adjusted for the confounders: gravidity, season, clinic location, mid-upper arm circumference (< 23cm, ≥ 23 cm), stunting (height <150 cm, ≥ 150
cm), ethnicity, bed net use, smoking, betel nut use, and gestational age at enrolment, i.e. at ferritin measurement (as estimated by fundal height). Ferritin levels
were adjusted for concomitant inflammation using the BRINDA (Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia) approach [16]
Abbreviations: CI, confidence interval; OR, odds ratio; SPCQ, sulphadoxine-pyrimethamine plus chloroquine
aDefined as birthweight <10th centile of the Intergrowth-21 reference [36]
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in women receiving IPTp with SPAZ in the present
study. In settings with high burdens of infectious patho-
gens and a high burden of iron deficiency, iron supple-
mentation is safe and appears to translate into
improvements in birth outcomes when given in combin-
ation with SP or SPAZ.
Furthermore, it has been proposed that the observed

ferritin-birth outcome relationship may be due to an ad-
verse effect of iron supplementation on birthweight in
iron-replete women, amongst whom supplementation
may reduce birthweight [6, 22, 45]. Putative mechanisms
may include adverse impacts on foetal growth due to ei-
ther increased blood viscosity or placental damage from
free radicals in supplemented iron-replete women [59,
60]. Amongst pregnant Gambian women receiving IPTp
with SP, limiting iron supplementation to women in
whom iron-deficiency anaemia was detected through a
hepcidin-guided screen-and-treat intervention had no
advantage over universal supplementation in terms of
adherence, side-effects, or safety outcomes [61]. Medi-
ation analyses in the present and prior study from PNG
suggest that the protective effect of ID is largely achieved
through mechanisms independent of maternal malaria
infection or anaemia. Furthermore, delivery haemoglobin
levels did not differ between trial arms [23], and few
women in our cohort had haemoglobin levels >130 g/L
(enrolment 1.3%, 25/1892; delivery 4.2%, 71/1709).
Haemoglobin concentrations above 130 g/L may be as-
sociated with increased odds of SGA [6]. Assuming a
similar intake of iron supplements across both arms fol-
lowing randomisation, the observed effects are unlikely
to be mediated by impacts of iron supplementation on
increased blood viscosity and possible adverse conse-
quences for foetal growth that may be associated with it.
The relationship between maternal iron status or iron

supplementation and birth outcomes should also be a
consideration in research evaluating other candidate
regimens for IPTp. Combinations such as
dihydroartemisinin-piperaquine (DP) have superior anti-
malarial efficacy compared to SP, yet lack the non-
malarial benefits of SP for the prevention of adverse
birth outcomes [25]. Causal mediation analysis of three
clinical trials comparing both regimens demonstrated
that the mean birthweight amongst SP recipients was
approximately 70 g higher compared to DP recipients.
SP conferred a greater non-malarial effect than DP (87 g
difference in mean birthweight), whereas DP conferred a
larger anti-malarial effect compared to SP (8 to 31 g dif-
ference in mean birthweight, depending on dosing fre-
quency) [25]. Further research needs to determine how
SP or SPAZ alter the relationship between maternal iron
status or iron supplementation and birth outcomes. The
impact (and its directionality) of IPTp with DP on rela-
tionships of maternal iron status or supplementation

with birth outcomes is unknown. Our research suggests
that the evaluation of alternative IPT regimens should
integrate assessments of the impact of maternal iron sta-
tus or iron supplementation on birth outcomes, as com-
pared to SP. In the absence of suitable alternatives,
efforts to upscale the roll-out of IPTp with SP, to be
provided alongside iron supplementation, seem crucial.
Our study replicates only some of the findings of a

prior investigation, at one of our study sites [20]. In 279
women receiving SPCQ and weekly CQ prophylaxis,
those with ID had a significantly higher mean birth-
weight (230 g) and reduced odds of LBW (aOR 0.32)
and PTB (aOR 0.57) [20]. ID was more common in
women included in the previous study (71%, estimated
using unadjusted ferritin levels) compared to the present
study (39.4%, based on unadjusted ferritin, Supplemental
table 1). Greatest effects were seen amongst primigrav-
idae. In our larger study over a wider geographical
catchment area including rural and urban residents, we
found lower burdens of malaria infection and anaemia.
ID was associated with a modest increase in mean birth-
weight in women randomised to a single dose of SPCQ,
and gravidity did not modify the iron-birthweight rela-
tionship. Importantly, we used foetal biometry to esti-
mate gestational age in two-thirds of women, which
adds crucial precision in the estimation of PTB and SGA
burdens [62]. Our study indicates that ferritin-
birthweight relationships may be driven by impacts on
foetal growth rather than preterm birth.
Sample size, measurement of two markers of inflam-

mation to adjust ferritin levels, and assessment of mal-
aria infection by qPCR and placental histology are
important strengths of the present study. Furthermore,
the design of the parent trial permitted an evaluation of
the impact of different pharmacological malaria preven-
tion strategies on the relationship between iron status
and birth outcomes. Limitations include the lack of as-
sessment of the presence of other infections, including
chorioamnionitis and genitourinary tract infections. Fur-
thermore, iron supplementation following enrolment
was unsupervised and uptake may have differed between
trial arms. We only assessed foetal biometry and placen-
tal infection in a proportion of women and only evalu-
ated ferritin-birth outcome relationships in women with
live births, who completed follow-up for birthweight and
for whom measures of malaria and anaemia were avail-
able [23]. As previously reported, women excluded from
birthweight analyses were more commonly malaria in-
fected at antenatal enrolment, more commonly resided
in rural areas, more likely to be illiterate, but did not
differ in other characteristics, including MUAC and en-
rolment haemoglobin [23]. We performed multiple
comparisons in this exploratory analysis, and some asso-
ciations may be due to chance and must be interpreted
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with caution [63]. Lastly, estimation of iron status using
ferritin, even when adjusted for concomitant inflamma-
tion, is likely to be less precise compared to measures
such as transferrin receptor/log10 ferritin ratio or hepci-
din [64]. Residual confounding, potentially due to un-
adjusted inflammation/infection may thus drive some of
the effects observed.

Conclusions
In coastal PNG, ID at first antenatal visit is common.
The relationship between maternal iron status and ad-
verse birth outcomes is altered by the type of malaria
chemoprevention strategy that is offered during preg-
nancy. Improved antenatal iron stores are beneficial for
LBW prevention in women receiving monthly SPAZ.
They do not confer a benefit for the prevention of ad-
verse birth outcomes amongst SPCQ recipients, amongst
whom an iron-replete state may hinder optimal foetal
growth through processes that are largely independent
of malaria infection and maternal haemoglobin. Research
to determine the mechanisms by which ID protects from
suboptimal foetal growth is needed to guide the design
of new malaria prevention strategies and to inform iron
supplementation policy in malaria-endemic settings.
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