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ABSTRACT
Whilst Knowledge Graphs (KGs) are increasingly used in business
scenarios, the construction of enterprise ontologies and the pop-
ulation of KGs from existing relational data remains a significant
challenge. In this paper we report our experience in supporting
CSols (an SME operating in the analytical laboratory domain) in
transitioning their data from legacy databases to a bespoke KG. We
modelled the KG using a streamlined approach based on state of the
art ontology engineering methodologies, that addresses the chal-
lenges faced by SMEs when transitioning to new technologies: lack
of resources to devote to the transition, paucity of comprehensive
data governance policies, and resistance within the organisation to
accepting new practices and knowledge. Our approach uses a com-
bination of UML diagrams and a controlled language glossary to
support stakeholders in reaching consensus during the knowledge
capture phase, thus reducing the intervention of the ontology engi-
neer only to cases where no agreement can be found. We present a
case study illustrating the generation of the KG from a UML speci-
fication of part of the analytical domain and from legacy relational
data, and we discuss the benefits and challenges of the approach.
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1 INTRODUCTION
The problem of designing enterprise ontologies from relational
databases (RDBs) has received some attention in the literature, e.g.
in [26]. Several ontology engineering methodologies have been
proposed in the last 30 years, and have contributed to the area’s
methodological issues including the notion of competency ques-
tions, ontology reuse, and ontology design patterns [13, 16, 28, 29].
However, existing methodologies lack guidelines for building on-
tologies by reusing and re-engineering existing knowledge-aware,
non-ontological resources [11], e.g. RDBs.

The reuse of RDBs typically involves domain experts (database
administrators or SQL practitioners), often working with knowl-
edge engineers (knowledge scientists1), to explicitly model knowl-
edge embedded in RDBs. In most cases, this process requires the
understanding and interpretation of business information and rules
from relational schema, and the manual re-engineering of this
knowledge in an ontological format [11, 18].

The problem of constructing ontologies from RDBs has also
gained prominence in the context of Ontology Based Data Access
(OBDA) approaches for implementing Knowledge Graphs, where
mappings are defined between the data sources (i.e. RDBs) and the
ontology, to provide a formal and abstract representation of the
domain of discourse, that becomes the main interface of the in-
formation system [31]. The specification of mappings might be
semi-automated, as in [3], where a rule based approach to the defin-
ing mappings based on table patterns aims to learn ontologies from
RDBs. So far, approaches to the reuse of RDBs in the engineering of
ontologies rarely consider the life cycle of building an ontology, or
the associated software engineering requirements. Recently, some
approaches, e.g. the “Pay-As-You-Go” (PAYG) approach [25], take a
practice-based stance on the design and population of enterprise
ontologies (enterprise knowledge graphs) from RDBs. The PAYG
approach aims to address: (i) the inherent difficulty of engineer-
ing ontologies for a complex domains; and (ii) that it is not viable

1A recent essay (https://www.knowledgescientist.org) proposes the new organisational
role of the knowledge scientist. This role encompasses the skills of a knowledge
engineer, and liaises with data engineers and data scientists, to ensure reliable, clean,
and meaningful data within an organisation.
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to automatically populate an ontology from RDBs by casting the
problem as a straightforward ontology mapping problem.

Capturing domain knowledge from enterprise databases is typi-
cally hindered by complex schema that encode assumptions about
the domain in an opaque and ad-hoc way. Automatic approaches
seldom manage to capture the complexity of a domain, and manual
approaches require a “communication bridge” between business
users and database specialists. The PAYG approach proposes the
iterative development of an ontology in parallel to the definition of
mappings between the ontology and relational data, and uses infor-
mal intermediate representations to close the gap between business
requirements and data. We leverage on this approach in order to
build a KG using a streamlined development process, which aims
to address some of the challenges faced by small and medium en-
terprises (SMEs) in transitioning to semantic technologies for the
organisation and exploitation of their data, mainly due to lack of
resources and paucity of data governance policies.

This paper reports on the experience of building an ontology for
an analytical software company, CSols. The ontology is constructed
incrementally, using a streamlined engineering approach based on
the well-established METHONTOLOGY [9], and the more recent
PAYG methodology [25]. In Section 2, we identify our motivation
and requirements for the design of a suitable engineering approach,
and outline challenges specific to SMEs in engineering an enterprise
ontology. We outline our proposed approach in Section 3, and
concretely illustrate the approach with a case study in Section 4.

2 MOTIVATION AND CHALLENGES
This paper is born out of the experience acquired in the last 18
months working with CSols Ltd to engineer an enterprise KG to
represent data and knowledge about analytical laboratories, their re-
sources, and their processes. CSols is an SME that provides software
solutions for the integration, analysis, and reporting of analytical
data. In this section, we consider the motivations for the develop-
ment of a novel approach to ontology engineering, and the specific
challenges faced in the development of a CSols KG.

2.1 Motivation and Requirements
As part of their software portfolio, CSols maintain a collection of be-
spoke database (DB) systems that feed into their software solutions
for data integrity and quality control, data reporting and integration.
CSols took the strategic decision to build a KG to model and enrich
the data currently stored in their DBs, to answer more sophisticated
business questions and perform complex analytical tasks concern-
ing instruments, their status, and their data output. Due to the
nature of CSols business sector, their business questions typically
involve specialised knowledge about chemistry, pharmacology and
biotechnology, often widening the communication gap between
stakeholders, as became evident when gathering requirements.

Knowledge capture is a critical stage of any methodology for
building ontologies, and includes specification and conceptualisation
activities, where requirements and usage scenarios are determined
by the main actors of the methodology 2.

2Here we refer to the nomenclature used in METHONTOLOGY [9], but similar phases
can be found in [20, 28, 29], just to name a few.

Knowledge about the domain in which CSols operates is em-
bedded in legacy DBs and software. The relational schemas under-
pinning CSols’ products have evolved over decades, and are large
and complex; they have been developed according to a range of
programming styles and standards, and include arbitrary naming
conventions and enumerations, as well as complex relations. The
main interaction with these DBs is via a set of historical SQL queries
that represent core business questions for the company, which are
typically executed by business users. Business users are knowledge-
able about aspects of analytical chemistry and are proficient in
the use of SQL for querying DBs [27]. The design of more com-
plex queries is supported by IT developers, who design, build and
maintain CSols software and DB schemas. A significant challenge
is to mediate between business users and IT developers and sup-
port effective communication between them in the contribution of
requirements and constraints to the knowledge acquisition phase.

The analytical domain is well suited to being modelled as a KG;
the widespread use of ontologies in the biochemical domain pro-
vides a wealth of existing ontological resources that can be used to
model parts of the domain, such as the Chemical Methods Ontology
(CHMO)3, and Allotrope4, a collection of ontologies developed by
an international consortium of scientific industries for the manage-
ment of laboratory data throughout its life cycle. These resources
model different facets of the domain and have different levels of
standardisation. However, there remains large areas of the domain
for which there is no standardisation.

Following consultation with both business users and IT devel-
opers, we identified a number of core requirements to inform the
choice of a suitable ontology development approach from a selection
of the most prominent methodologies and processes [9, 20, 25, 28].
An appropriate approach must (i) facilitate knowledge capture from
business users and software developers alike, by promoting a com-
mon understanding of the domain and its associated requirements;
(ii) provide an explicit mechanism for eliciting stakeholder con-
sensus; (iii) support the incremental development of the ontology:
due to size and complexity of the domain, it was imperative that
the ontology was developed incrementally, therefore rationalis-
ing the commitment of resources to the ontology development
process; (iv) establish high-level interoperability with existing on-
tological resources describing facets of the analytical chemistry
domain; (v) support at least RDFS (without sub-properties) expres-
sivity, possibly extended by basic OWL primitives (owl:Class,
owl:DatatypeProperty, owl:ObjectProperty, subsumption and
domain and range declaration).

2.2 Challenges
Ontology engineering is inherently difficult, although there are
many well-established methodologies aimed at tackling this com-
plexity, such as METHONTOLOGY [9]. Here, we consider addi-
tional challenges posed by the design and instantiation of an on-
tology from legacy data, and those challenges specific to SMEs
undertaking such activities.

2.2.1 Engineering knowledge graphs from legacy data. The majority
of ontology engineering methodologies consider the development
3https://github.com/rsc-ontologies/rsc-cmo
4https://www.allotrope.org/ontologies
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of an ontology and its population as separate activities. In the
case of developing a KG from RDBs, both the ontology and cor-
responding mappings from relational schema must be developed
holistically. When developing mappings between relational schema
and an ontology, the scale and complexity of enterprise DBs means
that mappings between tables/classes and columns/properties are
rarely one-to-one, and often include calculations to implement
some business logic. For this reason, automatic approaches to map-
ping specifications (such as bootstrapping a putative ontology from
DB schema and treating mappings as a mere ontology-matching
problem) are generally impracticable. The iterative approach pro-
posed in the PAYG methodology aims to overcome these challenges
by focusing on a business question at time, and simultaneously
developing both the ontology and mappings.

2.2.2 Paucity of comprehensive data governance policies. Data gov-
ernance refers to those data management techniques that enable an
organization to ensure high data quality throughout the complete
life cycle of the data, and that business objectives are supported
through the implementation of appropriate data controls. How-
ever, data governance solutions are largely directed at the needs
of large enterprises, and it has been argued that SMEs—with their
limited resources—often have different requirements. A common
assumption in industry is that data governance solutions for large
enterprises can be scaled down and applied to SMEs, whereas SMEs
need adaptable solutions that need to take into account the scarcity
of available resources [2]. This typically translates into data re-
sources (e.g. DB schemas) that are unnecessarily complex and often
incomplete, and these legacy issues are often difficult to eradicate.
Any methodological solution for the development of ontologies in
this scenarios needs to include mechanisms to overcome these limi-
tations. In this type of scenario, developing tools to semi-automate
part of the development process can speed up the process and limit
the role of the knowledge scientist to focus on those issues that
require their specific expertise.

2.2.3 Acceptance of new technologies and knowledge. Managing
change in SMEs is typically done in-house, by the business owner,
with no specialists, no dedicated departments, and no budget for ex-
ternal consultancy. However, the business owner often has to over-
come a reluctance to change from employees. It has been argued
that a key factor in successfully implementing change is the use of
effective communication mechanisms as a way to improve partici-
pation and ownership, and promote taking common action [17]. We
argue that approaches to building ontologies need to ensure that
clear and unambiguous communication mechanisms are in place
throughout the specification and conceptualisation phase, together
with mechanisms to elicit consensus between stakeholders with
divergent or conflicting views.

3 PROPOSED APPROACH
The development process we propose is loosely based on the PAYG
methodology proposed by Sequeda and colleagues [25]: it is simi-
larly iterative and facilitates the simultaneous development of both
an ontology and RDB2RDF mappings. Each iteration is based on
determining a set of prioritised concepts through a set of crucial
competency questions formulated by the key actors involved the

development process. In CSols, we identify two main actors: busi-
ness users who in this case are domain experts, with knowledge of
analytical laboratories, their resources and their processes, and IT
developers, who understand DB schemas and data organisation.

Given the relatively small size of CSols, the transition to seman-
tic technologies has to be done in-house, with minimal reliance on
external resources. To minimise the use of specialist resources, we
delegate the responsibilities of a knowledge scientist to two alterna-
tive roles. Firstly, an ontology engineer, with expertise in ontological
modelling and a responsibility for knowledge transfer activities;
this role also acts as a mediator in consolidating conflicting ideas
when capturing domain knowledge from business users. Secondly,
a data manager, with expertise in the type of data used throughout
the company and how it is integrated, and an understanding of
the evolution of relational schema over time. In our case, the data
manager is a CSols employee who was able to undertake many
of the ontology engineering tasks with their existing skills and
resources. This limits the intervention of the ontology engineer to
the most complex cases.

The proposed ontology development process is articulated in
three phases: knowledge capture, knowledge implementation, and
knowledge exploitation.

3.1 Phase 1: Knowledge Capture
Each iteration of the CSols ontology development approach aug-
ments the ontology to include the knowledge required to address
specific business concerns, typically identified through the formu-
lation of competency questions. The approach is incremental and
modular, where each module aims to capture the knowledge ab-
stracting the data held in one or more of the CSols database tables.
The Knowledge Capture Phase aims to identify business questions
and the data necessary to answer them through the analysis of
existing business processes and the collection of any supporting
documentation, including the identification of ontologies to reuse.

During this phase, stakeholders collectively define the concepts
related to a particular business process, their relationships and
constraints. UML Class Diagrams are used as used as a lingua franca
between chemists, laboratory workers and software developers,
iterating over definitions until consensus is reached.
Process Analysis The first step is to analyse and formalise a par-
ticular process undertaken by CSols and understand the specific
business concerns addressed by it. The different perspectives of
both business users (in our case laboratory workers, chemists and
commercial sales representatives) and IT developers are considered
in order to establish i) the problem to be solved by the specific
process; ii) the business rational behind the process; iii) the way
the problem is addressed by legacy data, if at all; and iv) any other
processes producing and consuming the relevant data.

Once the business concern is understood, the data manager can
collate any existing documentation describing how it is currently
addressed. For CSols, this typically includes product documentation
and SQL queries either commonly executed by business users or
embedded in software.
Conceptualisation with UML. The next step is to conceptualise
facets of the domain related to the identified business process. This
includes the identification and precise definition of key concepts and



the relationships between them. The definition of domain concepts
and relationships provides an intermediate representation of the
domain, and gives stakeholders an informal view of the domain
that can be understood by both subject matter experts and the
ontology engineer, bridging the gap between the business users’
understanding of the domain and the formal ontology language
used to represent it.

In this step, the data manager analyses any collected documenta-
tion to draft an intermediate representation, which is shared with
business users and IT developers for further refinement. Disagree-
ments are common during this process, with stakeholders using
the same word to describe different concepts or different words to
describe the same concept [25]. Many of these conflicting terms
are embedded in software and data schema, and contribute to the
challenge of querying complex enterprise data. Given the itera-
tive development of the ontology, additional conflicts might be
introduced between new and established definitions. Where stake-
holders are unable to reach consensus, focused intervention by the
ontology engineer can help to disambiguate between the different
meanings using formal models.

Similarly to the intermediate representations introduced in the
conceptualisation phase of METHONTOLOGY [9], the PAYG ap-
proach proposes a tabular knowledge report to record agreed defini-
tions, with a collection of tables recording information about each
concept, their attributes, and relationships between them5. When
applying the PAYG approach to CSols, a tabular representation was
ineffective for precisely capturing the complexity of the domain
and communicating information about identified concepts between
diverse stakeholders. We therefore propose the use of UML Class Di-
agrams to support the specification of intermediate representations.
A de-facto standard formalism for software design and analysis,
UML is widely used to model application domains and communicate
effectively, and is sufficiently abstract to be understood by business
users, IT developers, data managers, and ontology engineers.

The use of UML as an ontology modelling language is long-
established [6]. Parallels between UML and formal ontologies have
motivated research investigating their combination in integrated ap-
proaches, including the validation of UML models using automated
ontology reasoning techniques (e.g. [4, 15, 24]), the organisation
and unification of complementary domain models (e.g. [14, 23]),
and the use of UML in the design and specification of ontologies
(e.g. [5, 12, 21, 33]). The Class Diagram is most commonly used
in the elicitation of domain knowledge, and includes constructs
closely aligned with those included in formal ontology languages.
The class diagram facilitates the specification of classes which can
include attributes. Additional constructs enable the specification of
relationships between classes, including generalisation, association,
and aggregation. Using these constructs, class diagrams provide
mechanisms to encapsulate the Concepts, Attributes, and Relation-
ships embodied a the tabular Knowledge Report, and thus can be
used instead of a Knowledge Report. In our experience, the use
of UML during the conceptualisation phase can afford a range of
benefits, including (i) the semi-formal syntax of UML aids stake-
holders in capturing the complexity of the domain; (ii) visualisation

5Here, Concepts, Attributes and Relationships correspond to Classes, Datatype proper-
ties and Object properties typical of OWL ontologies.

of concepts and relationships supports stakeholders in understand-
ing the domain and significantly reduces the effort and intervention
required in reconciling conflicting perspectives; (iii) UML views en-
able stakeholders to aggregate concerns related to a particular use
case or business question; (iv) widely available CASE tools aid the
organisation of complementary views and automate consistency
checking between them.
Reuse of Existing Ontologies. In this step, the ontology engi-
neer works with business users to align the ontology with existing
ontologies relevant to the analytical laboratory domain. Concepts
included in external resources, or related to concepts in external
resources are identified and reused. Following [10], we identify two
modalities of reuse: hard reuse, where an external resource is im-
ported to the ontology, and soft reuse, where the URI of an external
element is referenced in the ontology. The appropriateness of the
type of reuse is assessed for each case, with an aim of maintaining
focus on the domain of interest.

3.2 Phase 2: Knowledge Implementation
In the Knowledge Implementation Phase, intermediate represen-
tations of the domain are formalised in an OWL ontology and
corresponding mappings from relational schema to RDF are de-
fined using R2RML6. We propose an automated transformation
from UML to OWL/R2RML, ensuring a systematic translation and
further reducing the intervention of an ontology engineer. Follow-
ing transformation, the ontology and mappings are evaluated by
the definition and execution of appropriate SPARQL queries.
Model Transformations. In this step, intermediate representa-
tions are formalised using a formal ontology language. The similari-
ties between UML and ontology languages enable a direct mapping
between models.

The integration UML and ontology languages, chiefly between
UML Class Diagrams and OWL [19], is typically obtained through
syntactic transformations. Though inherent differences in these
languages prevent a complete mapping between them, many com-
ponents of the Class Diagram can be mapped directly to OWL
constructs. The provision of a UML profile can enable the exten-
sion of the Class Diagram to include additional stereotypes to sup-
port modelling additional OWL constructs (e.g. [1, 7]), however
these extensions result in a UML variant more specific to ontology
modelling, with additional learning requirements for users and
overheads for CASE tool integration.

El Hajjamy et al. [8] summarise 8 different methods for mapping
UML toOWL, and use the combination of these techniques as a basis
for the specification of a comprehensive set of transformation rules.
Additional rules are defined by Vo et al. [30] for mapping additional
constructs, including structured attributes, recursive association, as-
sociation with association classes and qualified aggregation. Based
on these rules, we propose a transformation framework summarised
in Table 1, which outlines a mapping between UML and OWL.

We further enrich intermediate representations to support the
generation of R2RML mappings. We propose the use of UML Con-
straints to embed SQL queries directly in the UML model, with con-
straints added to both Classes and Attributes. The correspondence
between UML and R2RML constructs is summarised in Table 2.

6https://www.w3.org/TR/r2rml/

https://www.w3.org/TR/r2rml/


Table 1: Correspondence between UML and OWL constructs

UML Construct OWL Ontology
Class owl:Class
Class Name rdfs:label of the Class
Comment rdfs:comment of the Class
Concept Name Used to create the URI of the Class
Attribute owl:DatatypeProperty
Attribute Name rdfs:label of the Datatype Property
Comment rdfs:comment of the Datatype Property
{concept-attribute} Used to create the URI of the Datatype Property
Host Concept rdfs:domain of the Datatype Property
Type rdfs:range of the Datatype Property
Generalisation rdfs:subClassOf
Association owl:ObjectProperty
Association Name rdfs:label of the Object Property
Aggregation owl:ObjectProperty (with rdfs:label ‘uses’)
Composition owl:ObjectProperty (with rdfs:label ‘contains’)
Comment rdfs:comment of the Object Property
{domain-relationship-range} Used to create the URI of the Object Property
From Class rdfs:domain of the Object Property
To Class rdfs:range of the Object Property

Table 2: Correspondence between UML and R2RML

UML Construct R2RML Mapping
Classes

Class Name rr:Class
Class Constraint used to generate rr:template
Class Constraint body rr:logicalTable

Class Attributes
Class Constraint (owning class) used to generate rr:template
Attribute Constraint used to generate rr:column
{concept-attribute} rr:predicate
Attribute Constraint body rr:logicalTable

Associations
Class Constraints (both From and To) combined to generate rr:logicalTable
domain-relationship-range rr:predicate
Class Constraint (From Class) used to generate rr:template
Class Constraint (To Class) used to generate rr:joinCondition

UML views are based on a metamodel which can be exposed using
the XML Metadata Interchange (XMI)7 standard for exchanging
metadata information via XML. By exposing the metamodel us-
ing XMI, the transformation between intermediate representations
and OWL/R2RML can be automated. Such transformation algo-
rithms are demonstrated in [8]. This automation not only ensures
a systematic translation between models, but further reduces the
involvement of the ontology engineer.
Query Extraction and Ontology Verification. In this step, the
ontology engineer inspects the formal ontology produced by model
transformations, to ensure it adequately reflects the intermediate
representation and can be used as an interface to legacy data.

The ontology engineer ensures that the resulting ontology is
syntactically correct, and does not manifest those common prob-
lems that can occur when an ontology is developed collaboratively.
They define a set of SPARQL queries to capture the information
of interest to business users, based on existing SQL queries used
7https://www.omg.org/spec/XMI/2.5.1/PDF

to address the business concern. The execution of these SPARQL
queries should return the same data as one or more SQL queries.

The combination of the OWL ontology and R2RML mappings
facilitates the execution of SPARQL queries against existing rela-
tional data using ODBA systems, that provide access to data stored
in relational DBs via a virtualised knowledge graph; they aggre-
gate the data according to a given ontology and translate SPARQL
queries to SQL using RDB2RDFmappings [31]. The results returned
by SPARQL queries are validated by comparison against the results
of equivalent SQL queries.

3.3 Phase 3: Knowledge Exploitation
A KG is typically populated by mapping legacy data to a domain
ontology. In the Knowledge Exploitation Phase, business users
analyse the results of querying the knowledge graph to confirm
that it can be used to satisfactorily address the business questions
defined in Phase 1. This confirmation enables the ontology to be
released for use by the wider company, and the ontology can be
developed in a further iteration. We describe how CSols exploit
the resulting knowledge graph by enabling access to legacy data
via a SPARQL endpoint, and by using the controlled vocabulary to
aid communication of complex domain concepts between diverse
stakeholders.
Knowledge Graph Validation. In this step, the ontology engi-
neer works with business users and IT developers to validate the
knowledge graph and SPARQL queries. The ontology and/or queries
are refined until all stakeholders are satisfied that query results
both align with the results of existing SQL implementations, and
adequately address the business concern identified in Phase 1. Once
consensus is reached, the ontology iteration can be moved to a
production environment.
Move to Production. Once stakeholders agree that the ontology
sufficiently addresses the identified business concerns, it can be
released into a production environment. In [25], the focus of this
step was integration with business intelligence tools. In the CSols
case, we focus on the provision of a SPARQL endpoint for both
manual queries by business users, and for IT developers to exploit
in software. By enabling the use of SPARQL to query legacy data,
queries are expressed in terms of the domain which are formally
defined, and require no knowledge about the schema used to store
the data. Querying a graph model enables data exploration, data
federation, and schema reuse.

4 CASE STUDY
In this section we present a case study which demonstrates the
approach proposed in Section 3 applied to the CSols scenario of
developing an ontology describing facets of analytical chemistry.

CSols products are underpinned by a common relational data-
base, which integrates data directly from analytical instruments,
manual data entry, and from software. The majority of this data de-
scribes results from the analysis of samples, and the resources used
in the generation, transcription, and storage of the those results.

The business concern addressed in this study is related to the
identification of laboratory resources. Laboratory resources include
hardware, software, and people, and data about each resource varies
significantly. In this study, we model a hierarchical taxonomy of

https://www.omg.org/spec/XMI/2.5.1/PDF


resources and their role in the analytical process. Legacy relational
data is mapped to the ontology to enable the execution of SPARQL
queries against a virtualised KG.

We evaluate the ontology by verifying the query results against
existing SQL queries, and ensuring that the results adequately ad-
dress the business concern. We evaluate the approach by consid-
eration of its merit compared with directly querying relational
data.

4.1 Knowledge Capture
In the Knowledge Capture Phase, we establish and clarify the busi-
ness concern to be addressed and the identify data needed to answer
relevant questions. We analyse existing processes and mechanisms
to obtain this data and model key concepts and relationships using
UML. once these concepts are defined, we align our definitions with
those in related ontologies.
ProcessAnalysis andDocumentationCollection. In this phase,
a single critical business concern is identified by business users;
they agree to focus on a process to identify all types of a resources
deployed in a given laboratory. This is an important query often
used in a variety of auditing activities and is currently implemented
by a series of SQL scripts which separately target a collection of
tables known to each store information about a type of resource
(e.g. people, instruments, software). Whilst the notion of a generic
‘resource’ is commonplace throughout auditing activities, it is not
modelled in the existing schemas. Retrieving this information de-
pends on exhaustively analysing the schemas after every update, to
isolate any tables related to resources, and collating the results of
several complex queries to aggregate the data into a single report.

With the business concern established, the data manager col-
laborated with business users and IT developers to collate docu-
mentation about existing solutions, including DB schemas, queries,
and scripts. The ER diagram in Figure 1 illustrates a subset of the
relational schema underpinning existing solutions.
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Figure 1: Entity RelationshipDiagramof legacy data schema

Conceptualisation with UML. With documentation about exist-
ing processes collated, a preliminary set of UML Class Diagrams
were drafted by the data manager. This intermediate representation
defines key concepts, their attributes, and relationships between
them, and was iteratively refined by both business users and IT
developers until all stakeholders agreed on each definition. The
Modelio8 open source tool was used to build and share model since
it supports UML with model assistance and automated consistency
checking. Figure 2 shows an example Class Diagram illustrating
the hierarchical categorisation of laboratory resources.
Reuse of Existing Ontologies. An analysis of the intermedi-
ate representation identified several related ontologies suitable
for reuse. We reuse the Quantities, Units, Dimensions and Types
(QUDT) ontology9 for describing units of measurement, the Chem-
ical Methods Ontology (CHMO)10 for describing analytical tech-
niques, the Chemical Entities of Biological Interest (CHEBI) on-
tology11 for describing chemical composition, and Allotrope12. Of
these ontologies, we directly import QUDT, and create explicit
mappings to specific concepts in CHMO, CHEBI and Allotrope.
The CSols ontology is by nature more specific than the ontologies
reused indirectly, which are used to ensure interoperability with
other commercial products.

Laboratory
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Resource

Software
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Human
Resource

Data
Repository Data Parser

Hardware
Resource

Figure 2: Class Diagram modelling laboratory resources

4.2 Knowledge Implementation
In the Knowledge Implementation Phase we transform the UML
intermediate representation into a formal ontology and correspond-
ing R2RML mappings. SPARQL queries are defined and used to
verify that the resulting virtual knowledge graph is consistent with
directly querying relational data.
Model Transformations. We automate the transformation rules
outlined in Section 3 by exporting the XMI metamodel and parsing
model elements using the Python ElementTree API13. The parser
outputs an OWL ontology, with definitions such as:
8https://www.modelio.org/
9https://www.qudt.org
10https://github.com/rsc-ontologies/rsc-cmo
11https://www.ebi.ac.uk/chebi/
12https://www.allotrope.org/ontologies
13https://docs.python.org/3/library/xml.etree.elementtree.html

https://www.modelio.org/
https://www.qudt.org
https://github.com/rsc-ontologies/rsc-cmo
https://www.ebi.ac.uk/chebi/
https://www.allotrope.org/ontologies
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:sample rdf:type owl:Class ;

rdfs:comment "A sample of a material to be analysed" ;

rdfs:label "Sample" .

:sample-reference rdf:type owl:DatatypeProperty ;

rdfs:subPropertyOf owl:topDataProperty ;

rdfs:domain :sample ;

rdfs:range xsd:string ;

rdfs:label "reference" . }
The Python parser also implements transformation rules for gener-
ating R2RML mappings, such as:
map:m1 a rr:TriplesMap;

rr:logicalTable [ rr:sqlQuery "SELECT sampleId from Sample" ];

rr:subjectMap [ rr:class :sample; rr:template

"http://ontologies.csols.com/data/Sample/{sampleId}" ] .

For the given iteration, the UML model is translated to an ontology
with 24 classes, 13 object properties, and 11 data properties.
Query Extraction and Ontology Validation. The resulting on-
tology was assessed using OOPS! (OntOlogy Pitfall Scanner) [22]
to ensure that it did not contain errors. Once satisfied with the
quality of the ontology, a series of SPARQL queries were defined
and executed by the ontology engineer, based on those SQL queries
identified in Phase 1. By comparing the results from executing
SPARQL queries against the virtual KG with those from executing
SQL queries against relational data, the the fidelity of both the on-
tology and mappings was verified. We use the open source Ontop
OBDA tool [32] to execute the SPARQL queries against relational
the data stored in legacy SQL Server RDBs. The resulting virtual
KG is populated with 281 individuals when the ontology is mapped
to a small legacy dataset specifically selected for validation.

4.3 Phase 3: Knowledge Exploitation
In the Knowledge Exploitation Phase, we finalise queries which
retrieve data related to the business concern identified in Phase
1, and move the ontology into production once business users are
satisfied adequately addresses the targeted business concerns.
Knowledge Graph Validation. This iteration of the CSols on-
tology identifies all resources utilised in the generation of a set of
results. In the schema described, data is collected that describes a
range of resources, including analytical instruments, software, and
human analysts. Information about each resource type is distributed
across different tables, and there is no overall notion of a generic
resource. Attaining a complete picture of all resources requires
a detailed knowledge of the relational schema (or an exhaustive
evaluation of it), and the aggregation of data from different tables
for each resource type. By mapping existing data to the hierarchical
resource taxonomy modelled in the ontology, this query is vastly
simplified using SPARQL:
SELECT DISTINCT ?r {

?r rdf:type+ :resource .

}
By evaluating the results of SPARQL queries, business users con-
firmed that the virtual knowledge graph adequately addresses those
business concerns identified in Phase 1.
Move to Production To finish the iteration, the ontology is made
available across the company. Ontop is used to provide an end-
point for the execution of SPARQL queries against legacy data.

This is used by business users in executing manual queries, and
by IT developers, who embed queries in software. Existing SQL
queries are replaced with SPARQL equivalents where performance
improvements can be gained, or where code clarity is improved.

The ontology is also released to the company as a controlled
vocabulary. This is used by stakeholders to maximise expressivity
and minimise ambiguity when communicating complex domain
concepts. From writing customer proposals to architecting new
software solutions, the ontology is used to ensure uniformity in
representing the domain.

5 DISCUSSION
The approach we presented in Section 3 relies on the ability to
capture the constraints and requirements representing the world-
view of the relevant stakeholder in a way that does not add to
their cognitive load. Whilst the use case presented here draws on
constraints that are domain specific, the approach we propose can
be easily generalised to any domain. CSols decided to implement
bespoke tools to translate from UML to OWL and to define the
mappings from relational schemas through R2RML only based on a
view to gain a commercial advantage by building a complete toolkit.
However, these translations are based on existing literature and
can be easily replicated, or existing open source tools can be used
as an alternative, making the development process semi-automatic,
thus introducing stricter data governance policies.

By using a familiar modelling paradigm, we mitigate against
the reluctance of company employees to accept new technologies
and knowledge. This was the motivation for using only UML class
diagrams, with no profile extensions. The drawback of such a sim-
plistic model is that some ontological nuances are missed in the
knowledge capture phase, e.g. non disjoint classes, that would have
been better supported by an ontology-based conceptual modelling
tool such as OntoUML [12]. However, this allowed us to tightly
scope the discussions between business users and IT developers
during this phase. Another important factor that supported this
decision is the choice of expressivity of the final ontology, which
in this case is mainly RDFS extended with basic OWL primitives.
This of course caused some modelling errors that were rectified
by the intervention of the ontology engineer. For instance, when
modelling laboratory resources it was realised that both a data
parser and a laboratory worker can move data between resources,
and therefore be types of data transporters. An initial version of
the model included the data parser and the laboratory worker as
non-disjoint subclasses of the class Data-Transporter-Role, but in
a subsequent iteration, and after the intervention of the ontology
engineer, a “hasRole” object property was introduced 14.

The proposed process allowed us to constrain the time devoted
to knowledge capture, thus addressing one of the concerns faced
by SMEs: having only limited resources to buy in new technology
and expertise. In the presented use case, each of the 24 classes and
associated properties required an effort equivalent to 0.54 person
months from the business user and IT developer, and each class
underwent on average 2 rounds of discussions. The ontology engi-
neer’s intervention was limited to supporting more foundational

14The CSols ontology contains commercially sensitive material and therefore cannot
be shared



decisions, such as avoiding the misuse of the subclass relation or
defining disjointness axioms, and can be quantified in 5 hours.

We believe that the definition of a glossary together with the
conceptual model helps resolve conflicts arising when definitions
in the legacy DBs clashed with those of the newly defined data,
and to document these decisions. The glossary is a resource that
aids communication of complex domain concepts between business
stakeholders, supports the design of software architecture, and is
meant to be provided to CSols customer as a further resource.

6 CONCLUSIONS
In this paper we presented our experience in building an enterprise
KG for the area of analytical laboratories as an in-house effort by
an SME and we identified the particular challenges that SMEs face
in producing such KG, specifically (i) paucity of comprehensive
data governance policies; and (ii) acceptance of new technologies
and knowledge. These challenges directly result from the limited
resources that SMEs can devote to innovation, a well-documented
problem in organisational management literature [2, 17].

In response to the identified challenges, we modified the PAYG
approach [25] to limit the intervention of the ontology engineer to
those complex cases where no agreement could be reached amongst
the stakeholders. For the simpler cases, domain knowledge is ac-
quired through the specification of an intermediate graphical model
using UML Class Diagrams.

We evaluated the proposed approach by means of a case study
that demonstrates how stakeholders with limited ontological knowl-
edge were able to collaboratively construct the ontology and corre-
sponding R2RMLmappings with minimal intervention by the ontol-
ogy engineer. The ontology was validated through SPARQL queries
matching the competency questions identified in the knowledge
capture phase of the approach. We argue that the use of a graphical
intermediate representation that facilitates the semi-automatic de-
velopment of the OWL representation is a viable way to lower the
barrier preventing SMEs from stepping onto the semantic technol-
ogy ladder, especially in those cases where legacy data is involved.
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