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Abstract—Bi-static sensing, where the transmitter and receiver
of sensors are separately located, underlies a wide range of
collaborative sensing systems. Bi-static detections generally fea-
ture a signal time-of-flight (ToF) and an angle-of-arrival (AoA).
The current practice in multi-object tracking uses the bi-static
geometry to map these pairs onto a selected coordinate frame
and filter the mapped detections with a noisy range-bearing (i.e.,
a mono-static) sensor model. However, the uncertainties in ToF-
AoA pairs are not equivalently captured by this model, and the
sensing geometry may result in significant degradation of the
modelling accuracy. We introduce bi-static likelihood and false
alarm models together with Monte Carlo (MC) computational
methods to accurately capture the uncertainties involved and use
them within Bayesian filtering. We demonstrate the efficacy of
our proposed model in simulations with multiple objects using a
sequential MC version of the generalised labelled multi-Bernoulli
(GLMB) track filter. We compare the filtering performance with
the conventional approximation mentioned above.

I. INTRODUCTION

Situational awareness in both defence and non-defence con-
texts benefits from separately placed transmitter and receiver
nodes. These systems provide spatial diversity that improve
the sensing performance [1], [2], flexibility in resource use,
and, robustness against failures. Example applications include
underwater surveillance using multi-static sonar networks [3]-
[5] (including ‘dipping’ sonars and sonobuoys deployed from
helicopters), counter rocket-artillery-mortar (CRAM) appli-
cations [6], and urban air space control with multi-static
radars [7].

Each separately located transmitter/receiver pair in these
systems form a bi-static pair as the atomic active sensing unit
to consider when processing the signals [8]. In this work, we
consider Bayesian filtering of detections from bi-static pairs
and estimating the number of objects and their trajectories,
i.e., bi-static tracking, motivated by the above mentioned
applications.

Coupled with a bi-static detection are estimates of the angle-
of-arrival (AoA) and time-of-flight (ToF) of the signal that
has led to the detection. The AoA is the angle with which
the wavefront of the probing pulse sent by the transmitter has
arrived at the receiver after getting reflected by the object of
interest, or background reflectors (see, Fig.1). The ToF is the
time it took for the probing signal to travel from the transmitter
to the reflector and then to the receiver. The product of ToF
with the propagation speed is often referred to as the bi-static
range.
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Fig. 1: Bi-static sensing: A transmitter (orange triangle) sends
a probing waveform at time zero, a reflector (blue circle) is at
[z,y]T moving with velocity [4,9]7, and a receiver (orange
circle) receives the reflected probe at time 7 with wavefront
approach angle 6.

Bi-static detections involve uncertainties in these estimates,
thus, AoA and ToF are noisy. In addition, some of these
detections may be false alarms. Bayesian filtering algorithms
take into account these uncertainties through measurement
likelihood and clutter models [9], [10]. As a result, the fidelity
of these models directly affect the tracking performance.

A common practice in tracking with bi-static detections is
to map pairs of AoA and ToF onto the Euclidean plane, i.e.,
calculate the coordinates of the reflector position in Fig.1, and
use range-bearing uncertainty models (see, e.g., [11], [12]).
However, conventional likelihood and clutter models in the
range-bearing domain are valid for mono-static configurations
in which the transmitter and the receiver are co-located. The
degradation in modelling accuracy might be small when the
reflector is located at a much larger distance compared to the
bi-static baseline, i.e., the distance between the transmitter
and the receiver. In some applications including underwater
sensing, however, such advantageous geometries should not
be expected, especially when mobile transmitter and receiver
platforms are used [5].

We address modelling of bi-static measurements in Bayesian
track filtering by directly relating (ToF, AoA) pairs to the
reflector kinematics thereby resolving the discrepancy of the
measurement noise model in the above mentioned standard
approximation. This also allows us to specify false alarms
distribution in the original measurement domain as per the
modelling requirements in tracking [13] and avoid false track
initiations that stem only from imprecise modelling of false
alarms. The result is an endogenous generative model for bi-
static detections collected in scans.

The structure of the paper is as follows: In Sec. II we
introduce the endogenous bi-static model and compare it



with a standard approximation. We explain how this model
is used in multi-object tracking in Sec. III. We demonstrate
the efficacy of our approach through a simulation example in
Sec. IV, and, finally we conclude.

II. BI-STATIC DETECTIONS AND MODELLING

In a bi-static system, a transmitter located at x;, probes a
region of interest with a waveform (Fig. 1). A receiver located
at z,., collects reflected signals from the region and processes
the front-end signals to detect reflected replicas by matched
filtering [14].

Each detection is associated with the total time for the
probing waveform to propagate and reach the reflector and be
received at the receiver, i.e., ToF. Let us denote this quantity
by 7, the total length of the path by R, and the propagation
speed by c (assumed constant for simplicty). For a reflector
located at x, the ToF is given by
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where ||.|| denotes the I, vector norm and the numerator R £
T % ¢ is referred to as the bi-static range. Note that this value is
lower bounded by the baseline distance between the transmitter
and the receiver R;. Iso-range curves are hence ellipsoids with
T4, and x,., at the foci [15], [16].

In this work we assume that the receiver is capable of
finding the AoA of the detected signal wavefronts given by

0 =L(x — Tpy). (2)

Some bi-static systems can measure the Doppler shift of the
detected signals and distinguish between returns from moving
targets of interest and stationary objects. However, the focus of
this paper is on settings where such processing is not available.

Measurement likelihood models relate a state vector x that
is often selected as a concatenation of a location x and a
velocity vector &. The above ToF and AoA equations (1) and
(2) specify a bi-static mapping z = B(x; Ty, Tro) Where z £
[7,0]T denotes a bi-static measurement and 7" is the vector
transposition operation. The deviations that lead to errors in
7 and 6 exhibit the law of large numbers and the errors are
normal. Therefore, the likelihood function is given by

I(z = (7,0)|x; 240, Tra) = N(2; B(T; T4y T ), 2B),  (3)

where the right hand side of the above equation is a bi-variate
Gaussian with a covariance of ¥ p. For example, invoking the
assumption that the errors in 7 and 6 are independent leads
to a diagonal covariance matrix Y5 = diag(c?,03) where
02 and o} are the noise variances in ToF and AoA values,
respectively.

The false alarms in Bayesian track filtering algorithms are
modelled using a population process on the measurement
space which is Z = (Tuin, Tmax] X [0, 27) where Ty = Rp/c
is the elapsed time for a transmitted waveform to propagate
along the baseline distance from the transmitter directly to the
receiver. Often a Poisson distribution with rate A and uniform
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Fig. 2: Likelihoods evaluated for (7 = 10v/2¢, 6 = 37 /4) and
o, = 0.1s,09 = 1rad over a grid of reflector positions in the
x — y plane using (a) the endogenous bi-static model (3) for
a transmitter and receiver located at x = —5c and =z = b¢,
respectively, and, (b) the surrogate model (5) for a virtually
co-located transmitter/receiver located at x = 5c.

spatial distribution over the measurement space Z are used.
Let us denote this distribution by

k(z) = Pois(\,Uz), 4)

where Uz denotes a uniform density over Z.

The endogenous bi-static model in (1)—(4) directly fits
into the dynamic multi-object models used in Bayesian track
filtering [17] as the measurement model.

A. Widely used surrogate likelihood

Most work on bi-static tracking replaces the bi-static mea-
surement pair with the corresponding point on the Euclidean
plane. Then a virtual co-located transmitter/receiver pair lo-
cated at x,, measures the range and bearing of this point.
However, the uncertainties in the bi-static domain are not
transformed. Instead, the likelihood function used in Bayesian
filtering implies that the errors of these virtual measurements
are assumed to be normal, i.e.,

lS(Z‘X) £ N(B(y;xvs,331,5);3(56;33@3,1‘@3),25) @)
Yy é B_l(z = [7—7 9};xtxu'rrz)>

with the inverse transform above explicitly given in the Ap-
pendix.

It is instructive to compare the bi-static likelihood in (3)
and the widely used surrogate in (5). Both likelihoods use a
Gaussian template, however, the domain of the distributions
are different because the surrogate model transforms the bi-
static measurement to a virtual mono-static sensor’s measure-
ment parameterised on x,s. When z is much more distant
than the bi-static baseline, ie., ||z — 2| = ||z — 20| >
|2rs — @tz]|, the region of typical measurements in both
likelihoods are similar. However, when this condition is not
met, there might be large discrepancies. Moreover, the level
of accuracy varies with z,s given z,, and z;, making it
impractical to optimise when transmitter/receiver platforms are
mobile.

We illustrate a comparative example in Fig. 2. We consider
a transmitter located at x4, = [—5c,0]7 and a receiver at



Zre = [5c,0]T with ¢ denoting the propagation speed (see,
also Fig. 1). We evaluate the endogenous likelihood in (3)
for 2 = (10v/2¢,37/4), 0, = 0.1s,09 = 1rad, and a grid
of x over which the likelihood evaluates larger compared
to other possible values of x. The resulting contour map is
given in Fig. 2a. In order to visually reveal the effects of
using the surrogate, we repeat the evaluation with (5) for a
virtual co-located transmitter/receiver pair at z,, = [5¢,0]7.
The resulting contour map is in Fig. 2b. The uncertainty
regions in Fig. 2a and Fig. 2b appear similar to ellipses
with almost perpendicular minor and major axes which results
in significantly different posterior distributions when these
likelihoods are used in a Bayes update.

The surrogate likelihood (5) imposes the use of a different
clutter distribution than (4). This distribution is (equivalently)
selected to have a uniform spatial distribution over Zg =
(0, Tmax) X (0,27, instead of Z defined above which leaves
out [0, Tiin] in its domain. In other words, instead of k(z)
in (4),

ks(z) = Pois(A\,Uzg) (6)

is used in filtering bi-static detection with the surrogate model.

III. BI-STATIC UPDATE IN BAYESIAN TRACKING

In this section, we address the utilisation of the proposed
bi-static model in multi-object filtering and in particular in
sequential Monte Carlo (SMC) generalised labelled multi-
Bernoulli filtering (GLMB). The measurement likelihood func-
tion of the GLMB filter is introduced in Sec. III-A. Important
aspects of the filter implementation that recursively computes
the filtering posteriors using this likelihood are highlighted in
Sec. III-B.

A. Generalised labelled multi-Bernoulli filter [9]

The GLMB model and recursive Bayesian filtering formulae
were introduced in [9] to address estimation of target tra-
jectories in a random finite set (RFS) framework. The com-
putational details of the prediction and measurement update
equations of the GLMB filter can be found in [18]. For the
sake of simplicity, we shall limit the discussion to the multi-
object measurement likelihood function which encapsulates
all elements directly affected by the sensor modelling and
evaluated in the update step.

A population of objects is described by a multi-object state
X in an appropriate state space X. At time k, each object
with state (x,¢) € X, comprising a kinematic state x and
a discrete label ¢ described by its state space L, is detected
with probability pp(x, £), and if so, it produces a measurement
whose state is distributed according to a likelihood I(-|x, £).
The multi-object observation Z = {z1,..., z|Z‘} € Z is then
the union of measurements of detected objects and Poisson
distributed false alarms arriving with intensity .

Let hX £ [],cyx h(x) denote multi-object exponential
of the real-valued function h. Under assumptions that the
measurements originating from object detections are generated
independently from each other, and the false alarms are

independent of the detections, the multi-object likelihood is

given by [18]

9(21x) = ¢ ([ n(142) .2 W05,
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Here, 0 : £ — {0,1,...,]|Z]|} is an association map that
hypothesises track [ generated measurement 6(!) and imposes
the constraint that a single track can generate at most one
measurement. pp is the probability of detection as a function
of the target state. It can be selected as zero if x is on the
path between the transmitter and the receiver to account for
the receiver being blinded by the direct path signal.

In (7), ©(L(X)) is the subset of association maps from
those labels only in X, i.e., L(X) where L({(x,¢)}) £ ¢.
Thus, GLMB filtering marginalises out all such hypotheses
unlike tracking algorithms that find the most likely global
association hypothesis [9], in principle. The implementation
approach we adopt from [18] uses Murty’s algorithm [19]
to approximate (weighted) summations of these terms when
computing the filtering posterior with the above likelihood.

In summary, the multi-object measurement likelihood
in (7), (8) captures a sensor-specific single-object measurement
likelihood, detection and false alarm models. In Section IV,
we compare the proposed endogenous model [(z|x), k(z) with
the widely used surrogate model [g(z|x), ks (2) in the tracking
performance they result when used in (7), (8) .

B. Implementation details

In this paper we are using the SMC (or particle) imple-
mentation of the GLMB filter, with details available in [18],
[20]. Thus, the filtering update boils down to evaluating the
proposed likelihood at the particle points and the false alarm
function for the bi-static measurements.

The standard GLMB formulation [18] assumes a priori
information on object birth, which is rarely available in
practice. Therefore, this paper adopts an adaptive birth model
that initiates the birth components from measurement data [21]
(for a similar approach, see also [22]).

IV. EXAMPLE

In this section, we provide an example in which there are
four objects moving with almost constant speed, and, a mobile
transmitter platform and a receiver both following a clock-wise
arc as depicted in Fig. 3. The propagation speed is selected as
¢ = 1490 m/s which is one of the typical configurations when
using underwater sonar. The transmitter is omni-directional
and sends the probing waveform to the environment every
20 seconds. The receiver detects reflections with probability
Pp(x) = 0.95 (independent of the state, for simplicity) and
finds ToF and AoA with standard deviations of o, = 0.1s and
op = lrad, respectively. The expected number of false alarms
is selected as A = 5. We consider 50 scans. The resulting bi-
static ToF and AoA measurements are given in Fig. 4a. The
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Fig. 3: Multi-object bi-static tracking scenario: Trajectories of ~Fig. 5: Estimated trajectories using the endogenous bi-static

the objects, transmitter platform and the receiver platform.
20,

Fig. 4: (a) Bi-static ToF and AoA measurements over time.
(b) Virtual mono-static ToF and AoA measurements.

ToF is lower bounded by the time it takes for one transmitted
pulse to travel directly from the transmitter to the receiver.
First, we use the proposed endogenous likelihood and false
alarm model (1)—(4) in GLMB filtering implemented using
SMC as detailed in Section III-B. The trajectories output for
the bi-static ToF and AoA measurements in Fig. 4a are given
in Fig. 5. The results exhibit a reasonable level of accuracy
in estimating the number of trajectories and localisation. It
is noted that the track continuity for the horizontal northern
trajectory is not as good as that for the other three trajectories.

model in GLMB filtering. Different track labels are depicted
with different colours.
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Fig. 6: Estimated trajectories using the surrogate observation
model in GLMB filtering. Different track labels are depicted
with different colours.

This might be related to the bi-static geometry of this track.
Before continuing with the a quantitative assessment of the
tracking performance, we present the results obtained using
the surrogate model.

The widely-used surrogate model in bi-static processing
uses mono-static ToF and AoA measurements as explained in
Sec. II. These measurements for a virtual transmitter/receiver
pair following the original bi-static receiver’s location are
given in Fig. 4b. We filter these measurements using the
surrogate model in the GLMB filter. The resulting trajectory
estimates are given in Fig. 6. Note that there are false trajecto-
ries around the vertical track in the East. The track continuity
and localisation accuracy for the horizontal track in the North
is also worse compared to that obtained by using the proposed
approach.

We make a quantitative comparison of the tracking perfor-
mances by using the OSPA-on-OSPA, or, OSPA2, distance
metric for trajectories [23]. OSPA2 satisfies the metric ax-
ioms between arbitrary sets of trajectories and penalises track
switches along with location and cardinality errors.

First, we evaluate the OSPA2 between the ground truth
in Fig. 3 and the estimates output by the proposed model
in Fig. 5, and, depict the results in Fig. 7. Specifically, we
perform the evaluation for 5 scan long time windows after
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Fig. 7. OSPA2 error metric from the ground truth to the
estimated trajectories using the proposed model (blue lines)
and the widely-used surrogate (red lines): Total OSPA2 (top),
localisation error (mid-pane) and cardinality error (bottom).

partitioning the trajectory sets over time to understand the
dynamic behaviour of the errors. The OSPA order and the cut-
off parameter used are p = 1 and ¢ = 1500m, respectively,
with the [, distance as the base distance. OSPA2 can be
decomposed into a localisation error and a cardinality error
(i.e., error in the number of trajectories). The total error,
localisation error and the are depicted by blue lines in Fig. 7.

Second, we find the error figures for the surrogate model
which are given in red lines. The proposed approach consis-
tently performs better than the widely-used surrogate model
in terms of localisation accuracy, avoidance to initiating false
trajectories and total OSPA2.

V. CONCLUSIONS

In this work, we have considered Bayesian filtering of bi-
static detections for multi-object tracking and proposed an
endogenous likelihood and false alarm model. The modelling
assertion is that the errors in the time-of-flight and angle-of-
arrival values associated with bi-static detections are Gaussian,
but distinct from the usual approximations used for mono-
static detections. The model is amenable for Monte Carlo
computational methods in Bayesian tracking. In a simulated
example, we have demonstrated that the proposed model
outperforms a widely-used standard approximation.

APPENDIX

A. Inverse bi-static mapping B~1

Let us consider the inverse bi-static mapping given by
B! (Tmins Tmaz] X [0,27) x R? x R? — R? which
maps bi-static measurements to points in the Cartesian space
given the location of the transmitter and receiver, i.e., y =
B~Y(7,0; x4, 7,,). Let us denote the bi-static range of the
ToF by R = ¢ x 7, the unit vector pointing at the AoA by e £
[cos(6),sin(0)]T, and the bi-static baseline by b = x4, — 4.
Then, the point y on the Euclidean plane that induces the bi-
static pair (7, 6) is found as

R?> -b™

T OR—2bTe " ©)

Y= Tryg

ACKNOWLEDGEMENT

The authors would like to thank the UK Defence Science
and Technology Laboratories (Dstl, Grant no. 1000143726)
for financial support as part of Project BLUE, which is part
of the UK MoD University Defence Research Collaboration
(UDRC) in Signal Processing.

REFERENCES

[11 A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO Radar with
Widely Separated Antennas,” IEEE Sig. Proc. Mag., vol. 25, no. 1, pp.
116-129, 2008.

Y. Pailhas, Y. Petillot, K. Brown, and B. Mulgrew, “Spatially distributed

mimo sonar systems: Principles and capabilities,” IEEE Journal of

Oceanic Engineering, vol. 42, no. 3, pp. 738-751, 2017.

[3] R. Tharmarasa, T. Kirubarajan, and T. Lang, “Joint path planning and

sensor subset selection for multistatic sensor networks,” in 2009 IEEE

Symp. on Comp. Int. for Security and Defense App., 2009, pp. 51-8.

G. Yang, Y. Li, X. Xiang, and Z. Wang, “Review of development of

multi-static sonar for underwater object detection,” in 2012 International

Conference on Computer Application and System Modeling, 2012.

[5] G. De Magistris, M. Uney, P. Stinco, G. Ferri, A. Tesei, K. Le Page,

“Selective information transmission using convolutional neural networks

for cooperative underwater surveillance,” the Proc. of FUSION’20, 2020,

pp. 1-8.

J. F. Ralph and J. M. Davies, “Semi-active guidance using event driven

tracking,” in the Proc. of FUSION’11, 2011, pp. 1-7.

[7]1 B. Griffin, A. Balleri, C. Baker, and M. Jahangir, “Optimal receiver

placement in staring cooperative radar networks for detection of drones,”

in 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1-6.

J. Li and P. Stoica, Eds., MIMO Radar Signal Processing. John Wiley

& Sons, 2009.

[9] B.-T. Vo and B. -N. Vo, “Labeled random finite sets and multi-object
conjugate priors,” IEEE Trans. on Sig. Proc., vol. 61, no. 13, pp. 3460—
3475, 2013.

[10] M. Uney, “Type II approximate Bayes perspective to multiple hypothesis
tracking,” in the Proc. of FUSION’19, 2019, pp. 1-8.

[11] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm
for tracking an unknown number of targets using multiple sensors,” [EEE
Trans. on Sig. Proc., vol. 65, no. 13, pp. 3478-3493, 2017.

[12] D. Gaglione, G. Soldi, F. Meyer, F. Hlawatsch, P. Braca, A. Farina,
and M. Z. Win, “Bayesian information fusion and multitarget tracking
for maritime situational awareness,” IET Radar, Sonar & Navigation,
vol. 14, pp. 1845-1857(12), December 2020.

[13] B.-N. Vo, M. Mallick, Y. Bar-shalom, S. Coraluppi, R. Osborne,
R. Mahler, B. Vo, and J. G. Webster, Wiley Encyclopedia of Elec. and
Electronics Eng.. J Wiley & Sons, Inc., 2015, ch. Multitarget Tracking.

[14] H. L. V. Trees, Detection, Estimation, and Modulation Theory: Radar-
Sonar Sig. Proc.. Krieger Pub. Co., Inc., 1992.

[15] N. J. Willis, Bistatic Radar, 2nd ed. Scitech Publishing, 2005.

[16] H. Cox, Underwater acoustic data processing. Kluwer Academic
Publishers, 1989, ch. Fundamentals of bistatic active sonar, pp. 3-24.

[17] E. Delande, M. Uney, J. Houssineau, and D. E. Clark, “Regional vari-
ance for multi-object filtering,” IEEE Transactions on Signal Processing,
vol. 62, no. 13, pp. 3415-3428, 2014.

[18] B. Vo, B. Vo, and D. Phung, “Labeled random finite sets and the bayes
multi-target tracking filter,” IEEE Transactions on Signal Processing,
vol. 62, no. 24, pp. 6554-6567, 2014.

[19] K. G. Murty, “An algorithm for ranking all the assignments in order of
increasing cost,” Oper. Res., vol. 16, no. 3, pp. 682—-687, 1968.

[20] B. Ristic, M. Beard, and C. Fantacci, “An overview of particle methods
for random finite set models,” Inf. Fusion, vol. 31, pp. 110-126, 2016.

[21] B. Ristic, D. Clark, B.-N. Vo, and B.-T. Vo, “Adaptive target birth
intensity for PHD and CPHD filters,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 48, no. 2, pp. 1656-1668, 2012.

[22] S. Lin, B. T. Vo, and S. E. Nordholm, “Measurement driven birth model

for the generalized labeled multi-Bernoulli filter,” in 2016 Int. Conf. on

Cont., Automation and Inf. Sciences (ICCAIS). 1EEE, 2016, pp. 94-99.

M. Beard, B. T. Vo, and B. Vo, “A solution for large-scale multi-object

tracking,” IEEE Trans. on Sig. Proc., vol. 68, pp. 2754-2769, 2020.

[2

—

[4

[inar)

[6

=

[8

[l

[23

—



