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Abstract
Product graphs arise naturally in formal verification and program analysis. For example, the analysis
of two concurrent threads requires the product of two component control-flow graphs, and for language
inclusion of deterministic automata the product of two automata is constructed. In many cases, the
component graphs have constant treewidth, e.g., when the input contains control-flow graphs of
programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with
respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff
properties, and (c) initial credit for energy properties.

Our main contributions are as follows. Consider a graph G that is the product of two constant-
treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm
that computes the semiring transitive closure of G in time Õ(n4). Since the output has size
Θ(n4), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we
present an O(n3)-time algorithm for deciding whether the value of a starting state is non-negative,
improving the previously known O(n4) bound. Third, given an initial credit for energy objective,
we present an O(n5)-time algorithm for computing the minimum initial credit for all nodes of G,
improving the previously known O(n8) bound. At the heart of our approach lies an algorithm for
the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs.
Given a constant-treewidth graph G′ of n nodes and a positive integer λ, our algorithm constructs
a binary tree decomposition of G′ of width O(λ) with the property that the size of each subtree
decreases geometrically with rate (1/2 + 2−λ).

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking; Theory of computation → Graph algorithms analysis

Keywords and phrases graph algorithms, algebraic paths, mean-payoff, initial credit for energy

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Product graphs. Graphs are at the heart of formal analysis of reactive systems and programs.
The nodes of the graph represent states of the system, edges represent transitions, and paths
of the graph represent behaviors of the system. One graph problem that repeatedly arises
in many applications is the analysis of product graphs (i.e., the synchronous product of
two graphs). For example, in the analysis of two concurrent threads, the resulting graph
for analysis is the product of two component control-flow graphs. Similarly, in language
intersection or language inclusion between deterministic automata, the product of two
automata is considered.
Specification languages. The analysis of programs and reactive systems is performed
w.r.t. desired properties that are described as specification languages. We consider three
classic specification languages: (i) algebraic properties w.r.t. a semiring, (ii) mean-payoff
properties, and (iii) initial credit for energy properties. In algebraic properties for system
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analysis, (a) each transition is associated with a weight from a semiring; (b) the value of
a path is the semiring product operation of the weights along the transitions of the path;
and (c) path aggregation is performed using the semiring sum operation across the values of
paths. In mean-payoff properties for system analysis, (a) each transition of the system is
associated with an integer-valued weight; (b) the value of an infinite path is the long-run
average of the weights of the transitions of the path; and (c) an optimal path is selected
that has the minimum mean-payoff value among all paths. In initial credit for energy for
system analysis, (a) each transition of the system is associated with an integer-valued weight;
(b) the value of an infinite path is the smallest weight of all of its prefixes, and (c) for each
node, an optimal path is selected that starts in that node and such that it has the largest
value among all paths originating in that node.
Constant-treewidth graphs. One key structural property of graphs that appears in several
contexts is that of constant-treewidth. Treewidth is a classic measure of closeness of a graph
to a tree [52]. Besides its mathematical elegance, constant-treewidth graphs are of practical
relevance in formal verification and program analysis. For example, (i) the control-flow graphs
of typical programming languages (such as goto-free Algol, Pascal, and C programs) have
constant treewidth [53], which has been exploited for fast static analyses [21, 15, 18], and
in practice even control-flow graphs of Java programs have constant treewidth [37]; (ii) the
analysis of constant-treewidth graphs in logic plays a crucial role, such as the celebrated
result of Courcelle for MSO [26] and its subsequent extensions [2, 30, 8]; as well as for logics
such as modal mu-calculus [48].
Significance of the problems. In this work we consider the algorithmic analysis of
the product of two constant-treewidth graphs with respect to algebraic properties and
mean-payoff properties. We discuss the significance of the problems we consider. First,
as mentioned above, products of two constant-treewidth graphs arise naturally (a) in the
analysis of concurrent programs, and (b) in model checking an implementation against a
high-level specification, a task typically expressed as language inclusion. We now discuss the
relevance of the specification languages we consider here.

Semiring properties. Semiring (or algebraic) properties have been widely used as specific-
ation formalisms as weighted automata [28], or properties of programs [51, 1]. Semirings
also form the basis of dataflow analysis of concurrent programs [36, 45, 32, 24, 41, 27, 19],
where the underlying analysis is based on an algebraic “meet-over-all-paths” formulation.
Finally, semirings also arise in concurrent Kleene algebras for the analysis of concurrent
programs [38, 39, 42].
Mean-payoff properties. Mean-payoff is a classic quantitative property in performance
analysis [33, 49, 3]. It has applications in (a) automata theoretic formalisms [17, 16];
(b) weighted logic formalisms [9, 12, 29]; (c) synthesis of reactive systems [5, 14]; and
(d) quantitative interprocedural analysis [22]; to name a few applications in verification
and program analysis.
Initial credit for energy properties. Initial credit is a useful quantitative property for
expressing energy constraints [11, 10, 13]. The goal is to determine for each state of the
system an initial energy supply so that the system can exhibit infinite behavior without
running out of energy, and has numerous applications in planning [31, 40].
In many cases in verification, instead of having a graph with constant treewidth, the input

is a graph G that is the product of two constant treewidth graphs G1, G2. For example, this
holds when we analyze control-flow graphs of two threads running in parallel, or when we test
for language inclusion and the system and specification automaton have constant-treewidth.
Note that G does not have constant treewidth: a simple example would be grid graphs - they
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are trivial to get this way, but have tree-width equal to the minimum of height and width.
Due to this fact, existing algorithms for constant-treewidth graphs give sub-optimal solutions.
The question is thus whether better algorithms are possible given the fact that, although G

does not have constant treewidth, its two components G1 and G2 do have constant treewidth.
We address this challenge in this work.
Our contributions. Our main contributions are as follows.
1. Mean-payoff properties. Given a product G of two constant treewidth graphs G1, G2 of

size n each and a mean-payoff objective, we present an O(n3)-time algorithm for deciding
whether the value of a starting state is non-negative. Note that constant-treewidth graphs
have O(n) edges. Existing algorithms (such as Karp’s algorithm) solve this problem in
O(n · m) time on a graph of n nodes and m edges, which results to O(n4) complexity on
G (since G has n2 nodes and edges). Hence our algorithm yields a factor-n improvement
compared to existing approaches.

2. Semiring properties. Given an idempotent semiring and a product G of two constant-
treewidth graphs G1, G2 of size n each, we present an algorithm that computes the
semiring transitive closure of G in time Õ(n4). On the other hand, applying the classic
cubic-time transitive closure algorithm on G yields an O(n6) bound. Although this naive
bound has been improved to O(n4+ϵ), for fixed ϵ > 0 [19], our work yields a further
polynomial improvement to Õ(n4). Since G has n2 nodes, the output has size Θ(n4) and
thus our algorithm is optimal (up to polylog factors).

3. Initial credit for energy properties. Given a product G of two constant treewidth graphs
G1, G2 of size n each and an energy objective, we present an O(n5)-time algorithm for
computing the minimum initial credit for each node of G. The best existing solution is
due to [20] which has quartic complexity in the size of the graph, and thus implies an
O(n8) time bound on G (since G has n2 nodes). Hence our algorithm yields a factor-n3

improvement.
4. At the heart of our approach lies a new notion of (α, β) tree decompositions, as well

as an efficient algorithm for their construction for constant-treewidth graphs. Given a
constant-treewidth graph G of n nodes and an integer λ ≥ 2, our algorithm constructs
in O(λ2 · n · log n) time a binary tree decomposition of G of width O(λ) that has the
following property: for each bag B of the tree decomposition at level i, the number of
nodes of G contained in bags of the subtree rooted at B is at most n · (1/2+ 2−λ)i. Hence,
for increasing values of λ, the number of contained nodes gets exponentially close to the
optimal value of n · 2−i (since the tree decomposition is binary). Note that for λ = O(1),
we obtain a tree decomposition with logarithmic depth and increased width by a constant
factor. We complement this result with a lower bound stating that tree decompositions
of logarithmic depth must, in general, incur a constant-factor increase in the width.
Due to space restrictions, some proofs are relegated to the appendix.

Comparison to related existing work. The notion of balanced tree decompositions
has long existed in the literature. The classic work of [50] presents the first algorithm to
construct a balanced tree decomposition in time O(n · log n), by finding balanced separators
in the graph. Various works present parallel algorithms for constructing balanced tree
decompositions in (poly-)logarithmic parallel time with O(n) processors [46, 7]. The work
of [30] constructs balanced tree decompositions in Logspace. More recently, the work of [35]
constructs approximate balanced tree decompositions in time O(f(t) · n · log n)), where f(t)
is a polynomial function of the treewidth t.

In all these cases, the balancing guarantee is that the tree decomposition has depth
≤ c · log n, for some constant c (logarithms are on base 2). For binary tree decompositions,
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these algorithms yield c ≥ 2. Crucially, the complexity of the algorithms for our results
(1)-(3) depends on c, and c ≥ 2 is prohibitively large. E.g., using the existing algorithms for
balanced tree decompositions yields a bound for the semiring properties (result (2)) that is
at least n6, as opposed to our Õ(n4) bound.

Although [19] also considers a notion of strong balancing, the balancing factor achieved
there for level i is, on average, (1/2 + P (λ−1))i, where P is a sub-linear function. Hence,
compared to that algorithm, our new algorithm yields an exponential improvement in the
balancing factor (i.e., (1/2 + 2−λ)i). This improvement is necessary to arrive at our results.
Moreover, our new techniques are quite different from previous ones, and might be of
independent interest.

2 Preliminaries

In this section we set up our main notation and introduce our new notion of (α, β) tree
decompositions. In the next sections we will show how to construct such decompositions
efficiently, as well as how they can be used for developing algorithmic improvements on
product graphs.
Graphs. We consider directed graphs G = (V, E) where V is a set of n nodes and E ⊆ V ×V

is an edge relation. Two nodes u, v ∈ V are called neighbors if (u, v) ∈ E. Given a set X ⊆ V ,
we denote by G ↾ X the subgraph (X, E ∩ (X × X)) of G induced by the set of nodes X.
A path P : u⇝ v is a sequence of nodes (x1, . . . , xk) such that u = x1, v = xk, and for all
1 ≤ i ≤ k − 1 we have (xi, xi+1) ∈ E. The path P is acyclic if every node appears at most
once in P . The length of P is k − 1, and a single node is by itself a 0-length path. Given a
path P we use the notation u ∈ P to say that a node u appears in P , and A ∩ P to refer to
the set of nodes that appear in both P and a set A.
Trees. A (rooted) tree T = (I, F ) is an undirected graph (the edge relation F is symmetric)
without self loops and with a distinguished node r, which is the root of T , such that there is
a unique acyclic path P v

u : u⇝ v for each pair of nodes u, v. The size of T is |I|. Given a
tree T with root r, the level Lv(u) of a node u is the length of the path P r

u from u to the root
r. Every node in P r

u is an ancestor of u, and if v is an ancestor of u, then u is a descendant
of v (u is both an ancestor and a descendant of itself). We call v a strict ancestor (resp.,
strict descendant) of u if v ̸= u and v is an ancestor (resp., descendant) of u. For a pair of
nodes u, v ∈ I, the lowest common ancestor (LCA) of u and v is the common ancestor of u

and v with the largest level. Given a node v ̸= r, the parent u of v is the unique ancestor of
v in level Lv(v) − 1, and v is a child of u. We denote by Parent(v) the parent of node v ̸= r.
A leaf of T is a node with no children. For a node u ∈ I, we denote by T (u) the subtree of
T rooted in u (i.e., the tree consisting of all descendants of u). A node is k-ary if it has at
most k children, and a tree is k-ary if every node is k-ary. The depth of T is maxu Lv(u).
Connected components of trees. Let T = (I, F ) be a tree. A connected component
C ⊆ I of T is such that for every pair of nodes u, v ∈ C, the unique acyclic path P v

u in T

visits only nodes in C. The border of a non-empty C is the set Border(C) = {u ∈ I \ C :
∃v ∈ C s.t. (u, v) ∈ F}, i.e., it is the set of nodes of T that are adjacent to C. For technical
convenience, in this work we also make use of empty connected components of T . Empty
connected components are also associated with a border, which is two endpoints of an edge
of T . Hence we have |F | many different empty connected components.
Balancing separators. Consider a connected component C of a tree. A balancing separator
of C is a node u ∈ C such that removing u splits C into (at most) 3 connected components
{Ci}1≤i≤3, with |Ci| ≤ |C|/2 for each 1 ≤ i ≤ 3. The following lemma is well-known (e.g., [25]).
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Figure 1 A graph with treewidth 2 (left) and a corresponding tree-decomposition (right).

▶ Lemma 1. Consider a binary tree T and a connected component C of T . A balancing
separator of C can be computed in O(|C|) time.

Tree decompositions. A tree decomposition of a graph G = (V, E) is a pair (B, T ) where
T = (I, F ) is a tree and B = {Bi : i ∈ I} is a family of subsets of V such that the following
conditions hold.
1.
⋃

i∈I Bi = V

2. For all (u, v) ∈ E there exists i ∈ I with u, v ∈ Bi.
3. For all i, j, k ∈ I, if k ∈ P j

i in T then Bi ∩ Bj ⊆ Bk.
The sets Bi are called bags of the tree decomposition. Given a node u ∈ V , we denote by iu

the root node of u in T , which is the smallest-level node in T such that u ∈ Biu , and call
Biu

the root bag of u. Conditions Item 1 and Item 3 of tree decompositions guarantee that
every node has a unique root bag. The width of the tree decomposition is maxi∈I |Bi| − 1,
i.e., it is the size of the largest bag of B minus 1. The treewidth of G is the smallest width
of all tree decompositions of G. Given a node i ∈ I, we denote by NT

B (i) the set of nodes
of G that appear in bags of the subtree T (i) (i.e., u ∈ NT

B (i) iff i has a descendant j such
that u ∈ Bj), and by YT

B (i) the set of nodes of G that appear only in bags of the subtree
T (i) (i.e., u ∈ YT

B (i) iff for the root bag Bj of u, j is a descendant of i). Observe that
NT

B (i) ⊆ YT
B (i) ∪ Bi. We assume w.l.o.g. that YT

B (i) ̸= ∅ for every i ∈ I, as otherwise
the subtree T (i) can be removed from T and obtain a valid tree decomposition of G. For
simplicity of exposition, we associate properties of the tree T with the tree decomposition
(B, T ), e.g., the depth of the tree decomposition is the depth of T , and we say that the
tree decomposition is balanced if T is balanced. The following lemma states a well-known
separator property of tree decompositions, which is a key property behind many efficient
algorithms on low-treewidth graphs.

▶ Lemma 2 (Lemma 3,[6]). Consider a graph G = (V, E), a tree-decomposition (B, T = (I, F ))
of G and a node i ∈ I. Let {Cj}j be the connected components of T created by removing i

from T . Consider two integers j1, j2 such that j1 ̸= j2, and two nodes i1 ∈ Cj1 and i2 ∈ Cj2 .
For any two nodes u ∈ Bi1 and v ∈ Bi2 , every path P : u ⇝ v in G contains a node that
appears in Bi.

Approximate, balanced, and (α, β) tree decompositions. Consider a graph G of n nodes and
treewidth t, and let (B, T = (I, F )) be a tree decomposition of G. We refer to (B, T ) as
α-approximate, for some integer α ≥ 1, if the width of (B, T ) is ≤ α · (t + 1) − 1. We
refer to (B, T ) as β-balanced, for some 0 < β < 1, if for every node i ∈ I we have that
YT

B (i) ≤ n · βLv(i). If (B, T ) is both α-approximate and β-balanced, it is called a (α, β) tree
decomposition. Intuitively, a (α, β) tree decomposition approximates the treewidth of G to a
factor α, and for every i ∈ I, the number of nodes of G contained in bags of the subtree T (i)
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decreases geometrically with Lv(i) by a factor β. Note that if β is constant (i.e., independent
of G) then T has depth O(log n) (hence it is balanced).

3 Construction of (α, β) tree decompositions

In this section we present our algorithm for constructing (α, β) tree decompositions, where α

and β depend on some integer input λ ≥ 2. In particular, we establish the following theorem.

▶ Theorem 3. Consider a graph G of n nodes and treewidth t, and any integer λ ≥ 2. Let
T (G) be the time required to construct a tree decomposition of G with ≤ n bags and width t.
A (α, β) tree decomposition of G can be constructed in O(T (G) + λ2 · n · log n) time, where
α = 11 · λ + 32 and β = 1/2 + 2−λ.

Hence, for larger values of λ, the constructed tree decomposition is more strongly balanced,
which also incurs a factor increase in its width.

The motivation behind Theorem 3 is as follows. The properties we consider later for
product graphs (i.e., semiring, mean-payoff and initial credit for energy properties) are solved
by existing algorithms that operate on a tree decomposition of the input graph. In high
level, these algorithms iterate over every bag in the input tree decomposition and perform a
polynomial-time computation in it. Because we deal with tree decompositions of product
graphs, as we go down the tree decomposition, the number of bags in each level increases
geometrically. By using Theorem 3, we ensure that the size of the bags reduces geometrically
by an appropriate factor, which in turn ensures that the total time spent for all bags in each
level of the tree decomposition stays bounded. The constant λ is chosen in each case to
ensure this effect.

The high-level intuition behind Theorem 3 is as follows. We start with a tree decomposition
of G, obtained using standard algorithms. The tree decomposition is then split recursively.
Each recursive step operates on a part of the tree that consists of connected components,
and splits this part into two sub-parts, in such a way that the overall number of nodes is
balanced, meaning that the two parts are of approximately equal size. Since these parts
shrink by a factor of 1/2 in every step, after λ steps, the balance is only off by at most a
factor of 2−λ. The key challenge is to perform the aforementioned splits in such a way that
(i) the two constructed parts are approximately balanced, and (ii) the nodes appearing in
each such part are separated from the rest of the nodes via a few “border” nodes.

We complement Theorem 3 by showing that, generally, balanced tree decompositions are
approximate.

▶ Theorem 4. For any n and t = o(n/ log n), there exists a graph Gn
t that has treewidth at

most 2 · t − 1, but any tree decomposition of Gn
t with depth O(log n) has width at least 3 · t − 1.

In Section 3.1 we develop two operations on tree components that will be used later on.
In Section 3.2 we develop our main algorithm which uses the operations of Section 3.1 to
construct the (α, β) tree decomposition of Theorem 3. Finally, in Section 3.3 we prove the
lower-bound of Theorem 4.

3.1 Operations on tree components
In this section we define set-components of trees and two operations on such set-components
that will be used later for constructing (α, β) tree decompositions. In words, a set-component
of a tree is simply a set of pairwise-disjoint connected components of the tree. The operations
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that we introduce here take as input a set-component. Each operation splits that set-
component into multiple sub-components so that certain properties are met. In what follows,
we fix a tree T = (I, F ).
Set-components of trees. A set-component of T is a set X = {Ci}i of connected components
of T such that for each i ≠ j we have (i) Ci ∩ Cj = ∅ and (ii) Ci ∩ Border(Cj) = ∅. The size of
X is size(X ) =

∑
i |Ci|, i.e., it is the total size of all of its connected components. The border

of the set-component X is defined as Border(X ) =
⋃

i Border(Ci), i.e., the border of X is the
union of the borders of its connected components. Given two set-components X and X ′, we
define X ⊑ X ′ =

⋃
Ci∈X Ci ⊆

⋃
C′

i
∈X ′ C′

i and X ⊓ X ′ = (
⋃

Ci∈X Ci) ∩ (
⋃

C′
i
∈X ′ C′

i).

3.1.1 The operation BorderSplit
Intuitively, a component X is connected to the rest of the tree via the nodes of its border
Border(X ). Our balancing algorithm later needs that this border never gets too large. To
achieve this, we define the operation BorderSplit. In particular, consider a set-component
X = {Ci}1≤i≤k of T . We define the operation BorderSplit on X which returns (at most)
three set-components{Xi}1≤i≤3 with Xi ⊑ I for each 1 ≤ i ≤ 3. In words, BorderSplit
splits X into three set-components Xi, possibly by removing a node u ∈ X , such that
|Border(Xi)| ≤ |Border(X )|/2 + 1 for each 1 ≤ i ≤ 3. Formally, BorderSplit operates as follows
(recall that the input tree T is binary). If |Border(X )| < 3, then we simply return {X }.
Otherwise, we perform the following steps. First, we construct the LCA tree T ′ = (I ′, F ′) of
Border(X ), defined as follows.
1. I ′ is the smallest subset of I such that (i) Border(X ) ⊆ I ′ and (ii) for every two nodes

u, v ∈ I ′, we have w ∈ I ′, where w is the LCA of u and v. Hence, I ′ is the LCA-closure
of Border(X ).

2. For every pair of distinct nodes u, v ∈ I ′, we have that (u, v) ∈ F ′ iff v is the largest-level
strict ancestor of u in T that appears in I ′.

Then, we find a node u of T ′ such that the removal of u splits T ′ into three connected
components {Ai}i with |Ai ∩ Border(X )| ≤ ⌊|Border(X )|/2⌋. This is easily done by a bottom-
up pass of T ′. For each 1 ≤ i ≤ 3, we construct a set-component Xi, as follows.
1. For every connected component Cj ∈ X with u ̸∈ Cj , we make Cj ∈ Xi where i is such

that Border(Cj) ⊆ Ai.
2. If there exists a connected component Cj ∈ X with u ∈ Cj , we split Cj into three connected

components {Ci
j}i by removing u from Cj , such that Border(Ci

j) \ {u} ⊆ Ai. In addition,
we take Ci

j ∈ Xi.
Finally, we return the set {Xi}i. The following lemma states the properties of BorderSplit.

▶ Lemma 5. Consider the operation BorderSplit on the set-component X = {Ci}1≤i≤k. Let
z = |size(X )|, m = |Border(X )|, and {Xi}1≤i≤3 be the returned component set. The following
assertions hold.
1. We have |

⋃
i Border(Xi)| ≤ m + 1.

2. For each 1 ≤ i ≤ 3, we have |Border(Xi)| ≤ ⌊m/2⌋ + 1.
3. After one O(n)-time preprocessing of T , every call to BorderSplit requires O(z + m2) time.

3.1.2 The operation Split
Consider a set-component X = {Ci}1≤i≤k of T and some λ ≥ 2. Let z = size(X ) and
m = |Border(X )|. We define the operation Split on X which returns two set-components
{Xi}1≤i≤2 such that the following properties hold.
1. Xi ⊑ X and X1 ⊓ X2 = ∅.

CVIT 2016
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2. size(Xi) ≤ z · (1/2 + 2−λ), i.e., the size of each set-component is approximately half the
size of X , and this approximation is controlled by λ, and

3. |Border(Xi)| ≤ 9/10 · m + λ + 3, i.e., the size of the border of each set-component is about
a fraction 9/10 of the size of the border of X .
Split initializes the two set-components as empty, i.e., X1 = X2 = ∅, and will be inserting

connected components in each Xi such that, in the end, the stated properties hold. The
algorithm operates in two steps, where the input to the second step is a set-component
X ∗ constructed in the first step. In the following, we describe the two steps. We say
that a set-component X ′ ⊑ X is border-balancing if either m < 10, or size(X ′) ≤ z/2 and
|Border(X ′)| ≥ m/10 − 1. Hence if m < 10 we take every sub-component of X to be border-
balancing, otherwise a border-balancing sub-component must be at most of half the size of
X and have about at least 1/10-th of the size of the border of X . Given two set-components
X ′ and X ′′, we say that we add X ′ to X ′′ meaning that we update X ′′ to X ′ ∪ X ′′.
Step 1: making X1, X2 border-balancing. If m < 10, then we proceed with the second
step with X ∗ = X . Otherwise, we apply the operation BorderSplit on X and obtain the
set-components {X ′

i }1≤i≤3. We assume w.l.o.g. that size(X ′
1) ≥ size(X ′

2) ≥ size(X ′
3). If there

are two border-balancing set-components, Xa and Xb, among X ′
1, X ′

2, X ′
3, we add Xa to X1

and Xb to X2, and proceed to the second step with X ∗ being the unique set-component in
{X ′

1, X ′
2, X ′

3} \ {Xa, Xb}. Otherwise, we apply the operation BorderSplit on X ′
1 and obtain the

set-components {X ′′
i }1≤i≤3. We assume w.l.o.g. that size(X ′′

1 ) ≥ size(X ′′
2 ) ≥ size(X ′′

3 ). In the
set A = {X ′′

1 , X ′′
2 , X ′′

3 , X ′
2, X ′

3} there are at least two border-balancing set-components, Xa and
Xb. We add Xa to X1 and Xb to X2. Finally, we let X ∗ be the set-component in A \ {Xa, Xb}
with the largest size. We add one of the set-components in A \ {X ∗, Xa, Xb} to the smaller
(in size) of X1 and X2, and repeat with the other set-component of A \ {X ∗, Xa, Xb}.
Step 2: balancing X1, X2 based on size. Let C be a largest connected component of X ∗.
First, we add every connected component of X ∗ except C to the smaller (in size) of X1 and
X2, in order (i.e., once we have added one connected component to X1 or X2, we take into
account the new size of X1 and X2 for choosing where to add the next connected component).
The remaining of the second step is recursive for λ levels. The j-th recursive call operates on
a connected component Cj , where C0 = C. Given Cj , we use Lemma 1 to identify a balancing
separator u ∈ Cj , such that the removal of u splits Cj into three connected components {Cj

i }i.
We assume w.l.o.g. that |Cj

1| ≥ |Cj
2| ≥ |Cj

3|. We add each of Cj
2 and Cj

3 to the smallest (in size)
of X1 and X2, in order, and proceed to the next recursive call with Cj+1 be Cj

1. Finally, at
the end of the recursion, we add Cλ (from the last recursive call) to the smallest of X1 or X2.

The following lemma states the properties of Split, and relies on Lemma 5.

▶ Lemma 6. Consider the operation Split on a set-component X = {Ci}1≤i≤k Let z = size(X )
and m = |Border(X )|, and {Xi}1≤i≤2 be the returned component set. The following assertions
hold.
1. For each 1 ≤ i ≤ 2, we have size(Xi) ≤ z · (1/2 + 2−λ).
2. For each 1 ≤ i ≤ 2, we have |Border(Xi)| ≤ 9/10 · m + λ + 3.
3. We have |Border(X1) ∪ Border(X2)| ≤ |Border(X )| + λ + 2
4. After O(n)-time preprocessing of T , Split requires O(z + m2) time.

3.2 Construction of (α, β) Tree Decomposition
Here we prove the main result of this section, which concerns the construction of an (α, β)
tree-decomposition of a graph G, where α = 11 · λ + 32 and β = 1/2 + 2−λ, for any integer
λ ≥ 2. Our construction proceeds in two steps. In Section 3.2.1 we present an intermediate
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step that takes as input a tree T and constructs a tree decomposition of T that has width α

and is β-approximate. In Section 3.2.2 we use this construction towards Theorem 3.

3.2.1 Construction of tree decompositions of trees
Here we present algorithm Balance, which takes as input a tree T and some integer λ ≥ 2,
and constructs a tree decomposition of T that has width α and is β-approximate.
Step 1: constructing a component tree. Consider a tree T = (I, F ). A component tree
of T is a pair (V, R) where R = (J , D) is a rooted tree and V = {Xi : i ∈ J } is a set of
components of T . In the first step, Balance constructs a component tree (V, R) recursively,
as follows.
1. The root of R is the component {I}.
2. Given a node i of R, if size(Xi) > 0, we use the operation Split on the component Xi to

obtain two components Xj1 , Xj2 . We insert these components in the set V, make j1, j2
children of i in R, and proceed recursively with each of j1, j2.

Step 2: turning the component tree to a tree decomposition. At the end of the
first step, we have constructed a component tree (V, R) where every leaf of R is an empty
set-component. In the second step, we construct a tree decomposition (B, T = (I, F)), such
that I = J \ L, where L is the set of leaves of R, and T = R ↾ I. In words, T is identical
to R without the leaves of the latter. For each i ∈ I, we have Bi =

⋃
j Border(Xj), where

j ranges over the children of i in R. Note that i ranges over non-leaves of R, and thus
each Bi is well-defined. The following remark states that given a node i of the induced tree
decomposition, the corresponding set-component Xi of the component tree contains exactly
the nodes that appear in the bags of the subtree T (i).

▶ Remark 7. Let (B, T = (I, F)) be the tree decomposition of the component tree (V, R =
(J , D)) constructed in the second step. For every i ∈ I, we have YT

B (i) = Xi.

The following lemmas establish the correctness and complexity of Balance.

▶ Lemma 8. (B, T = (I, F)) is a tree decomposition of T that has width ≤ α and is
β-balanced, for α = 11 · λ + 32 and β = 1/2 + 2−λ.

▶ Lemma 9. Balance runs in O(λ2 · |I| · log |I|) time.

3.2.2 Construction of (α, β) tree decompositions
Finally, we present an algorithm for constructing (α, β) tree decompositions of arbitrary
graphs. The input is a graph and a tree decomposition of the graph, and our algorithm
constructs a new tree decomposition with the desired properties.
Construction of an (α, β) tree decomposition. Consider a graph G = (V, E) with
treewidth t, and some integer λ ≥ 2. We construct a (α, β) tree decomposition of G, where
α = 11 · λ + 32 and β = 1/2 + 2−λ in three steps.
1. Let (B = {B}i, T = (I, F )) be a tree decomposition of G with |I| ≤ n and width ≤ t. We

assume w.l.o.g. that, in (B, T ), every node of G has a unique root bag, as we can always
replace a bag which is the root of k > 1 nodes with a sequence of k bags, each being the
root of a single node. In addition, we can remove any bag that is not the root bag of any
node, and thus the size of the tree decomposition is exactly n.

2. We use Balance to construct a tree decomposition (B′ = {B′
i}i, T ′ = (I ′, F ′)) of T .

3. We construct the tree decomposition (B = {Bi}i, T ′) with Bi =
⋃

j∈B′
i
Bj for each i ∈ I ′.
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We conclude Theorem 3 by arguing that the construction produces a (α, β) tree decom-
position of G.

Proof of Theorem 3. Consider the tuple (B′ = {B′
i}i, T ′ = (I ′, F ′)) constructed in Step 2.

By Lemma 8, (B′, T ′) is a tree decomposition of T , and has width ≤ α and is β-balanced.
It follows that (B, T ′) is a α-approximate tree decomposition of G, and it remains to argue
that it is also β-balanced. For a node u ∈ V , let Au = {i ∈ I : u ∈ Bi} be the connected
component of T in which u appears and we have |Au| ≥ 1. In particular, this holds for the
(unique) root node iu of u in T . Observe that for every node j ∈ I ′, if u ∈ YT ′

B (j), then
Au ⊆ YT ′

B′ (j). Hence |YT ′

B (j)| ≤ |YT ′

B′ (j)|. By Lemma 8, we have that (B′, T ′) is β-balanced,
and thus |YT ′

B′ (j)| ≤ |I| · βLv(j). Since |I| = n, we conclude that |YT ′

B (j)| ≤ n · βLv(j), as
required.

We now turn our attention to the running time. The algorithm requires T (G) time in
Step 1 for obtaining the initial tree decomposition (B, T ) plus O(n · t) time for ensuring the
properties of (B, T ). By Lemma 9, the algorithm requires O(λ2 · n · log n) in Step 2. Finally,
the algorithm requires O(α · t · n) = O(λ · t · n) time in Step 3. ◀

3.3 A lower bound on the width of balanced tree decompositions
Here we present a family {Gn

t | n ≥ 3 · t and n ≡ 0 (mod t)} of graphs, where Gn
t has n

nodes and treewidth 2 · t − 1, and any tree decomposition of Gn
t with width t′ and depth h is

such that either h ≥ n/(2 · t′) or t′ ≥ 3 · t − 1. For t = o(n/ log n), only in the latter case can
the tree decomposition have depth O(log n) (i.e., be balanced), and hence the width must
increase by a constant factor.
The graph Gn

t . The graph Gn
t is defined as follows. Let n′ = n/t. For each i ∈ {1, . . . , n′},

let Vi be a set of t nodes, such that Vi ∩ Vj = ∅ for i ̸= j and V =
⋃

i Vi. Also, let
V0 = Vn′+1 = ∅. For each i ∈ {1, . . . , n′}, each node in Vi has an edge to each other node
in Vi−1 ∪ Vi ∪ Vi+1 (see Figure 2). We start with a technical lemma that will help us later.
Recall that NT

B (i) denotes the set of nodes contained in bags of the subtree T (i).

▶ Lemma 10. For any t and n consider the graph Gn
t and a tree decomposition (B, T = (I, F ))

of Gn
t with width t′ and depth h. Either h ≥ n/(2 · t′) or there exists integers i, i1, i2, such

that i1 − i2 ≥ 2 and Vi1 ∪ Vi2 ⊆ Bi.

Proof. Without loss of generality, we assume that for every i ∈ I, we have NT
B (j) \ Bi ≠ ∅,

where j ranges over the children of i in T . This is valid since, otherwise, we can simply remove
the subtree T (j) and still have a tree decomposition of Gn

t with the same or lower depth and
width. Similarly, for every i ∈ I that is not the root of T , we assume that V \ NT

B (i) ̸= ∅,
otherwise T (i) is a tree decomposition of Gn

t with the same or lower depth and width.
We distinguish the following cases. Either there exists an i ∈ I with children j1, . . . , jk

where k ≥ 2 (or k ≥ 3, if i is the root of T ) or not. If not, T forms a line with length at least
n/t′, hence the depth of T is at least n/(2 · t′) (regardless of how T is rooted).

Otherwise, pick three nodes v1, v2, v3 such that v1 ∈ NT
B (j1) \ Bi, v2 ∈ NT

B (j2) \ Bi and
v3 ∈ V \ NT

B (i) (or v3 ∈ NT
B (j3) \ Bi in case i is the root of T ). Let i′, j′, k′ be such that

v1 ∈ Vi′ , v2 ∈ Vj′ and v3 ∈ Vk′ . We assume w.l.o.g. that i′ ≤ j′ ≤ k′. We have that j′ − i′ ≥ 2
(resp. k′ − j′ ≥ 2), since otherwise there is an edge between v1 and v2 (resp. v2 and v3)
and hence a path between them that does not intersect with nodes in Bi, contradicting
Lemma 2. Also, there exist integers i1 and i2 such that i′ < i2 < j′ < i1 < k′ (hence,
i1 − i2 ≥ 2) and such that Vi2 ∪ Vi1 ⊆ Bi, since otherwise, there is at least one node in Vi2 ,
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Figure 2 The graphs G15
3 (left) and G(2, 5, 3, 18) (right).

for i′ < i2 < j′ (resp. in j′ < i1 < k′) which is not in Bi and thus there is a path P : v1 ⇝ v2
(resp. P : v2 ⇝ v3) that does not contain nodes in Bi, again contradicting Lemma 2.

The desired result follows. ◀

We now show that the treewidth of Gn
t is at most 2 · t − 1.

▶ Lemma 11. For any t and n, the treewidth of Gn
t is ≤ 2 · t − 1.

Proof. Construct a tree T = (I, F ), where I = {1, . . . , n′ − 1} and F = {(i, i + 1)}i∈I\{n′−1}.
Construct the set of bags B = {Bi = Vi ∪ Vi+1}i∈I . It is easy to see that (B, T ) is a tree
decomposition of Gn

t . ◀

The graph G(i, j, t, n). Given numbers i and j and the graph Gn
t , for some t and n, let

G(i, j, t, n) be the graph similar to Gn
t , except that it also has an edge between each pair of

nodes in Vi × Vj (see Figure 2). Next, we show that the treewidth of G(i, j, t, n) is a factor
larger than the one of Gn

t .

▶ Lemma 12. For any i, j, t, n, where j − i ≥ 2, the treewidth of G(i, j, t, n) is ≥ 3 · t − 1.

Proof. We construct a minor G′(i, j, t, n) of G(i, j, t, n) by contracting every edge (vi
k, vj

k) for
1 ≤ k ≤ t. Observe that the clique K3·t is a minor of G′(i, j, t, n). Since K3·t has treewidth
3 · t − 1 and treewidth is monotonic under graph minors [6, Lemma 16], it follows that the
treewidth of G(i, j, t, n) is a least 3 · t − 1. ◀

We next show that any tree decomposition of Gn
t has either large depth or large width.

▶ Lemma 13. For any n and t, consider a tree decomposition (B, T = (I, F )) of Gn
t of width

t′ and depth h. Either h ≥ n/(2 · t′) or t′ ≥ 3 · t − 1.

Proof. If h ≥ n/(2 · t′), we are done. Otherwise, by Lemma 10, there exist integers i, i1, i2
such that i1 − i2 ≥ 2 and Vi1 ∪ Vi2 ⊆ Bi. Then, (B, T ) is also a tree decomposition of
G(i2, i1, t, n), since each edge between Vi1 and Vi2 has both endpoints in Bi. By Lemma 12,
the width of (B, T ) is at least 3 · t − 1. ◀

We conclude with the proof of Theorem 4.

Proof of Theorem 4. The bound on t implies that any tree decomposition of width t′ < 3·t−1
and depth h, such that h ≥ n/(2 · t′) cannot be balanced. The statement then follows directly
from Lemma 11 and Lemma 13. ◀

CVIT 2016



23:12 Quantitative Verification on Product Graphs of Small Treewidth

1

1 2 1 3

a

a b a c

⟨1, a⟩
⟨1, b⟩ ⟨2, a⟩
⟨1, c⟩ ⟨3, a⟩

⟨1, a⟩ ⟨1, b⟩
⟨3, a⟩ ⟨3, b⟩

⟨1, a⟩ ⟨1, b⟩
⟨2, a⟩ ⟨2, b⟩

⟨1, a⟩ ⟨1, c⟩
⟨2, a⟩ ⟨2, c⟩

⟨1, a⟩ ⟨1, c⟩
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Figure 3 The product tree-decomposition given tree decompositions of the two constituent graphs.

4 Applications to verification on product graphs

Here we discuss three applications of (α, β) tree decompositions in the analysis of product
graphs of two constant-treewidth graphs, when the specification language is either w.r.t.
semiring, mean-payoff or initial credit for energy properties. Product graphs arise frequently
in verification, for example, when analyzing the behavior of two concurrent threads, or when
the verification task is expressed as language inclusion wrt two automata. In such cases,
the control-flow graphs or the automata are given explicitly, and the analysis proceeds by
constructing and reasoning on the product graph.

We first establish a lemma which concerns the construction of a tree decomposition of the
product graph with some desired properties. Afterwards we present algorithmic improvements
for the analysis of such product graphs, w.r.t. mean-payoff, semiring and energy properties.
Product graphs. Given two graphs Gi = (Vi, Ei), for 1 ≤ i ≤ 2, the product graph of
G1 and G2 is defined as the graph G = (V, E) where V = V1 × V2 and E is such that
(⟨u1, u2⟩, ⟨v1, v2⟩) ∈ E iff (ui, vi) ∈ Ei for each 1 ≤ i ≤ 2. Let (Bi = {Bj

i }j , Ti) be a tree
decomposition of the graph Gi, for each 1 ≤ i ≤ 2. We construct a tree decomposition (B, T )
of G as follows (see Figure 3).
1. Let ji be the root of Ti. Recall that NTi

Bi
(ji) is the set of nodes of Gi appearing in the

bags of Ti(ji). We create a node j in T , and construct the bag Bj =
(

Bj1
1 × NT2

B2
(j2)

)
∪(

NT1
B1

(j1) × Bj2
2

)
.

2. If for some 1 ≤ i ≤ 2, the node ji does not have a child (i.e., ji is also a leaf in Ti), the
process terminates. Otherwise, for every 1 ≤ i ≤ 2 and child j′

i of ji, we repeat recursively
for the trees Ti(j′

i), and make every node j′ constructed in the next recursive step a child
of j in T .
It is not hard to verify that (B, T ) is a tree decomposition of G, and T is a quaternary

tree. By letting each (Bi, Ti) be a (α, β) tree decomposition for the graph Gi, we obtain the
following lemma.

▶ Lemma 14. Let G = (V, E) be a product graph of two constant-treewidth graphs Gi =
(Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each, and consider any integer λ ≥ 2. A quaternary tree
decomposition (B = {Bj}j , T = (I, F )) of G can be constructed in O((λ · n)2) time, such that
for every j ∈ I we have |Bj | = O(λ · n · βLv(j)), where Lv(j) is the level of node j in T .

Proof. For each 1 ≤ i ≤ 2, we use Theorem 3 to obtain a (α, β) tree decomposition
(Bi = {Bj

i }j , Ti) for the graph Gi, where α = 11 · λ + 32 and β = 1/2 · (1 + 2−λ). Given
each (Bi, Ti), the algorithm constructs the quaternary tree decomposition (B, T ) of G. The
bound |Bj | = O(λ · n · βLv(j)) follows easily from Theorem 3 and the fact that each graph
has treewidth t.

We now turn our attention to the time complexity, and show that the construction of (B, T )
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requires O((λ · n)2) time. It is easy to see that the construction requires time proportional to
the total sizes of all bags in B, hence it suffices to argue that

∑
j |Bj | = O((λ · n)2). We have∑

j

|Bj | ≤ 2 ·
∑
j1

∑
j2

∣∣∣Bj1
1

∣∣∣ ·
∣∣∣Bj2

2

∣∣∣ ≤
∑
j1

(
|Bj1

1 | ·
∑
j2

|Bj2
2 |
)

(1)

≤
∑
j1

(
α · (t + 1) ·

∑
j2

α · (t + 1)
)

= O((λ · n)2) (2)

since t = O(1). ◀

Note that the root bag of the product tree decomposition has Θ(n) nodes, and thus the
width of the constructed tree decomposition is Θ(n) (as bags below the root decrease in size).
We remark that this is unavoidable in general – e.g., two straight-line graphs G1 and G2 of n

nodes each yield a product graph G that is a grid and thus has treewidth n − 1. The crucial
property of our product tree decomposition is that, although it has width Θ(n), most bags
have smaller size (as stated in Lemma 14).

4.1 Mean-payoff properties
In the minimum mean payoff problem, we are given a weighted graph G = (V, E), a weight
function wt : E → Z, and a starting node u ∈ V . The decision problem is to compute whether

inf
u=x1,x2,...

(xi,xi+1)∈E

lim
k→∞

inf
∑k−1

i=1 wt(xi, xi+1)
k

≥ 0

In words, we are interested in deciding whether the smallest weight-average among all infinite
paths that originate in u is non-negative. Here we focus on the case where G is the product
of two constant treewidth graphs Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each.
Solution on tree decompositions. The problem reduces to determining whether G

contains a negative cycle w.r.t. wt that is reachable from u. We outline an existing algorithm
for detecting negative cycles on G given a tree decomposition (B = {Bi}i, T = (I, F )) of G.
We refer to [23] for details. We use a single data structure, which is a map D :

⋃
i(Bi ×Bi) →

Q ∪ {∞}. Initially, D(u, v) = wt(u, v) for each (u, v) ∈ E, and D(u, v) = ∞ if (u, v) ̸∈ E.
Given a set of nodes X ⊆ V , we denote by DX the restriction of D to the set X. We traverse
T bottom-up and for each encountered node i, we compute all-pairs distances in the weighted
graph Gi = (Bi, Bi × Bi) w.r.t. the weight function DBi

, using the Floyd-Warshall algorithm.
If a negative cycle is detected, we report that G has a negative cycle w.r.t. wt and stop.
Otherwise, for every pair of nodes u, v ∈ Bi, we update the entry D(u, v) with the distance
d(u, v) in Gi, and proceed with the next node of T .
Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = 3 and use
Lemma 14 to construct a tree decomposition (B, T ) of G for α = 11 · λ + 32 = O(1) and
β = 1/2 + 2−λ = 5/8. Afterwards, we use the solution on tree decompositions for (B, T ). We
have the following theorem.

▶ Theorem 15. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Z be a weight function on G.
The decision problem of minimum mean payoff on (G, wt) can be solved in O(n3) time.

Proof. The correctness follows directly from [23], and here we focus on the complexity. Since
the tree decomposition of the product graph is quaternary, the i-th level has 4i nodes. Since
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Floyd-Warshall has cubic complexity, the complexity of the algorithm for the whole level i of
the tree decomposition is bounded, up to constant factors, by the following expression.

4i ·
(
βi · n

)3 = n3 ·

(
4 ·
(

5
8

)3
)i

= n3 · Ai (3)

where A = 53/27 < 1. It follows that the cost decreases geometrically along the levels of T

and thus the running time is dominated by the first level, which runs in time O(n3). The
desired result follows. ◀

The best current complexity bound for the problem is O(n4), achieved by Karp’s classic
algorithm [43] (recall that G has n2 nodes). Hence Theorem 15 yields an improvement by a
factor n, asymptotically.

4.2 Semiring properties
The problem of all-pairs semiring distances is defined w.r.t. a graph G = (V, E) and a weight
function wt : E → Σ, where Σ is the domain of an algebraic structure (Σ, ⊕, ⊗, 0, 1) with two
associative operators ⊕ and ⊗ with neutral elements 0 and 1, respectively, such that (i) ⊗
distributes over ⊕, (ii) ⊕ is idempotent and (iii) 0 absorbs in ⊗. The task is to determine
for very pair of nodes u, v ∈ V the semiring distance from u to v, defined as

d(u, v) =
⊕

P =(u1,...,uk):u⇝v

⊗
1≤i<k

wt(ui, ui+1)

Here we focus on the case where G is the product of two constant treewidth graphs Gi =
(Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. There are various classic algorithms for the
problem, e.g. Lehmann’s [47], Floyd’s [34], Warshall’s [54] and Kleene’s [44], all of which
have cubic complexity, assuming constant-time semiring operations. Since G has n2 nodes,
these algorithms take O(n6) time on G. Here we use strongly-balanced tree decompositions
to obtain a solution in Õ(n4) time.
Solution on tree decompositions. We now outline an existing algorithm for computing
the semiring transitive closure of G, given a tree decomposition (B = {Bi}i, T = (I, F )) of
G. The algorithm is similar in spirit to the one in [23] for solving all-pairs distances. We
use a single data structure, which is a map D : V × V → Σ. Given a set of nodes X ⊆ V ,
we denote by DX the projection of D to the set X. Initially, D(u, v) = wt(u, v) for each
(u, v) ∈ E, and D(u, v) = 0 if (u, v) ̸∈ E. The algorithm consists of two parts.
1. We traverse T twice, first bottom-up and then top-down. For each encountered node i,

we use the Floyd-Warshall algorithm to solve the algebraic path problem on the graph
Gi = (Bi, Bi × Bi) w.r.t. the weight function DBi

. For every pair of nodes u, v ∈ Bi, we
update the entry D(u, v) with the semiring distance d(u, v) in Gi.

2. For every node u, we perform a DFS in T starting from iu. Given a current node i, for
every node v ∈ Bi, we set D(u, v) =

⊕
x∈Bi

(D(u, x) ⊗ D(x, v)). Finally, we return the
map D, which contains the all-pairs semiring distances in G, and thus the solution to the
algebraic path problem.

Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = c + log log n + 1,
for some suitable constant c, and use Lemma 14 to construct a tree decomposition (B, T ) of
G for α = 11 · λ + 32 = O(log log n) and β = 1/2 + 2−λ. Afterwards, we use the solution on
tree decompositions for (B, T ). We have the following theorem.
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▶ Theorem 16. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Σ be a weight function, where
Σ is the domain of an idempotent semiring (Σ, ⊕, ⊗, 0, 1). The semiring transitive closure of
(G, wt) can be solved in Õ(n4) time.

Proof. The correctness follows directly from [23], and here we focus on the complexity.
Let m = n · log log n. In Step 1, the algorithm spends cubic time in each bag, and by an
argument similar to the proof of Theorem 15, we have that the running time of the first step
is O(m3) = Õ(n3).

We now proceed with the analysis of Step 2, which dominates the complexity. Observe
that for each node u, the algorithm spends quadratic time in each bag of the product tree
decomposition. Since the tree decomposition of the product graph is quaternary, the i-th
level has 4i nodes. Hence, the complexity of this step for the whole level i is bounded, up to
constant factors, by the following expression

4i ·
(
βi · m

)2 = m2 ·

(
4 ·
(

1 + 2−λ+1

2

)2)i

= m2 ·
(

1 + 1
c′ · log n

)i

(4)

where c′ = 2c. Observe that the complexity increases with the level i, and there are at most
c′′ · log n levels, for some constant c′′. We let c′ = c′′ and thus c = log(c′′), and hence the
complexity in the last level is bounded by

m2 ·
(

1 + 1
c′′ · log n

)c′′·log n

= O(m2) (5)

since (1 + 1/x)x ≤ e for x > 0. Summing up over all O(log n) levels, Step 2 of the algorithm
spends O(m2 · log n) time per node u and thus O(n2 · m2 · log n) = Õ(n4) time for all
nodes. ◀

Note that since the output has size Θ(n4), the algorithm is optimal (up to polylog factors).

4.3 Initial credit for energy properties
In the minimum initial credit for energy problem, we are given a weighted graph G = (V, E)
and a weight function wt : E → Z. The task is to compute for every node u ∈ V the smallest
energy value E(u) ∈ N ∪ {∞} with the following property: there exists an infinite path
P = (u1, u2, . . . ) with u1 = u such that for every i we have E(u) +

∑
j<i wt(uj , uj+1) ≥ 0.

Conceptually, E(u) is the smallest “charge” we need to supply the system, so that starting
from u it can exhibit infinite behavior without running out of energy. Conventionally, we let
E(u) = ∞ if no finite value exists.
Solution on tree decompositions. We outline an existing algorithm for the problem on
G, given a tree decomposition (B = {Bi}i, T = (I, F )) of G. We first sketch the solution
for arbitrary graphs G, and then explain how the solution is adapted to constant-treewidth
graphs. We refer to [20] for details. The problem reduces to detecting non-positive cycles on
weighted graphs of the form (Gi = (V i, Ei), wti)i, where initially
1. V 1 = V ∪ {s}, for some fresh node s ̸∈ V (intuitively, s acts as a sink in which all nodes

x with E(x) = 0 are collapsed),
2. E1 = E ∪ ({s} × V ), and
3. wt1(u, v) = −wt(u, v) if u ̸= s and wt1(u, v) = 0 otherwise.
Given some i ≥ 1, we detect a non-positive cycle on (Gi, wti), which determines a node x in
that cycle for which E(x) = 0. Then, we construct the weighted graph (Gi+1, wti+1) where
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1. V i+1 = V i \ {x},
2. Ei+1 = (Ei \ (V i × {x})) ∪ {(u, s) : (u, x) ∈ Ei}, and
3. wti+1(u, v) = wti(u, v) if v ̸= s else wti+1(u, v) = min(z, wti(u, x)), where z = wti(u, s) if

(u, s) ∈ Ei and z = ∞ otherwise.
Finally, if (Gi, wti) has no non-positive cycle, we compute the distance d(u, s) from every
u ∈ V i \ {s} to s in (Gi, wti) and assign E(u) = d(u, s) (at this point d(u, s) > 0 for each u).

We now consider the tree decomposition (B = {Bi}i, T = (I, F )) of G. The above solution
is adapted as follows. First we construct the family of bags B′ = {{s} ∪ Bi}i, i.e., we insert
the fresh node s in all bags. Observe that (B′, T ) is a valid tree decomposition of all Gi.
Then, every step of non-positive-cycle detection, as well as the last step of computing the
distances d(u, s) is performed by a single bottom-up pass of T . In every encountered node
i, an all-pairs distance computation is performed in the graph induced by B′

i, using the
Floyd-Warshall algorithm.
Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = 3 and use
Lemma 14 to construct a tree decomposition (B, T ) of G for α = 11 · λ + 32 = O(1) and
β = 1/2 + 2−λ = 5/8. Afterwards, we use the solution on tree decompositions for (B, T ). We
have the following theorem.

▶ Theorem 17. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Z be a weight function on G.
The minimum initial credit for energy problem on (G, wt) can be solved in O(n5) time.

Proof. The correctness follows directly from [20], and here we focus on the complexity.
Similarly to Theorem 15, every bottom-up traversal of the tree decomposition (B′, T ) requires
O(n3) time. Since every time we construct Gi+1 from Gi we remove one node, we have
i ≤ n2, i.e., there will be at most n2 iterations of non-positive-cycle detection. Hence we
make at most n2 + 1 bottom-up traversals of (B′, T ), for a total running time of O(n5). The
desired result follows. ◀

The best existing solution for the problem is due to [20], which has running time
O((n2)4) = O(n8). Hence, Theorem 17 yields an improvement by a factor n3, asymptotically.

5 Conclusion

Product graphs have numerous applications in verification, such as in the analysis of con-
current systems, as well as in language inclusion problems, which arise frequently in model
checking. In this work, we have studied product graphs of two components w.r.t. three
classic specification languages that arise in verification, namely semiring, mean-payoff, and
initial credit for energy properties. We have studied these problems under the consideration
that the components are specified as low-treewidth graphs, a property that is met by control-
flow graphs of programs and has also found applications in logic, most notably due to the
celebrated theorem of Courcelle for MSO. Our results show that these problems admit faster
solutions than existing approaches, and in the case of semiring properties, our algorithm
is optimal. At the heart of our new algorithms lies the newly introduced concept of (α, β)
tree decompositions, which have a strong balancing property while suffering a small factor
increase in their width. Moreover, we have shown that for balanced tree decompositions,
such a factor increase in the width is generally unavoidable. Finally, we have developed an
algorithm for constructing (α, β) tree decompositions efficiently for low-treewidth graphs.
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A Proofs of Section 3

Here we present the proofs of Section 3. The structure of this section follows the structure of
Section 3.

A.1 Proofs of Section 3.1
Here we prove Lemma 5 and Lemma 6 which state the correctness and complexity of the
two operations on components BorderSplit and Split, respectively.
Proof of BorderSplit. Here we prove Lemma 5 which concerns the correctness and complexity
of the operation BorderSplit.

▶ Lemma 5. Consider the operation BorderSplit on the set-component X = {Ci}1≤i≤k. Let
z = |size(X )|, m = |Border(X )|, and {Xi}1≤i≤3 be the returned component set. The following
assertions hold.
1. We have |

⋃
i Border(Xi)| ≤ m + 1.

2. For each 1 ≤ i ≤ 3, we have |Border(Xi)| ≤ ⌊m/2⌋ + 1.
3. After one O(n)-time preprocessing of T , every call to BorderSplit requires O(z + m2) time.

Proof. We prove each assertion separately.
1. This item holds trivially, since we remove at most one node u from X .
2. If m ≥ 3, by construction, we have |Ai ∩ Border(X )| ≤ ⌊m/2⌋ for each i. In addition,

Border(Xi) ⊆ (Ai ∩ Border(X )) ∪ {u} and thus |Border(Xi)| ≤ ⌊m/2⌋ + 1. Finally, if
|Border(X )| < 3 then the algorithm simply returns {X } and thus |Border(Xi)| = m ≤
⌊m/2⌋ + 1.

3. Since T is binary, we have m = O(z), thus obtaining the set Border(X ) requires O(z) time.
Note that the LCA tree TBorder(Cj) contains O(m) nodes, as it is binary and it has O(m)
leaves. It is known that T can be preprocessed in O(n) time, after which LCA queries
can be answered in O(1) time [4]. It follows easily that TBorder(C) can be constructed in
O(m2) time, by performing O(m2) LCA queries. Determining the desired node u can
easily be done in O(m) time. Finally, constructing each connected component Ci can be
easily done in O(m) time.

The desired result follows. ◀

Proof of Split. Here we prove Lemma 6 which concerns the correctness and complexity of
the operation Split.

Towards the proof of Lemma 6, we will present some simple lemmas. In the end, we will
combine these lemmas in the proof of Lemma 6. Recall that Split operates on a component
X , and given a positive integer λ. We also let z = size(X ) and m = |Border(X )|. We start
with a simple lemma that will be used frequently.

▶ Lemma 18. Consider integers x1, x2, x3,x 4. If x1 ≥ x2 and x3 ≥ x4 and x1 +x2 ≥ x3 +x4,
then x4 ≤ x1.

Proof. The proof is trivial:

x4 ≤ x3 + x4

2 ≤ x1 + x2

2 ≤ x1

◀

The following lemma states the properties of the first step of Split.
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▶ Lemma 19. At the end of first step, either m < 10 and C∗ = X and X1 = X2 = ∅, or each
Xi is border-balancing.

Proof. The claim clearly holds if m < 10. Now consider that m ≥ 10, and the algorithm
performs an operation BorderSplit on X to obtain the components {X ′

i }1≤i≤3. If there are
two border-balancing components among all X ′

i then the claim holds by construction.
Now assume that there are no two such components, and hence the algorithm proceeds

with performing the operation BorderSplit on the component X ′
1. We first argue that in the

set A = {X ′
2, X ′

3, X ′′
2 , X ′′

3 } there are at least two border-balancing components, Xa and Xb.
Since X ′

1 is the largest component among X ′
i , we have that size(X ′

3) ≤ size(X ′
2) ≤ z/2. Also,

by Lemma 5, we have |Border(X ′
1)| ≤ m/2 + 1, thus at least one of X ′

2, X ′
3 has border with

size at least

m − (m/2 + 1)
2 = m

4 − 1
2 ≥ m

10 − 1 (6)

Hence at least one of X ′
2, X ′

3 is border-balancing. We take that component to be Xa.
Second, we argue that at least one of X ′′

2 , X ′′
3 is border-balancing. A similar argument

to the previous case shows that size(X ′′
3 ) ≤ size(X ′′

2 ) ≤ z/2. Let m′ = |Border(X ′
1)|. Since

one of X ′
1, X ′

2 is not border-balancing and by Lemma 5 the other has border of size at most
m/2 + 1, we have that

m′ ≥ m −
(m

2 + 1
)

−
(m

10 − 1
)

= 4
10 · m (7)

A similar argument as before shows that at least one of C′′
2 , C′′

3 has border with size at least

m′ − (m′/2 + 1)
2 = m′

4 − 1
2 ≥ m

10 − 1/2 (8)

and thus it is border-balancing. We take that component to be Xb.
It remains to argue that size(Xi) ≤ z/2 for each 1 ≤ i ≤ 2. Since each Xa and Xb are

border-balancing, the claim clearly holds after we have added Xa to X1 and Xb to X2. Assume
w.l.o.g. that size(X1) ≤ size(X2), and let x1 = m/2 − size(X1) and x2 = m/2 − size(X2), thus
x1 ≥ x2. Let x3 = size(X ∗), and x4 be the size of any other component in A \ {X ∗, Xa, Xb},
and by definition x3 ≥ x4. Observe that x1 + x2 ≥ x3 + x4 since x1 + x2 is at least as large
as |A \ {Xa, Xb}|. It follows by Lemma 18 that we can add the component with size x4 to X1
while ensuring that the size of X1 stays at most z/2 after this operation. Similarly for adding
the second component in the smaller of X1, X2. It follows that at the end of the second step,
each X1, X2 is border-balancing, as desired. ◀

We now turn our attention to the second step of Split. The following lemma is straight-
forward.

▶ Lemma 20. For all j we have that size(Cj+1) ≤ size(Cj)/2 and thus size(Cj) ≤ z · 2−j.

Proof. The lemma follows since Cj+1 = Cj
1, and due to Lemma 1 we have |Cj

1| ≤ |Cj |/2. ◀

We now show that throughout the recursion of the second step, each of X1, X2 has size at
most z/2.

▶ Lemma 21. Until (but not including) the very end of the second step, we have
size(X1), size(X2) ≤ z/2.
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Proof. The statement holds at the beginning of the second step since by Lemma 19 each
of X1, X2 is border-balancing. The statement also holds at the beginning of the recursion,
since C is the largest connected component of X ∗, by Lemma 18 similarly to the proof of
Lemma 19. Now consider the recursive step j. The statement follows by the induction
hypothesis and the fact that Cj

1 is the largest connected component among {Cj
i }1≤i≤3, as

above. ◀

Finally, we conclude with the proof of Lemma 6.

Proof of Lemma 6. We prove each item separately.
1. Lemma 20 and Lemma 21 together ensure that size(Xi) ≤ z ·(1/2+2−λ) for each 1 ≤ i ≤ 2

(because we add Cλ to either X1 or X2 at the very end of the second step).
2. First assume that m ≥ 10. By Lemma 19, we have that each of X1, X2 is border-balancing,

thus Border(Xi) ≥ m/10 − 1 for each 1 ≤ i ≤ 2. Also, for each 1 ≤ i ≤ 2, we have
|Border(Xi) ∩ (Border(X3−i) ∪ Border(X ∗)| ≤ 2. This follows from the fact that every
time we apply the operation BorderSplit, we create three components and the intersection
between the borders of any pair of components is either empty, or it is the singleton {u},
where the node u is defined in BorderSplit. The inequality then holds as the components
X1, X2 and X ∗ are created by applying BorderSplit at most twice. Let Qi and Q′

i

denote the border of component Xi at the beginning of the second step, and before the
recursive process of the second step, hence the previous inequality can be written as
|Qi ∩ (Q3−i ∪ Border(X ∗))| ≤ 2. Thus, we have |Qi \ (Q3−i ∪ Border(X ∗))| ≥ m/10 − 3.
In addition, we have Q′

i ⊆ Qi ∪ Border(X ∗), and thus Q′
i ≤ 9/10 · m + 3. Finally, in each

recursive call of the second step we create at most one new border node, which is the
balancing separator of the connected component Cj . Hence after λ recursive calls, we
have created at most λ new border nodes. It follows that at the end of the second step,
we have |Border(Xi)| ≤ 9/10 · m + λ + 3.
Now assume that m < 10. Then clearly Border(Xi) ≤ m + λ ≤ 9/10 · m + λ + 3.

3. This part is trivial, since Split removes at most λ + 2 nodes when creating the components
X1 and X2.

4. The first step takes O(z + m2) time, by Lemma 5. Each recursive call of the second step
takes O(|X j |) time, by Lemma 1. By Lemma 20 the size of X j halves in each call, hence
the time for the second step is O(|X ∗|) = O(z).

◀

A.2 Proofs of Section 3.2
Here we prove Lemma 8 and Lemma 9 which concern the correctness and complexity of
Balance. We start with an auxiliary lemma, which states a bound on the size of the border
of each component of the component tree constructed in the first step of Balance.

▶ Lemma 22. Consider the component tree (V, R = (J , D)) constructed by Balance. For
every i ∈ J , we have |Border(Xi)| ≤ 10 · (λ + 3).

Proof. The claim clearly holds for i being the root of R, since in that case |Border(Xi)| = 0.
Now we will argue that the claim holds for any i ∈ J , assuming that it holds for the parent
j of i in R.

Indeed, let m = |Border(Xj)| and m′ = |Border(Xi)|. By Lemma 6 we have that

m′ ≤ 9
10 · m + λ + 3 ≤ 9

10 · 10 · (λ + 3) + λ + 3 = 10 · (λ + 3) (9)

The desired result follows. ◀
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We now turn our attention to Lemma 8 which concerns the correctness of Balance.

▶ Lemma 8. (B, T = (I, F)) is a tree decomposition of T that has width ≤ α and is
β-balanced, for α = 11 · λ + 32 and β = 1/2 + 2−λ.

Proof. We first argue that (B, T ) is a tree decomposition of T , and then that it has width
≤ α and is β-balanced.

First, consider any edge (u, v) ∈ F , and assume w.l.o.g. that u is the parent of v.
Observe that T has the (empty) connected component C with Border(C) = {u, v}. It follows
easily that there exists a leaf i of R such that C ∈ Xi and thus {u, v} ⊆ Border(Xi). By
construction, u, v ∈ Bj , where j is the parent of i in R. Hence, (B, R) satisfies condition 2
of tree decompositions. Since T is connected, it follows that condition 1 is also satisfied.

We now turn our attention into showing that every node u appears in a contiguous
subtree of (B, R), which will prove that (B, T ) satisfies condition 3 of tree decompositions.
First, observe that there exists a lowest-level node i ∈ I such that u ∈ Xi, and in fact u ∈ Bi,
as u ∈ Border(Xj) for some child j of i. In addition, note that for every bag Bj with u ∈ Bj ,
we have that j is a descendant of i. Finally, consider any strict descendant j of i in R such
that u ̸∈ Bj . It follows that (i) u ̸∈ Xj (by our choice of i) and (ii) u ̸∈ Border(Xj) (since
u ̸∈ Bj). It is straightforward to see that u ̸∈ Bj′ for any descendant j′ of j in R, which
concludes the condition 3.

We now turn our attention in showing that (B, T ) has width ≤ α and is β-balanced. We
first argue about the width. Consider the component tree (V, R = (J , D)) constructed by
Balance in the first step. Consider any node i ∈ J that is not a leaf, and let j1, j2 be the
children of i in R. By Lemma 22, we have |Border(Xi)| ≤ 10 · (λ + 3). By Lemma 6, we have

|Border(Xj1) ∪ Border(Xj2)| ≤ |Border(Xi)| + λ + 2 ≤ 11 · λ + 32

By construction, we have Bi = Border(Xj1) ∪ Border(Xj2), and thus |Bi| ≤ 11 · λ + 32.
Finally, we show that (B, T ) is β-balanced. By Lemma 6, for every i ∈ I and j

child of i in R, we have size(Xj) ≤ size(Xi) · (1/2 + 2−λ), and since the size of the root
component of R is |I|, we have size(Xj) ≤ |I| · (1/2 + 2−λ)Lv(j). By Remark 7, we have
YT

B (j) = size(Xj) ≤ |I| · (1/2 + 2−λ)Lv(j), as required.
The desired result follows. ◀

Finally, we prove Lemma 9 which captures the running time of Balance.

Proof of Lemma 9. We start with the first step of Balance. Since λ ≥ 2, by Lemma 6 the
size of each component decreases by at least a constant factor with each recursive call, hence
the first step is executed for O(log |I|) levels. By the same lemma, and since the border of
each component has size O(λ) (by Lemma 22), each level in this recursion runs in O(λ2 · |I|).
Hence the first step runs in O(λ2 · |I| · log |I|) time. In the second step, the tree decomposition
is easily constructed in O(α · |I|) = O(λ · |I|) time.

The desired result follows. ◀
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