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Abstract

Unipolar induction has been a heavily discussed phenomenon in the realm of electrody-
namics, with research and experiments proposing and supporting different ways to explain
the observed effects. This paper presents a novel model to predict induced electromotive
forces in a Faraday generator, based on direct interaction between conductor charges. It
is compared with predictions that are usually obtained through considerations of Lorentz
force, flux linking or flux cutting rules. A standard apparatus provides additional experi-
mental measurements that show good agreement with the theory.

1 Introduction

Since Faraday’s discovery [1], unipolar induction has been a controversial phenomenon in elec-
trodynamic theory that is described as paradoxical with competing theories and explanations
suggested. To this day, no clear consensus has been reached [2–9] and it remains an interesting
topic for debate [4–8]. A general set-up of a so-called Faraday-generator is shown in Figure 1,
consisting of a cylindrical bar magnet and a conducting disk, across which the induced voltage is
measured. Many explanations have been proposed to account for the electromotive force (EMF)
that is observed when the disk is rotating in a magnetic field. These include: the hypothesis
that the field remains stationary upon the magnet’s rotation and the applicability of Faraday’s
law [10–13], the field rotating with the magnet and the view point that Faraday’s law is not ap-
plicable to the problem [4,5,14–16], discussions about the relevance of Special Relativity [17–21]
and/or General Relativity [22] to the problem, quantum mechanical explanations [23–26], as well
as suggestions that distant galaxies warping space-time cause the induced voltage to appear [27].

From field theory, the paradox arises when movement of a magnet and its field lines are
considered. When the magnet moves in a rectilinear fashion and a voltage is induced, it is
deemed that the field lines must move with the magnet, but when the magnet rotates around its
cylindrical axis, while the disk is kept stationary (Fig. 1), no voltage can be detected and the
question as to whether the field lines move with the magnet or not becomes apparent. These
two seemingly contradictory observations are the origins of what has been called “Faraday’s
paradox” in relation to unipolar induction. Whilst several theories have been proposed, they
can largely be divided into two factions: The Moving Field Hypothesis (MFH), which maintains
that the field lines rotate with the magnet, and the Stationary Field Hypothesis (SFH), which
considers that the field lines remain stationary when the magnet is rotating.
There have been a number of experimental studies to investigate the behaviour of the field and
which of the two theories is applicable [1, 4–8, 10–12, 14, 19, 20, 28–37]. However, from available
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Figure 1: General layout of a Faraday-generator with a magnet or coil and a spinning conducting
disk across which the induced voltage is observed.

experimental data, the problem remains unresolved as to which theory is the correct one since
there are supporting results for both MFH and SFH. It has also been discussed where the seat
of induction lies, if it is in the disk itself or in the closing wire of the measurement circuit. An
argument has been made that for any unipolar machine the whole circuit including the closing
wire needs to be considered [38].
Amongst the established theories, there is an approach by Montgomery [39, 40] to explain the
phenomenon but not solely by consideration of the field entity alone. Instead, the motion of the
conduction electrons and the conservation of energy are considered to help resolve the problem.
In this regard, the field is not necessarily considered as a real physical entity, but rather as a
mathematical tool indicating a vectorial map of possible interactions. It has been argued in the
literature that field lines or ‘lines of force’ do not have to be continuous, individual or closed
curves, only the knowledge of a local vector field with direction and magnitude is relevant to
describe observable phenomena [41].
In the work of Zengel [9], four ways to derive the correct expression for the induced voltage
EMF = ωR2B/2 are given, which leaves some ambiguity as to which of the possible expla-
nations can sufficiently satisfy the available experimental evidence. i.e., there exist multiple
mathematical means by which one can correctly predict the observed voltage. In this work
we have developed a new modelling approach to predict the induced EMF from a homopolar
generator configuration based solely on the forces between charges in relative motion in the
spinning disk in the presence of a stationary electromagnet. The model is based on the physical
interaction between charges known to be present in this configuration.
Based on these considerations, this current work presents a novel mathematical model to predict
the induced voltage in a Faraday-generator setup focussing on the movement of the interacting
charges. It is compared to a standard field-model calculation and supported by experimental
measurements.

2 Mathematical Models

In this section, expressions are derived for the induced voltage for a spinning disk and a stationary
coil utilising two different approaches. The predictions of the two models will then be compared
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with experimental data in the Results & Discussion section 4.
We will first develop our new model based on the relative movement of the available charges
by applying Weber’s force law [42] to calculate the induced EMF. Secondly, we will utilise the
Lorentz force law to predict the induced voltage based on standard electromagnetic theory.
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Figure 2: Diagram of coil geometry with radius R1 and length L centred on a Cartesian coor-
dinate system. A disk with radius R2 is spinning with angular velocity ω and positioned on the
z-axis at z2. Vectors r⃗1 and r⃗2 describe the position of charges in the coil or disk with the help
of polar angles θ1 and θ2, where θ2 is the polar angle in the plane of the disk.

2.1 Direct Charge Interaction Model based on Weber’s Force

Our derivation starts with any arbitrary coil which is centred on the origin of a Cartesian
coordinate system within the laboratory reference frame (see Fig. 2). The coil has radius R1,
length L and number of windings N and it is supplied with a constant DC current I that confines
the current flow into a helical motion through the windings. A current element travelling through
the coil consists of a negative charge q1− and a positive charge q1+, where at any position the
positive charge is stationary in the lattice and the negative charge is a conduction electron that
is free to move. They can be described with the positional vector r⃗1 as a helical parametrisation
with the help of polar angle θ1 in the coordinate system:

r⃗1 =

R1 cos(θ1)
R1 sin(θ1)
z1 − dzθ1

 . (1)

For a disk with radius R2 positioned next to the coil, we can similarly write the positional vector
r⃗2 for its positive and negative charges which are equally distributed in the disk:

r⃗2 =

R2 cos(θ2)
R2 sin(θ2)

z2

 , (2)
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which leaves us with a distance between the two:

r⃗12 =r⃗1 − r⃗2 =

R1 cos(θ1)−R2 cos(θ2)
R1 sin(θ1)−R2 sin(θ2)

z1 − z2 − dzθ1

 ,

r12 =|r⃗1 − r⃗2|.

(3)

If we now consider the charges in the disk, q2+, q2−, moving with angular velocity ω due to the
rotation of the disk; and the negative charge of a current element q1− travelling through the coil
with velocity v⃗1 we get:

v⃗1 =

−v1sin(θ1)
v1cos(θ1)
−v1dz/R1

 , v⃗2 =

−ωR2sin(θ2)
ωR2cos(θ2)

0

 ,

v⃗12 =

−v1sin(θ1) + ωR2sin(θ2)
v1cos(θ1)− ωR2cos(θ2)

−v1dz/R1

 .

(4)

For any travelling current element in the coil, there is a positive lattice charge q1+ at the same
position r⃗1, only that it remains stationary, hence its velocity is zero.
Since we are dealing with circular motion the charges are subject to a certain acceleration a⃗1
and a⃗2, but these terms either cancel out in the model according to the equations below as is the
case of a⃗2 or are negligibly small since R1a⃗1 ≪ ωR2 as is the case of the conduction electrons in
the coil.
With these definitions for the four representative interacting charges q1+, q1−, q2+ and q2−, we
can now apply the Weber force law to predict the induced voltage. In a more general fashion,
Wesley has previously considered unipolar induction with Weber’s force but without applying it
to any specific case [43]. We consider that such considerations are necessary since the distribution
of charges is paramount to the Weber force.
In modern vector notation the Weber force can be written as:

F⃗21 =
q1q2
4πε0

r⃗12
r312

(
1− 3

2c2

[
r⃗12v⃗12
r12

]2
+

1

c2
(v⃗12v⃗12 + r⃗12a⃗12)

)
,

(5)

where r⃗12 is the relative position, v⃗12 the relative velocity and a⃗12 the relative acceleration be-
tween the charges q1 and q2, with the permittivity of free space ε0 and the speed of light c. We
can now find the four interaction forces between the positive and negative charge elements of
the disk and coil, F⃗2−1−, F⃗2+1−, F⃗2−1+, F⃗2+1+. Since only the electrons are free to move in the
disk and the positive charges are bound to the lattice, the forces F⃗2+1−, F⃗2+1+ acting on the
positive charges in the disk will be countered by the lattice itself. Thus, only F⃗2−1−, F⃗2−1+ need
to be considered to find the total force responsible for the EMF:
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F⃗2−1− =
q1q2
4πε0

r⃗12
r312

1− 3

2c2
1

r212

R1 cos(θ1)−R2 cos(θ2)
R1 sin(θ1)−R2 sin(θ2)

z1 − z2 − dzθ1

−v1sin(θ1) + ωR2sin(θ2)
v1cos(θ1)− ωR2cos(θ2)

−v1dz/R1

2

+
1

c2

−v1sin(θ1) + ωR2sin(θ2)
v1cos(θ1)− ωR2cos(θ2)

−v1dz/R1

−v1sin(θ1) + ωR2sin(θ2)
v1cos(θ1)− ωR2cos(θ2)

−v1dz/R1


+

R1 cos(θ1)−R2 cos(θ2)
R1 sin(θ1)−R2 sin(θ2)

z1 − z2 − dzθ1

a1x − a2x
a1y − a2y
a1z − a2z

 ,

(6)

F⃗2−1+ =− q1q2
4πε0

r⃗12
r312

1− 3

2c2
1

r212

R1 cos(θ1)−R2 cos(θ2)
R1 sin(θ1)−R2 sin(θ2)

z1 − z2 − dzθ1

 ωR2sin(θ2)
−ωR2cos(θ2)

0

2

+
1

c2

 ωR2sin(θ2)
−ωR2cos(θ2)

0

 ωR2sin(θ2)
−ωR2cos(θ2)

0


+

R1 cos(θ1)−R2 cos(θ2)
R1 sin(θ1)−R2 sin(θ2)

z1 − z2 − dzθ1

−a2x
−a2y
−a2z

 .

(7)

We can then write the sum:
Fsum = F⃗2−1− + F⃗2−1+. (8)

Further utilising the assumption ωR2 ≫ v1 and transitioning from discrete charges q1v1 to
continuous current elements IR1dθ1 leaves us with

F⃗w =
Iq2R1

4πε0c2
r⃗12
r312

{
−3

2

1

r212

[
−2ωR2sin(θ1)sin(θ2)(R1cos(θ1)−R2cos(θ2))

2

+(2ωR2cos(θ1)sin(θ2) + 2ωR2sin(θ1)cos(θ2))(R1cos(θ1)−R2cos(θ2)(R1sin(θ1)−R2sin(θ2)

−2 ωR2cos(θ1)cos(θ2)(R1sin(θ1)−R2sin(θ2))
2
]

+ [−2ωR2sin(θ1)sin(θ2)− 2ωR2cos(θ1)cos(θ2)]} dθ1.
(9)

In order to estimate the corresponding EMF, (9) needs to be divided by q2 and integrated along
the radius R2 of the disk, as this is the path along which the voltage difference is measured, so
that we find the EMF to be:

EMF =

∫ Rdisk

0

∫ N ·2π

0

IωR1R2

4πε0c2
r⃗12
r312

{
−3

2

1

r212

[
−2sin(θ1)sin(θ2)(R1cos(θ1)−R2cos(θ2))

2

+(2cos(θ1)sin(θ2) + 2sin(θ1)cos(θ2))(R1cos(θ1)−R2cos(θ2)(R1sin(θ1)−R2sin(θ2)

−2 cos(θ1)cos(θ2)(R1sin(θ1)−R2sin(θ2))
2
]

+ [−2sin(θ1)sin(θ2)− 2cos(θ1)cos(θ2)]} dθ1dR2.

(10)

Equation (10) predicts the induced voltage in a Faraday-generator across the rotating disk (Fig.
1) for any stationary arbitrary coil for any position of the disk r⃗2. It is numerically integrated
in MATLAB (release 2020a, Mathworks, MA, USA); first for the angle θ1 from 0 to N · 2π and
then along radius R2 with the help of the in-built integral2 function. The angle θ2 is fixed to one
specific value between 0 and 2π, and for convenience the value π/4 has been chosen. This means
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that the radius is regarded along the y-axis, although the problem is rotationally symmetric and
any arbitrary value can be chosen. To obtain the measurable EMF along the radius, the square
root of the sum of the squared force components in x and y directions of (10) is then calculated,
according to

EMFR =
√

EMF 2
x + EMF 2

y , (11)

which gives a prediction for the expected value of induced voltage across the disk.
Furthermore, it is possible to transition (10) from a coil to a permanent magnet by approximating
the integral according to the following:∫ N2π

0
(. . . ) ≈ N ·

∫ 2π

0
(. . . ) , (12)

and using the definition of remanence Br

Br = µ0I
N

L
, (13)

so that (10) becomes

EMF ≈ BLωR1R2

4π

∫ Rdisk

0

∫ 2π

0
{. . . } dθ1dR2. (14)

However, this is an approximation and there might be further modifications necessary before
the equation can be fully applied to any permanent magnet setup.

2.2 Field Model

To predict the induced voltage with a standard approach based on field theory, we will show
one possible way to derive the expression. For a more complete analysis the work of Zengel [9]
is recommended. Consider the Lorentz force acting on the conduction electrons in the disk. In
equilibrium, an electrostatic field E(r) is set up such that the total Lorentz force on the charge
is zero. That is,

F = −qE(r)−Bz(r)ωR2q = 0 (15)

giving
E(r) = −Bz(r)ωR2. (16)

To obtain the EMF, once again we have to integrate between the center and radial distance, R2,
giving

EMF (R2) = ω

∫ Rdisk

0
[Bz(R2, z2) ·R2]dR2. (17)

For the calculation of the magnetic field B we are using a state-of-the-art model by Derby &
Olbert [44] that has been incorporated into a MATLAB tool by D. Cébron [45]. The success of
this model has been demonstrated by various scientists and has been applied to many topics in
solenoid research [46–52]. The axial field component Bz is calculated in this model according
to:

Bz =
Br

π

R1

R1 + ρ

1

γ + 1

[
χ±

(
K
(√

1− ζ2±

)
+ γΠ

(
1− γ,

√
1− ζ2±

))]+
−
,

(18)
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for ζ+ < 1, and for ζ± ⩾ 1 as

Bz =
Br

π

R1

R1 + ρ

1

γ(γ + 1)

[
χ±
ζ±

(
γK

(√
1− 1

ζ2±

)

+ Π

(
1− 1

γ2
,

√
1− 1

ζ2±

))]+
−

,

(19)

with K and Π being the complete elliptic integral of the first and third kind and ρ the radial
coordinate. Additionally, we have

γ = (R1 − ρ)/(R1 + ρ), (20)

ζ± =

√
(R1 − ρ)2 + ξ2±
(R1 + ρ)2 + ξ2±

, (21)

χ± =
ξ±√

(R1 + ρ)2 + ξ2±

. (22)

ξ± = z1 ± L/2 (23)

With this the field can be calculated at each position of the disk at a certain distance z2 from
the centre of the coil and a number of points along the radius that can be numerically integrated
using the trapezium rule. It is found that dividing the path into a hundred equally spaced points
along the radius gives sufficient accuracy and no further increase in accuracy is found by using
additional points. Only the axial component of the magnetic field is relevant for (17) as by the
right-hand rule it is the only component that contributes to the radial EMF.
Thus, all integrations are carried out with the help of numerical tools in Matlab, both for the
direct approach and the field model. The predictions obtained this way can be seen in the
Results and Discussions section (see Results & Discussion section 4) where they are compared
with the experimental measurements.

3 Experiments

A disk made of brass was cut with grooves along the radius to measure the induced EMF from
the centre to radial distances R2 (0.5 , 1 , 1.5 , . . ., 4 cm) in different regions of the field. The
disk is rotated by a DC motor at 1100 RPM (ω ≈ 115 rad s−1) and positioned at two different
points on the axis. At z2 = 0 the disk sits in the centre of the coil and at z2 = 1 cm the disk
aligns with the end of the coil. A short coil with N = 320 windings, length L = 2 cm and
mean radius R1 = 68mm is supplied with 3A of current and the setup can be seen in Figure
3. Measurements of the induced voltage are obtained by pressing copper wire against the disk
and reading from a digital multimeter Hameg HMC8012 with an accuracy of around 0.01mV
for the given measurement range. The torque produced by the motor is strong enough to not
slow the rotation and each measurement of voltage is repeated 20 times to obtain a statistical
average. The measurements show good reproducibility, the mean and standard deviation can
be seen in the Results & Discussion section. Thermoelectric effects are found to be negligible
for the chosen set-up, no noticeable effect was detected for the given accuracy of measurement
and measurement time frame. It is also found that interchanging the position of the probes only
leads to a change in sign of the induced voltage, as is expected. For all reported measurements
the positive probe is placed in the centre and the negative probe in the respective groove.
Furthermore, a control experiment without the coil present shows that there is no measurable
voltage induced in the spinning disk up to the range of measurement provided by the voltmeter.
In conclusion the Earth’s magnetic field or any influence of stray fields present in the laboratory
can be ruled out as a potential source of error.
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Figure 3: Experimental setup of a brass disk with grooves rotated by a DC motor and a short
coil with 320 windings

4 Results & Discussion

Table 1 and Table 2 show the numerical values predicted with both the direct charge interaction
model and the field model for the different radii alongside the measured values from the experi-
ments. Table 1 shows results for the disk being positioned in the centre of the coil (z2 = 0) and
Table 2 shows values with the disk at the edge of the coil at z2 = 1 cm.

Table 1: Predicted and observed values of induced voltage in mV. Measurements were taken at
the centre of the coil for different radii as indicated.

Radius
in cm

Direct interaction model
EMF in mV

Field model
EMF in mV

Measured
EMF in mV

0.5 0.01 0.01 0.001(± 0.002)
1 0.05 0.05 0.05(± 0.008)
1.5 0.12 0.12 0.12(± 0.008)
2 0.21 0.21 0.23(± 0.009)
2.5 0.33 0.33 0.35(± 0.012)
3 0.49 0.49 0.49(± 0.011)
3.5 0.69 0.69 0.66(± 0.012)
4 0.94 0.94 0.92(± 0.018)

As can be seen from the predicted and observed values, at any one position (R2, z2) both
models predict the same induced voltage for the individual radius and position on the cylindrical
axis. Further comparison of the predicted values with experimental measurements shows good
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Table 2: Predicted and observed values of induced voltage in mV at the edge of the coil for
different radii.

Radius
in cm

Direct interaction model
EMF in mV

Field model
EMF in mV

Measured
EMF in mV

0.5 0.01 0.01 0.01(± 0.003)
1 0.05 0.05 0.05(± 0.005)
1.5 0.11 0.11 0.14(± 0.007)
2 0.2 0.2 0.24(± 0.010)
2.5 0.32 0.32 0.36(± 0.009)
3 0.47 0.47 0.49(± 0.009)
3.5 0.66 0.66 0.67(± 0.010)
4 0.89 0.89 0.92(± 0.008)

agreement for both the centre of the coil (see Fig. 4a) and at the edge of the coil with z2 = 1 cm
(Fig. 4b). The general trend of the plotted values shows a clear R2 dependence as expected.
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Figure 4: Predicted and observed values of induced voltage shown as a function of Radius R2.
a) In the centre of the coil, b) at the edge of the coil

In some respect the performance of the direct interaction model as compared to field the-
ory and the experimental measurements should not be surprising. Maxwell himself pointed out
that it is possible to derive Faraday’s law from Weber’s theory [53]. We can see that the field
model and the direct interaction model are both equivalent in predicting the induced EMF.
The difference is, however, a conceptual one. An advantage of the Weber theory is, that it
does not run into conceptual paradoxes concerning the possibility of a field spinning with a
magnet/electromagnet, since the field entity is absent in Weber’s formula. Any interaction re-
sponsible for the appearance of an EMF is a direct consequence of forces between electrical
charges.
Weber’s force law is beautifully simple yet profound. It is consistent with Ampere’s law of
current-element interaction, Newton’s third law (action and reaction) and for the static case,
it simply reduces to Coulomb’s law. It has been demonstrated that it is consistent with
Maxwell’s equations [54–58]. Research into Weberian electrodynamics has received a signifi-
cant contribution from Assis [38, 55, 59–61] and has been applied to several pure and applied
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problems [43,52,57,62–71].
Since we can obtain accurate predictions of the induced EMF using the direct interaction model,
without involving the concept of fields, it raises the question whether the motion of the field
lines and the magnetic field itself is important to the problem. Using a direct charge interaction
approach, the magnetic field can be thought of as a useful metaphor [54]. If we only need to
consider the relative motion of charges, then we can invoke the principal of Ockham’s razor
and choose that approach which makes the least assumptions and is of minimal complexity.
Therefore, the Weber theory offers a possible resolution to the paradox that is synonymous
with unipolar induction. Since only the interacting charges are considered and the field as a
physical mediator is avoided, the question whether the field rotates or moves with the magnet
never arises. The only consideration that needs to be made is the charge motion, which is
unambiguous within a chosen frame of reference. The problem can then be analysed with the
relative motions in the circuit of a Faraday generator setup [38] by considering the whole circuit
including the disk and closing wire as part of the problem. According to Assis and Thober it is
thus not the relative motion between disk and magnet, but the relative motion between disk and
closing wire that determines if a voltage is induced or not. For the usually discussed three cases:
i) spinning disk and stationary magnet; ii) stationary disk and spinning magnet; iii) spinning
disk and spinning magnet; the direct-action approach predicts an induced EMF for cases i) and
iii) but not for ii), in accordance with experimental observation. It is, however, an important
consideration that Maxwell was heavily influenced and inspired by Faraday’s experiments that
led him to the idea of fields and their actions [72]. This has laid the conceptual foundation
for modern physics with relativity theory, quantum field theory and aspects of particle physics
which have had some excellent successes. Nonetheless, alternative perspectives can lead to new
insight and understanding, especially if a problem is as heavily discussed as unipolar induction
is. Interestingly recent experimental investigations [73] have shown unexpected behaviour when
expanding the typical unipolar induction experiment to new cases. In such instances it appears
that the observed results are difficult to predict and explain. A direct charge interaction model,
based on the Weber force, may offer a possible way of explaining such results, although further
research is needed.

5 Conclusion

A new model for unipolar induction has been developed. This has been compared with a Lorentz
force approach based on field theory and verified against experimental data for a typical Faraday
generator setup. Our approach utilises a direct-line-of-action force between the charges involved,
where only the movement of the interacting charges is required to explain the observed phenom-
ena. Such a method is beneficial in avoiding paradoxes arising from the consideration of fields.
Although the two theories are conceptually different, it can be shown that they both provide
the correct result for a homopolar generator. Among the different approaches to calculate in-
duced voltage in the literature, we have shown that it is possible to obtain the voltage by only
considering the charges directly involved in the interaction.
Weber’s force, by solely considering direct particle interaction provides a foundation for elec-
trodynamics consistent with electron theory, whereas the Maxwell-Lorentz theory is based on
a continuum theory of matter and an all-pervading aether that has effectively been replaced
by the electromagnetic field acting as a mediator for charge interaction. It is difficult, if not
impossible, to distinguish the existence of such a mediator as the field itself cannot be measured
directly. Nevertheless, a certain degree of corroboration exists between the two approaches and
we consider that they are complementary. Future work will consider other cases where disk and
magnet are spinning in unison, induction effects which involve conducting magnets and inves-
tigation of the seat of induction. Further experimental work should consider spinning magnets
and fields in general, along with electron inertia effects consistent with the Weber model. New
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experimental designs can help to narrow down the possible explanations.
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[70] H. Torres-Silva, J. López-Bonilla, R. López-Vázquez, and J. Rivera-Rebolledo, “Weber’s
electrodynamics for the hydrogen atom,” Indonesian Journal of Applied Physics, vol. 5,
no. 01, pp. 39–46, 2015.

[71] K. A. Prytz, “Meissner effect in classical physics,” Progress In Electromagnetics Research,
vol. 64, pp. 1–7, 2018.

[72] A. D. Yaghjian, “Reflections on maxwell’s treatise,” Progress In Electromagnetics Research,
vol. 149, pp. 217–249, 2014.
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