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Abstract. We study the performance of the discriminatory price auc-
tion under the uniform bidding interface, which is one of the popular
formats for running multi-unit auctions in practice. We undertake an
equilibrium analysis with the goal of characterizing the inefficient mixed
equilibria that may arise in such auctions. We consider bidders with
capped-additive valuations, which is in line with the bidding format,
and we first establish a series of properties that help us understand the
sources of inefficiency. Moving on, we then use these results to derive
new lower and upper bounds on the Price of Anarchy of mixed equilib-
ria. For the case of two bidders, we arrive at a complete characterization
of inefficient equilibria and show an upper bound of 1.1095, which is also
tight. For multiple bidders, we show that the Price of Anarchy is strictly
worse, improving the best known lower bound for submodular valuations.
We further present an improved upper bound of 4/3 for the special case
where there exists a ”high” demand bidder. Finally, we also study Bayes-
Nash equilibria, and exhibit a separation result that had been elusive so
far. Namely, already with two bidders, the Price of Anarchy for Bayes-
Nash equilibria is strictly worse than that for mixed equilibria. Such
separation results are not always true (e.g., the opposite is known for
simultaneous second price auctions) and reveal that the Bayesian model
here introduces further inefficiency.

1 Introduction

Multi-unit auctions form a popular transaction means for selling multiple units of
a single good. They have been in use for a long time, and there are by now several
practical implementations across many countries. Some of the most prominent
applications involve government sales of treasury securities to investors [6], as
well as electricity auctions (for distributing electrical energy) [18]. Apart from
governmental use, they are also run in other financial markets, and they are being
deployed by various online brokers [16]. In the economics literature, multi-unit
auctions have been a subject of study ever since the seminal work of Vickrey [23],
and some formats were conceived even earlier, by Friedman [10].

The focus of our work is on the welfare performance of the discriminatory
price auction, which is also referred to as pay-your-bid auction. In particular, we
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study the uniform bidding interface, which is the format most often employed
in practice. Under this format, each bidder submits two parameters, a monetary
per-unit bid, along with an upper bound on the number of units desired. Hence,
each bidder is essentially asked to declare a capped-additive curve (a special case
of submodular functions). The auctioneer then allocates the units by satisfying
first the demand of the bidder with the highest monetary bid, then moving to
the second highest bid, and so on, until there are no units left. As a price, each
winning bidder pays his bid multiplied by the number of units received.

It is easy to see that the discriminatory price auction is not a truthful mech-
anism, and the same holds for other formats used in practice. Consequently, in
the more recent years, a series of works have studied the social welfare guaran-
tees that can be obtained at equilibrium. The outcome of these works is quite
encouraging for the discriminatory price auction. Namely, pure Nash equilibria
are always efficient, whereas for mixed and Bayes-Nash equilibria, the Price of
Anarchy is bounded by 1.58 [13] for submodular valuations. These results sug-
gest that simple auction formats can attain desirable guarantees and provide
theoretical grounds for the overall success in practice.

Despite these positive findings, there has been no progress on further improv-
ing the current Price of Anarchy bounds. The known lower bound of 1.109 by [8]
is quite far from the upper bounds derived by the commonly used smoothness-
based approaches, [13, 22], which however do not seem applicable for producing
further improvements. We believe the main difficulty in getting tighter results is
that one needs to delve more deeply into the properties of Nash equilibria. But
obtaining any form of characterization results for mixed or Bayesian equilibria is
a notoriously hard problem. Even with two bidders it is often difficult to describe
how the set of equilibria looks like. This is precisely the focus of our work, where
we manage to either partially or fully characterize equilibrium profiles towards
obtaining improved Price of Anarchy bounds, as we outline below.

1.1 Contribution

Motivated by the previous discussion, in Section 3 we initiate an equilibrium
analysis for mixed equilibria. We consider bidders with capped-additive valua-
tions, which is a subclass of submodular valuations, and consistent with the bid-
ding format. Our results can be seen as a partial characterization of inefficient
mixed equilibria, and our major highlights include both structural properties on
the demand profile (see Theorem 3), as well as properties on the distributions
of the mixed strategies (see Corollary 2, Theorem 4 and Lemma 7).

In Section 4, we use these results to derive new lower and upper bounds
on the Price of Anarchy for mixed equilibria. For two bidders, we arrive at a
complete characterization of inefficient equilibria and show an upper bound of
1.1095, which is tight.3 For multiple bidders, we show that the Price of Anarchy is

3 In [8] there is a lower bound of 1.109 that applies to our setting with two bidders
and three units. The tight lower bound we provide here is slightly better and can be
seen as a generalization of the instance in [8] to many units.



strictly worse, which also improves the best known lower bound for submodular
valuations [8]. We further present an improved upper bound of 4/3 for the special
case where there exists a ”high” demand bidder. We believe these latter instances
are representative of the worst-case inefficiency that may arise, and refer to the
relevant discussion in Section 4.2. To summarize, our results show that in several
cases, the Price of Anarchy is even lower than the previous bound of [13] and
strengthen the perception that such auctions can work well in practice.

Finally, in Section 5, we also study Bayes-Nash equilibria, and we exhibit a
separation result that had been elusive so far: already with two bidders, the Price
of Anarchy for Bayes-Nash equilibria is strictly worse than for mixed equilibria.
Such separation results, though intuitive, do not hold for all auction formats.
For example, in simultaneous second price auctions with submodular valuations
[7], the known tight bounds for mixed equilibria extend to the Bayesian model
via smoothness arguments [19]. This reveals that the Bayesian model in our
setting introduces a further source of inefficiency. Note that to obtain this result,
we transform the underlying optimization of social welfare at equilibrium to a
well-posed variational calculus problem. This technique may be of independent
interest and have other applications in mechanism design.

1.2 Related Work

The work of [1] was among the first ones that studied the sources of inefficiency
in multi-unit auctions. For the discriminatory price auction, the Price of Anar-
chy was later studied in [22], and for bidders with submodular valuations, the
currently best upper bound of e/(e− 1) ≈ 1.58 has been obtained by [13] (both
for mixed and for Bayes-Nash equilibria). These results exploit the smoothness-
based techniques, developed by [19,22]. One can also obtain slightly worse upper
bounds for subadditive valuations, by using a different methodology, based on [9].
As for lower bounds, the only construction known for submodular valuations is
by [8], yielding a bound of at least 1.109. In parallel to these results, there has
been a series of works on the inefficiency of many other auction formats, ranging
from multi-unit to combinatorial auctions, see among others, [4, 5, 7, 9].

Apart from social welfare guarantees, several other aspects or properties of
equilibrium behavior have been studied. Recently in [17] a characterization of
equilibria is given for a model where the supply of units can be drawn from
a distribution. In the past, several works have focused on revenue equivalence
between the discriminatory price and the uniform price auction, see e.g. [2, 20].
On a different direction, comparisons from the perspective of the bidders are
carried out in [3].

For an exposition on multi-unit auctions and their earlier applications, we
refer to the books [14] and [15]. For more recent works, we refer to [6,11,18], for
treasury bonds, carbon licence auctions, and electricity auctions, respectively.



2 Notation and Definitions

We consider a discriminatory price multi-unit auction, involving the allocation
of k identical units of a single item, to a set N = {1, . . . , n} of bidders. Each
bidder i ∈ N has a private value vi > 0 which reflects her value per unit and
a private demand di ∈ Z+ which reflects the maximum number of units bidder
i requires. Therefore, if the auction allocates xi ≤ k units to bidder i, her total
value will be min{xi, di} · vi. We note that this class of valuations is a subclass
of submodular valuations, and includes all additive vectors (when di = k). We
will refer to them as capped-additive valuations.

We focus on the following simple format for the discriminatory price auction,
which is known as the uniform bidding interface. The auctioneer asks each bidder
i ∈ N to submit a tuple (bi, qi), where bi ≥ 0, is her monetary bid per unit (not
necessarily equal to vi), and qi is her demand bid (not necessarily equal to di).
We denote by b = (b1, . . . , bn) the monetary bidding vector, and similarly q
will be the declared demand vector. For a bidding profile (b,q), the auctioneer
allocates the units by satisfying first the demand of the bidder with the highest
monetary bid, then moving to the second highest bid, and so on, until there are
no units left. Hence, all the winners have their reported demand satisfied, except
possibly for the one selected last, who may be partially satisfied. Moreover, we
assume that in case of ties, a deterministic tie-breaking rule is used, which does
not depend on the input bids submitted by the players to the auctioneer (e.g.,
a fixed ordering of the players suffices).

For every bidding profile (b,q), we let xi(b,q) ≤ qi be the number of units
allocated to bidder i. In the discriminatory auction, the auctioneer requires each
bidder i to pay bi per allocated unit, hence a total payment of bi · xi(b,q). The
utility function of bidder i ∈ N given a bidding profile (b,q) is: ui(b,q) =
min{xi(b,q), di}vi − xi(b,q)bi.

Viewed as games, these auctions have an infinite pure strategy space, and we
also allow bidders to play mixed strategies, which are probability distributions
over their set of pure strategies. When each bidder i ∈ N uses a mixed strategy
Gi, she independently draws a bid (bi, qi) from Gi. We refer to G = ×ni=1Gi as
the product distribution of bids. Under mixed strategies, the expected utility of
a bidder i is E(b,q)∼G[ui(b,q)].

Definition 1. We say that G is a mixed Nash equilibrium when for all i ∈ N ,
all b′i ≥ 0 and all q′i ∈ Z+

E
(b,q)∼G

[ui(b,q)] ≥ E
(b−i,q−i)∼G−i

[ui((b
′
i,b−i), (q

′
i,q−i))] .

We note that in any equilibrium, if a bidder i declares with positive prob-
ability a bid that exceeds vi, she should not be allocated any unit, since such
strategies are strictly dominated by bidding the actual value vi.

Fact 1 Let G be a mixed Nash equilibrium. The probability that a bidder i is
allocated some units, conditioned that she bids higher than vi, is 0.



In the sequel, we focus on equilibria, where the monetary bids never exceed
the value per unit.

Given a valuation profile (v,d), we denote by OPT (v,d) the optimal social
welfare (which can be computed very easily by running the allocation algo-
rithm of the auction with the true value and demand vector). We also denote by
SW (G) the expected social welfare of a mixed Nash equilibrium G, i.e., equal to
E(b,q)∼G[

∑
i min{xi(b,q), di}vi]. The Price of Anarchy is the worst-case ratio

OPT (v,d)
SW (G) over all valuation profiles (v,d), and equilibria G.

We refer to an equilibrium as inefficient when its social welfare is strictly
less than the optimal.

3 Towards a Characterization of Inefficient Mixed
Equilibria

In this section, we derive a series of important properties, that help us understand
better how can inefficient equilibria arise. These properties will help us analyze
the Price of Anarchy in Section 4.

3.1 Mixed Nash Equilibria with Demand Revelation

Our first result is that it suffices to focus on equilibria where bidders truthfully
reveal their demand, resulting therefore in a single-parameter strategy space for
the bidders (Theorem 1). We further argue that the inefficiency in equilibria
appears only when the total demand exceeds k (Lemma 1) and therefore this is
what we assume for the rest of the paper.

Theorem 1. Let (v,d) be a valuation profile, and G be a mixed Nash equilib-
rium. Then, for every i ∈ N , and in every pure strategy profile (bi, qi) ∼ Gi,
we can replace qi by di so that the resulting distribution remains a mixed Nash
equilibrium with the same social welfare.

Lemma 1. If
∑
i di ≤ k then the social welfare of any mixed Nash equilibrium

is optimal.

3.2 Existence of Non-empty-handed Bidders

For the rest of the paper we consider only strategy profiles where the bidders’
demand bid matches their true demand. The main goal of this subsection is to
derive Theorem 3, where we show that there is always a bidder where the total
demand of his opponents is strictly less than k, meaning that at least one item
is allocated to him for sure. This is a crucial property for understanding the
formation of inefficient mixed equilibria. To proceed, we give first some further
notation to be used in this and the following sections.



Further notation. Given Theorem 1, instead of using distributions on tuples
(bi, qi), we suppose that each bidder i ∈ N independently draws only a mone-
tary bid bi from a distribution Bi and we refer to B = ×ni=1Bi as the product
distribution of monetary bids or just bids from now on. For a bidding pro-
file b, the utility of a bidder i will simply be denoted as ui(b), instead of
ui(b,d). Definition 1 is also simplified, and we say that B is an equilibrium
if Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui((b

′
i,b−i))], for any i and any b′i ≥ 0. Similarly,

the social welfare of a mixed Nash equilibrium B is given by just SW (B).

For a mixed strategy bidding profile B, we denote by W (B) the set of bidders
with positive expected utility, i.e., W (B) = {j : Eb∼B[uj(b)] > 0}, and let
BW = ×i∈W (B)Bi. Moreover, the support of a bidder i in B is the domain
of the distribution Bi, that i plays under B, denoted by Supp(Bi). We denote
by `(Bi), h(Bi) the leftmost and rightmost points, respectively, in the support
of bidder i. In particular, if the rightmost part of the domain of Bi is a mass
point b or an interval [a, b] then h(Bi) = b, and similarly for `(Bi). In cases
of distributions over intervals, we can safely assume that the domain contains
only closed intervals, because the endpoints are chosen with zero probability). We
further denote by `(BW ), h(BW ) the leftmost and rightmost points, respectively,
of the union of the supports of W (B).

For i = 1, . . . , n we denote by Fi the CDF of Bi and by fi their PDF.
Moreover, given a profile b, it is often useful in the analysis to think of the
vector of bids (thresholds) that some bidder i faces, denoted by β(b)−i =
(β1(b−i), . . . , βk(b−i)); these are in fact the winning bids if i didn’t participate.
Here βj(b−i) is the j-th lowest winning bid of the profile b−i, for j = 1, . . . , k.
This implies that, under profile b, bidder i is allocated j = 1, . . . , k − 1 units
capped by di when βj(b−i) < bi < βj+1(b−i) and di units when βk(b−i) < bi.
We note that because we focus on the uniform bidding interface, some consecu-
tive βj values may coincide and be equal to the bid of the same bidder. When
b−i ∼ B−i, for i = 1, . . . , n and j = 1, . . . , k, we denote the CDF of the random
variable βj(b−i) as F̂ij . In the next Fact we express the expected allocation of

any bidder i for bidding some α > 0 in terms of the values F̂ij(α).

Fact 2 Let B−i be a product distribution of bids. Then for all α ≥ 0, where no

bidder other than (possibly) i has a mass point E
b−i∼B−i

[xi(α,b−i)] =

di∑
j=1

F̂ij(α) .

Given a bidding profile B, for any bidder i we define F̂ avgi (x) =
∑di
j=1 F̂ij(x)

di
, to

be the average CDF of the winning bids that bidder i competes against. Note
that F̂ avgi is a CDF since it is the average of a number of CDFs.

Remark 1. We remark that the F̂ij functions are right continuous as CDFs and

moreover if the Fi functions have no mass point, the same holds for the F̂ij
functions. Additionally, if for any i the F̂ij functions are continuous, so the F̂ avgi

is as the average of continuous functions.



We start by ruling out certain scenarios that cannot occur at inefficient equi-
libria. First, we can safely ignore bidders with zero expected utility, since in any
inefficient mixed Nash equilibrium they do not receive any units.

Lemma 2. Any mixed Nash equilibrium B with at least one bidder with zero
expected utility, but positive expected number of allocated units, is efficient.

Next, we show that to have inefficiency at an equilibrium, there must exist
at least two bidders with positive expected utility.

Lemma 3. Let (v,d) be a valuation profile and B be an inefficient mixed Nash
equilibrium. Then, |W (B)| ≥ 2.

The next warm-up properties involve the expected utility of a bidder under
an equilibrium B, conditioned that she bids within a certain interval or at a
single point. We start with Fact 3, which is a straightforward implication of the
equilibrium definition, and proceed by arguing that no two bidders may bid on
the same point with positive probability. Theorem 2 concludes by stating the
main property regarding the utility of bidders when bidding in their support.

Fact 3 Let B be an equilibrium. For a bidder i, consider a partition of Supp(Bi)
(or of a subset of it) into smaller disjoint sub-intervals, say I1, . . . , I`, such
that Bi has a positive probability on each sub-interval (mass points may also
be considered as sub-intervals with zero measure). Then, it should hold that
Eb∼B[ui(b) | bi ∈ Ir] = Eb∼B[ui(b)] for every r = 1, . . . , `.

Based on Fact 3, we can obtain the following point-wise version. Variations
of the version below have also appeared in related works, see e.g., [8].

Theorem 2. Given any mixed Nash equilibrium B, bidder i and z ∈ Supp(Bi),
where no other bidder has a mass point, Eb−i∼B−i [ui(z,b−i)] = Eb∼B[ui(b)].

We further give the following observation regarding the existence of mass
points on `(BW ).

Observation 1 In any inefficient mixed Nash equilibrium B there can be no
bidders i, j ∈W (B) such that both Pr[bi = `(BW )] > 0 and Pr[bj = `(BW )] > 0.

The main theorem of this section follows, stating the existence of a special
bidder that always receives at least one unit that we call non-empty-handed.

Theorem 3. Let (v,d) be a valuation profile, and let B be any inefficient mixed
Nash Equilibrium. If W (B) ≥ 1, then there exists a bidder i ∈W (B), such that∑

j∈W (B)\{i}

dj ≤ k − 1 .



Proof. On the contrary, suppose that for every i ∈ W (B),
∑
j∈W (B)\{i} dj ≥ k.

Let i be some bidder with ` = `(BW ) ∈ Supp(Bi). We distinguish three cases.
Case 1: There exists an interval in the form [`, `+ ε], on which Bi has a positive
probability mass and on which the bidders of W (B) \ {i} have a zero mass. We
note that we also allow ε = 0, i.e., that i has a mass point on ` and the other
bidders do not. This means that when bidder i bids within [`, `+ ε], all the other
bidders from W (B) are above him. Since we assumed that the total demand of
W (B) \ {i} is at least k, this means that bidder i does not win any units in this
case. Since i bids with positive probability in [`, ` + ε], Eb∼B[ui(b)] = 0, which
is a contradiction to Fact 3.
Case 2: By Observation 1 it cannot be the case that bidder i and some other
bidder have a mass point on `.
Case 3: Any mass point that may exist by the bidders is at a point x > `, and
there is also no interval starting from ` that is used only by bidder i. Hence, there
exists an interval I in the form I = [`, ` + ε] for some small enough ε > 0, and
a bidder j ∈ W (B) \ {i}, such that both Bi and Bj contain I in their support,
and have positive probability mass on I without mass points.

By Theorem 2, we obtain that Eb−i∼B−i [ui(`,b−i)] = u. But this is a con-
tradiction, because by bidding `, bidder i ranks lower than all other bidders
of W (B) with probability one. By our assumption that

∑
j∈W (B)\{i} dj ≥ k,

there are no units left for i when she ranks last among W (B), and therefore,
Eb−i∼B−i [ui(`,b−i)] = 0 6= u. ut

Next we give as a corollary that if all bidders have unit demand, any mixed
Nash equilibria is efficient.

Corollary 1. Let (v,d) be a valuation profile with only unit-demand bidders,
i.e., di = 1 for all i. Then any mixed Nash equilibrium B is efficient.

3.3 The support and the CDFs of Mixed Nash Equilibria

The existence of a non-empty-handed bidder (Theorem 3) helps us to establish
further properties that characterize the structure of inefficient mixed Nash equi-
libria. These properties (and especially Theorem 4) will be important to establish
the inefficiency results that follow. We start with an observation regarding the
highest bid of any bidder i ∈W (B) which should be strictly less than vi.

Observation 2 For any bidder i ∈W (B), h(Bi) < vi.

The next lemma shows that at any equilibrium B, bidders who are not
non-empty-handed cannot have higher bids in their support than the support of
the non-empty-handed bidders. Moreover, any bidder who is non-empty-handed
does not have a reason to use bids that are higher than the maximum bids of
all other winning bidders. The reason is that if such differences existed, then
there would be incentives to win the same number of units by lowering one’s
bid. Then, Lemma 5 show that no bidder may be the only one bidding at any
point or interval and Lemma 6 specifies that no mass points may exist apart
from one case.



Lemma 4. Let (v,d) be a valuation profile and B be any inefficient mixed Nash
equilibrium. Then, for any non-empty-handed bidder i, it holds that h(Bi) =
h(BW\{i}) = h(BW ).

Lemma 5. Let (v,d) be any valuation profile and B be any mixed Nash equi-
librium. For all i ∈W (B), it holds that Supp(Bi) ⊆

⋃
j∈W (B)\{i} Supp(Bj).

Lemma 6. Let (v,d) be a valuation profile and B be any inefficient mixed Nash
equilibrium.
1) There exists no bidder i ∈ W (B) and no point z ∈ Supp(Bi) \ {`(BW )},
with Fi(z) > limz→z− Fi(z), i.e., there are no mass points among the bidders of
W (B), except possibly the leftmost endpoint of all bidders’ distributions.
2) At most one bidder i ∈W (B) may have a mass point on `(BW ), i.e., Pr[bi =
`(BW )] > 0, and i is a non-empty-handed bidder.

By combining Theorem 2 and Lemma 6 we get the following Corollary.

Corollary 2. For any inefficient mixed Nash equilibrium B the following hold:
1) For any bidder i and z ∈ Supp(Bi) \ {`(BW )}, Eb−i∼B−i [ui(z,b−i)] =
Eb∼B[ui(b)].
2) If there exists a bidder i with Pr[bi = `(BW )] > 0, then i is a non-empty-
handed bidder and Eb−i∼B−i [ui(`(BW ),b−i)] = Eb∼B[ui(b)].
3) If no non-empty-handed bidder exists with mass point on `(BW ), for any
bidder i with `(BW ) ∈ Supp(Bi), Eb−i∼B−i [ui(`(BW ),b−i)] = Eb∼B[ui(b)].

Observation 3 For any inefficient mixed Nash equilibrium B, either there ex-
ists a bidder i ∈W (B) with mass point on `(BW ) and this is a non-empty-handed
bidder, or there are at least two non-empty-handed bidders of W (B) with `(BW )
in their support.

Given any (inefficient) equilibrium, the next theorem specifies the average
CDF of the winning bids that bidder i competes against, i.e., F̂ avgi , in i’s support.

Theorem 4. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for i ∈W (B), the CDF F̂ avgi satisfies

F̂ avgi (z) =
ui

di(vi − z)
, ∀z ∈ Supp(Bi) ,

for some constant ui = Eb∼B[ui(b)] > 0.

A corollary of Theorem 4 is that the union of the support of the winners is
an interval.

Corollary 3. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Then, for every bidder i ∈ W (B),

⋃
j∈W (B)\{i} Supp(Bj) =

[`(BW ), h(BW )].

The final lemma of this section shows that the rightmost point in the support
of B is a function of the parameters of certain non-empty-handed bidders.



Lemma 7. Let (v,d) be any valuation profile and B be any inefficient mixed
Nash equilibrium. Let i ∈ W (B) be the non-empty-handed bidder such that
Pr[bi = `(BW )] > 0, or if no such bidder exists, then let i be any non-empty-
handed bidder with `(BW ) in his support. We have

h(BW ) = h(Bi) = vi − (k −
∑

j∈W (B)\{i}

dj)
vi − `(BW )

di
.

4 Price of Anarchy for mixed equilibria

We can now exploit the properties derived so far for mixed equilibria, in order
to analyze the inefficiency of the discriminatory price auction. Since we focus on
inefficient equilibria, we assume that in any valuation profile considered in this
section, there are at least two bidders with a different value per unit.

4.1 The case of two bidders

We pay particular attention to the case of n = 2. This is a setting where we
can fully characterize in closed form the distributions of the inefficient mixed
Nash equilibria, and derive valuable intuitions for the worst-case instances with
respect to the Price of Anarchy, that are helpful also for auctions with multiple
bidders. The main result of this subsection is the following theorem, showing
that the inefficiency is quite limited.

Theorem 5. For k ≥ 2, n = 2 and capped additive valuation profiles, the Price
of Anarchy of mixed equilibria is at most 1.1095, and this is tight as k goes to
infinity.

We postpone the proof of Theorem 5, as we first need to establish some
properties regarding the form of inefficient mixed Nash equilibria with two
bidders. For n = 2, a capped-additive valuation profile can be described as
(v,d) = ((v1, d1), (v2, d2)). Recall also that it is sufficient to focus our attention
only on profiles where d1 + d2 > k, since otherwise, by Lemma 1 any mixed
equilibrium is efficient.

We start our analysis by characterizing the support of inefficient mixed Nash
equilibria.

Lemma 8. Let (v,d) = ((v1, d1), (v2, d2)) be any capped-additive valuation pro-
file of two bidders and B = (B1, B2) be any inefficient mixed Nash equilibrium.
Then:

1. Supp(B1) = Supp(B2) = [`(B1), h(B1)], and `(B1) = 0.
2. h(B1) takes one of the following values

h(B1) = v1
d1 + d2 − k

d1
or h(B1) = v2

d1 + d2 − k
d2

.



The following theorem specifies the cumulative distribution functions that
comprise any inefficient mixed Nash equilibrium, along with a necessary condi-
tion for the existence of such equilibria. For a bidder i below, we use the notation
v−i and d−i to denote the value and demand of the other bidder.

Theorem 6. Let (v,d) = ((v1, d1), (v2, d2)) be a capped-additive valuation pro-
file of two bidders and B = (B1, B2) any inefficient mixed Nash equilibrium.

1. The cumulative distribution function of bidder i, for i = 1, 2, is

Fi(z) =
1

d1 + d2 − k

(
d−i(v−i − h(Bi))

v−i − z
− (k − di)

)
. (1)

2. Furthermore, for i being the non-empty-handed bidder with a mass point at
0, or if no such bidder exists, being any non-empty-handed bidder, it holds
that v−i

vi
≥ d−i

di
,

Remark 2. By Lemma 8 and Theorem 6, we can see that there can be at most
two inefficient equilibria, depending on how the interval of the support was
determined.

We are now ready to prove Theorem 5.

Proof sketch of Theorem 5. The properties established so far imply a full
characterization of instances that have inefficient equilibria. To establish Theo-
rem 5, we will group instances into three appropriate classes and we will solve
an appropriately defined optimization problem that approximates the Price of
Anarchy for each subclass to arbitrary precision.

Suppose without loss of generality that we are given a value profile (v,d) =
((v1, d1), (v2, d2)) of k units, such that d1 ≥ d2 > 0. Let d̄1 := d1

k and d̄2 = d2
k ,

be the normalized demands of the bidders. Essentially, we intend to use v1, v2, d̄1

and d̄2 as the variables of the optimization problem mentioned before.
Let B be any inefficient mixed Nash equilibrium. With a slight abuse of

notation we view the term h(Bi) as a function of the valuation profile parameters,

as established by Lemma 8, and define the functions hi(v, d̄) = vi
d̄1+d̄2−1

d̄i
for

i = 1, 2. Our goal now is to express the social welfare of B, solely in terms
of the value profile parameters, (v,d) and k, and without dependencies on the
underlying equilibrium distributions. To proceed, we define first two auxiliary
functions; namely, for i = 1, 2, we let Si(v, d̄) be equal to:

d̄−i(v−i−vi)
(

1−
∫ hi(v,d̄)

0

1

d̄1 + d̄2 − 1

(
d̄i(vi − hi(v, d̄))

vi − z
− (1− d̄−i)

)
v−i − hi(v, d̄)

(v−i − z)2
dz

)
+vi .

With these expressions in mind, the following lemma allows us to obtain the
social welfare in a form that we can later exploit for producing our upper bound.
The lemma follows by Theorem 6, which tells us what the equilibrium CDFs are,
in terms of the valuation profile.

Lemma 9. Let i be a non-empty handed bidder with a mass point at 0. Then,
SW (B) = kSi(v, d̄). If no such bidder exists, then either SW (B) = kS1(v, d̄)
or SW (B) = kS2(v, d̄).



To conclude the proof of the upper bound, we solve three optimization prob-
lems that we distinguish based on different cases for the values of the supports.

By solving numerically those optimization problems, we found out that in
the worst case instance v1 = 1, v2 ≈ 0.526, d̄1 = 1, d̄2 ≈ 0.357. It is not hard to
convert the variables to the underlying worst case instance, which we present in
the next paragraph.

Tight Example. Consider an instance of the discriminatory auction for k ≥ 4
units and n = 2 bidders. Bidder 1 has value v1 = 1 and d1 = k, whereas bidder 2
has a value v2 = 0.526 and d2 = d0.357ke units. Let B1, B2 be two distributions
supported in [0, d2k ]. Note that v2 > d2

k . In accordance to Equation (1), the
cumulative distribution functions of B1 and B2 are

F1(z) =
v2 − d2

k

v2 − z
, F2(z) =

k − d2

d2

z

1− z
.

It is easy to verify that B = (B1, B2) is indeed a mixed equilibrium. The optimal
allocation is for bidder 1 to obtain all k units and the expected social welfare
of B, by Lemma 9, is SW (B) = kS1(v, d̄), since F1(0) > 0. The worst case
inefficiency ratio occurs as k grows and is approximately 1.1095. �

4.2 Multiple Bidders

Inspired by the construction in the previous section, we move to instances with
more than two bidders and provide first a lower bound on the Price of Anarchy.
This bound shows a separation between n = 2 and n > 2, in the sense that equi-
libria can be more inefficient with a higher number of bidders. It also improves
the best known lower bound of the discriminatory price auction for the class of
submodular valuations, which was 1.109, by [8]. The improvement however is
rather small.

Theorem 7. For n > 2, and for the class of mixed strategy Nash equilibria, the
Price of Anarchy is at least 1.1204.

The above bound is the best lower bound we have been able to establish, even
after some extensive experimentation (driven by the results in the remainder
of this section). It is natural to wonder if there is a matching upper bound,
which would establish that the Price of Anarchy remains very small even for
a large number of bidders. Recall that from [13], we know already a bound of
e/(e− 1) ≈ 1.58. Although we have not managed to settle this question, we will
provide an improved upper bound for a special case, for which there is evidence
that it captures worst-case scenarios of inefficiency. At the same time, we will
be able to characterize the format of such worst case equilibria.

To obtain some intuition, it is instructive to look at the proofs of our two
lower bounds, in Theorem 5 and in Theorem 7. One can notice that the main
source of inefficiency is the fact that the auctioneer accepts multi-unit demand



declarations. When this does not occur, we have already shown in Corollary 1
that mixed Nash equilibria attain optimal welfare. When multi-demand bidders
are present, Theorem 5 shows that in the case of two bidders, the most inefficient
mixed Nash equilibrium occurs when a participating bidder declares a demand
for all the units, whereas the opponent requires a much smaller fraction of the
supply. In the proof of Theorem 7 above, we have extended this paradigm for
multiple bidders with an arbitrary demand structure, but under the assumption
that one of the bidders requires all the units (the additive bidder). Such a setting,
of one large-demand bidder facing competition by multiple small-demand bidders
has also been discussed in [3]. Furthermore, there exist other auction formats that
also needed such a demand profile at their worst case instances, see e.g., [5] for the
uniform price auction. To summarize, it seems unlikely that the worst instances
involve only bidders with low demand or small variation on their demands.

Given the above, we will analyze the family of instances where there exists
an additive bidder (with demand equal to k), and where she also has the highest
value per unit. In fact, the latter assumption is needed only for the Price of An-
archy analysis but not for the characterization of the worst-case demand profile
and the equilibrium strategies. We strongly believe that this class is representa-
tive of the most inefficient mixed Nash equilibria (which is true already for the
case of two bidders).

The main result of this section is the following.

Theorem 8. Consider the class of valuation profiles, where there exists an addi-
tive bidder α with the highest value, and an equilibrium B, such that α ∈W (B).
Then, the Price of Anarchy is at most 4/3.

The proof of the theorem is by following a series of steps. The existence of
the additive bidder helps in the analysis, because a direct corollary of Theorem
3 is that the additive bidder is the sole non-empty-handed bidder (everyone else
faces competition for all the units).

Corollary 4 (by Theorem 3). Consider a valuation profile (v,d) with an ad-
ditive bidder α, that admits an equilibrium B, such that α ∈W (B). Then, bidder
α is the unique non-empty-handed bidder under B, thus,

∑
i∈W (B)\{α} di ≤ k−1 .

To proceed, we ensure that for the instances described by Theorem 8, it
suffices to analyze the equilibria where the bidder α belongs to W (B), i.e.,
there cannot exist a more inefficient equilibrium B′ of these instances where
α 6∈W (B′). This is addressed by the following lemma.

Lemma 10. Consider a valuation profile, and suppose that it admits two dis-
tinct inefficient equilibria, B and B′. If i ∈W (B) is a non-empty-handed bidder
in B, then i ∈W (B′) .

Lemma 10 and Corollary 4 guarantee that to prove an upper bound for the
instances described by Theorem 8, we can focus only on the equilibria where
the additive bidder belongs to W (B). From now on, we fix a bidder α and an
inefficient equilibrium B, so that α is additive and α ∈W (B).



Corollary 4 already gives us an insight about the competition in such an
equilibrium B. While bidder α will have to compete against the other bidders
of W (B) to win extra units, in addition to those that she is guaranteed to
obtain, each bidder in W (B) \ {α} only competes against α. Each of them is
not guaranteed any units unless she outbids α (bidder α is the only cause of
externality for bidders in W (B) \ {α} and anyone bidding lower than α cannot
get any units). If bidder α did not exist, the other winners could be automatically
granted the demand they are requesting since, in total, it is smaller than k and
hence, there is no competition among them.

Observation 4 F̂ avgi (z) = Fα(z), for every i ∈ W (B) \ {α}, where Fα is the
CDF of bidder α.

To proceed, we identify some further properties on the support of the mixed
strategies.

Lemma 11. For the equilibrium B under consideration, it is true that:

1. Supp(Bα) = [`(BW ), h(BW )].
2. For any two bidders i, j ∈W (B) \ {α} such that vi 6= vj, the set Supp(Bi)∩

Supp(Bj) is of measure 0 (intersection points can occur only at endpoints of
intervals).

Lemma 11 suggests that we can group the bidders according to their values
(since only bidders with the same value can overlap in their support). Let r ≤
|W (B) \ {α}| represent the number of distinct values v1, . . . , vr that bidders in
W (B) \ {α} have. We can partition the bidders of W (B) \ {α} into r groups
W1(B), . . . ,Wr(B) such that, for j = 1, . . . , r, the bidders in group Wj(B) have
value vj . Similarly, we split the support of the winning bidders [`(BW ), h(BW )]
into r intervals, i.e., [`(BW ), h(BW )] =

⋃r
j=1 Ij(B), where each interval j ∈

{1, . . . , r} is formed as Ij(B) =
⋃
i∈Wj(B) Supp(Bi) . The following is a direct

corollary of Lemma 11.

Corollary 5. For every s, t ∈ {1, . . . , r} with s 6= t, the set Is(B) ∩ It(B) is of
measure 0.

When all bidders in W (B) \ {α} have distinct values there are precisely
|W (B) \ {α}| intervals whereas when they all have a common value, they must
be bidding on the entire interval [`(W (B)), h(W (B))] (the equilibrium in the
2-bidder case when d1 = k, in Section 4.1, is one such example). We sometimes
denote as I0(B) the interval of losing bidders [0, `(BW )], i.e., for the bidders
in N \W (B). Note that given B, the only criterion for the membership of the
support of a bidder i in an interval Is(B) is their value.

The next step is quite crucial in simplifying the extraction of our upper
bound. We show that the worst case demand structure for the bidders in W (B)\
{α} is when they all have unit demand.

Theorem 9. For the value profile (v,d) and the equilibrium B under consid-
eration, there exists another value profile (v′,d′) and a product distribution B′

such that



1. α ∈ W (B′) is an additive bidder and for every bidder i ∈ W (B′) \ {α}, it
holds that d′i = 1.

2. B′ is a mixed Nash equilibrium for (v′,d′).

3. OPT (v,d)
SW (B) = OPT (v′,d′)

SW (B′) .

For the remainder of the section, it suffices to analyze valuation profiles,
that possess equilibria where the members of W (B) are either additive or unit-
demand. Recall, that due to Corollary 4, there must be a unique additive bidder.
Hence, we fix an instance given by a valuation profile (v,d), so that at the
equilibrium B, the set W (B) consists of n unit-demand bidders plus the additive
bidder α, i.e. n = |W (B) \ {α}|. Moreover, due to the following observation we
may assume, without loss of generality, that the support of each unit-demand
bidder has no overlapping intervals with other bidders from W (B) \ {α}.

Lemma 12. Let (v,d) be a value profile and let B be any mixed Nash equilib-
rium such that the members of W (B) are all unit-demand bidders aside from one
additive. Then, there exists a mixed Nash equilibrium B′ with disjoint support
intervals such that SW (B) = SW (B′).

Therefore, by Corollary 5 and the discussion preceding it, the support of
each bidder i = 1, . . . , n is [`(Bi), h(Bi)]. Note that due to Lemma 11, the unit-
demand bidders must cover the entire interval [`(BW ), h(BW )]. Therefore, for a
unit-demand bidder i = 1, . . . , n, it must be that `(Bi) = h(Bi−1), assuming for
convenience that h(B0) = `(BW ).

We continue, by understanding further the support intervals and the distri-
butions of the equilibrium B.

Theorem 10. For the value profile (v,d) under consideration, the following
properties hold:

1. For bidder α, we have h(Bα) = h(Bn) = h(BW ) = vα − (k − n) vα−`(Bα)
k .

Moreover, for every unit-demand bidder i = 1, . . . , n− 1 it holds that

`(Bi+1) = h(Bi) = vα −
(k − n)(vα − `(Bα))

k − n+ i
.

2. The CDF Fα of bidder α, is a branch function, so that for i = 1, . . . , n,
Fα(z) = F iα(z) for every z ∈ [h(Bi−1), h(Bi)] with

F iα(z) =

n∏
j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

)
vi − h(Bi)

vi − z
.

Before stating our upper bound, we present a straightforward inequality that
is a direct consequence of the definition of a mixed Nash equilibrium as well as
an expression for the social welfare. Both of the following lemmas will be useful
for obtaining our Price of Anarchy upper bound.



Lemma 13. Consider a value profile (v,d) and any inefficient mixed Nash
Equilibrium B with a set W (B) that consists only of additive or unit-demand
bidders. Then, for i = 2, . . . , n, m = 1, . . . , i−1 and every z ∈ [h(Bm−1), h(Bm)]

i−1∏
j=m+1

vj − h(Bj)

vi − h(Bj−1)
≤ vm − z
vm − h(Bm)

vi − h(Bi−1)

vi − z
. (2)

Lemma 14. Consider a value profile (v,d) and any inefficient mixed Nash
Equilibrium B with a set W (B) that consists only of additive or unit-demand
bidders. The expected social welfare is

kvα − (k − n)(vα − `(Bα))

n∑
i=1

n∏
j=i+1

(
vj − h(Bj)

vj − h(Bj−1)

)∫ h(Bi)

h(Bi−1)

vi − h(Bi)

vi − z

vα − vi
(va − z)2

dz .

Proof of Theorem 8. For brevity we denote `(Ba) as ` and, for j = 1, . . . , n, we
denote h(Bj) as hj . Moreover, by assumption va ≥ vn. To simplify calculations,
we assume that va = 1 by rescaling all values in the instance.

Given a mixed Nash equilibrium B we lower bound the expected social wel-
fare SW (B) described in the equation of Lemma 14 as

SW (B) = k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)∫ hi

hi−1

vi − hi
vi − z

1− vi
(1− z)2

dz

= k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)
(∫ hi

hi−1

vi − hi
vi − z

1

(1− z)
dz −

∫ hi

hi−1

vi − hi
(1− z)2

dz

)

> k − (k − n)(1− `)
n∑
i=1

n∏
j=i+1

(
vj − hj
vj − hj−1

)∫ hi

hi−1

vi − hi
vi − z

1

(1− z)
dz

≥ k − (k − n)(1− `)
∫ hn

`

vn − hn
(vn − z)(1− z)

dz

≥ k − (k − n)(1− `)
∫ hn

`

1− hn
(1− z)2

dz ≥ k − (k − n)(1− `)

= k − (k − n)(hn − `) = k − (k − n)
(n
k

(1− `)
)
≥ k − (k − n)n

k
≥ 3

4
k .

The first inequality is true since for all bidders i = 1, . . . , n, it holds that vi > hi
by Observation 2. The second is an application of the mixed Nash equilibrium
property encoded by Equation (2) of Lemma 13. The next two inequalities occur
by observing that the respective functions are increasing in terms of vn (which,
by assumption, we upper bound with vn ≤ 1) and ` (which we lower bound with
` ≥ 0). The last inequality follows by setting x = n

k and minimizing the function
s(x) = 1 − x + x2 for x ∈ (0, 1). The theorem follows by observing that the
optimal welfare is k, since the additive bidder has the highest value. �



5 A Separation between Mixed and Bayesian Cases

In this section we explore the more general solution concept of Bayes Nash equi-
librium. We consider the following incomplete information setting. Let (vi, di)
be the type of bidder i ∈ N . We suppose that the private value vi of a bidder
i is drawn independently from a distribution Vi. The second part of bidder i’s
type is his demand di; for the purposes of this section (we only construct a lower
bound instance), we assume di to be deterministic private information.

Each bidder i is aware of her own value per unit vi and the product distribu-
tion formed by the Vj ’s, and decides a strategy (bi, qi) ∼ Gi(vi) for each value
vi ∼ Vi. The bidding strategy is in general a mixed strategy. In the special case
that bidder i chooses a single bid (bi(vi), qi) for each drawn value vi, he submits
a pure strategy, where qi is not necessarily di.

Definition 2. Given V = ×ni=1Vi and d, a profile G(v) is a Bayes Nash Equi-
librium if for all i ∈ N , vi in Vi’s domain, b′i ≥ 0 and q′i ∈ Z+ it holds that

E
v−i∼V−i

[
E

(b,q)∼G(v)
[uvii (b,q)]

]
≥

E
v−i∼V−i

[
E

(b−i,q−i)∼G−i(v−i)
[uvii ((b′i, q

′
i), (b−i,q−i))]

]
,

where uvii (·) stands for bidder i’s utility when his value is vi.

We can define the Bayesian Price of Anarchy in the same way as before, by
comparing against the expected optimal welfare, over the value distributions.

Although in a few other auction formats, the inefficiency does not get worse
when one moves to incomplete information games, we exhibit that this is not the
case here. We present a lower bound on the Bayesian Price of Anarchy of 1.1204,
with two bidders. For mixed equilibria and two bidders, Theorem 5 showed that
the Price of Anarchy is at most 1.1095. Although this difference is small, it shows
that the Bayesian model is more expressive and can thus create more inefficiency.
In particular, we stress that the bound obtained here for two bidders is inspired
by the same bound of 1.1204 for mixed equilibria in Theorem 7, where we had
to use a large number of bidders.

Theorem 11. For n = 2, k ≥ 2, and capped additive valuation profiles, the
Price of Anarchy of Bayes Nash equilibria is at least 1.1204.

Remark 3. When k = 1, there is a lower bound of 1.15 in [12] for the first price
auction. However this requires a very large number of bidders. There is a simpler
construction with two bidders in [21] but it only yields a lower bound of 1.06.
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