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Abstract. Let X be a topologically stratified space, p be any perversity on X, and k be a
field. We show that the category of p-perverse sheaves on X, constructible with respect to
the stratification and with coefficients in k, is equivalent to the category of finite-dimensional
modules over a finite-dimensional algebra if and only if X has finitely many strata and the
same holds for the category of local systems on each of these. The main component in the
proof is a construction of projective covers for simple perverse sheaves.

1. Introduction

Let X be a topologically stratified space. The category pPerv(X) of p-perverse sheaves
on X, constructible with respect to the given stratification and with coefficients in a field
k, captures interesting aspects of the topology of X and its stratification. When X is
a complex algebraic variety with an algebraic stratification and p(S) = −dimC(S) is the
middle-perversity, the perverse sheaves have deep connections with Morse theory, differential
equations (D-modules) and, for suitable X, with representation theory.

Perverse sheaves are defined as the heart of a t–structure on the constructible derived
category Dc(X) cut out by imposing cohomological vanishing conditions. Whilst this is
convenient for theoretical purposes, one often wants a more explicit description, as modules
over an algebra or as quiver representations. We characterise those X for which the perverse
sheaves can be described as modules over a finite-dimensional algebra.

Main Theorem (Corollary 5.2). The category pPerv(X) is equivalent to the category of
finite-dimensional (left) modules over a finite-dimensional k-algebra if and only if X has
finitely many strata and the same holds for the category of local systems on each of these
strata.

Surprisingly this result depends only upon the fundamental groups of the strata and not
on the perversity or the way the strata are assembled. In particular, if X has finitely many
strata each with finite fundamental group then, for any perversity p and field k, perverse
sheaves can be described as finite-dimensional modules over a finite-dimensional algebra.

The key component of the proof is Theorem 4.6 in which we construct projective covers of
simple perverse sheaves. Our approach generalises that in [5, §3.2] and is motivated by reverse-
engineering. Effectively we assume that pPerv(X) is equivalent to modules over a finite-
dimensional algebra, specifically that perverse sheaves have a quiver description, and attempt
to construct the projective cover in the same way one would for a quiver representation. This
turns out to be possible when X has finitely many strata and the category of local systems
on each has enough projectives. The other ingredients of the proof are standard results
about projective covers and generators, and elementary observations about the behaviour of
projective perverse sheaves under recollement functors.
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In principle one can use the construction of Theorem 4.6 to find a projective generator
P for pPerv(X), but in practice this is difficult because it is not obvious how to implement
the construction as an effective algorithm. We discuss approaches to computing a projective
generator in the final section, but leave the details of implementation for a second paper.

There is an extensive literature on algebraic and quiver descriptions of perverse sheaves
and to provide some context we survey some of the main themes. Unless otherwise stated, the
results below hold for the middle-perversity p(S) = −dimR(S)/2. Bĕılinson [4], see also [20],
uses the nearby and vanishing cycle functors to describe how perverse sheaves on a variety are
glued from perverse sheaves on a hypersurface and its complement. This glueing construction
can be used to obtain quiver descriptions for perverse sheaves on an algebraic curve, and also
in various higher-dimensional cases.

MacPherson and Vilonen [17] give a similar glueing construction for perverse sheaves on the
complement of a closed stratum of a Whitney stratified space. This, together with micro-local
techniques and deformation to the normal cone, is the key ingredient in [11] in which they,
together with Gel’fand, prove that the category of perverse sheaves on a stratified analytic
variety is equivalent to the module category over a finitely-presented algebra. This glueing
construction can be viewed as the abelian analogue of recollement for triangulated categories.
It is closely related to the work of Cline, Parshall and Scott [9] on highest weight categories,
indeed Vilonen [23] shows that a highest weight category is precisely one which can be glued
from copies of the category of vector spaces where at each stage certain objects have suitable
filtrations.

Mirollo and Vilonen [18] employ this construction to show that perverse sheaves on a
Whitney stratified complex analytic space, each of whose strata S satisfies π1(S) = π2(S) =
0, form a highest weight category equivalent to finitely generated modules over a finite-
dimensional algebra. Subsequently Vilonen [23] proved that the same holds for equivariant
perverse sheaves on a complex algebraic variety on which a complex algebraic group acts with
finitely many orbits, except that in this case they need not form a highest weight category
nor have finite global dimension.

These ideas, together with micro-local Morse theory are used by Braden [7], and Braden
and Grinberg [8], to obtain quiver descriptions for perverse sheaves on Schubert-stratified
Grassmannians, and, respectively on rank stratifications of matrices. Prior to this, Bĕılinson,
Ginzburg and Soergel [5] had used algebraic techniques to show that perverse sheaves on
complex algebraic varieties with affine stratifications could be described as modules over a
finite-dimensional Koszul algebra, and hence have a description as representations of a quiver
with quadratic relations.

Another case in which Koszul algebra plays a prominent role is that of perverse sheaves on a
triangulated space, now for any ‘classical’ perversity satisfying dimR(S)− dimR(T ) ≤ p(T )−
p(S) ≤ 0. By utilising the extra combinatorial structure Polishchuk [19] shows that these
are representations of a Koszul algebra, and Vybornov [24] uses this and the Koszul duality
results of [5] to describe the perverse sheaves as the constructible sheaves with respect to a
stratification by ‘perverse simplices’. Using similar techniques, but now back in the algebro-
geometric setting and for the middle-perversity, Vybornov [25] obtains a quiver description
for perverse sheaves on Schubert-stratified flag varieties. Continuing in a combinatorial vein,
Kapranov and Schechtmann [13] obtain a quiver description, with monomial relations, for
perverse sheaves on complexified hyperplane arrangements. (Even in the simplest case of C
stratified by 0 and C∗ their description differs from Bĕılinson’s glueing description.) Their
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construction is motivated by the earlier work of Galligo, Granger and Maisonobe on quiver
descriptions for D-modules [10].

Finally, switching to a homotopy-theoretic perspective, MacPherson [16] observes that con-
structible sheaves, i.e. perverse sheaves for the zero perversity p(S) = 0, can be described as
representations of the exit path category, directly generalising the usual monodromy descrip-
tion of local systems to stratified spaces. Treumann [22] further generalises by showing that
perverse sheaves on a topologically stratified space can be described as representations of the
exit path 2-category. We are not aware of any explicit descriptions of perverse sheaves from
this viewpoint.

In summary, techniques from algebra, algebraic geometry, Morse-theory, combinatorial
topology and homotopy theory have all been employed to obtain alternative descriptions of
categories of perverse sheaves. As mentioned before, our approach is closest to the algebraic
one of Bĕılinson, Ginzburg and Soergel [5], but applied to more general spaces and perversities.
The price we pay for this generality is that there is no longer any Koszul or highest weight
category structure.

In brief, §2 sets the context and introduces notation. Section 3 recalls the single stratum
case in which perverse sheaves are local systems on a manifold and therefore have an algebraic
description as modules over the fundamental group algebra. The main construction is in §4,
where we explain when there are enough projective perverse sheaves. In §5 we reformulate
the results of §4 in terms of finite-dimensional algebras and also comment on computational
approaches.

Acknowledgments. The authors would like to thank the referee for carefully reading the
paper and for drawing our attention to some relevant and helpful references (now included).

2. Background

2.1. Topologically stratified spaces. Throughout X will be a topologically stratified space
in the sense of [12]. Briefly, a 0-dimensional topologically stratified space is a discrete union
of points; a strictly positive dimensional X is a paracompact Hausdorff topological space with
a finite filtration

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xd = X

by closed subsets such that Xi−Xi−1 is a (possibly empty) i-dimensional topological manifold,
and such that each x ∈ Xi−Xi−1 has an open neighbourhood filtration-preserving homeomor-
phic to Ri×C(L) for some topologically stratified space L. Here C(L) = L× [0, 1)/L×{0} is
the open cone on L with the induced filtration by the vertex and the subsets Li×[0, 1)/Li×{0}.
The stratified space L is known as a link of Xi − Xi−1 at x. The links are not part of the
data and need not even be well-defined up to homeomorphism [21]. The strata of X are
the connected components of the Xi − Xi−1. They are partially-ordered by the relation
S ≤ T ⇐⇒ S ⊂ T .

2.2. The constructible derived category. Fix a field k; we do not assume it has charac-
teristic 0, nor that it is algebraically closed. The constructible derived category Dc(X) is the
full subcategory of the bounded derived category of sheaves of k-vector spaces on X on those
complexes whose cohomology sheaves are locally-constant on each stratum of X.
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Let  : U ↪→ X be the inclusion of an open union of strata, and ı : Z = X − U ↪→ X the
complementary closed inclusion. There are triangulated functors

Dc(Z) Dc(X) Dc(U)
ı!=ı∗ !=∗

ı∗

ı!

!

∗

where ı! = ı∗ is extension by zero from a closed subset, ! = ∗ is restriction to an open subset,
ı∗ and ! are their respective left adjoints, and ı! and ∗ their respective right adjoints. (The
functor ∗ is the right derived functor of the usual sheaf theory pushforward, but since we make
no use of the latter we do not use the notation R∗.) These functors satisfy various well-known
identities, in particular ∗ı∗ = 0 and the obvious consequences for the adjoints, ∗! = id = ∗∗
and ı!ı∗ = id = ı∗ı∗. There are two natural exact triangles ı!ı

!E → E → ∗
∗E → ı!ı

!E [1] and
!

!E → E → ı∗ı
∗E → !

!E [1]. The Verdier dual

D(−) = HomDc(X)

(
−, π!kpt

)
: Dc(X)op → Dc(X)

is a triangulated equivalence where π : X → pt is the map to a point and kpt the constant
sheaf with stalk k, in degree 0. It commutes with ı∗ and ∗ and there are natural isomorphisms
D ◦ ı∗ ∼= ı! ◦ D and D ◦ ! ∼= ∗ ◦ D. The above natural exact triangles are Verdier dual to one
another.

2.3. Perverse sheaves. A perversity on X is function p : S→ Z where S is the set of strata
of X. We do not impose any further conditions, although for many applications it is useful
to do so. The category pPerv(X) of p-perverse sheaves is the heart of a bounded t-structure
on Dc(X) obtained by ‘glueing’ the categories Loc(S) [−p(S)] of shifted local systems on the
strata S of X — see [6, §2] for details. It is a k-linear, full abelian subcategory of Dc(X).
When X has finitely many strata it is a finite length (noetherian and artinian) category.

There is a functor pH0 : Dc(X)→ pPerv(X) left inverse to the inclusion which is cohomo-
logical, i.e. takes exact triangles to long exact sequences of perverse sheaves. More concretely,
perverse sheaves are characterised by the vanishing conditions

(1) E ∈ pPerv(X) ⇐⇒

{
Hd(ı∗SE) = 0 d > p(S)

Hd(ı!SE) = 0 d < p(S)

for all strata ıS : S ↪→ X, whereHd(E) denotes the cohomology sheaf of the complex of sheaves
E .

Verdier duality on Dc(X) restricts to an exact equivalence

D : pPerv(X)op → p∗Perv(X)

where p∗(S) = −dimR(S) − p(S) is the dual perversity. This is a generalisation of the
fact that Verdier duality preserves local systems on a manifold M up to a shift; specifically
D(L) = L∨[dimR(M)] where L∨ is the dual local system.

Extension by zero from a closed union of strata and restriction to an open union are t-exact
functors. It follows that ı∗ and ! are right t-exact for the perverse t-structure, and that ı!

and ∗ are left t-exact. As above, let  : U ↪→ X and ı : Z = X − U ↪→ X be complementary
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open and closed inclusions. Writing pı∗ = pH0 ◦ ı∗ and so on there is a diagram of functors

Perv(Z) Perv(X) Perv(U)
ı!=ı∗ !=∗

pı∗

pı!

p!

p∗

in which ı! = ı∗ and ! = ∗ are exact, pı∗ and p! are their respective left adjoints, and pı! and
p∗ their respective right adjoints.

2.4. Simple perverse sheaves. If  : U → X is the inclusion of an open union of strata,
the intermediate extension functor p!∗ : Perv(U)→ Perv(X) is the image of the natural mor-
phism p! → p∗. It is fully-faithful, preserves both monomorphisms and epimorphisms, but
in general is neither left nor right exact. The intermediate extension is the unique extension
with no non-zero subobjects or quotients supported on Z; equivalently, it is the unique ex-
tension satisfying the vanishing conditions (1) for the corresponding non-strict inequalities.
The simple perverse sheaves are those of the form ıS∗

pS !∗L[−p(S)] where L is an irreducible
local system on a stratum S and S : S ↪→ S and ıS : S ↪→ X are the inclusions. These are
known as intersection cohomology complexes because their cohomology groups are, up to a
shift by p(S) in the indexing, the perversity p intersection cohomology groups of the closure
S with coefficients in L. We therefore use the notation pICL = ıS∗

pS !∗L[−p(S)].

3. Local systems

A stratified space X with a single stratum is a topological manifold. In this case, for any
perversity p, the perverse sheaves pPerv(X) are equivalent to the category Loc(X) of finite-
dimensional local systems on X with coefficients in k, i.e. the category of locally-constant
sheaves of finite-dimensional k-vector spaces on X.

Taking monodromy establishes an equivalence Loc(X) ' k[π1X]−mod with the category of
finite-dimensional left modules over the group algebra of the fundamental group. In particular
the question of whether there are enough projective local systems on X depends only on the
fundamental group. Clearly, if π1X is finite then k[π1X] is a finite-dimensional k-algebra
and k[π1X]−mod has enough projectives. Generically one has a stronger result — if π1X is
finite and the characteristic of k does not divide its order then Maschke’s Theorem implies
that k[π1X]−mod is a semi-simple category so that all modules are projective. However, if
π1X ∼= Z and k = C, for example, then there are no non-zero projective local systems. In this
case indecomposable local systems are classified by their Jordan normal forms, none of which
is projective. In general the question is quite subtle (and we do not attempt to answer it).
To see why, recall that there are finitely-presented infinite groups with no non-trivial finite-
dimensional representations (over any field k). For example a representation of a finitely-
presented infinite simple group G is either trivial or faithful, but the latter is impossible since
G cannot embed as a subgroup of GLn(k). (This is because a finitely-generated linear group
is residually finite by Mal’cev’s Theorem, i.e. the intersection of all its finite index normal
subgroups is trivial, and so it cannot be simple.) Since any finitely-presented group arises
as the fundamental group of a smooth compact 4-manifold X, we can find such an X with
π1X ∼= G and therefore with Loc(X) equivalent to the category of finite-dimensional k-vector
spaces.

After this detour into the intricacies of representation theory the main result of this paper
should come as a relief! Roughly, it says that generalising to stratified spaces one does not
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meet any further subtleties; the existence of projective perverse sheaves depends only on the
fundamental groups of the strata.

4. Projective perverse sheaves

In this section we assume that the topologically stratified space X has finitely many strata.
Under this assumption, pPerv(X) is a Hom-finite length abelian category for any perversity
p, i.e. the Hom-spaces between objects are finite-dimensional vector spaces over k, and each
object has a finite composition series with simple quotients. Either of these properties im-
plies that pPerv(X) is a Krull-Remak-Schidt category [15, §5] — each perverse sheaf is a finite
direct sum of indecomposable perverse sheaves, and a perverse sheaf is indecomposable pre-
cisely when its endomorphism algebra is local. The indecomposable summands of a perverse
sheaf, counted with multiplicity, are unique up to isomorphism and reordering. In particular,
pPerv(X) has enough projectives if and only if each simple object has a projective cover,
and the projective covers of the simple objects are precisely the indecomposable projectives
[15, Lemma 3.6]. We will use the following well-known characterisation of indecomposable
projective objects.

Lemma 4.1. Fix a simple perverse sheaf pICL. If P satisfies Ext1(P, pICM) = 0 for all
simple perverse sheaves pICM and

(2) Hom(P, pICM) ∼=

{
k if M∼= L
0 otherwise.

then P is a projective cover of pICL.

Proof. The first condition implies that P is projective. The second condition implies it has
pICL as a quotient and that P is indecomposable; if it decomposes only one summand can
have pICL as a quotient, and the other summand has no non-zero quotients at all, hence
vanishes. Therefore P is an indecomposable projective with pICL as a quotient, and so is a
projective cover of pICL. �

4.1. Restricting and extending projective perverse sheaves. Let  : U ↪→ X be the
inclusion of an open union of strata and ı : Z ↪→ X the complementary closed union.

Lemma 4.2. The functors p! and pı∗ preserve projective perverse sheaves.

Proof. This follows because the left adjoint of an exact functor preserves projective objects.
�

Lemma 4.3. Suppose P ∈ Perv(X) is projective and that pı∗P = 0. Then ∗P ∈ Perv(U) is
projective.

Proof. We show that Hom(∗P,−) ∼= Hom(P, p∗(−)) is exact. Given short exact 0 → E →
F → G → 0 in Perv(U) the cokernel of p∗F → p∗G is supported on Z so that there is an
exact sequence 0 → p∗E → p∗F → p∗G → ı∗C → 0 for some C ∈ Perv(Z). Applying the
exact functor Hom(P,−) we obtain a short exact sequence

0→ Hom(P, p∗E)→ Hom(P, p∗F)→ Hom(P, p∗G)→ 0

since Hom(P, ı∗C) ∼= Hom(pı∗P, C) = 0. �
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A simple perverse sheaf on X is either the intermediate extension p!∗E of a simple perverse
sheaf on U or the extension by zero ı∗E of a simple perverse sheaf on Z. This establishes a
correspondence between the set of isomorphism classes of simple perverse sheaves on X and
the union of the sets of isomorphism classes of perverse sheaves on Z and on U .

Lemma 4.4. (1) Suppose E ∈ pPerv(U) is simple and P is a projective cover of E. Then
p!P is a projective cover of the intermediate extension p!∗E.

(2) Suppose E ∈ pPerv(U) is simple and P is a projective cover of its intermediate exten-
sion p!∗E. Then ∗P is a projective cover of E.

(3) Suppose E ∈ pPerv(Z) is simple and P is a projective cover of its extension by zero
ı∗E. Then pı∗P is a projective cover of E.

Proof. In each case we apply Lemma 4.1.

(1) By Lemma 4.2 the extension p!P is projective, so the Ext condition in Lemma 4.1
holds. The Hom conditions in (2) follow from the adjunction between p! and ∗.

(2) Since Hom(P, ı∗F) = 0 for all simple F ∈ pPerv(Z) we have pı∗P = 0. Hence ∗P
is projective by Lemma 4.3, so the Ext condition in Lemma 4.1 holds. The Hom
conditions in (2) follow from the adjunction between ∗ and p∗ and the fact that for
simple F ∈ pPerv(U) there is a short exact sequence 0 → p!∗F → p∗F → ı∗F ′ → 0
with F ′ ∈ pPerv(Z).

(3) By Lemma 4.2 the restriction pı∗P is projective, so the Ext condition in Lemma 4.1
holds. The Hom conditions in (2) follow from the adjunction between pı∗ and ı∗. �

In the next section we establish a sufficient criterion for pPerv(X) to have enough projec-
tives. Here we note a necessary condition implied by the previous lemma.

Corollary 4.5. Suppose X is a topologically stratified space with finitely many strata and p
a perversity. If pPerv(X) has enough projectives then so does Loc(S) for each stratum S.

Proof. Let E ∈ Loc(S) be irreducible and suppose that P is a projective cover of pICE in
pPerv(X). Lemma 4.4 implies that S

∗pı∗SP (shifted by p(S)) is a projective cover of E in

Loc(S) where S : S ↪→ S and ıS : S ↪→ X are the inclusions. �

4.2. Existence of projectives. The next result establishes a sufficient condition for pPerv(X)
to have enough projectives. The delicate part is the construction of a projective cover of a
simple perverse sheaf supported on a closed stratum. This construction generalises that of [5,
Thm 3.2.1]. It mimics the construction of a projective cover of simple a module for the path
algebra of a quiver.

Theorem 4.6. Let X be a topologically stratified space and p a perversity. Suppose X has
finitely many strata and that Loc(S) has finitely many (isomorphism classes of) simple objects
and enough projectives for each stratum S. Then pPerv(X) also has enough projectives.

Proof. It is enough to construct a projective cover for each simple perverse sheaf. We do so by
induction over the number of strata. When X has a single stratum there is nothing to prove.
Suppose S is a closed stratum and let ı : S ↪→ X and  : X − S ↪→ X be the inclusions. Since
X − S has strictly fewer strata we may assume that each simple ∗pICM has a projective
cover AM in pPerv(X − S). Then PM = p!AM is a projective cover of pICM by Lemma 4.4.

It remains to construct a projective cover for pICL where L is an irreducible local system
on S. By assumption L has a projective cover in Loc(S). Let BL denote the perverse sheaf
obtained by shifting this cover by [−p(S)] and extending by zero. Let I be the union of the
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sets of (isomorphism classes of) irreducible local systems on the strata of X − S. Since I is
finite

P =
⊕
M∈I

PM ⊗ Ext1(BL, pICM)∨

is a well-defined and projective perverse sheaf. Let π : P � Q be such that Q has maximal
length amongst quotients for which there exists ε ∈ Ext1(BL,Q) inducing isomorphisms

(3) Hom(Q, pICN ) ∼= Ext1(BL, pICN ) : ϕ 7→ ϕ ◦ ε

for each N ∈ I. Such a Q exists because P has finite length and the quotient⊕
M∈I

pICM ⊗ Ext1(BL, pICM)∨

has the required property — a suitable choice of ε in this case is the sum of the units in⊕
M∈I

Ext1(BL, pICM)⊗ Ext1(BL, pICM)∨ .

Let PL ∈ Perv(X) be defined (up to isomorphism) by the triangle

(4) Q → PL → BL
ε−→ Q[1].

We prove that PL is the projective cover of pICL using Lemma 4.1. Apply Hom(−, pICN ) to
(4) to obtain a long exact sequence. The property (3) implies this splits into an isomorphism
Hom(PL, pICN ) ∼= Hom(BL, pICN ) ∼= Hom(BL, pı∗pICN ) and an exact sequence

(5) 0→ Ext1(PL, pICN )→ Ext1(Q, pICN )→ Ext2(BL, pICN )→ · · · ,

where the Ext-groups are computed in Dc(X) rather than in pPerv(X). Since

pı∗pICN ∼=

{
N [−p(S)] if N ∈ Loc(S)

0 otherwise,

the only simple quotient of PL is pICL, and this occurs with multiplicity one. Hence PL is
indecomposable. To show PL is projective it suffices to prove that the third map in (5) is
injective. Suppose 0 6= ϕ ∈ Ext1(Q, pICN ) is in the kernel, i.e. ϕ ◦ ε[−1] = 0. Then we have
a commutative diagram

P

pICN Q′ Q pICN [1]

BL[−1]

ππ′ 0

ϕ

ε[−1]
ε′[−1] 0

in Dc(X) whose middle row is the triangle induced from ϕ. The composite ϕ ◦ π = 0 be-
cause P is projective. Therefore there are factorisations via π′ and ε′[−1] as indicated. By
construction Q′ is a perverse sheaf with `(Q′) = `(Q) + 1, where `(E) denotes the length of
(any) composition series for E . Applying Hom(−, pICM) to the triangle induced by ϕ yields
a long exact sequence

0→ Hom(Q, pICM)→ Hom
(
Q′, pICM

)
→ Hom(pICN , pICM)→ Ext1(Q, pICM)→ · · · .
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Since the third term vanishes for M 6= N , and injects into the fourth when M = N because
ϕ 6= 0, we conclude that Hom(Q, pICM) ∼= Hom(Q′, pICM). Therefore composition with ε′

induces an isomorphism

Hom
(
Q′, pICM

) ∼= Ext1(BL, pICM)

for any M ∈ I. Thus π′ cannot be an epimorphism of perverse sheaves, for otherwise Q
would not be the maximal length quotient of P satisfying (3). In particular, this means
that `(imπ′) ≤ `(Q′) − 1 = `(Q). However, since π is an epimorphism so is the composite
imπ′ ↪→ Q′ � Q, and thus `(imπ′) ≥ `(Q). We conclude that `(imπ′) = `(Q). Therefore the
epimorphism imπ′ � Q is an isomorphism and Q′ → Q splits in pPerv(X), contradicting the
assumption that ϕ 6= 0. We conclude that the third map in (5) is injective, and this completes
the proof. �

Remark 4.7. It is not clear a priori that the quotient Q appearing in the proof is unique (up
to isomorphism), however a posteriori we see that it is. The short exact sequence 0 → Q →
PL → BL → 0 and the fact that Lemma 4.2 implies BL ∼= ı∗

pı∗PL show that Q ∼= p!
∗PL.

What is surprising about this result is that the existence of enough projective perverse
sheaves depends only upon the fundamental groups of the strata and the field k, and not on
the perversity or on any information about how the strata are assembled to form the space.
In fact, although we have formulated it in terms of perverse sheaves, it can be reformulated
in the abstract setting of recollement of t–structures.

Proposition 4.8. Suppose DZ
ı∗−→ DX

∗−→ DU is an exact triple of k-linear Hom-finite
triangulated categories satisfying the axioms for recollement [6, §1.4.3]. Further suppose we
have bounded t–structures on DZ and DU whose hearts are length categories with finitely many
simple objects. Then the heart of the glued t–structure on DX [6, Thm 1.4.10] has enough
projectives if and only if the hearts of the t–structures on DZ and DU each have enough
projectives.

5. Finite-dimensional algebras

When there are enough projective perverse sheaves and finitely many simple ones perverse
sheaves can be described as modules over a finite-dimensional algebra, and therefore also
as representations of a quiver with relations. The direct sum of projective covers of the
simple perverse sheaves is a projective generator of pPerv(X) and tilting theory provides an
equivalence between pPerv(X) and finite-dimensional modules over its endomorphism ring.
More precisely we apply the following result.

Theorem 5.1. [2, Chapter II, Exercise after Theorem 1.3] Let C be a Hom-finite and length
k-linear abelian category. Then C has a projective generator if and only if there is an exact
equivalence C ' A−mod where A−mod is the category of finite-dimensional (left) modules
over a finite-dimensional k-algebra A.

Corollary 5.2. Let X be a topologically stratified space and p a perversity on X. There is an
exact equivalence Perv(X) ' A−mod where A is a finite-dimensional k-algebra if and only if
X has finitely many strata and for each stratum S there is a finite-dimensional k-algebra AS
with an exact equivalence Loc(S) ' AS−mod.

Proof. Recall that there are finitely many simple modules over any finite-dimensional algebra,
and note that pPerv(X) has finitely many simple objects if and only if X has finitely many
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strata each with only finitely many irreducible local systems. The result follows by combining
Theorems 4.6 and 5.1 with Corollary 4.5. �

We emphasise that the perversity p and the links of the stratification of X play no role. Of
course, these do enter into the determination of an algebra A whose module category is the
perverse sheaves. An immediate consequence is that pPerv(X) has a projective generator if
and only if p

∗
Perv(X), where p∗ is the dual perversity, has one. Hence, by duality, pPerv(X)

has an injective cogenerator if and only if it has a projective generator.
The immediate corollary identifies a large class of examples.

Corollary 5.3. Suppose X is a topologically stratified space with finitely many strata, each
with finite fundamental group, and p any perversity. Then the category pPerv(X) of perverse
sheaves with coefficients in a field k is equivalent to the category of finite-dimensional (left)
modules over a finite-dimensional k-algebra.

5.1. Remarks on computations. How can one find, when it exists, a finite-dimensional k-
algebra A such that pPerv(X) ' A−mod? As mentioned in the introduction there are several
known approaches, but these involve extra geometric assumptions on X and restrictions on
the perversity p. The constructions and results above open the possibility of more algebraic
approaches. We outline three of these. A second paper will give detailed examples.

The first approach is the most direct. The proof of Theorem 4.6 explains how to inductively
construct a projective cover PL of a simple perverse sheaf pICL. If one can do this then the
sum

⊕
L PL is a projective generator, and the algebra we seek is its endomorphism ring.

Unfortunately, it is not easy to implement this construction of PL as an effective algorithm.
The principal obstruction is that one has to find a maximal length quotient Q of

P =
⊕
M∈I

PM ⊗ Ext1(BL, pICM)∨

satisfying the property (3). This quotient exists, and is unique by Remark 4.7, but we do not
have a better construction than searching through all the quotients. For the top ‘classical’
perversity p(S) = −dimR(S) the simple perverse sheaves have the form S∗L[−dimR(S)],
where S : S ↪→ S. This implies that P = 0 whence alsoQ = 0. So in this case the construction
degenerates and the projective cover PL = pS !L[−dimR(S)]. However, in general there can
be multiple quotients satisfying (3). For example, let X = CP1 stratified by C and a point∞,
let p(S) = −dimC(S) be the middle perversity, and L = k∞ be the skyscraper on the point
stratum. Then P = !kC[1] and both itself and its quotient p!∗kC[1] satisfy (3). Choosing the
maximal length quotient, as the construction dictates, gives Q = P = !kC[1] and verifies (as
is well-known) that Bĕılinson’s maximal extension is the projective cover of ı∗k∞.

The second approach is to try to obtain a quiver description. When k is algebraically closed,
the category of finite-dimensional modules over a finite-dimensional algebra is equivalent to
the category of finite-dimensional representations of a finite quiver with admissible relations
[1, Chapter II, Theorem 3.7]. Therefore, when k is algebraically closed and pPerv(X) has a
projective generator, perverse sheaves have a quiver description. The quiver is the Ext-quiver
— it has one vertex for each isomorphism class of simple objects (of which there are finitely
many, labelled by irreducible local systems on the strata) and dimk Ext1(pICL, pICM) ar-
rows from the vertex labelled by L to that labelled by M. These groups can be computed
inductively in terms of intersection cohomology groups of links, or by using a spectral se-
quence [5, §3.4]. The relations are determined by the canonical A∞-structure on the algebra
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Ext∗pPerv(X)(S,S) where S is the direct sum of the simple objects [25, §2.8.4]. This raises

two difficulties. Firstly if the perverse heart is not faithful then the underlying algebra is
not the same as Ext∗Dc(X)(S,S) in higher degrees. Whilst the latter can be computed within

Dc(X), and thereby directly related to the topology of X, the former is much less accessible.
Secondly, the A∞-structure is itself hard to construct. One can obtain the quadratic part of
the relations from (the dual of) the composition

Ext1(S,S)⊗ Ext1(S,S)→ Ext2pPerv(X)(S,S) ↪→ Ext2Dc(X)(S,S)

using the fact that the second map is injective [5, Lemma 2.3], i.e. from composition of
morphisms in Dc(X). In several very interesting examples the A∞-structure is formal and
all relations are quadratic so this suffices — see e.g. [5] and [25]. However in general the
A∞-structure is non-formal and there are also higher relations which are difficult to compute.

The third approach is via silting theory. Assume that fPerv(X) is a faithful heart for some
perversity f . This is the case for instance if X is

(1) a complex projective variety stratified by affine subvareities S with H>0(S; k) = 0
and f(S) = −dimC(S) is the middle perversity [3, §1.5]; or

(2) a compact space stratified by a simplicial triangulation and f is a ‘classical’ perversity,
i.e. f(S) = f (dimR(S)) satisfies f(0) = 0 and m − n ≤ f(n) − f(m) ≤ 0 [19, Thm
4.2].

Length hearts in Dc(X) ' Db
(
fPerv(X)

)
correspond to silting objects in the bounded homo-

topy category Kb
(
fProj(X)

)
of projective perverse sheaves [14]. In our setting, a faithful heart

has global dimension bounded by dimR(X), in particular it is finite, so that the canonical
functor

Kb
(
fProj(X)

)
→ Db

(
fPerv(X)

)
is an equivalence. Thus there is a correspondence between length hearts and silting objects
in Dc(X). Moreover, this correspondence is compatible with silting mutation and simple
Happel–Reiten–Smalø tilting.

Since each perverse heart pPerv(X) is length, each corresponds to a silting object Sp.
The latter can be obtained by starting with a basic projective generator of fPerv(X) and
performing a sequence of silting mutations corresponding to a sequence of simple tilts leading
from fPerv(X) to pPerv(X). Such a sequence always exists — if perversities p and q differ by
1 on a single stratum then the corresponding hearts are related by a Happel–Reiten-Smalø
tilt, which can be decomposed into a finite sequence of simple tilts. The perverse cohomology
pH0(Sp) is a projective generator of pPerv(X), and pPerv(X) is faithful precisely when Sp
is tilting, equivalently when pH0(Sp) ∼= Sp. Even if Sp is not tilting, there is an algebra
isomorphism End(Sp) ∼= End

(
pH0(Sp)

)
so that pPerv(X) ' End(Sp)−mod. In summary,

this approach is productive if there is a faithful heart fPerv(X) for which we can compute a
basic projective generator.
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