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Abstract 

The aim of this thesis was to investigate the use of effort-based intensity prescriptions as a 

method to reduce individual variability and the occurrence of training non-response. 

Specifically, this thesis explores the physiological, psychological, and metabolomic 

responses to the interaction of training duration and effort-based intensity on a single-bout 

basis, whole session basis, and during chronic training intervention. 

 

The first experimental study (Chapter 4) investigated individual variability during self-

paced exercise bouts at a rating of perceived exertion (RPE) of either 9, 13, or 17, 

conducted for either 1, 4, or 8 min. The study found that effort-based intensity 

prescriptions at higher RPEs and shorter durations result in lower levels of individual 

variability. The second study (Chapter 5) investigated individual variability during 

maximal isoeffort training sessions in either short interval (30 sec), long interval (5 min), 

or continuous exercise matched for total training duration. Long intervals displayed lowest 

variability in both how the session was performed as well as physiological response 

compared to short intervals and continuous sessions. The third study (Chapter 6) 

comprised a 6-week training intervention using maximal isoeffort intensity prescriptions 

using short (30 sec) or long interval (5 min) session formats, as well as a control group. 

Whilst short intervals resulted in higher levels of individual variability, a greater training 

response was found following this session format compared to both the long interval and 

control groups. The fourth study (Chapter 7) investigated the metabolomic differences 

between session formats, and between variable and consistent responding participants from 

Chapter 5. Distinct metabolomic differences were found between all session formats, and 

key metabolites were found relating to energy turnover, purine metabolism, and amino acid 

metabolism based on whether individuals were consistent or variable in session 

performance. The fifth study (Chapter 8) investigated the chronic changes in the urinary 

metabolome following the training interventions as described in Chapter 6. Several 

metabolomic markers differentiated between training responders and non-responders, in 

addition to metabolites associated with increased MMP or V̇O2max across all training 

groups. 
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The main finding of this thesis was that the use of higher intensity effort-based targets and 

shorter interval durations has potential in reducing the occurrence of non-response to 

training. 

 

Key Words: Training, Effort, Variability, Prescription, Exercise, VO2max, Cycling, 

Individualisation, HIIT, Individualised training, Between-athlete variability, Within-athlete 

variability, Training response.  
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1.1 Background 

Training to enhance exercise performance involves stressing numerous physiological 

systems in order to trigger facilitative adaptations (Borresen and Lambert 2008; Hawley 

and Burke 1998; Friel 2012; Rushall and Pyke 1991). For this training to be most effective, 

it needs to be structured according to training principles such as specificity, overload, and 

progression (Baechle, Earle and Wathen 2000; Rushall and Pyke 1991; Wilson et al. 

1993). The various modalities, structures, and types of training that are most effective at 

improving endurance performance have been widely researched, such as low intensity 

endurance training, threshold training, and high-intensity interval training (Smith 2003; 

Seiler and Tønnessen 2009; Coyle et al. 1988; Bassett and Howley 2000; Joyner and Coyle 

2008; Jacobs et al. 2011; Lundby and Robach 2015; Coyle et al. 1991; Bassett 2002). 

 

Differences in response to exercise training and the associated physiological adaptations is 

termed individual variability and can be split into variation which is observed within the 

same individual (within-athlete variability), and variation which is observed between 

individuals (between-athlete variability; Hecksteden et al. 2015). The large between-

athlete differences in training response are commonly observed throughout sports science 

literature makes prescribing optimal training from a scientific basis difficult (Hopker and 

Passfield 2014). Within scientific research investigating exercise training interventions, the 

most common method of reporting the efficacy of an intervention involves presenting a 

group mean change, thus assuming that the average response in a study group is 

representative of each individual’s response to training (Mann, Lamberts and Lambert 

2014; Timmons 2011; Bacon et al. 2013). While exercise interventions regularly display 

clear alterations in group mean parameters, these changes often have large between-athlete 

variability in response between participants which is reflected by a large sample standard 

deviation (Astorino and Schubert 2014; Sisson, Katzmarzyk, Earnest, et al. 2009; 

Scharhag-Rosenberger et al. 2010; Scharhag-Rosenberger et al. 2012a; Bouchard, An, 

Rice, Skinner, et al. 1999; Kohrt, Malley, Coggan, et al. 1991; Kuehnbaum, Gillen, 

Kormendi, et al. 2015; Lortie et al. 1984; Vollaard et al. 2009). The presence of between-

athlete variability has led to the notion of ‘responders’ and ‘non-responders’ to training 

interventions as an explanation for large levels of between-athlete variability commonly 

reported by training studies (Mann, Lamberts and Lambert 2014). However, it is indeed 

possible to have large levels of between-athlete variability and no non-responders, as well 

as low levels of between-athlete variability and no responders, respectively. It has been 
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shown that an individual’s genetics can influence baseline phenotype; for example, 50 % 

of the variance in maximal oxygen uptake (V̇O2max) could be explained by hereditary 

factors (Bouchard et al. 1998; Bouchard, An, Rice, Skinner, et al. 1999; Bouchard and 

Rankinen 2001). Training response can also be influenced by many other factors, such as 

epigenetic environmental stressors (Bouchard, Sarzynski, et al. 2011; Rankinen et al. 

2012), and therefore an individual’s hereditary influence may contribute more towards pre-

training phenotype, and not necessarily the training response itself (Bouchard et al. 1998; 

Gaskill, Rice, et al. 2001; An et al. 2002). This pre-training phenotype is altered with 

training, which disrupts homeostasis results in a cascade of effective molecular signal 

processes and gene expression (Coffey and Hawley 2007). An individual’s baseline 

phenotype can also influence training response in different parameters to varying degrees; 

for example, baseline measurements explain only 1 % of the changes in V̇O2max following 

training, whereas 40 % of the changes in observed heart rate (HR) at 50 W can be 

explained by baseline phenotype (Bouchard and Rankinen 2001). Commonly 

acknowledged sources of error that influence levels of between-athlete and within-athlete 

variability are random measurement error (Hopkins et al. 2009; Hopkins 2000; Scharhag-

Rosenberger et al. 2009), lifestyle factors (Ehlert, Simon and Moser 2013), and training 

program characteristics such as the basis for prescription of exercise intensity (Mann, 

Lamberts and Lambert 2014). 

 

The presence of between-athlete and within-athlete variability in exercise stimulus leads to 

difficulty in applying the outcomes of exercise training studies to result in desired 

physiological adaptations on an individually optimised basis (Hopker and Passfield 2014). 

The extent to which between-athlete and within-athlete variability in the methods used to 

prescribe exercise training influences the outcomes of training interventions has not been 

fully explored (Mann, Lamberts and Lambert 2013). Indications that training intensity 

prescriptions may result in large degrees of between-athlete variability are apparent when 

examining differences in time to exhaustion between individuals when exercise is 

standardised to a set percentage of V̇O2max (%V̇O2max; Coyle et al. 1988; Bouchard, An, 

Rice, Skinner, et al. 1999; Vollaard et al. 2009; Scharhag-Rosenberger et al. 2010). While 

it has been well established that there is a relationship between both submaximal and 

maximal laboratory measures and endurance performance (Joyner and Coyle 2008), such a 

relationship does not guarantee their efficacy as a means of prescribing training intensity. 

When exercising at 88 % V̇O2max, observed time to exhaustion (TTE) in cyclists can vary 

from 12 min to 75 min (Coyle et al. 1988), and large between-athlete variability in blood 



4 

lactate (BLa-1) response (Coyle et al. 1988; Scharhag-Rosenberger et al. 2010), showing 

that differing levels of cellular and metabolic stress are present between individuals even 

when using a standardised method for prescribing exercise intensity. This raises serious 

questions about the suitability of prescribing training based on standardised percentages of 

maximal values (Hopker and Passfield 2014). 

 

Effort-based training prescriptions have been used by coaches in the prescription of athletic 

training (Seiler and Hetlelid 2005; Seiler and Sjursen 2004; Stepto et al. 1999; Seiler et al. 

2013; Sandbakk et al. 2013) and are implemented by instructing athletes to self-pace their 

exercise intensity according to a target level of perceived effort. This method has been 

utilised in training research, commonly being incorporated into high-intensity interval 

training by using a “maximal session effort” prescription, which involves participants 

regulating their exercise intensity so that when the exercise session is completed, maximal 

effort is achieved by the end (Seiler and Hetlelid 2005; Seiler et al. 2013; Seiler and 

Sjursen 2004). Previous research indicates that the between-athlete variability of 

performance and response in self-paced work bouts may vary in an intensity-dependent 

manner (Nicolò, Bazzucchi, Haxhi, et al. 2014; Seiler and Sylta 2017). Effort-based 

intensity prescriptions requires athletes to self-regulate their work rate to match a target 

perception of effort, allowing the athlete to adjust for the many factors that may influence 

their exercise performance on a given day; such as sleep, stress, wellness, or anxiety 

(Azevedo et al. 2021; Abbiss and Laursen 2008; Ungureanu et al. 2020; Azevedo et al. 

2019; Millet 2011; Yoon et al. 2009). Gaining a further understanding of both the between-

athlete and within-athlete variability surrounding the use of effort-based exercise intensity 

prescriptions will further facilitate its use in applied and research settings (Hopker and 

Passfield 2014). 
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This review of the literature will explore the physiological adaptations and processes that 

occur following endurance training. The review will provide an overview of training 

structure and organisation, introducing high intensity interval training. Following this, the 

issue of individual variability in training response will then be explored, along with the 

proposed factors involved, examining specifically the inadequacy of existing standardised 

exercise intensity prescription methods. The use of effort-based intensity prescriptions will 

be reviewed as a potential method to address the individual variability in training response. 

 

2.1 Physiological adaptations following endurance training 

The training process involves the imposition of an activity that stresses homeostasis, 

followed by a period of recovery (Morton 1997). The initial impact of this stimulus will 

result in temporary fatigue if the stimulus is of sufficient duration, intensity, and frequency 

(Morton 1997; Budgett 1998). Following an exercise stimulus, a cascade of metabolic, 

respiratory, cardiovascular, endocrinal, and neuromuscular adaptations take place (Jones 

and Carter 2000). Adaptations such as these are crucial for the improvements observed in 

exercise performance and affect key parameters of endurance performance, such as 

exercise economy, V̇O2max and the lactate threshold (Midgley, McNaughton and Jones 

2007) and these are reviewed in the following section  

 

Cardiorespiratory fitness is commonly assessed by the measurement of V̇O2max, which in 

turn is widely accepted as being representative of overall health and fitness, as it reflects 

the capacity of the pulmonary, cardiovascular, and neuromuscular systems during exercise 

(Blair 1996; Williams 2001; Jones and Poole 2005). V̇O2max is the upper limit of maximal 

oxygen uptake achieved during high-intensity exercise (Joyner and Coyle 2008). V̇O2max is 

one of the factors determining the maximal rate at which adenosine triphosphate (ATP) is 

resynthesised by primarily aerobic processes during exercise that lasts longer than a few 

seconds (Joyner 1991; Joyner 1993; Bassett and Howley 2000; Coyle 1995). Early 

research reported finding a linear relationship between exercise work rate and V̇O2, up 

until a work rate at which V̇O2 was observed to plateau and not increase any further (Hill 

and Lupton 1923). Following this discovery there were many investigations into the 

possible determinants of V̇O2max (Hill and Lupton 1923; Bassett and Howley 2000; di 

Prampero 1985; di Prampero and Ferretti 1990; Wagner 1992; Wagner 1993), with the 

major factors being identified to be differences in maximal cardiac output and stroke 
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volume (Ekblom and Hermansen 1968), in addition to other factors such as blood 

oxygenation, muscular oxygen extraction, red blood cell mass and muscular blood flow 

(Bassett and Howley 2000; Kanstrup and Ekblom 1984; Rowell 1986; Dempsey 1986; 

Saltin and Strange 1992; Mitchell and Sproule 1958). With the adaptations leading to an 

increased V̇O2max being well documented (Midgley, McNaughton and Jones 2007), V̇O2max 

is commonly used as a reference point for prescribing exercise intensity (Bouchard, An, 

Rice, Skinner, et al. 1999; Midgley, McNaughton and Wilkinson 2006; Vollaard et al. 

2009; Bacon et al. 2013; Gormley et al. 2008; Burgomaster et al. 2008; Howley, Bassett 

and Welch 1995; Ingham, Fudge and Pringle 2012). 

 

It has been shown that the ability to maintain a high V̇O2 during exercise determines 

success in endurance competition (Joyner and Coyle 2008), and elite endurance athletes 

can record V̇O2max values in the range of 70-85 ml.kg-1.min-1 for males, and 60-75 ml.kg-

1.min-1 for females (Coyle et al. 1991; Lucia, Hoyos and Chicharro 2001; Lundby and 

Robach 2015; Lucía et al. 1998; Jones 2006). Interestingly, despite V̇O2max displaying a 

strong correlation with performance levels in individuals across a range of fitness levels 

(Coyle et al. 1988; Vollaard et al. 2009), in highly trained athletes the relationship between 

performance and V̇O2max is not as strong (Lucía et al. 1998; Lucia, Hoyos and Chicharro 

2001; Jones 2006). Furthermore, it has been observed that in highly trained athletes there 

can be no relationship between changes in V̇O2max and changes in performance (R2 = .05; 

Vollaard et al. 2009; Costill et al. 1976). This indicates that there are other factors that 

determine endurance performance capability beyond V̇O2max alone, such as the lactate 

threshold (LT) and exercise economy (Jones and Carter 2000). 

 

In an acute bout of incremental exercise, the concentration of BLa-1 can be used to 

establish changes in metabolic substrate use (Midgley, McNaughton and Jones 2007). The 

extensive study of the BLa-1 response to exercise and the distinctive breakpoints that occur 

in the relationship between exercise intensity and BLa-1, has led to numerous terms being 

used to describe them; LT (Ivy et al. 1980), anaerobic threshold (Heck et al. 1985), 

individual anaerobic threshold (Stegmann, Kindermann and Schnabel 1981), the onset of 

BLa-1 accumulation (Sjödin and Jacobs 1981), maximal lactate steady state (MLSS; Freund 

et al. 1986; Pringle and Jones 2002) and the lactate turn point (Davis et al. 1983). The first 

breakpoint that occurs in the relationship between BLa-1 and exercise intensity has been 

commonly referred to as the LT (Midgley, McNaughton and Jones 2007) and is associated 
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with the increase of  BLa-1 from a steady baseline during incremental exercise. The most 

common criteria used to determine LT is a 1 mmol.L-1 rise above baseline BLa-1 level, 

representing a marginal change in the accumulation of BLa-1 due to the increase in exercise 

intensity (Yoshida et al. 1987; Coyle et al. 1988; Jones and Carter 2000; Coyle et al. 

1983). The secondary breakpoint, commonly referred to as the lactate turn point (LTP; 

Beneke 2003) is associated with a dramatic rise in BLa-1 (Hoefelmann et al. 2014), 

however, the main criteria used to establish LTP is greatly debated (Hoefelmann et al. 

2014; Faude, Kindermann and Meyer 2009). Criteria have been presented for establishing 

LTP, such as a fixed concentration of 4 mmol.L-1 (Sjödin and Jacobs 1981), 3.5 mmol.L-1 

(Heck et al. 1985), adding 1.5 mmol.L-1 to the lowest ratio of lactate:workload (Coyle et 

al. 1983), or the “Dmax” method involving the curvilinear relationship between BLa-1 and 

workload (Cheng et al. 1992). Despite this, the importance of the relationship between 

BLa-1 and exercise intensity on endurance performance is widely acknowledged. When 

exercising at 88 % V̇O2max until exhaustion, athletes whose LT occurred at lower % of 

V̇O2max (~66 % V̇O2max) reached exhaustion in almost half the time of those whose LT 

occurred higher relative to V̇O2max (~82 % V̇O2max; ~ 29 min vs ~ 60 min; Coyle et al. 

1988). This highlights the importance of the ability to sustain a high percentage of V̇O2max 

at LT, and also indicates that this is a potential source of training-induced exercise 

performance improvements (Coyle et al. 1988). 

 

Following a successful period of endurance training, a noticeable rightward shift of the 

lactate threshold can be observed, meaning higher intensities of exercise can be sustained 

and correspond with an improved LT and LTP. BLa-1 accumulation is dependent on the 

balance between the rate of lactate buffering from the muscle to the bloodstream and 

subsequent clearance from the blood (MacRae et al. 1992; Phillips et al. 1995). Exercise 

training results in reductions in BLa-1 accumulation at submaximal exercise intensities and 

also delays the occurrence of LT to higher absolute exercise intensity (Favier et al. 1986). 

An increased rate of lactate clearance from the muscle has been reported following 

endurance training (Donovan and Brooks 1982). The mechanisms behind these adaptations 

are thought to be mainly due to mitochondrial enzyme activity (Ivy et al. 1980; Holloszy 

and Coyle 1984; Coyle 1999; Coyle et al. 1985) and the increase in the levels of these 

enzymes along with the increase in size and number of mitochondria (Holloszy and Coyle 

1984). Further improvements are likely due to the increase in the protein monocarboxylate 

transporter (MCT), as both lactate clearance capacity and the expression of MCTs in the 

muscle are improved after endurance training (Juel 2001). Within type I muscle fibres 
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MCT1 is the main MCT present, importing lactate into the muscle for oxidisation 

(McCullagh et al. 1996). This process is possible to be reversed, with MCT1 transporting 

lactate into the blood from the muscle, with this process is influenced by the concentration 

gradient of lactate across the sarcolemma (Bonen et al. 2000). Another MCT responsible 

for the handling of lactate is MCT4, predominantly located within fast-twitch muscle fibres 

(Wilson et al. 1998). Following endurance training, it has been shown that MCT1 

concentration increases to a greater extent in comparison to MCT4 (Pilegaard, Terzis, et al. 

1999; Pilegaard, Domino, et al. 1999). The observed increase in LT is likely to be due to 

the increased capacity to transport lactate out of the working muscle, in addition to the 

ability to uptake lactate, complementing lowered lactate production levels during exercise. 

To improve LT further following training, it is likely that a muscle fibre type transportation 

is required. In comparison to skeletal muscle containing high proportions of type I fibres, 

skeletal muscle containing high proportions of type II fibres displays approximately half 

the lactate transportation ability (Hawley and Stepto 2001). Following endurance training, 

hypertrophy of type I muscle fibres can occur, in addition to the transition of type IIb into 

type IIa fibres (Spina et al. 1996; Andersen and Henriksson 1977), and type IIa into type I 

in some cases (Simoneau et al. 1985; Sale et al. 1990). 

 

A key adaptation to endurance exercise is the mitochondrial biogenesis that occurs (Irrcher 

et al. 2003; Wu et al. 2002), increasing mitochondrial content in the muscle, and enhancing 

endurance performance (Irrcher et al. 2003; Adhihetty et al. 2003). This increased 

mitochondrial content improves fatigue resistance and results in greater oxidative capacity 

(Hood et al. 2000), as displayed by an increased V̇O2max, LT, and exercise economy 

(Holloszy and Booth 1976; Sjödin, Jacobs and Svedenhag 1982; Hoppeler et al. 1985). 

Following endurance training, mitochondrial biogenesis is thought to change substrate use 

(Holloszy and Coyle 1984), decreasing carbohydrate utilisation rates and increasing fat 

utilisation at the same relative exercise intensity (Coggan et al. 1995). The sparing of 

muscle glycogen, occurring as a direct result of the alteration in substrate usage, has been 

shown to result in improved exercise performance (Hermansen, Hultman and Saltin 1967). 

Lowered reliance on carbohydrate oxidation and anaerobic metabolism would lead to 

lowered lactate production and consequentially an increase in LT, resulting in further 

improvements in performance (Holloszy and Coyle 1984). Alongside the alterations in 

substrate usage, higher levels of lactate oxidation as a result of increased levels of MCT1 

may be a further result of mitochondrial biogenesis (Dubouchaud et al. 2000). 
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In addition to V̇O2max and LT, the ability of an individual to effectively convert energy into 

work, also known as gross efficiency (GE) is a further key determinant of performance 

(Joyner and Coyle 2008; Gaesser and Brooks 1975). Generally, GE is commonly observed 

within a range of 18 – 23 % (Coyle et al. 1992; Hopker, Coleman and Wiles 2007; 

Moseley and Jeukendrup 2001; Moseley et al. 2004; Hopker et al. 2012; Nickleberry and 

Brooks 1996), and can be increased through training, although displaying an inverse 

relationship with V̇O2max (Hopker et al. 2012; Hopker, Coleman and Passfield 2009; 

Hopker et al. 2010; Coyle 2005; Santalla, Naranjo and Terrados 2009). The exact 

determinants of GE remain to be fully elucidated, but muscle fibre type distribution, 

training status, and genetic factors may play key interacting roles (Jones 2006; Hopker et 

al. 2013; Holloszy et al. 1977). The observed positive relationship between GE and 

endurance training status (Hopker et al. 2013) may be likely due to muscle fibre type 

transformation from predominantly Type II to Type I, which has been shown to be 

associated with increased exercise economy (Dubouchaud et al. 2000). The alteration in 

fibre type is thought to result in lowered energy cost of contraction required to meet the 

necessary force requirement of exercise (Crow and Kushmerick 1982). This is further 

supported by the observation that Type I fibres display higher blood flow capacity and 

have a lower oxygen consumption than Type II fibres, and that Type I fibres are more 

abundant in the musculature of endurance-trained athletes (Joyner and Coyle 2008). 

However, despite the indication that muscle fibre type may be important, it has been 

observed that athlete training status influences GE to a greater extent than muscle fibre 

type (Hopker et al. 2013). 

 

Professional cyclists are required to have high GE in order to sustain the high power 

outputs associated with successful performance in competition (Faria, Parker and Faria 

2005b; Faria, Parker and Faria 2005a). It has been shown that GE is related to endurance 

performance in short time trials (5 min; r = .48) and longer performance trials (40 km and 

1 h; r = .58; Jobson et al. 2012). Furthermore, a decrease in GE can be achieved following 

moderate-intensity exercise and is associated with reduced performance (Passfield and 

Doust 2000), which is thought to be due to progressively increasing levels of muscle 

oxygen consumption (O’Grady, Pageaux and Hopker 2014; Hopker, O’Grady and Pageaux 

2017). It has been shown that training can improve GE, especially the completion of high-

intensity interval training (HIIT; Hopker et al. 2010). 
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2.2 The training process 

There are numerous ways in which training can be structured in order to improve 

performance involving the manipulation of frequency, intensity, and duration of training 

(Busso 2003; Esteve-Lanao et al. 2005; Hawley 2008). The goal of training is to elicit 

specific physiological stress in order to induce adaptations that are associated with 

improved performance (Borresen and Lambert 2009; Hawley and Burke 1998). However, 

the implementation of training is a complex process with many variations in training 

volume and intensity distribution possible (Seiler and Kjerland 2006) that in turn affect the 

resultant adaptive responses (Coffey and Hawley 2007). Training intensity has been shown 

as a key driver of improvement in V̇O2max (Midgley, McNaughton and Wilkinson 2006; 

Bacon et al. 2013; Wenger and Bell 1986), leading to a wealth of investigations into the 

efficacy of varying distributions of training intensity for improving V̇O2max (Tabata et al. 

1996; Helgerud et al. 2007; Wisløff et al. 2007; Gormley et al. 2008; Neal, Hunter and 

Galloway 2011; Rodas et al. 2000). The following section will explore the interaction 

between training volume and training intensity, specifically low-intensity training, 

threshold training, HIIT, and the differences in associated training adaptations. 

 

The traditional methods of improving endurance performance involve large volumes of 

exercise at a low intensity, typically equating to ~ 65 – 75 % of V̇O2max, < 2 mmol.L-1 BLa-

1 or < 80 % maximal HR (HRmax; Laursen and Jenkins 2002; Seiler and Kjerland 2006). 

Over a period as short as 3 days, various metabolic and haemodynamic adaptations can be 

triggered following low-intensity training (Coyle 1999; Green et al. 1987; Green, Jones 

and Painter 1990). It is typical that further improvements in exercise performance can be 

obtained by increasing training volumes when using low-intensity training, as can be 

observed when completing 3 – 5 training sessions per week over a period of 3 – 5 weeks 

(Laursen and Jenkins 2002). 

 

Following low-intensity training, the main physiological adaptations that occur are thought 

to be due to increased calcium-calmodulin kinase (CaMK) signalling pathway activity, due 

to increased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) 

activation (Laursen and Jenkins 2002; Coffey and Hawley 2007). A cascade of cellular 

processes involved in mitochondrial biogenesis occurs following low-intensity training, 

beginning with increased cytosolic calcium concentrations resulting from increased 
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excitation-contraction coupling (Hood 2001). Elevated calcium concentration stimulates a 

number of kinases, including CaMK and phosphates such as calcineurin, triggering 

alterations in gene transcription (Hood 2001). In addition to these pathways relating to 

calcium concentrations, additional adaptations can also result from elevated ATP 

consumption rates, reduced ATP synthesis rates, as well as the associated adenosine 

monophosphate (AMP):ATP ratio increase. The AMP:ATP ratio has been shown to 

stimulate adenosine monophosphate activated protein kinase (AMPK; Hardie and 

Sakamoto 2006). Both calcium-related pathways and AMPK regulate the expression of 

PGC-1α. 

 

The initiation of mitochondrial biogenesis is dependent on the metabolic fluctuations that 

occur during exercise, leading to a cascade of signalling responses, importantly CaMK and 

AMPK phosphorylation, leading to an upregulation of PGC-1α (Combes et al. 2015; 

Coffey and Hawley 2007; Jäger et al. 2007; Puigserver and Spiegelman 2003; Ojuka 

2004). PGC-1α is widely recognised as holding a vital role of master regulator of 

mitochondrial biogenesis (Baar 2004; Puigserver and Spiegelman 2003), and it has been 

established that PGC-1α mRNA and proteins are increased following endurance training 

(Taylor et al. 2005). PGC-1α targets adaptations as a result of its interactions with several 

DNA binding transcription factors and the coordination of numerous biochemical events, 

such as recruiting of chromatin modifying enzymes (p300/CBP and SRC-1; Puigserver et 

al. 1999), triggering of basal transcription mechanisms (Wallberg et al. 2003), and 

connecting transcriptional signals to RNA splicing (Monsalve et al. 2000). Despite these 

involvements, it appears that in PGC-1α knockout mice other factors can exert training-

induced adaptations (Leick et al. 2008). However, a blunted expression of genes and 

protein expression involved in oxidative metabolism is observed in PGC-1α knockout mice 

(Arany et al. 2005; Handschin and Spiegelman 2008; Leick et al. 2008), indicating that 

PGC-1α is still vital for both the adaptive response following exercise and responses that 

occur during endurance exercise. 

 

Low-intensity exercise training has been shown to result in important adaptations, such as 

increases stroke volume and blood plasma, as well as mitochondrial biogenesis and 

capillarisation (Midgley, McNaughton and Wilkinson 2006; Romijn et al. 1993). Higher 

rates of glucose and fat utilisation have been reported in response to high volumes of low-

intensity training, increasing exercise performance in endurance events (Romijn et al. 
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1993). Greater utilisation of fat and glucose would result in greater aerobic energy 

generation capacity and would likely reduce required recovery time following anaerobic 

energy production by improving oxidative flux (Stoggl and Sperlich 2014). One of the 

potential triggers of mitochondrial biogenesis is thought to be related to the higher relative 

fat oxidation rates that occur when training at low exercise intensities (Holloszy 2008). 

However, if an athlete’s training consists of solely low-intensity training without 

progression, it is unlikely that V̇O2max and LT would continue to improve over a 

longitudinal period, leading to a plateau in training response. This observed plateau in 

progression has been observed in well-trained athletes if no training intensities above the 

LT are completed (Costill et al. 1988; Laursen and Jenkins 2002; Stoggl and Sperlich 

2014). Therefore, it is important that training prescription involves a mix of low and high-

intensity training into athletes’ regimes. 

 

Initially designed as a method of completing targeted exercise training at or near intensities 

corresponding to an athlete’s LT, threshold training (Seiler and Kjerland 2006) is a robust 

method for increasing exercise performance (Denis, Dormois and Lacour 1984; Gaskill, 

Walker, et al. 2001; Kindermann, Simon and Keul 1979; Londeree 1997). Threshold 

training has sometimes been the training modality that is favoured in several world-class 

cross-country skiers from Norway specialise in shorter duration sprint events (Sandbakk et 

al. 2011). It has also been shown that in elite cross-country skiers, running speed at LT and 

performance in a timed run was improved to a greater extent following training that results 

in BLa-1 concentrations of 3 – 4 mmol.L-1 in comparison with low-intensity training at < 3 

- 4 mmol.L-1 (Evertsen, Medbø and Bonen 2001). However, there is some notion that 

threshold training alone for well-trained athletes could be ineffective or possibly even 

counter-productive to endurance exercise performance (Esteve-Lanao et al. 2005; Guellich 

and Seiler 2010). However, threshold training remains a valuable addition when included 

in small doses in conjunction with other training modalities (Seiler and Kjerland 2006). 

 

In order to increase endurance performance to greater levels than those achieved when 

using solely low-intensity training, HIIT can be conducted; with the potential to observe 

improvements in both untrained and trained individuals (Laursen and Jenkins 2002; 

Wenger and Bell 1986; Bacon et al. 2013). The ability produce high levels of physiological 

stress over a short period of time demonstrates the potency of HIIT as a training 

intervention (Burgomaster et al. 2008; Gibala et al. 2006). Following HIIT, it has been 
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observed that endurance performance increases due to improvements in V̇O2max 

(Burgomaster et al. 2008; Daussin et al. 2007; Daussin et al. 2008; Gibala et al. 2006; 

Laursen and Jenkins 2002; Midgley, McNaughton and Wilkinson 2006; Rønnestad, 

Hansen, et al. 2014) lactate and ventilatory thresholds (Acevedo and Goldfarb 1989; Edge 

et al. 2005), and both time trial (TT), and TTE performance (Lindsay and Hawley 1996). 

HIIT serves to trigger adaptations responsible for improving performance primarily due to 

the activation of AMPK and the resultant expression of PGC-1α (Laursen 2010). These 

adaptations are predominantly involved in allowing greater availability and extraction of 

oxygen, alongside increases in V̇O2max (Daussin et al. 2007; Helgerud et al. 2007). Further 

adaptations are centred around improvements in aerobic and anaerobic metabolism 

(MacDougall et al. 1998) by means of increasing oxidative capacity and mitochondrial 

biogenesis (Burgomaster et al. 2008; Daussin et al. 2007; Daussin et al. 2008; Gibala et al. 

2006), as well as improvements in stroke volume (Helgerud et al. 2007; Wisløff et al. 

2007), blood volume (Shepley et al. 1992), and oxygen extraction (Daussin et al. 2007). 

 

HIIT commonly incorporates intermittent bouts of longer (~2 – 6 min) or shorter (~ 30 – 

60 sec) exercise bouts, completed at intensities at, or near V̇O2max (e.g. > 90 % of V̇O2max; 

Gibala et al. 2006), and interspersed with periods of active or passive recovery 

(Burgomaster et al. 2005; Tabata et al. 1996). The potency of HIIT can result in significant 

increases in V̇O2max following interventions ranging from 2 to 6 weeks in duration (Poole 

and Gaesser 1985; Tabata et al. 1996; Rodas et al. 2000; Edge et al. 2005; Daussin et al. 

2007; Cunningham, McCrimmon and Vlach 1979; Driller et al. 2009). In addition, HIIT is 

effective at improving exercise performance in both untrained (Holloszy et al. 1977; Rodas 

et al. 2000; Gormley et al. 2008) and trained individuals (Laursen and Jenkins 2002). The 

duration of the work interval during HIIT is a key factor when programming training. 

Following an investigation into the differences between HIIT using 2 min and 30 sec 

periods, it was found that both groups increased their performance and physiological 

variables by a similar extent (~ 3 – 8 %; Laursen et al. 2002; Laursen et al. 2005). The 

interest in the impact of interval duration led to extensive discussion around the training 

protocols, which would result in the greatest accumulated time exercising above 90 % 

V̇O2max (Buchheit and Laursen 2013; Laursen 2010; Laursen and Jenkins 2002; Midgley, 

McNaughton and Wilkinson 2006). It has been shown that shorter maximal intervals, such 

as ~ 30 sec, can result in superior training adaptations when compared with longer 

intervals, such as ~ 5 min which are also performed to the limit of tolerance (Rønnestad, 

Hansen, et al. 2014; Rønnestad et al. 2021). Furthermore, a key interaction is present 
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between HIIT interval duration and intensity with the accumulated workloads differing 

between prescriptions, but with varying outcomes observed. It has been shown that 

accumulating a duration of ~10 – 15 min at ~ 95 % HRmax is more effective at improving 

V̇O2max than ~25 min at ~ 85 % HRmax (Helgerud et al. 2007). However, in contrast to this, 

it has also been shown that accumulating ~ 30 – 45 min at ~ 90 % HRmax is more effective 

at improving V̇O2max than ~15 – 20 min at ~ 95 % HRmax (Seiler et al. 2013; Sandbakk et 

al. 2013). 

 

A key factor in HIIT training relates to the ratio between work and recovery periods, with 

differences in this ratio resulting in varying neuromuscular and metabolic responses. 

Primarily, the intermittent nature of HIIT allows greater time to be spent at high levels of 

V̇O2max when compared to continuous exercise (Billat 2001; Seiler et al. 2013). 

Furthermore, the transitions from work to rest result in a greater occurrence of V̇O2 

fluctuations, thought to be one of the most important mechanisms of the improvements 

which occur following HIIT training (Cochran et al. 2014; Combes et al. 2017; Edge et al. 

2013; Tucker et al. 2015). A comparison between HIIT programs using a ratio of 40:20 

sec, 30:30 sec, and 20:40 sec demonstrated that 40:20 sec resulted in higher HR, minute 

ventilation (VE), V̇O2, and BLa-1 than the other two protocols (Ballor and Volovsek 1992). 

It has also been demonstrated that compared to a work:rest ratio of 30:30 sec, a ratio of 

40:20 sec results in longer periods of elevated BLa-1, V̇O2, and other ventilatory 

parameters when completed at the same absolute work intensity (Nicolò, Bazzucchi, Lenti, 

et al. 2014). Interestingly, (Ballor and Volovsek 1992) utilised fixed absolute work 

intensities and overall durations, meaning that the 40:20 sec protocol was more demanding 

than the 30:30 and 20:40 sec protocols. Similarly, (Nicolò, Bazzucchi, Lenti, et al. 2014) 

utilised fixed absolute work intensities but prolonged the duration of the exercise protocol 

to exhaustion, resulting in considerably longer exercise duration in the 30:30 sec protocol 

compared to 40:20 sec. When both effort and exercise duration is controlled using an 

effort-based intensity prescription, similar physiological responses are observed between 

protocols using work:rest ratios of 40:20 sec, 30:30 sec, and 20:40 sec. Furthermore, it has 

been recently demonstrated that passive recovery allows participants to complete higher 

work bout power outputs with a lower overall session effort (Fennell and Hopker 2021). 

The above indicates that overall effort is a key parameter to control when comparing HIIT 

interventions, along with the total duration of work. 
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Summary 

The organisational structure of training, involving the distribution of accumulated training 

time across various exercise intensities clearly can initiate a vast array of adaptive 

responses to improve endurance performance. The molecular response to training can 

involve the activation of both AMPK as a result of HIIT training, as well as CaMK from 

large volumes of low-intensity training (Laursen 2010). The adaptations that occur in an 

intensity-dependent manner influence a range of performance-related measures, such as 

increased numbers of type I muscle fibres, mitochondrial biogenesis, improved fat 

oxidation ability, and increases in glucose transportability (Coffey and Hawley 2007). 

Mixing exercise intensities has been shown to induce varying levels of cellular stress, 

increasing expression of signalling molecules which have similar downstream adaptations 

(Baar 2006), and therefore observed performance improvement is likely to be a product of 

the synergy of both intensity and duration (Hawley and Stepto 2001). However, there are 

often inconsistencies in the findings of exercise training studies, with some studies 

demonstrating HIIT results in greater improvements versus moderate-intensity training 

(Helgerud et al. 2007; Wisløff et al. 2007; Gormley et al. 2008), whilst others show similar 

levels of effectiveness between modalities (Burgomaster et al. 2008; Gibala et al. 2006). 

 

2.3 Individual response to training 

The most common reporting method throughout the literature on training studies is for 

group training effects to be reported as the mean response and standard deviation (SD). 

Interestingly, within normally distributed data sets, 32 % of training response 

measurements are greater than 1 SD away from the mean response (Cohen and Holliday 

1979). This could indicate the presence of a large amount of between-athlete variability 

observed within traditional training studies if the observed SD is large. From a clinical 

perspective, between-athlete variability in exercise training response leads to a level of 

uncertainty following rehabilitative programs and reducing the occurrence of adverse or 

non-response to training (Bouchard, An, Rice, Skinner, et al. 1999; Bouchard, Blair, et al. 

2012; Boule, Weisnagel, et al. 2005; Scharhag-Rosenberger et al. 2012; Vollaard et al. 

2009; Timmons et al. 2005). 

 

Between-athlete variability is a phenomenon that has been observed in various parameters, 

such as V̇O2max (Hamel et al. 1986; Bouchard and Rankinen 2001; Scharhag-Rosenberger 



17 

et al. 2012; Kohrt, Malley, Coggan, et al. 1991; Hautala et al. 2003; Hautala et al. 2006; 

Sisson, Katzmarzyk, Earnest, et al. 2009; Vollaard et al. 2009; McPhee et al. 2010; 

Karavirta et al. 2011; Hautala et al. 2012), aerobic threshold (Prud’homme, Bouchard and 

Leblanc 1984), anaerobic threshold (Scharhag-Rosenberger et al. 2012; Prud’homme, 

Bouchard and Leblanc 1984), TT performance (Vollaard et al. 2009), resting HR 

(Scharhag-Rosenberger et al. 2012), exercise HR (Bouchard and Rankinen 2001; 

Scharhag-Rosenberger et al. 2012), resting muscle glycogen (Vollaard et al. 2009), muscle 

enzyme activity (Hamel et al. 1986; Vollaard et al. 2009; McPhee et al. 2011), and systolic 

blood pressure during exercise (Bouchard and Rankinen 2001). As many potential factors 

influence individual variation in response to exercise training, isolating exact training 

responses in individuals becomes more of a challenge (Hecksteden et al. 2015). Variation 

in these parameters complicates our understanding of the physiological response to training 

in that a high-responding individual in one parameter may display a low response in 

another parameter (Vollaard et al. 2009; Scharhag-Rosenberger et al. 2012). This has led 

to the adoption of the notion of individual responsiveness to training (Bouchard and 

Rankinen 2001; King et al. 2008; Mann, Lamberts and Lambert 2014). 

 

Research into the sources of variability in training response was highlighted by the 

findings of a research consortium between five laboratories, with studies involving 

involved over 40 African American and 90 Caucasian families, termed the HERITAGE 

Family study (Bouchard, Leon, et al. 1995). The investigation required participants to 

follow an endurance training program over 20 weeks using a standardised intensity 

prescription of a progressive build in %V̇O2max within sessions from 55 % to 75 % and 

examined the resultant metabolic and cardiovascular responses. With entire families being 

recruited, the influence of genetics on training adaptation was explored by looking at 

familial aggregation (Bouchard, An, Rice, Skinner, et al. 1999; Perusse et al. 2001; Rice et 

al. 2001; Rice et al. 2002; Rico-Sanz et al. 2003), major gene effects (An et al. 2003; An et 

al. 2005), heritability (Gaskill, Rice, et al. 2001; Bouchard, An, Rice, Skinner, et al. 1999; 

Perusse et al. 2001; Rice et al. 2001; Rice et al. 2002), and specific polymorphisms 

(Bouchard, Sarzynski, et al. 2011; Rankinen et al. 2012). Heritability was found to explain 

up to 50 % of the observed variance in V̇O2max improvements following training (Bouchard 

et al. 1998), up to 59 % of the observed variance in HR when exercising at 50 W prior to a 

training intervention (An et al. 2002), and up to 58 % of the variance in V̇O2 at VT1 

(Gaskill, Rice, et al. 2001). Familial aggregation was found to be present in the maximal 

enzyme activity in the untrained state of the oxidative, glycolytic, and phosphagen 
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pathways (Rico-Sanz et al. 2003). It was also observed that variance in 21 single 

nucleotide polymorphisms could explain approximately 50 % of the observed variance in 

V̇O2max improvements following training (Bouchard, Sarzynski, et al. 2011), and a further 

9 single nucleotide polymorphisms could explain approximately 36 % of the observed 

variance in HR when exercising at 50 W (Rankinen et al. 2012). Following the findings of 

the HERITAGE Family study, it was concluded that hereditary influence contributes 

greater towards the phenotype of the individual before training, rather than the magnitude 

of the training response itself (Bouchard et al. 1998; Gaskill, Rice, et al. 2001; An et al. 

2002). As well as the apparent genetic basis, there are many other factors present which 

could influence an individual’s training response, such as lifestyle factors, nutrition, and 

training program characteristics (Mann, Lamberts and Lambert 2014). It is well known that 

training-related improvements are greatly dependent on the relative stress that is exerted on 

the individual during training (Coyle et al. 1988; Hecksteden et al. 2015). Expanding our 

knowledge surrounding both within-athlete variability and between-athlete variability in 

exercise response can help researchers and practitioners prescribe more effective training 

interventions (Chrzanowski-Smith et al. 2020). 

 

The training-related interaction factors such as exercise intensity, duration, and interval 

format exert a specific level of cellular stress, presenting a stimulus for adaptive processes 

to initiate. The manner in which exercise intensity is prescribed during research into 

training has predominantly involved standardised percentages of HR reserve (HRR), 

maximal minute power (MMP), HRmax, or V̇O2max. While these methods are easy to 

replicate, they open the possibility of introducing between-athlete variability as a result of 

differing levels of cellular stress incurred due to their reliance on a measure of maximal 

work rate or capacity (McPhee et al. 2010). It has been shown that individuals can adapt to 

training at low or moderate intensities, and non-response can be minimised by increasing 

the exercise dose (Montero and Lundby 2017). Intensity prescriptions which are relative to 

maximal capacity or work rates have also received criticism around the observed variation 

in time to exhaustion (Scharhag-Rosenberger et al. 2010) and BLa-1 response (Dwyer and 

Bybee 1983; Meyer, Gabriel and Kindermann 1999; Scharhag-Rosenberger et al. 2010) 

when exercising at fixed percentages of maximal parameters. A clear example of varying 

metabolic stress between individuals at the same standardised percentage of maximal 

capacity is the observed variability in time to exhaustion between 12 – 75 min when 

exercising at 88 % V̇O2max (Coyle et al. 1988). This would be a clear indication that the 

standardised relative intensities result in different individuals exercising above or below 
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their individual LT. Similar findings were also observed when exercising until exhaustion 

at the intensity corresponding to critical power (CP), with time to exhaustion varying from 

between 20 – 40 min (Brickley, Doust and Williams 2002). These observations clearly 

suggest that the level of metabolic stress differs between individuals, rendering the 

prescription method ineffective at prescribing training intensity on an individual basis 

(Dwyer and Bybee 1983; Meyer, Gabriel and Kindermann 1999; Scharhag-Rosenberger et 

al. 2010; Vollaard et al. 2009; Katch et al. 1978). Varying levels of cellular stress at 

standardised percentages of maximal parameters would indicate that the position of 

training intensity relative to an individuals’ threshold(s) could affect the signalling and 

adaptive processes that occur, thus presenting a potential source of exercise training 

variability (Gaskill, Walker, et al. 2001). 

 

While it is appropriate to conclude that a proportion of variation in training adaptive 

response can be attributed to genetic factors, it is important to acknowledge that the 

prescription of relative exercise intensity is also influential. It is apparent that the between-

athlete variation in cellular stress incurred by standardised training intensities could 

account for a significant proportion of between-athlete variability in the adaptive training 

response (Mann, Lamberts and Lambert 2014). In order to attenuate this variation due to 

training at standardised percentages of maximal parameters, it is necessary to develop a 

more individualised approach to training intensity prescription, which results in consistent 

training stress between individuals. 

 

Summary 

High levels of between-athlete variability have been a factor associated with response to 

standardised training prescriptions, which are frequently utilised for research purposes. 

While some of this variability can be explained by factors such as pre-training phenotype 

and hereditary factors, a significant proportion of the variability is likely to arise as a result 

of inconsistent levels of cellular stress between individuals during training. To address this, 

prescribed exercise intensities should transition from previous standardised approaches to 

more individualised methods of prescription. 
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2.4 Individualised training intensity prescription 

Methods of individualising training intensity seek to elicit equivalent levels of training 

stress across individuals who display varying levels of physiological and functional 

capacity (Mann, Lamberts and Lambert 2013; Jamnick et al. 2020). The previous section 

outlined traditional approaches to prescribing exercise training, the utilisation of 

percentages of V̇O2max, HRmax, or MMP, all of which remain common methodologies 

within contemporary research (Sedlock et al. 2010; Killgore et al. 2010; Ferguson-Stegall 

et al. 2011; Van Proeyen et al. 2011; McPhee et al. 2011; Nordsborg et al. 2010), 

regardless of acknowledged variation (Meyer, Gabriel and Kindermann 1999; Scharhag-

Rosenberger et al. 2010). Prescribing individualised exercise intensities can be achieved 

through several different methodologies, each with varying levels of efficacy and distinct 

challenges. The section below will describe some common methods of prescribing exercise 

intensity in a more individualised manner versus standardised percentages of maximal 

capacity, such as prescription relative to threshold, prescription using the individual’s 

power-duration relationship, and effort-based prescriptions. 

 

2.4.1 Prescription relative to thresholds 

It follows a logical argument that if heterogeneous training outcomes are observed when 

utilising fixed percentages of maximal values, then prescribing relative to each individuals 

threshold may improve the homogeneity of response (Mann, Lamberts and Lambert 2013). 

However, there is a paucity of such prescriptions in the research literature that specifically 

consider individual variability in training response despite the above rationale.  

 

An early study that addressed the variability in training response sought to identify the 

variability which occurs following training completed with intensity prescriptions based on 

the aerobic threshold compared to prescriptions at standardised percentages of V̇O2max 

(McLellan and Skinner 1981). Whilst the findings of this study showed significantly 

greater improvements in V̇O2max when training was prescribed using percentages of 

threshold versus %V̇O2max (38.3 to 47.2, and 36.9 to 43.6, respectively), no differences in 

between-athlete variability in training response were found between the two prescription 

methods. It is possible that the absence of differences in between-athlete variability could 

be due to small group sizes (%V̇O2max; n = 6, % aerobic threshold; n = 8), or the attempt to 

match training intensity resulting in inadvertent manipulation in training loads across both 
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groups. However, despite utilising intensities prescribed relative to individual thresholds, 

there was no reduction in training response variability (McLellan and Skinner 1981). 

Further studies have sought to prescribe exercise intensities in an individual manner 

relative to thresholds, with the aim of reducing the level of variability in V̇O2max change 

following training (Karavirta et al. 2011). Participants completed a 21-week combined 

strength and endurance training program using, where for the first 4 weeks they exercised 

at HR levels below aerobic threshold, from weeks 5 – 7 participants began to incorporate 

HR levels above aerobic threshold, weeks 8 – 14 continued to incorporate HR levels above 

the aerobic threshold in addition to HR levels above the anaerobic threshold. Finally, in 

weeks 15 – 21 training progressed by accumulating time at HR levels above the aerobic 

and anaerobic thresholds (Karavirta et al. 2011). Despite the individualised intensities 

relative to threshold, there was still a large between-athlete variability with the change in 

V̇O2max (ΔV̇O2max) ranging from -8 % to 42 %. This finding is of interest, as prescribing 

exercise intensity relative to each individual’s thresholds should homogenise the level of 

metabolic and cellular stress during training bouts (Faude, Kindermann and Meyer 2009; 

Mann, Lamberts and Lambert 2013). However, a potential limitation relates to the wording 

of the prescription methods utilised for prescribing intensity, specifically: “above”, 

“below”, and “between” aerobic and anaerobic thresholds. With these criteria, it may be 

that the prescription was not precise enough to adequately standardise the level of stress 

across individuals, as the difference in metabolic stress would differ greatly between 

aerobic and anaerobic threshold, despite all being within the same prescription level in the 

study (Karavirta et al. 2011). In addition, the prescription method is based on HR, which 

often results in variability of physiological response between individuals (Meyer, Gabriel 

and Kindermann 1999; Hofmann et al. 2001). 

 

The ability of threshold-based training prescriptions to reduce between-athlete variability 

in training response has been further explored, with individualised prescription being based 

around each individual’s first and second ventilatory threshold (VT1, VT2, respectively), 

and standardised prescriptions based around set %HRR (Wolpern et al. 2015). The 

findings of this study showed increases in V̇O2max in both %HRR and individualised 

prescription method groups (34.9 to 36.6, and 34.3 to 38.3, respectively; Wolpern et al. 

2015). However, despite both groups increasing V̇O2max based on group averages, it was 

observed that only 41.7 % of individuals displayed favourable increases in V̇O2max (defined 

as ΔV̇O2max > 5.9%) when using %HRR, compared to 100 % of individuals when training 

was prescribed relative to VT1 and VT2. From presented data on the adherence to training 
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prescriptions, it was shown that both groups adhered to their relative exercise prescriptions, 

but the HR values recorded during exercise within the training group using prescriptions 

relative to VT1 and VT2 were noticeably higher than the %HRR group (139 bpm [76 % 

HRmax], versus 118 bpm [65 % HRmax], respectively; Wolpern et al. 2015). A marginally 

smaller standard deviation was observed in actual HR values between the training group 

using prescriptions relative to VT1 and VT2 and the %HRR group (± 15 bpm, versus ± 12 

bpm, respectively), potentially indicating a more homogenous exercise intensity 

prescription. The above findings indicate that it may be possible to individualise exercise 

intensity, resulting in more homogenous levels of exercise-induced cellular and metabolic 

stress and the resulting training adaptations (Buford, Roberts and Church 2014; Mann, 

Lamberts and Lambert 2014; Mann, Lamberts and Lambert 2013). 

 

2.4.2 Mathematically modelled training intensities 

Over a century ago, (Kennelly 1906) performed an analysis of human and animal exercise 

performance records and outlined a distinct relationship between exercise intensity and 

time. This work was further extended when (Hill 1925) expanded on the relationship 

between exercise intensity and time using running world records. The above studies 

identified that as intensity increases, sustainable duration decreases, and vice versa, 

adopting a curvilinear relationship between exercise intensity and time. The resultant 

interest in the physiological underpinnings of the relationship between exercise intensity 

and duration led to models being produced using an athlete’s best performances, with the 

aim of predicting performance for varying durations. A mathematical framework was 

developed from the observation of the function of various muscle groups and individual 

muscles, which sought to describe the relationship surrounding how muscle groups fatigue 

during exercise at varying intensities, which became termed the Critical Power (CP) model 

(Monod and Scherrer 1965; Pringle and Jones 2002; Morton 2006; Jones et al. 2010; 

Moritani et al. 1981). The application of the CP model assumes that the relationship 

between exercise intensity and time to exhaustion is hyperbolic and represents the upper 

limit of a sustainable workload (Poole and Gaesser 1985). The CP model breaks down the 

relationship between intensity and duration and calculates estimates of aerobic and 

anaerobic parameters of performance, named CP and W’, respectively (Monod and 

Scherrer 1965; Pringle and Jones 2002; Morton 2006; Jones et al. 2010; Moritani et al. 

1981). In order to generate the CP model, a series of time to exhaustion trials within the 

severe exercise intensity domain are completed (Hill 1993; Moritani et al. 1981; Morton 
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2006; Mattioni Maturana et al. 2018), which can be performed on separate days (Gaesser 

and Wilson 1988; Poole, Ward and Whipp 1990), or with at least 30 min rest separating 

each trial (Housh, Housh and Bauge 1989; Galbraith et al. 2014; Karsten et al. 2015). A 3 

min all-out exercise test can be used to accurately establish CP but underestimates the W’ 

and is unable to produce the hyperbolic relationship between exercise intensity and 

duration (Vanhatalo, Doust and Burnley 2007). 

 

The CP model can be useful for identifying training prescriptions as the CP represents the 

boundary between the exercise intensity domains classified as “heavy” and “severe” 

(Vanhatalo, Jones and Burnley 2011). This allows athletes to not only prescribe exercise 

training intensities based on the different physiological responses in each exercise intensity 

domain (Black et al. 2017), but also establish the exercise intensities at which exercise 

becomes “non-steady-state” which results in fatigue occurring at a more rapid pace 

(Vanhatalo, Jones and Burnley 2011). Despite the advantages of the application of the CP 

model, there are some notable limitations. The CP model relies on only two components of 

human energy supply during exercise; the aerobic domain, which is assumed to be 

unlimited in capacity and limited in energy contribution rate, and the anaerobic domain, 

which is limited in capacity but not rate-limited, possibly indicating a reductionist 

approach of explaining exercise performance and fatigue (Morton 2006). Furthermore, the 

CP model has been found to be limited in its ability to describe and predict performance of 

durations between 2 and 20 min (Hill 1993; Dekerle, Vanhatalo and Burnley 2008). In 

addition to this, it is also assumed based on the hyperbolic relationship between exercise 

intensity and duration that exercise can be maintained indefinitely at or below CP, as well 

as the ability to produce an infinite amount of power as time approaches zero (Hill 1993; 

Jones et al. 2010). 

 

Despite extensive research being conducted exploring CP’s physiological significance, it 

remains unclear how CP relates to other established thresholds such as the heavy and 

severe exercise domain boundary (Bull et al. 2008), AT (Moritani et al. 1981; Poole et al. 

1988), LT (Housh, Devries, et al. 1991b), and V̇O2max (Housh, Johnson, et al. 1991a; 

Hopkins et al. 1989; Pepper, Housh and Johnson 1992). This debate has given light to the 

notion of interpreting the relationship between exercise intensity and time purely as a 

mathematical model of performance with no physiological assumptions being made 

(García-Manso et al. 2012). The power law (PL) relationship, or log-log model, was first 
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observed in the velocity/distance relationship for various athletic and horse racing events, 

showing that performance capacity progressively declines as duration or intensity increases 

(Kennelly 1906; Grubb 1998). The most high-profile use of a PL model has been to 

estimate and predict performances at world record pace in athletics (Kennelly 1906; Katz 

and Katz 1999; Savaglio and Carbone 2000), with swimming performances also being 

predicted accurately within a narrow range of durations (Hinckson and Hopkins 2005; 

Osiecki et al. 2014). CP and PL models have been used in attempts to individualise 

exercise training prescriptions (García-Manso et al. 2012). The PL model has been 

successfully applied to intermittent exercise in cycling (Chidnok et al. 2012), however, the 

model was unable to account for the curvilinear response of W’ reconstitution during 

recovery periods (Ferguson et al. 2010). In response to this, a model of W’ reconstitution 

during intermittent exercise was developed by (Skiba et al. 2012), which was also further 

developed based on different work and recovery durations (Skiba et al. 2014). While it can 

be observed that CP and PL models can provide reliable and non-invasive methods of 

prescribing individualised training intensities (García-Manso et al. 2012), the time 

consuming and intensive testing required to generate the models limits the effectiveness of 

incorporation into training prescription (Karsten et al. 2017). The CP and PL method could 

also be limited in the range of exercise intensity prescription wider than the boundary 

between the heavy and severe exercise domains. Furthermore, training that is prescribed 

using CP and PL models remain potentially susceptible to day-by-day alterations in an 

individuals’ exercise capacity. 

 

2.4.3 Effort-matched training intensities 

The psycho-physical occurrence of perception of effort has been defined as the intensity of 

subjective effort, stress, discomfort, and fatigue which is felt during exercise or physical 

activity (Noble and Robertson 1996; Eston 2012), and has been extensively studied in an 

exercise training setting (Borg and Linderholm 2009; Borg 1982a; Ekblom and Golobarg 

1971; Mihevic 1981; Borg 1970; Myles and Maclean 1986; Eston and Williams 1988; 

Dunbar et al. 1994; Stephen Seiler and Hetlelid 2005; Green et al. 2009; Halperin and 

Emanuel 2019). Measuring perception of effort commonly involves the use of the rating of 

perceived exertion (RPE) scale, with perceived effort being defined as “the feeling of how 

heavy and strenuous a physical task is” (p. 8; Borg 1998). The RPE scale involves an 

individual rating their perceived effort on a visual analogue 6 – 20 scale with 6 

representing “no exertion at all”, and 20 representing “maximal exertion” along with the 
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instructions that “perception of exertion depends mainly on the strain and fatigue in your 

muscles and on your feeling of breathlessness or aches in the chest” (p. 47; Borg 1998). 

Varying perspectives on perception of effort have been presented over the years, such as 

the central governor model (St Clair Gibson 2004), and the psychobiological model 

(Marcora 2008; Marcora, Bosio and de Morree 2008), with the latter model defining 

perception of effort as the “conscious sensation of how heavy, and strenuous a physical 

task is” (Marcora 2008). Furthermore, it is important to differentiate effort and exertion, 

which are commonly utilised interchangeably. Effort has been defined as “the amount of 

mental or physical energy being given to a task”, with a clear focus on the psychological 

investment into a task, differentiating itself from Borg’s definition of RPE, which remains 

focused on the physical aspects of the task (Abbiss et al. 2015). Despite this, there remains 

confusion within the research surrounding effort and exertion, with recent calls for fewer 

definitions, terms, and instructions to be used (Halperin and Emanuel 2019). 

 

The most common use of the RPE scale is as a tool to measure a subjective response to a 

given workload, but it can also be used as a tool to prescribe exercise intensity in 

‘production’ mode (Borg 1998) as a method to regulate exercise (Helms et al. 2018; 

Parfitt, Evans and Eston 2012; Graham and Cleather 2019; Myles and Maclean 1986). The 

production mode uses the RPE scale as a framework with which exercising individuals can 

use to regulate their exercise work rate or resistance (Borg 1998; American College of 

Sports Medicine 2014; Noble and Robertson 1996), in order to manage the development of 

fatigue (Azevedo et al. 2021). As the production mode prescription method requires only 

the presence of an RPE scale, it has been studied in a wide range of populations, including 

clinical, active, untrained (Eston et al. 2006; Eston and Williams 1988; Coquart et al. 

2016; Noble and Robertson 1996; Dunbar et al. 1998; Noble 1982; Robertson 2001; 

Hartshorn and Lamb 2004), and trained athletes (Perrey et al. 2003; Schallig et al. 2017; 

Garcin, Danel and Billat 2008; Groslambert et al. 2004). In addition to using perceptually 

regulated intensity prescription for individual bouts of exercise, effort-based training 

prescriptions have been used by coaches in the prescription of whole session intensity by 

instructing athletes to self-pace their exercise intensity throughout a training session 

according to the desired level of perceived effort (Seiler and Hetlelid 2005; Seiler and 

Sjursen 2004; Stepto et al. 1999; Seiler et al. 2013; Sandbakk et al. 2013). Commonly, this 

method is incorporated into HIIT training by using a ‘maximal session effort’ prescription, 

which involves participants regulating their exercise intensity in order to complete exercise 

session with maximal effort being achieved by the end of the exercise (Seiler and Hetlelid 
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2005; Seiler et al. 2013; Seiler and Sjursen 2004). Participants can also evaluate the 

subjective load of an entire training session using Foster’s session-RPE (sRPE; Foster et al. 

2001). The widely used sRPE method incorporates both the intensity and duration of the 

exercise session and represents the subjective ‘mean’ exertion felt by the participant and 

has been shown to be both reliable and valid (Haddad et al. 2017). 

 

Insights into effort-based training may indicate that the variability of performance and 

response vary in an intensity-dependent manner, with higher individual variability in 

power output observed as intensity increases (Nicolò, Bazzucchi, Haxhi, et al. 2014; Seiler 

and Sylta 2017). Despite power output variability increasing as work phase intensity 

increases during short intermittent exercise, BLa-1 response variability was observed to 

decrease (Nicolò, Bazzucchi, Haxhi, et al. 2014; Nicolò, Bazzucchi, Lenti, et al. 2014), 

highlighting that high variability in one measure may result in lower variability in another 

measure. As effort-based prescriptions require that athletes self-pace their exercise in 

accordance with session goals, this may help to ensure consistency in between-protocol 

exercises intensity to manage the associated physiological perturbations (Seiler and Sjursen 

2004a). The influence of various life and environmental stressors affect the body and brain 

via the autonomic, neuroendocrine, and immune systems (McEwen 2007; Ganzel, Morris 

and Wethington 2010). When performing self-paced exercise, the athletes may be more 

aware of the alterations in factors that influence pre-training fatigue, such as stress, sleep, 

and environmental factors (Gallo et al. 2016). In support of this, it has been shown that 

following two weeks of high-intensity interval training using peak power output as a fixed 

intensity target, athletes with positive training responses display consistent levels of life 

stressors, whereas athletes who did not adapt positively to the training intervention 

reported higher levels of life stressors (Capostagno, Lambert and Lamberts 2021). In a 

recent study, four self-paced interval training sessions were investigated for time spent ≥ 

90 % V̇O2max when using a maximal session effort prescription; finding that both 4-min 

and 8-min work periods can result in between 15.9 % and 24.2 % of total session duration 

at ≥ 90 % V̇O2max, the higher ranges being achieved using a work:recovery ratio of 2:1 

(e.g., 4-min work, 2-min recovery; Dall’ Agnol, Turnes and De Lucas 2020). It is possible 

that had the training been prescribed using maximal effort-based intensity targets, the 

athletes who reported higher levels of life stress might have adjusted their exercise 

workload adequately in order to achieve the highest tolerable session effort and aid in 

reducing between-athlete variability (Seiler and Sylta 2017). 
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Summary 

Several prescription methods are present which can help to identify specific exercise 

intensities at which training may be completed to produce a consistent level of cellular and 

metabolic stress. However, many of these methods have been demonstrated to result in 

variability when prescribed in a standardised manner. Using an effort-based training 

intensity prescription may provide a method that may allow athletes to self-regulate their 

exercise workload based on perceived exertion during exercise. However, the specific use 

of using effort-based exercise intensity prescriptions to reduce individual variability in 

exercise response has yet to be examined. 

 

2.5 Metabolomics 

With the advancements in the field of systems biology, it is now possible to study the 

complex interactions that occur as a result of the imposition of a stressor on a biological 

system (Dunn, Broadhurst, et al. 2011a; Bruggeman and Westerhoff 2007; Kell 2006a; van 

der Greef, Hankemeier and McBurney 2006). This presents an opportunity to investigate 

the metabolic effect of exercise across numerous metabolites involved in many different 

metabolic pathways (Zhao et al. 2020; Renata Garbellini Duft et al. 2017; Schranner et al. 

2020). Metabolites can be described as low molecular-weight (typically < 1,500 Da) 

molecules of either organic or inorganic origin (Griffiths 2007; Harrigan and Goodacre 

2003; Lindon, Nicholson and Holmes 2006; Bundy, Davey and Viant 2009). Metabolites 

are linked throughout various processes within a biological system. Metabolites are the 

building blocks for many other biological components (e.g., proteins, ribonucleic acid, 

deoxyribonucleic acid, and cell walls), they are central in intermediary metabolism, they 

provide many necessities for life (e.g., ATP for energy release) and they have an active 

role in the regulation of homeostasis and cellular signalling. The term metabolome is used 

to describe the collection of these compounds in a biological system, first used by (Oliver 

1998) and accordingly, metabolomics is the measurement of the metabolome using a 

variety of biospecimens (Goodacre et al. 2004; Fiehn 2002; Nicholson, Lindon and 

Holmes 1999). When describing the analysis of the metabolome, the terms metabolomics 

and metabonomics are often used interchangeably in the literature but reflect slight 

differences. Nicholson et al. introduced the term ‘metabonomics’ in 1999 to describe; “the 

quantitative measurement of the dynamic multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic modification”, which indicates a specific 

use of metabolite analysis in response to specific stimuli in a biological system (Nicholson, 
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Lindon and Holmes 1999). Fiehn introduced the definition of ‘metabolomics’ in 2002 as 

being; “A comprehensive and quantitative analysis of all metabolites”, thus, representing a 

wide-ranging description of the method of global metabolite analysis (Fiehn 2002). The 

fields of metabolomics and metabonomics involve the analysis of a global profile of 

metabolites present in a biological system (Dunn, Broadhurst, et al. 2011; Fiehn 2002; 

Goodacre et al. 2004; Griffin 2006; Nicholson, Lindon and Holmes 1999), and the 

complete human metabolome remains unfinished, but the total number of metabolites is 

estimated to be between 2,000 – 20,000, with only a fraction of these being identified and 

described within metabolomics databases e.g. the human metabolome database (HMDB; 

Bernini et al. 2011; Wishart et al. 2007; Wishart et al. 2009). 

 

Within any biofluid, there are thousands of metabolites with diverse physical and chemical 

properties, physiological concentrations, and molecular structures (Dunn et al. 2008). 

Some biofluids present a ‘regional’ metabolome to the area or network of the body, such as 

saliva (Sugimoto et al. 2010; Wei et al. 2011), semen (Li et al. 2007; Hung et al. 2009), 

amniotic fluid (Romero et al. 2010), synovial fluid (Zhai et al. 2010; Giera et al. 2012), 

cerebrospinal fluid (Dunne et al. 2005; Huang et al. 2006), as well as homogenated tissue 

samples (Huang et al. 2010; Römisch-Margl et al. 2012). In contrast to the regional nature 

of the above biofluids, both blood and urine reflect the global state of an organism 

(Álvarez-Sánchez, Priego-Capote and Luque de Castro 2010; Maher et al. 2007). Blood 

plasma presents a near-instantaneous representation of the current metabolic state at the 

time of collection, whereas the urinary metabolome represents an averaged reflection of 

recent metabolic processes (Álvarez-Sánchez, Priego-Capote and Luque de Castro 2010). 

Human urine is generated by the kidneys as an end process of their extraction of soluble 

wastes, excess water, sugars, and numerous other compounds from the bloodstream 

(Bouatra et al. 2013). Urine contains high concentrations of urea (an end product of amino 

acid metabolism), inorganic salts (such as chloride, potassium, and sodium), ammonia, 

creatinine, organic acids, water-soluble toxins, and end products of the breakdown of 

haemoglobin. (Bouatra et al. 2013). As a result, analysing the metabolomic profile of urine 

could provide a reflection of the state of the human system at a given sample time-point 

(Yin, Lehmann and Xu 2015; Nicholson, Lindon and Holmes 1999). The use of urine as a 

biofluid for metabolomics analysis has gained popularity in recent years, with 

demonstrations that it yields stable and non-invasive results (Bernini et al. 2011; Gika et 

al. 2007; Gika et al. 2008; Sun et al. 2008). 
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2.5.1 Analytical platforms and techniques 

Metabolomics analyses are conducted on a wide range of platforms, however, the primary 

platforms of use are nuclear magnetic resonance (NMR) and mass spectrometry (MS) 

coupled to liquid (LC) or gas (GC) chromatography (Dunn and Ellis 2005; Nicholson et al. 

2002) as a separation technique. With diverse chemical structures present in the 

metabolome, it can be common to combine multiple platforms to provide complementary 

information and complete coverage of metabolites (Dettmer, Aronov and Hammock 2007). 

NMR is one of the key analytical techniques for metabolomics due to its high level of 

reproducibility and relative ease of sample preparation to provide quantitative metabolite 

analysis, whereas MS shows greater sensitivity, resolution, and a higher number of 

metabolite classes that can be profiled (Want, Cravatt and Siuzdak 2005). Metabolomics 

research is conducted in either a ‘targeted’ or an ‘untargeted’ manner (Dunn, Broadhurst, 

et al. 2011b) and can be performed on a wide range of systems and analytes. Untargeted 

metabolic profiling has gained popularity as an effective tool for hypothesis generation to 

investigate system-wide biological variations in settings such as disease (Jansson et al. 

2009; Chen et al. 2010; Fan, Bai and Shen 2005; Vallejo et al. 2009; Wei et al. 2011), 

xenobiotics (Loo et al. 2012; Ji et al. 2011; Pujos-Guillot et al. 2013), and nutrition 

(Llorach et al. 2010; Pujos-Guillot et al. 2013; Krupp et al. 2012; Nieman et al. 2012). 

Untargeted metabolomics is a comprehensive analysis of measurable metabolites in the 

specimens including previously unassigned metabolites, whilst targeted approaches are 

conducted by measuring specific metabolites of interest, and analytical optimisation is 

performed to provide quantitative measurements of these specific metabolites (Lu, Bennett 

and Rabinowitz 2008; Roberts et al. 2012), but potentially missing previously unknown 

metabolites of interest. Untargeted protocols utilise wide scopes of mass-to-charge (m/z), 

typically 50 – 1000, and therefore has the potential to capture thousands of metabolites 

within the sample of interest (Kell 2006b; Dunn et al. 2013; Quintás et al. 2018). This is 

advantageous as no prior knowledge of relevant metabolites is required and can detect 

previously unpredicted metabolites of interest (Kell and Oliver 2004). Optimisation of the 

metabolomics platform can assist in increasing data accuracy and can be tuned for each 

experiment to ensure optimal data acquisition (Wang and Griffiths 2008). Key elements of 

the performance of a metabolomics platform are; mass accuracy (detecting a m/z as close 

as possible to the theoretical m/z based on a compounds molecular structure), mass range 

(the range of m/z that can be detected), scan speed (the time taken by the analyser to scan 

over a specific mass range), transmission (the ratio of ions that enter the mass spectrometer 



31 

versus the ions that reach the detector), and resolution (differentiating between two ions 

with the same mass, but different m/z). 

 

Chromatography 

It is possible to inject raw biofluids into an MS system, however, this may result in ion 

enhancement or suppression, fragmentation, and adduct formation due to the number and 

complexity of molecules within the biological sample (Lenz and Wilson 2007; Remane et 

al. 2010; Drexler, Reily and Shipkova 2011). LC and GC platforms serve to separate 

sample molecules prior to analysis based on polarity by using an analytical column 

(Dettmer, Aronov and Hammock 2007), which reduces ion suppression and allows for 

more accurate metabolite detection and quantification (Want et al. 2007). GC and LC 

present differences in the ability to separate molecules based on their polarity, with GC 

being advantageous for the detection of low-polar or volatile compounds, whereas LC is 

ideal for highly polar and non-volatile compounds. The major advantage of LC over GC 

lies in the simplicity of sample preparation, with urine, plasma, and serum requiring 

minimal sample preparation steps (Álvarez-Sánchez, Priego-Capote and Luque de Castro 

2010; Want et al. 2010; Yin, Lehmann and Xu 2015). LC is performed using an analytical 

column with derivatised silica, called the stationary phase, and pressurised organic and 

aqueous solvents, called the mobile phase (Wilson et al. 2005) running through the 

column. The sample of interest is injected into the column, and separation of the sample is 

achieved by creating a gradient of the mobile phase composition, which results in selective 

elution of compounds depending on their chemical properties. Once samples have eluted 

through chromatography, they are detected by the MS system. Over the years, LC has been 

developed by reducing column size, increasing temperature, and increasing flow rates 

(Cheng, Lu and Neue 2001; Tiller, Romanyshyn and Neue 2003; Neue and Mazzeo 2001), 

with high-performance liquid chromatography (HPLC) being developed, and further 

refined into ultra-performance liquid chromatography (UPLC; Waters Corp., MA, USA). 

HPLC is achieved by decreasing the particle size within the analytical column to 10μm and 

increasing the flow pressure up to 6,000 psi (Horvath and Lipsky 1969) and was 

commonly used throughout the early application of metabolomics (Gavaghan et al. 2000; 

Fan, Bai and Shen 2005; Yang et al. 2004; Lenz et al. 2004; Williams et al. 2005). UPLC 

advanced upon HPLC techniques by using smaller particle sizes within columns (< 2 μM) 

and higher pressures (10,000 – 15,000 psi) thus offering enhanced resolution with lower 

acquisition times. 
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Mass spectrometry 

Once analytes have been separated by chromatography, they pass through to the MS 

system, where the molecular mass of a specific molecule is determined by detecting the 

m/z ratio of charged ions in the compound (Maher, Jjunju and Taylor 2015). An MS unit is 

conducted of an ion source, mass analyser, detector, and an accompanying data system. 

Through the unit, compounds are ionised from the liquid phase to a gas phase, separated by 

their m/z ratio, and then detected by the mass analyser (Maher, Jjunju and Taylor 2015). 

The ionisation of the sample is commonly performed using electrospray ionisation (ESI), 

comprising of a charged capillary needle (1 – 3 kV applied) and an opposing counter 

electrode which is oppositely charged, creating an electric field gradient (Kebarle and 

Verkerk 2009). The sample is pumped through the capillary needle, creating charged liquid 

droplets within the ‘desolvation zone’. Here, the sample droplets shrink in size, with the 

aid of drying agents such as nitrogen, resulting in Coulombic fissions when the surface 

tension of the droplet surface is exceeded by the charge repulsion. The shrinking droplets 

finally enter the gas phase via either the ‘charged residue theory’ (Dole et al. 1968) or the 

‘ion evaporation’ theory (Iribarne 1976; Iribarne, Dziedzic and Thomson 1983). Once in 

the gas phase, the ions are able to enter a vacuum chamber in the mass analyser for 

detection (Wang and Griffiths 2008). Mass analysers separate ions from the sample 

according to their m/z ratio using different methods but commonly using quadrupole or 

time-of-flight (TOF) MS analysers. Mass analysers, such as quadrupole-TOF (qTOF) or 

triple-quadrupole setups (Yates 2000), can be used alone or in tandems. TOF-MS 

calculates the transit time of ions as they pass through the analyser, based on the notion 

that ions having identical kinetic energy applied to them, but different masses, will require 

different durations to travel a fixed distance (Maher, Jjunju and Taylor 2015). Quadrupole-

MS (qMS) uses four parallel electrodes to generate an electric field that can selectively 

allow ions of specific m/z ratios to pass through the detector (Maher, Jjunju and Taylor 

2015; Kicman, Parkin and Iles 2007). TOF-MS results in greater resolution and mass 

accuracy allowing differentiation between compounds that are close or identical in mass, 

whereas qMS results in greater sensitivity allowing detection of analytes at low 

concentrations within the sample (Wang and Griffiths 2008). The final process of the MS 

analysis system is for the conversion of the information collected by the mass analyser into 

a form where it can be transferred to a computational system to generate mass spectra 

(Figure 3.1). This is commonly performed by quantifying the abundance of ions colliding 

with the detectors and then emitting secondary particles such as electrons and photons. 

During each m/z scan, the abundance of ions is recorded, and after numerous m/z scans are 
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completed, information containing the m/z ratio, ion abundance, and retention time (RT) is 

delivered to the data system, where mass spectra and chromatograms are produced. 

 

Figure 2.1 – Graphical representation of the chromatogram and mass spectrum data output 
(Reproduced from Sargent 2013). 

 

An example of a typical chromatogram acquired using LC-MS global profiling is presented 

in Figure 3.2. The total intensities for all ions detected in each scan are displayed as a total 

ion chromatogram (TIC; Figure 3.2A). Reduced noise and higher-resolution peaks can be 

seen in the base peak intensity (BPI; Figure 3.2B) chromatograms, where only the most 

intense peak within each scan is displayed. Desired m/z ratios of interest can be searched, 

and an extracted ion chromatogram (EIC, Figure 3.2C) can be produced; in this example, 

for hippuric acid (mass: 180.0661). Investigating the retention time peak in Figure 3.2C, a 

mass spectrum can be produced, which shows the mass and intensity of the main peak 

along with any other compounds present (Figure 3.2D). 
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Figure 2.2 - Raw MS data presented in chromatogram forms. A) total ion chromatogram, 
B) base peak intensity, C) extracted ion chromatogram, D) mass spectrum. 
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Quality control and system conditioning  

The stability of the analytical platform is known to change over time, and distinct 

differences in the retention time and sensitivity of metabolite peaks are often observed in 

the early stages of analysing samples, especially when new columns are used (Want et al. 

2010; Gika et al. 2007; Michopoulos et al. 2009; Zelena et al. 2009). Column ageing, 

temperature and pressure changes, mobile phase composition, contaminant build-up and 

communication issues are all common sources of retention time and sensitivity variability.  

 

In order to account for this initial variance when analysing samples, quality control (QC) 

samples were used throughout Chapters 7 and 8 to evaluate the stability and precision of 

the data from analysis (Begou et al. 2018; Dunn et al. 2012; Bijlsma et al. 2006; Want et 

al. 2010; Gika et al. 2007). Identical QC samples are interspersed throughout analytical 

runs in order to check for any changes in retention time, intensity, random errors or 

fluctuation (Begou et al. 2018; Dunn et al. 2012; Bijlsma et al. 2006; Want et al. 2010; 

Gika et al. 2007). Conditioning QC (cQC) samples are also repeatedly injected at the 

beginning of an analytical run to provide a level of ‘dirtiness’ in the system, resulting in a 

stable platform for samples to be analysed. QC samples are prepared by mixing small and 

equal aliquots of each experimental sample into a pooled sample which contains the mean 

concentration of all the metabolites present within the experimental group (Begou et al. 

2018). 

 

Metabolomics data pre-processing 

Following the analysis of the UPLC-MS system stability, any metabolites that failed to 

reach threshold values were removed, and the dataset proceeded onto the data pre-

processing stage. Data pre-processing involves converting the raw spectral data 

(chromatograms) into a data matrix that can be interpreted, quantified, and on which 

statistical analyses can be performed. The following sections outline the main steps 

involving pre-processing of LC-MS data; 

- Metabolite feature detection 

Feature detection can also be called “peak picking” and involves the extraction of detected 

peaks within each chromatogram to remove baseline noise. There are several methods that 

can be used to perform feature detection, and within this thesis, the “centWave” method 
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was used. The centWave method identifies peaks as regions of interest based on analysis of 

the density of the chromatogram in the m/z domain, and then a continuous wave 

transformation is applied in order to resolve chromatographic peaks (Tautenhahn, Böttcher 

and Neumann 2008). Following this, metabolites with a mass accuracy of ³ 30 ppm are 

removed, consistent with most metabolomics studies (Wang and Griffiths 2008), in 

addition, an intensity filter can be used to eliminate any peaks with low amplitude if 

necessary. Further unnecessary data can be removed from the dataset using a minimum 

signal-to-noise ratio filter of 3:1. The above thresholds ensure that the data taken forward 

through further analysis are highly reproducible and are not confounded by data errors. 

- Retention time alignment 

Many factors can alter the retention time measured during UPLC-MS, such as column 

degradation, sample degradation, mobile phase composition, pressure and temperature 

fluctuations, and contaminant build-up (Rasmussen et al. 2011). Using maximum and 

minimum retention time drifts which were identified using raw chromatogram outputs, 

peak alignment can be performed to re-aligning the dataset so that matching peaks are 

unified to a common retention time within the data matrix. Incorrect retention time 

alignment could lead to peak-splitting, where the signal for one metabolite of interest is 

separated into two different peaks. 

- Peak filling and integration 

To account for samples which have zero values for specific peaks of interest due to their 

values being below noise or mass accuracy thresholds, peak filling can be performed, 

allowing for further comparisons to be made. 

- Data filtering 

To ensure that the metabolite of interest is present within the majority of the complete 

sample set, filtering can be applied to remove peaks that are only apparent in a minority of 

samples. 

- Data normalisation 

Systemic variation such as sample dilution and instrument drift can still be present at this 

stage and can be removed in a normalisation step in the data pre-processing. There are 

several methods that can be used to perform normalisation, and within this thesis, median 

fold change (MFC) normalisation methods are used. MFC identifies the mean target profile 
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for each metabolite of interest and matches the remainder of the samples within the dataset 

to this profile (Veselkov et al. 2011). 

- CV Filtering 

Further analytical variation within the dataset can be removed by CV filtering, which 

involves removing peaks that are inconsistent over time following normalisation. The CV 

values for all features observed within the QC samples are calculated, and features with 

CV values > 30 % are removed from the dataset. 

- Data scaling 

To account for the large variance observed between variables detected in UPLC-MS 

analyses, scaling is performed. There are many methods that can be performed, but unit 

variance (UV) and pareto scaling are the two most common methods in metabolomics 

investigations. UV scaling is performed by mean centring the data and then dividing by the 

SD of the variability, thus ensuring that variables with low concentration are not 

outweighed by highly concentrated variables, but this may increase the likelihood that 

noise and data artefacts are amplified. On the other hand, pareto scaling is performed by 

dividing the data by the square root of the SD, and therefore reduces the relative 

importance of high intensity peaks. Since different forms of data pre-treatment can greatly 

affect the output of the modelling, both UV and pareto scaling are evaluated throughout 

this thesis as identified. 

 

Metabolomics data analysis 

Metabolomic analytical runs generally result in large datasets with information that does 

not typically suit univariate statistical analyses due to a likelihood of high rates of false 

positives (Worley and Powers 2013; Eriksson et al. 2004). Multivariate statistical analysis 

is more suited to dealing with metabolomic data and is useful for not only the visualisation 

of the datasets, as well as assessing variance between and within groups of samples. 

Additionally, discriminant analysis can be performed which allows for classification of 

groups within the datasets and determine metabolomic features that are responsible for the 

difference between sample groups (Worley and Powers 2013). Two main forms of 

multivariate analysis are conducted in this thesis: principal component analysis (PCA) and 

orthogonal partial least squares discriminant analysis (OPLS-DA). All multivariate tests 

were performed in SIMCA-P (Version 12, Umetrics, Sweden). 
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- Principal Component Analysis (PCA) 

PCA is used to reduce the dimensionality of complex datasets with high dimensions down 

to a smaller number of dimensions. This is done by transforming variables into 

uncorrelated principal components (PC). These PCs are used to construct individual scatter 

plots, which present the relationship between the dataset observations (scores) and 

individual variables (loadings). The first PC (PC1) represents the largest variation in a 

directional plane, and then additional PCs can be added to PCA (PC2, PC3…), with each 

subsequent PC containing less variation (Worley and Powers 2013; Wold, Esbensen and 

Geladi 1987) but orthogonal to the previous PC. The application of PCA is typically used 

to provide an overview of the acquired spectroscopic (e.g. LC-MS and NMR) data by 

observing the QC samples to be tightly grouped together within the scores plot (Eriksson et 

al. 2013; Trygg, Holmes and Lundstedt 2007). The scores plot of each PCA can also be 

used to visualise the distribution of the samples within the dataset and can be used to 

identify clusters of sample groups, outliers, and trends within the dataset (Figure 3.3; 

Wiklund 2008). Samples that fall outside the Hotelling’s T2 95 % confidence ellipsis 

represent significant outliers (Trygg, Holmes and Lundstedt 2007). Outliers were assessed 

and either included if their presence shows biological reasoning or excluded if the outlier is 

due to a data analysis or analytical artefact. The loadings plot of a PCA presents the 

variables which are responsible for the patterns observed within the scores plot. 

Displacement of loadings from the mean centre point of the plot influences score 

placement on the scores plot, and distance from the centre indicates the observation 

strength. 
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Figure 2.3 – PCA scores plot, showing variance within the dataset on the first and second 
principal components. In this example, three groups have been identified. Taken from 
(Wiklund 2008). 

 

- Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) Analysis 

Standard Partial Least Squares (PLS) analyses are used to determine relationships between 

X- and Y- matrices by maximising covariance by linear regression. In metabolomics 

analyses, the X-matrix represents the processed chromatographic data consisting of the RT, 

m/z, and intensity, and the Y-matrix would contain information such as categorical or 

continuous data for discriminant analysis or continuous variables. The components 

loadings of the PLS methods are comprised of class data, the direction of the component 

does not effectively distinguish between classes. For this, Orthogonal PLS (OPLS) can be 

performed, where the variation in the X-matrix that is uncorrelated to the Y-matrix is 

removed in the orthogonal components (Trygg and Wold 2002; Wold et al. 1998) from the 

predictive component and therefore making the interpretation of the dataset easier (Figure 

2.4). Similar to PLS analysis, the Y-matrix can be categorical or continuous in nature, 

allowing for regression analysis in OPLS or OPLS-DA. The predictive ability of the model 

can be explained by three factors: the percentage variance of the X-matrix (R2X) and the 

Y-matrix (R2Y), and the robustness of the model (Q2Y) to provide an estimate of the 

predictive strength of the model based on 7-fold cross-validation. The closer the Q2Y value 

is to 1, the better the predictive ability of the model.  
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Figure 2.4 - OPLS-DA scores plot, showing the predictive scores (t1) that differentiate 
between the two groups, and the variation within the group that does not differentiate 
between the two groups is captured in the orthogonal component (to). Taken from 
(Wiklund 2008). 

 

Following assessment of the robustness and predictive strength of the OPLS-DA models, 

an S-plot can be used to identify potential biomarkers of interest from the OPLS-DA 

loadings by presenting the covariance from the model with the correlation in a scatter plot. 

The resulting plot normally forms an S when there is variation in peak intensities within 

the dataset (Figure 2.5; Wiklund 2008). The X-axis of the S-plot displays the magnitude of 

the variable, and the Y-axis displays the variable reliability. Variables with large 

magnitude (in either positive or negative direction along the x-axis) and large reliability 

(also in either positive or negative direction along the y-axis) present as reliable candidate 

biomarkers for investigation. The data points that fall on the negative side of the X and Y 

axes in the S-plot indicates m/z values that are higher in samples from the sample class that 

is represented on the left-hand side of the scores plot, and the opposite for data points on 

the positive side of the X and Y axes. 



41 

 

Figure 2.5 - Example S-Plot, showing sectors of interest, risk, and significance. Taken 
from (Wiklund 2008). 

 

2.5.2 Metabolomics in exercise 

The acute response to stressors placed on the human body is primarily metabolically 

focused in most cases, which are then followed by transcriptional and translational changes 

(Dunn, Broadhurst, et al. 2011a). The aim of investigating the metabolic profile of a 

biological system is to identify either single or patterns of metabolites that are possible to 

link to a specific physiological state and gain a more in-depth insight into the processes at 

work (Chorell et al. 2009). The acute response to exercise involves a cascade of hormonal 

and cell-signalling events, which are related to the degree of homeostatic perturbation and 

resultant intracellular and systemic metabolic response (Chorell et al. 2009). These 

responses to exercise stress likely influence gene and protein expression, which in turn 

result in phenotypic adaptation aimed at reducing the stressful impact of subsequent 

exercise bouts (Coffey and Hawley 2007). Metabolomics provides an insight into the 

whole-body systemic metabolic perturbations, as well as recovery and adaptation, are now 

able to provide new insights into exercise science research (Bundy, Davey and Viant 2009; 

Primrose et al. 2011; Wishart et al. 2007). There has been steady incorporation of 

metabolomics in exercise research to date, investigating both the acute response to single 

exercise bouts and the chronic changes in human metabolome in response to exercise 

training (Enea et al. 2010; Yan et al. 2009; San-Millán et al. 2020; Bally et al. 2017; 

Berton et al. 2017; Chorell et al. 2009; Danaher, Gerber, Wellard, et al. 2016; Heaney, 

Deighton and Suzuki 2017; Kuehnbaum, Gillen, Kormendi, et al. 2015; Huang et al. 2010; 

Lee et al. 2010; Mach et al. 2017; Mukherjee et al. 2014; Schranner et al. 2020), indicating 

that the technique has been providing interesting insights compared to existing methods 

(Chorell et al. 2009; Siopi and Mougios 2018). 
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Due to the large energy demand of exercise, the metabolites that are most altered following 

exercise are those related to energy metabolism (Hawley et al. 2014; Calbet et al. 2020; 

Schranner et al. 2020). A comparison of three acute exercise training session protocols; 

continuous, long HIIT (3 min work:3 min recovery), short HIIT (30 sec work:30 sec 

recovery), utilising an isoeffort intensity prescription identified no difference in the 

metabolic perturbations between formats, but identified metabolic changes before and after 

the training sessions (Zafeiridis et al. 2016). These differences were related mainly to 

glycolysis and the tricarboxylic acid (TCA) cycle, emphasising the advantage of 

metabolomics use in exercise research (Zafeiridis et al. 2016). Differences between acute 

exercise training session formats were observed in a comparison between two short HIIT 

protocols; 20 sec sprints at 150 %V̇O2max with 40 sec recovery, against 10 sec sprints at 

300 %V̇O2max with 50 sec recovery; with the 10 sec sprint protocol resulting in 

significantly greater disturbances in metabolites related to glycolysis, as well as lipid and 

fatty acid metabolism (Danaher, Gerber, Wellard, et al. 2016). In a comparison of 

continuous exercise at 75 %V̇O2max until exhaustion and 30 sec maximal sprints, no 

difference was found in the metabolites that were altered, but the magnitude of the 

metabolic response increased in an intensity-dependent manner (Enea et al. 2010). A 

further comparison of continuous exercise at 65 %V̇O2max, and a HIIT protocol involving 

10 repeats of 4 min at 80 %V̇O2max matched to the continuous exercise for volume; the 

HIIT group displayed altered metabolomic profiles relating to the metabolism of lipids, 

proteins, and the TCA cycle (Peake et al. 2014). The human metabolome has also been 

shown to be altered in response to chronic exercise training (Zhao et al. 2020; Renata 

Garbellini Duft et al. 2017; Schranner et al. 2020). In response to a 6-week HIIT 

intervention utilising 60 sec sprints at 90 %V̇O2max, the expression of o-acetylcarnitine was 

increased, a metabolite indicative of improved muscle oxidative capacity (Kuehnbaum, 

Gillen, Kormendi, et al. 2015; Kuehnbaum, Gillen, Gibala, et al. 2015). However, the 

population involved in this study were overweight-obese and sedentary young women, so 

the study may have limited applicability to highly trained athlete populations (Kuehnbaum, 

Gillen, Kormendi, et al. 2015; Kuehnbaum, Gillen, Gibala, et al. 2015). Research assessing 

both the acute and chronic exercise response using repeated three 80 metre running sprints 

with either 10 sec or 1 min recovery between sprints identified that both inosine and 

hypoxanthine are altered with HIIT exercise (Pechlivanis et al. 2010; Pechlivanis et al. 

2013; Pechlivanis et al. 2015). Hypoxanthine and inosine are two metabolites related to 

purine metabolism and are indicative of high ATP turnover and resynthesis (Lewis et al. 

2010). 
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Existing literature on the application of metabolomics in exercise shows that the change in 

metabolic profiles are associated with different exercise formats and time points 

surrounding exercise bouts (Al-Khelaifi et al. 2018; Yan et al. 2009; Wagner et al. 2007). 

The metabolites commonly found within exercise-related investigations are associated with 

energy metabolism, such as lactate (Goodwin et al. 2007; Berton et al. 2017), products of 

adenine breakdown (Dudzinska et al. 2010), and amino acid alterations (Berton et al. 2017; 

Leibowitz et al. 2012). However, the specific application of metabolomics as a tool to 

provide further depths to the evaluation of individual variability in response to exercise 

training has yet to be performed. 

 

2.6 Summary 

Based on the findings of this literature review, the aim of this thesis was to investigate the 

use of effort-based methods as a standardised method of exercise intensity prescription. 

Individual variability observed in both exercise performance and the physiological 

response will be investigated when using these targets, with the goal of achieving low 

levels of individual variability in positive exercise training response and adaptations. A key 

part of this investigation will be an exploration of the interaction of duration and intensity 

when using effort-based intensity targets on physiological and psychological responses to 

exercise. The exercise formats used will include single bouts, whole sessions, and chronic 

response to exercise training. Metabolomics will be explored as a tool to investigate the 

global metabolic response to effort-based exercise and establish potential differences 

between exercise formats and associations with varying levels of individual variability. 
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3.1 Introduction 

In this chapter, the general methods utilised throughout the investigations included in this 

thesis are outlined. Within each individual study chapter, further specific methods are 

outlined. 

 

3.2 Participants 

All participants were recruited using word-of-mouth, advertisements (physical and online), 

and prospective contact. In Chapters 4 and 6, both male and female cyclists were recruited 

to participate, and in Chapter 5, only male cyclists were recruited. To obtain as 

homogenous participant groups as possible, participants completed a Cycling Experience 

Questionnaire and were required to be regularly competing in local and national level 

cycling or triathlon competitions and have been training regularly. Focusing on cyclists 

who have competitive experience had the rationale that these cyclists would regularly be 

exposed to perceptually regulated exercise within a competition setting. The performance 

level criteria (Table 3.1) set out by de Pauw et al. (2013) were used to classify participants 

within each experimental chapter, allowing for effective comparison between participants’ 

performance level within this thesis, as well as for future research. 

 

Table 3.1 – de Pauw et al. (2013) classification criteria for cyclists’ performance level. 

 PL1 PL2  PL3 PL4 PL5 

 
Untrained Recreationally 

trained 

Trained Well trained Professional 

Absolute MMP (W) < 280 280 - 319 320 - 379 380 - 440 > 350 

Relative MMP (W.kg-1) < 4.0 3.6 - 4.5 4.6 - 5.5 4.9 - 6.4 > 5.5 

Relative V̇O2max (ml.kg.min-1) < 45 45 - 54.9 55 - 64.9 65 - 71 > 71 

Absolute V̇O2max (L.min-1) < 3.7 3.4 - 4.2 4.2 - 4.9 4.5 - 5.3 > 5.0 

Cycling training (hrs.week-1) < 2-3 4 ≥ 5 ≥ 10 ≥ 10 

Cycling experience (years) - - - ≥ 3 ≥ 5 
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3.3 Informed consent and ethical approval 

Ethical approval for all studies was obtained from the University of Kent local research 

ethics committee. Upon recruitment, participants were provided with approved information 

sheets that detailed the rationale of each study, as well as the procedures, benefits, and 

potential risks involved. All participants provided informed consent for the studies they 

were involved with and were aware of their right to withdraw their participation at any 

time. A standardised medical health questionnaire was completed by all participants prior 

to the completion of any data collection and were excluded from participation if any 

contraindications to exercise were identified. In the case where participants became injured 

or unwell during their participation, they were encouraged to withdraw from the specific 

study and re-start their participation when appropriate. 

 

3.4 Experimental conditions and locations 

All testing procedures were conducted within University of Kent laboratories at Medway 

Park, Gillingham, or on the Medway Campus, Gillingham. Both locations are maintained 

with similar environmental conditions of and ambient temperatures of approximately 19 

°C. Each laboratory was equipped with air conditioning units, adequate airflow, and 

cooling fans. 

 

3.5 Standardised control measures 

Participants were provided with detailed instructions of the pre-testing control procedures 

and considerations required for each study prior to each laboratory visit with the aim of 

achieving homogenous physiological and psychological states during participation. These 

procedures will be detailed within each experimental chapter. 

 

3.6 Anthropometric measurements 

Height and body mass data of each participant were measured (SECA Beam scale and 

stadiometer, Birmingham, UK) during the first visit of each study, and body mass was 

recorded during subsequent visits to ensure accurate reporting of body-mass relative 

values. Participants were instructed to stand barefoot wearing only the clothing they would 

complete the testing in, with their feet touching the measurement backboard and their 
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gluteus muscles and upper backs against the stadiometer. Using the Frankfort plane, 

participants adopted a level head position and were instructed to take a deep breath before 

the stadiometer sliding measurement level being lowered to the top of their head. 

Measurements were made to the nearest 0.1 cm and 0.1 kg. 

 

3.7 Maximal incremental test 

All studies included in this thesis incorporated a continuous incremental ramp test to 

maximal volitional exhaustion on a cycling ergometer. The purpose of this test was to 

identify MMP, V̇O2max, and HRmax, but it also served to familiarise participants with the 

laboratory and collect information on physiological and psychological response to 

incremental exercise. 

Participants completed the maximal incremental test on a bicycle ergometer (Cyclus2, 

RBM Electronics, Leipzig, Germany). After riding at 100 W for a period of 10 min, the 

external load was increased by 20 W every 60 sec until volitional exhaustion, defined as 

the point where self-selected cadence dropped below 60 rpm despite strong verbal 

encouragement. MMP was calculated as the highest power output averaged over a period 

of 60 sec, V̇O2max was calculated as the highest V̇O2 achieved over a period of 30 sec, and 

HRmax was identified as the highest HR value reached in the incremental test. After a 

period of 30 min (10 min cool-down at 100 W, 10 min seated rest, and 10 min warm-up at 

100 W), participants were instructed to exercise at MMP until volitional exhaustion to 

identify TTE at an intensity corresponding to V̇O2max and also to confirm V̇O2max values 

recorded during the incremental test. 

 

3.8 General experimental equipment and procedures 

3.8.1 Cyclus2 ergometer 

The testing ergometer which was used for the duration of the research studies included in 

this thesis was a Cyclus2 ergometer (Cyclus2 ergometer, RBM Electronics, Leipzig, 

Germany). This ergometer has been used previously in cycling research and is widely 

considered as having good accuracy and reproducibility (Rodger et al. 2016; Reiser et al. 

2000). Participants were able to use their own bicycles whilst using this ergometer, which 

reduces the need for familiarisation and improves test comfort. In addition to the use of 

their own bicycles, the axles of the Cyclus2 ergometer are constructed elastically, allowing 
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for a more ‘natural’ cycling movement versus a static machine. During the maximal 

incremental testing procedures, the resistance provided by the Cyclus2 was controlled 

using the internal programming included with the unit in accordance with the test protocol 

and allowing participants to freely choose their pedalling cadence. During self-paced 

exercise bouts, participants were able to control the resistance by using the gear shifting 

capabilities on their own bicycles to adjust the chosen gearing on the Cyclus2 fixed 

cassette. Where participants were unable to attend the laboratories with their own bicycle, 

an appropriately sized bicycle was fitted from a stock of laboratory bicycles. As changes in 

bike setup has been shown to affect efficiency (Price and Donne 1997), subject's setup was 

kept identical between all tests. 

 

3.8.2 CompuTrainer cycling trainer 

During the training intervention involved in Chapter 6, participants completed training 

sessions using a CompuTrainer Pro unit (RacerMate, Seattle, USA). These units are 

electromagnetically braked cycling ergometers upon which participants were able to mount 

their own bicycles, and resistance was applied on the rear wheel. When using the 

CompuTrainer device there are specific calibration procedures that must be followed, 

including the standardisation of rear tyre pressure. A total of nine trainer units were set up 

in the laboratory to allow for group training participation, and adequate spacing between 

units was given. The CompuTrainer has been regularly used in cycling training research 

(Mauger, Jones and Williams 2010; Micklewright et al. 2010) and display good reliability 

(coefficient of variation [CV]: 1.2 – 1.9 %) of test-retest power output across a wide range 

of intensities (Stone et al. 2011; Noreen, Yamamoto and Clair 2010; Davison, Corbett and 

Ansley 2009; Zavorsky et al. 2007). The units allow participants to regulate the intensity of 

cycling by altering their cadence and gear selection throughout exercise, which closely 

mimics the experience of cycling outdoors. 

 

3.9 Physiological measurements 

3.9.1 Heart rate 

During Chapters 4, 5, and 6, the Cyclus2 ergometer collected ANT+ heart rate signals 

measured from a heart rate chest strap worn by each participant (Cyclus2 heart rate strap, 
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RBM Electronics, Leipzig, Germany). During training sessions completed by participants 

in Chapter 6, heart rate data was collected by the CompuTrainer units. 

 

3.9.2 Expired gas 

During Chapters 4, 5, and 6, gas exchange data were measured using an online breath-by-

breath metabolic system (Cortex Metalyser 3B, Leipzig, Germany) and analysed using 

compatible software (Metasoft III, Cortex, Leipzig, Germany). The unit measures 

ventilatory volume using a digital turbine transducer, which uses a photocell sensor to 

detect the rotation of a turbine in the gas sampling unit attached to a face mask. Inspired 

and expired gas was sampled in a continuous manner from the sampling unit to measure 

factors such as V̇O2 and V̇CO2 through a specialised sampling line. Immediately prior to 

all testing bouts, the system was calibrated for volume using a 3 L syringe (Hans Rudolph 

Inc., Kansas City, USA) and for oxygen (O2) and carbon dioxide (CO2) using ambient gas 

and certified calibration gas mixtures (14.98 % O2 and 4.97 % CO2). CV of the ambient 

and calibration gas over multiple days was measured < 0.02 %, and CV of volume 

calibration was measured over multiple days at three different flow rates; 0.5 L/s 

(inspiration; -1.9 %, expiration; -0.7 %), 1 L/s (inspiration; -2.6 %, expiration; -0.9 %), and 

3 L/s (inspiration; -1.3 %, expiration -1.3 %). 

 

3.9.3 Near-infrared spectroscopy 

Muscle oxygenation status was measured using near-infrared spectroscopy (NIRS) in 

Chapters 4 and 5, which is based on the difference in light absorbency between oxygenated 

haemoglobin (O2Hb) and deoxygenated haemoglobin (HHb). Working skeletal muscle has 

been shown to deoxygenate during exercise, and the degree of deoxygenation is heavily 

influenced by training status and the intensity of exercise (Nioka et al. 1998; Hansen et al. 

1996). The oxygenation status of the muscle, therefore, provides an insight into the level of 

oxidative stress present within the muscle during exercise, particularly as trained 

endurance athletes have display increased mitochondrial function and oxidative capacity 

(Hawley 2002; Holloszy and Coyle 1984; Davies, Packer and Brooks 1981). The NIRS 

probe (Portamon, Artinis Medical Systems BV, Netherlands) transmits near-infrared light 

through muscle tissue and is then measured by a receiver. The NIRS probe was placed on 

the right leg, at the distal end of the vastus lateralis muscle, covered with blackout cloth, 

and held securely in place with an elasticated bandage. The placement was determined by 
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asking subjects to extend their leg to locate the distal end of the muscle body, and the 

NIRS probe was placed in a manner that ensured the sensors were covering muscle tissue. 

Care was taken when securing the NIRS probe to ensure that enough emitted light was able 

to be detected by the NIRS receiver. The Portamon probe was set up with 35 mm distance 

between probe and receiver (allowing the signal to penetrate approximately 17.5 mm into 

the muscle tissue; Malagoni et al. 2010). 

 

As near-infrared light sent by the NIRS probe travels through muscle tissue, part of the 

signal is absorbed whilst the remainder is scattered by the tissue, which can then be 

measured by the NIRS probe detector. The changes in tissue O2Hb and HHb across time 

was calculated using a modified form of the Beer-Lambert Law using the received optical 

densities from continuous wavelengths of near-infrared light (762 nm and 848 nm), 

corresponding to the wavelengths of absorption of O2Hb and HHb. Changes in total 

haemoglobin (tHb) were calculated by the sum of O2Hb and HHb and used as an index of 

change in regional blood volume within the illuminated area (Van Beekvelt et al. 2001). 

The dynamic balance between O2 supply and consumption is represented by the tissue 

saturation index (TSI, expressed in %) and was calculated as O2Hb/HHb + tHb X 100. The 

NIRS data were collected at 10 Hz, and then for the purposes of further analysis, a 10-point 

moving average was applied when transferring data to a personal computer from the 

Portamon probe. The data were normalised to a baseline period (0 μM) to express the 

magnitude of change (Δ; Smith and Billaut 2010; Subudhi, Dimmen and Roach 2007; 

Subudhi et al. 2009; Shibuya et al. 2004a; Shibuya et al. 2004b). This baseline period 

lasted 120 sec and occurred immediately prior to the initiation of the warm-up prior to 

exercise, where the subject remained in a seated position and instructed to remain still and 

relax their leg. 

 

3.10 Psychological measurements 

Prior to the measurement of any psychological ratings, full instructions were delivered to 

participants to ensure correct comprehension of the related scales. The majority of study 

participants were also regular participants in the laboratory and thus have had previous 

experience with the scales used. 
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3.10.1 Perceived Exertion and Session Perceived Exertion 

Subjective ratings of perception of effort were recorded during various exercise procedures 

using Borg’s 6 – 20 scale (Borg 1970; Borg 1982a), which provides descriptive categories 

such as; ‘no exertion at all’, ‘very light’, and ‘maximal exertion’ with corresponding 

numerical values. RPE provides a score of the subjective evaluation of a participants’ total 

physical strain experienced at a specific moment during exercise and contains both 

physical and psychological components. To assess the overall subjective workload within 

an exercise testing session, participants were asked to evaluate the session using Foster’s 

sRPE (Foster et al. 2001). The sRPE has been shown to be a reliable and valid method that 

incorporates both the intensity and duration of the exercise session and represents the 

subjective ‘mean’ exertion felt by the participant (Haddad et al. 2017). 

 

3.10.2 Life Demands and Stress 

To assess participant’s total load of stress with regards to exercise and general life stress, 

the Daily Analyses of Life Demands for Athletes (DALDA; Rushall 1990) was used prior 

to testing and exercise sessions. The DALDA is formed of an inventory of ratings that 

measure sources and symptoms of stress and is valid for competitive athletes over the age 

of eleven years. A total of 9 sources of stress and 25 symptoms of stress are examined, and 

three ratings can be given by the participant: (a) “worse than normal”, (b) “normal”, or (c) 

“better than normal”. For the purposes of this thesis, the number of “worse than normal” 

responses for each session was used to assess the influence of outside-of-sport stressors 

that may have interfered with training. 

 

3.11 Metabolomics analysis 

3.11.1 Urine sample preparation 

Details of urine sample collection processes and timings are presented within experimental 

Chapters 7 and 8. Following collection, urine samples were centrifuged at 1500 x g for 10 

– 15 min to remove any debris (including any cellular material). The acellular supernatant 

was then aliquoted for storage/freezing in a locked freezer and thawed prior to analyses. 

Cellular material was disposed of in a clinical waste bin following standard clinical SOPs. 

Sample preparation was carried out following the guidelines of Want et al. (2010). Neat 

urine samples were thawed at room temperature and were vortexed for 15 sec and 
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centrifuged at 10,000 g for 10 min. Using an individually wrapped disposable syringe (1 

ml Terumo Syringe, Terumo, Tokyo, Japan), 1 ml of urine was then drawn and passed 

through a molecular filter (Minisart Syringe Filter, Sartorius, Goettingen, Germany) to 

remove any further cellular debris still contained in the sample. Filtered urine was 

subsequently diluted using UPLC-grade water with a 1:1 dilution ratio, vortexed for 15 sec 

and centrifuged at 10,000 x g for a further 5 min before being transferred into glass vials (2 

ml Fisherbrand™ Glass Vials, Fischer Scientific, UK) for UPLC-MS analysis (Danaher, 

Gerber, Wellard, et al. 2016; Enea et al. 2010; Lehmann et al. 2010). 

 

3.11.2 UPLC-MS analysis 

All urine samples for Chapters 7 and 8 were prepared and analysed using UPLC-MS in 

both positive (ESI+) and negative (ESI-) ionisation modes. Analyses were performed using 

Waters ACQUITY equipment (Waters Corp., Milford, MA), which was comprised of a 

Quaternary Solvent Manager, an H-Class Sample Manager, Acquity QDa quadrupole mass 

analyser with an ESI probe (Jagadabi et al. 2019; Mistry, Lee and Wood 2019; Gay et al. 

2014). Instrument control and data acquisition were performed using MassLynx v4.1 

software (Waters Corp., Milford, MA). Chromatographic separation was performed using a 

Waters Acquity UPLC HSS T3 100Å 1.8 µm column (2.1 mm ꝋ x 100 mm length; Waters 

Corp., Milford, MA), with a mobile phase comprising of eluent A (de-ionised H2O + 0.1 % 

formic acid), and eluent B (acetonitrile + 0.1 % formic acid). The gradient flow rate was 

held at a constant 0.5 ml.min-1 over a gradient lasting 12 min (Table 3.2). A regulated 

autosampler held samples at 4 °C during analyses, with an injection volume of 5 µL. MS 

ESI conditions were optimised from previous experiments using urine samples and are 

presented in Table 3.3. An m/z range of 50 – 800 was used in resolution mode for data 

acquisition, with a 0.5 sec scan time. Ten QC injections were used to condition (cQC) the 

UPLC-MS system prior to experimental samples being run and again at the end of the 

sample run, as well as repeated every 10 samples throughout the entire analytical run. 

UPLC-Grade H2O samples were used as ‘blanks’ to assess the spectroscopic effects of the 

solvent system, and these were incorporated at the start and end of each analytical run. Test 

mixes were created containing known compounds from chemical standards, known to be 

responsive to exercise, dissolved in UPLC-Grade H2O (dilution 1:5) to enable putative 

identification of metabolites of interest in the biological samples, and are detailed within 

Chapters 7 and 8. 
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3.11.3 Quality control and system conditioning  

As QC samples should reflect analytes similar to the samples of interest, all QC samples 

were prepared for each exercise condition by pooling 100 µL of urine taken from each 

urine sample prior to dilution but following filtering and centrifugation. Prior to any 

experimental samples being analysed 10 cQC samples were run, and further QC samples 

were repeated at least every 10 experimental sample injections. 

 

Table 3.2 - Gradient used for urine sample analysis; A, UPLC grade water & 0.1 % formic 
acid; B, Acetonitrile & 0.1 % formic acid. 

Time (min) A% B% 

0 99 1 

1 99 1 

3 85 15 

6 50 50 

9 5 95 

10 5 95 

10.1 99 1 

12 99 1 

 

Table 3.3 - Electrospray Ionisation conditions utilised for the untargeted metabolic 
profiling of urine in both positive and negative modes. 

 
ESI+ ESI- 

Source temperature (°C) 150 150 

Desolvation temperature (°C) 500 500 

Cone gas flow (L.h-1) 100 100 

Desolvation gas flow (L.h-1) 1200 1200 

Capillary voltage (kV) 2 2.4 

Cone voltage (kV) 20 32 

 

3.11.4 Data preparation 

Following samples being injected through the UPLC-MS system and analysed, data was 

analysed in chromatogram form using MassLynx v4.1 software (Waters Corp., Milford, 

MA). The DataBridge tool within MassLynx4.1 was then used to convert MS data output 

files (.raw) to netCDF format. The netCDF data files were then processed using the XCMS 

package for R software (Smith et al. 2006). 

  



54 

3.11.5 Univariate analysis of raw data 

Visual comparison of overlaid QC BPI chromatograms followed by assessment of 

retention time drift, mass accuracy, and alterations to the peak intensities of the most 

abundant point of the putatively identified metabolites included in the test mixes in both 

ESI+ and ESI- modes were used to assess the analytical reproducibility of the UPLC-MS 

system. Following confirmation that the analytical chromatograms contain no errors or 

indicate any experimental failures, further analysis of the UPLC-MS system stability was 

performed using putatively identified metabolites. Test mixes were prepared using selected 

compounds, which are commonly found in exercise-related urinary analyses and are 

presented within both Chapters 7 and 8. These compounds contained within the test mixes 

were used to putatively identify metabolites within the experimental samples based on their 

accurate mass, RT, and ion fragment patterns as well as cross-referenced in HMDB 

(Wishart 2008; Kind and Fiehn 2007). For retention time drift, mass accuracy, and 

alterations to the peak intensities, measures were taken from the most abundant point of the 

selected metabolite peak of interest. Acceptance criteria thresholds were; retention time 

drift £ 6 sec, mass accuracy error to £ 30 ppm, and sensitivity to £ 0.3 C, where the CV 

was calculated using the following equation: 

!"#$$%&%#'(	"$	*+,%+'&# = 	.(+'/+,/	/#0%+(%"'1#+'  

 

3.11.6 Pre-processing parameters 

Metabolomics data pre-processing within Chapters 7 and 8 were performed using the 

XCMS package in R, and the parameters were optimised based on inspection of 

chromatograms from all datasets and were as follows; minimum chromatographic peak 

width = 1 sec, maximum chromatographic peak width = 20 sec, ppm threshold for peak 

detection = 30, signal to noise ratio = 3, mass tolerance for peak grouping = 0.5 Da, 

retention time error = 2 sec, and scan range = 20 – 540 sec. Thresholds for data extraction, 

normalisation, and CV filtering were; minimum fraction filtering to 50 %, retention time 

drift to £ 6 sec, mass accuracy error to £ 30 ppm, and sensitivity to £ 0.3 CV. 
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3.11.7 Multivariate analysis of metabolomics data 

Within Chapters 7 and 8, multivariate analysis of metabolomics data was performed using 

OPLS-DA models within SIMCA-P (Version 12, Umetrics, Sweden). PCA was performed 

within Chapters 7 and 8 using pareto scaling, and the reproducibility of the datasets were 

assessed by observing clustering of QC samples within the scores plot. The sample 

variability for each analysis group was also assessed on the PCA scores plot. OPLS-DA 

analysis groups are outlined within Chapter 7 and 8. OPLS-DA models were subjected to 

permutation tests (n = 100) to assess the validity of the model, and Q2Y was used to assess 

the goodness of the prediction parameters of the models. OPLS-DA models were deemed 

valid if the Q2Y from the original model remains significantly higher (at P < .05) than the 

Q2Y values generated from the permutation models. From valid OPLS-DA models, S-Plots 

were generated to identify the metabolites responsible for the separation. Metabolites were 

considered discriminatory metabolites if their VIP ≥ 1, p[1] ≥ 0.03, and p(corr) ≥ 0.4, 

where VIP scores provide an overview of the influence of an individual variable on the 

OPLS-DA model (Farrés et al. 2015; Akarachantachote, Chadcham and Saithanu 2014), 

p[1] represents the magnitude of each variable, and p(corr) represents the reliability of each 

variable. 

 

3.11.8 Materials and suppliers 

Materials that were used throughout Chapters 7 and 8 are listed and detailed in Table 3.4. 

Table 3.4 – General metabolomics materials used throughout this thesis. 

Material Supplier Cat No. 

Acquity UPLC HSS T3 Column 100Å 
(1.2 mm x 100 mm) 

Waters Corp. Milford, MA 186003539 

UPLC Grade water Sigma Aldrich, UK 34877 

UPLC Grade acetonitrile Sigma Aldrich, UK 34998 

UPLC Methanol Sigma Aldrich, UK 34860 

Formic acid Fischer Scientific, UK 56302 

Urine collection containers Fischer Scientific, UK 11592842 

2 ml Fisherbrand™ glass vials Fischer Scientific, UK 13-622-186 

1 ml Terumo syringe Fischer Scientific, UK 13197664 
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4.1 Abstract 

Introduction: The use of rating of perceived exertion (RPE) as a training intensity 

prescription has long been used by competitive athletes and coaches. However, the 

individual variability in the physiological response to exercise prescribed in this manner 

has not been investigated. Methods: Twenty well-trained competitive cyclists (18 = male, 

2 = female, V̇O2max: 55.07 ± 11.06 mL.kg-1.min-1) completed 3 exercise trials, each 

consisting of nine self-paced exercise bouts in a randomised order consisting of either short 

(1 min), medium (4 min), or long (8 min) bouts at self-selected workloads to elicit at low 

(RPE 9), medium (RPE 13), or high (RPE 17) intensities. Power output and physiological 

responses were monitored to identify within- (WAV), between-athlete (BAV) variability 

using CV, and Total variability (TV), which was calculated as the ratio of WAV and BAV. 

Results: Power output, HR, work done, volume of consumed oxygen (V̇O2), volume of 

output carbon dioxide (V̇CO2), minute ventilation (V̇E), and ΔHHb all increased 

significantly at higher intensities (P < .001). ΔTSI% and ΔO2Hb decreased as intensity 

increased (P < .001). During RPE 9 bouts, shorter durations resulted in lower V̇O2 (P < 

.05), whereas ΔTSI% decreased and ΔHHb increased as duration increased (P < .05). 

During RPE 13 bouts, shorter durations resulted in lower V̇O2, V̇E, and %V̇O2max (P < 

.001), higher power output, HR, ΔHHb (P < .001) and ΔTSI% (P < .05). During RPE 17 

efforts, power output (P < .001) and ΔTSI% (P < .05) decreased as duration increased. As 

intensity and duration increased, variability in power output, work done, heart rate, V̇O2, 

V̇CO2, and V̇E decreased, and variability in muscle oxygenation data increased. 

Conclusion: Self-paced exercise intensity prescriptions at higher effort levels and longer 

durations result in the lowest WAV and BAV, suggesting that as the required effort level 

increases, athletes’ power output and physiological responses become more homogenous. 

Future investigations should investigate maximal session effort prescriptions to provide 

greater consistency of training stimulus. 

 

4.2 Introduction 

Perception of effort is defined as the intensity of subjective effort, stress, discomfort, and 

fatigue which is felt during exercise or physical activity (Noble and Robertson 1996; Eston 

2012). The common method of measuring perception of effort is the RPE scale (Borg 

1998) which is believed to be influenced by factors such as fatigue, effort, strain, 

discomfort, and/or pain (St Clair Gibson et al. 2006). It has been demonstrated that 

increased RPE can be the result of increases in oxygen consumption, metabolic acidosis, 
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ventilation, and heart rates (Borg 1998; Ekblom and Golobarg 1971; Robertson et al. 

1986). The RPE scale can be used during exercise to record the RPE experienced whilst an 

individual is exercising at an exercise workload or resistance (Myles and Maclean 1986). 

The RPE scale can also be used as a tool to prescribe exercise intensity in production mode 

(Borg 1998) as a method to regulate exercise (Helms et al. 2018; Parfitt, Evans and Eston 

2012; Graham and Cleather 2019). The RPE production mode provides a perceived 

exercise intensity continuum that an exercising individual can use to regulate their exercise 

work rate or resistance (Borg 1998; American College of Sports Medicine 2014; Noble and 

Robertson 1996). The ease of use of the RPE scale in production mode during self-paced 

exercise has been studied in a wide range of populations, including clinical, active, 

untrained (Eston et al. 2006; Eston and Williams 1988; Coquart et al. 2016; Noble and 

Robertson 1996; Dunbar et al. 1998; Noble 1982; Robertson 2001; Hartshorn and Lamb 

2004), and trained athletes (Perrey et al. 2003; Schallig et al. 2017; Garcin, Danel and 

Billat 2008; Groslambert et al. 2004). 

 

When using RPE in production mode, it is unclear whether both the intensity of the RPE 

anchor and the duration of the work bout would influence the accuracy and reliability of 

the exercising individual to adjust their work rate or resistance to maintain a specified RPE 

level or anchor. The reproducibility of this approach to exercise prescription has been 

investigated involving blind (Buckley 2000), child (Eston et al. 2000; Thompson and 

Lamb 2001), and healthy participants (Hartshorn and Lamb 2004), with varying results. 

Thompson and Lamb (2001) concluded that there was no difference in reliability in 

children when exercise intensity was prescribed using RPE in production mode with, or 

without, an anchoring protocol during both low and high levels of exertion. Increased 

reliability using RPE in production mode after a series of trials has been demonstrated in 

blind men and women (Buckley 2000) and children aged 7 – 10 years old (Eston et al. 

2000) which may indicate a learning effect of using the scale in this manner. Although, 

conversely, a large study of 2,560 Caucasian men and women indicates that healthy 

individuals are able to use RPE in production mode to accurately achieve specified 

exercise intensities (Scherr et al., 2013). As duration and intensity are both known to 

impact an individual’s perception of effort, it is, therefore, likely to impact upon reliability 

of the exercise intensity that is selected in response to a specific RPE anchor (Seiler and 

Sylta 2017). Indeed, the impact of intensity on perceptually regulated exercise has been 

studied by Hartshorn and Lamb (2004), who demonstrated increased reliability with 

greater exercise intensity. For example, within-subject variability in power output as a CV 
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decreased from 58.3 % at RPE 9 to 39.7 % at RPE 15. Only Eston et al. (2006) have 

explored the impact of duration on perceptually regulated exercise. Their data suggest that 

shorter duration exercise (e.g., 2 min) has greater repeatability and reliability when 

compared to longer duration (e.g., 4 min). Both duration and intensity of perceptually 

regulated exercise have not yet been considered within the same study, and therefore the 

interaction is unknown. It is possible that both the intensity of the RPE anchor and the 

duration of work bout itself could affect an individual’s ability to regulate their exercise 

intensity or work rate accurately and reliably to the desired target. 

Therefore, the aim of this study was to assess the individual variability in repeated self-

paced submaximal exercise of different intensities in trained competitive cyclists using 

long, medium, and short workload periods. Specifically, this study explores how exercise 

intensity and duration influence variability of performance and physiological responses, as 

well as the interaction between the two. 

 

Hypotheses 

H11 – Longer work bouts result in lower total variability in both performance and 

physiological response to self-paced exercise. 

H10 – There is no difference observed in variability between the different workload 

durations. 

H21 – Higher intensity work bouts result in lower total variability in both performance and 

physiological response to self-paced exercise. 

H20 – There is no difference observed in variability between different intensity exercise 

bouts. 
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4.3 Methodology 

4.3.1 Participants 

Twenty trained/well-trained cyclists (18 males, 2 females; mean ± SD (95 % confidence 

interval; [CI]): age 38 ± 11 years (CI: ± 5), height 176.6 ± 9.7 cm (CI: ± 4.6), mass 72.4 ± 

9.2 kg (CI: ± 4.4), V̇O2max 55.07 ± 11.06 mL.kg-1.min-1 (CI: ± 5.26), maximum minute 

power (MMP) 337 ± 54 W (CI: ± 26), HRmax 180 ± 9 bpm (CI: ± 4)), with at least 3 years 

of cycling training and racing experience (corresponding to Performance Level 3 – 4; de 

Pauw et al. 2013; Decroix et al. 2016), provided written informed consent to voluntarily 

participate in the study which held full ethical approval from the local institutional ethics 

committee according to the Declaration of Helsinki. 

 

4.3.2 Study design and experimental procedures 

Participants visited the exercise testing laboratory on four separate occasions over a period 

of 5 ± 2 weeks, with visits separated by at least 72 h to ensure full recovery between each. 

Participants were requested to arrive in a rested and euhydrated state to each visit. In Visit 

1, participants completed an incremental exercise test to identify V̇O2max and performance 

parameters, followed by a V̇O2max confirmation effort (see Maximal incremental test for 

more details). During Visit 1, participants were also familiarised with the laboratory 

equipment used during the subsequent exercise testing visits. Visits 2 to 4 comprised of 3 

supervised exercise sessions, each consisting of 3 separate self-paced exercise bouts; 3 

RPE-anchored exercise intensities (RPE 9, 13, 17) lasting either 1 (SHORT), 4 (MED), or 

8 (LONG) min completed in a randomised order during each visit (see: Exercise testing 

sessions). All visits for each participant were completed within the same 3-h period of the 

day, and participants were asked to maintain a consistent diet and lifestyle and to avoid 

alcohol and strenuous exercise the day before the sessions. To allow for adequate 

familiarisation prior to data collection, participants were asked to attempt to incorporate 

effort-based training bouts in their own training before commencing the study. A cooling 

fan was present, and plain water was available for participants to drink ad libitum. 

 

4.3.3 Maximal incremental test 

Participants completed a maximal incremental test on a bicycle ergometer (Cyclus2, RBM 

Electronics, Leipzig, Germany) to identify MMP, V̇O2max, and HRmax. After riding at 100 
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W for a period of 10 min, the external load was increased by 20 W every 60 sec until 

volitional exhaustion, defined as the point where self-selected cadence dropped below 

60rpm despite strong verbal encouragement. MMP was calculated as the highest power 

output averaged over a period of 60 sec, V̇O2max was calculated as the highest V̇O2 

achieved over a period of 30 sec, and HRmax was identified as the highest HR value 

reached in the incremental test. After a period of 30 min (10 min cool-down at 100 W, 10 

min seated rest, and 10 min warm-up at 100 W), participants were instructed to exercise at 

MMP until volitional exhaustion in order to confirm V̇O2max values recorded during the 

incremental test. 

 

4.3.4 Exercise testing sessions 

After a warm-up period of 10 min easy cycling, participants completed work bouts of 

either 1, 4, or 8 min (SHORT, MED, LONG) clamped at RPEs of either 9, 13, 17 (6 – 20 

scale: Borg 1998) in a randomised order, with 5 min easy cycling between each. A cool-

down period of 10 min was completed following the final bout. Participants were able to 

self-select their cycling power output to achieve desired RPE anchor by using their gearing 

system on their bicycle. Elapsed time was available for participants during all bouts, but 

they were blind to all other data and information, and no encouragement was given during 

exercise to minimise the effects of external factors (Currell and Jeukendrup 2008).  

 

4.3.4.1 Physiological	measurements	

During each session, power output was measured, and heart rate was transmitted using a 

compatible heart rate strap (Cyclus2 heart rate, RBM Electronics, Leipzig, Germany). Data 

were continuously measured and was subsequently segmented into the 9 sections 

corresponding to the 9 exercise bouts for analysis. 

 

Respiratory gas exchange data were assessed continuously throughout all sessions using an 

online gas analyser (Metalyzer 3B, CORTEX Biophysik GmbH, Leipzig, Germany) and an 

appropriately sized facemask covering the nose and mouth. A 10-sec rolling average was 

used when analysing respiratory gas exchange data. Expired gas data were analysed to 

quantify V̇O2, V̇CO2, V̇E, and breathing frequency (Bf). 
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Muscle oxygenation was measured using spatially resolved dual-wavelength near-infrared 

spectroscopy (NIRS; Portamon, Artinis Medical Systems, BV, Netherlands), with the 

optode positioned 10 cm superior to the lateral epicondyle of the femur at the distal end of 

the vastus lateralis muscle and secured with muscle tape and bandage. NIRS data were 

analysed relative to a 2-min resting baseline measurement completed prior to each testing 

session to provide relative change (D) in TSI%, O2Hb, and HHb. 

 

4.3.4.2 Psychological	measurements	

The DALDA (Coutts, Slattery and Wallace 2007) questionnaire was administered 

immediately prior to each exercise session. Immediately following each exercise session, 

the subjective workload was assessed using the National Aeronautics and Space 

Administration Task Load Index (NASA-TLX; Hart and Staveland 1988; Hart 2006) in 

order to check for consistency in the overall perceived session load. 

 

4.3.5 Data processing and statistical analysis 

Data were processed according to the combination of exercise duration (SHORT, MED, 

and LONG), intensity (RPE 9, 13, 17), and session repeat (3 x SHORT, MED, and 

LONG). Prior to statistical analysis, all data were checked for normality of distribution. 

Sphericity of the data was investigated using the Mauchly test, and the Greenhouse-Geisser 

adjustment was made when data was deemed non-spherical. Data are reported as mean ± 

SD, and CVs are presented as a percentage unless specified otherwise. When assessing 

variability, low CVs indicating a consistent response and high CVs displaying variable 

response. 

 

Repeated measures analysis of variance (ANOVA) was used to analyse power output and 

physiological response data between exercise session visits, and two-way repeated-

measures ANOVA (duration x intensity) was used to analyse performance and 

physiological parameters. When significant differences were found, post-hoc testing with 

Bonferroni correction was used to determine where differences occurred. Effect sizes were 

calculated using partial eta squared (ηp
2) and were defined as small, medium, or large 

based upon 0.10, 0.25, and above 0.40, respectively (Cohen 1988). 
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Quantification of individual variation observed was completed by calculating CVs for the 

WAV, BAV, and TV of each parameter by expressing the standard deviation relative to the 

mean for each parameter. Linear mixed modelling was applied to analyse the variability in 

power output, work done, HR, %MMP, %HRmax, V̇O2, V̇CO2, V̇E, %V̇O2max, %Bfmax, 

TSI%, O2Hb, and HHb for each combination of duration and intensity. Furthermore, linear 

mixed modelling was used to assess the relative contribution of both WAV and BAV to the 

total variability observed (Bliss 1967; Hansen et al. 1997; Bagger, Petersen and Pedersen 

2003). 

 

Critical difference levels were used to indicate whether the difference observed between 

two work bout measurements was significant (Fraser, Hyltoft and Lytken 1990; Fraser and 

Harris 1989; Harris and Yasaka 1983; Bagger, Petersen and Pedersen 2003). The following 

equation is utilised to calculate critical difference; 

$%,2(	3#+24,#3#'(	 × 	6	 ×	√2	× 	9:* 

where the first measurement is the measurement of interest, Z =1.65, which results in 

establishing a two-tailed probability of 10 %, and WAV is the observed within-subjects 

CV for the parameter involved. 

 

Linear mixed models, ANOVA’s, and post-hoc tests were conducted using the Statistical 

Package for the Social Sciences, version 26 for Mac OS X (SPSS, IBM®, Armonk, New 

York, USA), and an alpha level was set at P < .05 for the criteria for detection of 

significance in all cases. CV and critical differences were calculated in Microsoft Excel 

(Excel v16.3 Microsoft, Redmond, Washington, USA). 

 

4.4 Results 

4.4.1 Psychological response comparisons 

Monitoring questionnaires were used to assess similarity in participant’s perceived 

‘readiness to train’ and perceived demand of each session. No differences were observed 

for perceived levels of stress prior to sessions (P = .765, ηp
2 = .008) and load attributed to 

mental (P = .338, ηp
2 = .048), physical (P = .576, ηp

2 = .025), temporal (P = .257, ηp
2 .06), 
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performance (P = .748, ηp
2 = .013), effort (P = .569, ηp

2 .025), and frustration (P = .860, 

ηp
2 = .007) sources following each testing session (Figure 4.1). 

 

4.4.2 Session Order Differences 

To assess whether there was any learning effect or influence of session order, the 

differences in the repeated exercise bouts were investigated. All data for repeated sessions 

were not significantly different for RPE 9 (P ≥ .098, ηp
2 ≤ .115), RPE 13 (P ≥ .109, ηp

2 ≤ 

.11), and RPE 17 (P ≥ .056, ηp
2 ≤ .154), except for both V̇CO2 (P = .045, ηp

2 = .18) and V̇E 

(P = .026, ηp
2 = .168) which were higher in repeat 2 versus repeat 1 in SHORT_RPE17. 

 

 

a 

 

b 

Figure 4.1 – DALDA (a) and NASA-TLX (b) responses across training session repeats 
(Black bar; session 1, grey bar; session 2, white bar; session 3). 
 

4.5 Power output and cardiovascular response to exercise bouts 

Power output, heart rate, and work done are reported in Table 4.1, and power as %MMP 

and HR as %HRmax are reported in Table 4.2. Significant changes in power output (F(1.517, 

89.53) = 596.297; ηp
2 = 910), HR (F(1.539, 90.829) = 681.286; ηp

2 = .920), work done (F(1.467, 
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86.553) = 633.586; ηp
2 = .915), %MMP (F(1,59) = 919.212; ηp

2 = .940), and %HRmax (F(1.578, 

93.095) = 709.357; ηp
2 = .923) were found as RPE anchor increased (P < .001). Significant 

changes in power output (F(1.301, 76.771) = 71.292; ηp
2 = .547), HR (F(2, 118) = 282.581; ηp

2 = 

827), work done (F(1.045, 61.678) = 1309.505; ηp
2 = 957), %MMP (F(1.414, 83.444) = 22.101; ηp

2 = 

.273), and % HRmax (F(2, 118) = 270.719; ηp
2 = 821) were found as time increased (P < .001). 

There was an interaction effect observed for power output (F(2.562, 151.172) = 51.178; ηp
2 = 

.465), HR (F(2.816, 166.160) = 29.766; ηp
2 = .335), work done (F(2.383, 140.613) = 314.413; ηp

2 = 

.842), %MMP (F(1.829, 107.922) = 14.640; ηp
2 = .199), and HR as %HRmax (F(2.773, 163.623) = 

29.634; ηp
2 = .334)(P < .001). Locations of observed differences are highlighted in Table 

4.1 and Table 4.2. 

 

Variability Analysis 

As shown in Table 4.1, power output and work done tended to decrease in terms of TV, 

BAV, and WAV as intensity and duration increased. Total CV in power output was lowest 

in LONG bouts of RPE 17 and highest in SHORT bouts of RPE 9. Heart rate displayed 

lower CVs in comparison to power output and work, with greater consistency being 

displayed as exercise intensity increased. Table 4.2 demonstrates that total, BAV, and 

WAV CV were all higher when reporting %MMP compared to %HRmax, with higher levels 

of consistency being found as intensity and duration increases.
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Table 4.1 – Power output and cardiovascular response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

      Coefficient of variation Variance components Critical difference 
Variable    Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

Power output (W)               
RPE 9 a SHORT  95 41  43.1 43.5 13.1  1713.4 87.6 12.4 228.0 

  MED  93 40  42.8 43.3 15.4  1633.4 83.4 16.6 271.4 
  LONG  96 39  41.0 41.3 19.7  1581.2 72.6 27.4 375.7 

RPE 13 a SHORT b 228 69  30.3 30.5 15.2  4889.0 68.2 31.8 668.6 
  MED  200 49  24.6 24.9 10.8  2512.6 79.5 20.5 403.2 
  LONG  202 48  23.9 24.2 9.4  2402.0 78.1 21.9 356.1 

RPE 17 a SHORT b 349 97  27.7 8.9 10.6  9662.7 80.1 19.9 694.2 
  MED b 275 61  22.1 22.4 8.6  3805.6 83.2 16.8 443.9 
  LONG b 261 50  19.3 19.5 5.3  2596.5 91.6 8.4 259.0 

Work done (kJ)               
RPE 9 a SHORT b 6 2  44.0 44.4 11.8  6.3 86.9 13.1 12.3 

  MED b 22 10  43.1 43.6 16.1  94.8 82.8 17.2 67.7 
  LONG b 46 19  40.8 41.2 19.7  362.4 72.4 27.6 181.0 

RPE 13 a SHORT b 14 4  30.7 30.9 15.5  17.9 66.3 33.7 40.9 
  MED b 48 12  24.7 25.0 10.7  145.6 79.7 20.3 95.9 
  LONG b 97 23  23.9 24.3 9.3  553.6 78.2 21.8 170.1 

RPE 17 a SHORT b 21 6  27.4 8.6 11.1  34.3 79.5 20.5 43.9 
  MED b 66 15  22.2 22.5 8.5  221.0 83.2 16.8 105.7 
  LONG b 125 24  19.2 19.5 5.2  594.6 91.6 8.4 123.4 

Heart rate (bpm)               
RPE 9 a SHORT  109 12  11.3 11.5 5.3  155.6 76.6 23.4 107.7 

  MED  111 15  13.8 14.0 7.5  242.0 69.6 30.4 159.1 
  LONG  111 16  14.6 14.7 6.5  265.5 72.0 28.0 136.6 

RPE 13 a SHORT b 127 14  10.9 11.0 6.1  196.5 63.1 36.9 144.6 
  MED c 138 13  9.7 9.9 6.6  186.8 44.0 56.0 169.9 
  LONG  142 15  10.3 10.5 6.1  223.1 54.7 45.3 163.3 

RPE 17 a SHORT b 139 12  8.5 3.0 3.4  145.2 70.8 29.2 86.8 
  MED b 154 12  8.0 8.1 4.2  158.1 69.5 30.5 120.9 
  LONG b 160 11  6.7 6.8 3.0  117.8 71.4 28.6 88.1 
               

a = Significant difference observed between all RPE’s (P < .001). b = P < .001 vs. all other durations. c = P < .05 vs. LONG.  
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Table 4.2 – Relative power output and cardiovascular response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of 
variation, variance components, and critical difference levels. 

      Coefficient of variation Variance components Critical difference 
Variable    Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

Power as % MMP (%)             
RPE 9 a SHORT  28 11  39.2 39.6 13.5  125.0 85.2 14.8 69.4 

  MED  28 11  40.5 41.1 15.6  129.1 79.9 20.1 81.8 
  LONG  29 11  39.5 39.9 19.6  129.8 68.5 31.5 111.2 

RPE 13 a SHORT  67 17  24.7 25.0 15.2  285.5 56.5 43.5 196.8 
  MED  59 12  19.4 19.7 10.8  138.3 65.9 34.1 119.3 
  LONG  60 11  17.6 17.9 9.4  115.1 62.7 37.3 106.1 

RPE 17 a SHORT b 103 20  19.8 6.5 10.6  432.1 58.0 42.0 206.0 
  MED b 81 9  11.7 11.8 8.6  92.8 32.3 67.7 131.5 
  LONG b 77 6  7.8 7.5 5.2  35.2 34.4 65.6 75.8 

Heart rate as % HRmax (%)             
RPE 9 a SHORT  60 6  10.6 10.8 5.5  41.9 72.2 27.8 61.8 

  MED  62 8  13.6 13.8 7.6  72.1 66.8 33.2 89.4 
  LONG  61 9  14.2 14.3 6.4  77.4 71.1 28.9 74.2 

RPE 13 a SHORT b 70 7  10.1 10.2 6.0  52.2 56.1 43.9 79.2 
  MED c 77 7  9.6 9.7 6.4  56.1 44.8 55.2 92.0 
  LONG  79 8  10.0 10.1 6.1  64.5 50.9 49.1 90.4 

RPE 17 a SHORT b 77 6  7.3 2.5 3.3  32.1 60.5 39.5 46.8 
  MED b 85 6  6.7 6.8 4.2  33.8 56.4 43.6 67.5 
  LONG b 89 4  5.0 5.0 2.9  20.0 52.2 47.8 48.4 
               

a = Significant difference observed between all RPE’s (P < .001). b = P < .001 vs. all other durations. c = P < .05 vs. LONG. 
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4.6 Expired gas responses during exercise bouts 

V̇O2, V̇CO2, and V̇E are reported in Table 4.3, and %V̇O2max and %Bfmax are reported in 

Table 4.4. Significant increases in V̇O2 (F(1.473, 86.936) = 529.082; ηp2 = .90), V̇CO2 (F(1.485, 

87.629) = 494.818; ηp2 = .893), V̇E (F(1.507, 88.896) = 371.169; ηp2 = .863), %V̇O2max (F(1.676, 

98.908) = 684.862; ηp2 = .921), and %Bfmax (F(1.667, 98.328) = 346.81; ηp2 = .855) were found as 

RPE anchor increased (P < .001). Significant changes were found in V̇O2 (F(1.728, 101.944) = 

228.521; ηp2 = .795), V̇CO2 (F(1.723, 101.629) = 203.813; ηp2 = .776), V̇E (F(1.796, 105.985) = 

158.104; ηp2 = .728), %V̇O2max (F(1.738, 102.55) = 194.221; ηp2 = .767), %Bfmax (F(1.708, 100.794) = 

28.552; ηp2 = .326) as time increased (P < .001). There was an interaction effect observed 

for V̇O2 (F(3.177, 187.454) = 39.009; ηp2 = .398), V̇CO2 (F(3.11, 183.511) = 36.972; ηp2 = .385), V̇E 

(F(2.914, 171.899) = 43.228; ηp2 = .423), %V̇O2max (F(3.448, 203.438) = 32.817; ηp2 = .357), %Bfmax 

(F(3.18, 187.635) = 16.789; ηp2 = .222)(P < .001). Locations of observed differences are 

highlighted in Table 4.3, and Table 4.4. 

 

Variability Analysis 

As shown in Table 4.3 and Table 4.4 V̇O2, V̇CO2, and %V̇O2max tended to decrease in 

terms of total variability, BAC, and WAV, as intensity and duration increased. Variability 

in V̇E and %Bfmax were similar across intensities and durations. Total CV in V̇O2 was 

lowest in LONG bouts of RPE 17, and highest in LONG bouts of RPE 9. 
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Table 4.3 – Expired gas response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

      Coefficient of variation Variance components Critical difference 
Variable    Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

V̇O2 (L.min-1)               
RPE 9 a SHORT c 1.50 0.38  25.3 24.8 14.8  0.1 68.6 31.4 4.0 

  MED  1.51 0.39  26.1 26.3 10.4  0.2 75.1 24.9 2.9 
  LONG  1.53 0.43  27.9 28.3 11.2  0.2 78.9 21.1 3.2 

RPE 13 a SHORT b 2.21 0.52  23.7 23.7 12.2  0.3 68.8 31.2 5.1 
  MED c 2.54 0.53  20.9 20.9 9.6  0.3 73.4 26.6 4.6 
  LONG  2.69 0.54  20.0 20.2 8.5  0.3 77.3 22.7 4.2 

RPE 17 a SHORT b 2.65 0.61  22.9 8.3 10.2  0.4 77.9 22.1 4.8 
  MED b 3.22 0.63  19.6 19.8 7.6  0.4 84.0 16.0 4.6 
  LONG b 3.36 0.57  16.9 17.1 4.3  0.3 92.5 7.5 2.7 

V̇CO2 (L.min-1)               
RPE 9 a SHORT  1.39 0.38  27.1 27.2 10.9  0.1 76.2 23.8 2.8 

  MED  1.42 0.41  28.7 29.1 10.8  0.2 76.1 23.9 2.9 
  LONG  1.48 0.44  29.9 30.3 15.0  0.2 65.6 34.4 4.3 

RPE 13 a SHORT b 2.08 0.55  26.6 26.6 14.5  0.3 59.1 40.9 5.8 
  MED c 2.51 0.65  25.8 25.6 12.4  0.4 69.7 30.3 5.9 
  LONG  2.73 0.61  22.5 22.5 11.0  0.4 69.2 30.8 5.6 

RPE 17 a SHORT b 2.75 0.84  30.7 10.5 15.9  0.7 70.6 29.4 7.4 
  MED  3.62 0.82  22.8 23.0 11.1  0.7 76.5 23.5 7.6 
  LONG  3.67 0.67  18.2 18.4 5.9  0.5 88.8 11.2 4.1 

V̇E (L.min-1)               
RPE 9 a SHORT  42.17 11.16  26.5 26.4 10.8  128.5 71.7 28.3 84.9 

  MED  42.33 12.18  28.8 29.2 12.4  153.4 73.4 26.6 99.7 
  LONG  42.94 10.99  25.6 25.8 13.3  124.5 67.2 32.8 109.0 

RPE 13 a SHORT b 61.49 17.94  29.2 29.2 15.2  332.9 64.7 35.3 175.2 
  MED c 72.32 20.18  27.9 28.0 14.5  421.2 67.5 32.5 193.8 
  LONG  77.53 20.68  26.7 27.0 11.6  440.8 72.8 27.2 167.6 

RPE 17 a SHORT b 81.50 25.37  31.1 11.0 14.4  643.9 74.5 25.5 202.4 
  MED b 104.20 27.71  26.6 27.0 10.6  791.3 83.4 16.6 209.5 
  LONG b 111.77 24.20  21.7 22.0 7.0  605.2 87.4 12.6 146.9 
               

a = Significant difference observed between all RPE’s (P < .001). b = P < .001 vs. all other durations. c = P < .05 vs. LONG. 
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Table 4.4 – Relative expired gas response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

      Coefficient of variation Variance components Critical 
difference 

Variable    Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 
V̇O2 as % 

V̇O2max (%) 
             

 
RPE 9 a SHORT  38.6 8.3  21.5 21.7 10.0  70.1 70.5 29.5 71.9 

  MED  39.4 9.9  25.2 25.6 10.7  101.4 73.2 26.8 79.7 
  LONG  40.6 10.1  24.8 25.1 13.0  104.6 61.1 38.9 100.9 

RPE 13 a SHORT b 56.7 10.5  18.5 18.6 12.0  112.5 47.5 52.5 129.0 
  MED c 65.2 11.5  17.6 17.3 9.7  134.3 54.1 45.9 117.2 
  LONG  69.2 11.9  17.2 17.2 8.6  142.4 62.3 37.7 110.5 

RPE 17 a SHORT b 67.7 11.0  16.2 5.0 10.3  117.3 49.7 50.3 123.2 
  MED b 82.2 10.8  13.1 13.2 7.6  118.3 53.8 46.2 117.2 
  LONG b 86.3 11.4  13.3 13.4 4.2  135.0 88.5 11.5 68.1 

Bf as % Bfmax 
(breaths.min-1) 

             
 

RPE 9 a SHORT  46.0 8.3  18.0 18.3 7.1  70.8 78.8 21.2 59.9 
  MED  44.1 9.4  21.3 21.4 7.9  90.3 70.3 29.7 65.9 
  LONG  44.3 8.2  18.5 18.5 8.9  68.2 83.0 17.0 71.8 

RPE 13 a SHORT b 52.9 10.9  20.6 20.7 9.0  122.1 76.7 23.3 86.9 
  MED  55.1 11.4  20.7 20.2 8.9  132.5 71.9 28.1 88.9 
  LONG  56.6 11.7  20.6 20.9 8.8  68.7 79.2 20.8 91.4 

RPE 17 a SHORT b 62.7 11.2  17.8 5.9 6.6  126.8 79.7 20.3 74.3 
  MED b 66.8 13.1  19.5 19.8 5.7  176.4 86.6 13.4 70.9 
  LONG b 70.9 12.4  17.5 17.6 5.2  157.8 86.6 13.4 67.4 
               

a = Significant difference observed between all RPE’s (P < .001). b = P < .001 vs. all other durations. c = P < .05 vs. LONG. 
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4.7 Muscle oxygenation response during exercise bouts 

ΔTSI%, ΔO2Hb, and ΔHHb are reported in Table 4.5. Significant decreases in ΔTSI% 

(F(1.245, 23.660) = 65.598; ηp2 = .775), ΔO2Hb (F(1.147, 21.791) = 61.594; ηp2 = .764), and 

increases in ΔHHb (F(1.056, 20.073) = 27.735; ηp2 = .593) were found as RPE anchor increased 

(P < .001). Significant decreases in ΔTSI% (F(1.503, 28.561) = 11.798; ηp2 = .383) and 

increases in ΔHHb (F(1.223, 23.233) = 13.385; ηp2 = .413) were found as time increased (P < 

.001). No significant decrease was observed in ΔO2Hb (F(1.468, 27.901) = .918; ηp2 = .046, P = 

383) as time increased. No significant interaction effect was observed for ΔTSI% (F(4, 76) = 

.695; ηp2 = .035, P = 598), ΔO2Hb (F(4, 76) = .988; ηp2 = .049, P = 420), or ΔHHb (F(2.538, 

48.223) = 1.115; ηp2 = .055, P = 346). Locations of observed differences are highlighted in 

Table 4.5. 

 

Variability Analysis 

As shown in Table 4.5, ΔTSI%, ΔO2Hb, and ΔHHb displayed increasing levels of TV CV 

and BAV CV as effort level and duration increased. Total CV in ΔHHb was lowest in 

SHORT bouts of RPE 17 and highest in MED bouts of RPE 9. 
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Table 4.5 – Muscle oxygenation response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

      Coefficient of variation Variance components Critical difference  
Variable    Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%)  
ΔTSI%                

RPE 9 a SHORT b -2.7 9.7  -355.6 -515.3 3.3  95.0 71.3 28.7 -1.7  
  MED  -4.5 12.0  -264.5 -278.0 -10.3  149.4 64.6 35.4 10.1  
  LONG  -4.5 12.0  -264.5 -278.0 -62.2  149.4 64.6 35.4 61.3  

RPE 13 a SHORT b -12.9 12.3  -96.0 -97.5 -83.8  156.3 79.5 20.5 201.2  
  MED  -14.2 13.6  -95.7 -98.0 -81.2  187.7 87.7 12.3 218.9  
  LONG  -14.8 13.2  -89.4 -90.9 -50.6  179.2 84.8 15.2 139.9  

RPE 17 a SHORT d -16.0 12.5  -78.0 -23.6 -45.0  160.1 86.5 13.5 129.7  
  MED  -16.9 12.8  -75.7 -76.8 -34.1  167.5 83.9 16.1 106.4  
  LONG  -17.1 13.9  -81.4 -83.0 -39.6  197.1 84.9 15.1 121.3  

ΔO2Hb                
RPE 9 a SHORT  2.6 7.6  292.5 299.9 -41.9  64.0 69.7 30.3 -17.3  

  MED  2.5 9.2  363.7 395.6 16.4  86.7 66.7 33.3 6.9  
  LONG  2.6 7.6  292.5 299.9 25.1  60.0 60.6 39.4 10.4  

RPE 13 a SHORT  -8.4 10.9  -128.7 -128.8 -124.8  121.5 73.7 26.3 175.7  
  MED  -8.4 10.3  -122.8 -124.8 112.3  109.1 82.2 17.8 -164.0  
  LONG  -9.5 10.4  -110.0 -112.4 -231.1  110.8 78.0 22.0 395.8  

RPE 17 a SHORT  -11.5 9.8  -84.9 -34.8 -133.9  98.5 85.1 14.9 257.6  
  MED  -12.1 10.8  -89.2 -90.7 0.1  120.1 84.5 15.5 -0.2  
  LONG  -11.7 12.1  -103.8 -105.8 422.7  151.3 77.5 22.5 -837.7  

ΔHHb                
RPE 9 a SHORT b 5.7 5.6  98.0 100.2 33.7  32.3 56.1 43.9 34.1  

  MED  6.4 7.3  114.6 114.8 38.9  55.0 48.4 51.6 46.7  
  LONG  6.4 6.1  95.4 97.4 44.4  37.7 58.7 41.3 53.4  

RPE 13 a SHORT b,c 13.2 11.4  86.9 82.1 33.6  133.4 50.7 49.3 73.3  
  MED  14.7 10.7  72.8 72.7 28.8  117.4 78.5 21.5 75.0  
  LONG  15.5 11.4  73.1 74.0 20.9  133.8 85.6 14.4 61.2  

RPE 17 a SHORT  15.0 9.9  66.2 20.6 18.1  101.5 85.1 14.9 48.0  
  MED  16.8 11.7  69.6 69.6 20.2  140.3 83.6 16.4 59.7  
  LONG  17.4 13.0  74.8 75.5 22.9  174.7 84.1 15.9 70.5  
                

a = Significant difference observed between all session formats (P < .001). b = P < .05 vs LONG. c = P < .001 vs MED. d = P < .05 vs MED 
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4.8 Discussion 

The present study aimed to investigate both the physiological response and consistency of 

said response during self-paced submaximal exercise over different intensities and 

durations in trained competitive cyclists. The main findings of this study were that there 

were interactions between intensity and duration across all measured variables. 

Specifically, increases in intensity and duration resulted in greater consistency within 

measured parameters. 

 

Unsurprisingly, as demonstrated in other research, increasing the RPE anchor resulted in 

higher cycling power outputs and greater physiological responses (Borg 1998; Hartshorn 

and Lamb 2004). Moreover, when duration increased, power output remained similar 

during RPE 9 bouts but decreased during RPE 13 and 17 bouts, suggesting that participants 

altered their power output in order to maintain the same perception of effort as the duration 

of the bout is extended (Seiler and Sylta 2017). The interaction between duration and 

intensity is also shown by changes in difference in the work done during each bout, as this 

is influenced by both duration and intensity. 

 

As shown by Table 4.1, the current study found lower levels of variability during exercise 

at higher RPE anchors. When exercising at higher absolute exercise intensity, a small 

change in power output can result in large changes in physiological response and fatigue 

compared to lower absolute exercise intensities (Burnley and Jones 2018); thus participants 

are likely to control their exercise intensity within a closer bandwidth. This finding is 

supported by the work of Bagger, Petersen and Pedersen (2003), who demonstrate lower 

variability in measured physiological variables at higher exercise intensity, with the lowest 

variation during maximal conditions. It is likely that as the intensity of exercise increases, 

the cyclist will likely commit more conscious attention towards the required work rate and 

physiological responses, such as regionalised pain and pulmonary ventilation (Noble and 

Robertson 1996). Indeed, as HR, V̇O2, V̇CO2, and V̇E increased as RPE anchor and 

duration increased in the current study, the WAV decreased, indicating greater 

homogeneity in the workloads produced by the athletes at a given RPE. The heightened 

perception of changes in the aforementioned physiological parameters likely results in a 

shift in the cyclist’s attention towards internal-associative modes at the higher intensities 

and durations and away from external-dissociative mode experienced at lower intensities 
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(Noble and Robertson 1996). This is a possible explanation for the reduced variability in 

power output, and therefore physiological responses, as intensity and duration increased. 

However, in contrast to the findings of the current study, some research has suggested that 

when athletes are instructed to perform maximal effort time trials, reliability of 

performance is high but may decline as duration is increased (Schabort et al. 1998). The 

apparent reasons for these conflicting findings are unclear but could be related to fatigue 

over the longer duration efforts involved in the study of (Schabort et al. 1998), as well as 

methodological in nature as participants were instructed to complete the exercise "as fast as 

possible" and therefore may have resulted in differing pacing profiles to the present study. 

 

Changes in skeletal muscle oxygenation follow expected patterns of decreasing ΔTSI% 

ΔO2Hb and increasing ΔHHb with the increase of exercise intensity (Jones, Hesford and 

Cooper 2013; Niemeijer et al. 2017; Sperandio et al. 2009; Kemps et al. 2009). Duration 

could be seen to impact skeletal muscle oxygenation less than intensity, with differences 

only being found for ΔTSI% and ΔHHb during SHORT bouts, likely due to inadequate 

time for steady-state skeletal muscle oxygen consumption to be attained before the end of 

the exercise bout, compared to MED or LONG (Saltin et al. 1998; Nioka et al. 1998; 

Sperandio et al. 2009). Interestingly, ΔO2Hb did not differ in this manner, displaying 

similar levels across all durations for each RPE anchor. NIRS data displayed extremely 

large levels of both WAV and BAV, particularly ΔTSI% and ΔO2Hb, with ΔHHb 

presenting lower levels of variability in most cases. The levels of WAV observed in 

ΔTSI%, ΔO2Hb, and ΔHHb were not affected by changes in intensity or duration, although 

BAV reduced with increased intensity (Table 4.5). These findings are somewhat in contrast 

to previous research, which has shown increased reliability of skeletal muscle oxygenation 

measurements at higher versus lower work rate (Gerz et al. 2013), suggesting that blood 

volume and blood flow may be more variable at lower intensities due to the reduced 

physiological demand on the working muscle. 

 

Previous research has demonstrated a difference in perceptual response to exercise 

between trained and untrained individuals (Hassmén 1990), suggesting competitive 

athletes may possess a heightened ability to accurately and reliably utilise RPE as a method 

to regulate their exercise intensity. Indeed, Barroso et al. (2014) have previously suggested 

that perceptual responses (in this case, sRPE) are more accurate when the athlete has more 

experience. The notion that more experienced athletes are better equipped to perceive 



75 

effort accurately and reliably is supported by research suggesting that individuals can 

better identify intensity levels if they experience these levels frequently (Gearhart 2004). 

As the present study did not involve a comparison group of untrained individuals, it is not 

possible to support or refute this notion, however, future research may look to investigate 

the differences in the changes in reliability between trained and untrained individuals as 

intensity and duration are manipulated. 

 

Maximal time trials have been observed to have higher reliability compared to any of the 

durations or intensities investigated in the current study. WAV observed from 4 min efforts 

in the current study display increasing reliability as intensity increases; 15.4 % (RPE 9), 

10.8 % (RPE 13), and 8.6 % (RPE 17), which shows agreement with lower CVs displayed 

from maximal 4 min TT’s; 2.2 % (MacInnis, Thomas and Phillips 2019) and 2.0 % (Driller 

et al. 2014). Longer maximal efforts similarly display higher levels of reliability compared 

to shorter efforts; such as 20 min TT 1.4 % (MacInnis, Thomas and Phillips 2019), 20 min 

TT 1.3 % (Driller 2012), 16.1 km TT 2.7 % (Sparks et al. 2016), and 20 km TT 2.7 % 

(Sporer and McKenzie 2007). Similarly, in the present study, increased levels of reliability 

were observed during 8 min efforts; 19.7 % (RPE 9), 9.4 % (RPE 13), and 5.3 % (RPE 17). 

The above suggests that the adoption of intensity prescriptions of a high or maximal self-

paced intensity and longer duration intervals in a training session format could provide a 

novel opportunity to homogenise the exercise prescription. The higher the self-paced 

exercise intensity, the more consistent the power output distribution and physiological 

response on a single-bout basis. The intensity prescription of maximal session effort, which 

is the maintenance of high levels of physical exertion over a duration that would result in a 

maximal exertion for a given training session, has been utilised in research (Seiler and 

Sylta 2017; Abbiss et al. 2015), but not with the goal of assessing individual variability in 

exercise training response. However, based on the findings in the current study, the 

utilisation of effort-based prescriptions to elicit a reliable exercise stimulus may be limited 

to high or maximal session effort prescriptions, and therefore limit the application within 

lower intensity training. Nevertheless, this training methodology could hold potential for 

decreasing levels of individual variability in response to high-intensity training. 
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4.9 Conclusion 

In conclusion, the present study demonstrates that using self-paced exercise intensity 

prescriptions at higher effort levels and longer durations result in the greatest consistency 

on both a within-athlete and between-athlete. This presents a direction to investigate the 

use of maximal effort prescriptions for whole training sessions in order to provide greater 

consistency of training stimulus and potentially greater consistency in long-term training 

response.  
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 Variability of acute physiological 

response to maximal isoeffort training sessions 
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5.1 Abstract 

Introduction: Prescribing exercise training intensity as %V̇O2max has been shown to elicit 

variable responses between and within individuals. This study aimed to investigate 

individual variability associated with various formats of self-paced effort-based training. 

Methods: Seventeen well-trained male competitive cyclists (V̇O2max: 59.4 ± 8.2 

ml·kg·min-1) completed 9 exercise trials, each consisting of either short (SHORT) or long 

(LONG) interval, or continuous (CONT) effort based training formats, each repeated 3 

times. Intensity prescription used a maximal session effort-based approach. Exercise 

performance and physiological responses were analysed to identify the within- (WAV) and 

between-athlete (BAV) variability using CV, and total variability (TV) which was 

calculated as the ratio of WAV to BAV. Results: Exercise power output was different 

across the 3 formats (SHORT; 382 ± 55 W, LONG 310 ± 45 W, CONT: 262 ± 40 W: P < 

.001), with no difference in HR (SHORT: 164 ± 10, LONG: 163 ± 10, CONT: 164 ± 10 

bpm; P > .05). Average BLa-1 during SHORT and LONG was higher than in CONT (9.5 ± 

3.0 and 9.1 ± 2.4 mmol.L-1 vs. 6.3 ± 2.1 mmol.L-1; P < .001). Average session RPE was 

highest in SHORT and LONG compared to CONT (18 ± 1 and 18 ± 1 vs. 17 ± 1, P < 

.001), but final RPE was matched between all formats (SHORT: 19 ± 1, LONG: 19 ± 1, 

CONT: 19 ± 1; P > .01). Average CV’s for power output, cardiovascular, and perceptual 

response TV, BAV, and WAV were lowest in LONG (10.8 %, 10.9 %, 4.3 %) followed by 

SHORT (11.4 %, 11.5 %, 4.7 %) and highest in CONT (12.4 %, 12.5 %, 5.0 %). Expired 

gas TV and BAV were lowest in LONG (11.8 % and 11.9 %), followed by SHORT (12.5 

% and 12.6 %), and CONT (13.3 % and 13.4 %). Expired gas WAV was lowest in LONG 

(4.3 %), followed by CONT (4.4 %), and SHORT (5.1 %). Conclusion: LONG format 

sessions display the greatest overall consistency in both performance and physiological 

response compared to SHORT and CONT sessions. When using an effort-based intensity 

prescription, LONG intervals result in a more homogenous training stimulus compared to 

shorter intervals or continuous exercise.  

 

5.2 Introduction 

The findings of Chapter 4 indicate that when self-paced exercise intensity is performed at 

higher effort levels and longer durations, within-athlete and between-athlete variability is 

lower compared to lower effort levels and shorter durations. This highlights the potential 

for the use of effort-based prescriptions to prescribe individualised exercise intensity 

(Seiler 2010) in order to generate a targeted stimulus for adaptation (Coffey and Hawley 
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2007; Booth et al. 1998). Extensive research has been completed to investigate the efficacy 

of various training prescriptions, leading to a better understanding of the physiological 

responses and adaptations that follow training (MacInnis and Gibala 2016; Booth et al. 

1998; Petriz et al. 2017; Camera, Smiles and Hawley 2016; Stepto et al. 2009). Further 

insight has been gained from the analysis of the training regimens of elite performers 

(Smith 2003; Seiler and Tønnessen 2009). Despite this deep understanding, it could be 

argued that a solid scientific basis from which to derive effective training programs is still 

lacking (Borresen and Lambert 2009; Hopker and Passfield 2014). The direct applicability 

of scientific theory to the implementation of training becomes difficult due to the 

confounding factors present in training research, one of which is the presence of individual 

variability in the physiological response to an exercise training stimulus. 

 

Individual variability in response to exercise training confounds research findings as it 

reduces effect sizes, increasing the required number of participants, and creates uncertainty 

regarding the efficacy of the training prescriptions involved. High levels of between-athlete 

variability are seen in response to standardised chronic training prescriptions not only in 

terms of physical performance but also most common physiological measurements (Mann, 

Lamberts and Lambert 2014; Bouchard and Rankinen 2001). Some of the variability in 

chronic training response has been linked to a genetic basis for so-called training 

“responders” and “non-responders” (Ehlert, Simon and Moser 2013; Bouchard and 

Rankinen 2001; Bouchard, Sarzynski, et al. 2011). Further, variability in the training 

response may be accounted for by random measurement error (Hopkins 2004; Hopkins 

2000; Hopkins et al. 2009; Scharhag-Rosenberger et al. 2012). However, an issue yet to be 

fully explored as a potential source of variability relates to the way training is prescribed 

and standardised (Mann, Lamberts and Lambert 2014). 

 

There are three distinct aspects of individual variability; within-athlete variability, 

between-athlete variability, and the between-athlete variability of within-athlete variability, 

also known as “total individual variability” (Nesselroade 1991). The total individual 

variability describes how an individual’s response varies between repeated interventions 

and how different this variation is between individuals within an investigation. A first step 

in reducing the individual variability resulting from a training intervention is to prescribe 

training intensity in a manner that results in a homogenous and predictable response at both 

an individual and group level. Whilst the external training load, such as cycling power 
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output or running speed, is commonly the means of specifying the training prescription, it 

is probably the internal exercise-induced signalling cascade that dictates resulting in 

training adaptations, not the external load itself (Mann, Lamberts and Lambert 2013; 

Coffey and Hawley 2007). The distinct challenge in this regard appears to be identifying 

the way training can be prescribed easily and consistently across a group of individuals 

(Hopker and Passfield 2014). Traditionally, the prescription of exercise training intensities 

has been derived from standardised percentages of V̇O2max (Mann, Lamberts and Lambert 

2013; Mayes, Hardman and Williams 1987; Poole and Gaesser 1985; Hurley et al. 1984). 

However, the between-athlete variability in performance that occurs during exercise 

prescribed in this manner is large (Coyle et al. 1988; Scharhag-Rosenberger et al. 2010; 

Katch et al. 1978; Meyer, Gabriel and Kindermann 1999; Orok et al. 1989; Weltman et al. 

1990; Weltman et al. 1989). For example, the time to exhaustion when exercising at 88 

%V̇O2max can range from 12 to 75 minutes (Coyle et al. 1988). In addition, at a fixed 

exercise intensity of 75%V̇O2max, BLa-1 responses ranged from 1.4 – 4.6 mmol.L-1 and 

intensity relative to each individual’s anaerobic threshold ranged from 86 % – 118 % (T 

Meyer, Gabriel and Kindermann 1999). Scharhag-Rosenberger et al. (2010) found that as 

prescribed intensity increases from 60 %V̇O2max to 75 %V̇O2max, the variability in the 

metabolic response increases. These findings suggest that a consistent level of training 

stimulus between different individuals is difficult to achieve. Considering this, it is likely 

that the utilisation of standardised percentages of V̇O2max contributes a source of variability 

to not only the acute training session stimulus but also the subsequent chronic training 

adaptation. A different method of prescribing training that may elicit a more homogenous 

response within- and between-individuals is the “isoeffort”, or effort-based approach 

(Seiler et al. 2013; Seiler and Hetlelid 2005; Seiler and Sjursen 2004). The isoeffort 

approach is used by coaches to prescribe training (Seiler and Hetlelid 2005; Seiler and 

Sjursen 2004) and requires athletes to self-pace exercise intensity to produce a specified 

session effort (Seiler and Sylta 2017; Abbiss et al. 2015; Seiler et al. 2013). Currently, the 

individual variability in training response to effort-based training sessions and whether this 

can reduce the individual variability observed is unknown. 

 

It has been established that HIIT is an effective method of improving performance in 

endurance athletes (Laursen 2010), and can be classified into two common formats; longer 

work intervals of 3 – 5 min, or shorter work intervals < 1 min, both types interspersed with 

recovery periods (Tschakert and Hofmann 2013). It has been shown that HIIT is capable of 

improving endurance performances in trained endurance athletes using both long (Tabata 
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et al. 1996; Iaia et al. 2008; Gunnarsson and Bangsbo 2012) and short (Westgarth-Taylor 

et al. 1997; Rønnestad, Ellefsen, et al. 2014; Lindsay et al. 1996) interval formats. Despite 

the potential for overall improvement in endurance performance in trained athletes, there 

are shortcomings of HIIT in improving V̇O2max, fractional utilisation of V̇O2max (Seiler et 

al. 2013; Rønnestad, Hansen and Ellefsen 2014), and work economy (Rønnestad, Hansen 

and Ellefsen 2014; Sylta et al. 2016; Kohn, Essén-Gustavsson and Myburgh 2011). 

Furthermore, differences in performance improvements between HIIT interval formats 

have been observed, such as the cyclists being able to tolerate higher BLa-1 concentration 

during performance trials following short interval training versus long interval training 

(Rønnestad et al. 2015). A recent comparison of short and long interval HIIT using effort-

based intensity prescriptions has demonstrated differences in chronic training response 

(Rønnestad et al. 2020), which further highlights the need to fully understand the acute 

physiological responses between effort-based training and the individual variability which 

is present. 

 

Therefore, the aim of this study was to investigate how using either long or short interval 

formats or continuous formats affect the individual variability observed when session 

effort is controlled using an isoeffort prescription. It was hypothesised that the individual 

variability would differ based on session format, with shorter interval format sessions 

resulting in higher variability overall in comparison to longer intervals or continuous 

efforts. 

 

Hypotheses 

H1 – Sessions utilising short interval formats result in higher total variability in both 

performance and physiological response to exercise compared to long interval or 

continuous training formats. 

H0 – There is no difference observed in variability between the short interval, long interval, 

or continuous session formats. 
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5.3 Methodology 

5.3.1 Participants 

Seventeen well-trained male cyclists (mean ± SD (95 % CI): age 35 ± 12 years (CI: ± 5.5), 

height 175.6 ± 8.8 cm (CI: ± 4.2), mass 71.4 ± 11.0 kg (CI: ± 5.3), V̇O2max 59.4 ± 8.2 

mL.kg.min-1 (CI: ± 3.8), maximum minute power (MMP) 378 ± 45 W (CI: ± 22), HRmax 

182 ± 9 bpm (CI: ± 4)), with at least 3 years of cycling training and racing experience 

(corresponding to Performance Level 3 – 4 ;de Pauw et al. 2013), provided written 

informed consent to voluntarily participate in the study which held full ethical approval 

from the local institutional ethics committee according to the Declaration of Helsinki. 

 

5.3.2 Study design and experimental procedures 

Participants visited the laboratory on 10 separate occasions to complete one ramp test to 

exhaustion and 9 exercise testing sessions over a period of 9 ± 3 weeks. In Visit 1, 

participants completed an incremental exercise test to identify V̇O2max and performance 

parameters (see Maximal incremental test for details). During Visit 1, participants were 

also familiarised with the laboratory equipment used during the subsequent standardised 

exercise sessions. Visits 2 to 10 comprised of 9 supervised exercise sessions involving 3 

exercise session formats, each repeated 3 times in a randomised manner. Exercise sessions 

consisted of short intervals comprising of 2 sets of 20 repeats of 30 sec work and 30 sec 

recovery (SHORT), long intervals comprising of 4 repeats of 5 min work and 5 min active 

recovery (LONG), or a continuous exercise bout for 40 min (CONT), see Table 5.1 and 

Figure 5.1. Sessions were completed using a maximal iso-effort and iso-time format of 40 

min. (see Exercise testing sessions for details). All visits for each participant were 

completed within the same 3-h period of the day, and participants were asked to attend in a 

euhydrated state, to maintain a consistent diet and lifestyle, as well as to avoid alcohol and 

strenuous exercise the day before the sessions. Visits were separated by at least 72 h to 

ensure full recovery between exercise testing sessions. To allow for adequate 

familiarisation prior to data collection, participants were asked to attempt to incorporate 

effort-based training bouts in their own training before commencing the study. A cooling 

fan was present, and plain water was available for participants to drink ad libitum. 
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Table 5.1- Characteristics of the SHORT, LONG, and CONT exercise protocols. 

 SHORT LONG CONT 
    

Duration of work interval (s) 30 300 2,400 
Duration of rest period (s) 30 300 0 
Number of repeats per set 20 4 1 

Number of sets 2 1 1 
Recovery time between sets (s) 300 0 0 

Total work duration per session (s) 1,200 1,200 2,400 
Total rest duration per session (s) 1,200 1,200 0 

Total ‘training period’ duration (s) 2,400 2,400 2,400 
Total session time (s) 4,200 3,600 3,900 

    

 

 

 

A 

 

B 

 

C 

Figure 5.1 – Session format protocols and time segments for analysis. A = SHORT, B = 
LONG, C = CONT. T1, T2, T3, and T4 denote time segments used for analysis. 
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Maximal incremental test 

Participants completed a maximal incremental test on a bicycle ergometer (Cyclus2, RBM 

Electronics, Leipzig, Germany) to identify MMP, V̇O2max, and HRmax. After warming up at 

100 W for a period of 10 min, the external load was increased by 20 W every 60 sec until 

volitional exhaustion, defined as the point where self-selected cadence dropped below 60 

rpm despite strong verbal encouragement. MMP was calculated as the highest power 

output averaged over a period of 60 sec, V̇O2max was calculated as the highest V̇O2 

averaged over a period of 30 sec, and HRmax was identified as the highest HR value 

reached in the incremental test. 

 

Exercise testing sessions 

Participants were provided with elapsed session time and their performance data during all 

training sessions, along with a graphical representation of the session format. Uniform and 

strong verbal encouragements were given from investigators across every session to ensure 

a maximal session effort was achieved. 

 

5.3.2.1 Physiological	measurements	

During each session, power output was measured, and heart rate was transmitted using a 

compatible heart rate strap (Cyclus2 heart rate, RBM Electronics, Leipzig, Germany). 

 

Respiratory gas exchange data were assessed continuously throughout all sessions using an 

online gas analyser (Metalyzer 3B, CORTEX Biophysik GmbH, Leipzig, Germany) to 

V̇O2, V̇CO2, V̇E, and ventilatory equivalents V̇E /V̇O2 and V̇E /V̇CO2. 

 

Muscle oxygenation was measured using spatially resolved dual-wavelength NIRS 

(Portamon, Artinis Medical Systems, BV, Netherlands), with the optode positioned 10cm 

superior to the lateral epicondyle of the femur at the distal end of the vastus lateralis 

muscle and secured with muscle tape and bandage. Blood oxygenation was quantified by 

the change in TSI%, O2Hb, HHb, and tHb. All NIRS data were corrected to a pre-session 

baseline measurement.  
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BLa-1 concentration was measured using a finger-prick capillary blood sample to serve as a 

method of establishing the degree of energy produced using anaerobic glycolysis (Gladden 

2008). The thumb or index finger of the participant was cleaned using an alcohol wipe and 

allowed to dry. A disposable safety lancet (AccuCheck Safe-T-Pro Plus, Mannheim, 

Germany) was then used to puncture chosen sample site, and the first drop of blood was 

cleaned away. A 20 µL capillary sampling tube was then used to collect a fresh blood 

sample, and the wound covered using a sterile tissue if further sampling was required. The 

capillary tube was immediately placed in a 10 mL vial containing 2 mL heparinised 

phosphate-buffered solution and placed in an automated lactate analyser (Biosen C_Line, 

EKF Diagnostic, Barleben, Germany). The analyser automatically self-calibrated at 60-min 

intervals and was also calibrated prior to samples being run using a 12 mmol.L-1 standard 

solution. 

 

5.3.2.2 Psychological	measurements	

The DALDA (Coutts, Slattery and Wallace 2007) questionnaire was administered 

immediately prior to each exercise session. Subject RPE using the Borg 6 – 20 scale (Borg 

1982b) was recorded at the end of every time segment. Immediately following each 

exercise session, the perceived session workload was assessed using the NASA-TLX (Hart 

and Staveland 1988; Hart 2006). 

 

Data processing and statistical analysis 

Gas data were analysed using a 10-sec rolling average and analysed for each time segment 

in the case of LONG and CONT, and the 30 sec of data in response to each effort were 

used for analysis in SHORT. Expired gas data were analysed relative to V̇O2max and 

expressed as a percentage to quantify time spent exercising relative to V̇O2max. 

 

NIRS data is presented for the average of the change in oxygenation metric for each time 

segment in a session (the difference between first and last 30 sec of NIRS data for each 

time segment; X̄ Interval ∆), as well as the change between the first and the last time 

segment in a session (the difference between T1 – T4; Session ∆). 
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For the purposes of data analysis, sessions data from the three conditions (SHORT, LONG, 

and CONT) and three repeats of each condition (SHORT_R1/R2/R3, LONG_R1/R2/R3, 

and CONT_R1/R2/R3) were segmented into four separate time points; T1, T2, T3, T4 (see 

Figure 5.1) in order to provide session data for each participant. Session data was then 

collated for each session format across all participants and combined to provide a “Grand 

Summary”. Prior to statistical analysis, all data were checked for normality of distribution. 

Sphericity of the data was investigated using the Mauchly test and the Greenhouse-Geisser 

adjustment was made when data was deemed non-spherical. Data are reported as mean and 

standard deviation (mean ± SD), and CVs are presented as a percentage unless specified 

otherwise. When assessing variability, low CVs indicating a consistent response and high 

CVs displaying variable response. 

 

Repeated-measures ANOVA with Bonferroni corrections were used to analyse power 

output and physiological response data for exercise training formats. When significant 

differences were found, post-hoc tests were used to determine where differences occurred. 

Effect sizes were calculated using ηp2 and were defined as small, medium, or large based 

upon 0.10, 0.25, and above 0.40, respectively (Cohen 1988). 

 

Quantification of individual variation observed was completed by calculating CVs for the 

WAV, BAV, and TV of each parameter by expressing the standard deviation relative to the 

mean for each parameter. Linear mixed modelling was completed to analyse the variability 

in power output, work done, HR, BLa-1, RPE, %MMP, %HRmax, V̇E, V̇E/V̇O2, V̇E/V̇CO2, 

respiratory exchange ratio (RER), Time at %V̇O2max, TSI%, O2Hb, HHb, and tHb for each 

combination of duration and intensity. 

 

Furthermore, linear mixed modelling was used to assess the relative contribution of both 

WAV and BAV to the total variability observed (Bliss 1967; Hansen et al. 1997; Bagger, 

Petersen and Pedersen 2003). Bland-Altman plots were used to display between-athlete 

variability of each session format by plotting the average difference in data between the 

three repeats (Average of R1-R2, R2-R3, R1-R3) and average session performance for 

each individual (Bland and Altman 1986). In addition, reference lines and values are 

presented for the mean ± 1.96 SD. Participants who were deemed ‘variable’ had a session 



87 

difference SD greater than 2 times the mean session difference SD across all participants; 

encapsulating the 95 % confidence interval (Dai and Wang 1992). 

 

Critical difference levels were used to indicate whether the difference observed between 

two work bout measurements was significant (Fraser, Hyltoft and Lytken 1990; Fraser and 

Harris 1989; Harris and Yasaka 1983; Bagger, Petersen and Pedersen 2003). The following 

equation was utilised to calculate critical difference: 

!"#$%	'()$*#('(+%	 × 	-	 ×	√2	× 	012 

where the first measurement is the measurement of interest, Z =1.65, which results in 

establishing a two-tailed probability of 10 %, and WAV is the observed within-subjects 

CV for the parameter involved. 

 

Linear mixed models, ANOVA’s, and post-hoc tests were conducted using the Statistical 

Package for the Social Sciences, version 26 for Mac OS X (SPSS, IBM®, Armonk, New 

York, USA), and an alpha level was set at P < .05 for the criteria for detection of 

significance in all cases. CV and critical differences were calculated in Microsoft Excel 

(Excel v16.3 Microsoft, Redmond, Washington, USA). 

 

5.4 Results 

5.4.1 Between-session differences 

5.4.1.1 Power	output,	cardiovascular,	perceptual,	and	blood	lactate	response	to	exercise	

sessions	

Power output, work done, HR, HRmax, BLa-1, RPE and End RPE are reported in Table 5.2. 

Differences were observed between sessions for power output (F(1.154, 18.461) = 248.035; ηp2 

= .939, P < .001) and work done (F(1.072, 17.153) = 467.999; ηp2 = .967, P < .001). HRmax was 

lower in SHORT versus LONG (P = .04), but not between SHORT and CONT (P = .428) 

or LONG and CONT (F(2, 32) = 3.261; ηp2 = .169, P > .999). Both SHORT and LONG were 

higher versus CONT for BLa-1 (F(2, 32) = 43.232; ηp2 = .730, P < .001) and RPE (F(2, 32) = 

23.560; ηp2 = .596, P < .001). No differences were observed between sessions for HR (F(2, 

32) = .968; ηp2 = .057, P = .391) or End RPE (F(2, 32) = 1.773; ηp2 = .100, P = .186).  
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Variability analysis 

In power output, work done, HR, HRmax, BLa-1, RPE and End RPE, presented in Table 5.2, 

TV, BAV, and WAV were lowest in LONG (10.8 %, 10.9 %, 4.3 %) followed by SHORT 

(11.4 %, 11.5 %, 4.7 %) and highest in CONT (12.4 %, 12.5 %, 5.0 %). Levels of TV, 

BAV, and WAV across all session formats were lowest in HRmax (3.4 %) , followed by 

End RPE (3.9 %), and highest in BLa-1 (25.9 %).
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Table 5.2 – Power output, cardiovascular, and perceptual response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients 
of variation, variance components, and critical difference levels. 

    Coefficient of variation Variance components Critical difference 
Variable  Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

Power output (W)             
SHORT a 382 55  14.4 14.6 3.4  3112.9 0.9 0.1 241.3 
LONG a 310 45  14.4 14.7 2.7  2073.1 1.0 0.0 158.2 
CONT a 262 40  15.2 15.4 2.6  1634.7 1.2 0.0 126.0 

Work done (kJ)             
SHORT a 1146 165  14.4 14.6 3.5  27995.7 92.3 7.7 723.9 
LONG a 744 107  14.4 14.7 2.8  11964.1 95.8 4.2 381.9 
CONT a 629 95  15.2 15.4 2.6  9426.3 121.6 3.8 299.0 

HR (bpm)             
SHORT  164 10  6.0 6.0 2.5  95.9 84.1 15.9 77.1 
LONG  163 10  5.9 5.9 2.3  92.7 83.8 16.2 71.5 
CONT  164 10  6.3 6.4 2.6  111.4 69.7 19.5 78.1 

HRmax (bpm)             
SHORT b 176 8  4.5 4.6 1.2  66.4 91.2 8.8 38.7 
LONG  179 8  4.3 4.3 1.9  58.8 78.9 21.1 62.7 
CONT  178 8  4.3 4.4 1.3  60.0 77.3 8.5 44.1 

BLa-1 (mmol.L-1)             
SHORT c 9.5 3.0  31.3 31.6 16.8  9.0 72.6 27.4 31.6 
LONG c 9.1 2.4  25.9 26.1 14.1  5.7 66.2 33.8 24.2 
CONT  6.3 2.1  34.2 34.3 18.6  4.7 79.9 26.0 21.3 

RPE             
SHORT c 18 1  5.1 4.9 3.9  0.8 29.8 70.2 12.7 
LONG c 18 1  5.7 5.7 3.9  1.0 32.9 67.1 13.0 
CONT  17 1  6.8 6.8 4.0  1.3 26.1 48.1 12.4 

End RPE             
SHORT  19 1  4.1 4.0 1.8  0.6 48.5 51.5 6.6 
LONG  19 1  4.8 4.9 2.3  0.9 50.3 49.7 8.4 
CONT  19 1  5.0 4.9 3.1  0.9 48.4 58.8 11.0 

             
a = Significant difference observed between all session formats (P < .001), b = P < .05 vs. LONG, c = P < .001 vs. CONT.  



90 

5.4.1.2 Expired	gas	response	during	exercise	sessions	

Absolute V̇O2, relative V̇O2, V̇E/V̇O2, V̇E/V̇CO2, RER, and V̇E are reported in Table 5.3 

and time spent above 70 %, 80 %, 85 %, and 90 % V̇O2max are reported in Table 5.4. 

Absolute V̇O2 was higher in LONG versus SHORT (P = .002) and CONT (F(1.470, 23.525) = 

7.292; ηp2 = .313, P = .009), with no difference between SHORT and CONT (P > .999). 

Relative V̇O2 was higher in LONG versus SHORT (F(1.219, 19.502) = 1.717; ηp2 = .097, P = 

.004), with no difference between SHORT and CONT (P = .683) or LONG and CONT (P 

> .999). All session formats were different for V̇E/V̇O2 (F(2, 32) = 82.301; ηp2 = .837, P < 

.001) and V̇E/V̇CO2 (F(2, 32) = 64.559; ηp2 = .801, P < .001). RER was higher in SHORT 

versus LONG (P = .001) and versus CONT (P < .001), with higher RER also in LONG 

versus CONT (F(2, 32) = 36.313; ηp2 = .694, P = .014). V̇E was higher in both SHORT and 

LONG versus CONT (F(2, 32) = 35.565; ηp2 = .690, P < .001), with no difference between 

SHORT and LONG (P = .614). Time spent above 70 %V̇O2max was higher during SHORT 

and CONT versus LONG (F(2, 32) = 28.211; ηp2 = .638, P < .001), with no difference 

between SHORT and CONT (P = .194). Time spent above 80 %V̇O2max was higher in 

CONT versus SHORT (P = .017) and versus LONG (F(2, 32) = 6.912; ηp2 = .302, P = .042), 

with no difference between SHORT and LONG (P > .999). Time spent above 85 %V̇O2max 

was lower in SHORT versus LONG (P = .003) and CONT (F(2, 32) = 6.544; ηp2 = .290, P = 

.025), with no difference between LONG and CONT (P > .999). Time spent above 90 

%V̇O2max was higher in LONG versus SHORT (F(1.164, 18.630) = 4.844; ηp2 = .232, P < .001), 

with no difference between SHORT and CONT (P = .174) or LONG and CONT (P > 

.999). 

 

Variability analysis 

In absolute V̇O2, relative V̇O2, V̇E/V̇O2, V̇E/V̇CO2, RER, and V̇E, presented in Table 5.3, 

TV and BAV were lowest in LONG (11.8 % and 11.9 %), followed by SHORT (12.5 % 

and 12.6 %), and CONT (13.3 % and 13.4 %). WAV was lowest in LONG (4.3 %), 

followed by CONT (4.4 %), and SHORT (5.1 %). Levels of TV, BAV, and WAV across 

all session formats were lowest in RER (4.2 %), and highest in V̇E (14.0 %). In the 

parameters presented in Table 5.4, TV, BAV, and WAV were lowest in LONG (49.2 %, 

49.4 %, 40.6 %), followed by CONT (81.5 %, 83.0 %, 42.6 %), and SHORT (120.9 %, 

117.8 %, 57.3 %). Levels of TV, BAV, and WAV across all session formats were lowest in 

time spent above 70 %V̇O2max (28.5 %), and highest in time spent above 90 %V̇O2max 

(122.8 %). 
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Table 5.3 – Expired gas response during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

    Coefficient of variation Variance components Critical difference 
Variable  Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

V̇O2 (L.min-1)             
SHORT c 3.31 0.47  14.1 14.4 4.5  0.2 84.5 15.5 2.8 

LONG  3.46 0.51  14.7 15.0 5.0  0.3 73.1 26.9 3.2 
CONT c 3.26 0.52  15.8 16.0 5.0  0.3 71.9 23.4 3.1 

V̇O2 (ml.kg.min-1)             
SHORT c 47.12 7.39  15.7 16.0 4.8  56.9 85.3 14.7 42.8 

LONG  49.20 7.84  15.9 16.2 5.1  63.7 80.3 19.7 46.7 
CONT  47.41 7.58  16.0 16.2 5.0  59.2 86.6 18.3 44.7 

V̇E/V̇O2             
SHORT a 38.10 4.26  11.2 11.2 5.3  18.5 70.9 29.1 38.4 

LONG a 34.04 3.17  9.3 9.4 3.0  10.2 87.7 12.3 19.5 
CONT a 30.95 3.67  11.8 12.1 3.3  13.9 64.3 11.1 18.6 

V̇E/V̇CO2             
SHORT a 35.94 4.21  11.7 11.7 5.7  17.9 70.7 29.3 38.6 

LONG a 32.57 3.06  9.4 9.4 3.9  9.3 84.5 15.5 24.2 
CONT a 30.32 3.72  12.3 12.5 3.6  14.3 54.9 11.5 20.4 

RER             
SHORT bc 1.10 0.06  5.1 5.1 2.6  0.003 68.9 31.1 0.5 

LONG d 1.05 0.05  4.7 4.7 2.9  0.002 57.5 42.5 0.6 
CONT  1.02 0.05  4.8 4.5 3.1  0.002 62.6 50.2 0.6 

V̇E (L.min-1)             
SHORT b 129.06 22.16  17.2 17.4 7.5  505.6 75.9 24.1 184.3 

LONG b 125.72 20.87  16.6 16.9 6.0  453.6 72.4 27.6 142.0 
CONT  107.67 20.49  19.0 19.2 6.6  431.2 76.1 27.5 130.7 

             
a = Significant difference observed between all session formats (P < .001), b = P < .001 vs. CONT, c = P < .05 vs. LONG, d = P < .05 vs. CONT. 
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Table 5.4 – Time spent exercising relative to V̇O2max during RPE-clamped exercise bouts showing mean data, standard deviation, coefficients of variation, 
variance components, and critical difference levels. 

    Coefficient of variation Variance components Critical difference 
Variable  Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

Time at > 90 % 
V̇O2max (s) 

 
          

 
SHORT  140.59 312.80  222.5 206.7 83.4  101501.5 54.9 45.1 2602.2 

LONG a 507.84 394.35  77.7 78.7 68.8  160366.9 34.5 65.5 7009.7 
CONT  438.24 645.47  147.3 150.7 69.6  429507.8 12.9 24.6 5347.7 

Time at > 85 % 
V̇O2max (s) 

 
          

 
SHORT  399.22 549.75  137.7 139.0 70.2  314521.3 78.6 21.4 5311.2 

LONG c 808.43 426.87  52.8 53.3 42.9  188582.4 41.0 59.0 6276.1 
CONT c 918.04 811.97  88.4 89.8 46.3  682578.7 11.3 30.2 8123.4 

Time at > 80 % 
V̇O2max (s) 

 
          

 
SHORT d 864.71 766.62  88.7 90.5 50.0  610725.7 83.1 16.9 8550.1 

LONG d 1011.96 388.76  38.4 38.6 28.5  156391.9 34.3 65.7 5325.1 
CONT  1457.06 849.10  58.3 59.4 33.2  748964.7 7.2 20.5 8724.2 

Time at > 70 % 
V̇O2max (s) 

           
 

SHORT b 1874.71 646.66  34.5 35.0 25.4  427787.3 47.1 52.9 8862.3 
LONG  1273.92 354.73  27.8 26.8 22.0  130467.6 14.4 85.6 5297.9 
CONT b 2109.61 670.53  31.8 32.2 21.2  467037.0 4.0 39.1 8380.6 

             
a = P < .001 vs. SHORT, b = P < .001 vs LONG, c = P < .05 vs. SHORT, d = P < .05 vs. CONT. 
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5.4.1.3 Muscle	oxygenation	response	during	exercise	sessions	

X̄ Interval and Session ΔTSI%, ΔO2Hb, ΔHHb, and ΔtHb are reported in Table 5.5 and 

Table 5.6, respectively. No differences were found between session formats in X̄ΔTSI% 

(F(2, 30) = 3.229; ηp2 = .177, P = .054), X̄ΔHHb (F(2, 30) = 4.145; ηp2 = .216, P = .057), F(2, 30) 

= .097; ηp2 = .006, P = .908). X̄ΔO2Hb was higher in LONG versus CONT (F(2, 30) = 8.424; 

ηp2 = .360, P = .004), with no difference between SHORT and LONG (P = .338), or 

SHORT and CONT (P = .063). No difference was found in ΔTSI% (F(2, 30) = 2.707; ηp2 = 

.153, P = .083), ΔHHb (F(2, 30) = 1.686; ηp2 = .101, P = .202), or ΔtHb (F(2, 30) = .281; ηp2 = 

.018, P = .757) depending on session format. ΔO2Hb was higher in LONG versus CONT 

(F(2, 30) = 8.082; ηp2 = .350, P = .003), with no difference between SHORT and LONG (P = 

.325), or SHORT and CONT (P = .093). 

 

Variability analysis 

In X̄ Interval and Session ΔTSI%, ΔO2Hb, ΔHHb, and ΔtHb, presented in Table 5.5, TV 

and BAV were lowest in SHORT (-108.0 % and -14.6 %), followed by CONT (32.7 % and 

68.0 %), and LONG (432.2 % and 128.4 %). WAV was lowest in LONG (-28.6 %), 

followed by CONT (45.3 %), and SHORT (64.1 %). Levels of TV, BAV, and WAV across 

all session formats were lowest in X̄ΔO2Hb (-118.2%), and highest in X̄ΔtHb (288.1 %). In 

the parameters presented in Table 5.6, TV was lowest in SHORT (-53.8 %), followed by 

CONT (78.6 %), and LONG (376.0 %). BAV was lowest in LONG (-224.6 %), followed 

by SHORT (-56.5 %), and CONT (119.5 %). WAV was lowest in CONT (-264.9 %), 

followed by SHORT (46.7 %), and LONG (108.9 %). Levels of TV, BAV, and WAV 

across all session formats were lowest in ΔO2Hb (-201.4 %), and highest in ΔtHb (192.5 

%). 
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Table 5.5 – Muscle oxygenation response during RPE-clamped interval bouts showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

    Coefficient of variation Variance components Critical difference 
Variable  Mean SD  TV (%) BAV (%) WAV (%)  Var total BAV (%) WAV (%) WAV (%) 

X̄ Interval ΔTSI%             
SHORT  -1.83 3.88  -212.0 -223.1 -32.2  15.6 72.8 27.2 7.8 

LONG  -1.15 5.16  -449.4 -76.9 429.8  26.7 34.5 65.5 -157.6 
CONT  -3.36 6.32  -188.0 -151.0 -54.00  39.6 23.2 81.5 50.7 

X̄ Interval ΔO2Hb             
SHORT  -0.56 2.16  -388.2 -403.0 -269.2  4.9 60.8 39.2 32.0 

LONG  0.27 2.30  841.8 87.0 372.3  5.1 22.1 77.9 22.8 
CONT a -1.67 2.49  -149.3 -156.6 -48.6  6.4 17.6 68.0 10.8 

X̄ Interval ΔHHb             
SHORT  1.88 2.99  159.5 162.9 24.0  9.3 51.8 48.2 7.5 

LONG  0.72 4.56  637.0 148.4 -389.8  21.1 31.3 68.7 -63.7 
CONT  2.88 4.81  167.1 151.7 74.3  24.1 27.4 93.3 45.3 

X̄ Interval ΔtHb             
SHORT  1.32 3.25  246.3 258.7 71.9  11.0 49.4 50.6 14.0 

LONG  0.99 4.33  438.0 429.2 -43.0  19.6 56.1 43.9 -9.6 
CONT  1.21 4.79  396.1 427.2 41.1  23.6 46.6 52.4 15.9 

             
a = P < .05 vs. LONG. 
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Table 5.6 – Muscle oxygenation response during RPE-clamped exercise sessions showing mean data, standard deviation, coefficients of variation, variance 
components, and critical difference levels. 

    Coefficient of variation Variance components Critical 
difference 

Variable  Mean SD  TV 
(%) 

BAV 
(%) 

WAV 
(%) 

 Var 
total 

BAV 
(%) 

WAV 
(%) 

WAV (%) 

Session ΔTSI%             
SHORT  -2.72 5.52  -202.6 -216.2 -45.8  31.1 63.2 36.8 15.2 

LONG  -1.47 6.55  -446.5 99.6 380.2  43.3 40.5 59.5 -186.5 
CONT  -4.60 9.39  -204.0 -163.9 -36.2  86.0 20.4 72.2 52.6 

Session ΔO2Hb             
SHORT  -0.88 3.16  -357.9 -366.0 0.5  10.4 63.0 37.0 -0.1 

LONG  0.33 3.78  1145.7 -1331.6 -8.6  13.8 11.7 88.3 0.2 
CONT a -2.31 3.35  -144.9 -146.5 -602.9  11.7 13.8 71.0 246.9 

Session ΔHHb             
SHORT  3.03 4.45  146.9 152.1 98.6  20.5 51.0 49.0 46.5 

LONG  1.53 7.48  488.7 21.0 100.4  56.5 33.3 66.7 41.4 
CONT  3.68 6.97  189.4 161.1 76.9  49.8 37.8 80.8 71.8 

Session ΔtHb             
SHORT  2.15 4.27  198.6 204.2 133.5  19.0 53.4 46.6 44.3 

LONG  1.86 5.89  316.0 312.6 -36.5  36.0 59.2 40.8 -14.3 
CONT  1.37 6.47  474.0 627.4 -497.2  42.6 50.0 46.1 -261.0 

             
a = P < .05 vs. LONG. 
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5.4.2 Within-session differences 

Figure 5.2 displays differences within-session power output, HR, RPE, and BLa-1 for all 

three training session formats. There was no observed change in power output during 

training sessions for SHORT (F(3, 14) = 4.026; ηp2 = .463, P ≥ .099), and LONG (F(3, 14) = 

3.119; ηp2 = .401, P = .087), in CONT there was an increase in power output between each 

time point and T4 (F(3, 14) = 14.983; ηp2 = .763, P < .001). During SHORT, HR rose 

between T1-2 (P < .001) and T3-4 (P < .001), with no change between T2-3 (P = .235)(F(3, 

14) = 23.726; ηp2 = .836). During LONG, HR rose from T1-2 (P = .005) and T3-4 (P < 

.001), with no change between T2-3 (P = .231)(F(3, 14) = 14.892; ηp2 = .761). HR rose 

through all time points in CONT (F(3, 14) = 24.073; ηp2 = .838, P < .001). There was an 

increase in RPE in SHORT between T1-2 and T3-4 (F(3, 14) = 68.765; ηp2 = .936, P < .001), 

and no change between T2-3 (P = .077). There was an increase in RPE in LONG through 

all time points (F(3, 14) = 46.881; ηp2 = .909, P < .001). There was an increase in RPE in 

CONT between T1-2 and T3-4 (F(3, 14) = 82.695; ηp2 = .947, P < .001), and no change 

between T2-3 (P = .149). During SHORT, BLa-1 rose from T1-2 (P < .001), and T3-4 (P < 

0.05)(F(3, 14) = 32.873; ηp2 = .876), and no change between T2-3 (P > .999). During LONG, 

BLa-1 rose from T1-2 (P < .001) and T2-3 (P = .003)(F(3, 14) = 25.195; ηp2 = .844), and no 

change between T3-4 (P = .135). During CONT, BLa-1 rose from T1-2 (P = .003) and T3-4 

(P < .001)(F(3, 14) = 26.044; ηp2 = .848), and no change between T2-3 (P = .132). 

  



97 

 

 

a 
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Figure 5.2 - Power output, heart rate, RPE, and blood lactate parameters during training 
sessions. Each segment is represented by a single column for each session format from T1-
T4. Error bars display SD. * = P < .05 vs. Previous time point. ** = P < .001 vs. Previous 
time point. 
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Figure 5.3 displays differences within-session V̇O2, relative V̇O2, V̇E/V̇O2, V̇E/V̇O2, RER, 

and V̇E for all three training session formats. There was no observed change in absolute or 

relative V̇O2 during training sessions for SHORT (F(1.601, 25.621) = 1.04; ηp2 = .061, P = 383), 

or LONG (F(1.310, 20.961) = .286; ηp2 = .018, P = .660), and within CONT there was an 

increase in V̇O2 between T1-T2 (F(1.194, 19.107) = 4.953; ηp2 = .236, P < .001). V̇E/V̇O2 

response increased between T1-2, T3-4 (P < .001), and T2-3 (F(1.169, 18.712) = 39.957; ηp2 = 

.714, P = .012) in SHORT. In LONG, V̇E/V̇O2 response increased between T1-2, T2-3 (P < 

.001), and T3-4 (F(1.623, 25.974) = 51.930; ηp2 = .764, P = .003). In CONT, V̇E/V̇O2 response 

increased between T1-2, T3-4 (P < .001), and T2-3 (F(1.587, 25.387) = 69.421; ηp2 = .813, P = 

.001). V̇E/V̇CO2 was different between all time points during SHORT (F(1.299, 20.785) = 

88.487; ηp2 = .847, P < .001), LONG (F(1.392, 22.268) = 124.859; ηp2 = .886, P < .001), and 

CONT (F(1.613, 25.806) = 95.416; ηp2 = .856, P < .001). RER during SHORT decreased 

between T1-2 (P = .047), T2-3 (P = .027), and increased between T3-4 (F(1.556, 24.898) = 

9.429; ηp2 = .371, P = .023). During LONG, RER decreased between T1-2 (P < .001) and 

T2-3 (F(1.363, 21.816) = 62.154; ηp2 = .795, P = .032), and no change was observed between 

T3-4 (P = .571). In CONT, RER did not change between T1-2 (P = .063), T2-3 (P = .462), 

or T3-4 (F(1.447, 23.149) = 5.109; ηp2 = .242, P = .120). V̇E during SHORT increased between 

T1-2 (P < .001), and T3-4 (F(1.151, 18.419) = 13.183; ηp2 = .452, P = .002), and no change 

between T2-3 (P = .772). During LONG, V̇E increased between T1-2 (P < .001), T2-3 (P = 

.013), and T3-4 (F(1.359, 21.750) = 25.185; ηp2 = .612, P = .023) V̇E during CONT increased 

between T1-2 (P < .001) and T3-4 (F(1.216, 19.455) = 29.175; ηp2 = .646, P = .01), with change 

between T2-3 (P = .371). 
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Figure 5.3 – Gas parameters during training sessions. Each segment is represented by a 
single column for each session format from T1-T4. Error bars display SD. * = P < .05 vs. 
Previous time point. ** = P < .001 vs. Previous time point. 
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Figure 5.4 displays differences within-session TSI%, O2Hb, HHb, and tHb, all relative to 

baseline corrections for all three training session formats TSI% during SHORT decreased 

between T3-4 (F(1.221, 18.318) = 3.186; ηp2 = .175, P = .019), with no change between T1-2 (P 

= .101) or T2-3 (P > .999). During LONG, there was no change in TSI% between any time 

points (F(1.143, 17.145) = 1.214; ηp2 = .075, P > .999). TSI% during CONT decreased between 

T1-2 (F(1.170, 17.554) = 5.462; ηp2 = .267, P = .004), with no change between T2-3 (P = .669) 

or T3-4 (P = .988). O2Hb during SHORT decreased between T1-2 (P = .008) and T3-4 (P 

= .016) and increased from T2-3 (F(1.326, 19.886) = 3.807; ηp2 = .202, P = .008). During 

LONG there was no change in O2Hb between any time points (F(1.757, 26.353) = .293; ηp2 = 

.019, P > .999). O2Hb during CONT decreased between T1-2 (P = .034) and T3-4 (F(1.397, 

20.960) = 9.292; ηp2 = .383, P = .025), with no change between T2-3 (P > .999). HHb during 

SHORT increased between T3-4 (F(1.272, 19.074) = 3.574; ηp2 = .192, P = .016) with no 

change between T1-2 (P = .190) and T2-3 (P > .999). During LONG there was no change 

in HHb between any time points (F(1.195, 17.924) = 1.257; ηp2 = .077, P > .999). HHb during 

CONT increased between T1-2 (F(1.358, 20.376) = 6.626; ηp2 = .306, P = . 009), with no 

chance between T2-3 and T3-4 (P > .999). There was no change in tHb between any time 

points in SHORT (F(1.276, 19.135) = 3.201; ηp2 = .176, P ≥ .062), LONG (F(1.102, 16.535) = 2.246; 

ηp2 = .131, P ≥ .156), and CONT (F(1.250, 18.745) = .963; ηp2 = .060, P > .999). 
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Figure 5.4 – NIRS data from training sessions; a) TSI%, b) tHb, c) O2Hb, and d) HHb. 
Each segment is represented by a single column for each session format from T1-T4. Error 
bars display SD. * = P < .05 vs. Previous time point. 
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5.4.3 Within-athlete variability 

Differences in each participant’s training session power output relative to MMP are 

displayed in Figure 5.5, illustrating the degree of within-athlete variability dependent on 

session format, with participants deemed ‘variable’ if individual session SD exceeds 2 

times the mean session difference SD across all participants. In session format SHORT, 

Participants 5, 11, 15, and 17 were identified as being variable (SD ≥ 6.09 %). In format 

LONG, Participants 2, 9,13, 15, 16, and 17 were identified as being variable (SD ≥ 2.98 

%). In format CONT, Participants 2, 3, and 13 were identified as being variable (SD ≥ 2.61 

%). Similarly, differences in each participant’s HR response relative to HRmax during 

sessions are displayed in Figure 5.6, showing the within-athlete variability dependent on 

session format. In session format SHORT, Participants 5 and 15 were identified as being 

variable (SD ≥ 3.25 %). In format LONG, Participants 5, 9, 11, and 12 were identified as 

being variable (SD ≥ 3.25 %). In format CONT, Participants 4, 5, 11, and 15 were 

identified as being variable (SD ≥ 4.48 %). 

 

5.4.4 Between-athlete variability 

Bland-Altmann plots in Figure 5.7 present session-by-session change in power output for 

every session completed by every participant (n = 51 sessions) for SHORT, LONG, and 

CONT. Bland-Altmann plots in Figure 5.8 display the average session difference in power 

output against the average power outputs for every participant (n = 17) for SHORT, 

LONG, and CONT, respectively.  
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C 

Figure 5.5 – Differences in performance power output during SHORT (a), LONG (b), and 
CONT (c) sessions, with participants displayed in order of magnitude of variability. Bars 
display the range in %MMP between session repeats for each participant, and error lines 
display 95% confidence intervals. * = greater than twice the standard deviation of the mean 
difference in %MMP.  
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Figure 5.6 - Differences in heart rate relative to HRmax during SHORT (a), LONG (b), and 
CONT (c) sessions, with participants displayed. Bars display the range in %HRmax between 
session repeats for each participant, and error lines display 95% confidence intervals. * = 
greater than twice the standard deviation of the mean difference in %HRmax. 
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Figure 5.7 - Bland-Altmann Plots displaying session-by-session change in power output 
for every session completed by every participant (n = 51 sessions) during SHORT (a), 
LONG (b), and CONT (c) sessions. Black markers represent average and delta power 
output for sessions completed by each participant, with grey filled markers identifying 
variable participants (defined as within-session variability greater than twice the standard 
deviation of the mean difference in each group). Black horizontal lines represent delta bias, 
and grey lines display 95 % confidence intervals  
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Figure 5.8 - Bland-Altmann Plots displaying average session difference in power output 
against the average power outputs for every participant (n = 17) during SHORT (a), LONG 
(b), and CONT (c) sessions. Black markers represent average and delta power output for 
sessions completed by each participant, with grey filled markers identifying variable 
participants (defined as within-session variability greater than twice the standard deviation 
of the mean difference in each group). Black horizontal lines represent delta bias, and grey 
lines display 95 % confidence intervals.  
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5.4.5 Psychological response comparisons 

Number of negative DALDA responses was not different based on session format (F(2, 28) = 

4.267; ηp2 = .061, P = .412), or session order (F(2, 28) = .075; ηp2 = .005, P = .928), and no 

interaction effect was observed (F(2.052, 28.726) = .118; ηp2 = .008, P = .976). 

NASA-TLX responses indicated a difference in mental demand based on session format 

based on tests of within-subject effects (F(2, 28) = 3.358; ηp2 = .193, P = .049), but 

Bonferroni post-hoc testing was unable to identify differences between session formats (P 

≥ .073), and no difference based on session repeat order (F(2, 28) = .1.484; ηp2 = .096, P = 

.244) or interaction (F(4, 56) = .367; ηp2 = .026, P = .831). No differences in physical 

demand were found based on session format (F(2, 28) = .669; ηp2 = .046, P = .669), session 

repeat order (F(2, 28) = .440; ηp2 = .03, P = .649), and no interaction effect was observed 

(F(2.160, 30.246) = .758; ηp2 = .051, P = .487). No differences in temporal demand were found 

based on session format (F(1.424, 19.94) = .3.059; ηp2 = .179, P = .084), session repeat order 

(F(2, 28) = .526; ηp2 = .036, P = .597), and no interaction effect was observed (F(4, 56) = .919; 

ηp2 = .062, P = .460). No differences in perceived performance were found based on 

session format (F(2, 24) = 2.949; ηp2 = .197, P = .072), session repeat order (F(2, 24) = .912; 

ηp2 = .071, P = .415), and no interaction effect was observed (F(4, 48) = .612; ηp2 = .049, P = 

.656). A difference in task effort was observed based on session repeat order (F(2, 28) = 

.5.859; ηp2 = .295, P = .007), being higher following Repeat 3 vs Repeat 1 (5.1 vs 7.2; P = 

.025), but no difference was found based on session format (F(2, 28) = .666; ηp2 = .045, P = 

.522), and no interaction effect was observed (F(4, 56) = .462; ηp2 = .032, P = .763). No 

differences in frustration were found based on session format (F(2, 28) = .226; ηp2 = .016, P 

= .799), session repeat order (F(2, 28) = .2.837; ηp2 = .169, P = .076), and no interaction 

effect was observed (F(4, 56) = .2.197; ηp2 = .081, P = .136). 

 

5.5 Discussion 

The main findings of this study were that maximal isoeffort training sessions resulted in 

different levels of variability in the physiological response to LONG, SHORT and CONT 

exercise bouts. Within-athlete variability of session power output was greatest during 

SHORT, whereas between-athlete variability was greatest in CONT, and total variability 

was greatest in SHORT. The crucial aspect of matching between the training sessions was 

the isoeffort intensity prescription of a “maximal session effort”, and this was achieved as 

RPE measured at the end of the session was recorded as 19 ± 1 across all formats. 
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In a study comparing continuous and intermittent (30 sec work/rest bouts, similar to 

SHORT) cycling protocols using an iso-effort training intensity prescription, Nicolò et al. 

(2014) reported lower levels of between-athlete variability than the present study for both 

power output and V̇O2, but BLa-1 response in the present study was observed to be more 

consistent during CONT in comparison to Nicolò et al. (2014). Within the study of Nicolò 

et al. (2014), there was higher work bout power output during CONT and SHORT 

compared to the present study (307 ± 36 W vs 262 ± 40 W, and 464 ± 51 W vs 382 ± 55 

W, respectively). In addition, the participant V̇O2max in the present study was 59.4 ± 8.2 

mL.kg.min-1, whereas the participants within Nicolò et al. (2014) were 67 ± 6 mL.kg.min-1, 

which may explain the lower between-athlete variability in SHORT exercise due to the 

homogeneity of the work intensity between participants. Interestingly, the between-athlete 

variability of BLa-1 response in the data presented by Seiler and Sylta (2017) displayed 

increased consistency as interval duration decreases; 16 min (CV: 34 %), 8 min (CV: 26 

%), and 4 min intervals (CV: 21 %). However, the data from the present study indicate that 

between-athlete variability increases with SHORT 30 sec intervals displaying higher 

between-athlete variability compared to LONG 5 min intervals. This possibly suggests that 

there may be an interval duration at which the between-athlete variability increases again 

as duration shortens, indicated by the increase in between-athlete variability from 5 min to 

30 sec intervals. The above-described variability profile was also present in V̇E/V̇O2 and 

V̇E/V̇CO2 data in the current study with lowered within- and between-athlete variability 

between CONT and LONG, and then an observed increase between LONG and SHORT. 

With V̇E/V̇O2 and V̇E/V̇CO2 levels increasing as interval duration decreases, indicating 

higher levels of respiratory response and anaerobic contribution in terms of V̇E/V̇CO2 

(Poole et al. 1991; Farias-Junior et al. 2019). In line with previous investigations 

comparing intermittent and continuous exercise protocols, LONG was observed to have the 

highest V̇O2 response (Zafeiridis et al. 2015; Zafeiridis et al. 2010; Zafeiridis et al. 2011). 

Observing the commonly utilised metric for overall exercise stimulus; time spent 

exercising > 90 %V̇O2max (Wakefield and Glaister 2009; Rozenek et al. 2007; Rønnestad et 

al. 2020), the overall stimulus was significantly higher and less variable during LONG 

sessions in both within- and between-athlete variability. Interestingly, SHORT was found 

to have low within- and between-athlete variability in V̇O2 compared to LONG and 

CONT, so the high variability of time spent exercising > 90 %V̇O2max could indicate that 

the undulating nature of the exercise bout results in more variable and lower amplitude 
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V̇O2 response during the exercise session. This could indicate that overall, LONG provides 

a more consistent aerobic stressor compared to the other training formats. 

 

At a peripheral level, the variability observed in NIRS data displays widely ranging 

variability profiles on an individual level in the present study. As local tissue hypoxia has 

been proposed as a stimulus that increases the activity of capillary proliferation, 

mitochondrial enzymes, and mitochondrial biogenesis in skeletal muscle (Fluck 2006; 

Zafeiridis et al. 2015; Prior, Yang and Terjung 2004; Terrados et al. 1990), this may be an 

important factor in assessing the individual response to standardised training sessions. The 

X̄ Interval ΔTSI% was similar across groups, with similar within-athlete variability, but 

CONT displayed larger between-athlete variability than the two interval protocols. 

Differences in muscle deoxygenation (decreased X̄ Interval ΔO2Hb and increased X̄ 

Interval ΔHHb) between continuous and intermittent protocols were observed, with CONT 

resulting in higher levels of deoxygenation compared to SHORT and LONG. X̄ Interval 

ΔHHb displayed an extremely large amount of within-athlete variability during CONT. 

SHORT displayed the highest within-athlete variability for Session ΔTSI%, ΔO2Hb, 

ΔHHb, indicating that the level of muscle deoxygenation varied more so compared to other 

formats when an individual undergoes the same session format. Session ΔtHb was most 

variable in CONT, compared to the interval protocols, which may be indicative of the 

differences in blood flow distribution between continuous and intermittent exercise 

protocols. Intermittent exercise results in increased blood flow to the exercising muscles 

and decreased blood flow to the skin and abdominal viscera (Neary, Hall and Bhambhani 

2001; Åstrand and Rodahl 1986; Quaresima et al. 1996), whereas blood flows towards the 

skin during continuous protocols (Kenney and Johnson 1992), potentially highlighting 

differences observed in muscle oxygenation during the different exercise formats in the 

present study. 

 

Large levels of between-athlete variability in Session ΔTSI%, ΔO2Hb, ΔHHb, and ΔtHb 

were observed for all session formats, potentially displaying a pattern of individualisation 

of skeletal muscle deoxygenation when this data is looked at alongside the X̄ Interval data. 

To highlight this example, levels of Session ΔHHb were observed to be similar between 

session formats, with low levels of within-athlete variability for SHORT, LONG, and 

CONT (7.4 %, 3.2 %, and 2.7 %, respectively). However, looking at the between-athlete 

variability associated with these measures, SHORT and CONT displayed high but similar 
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levels of variability (151.3 % and 124.7 %, respectively), whereas LONG displayed far 

greater levels of variability (410.3 %). The above indicates that all training sessions 

generally displayed consistency in skeletal muscle deoxygenation on a within-athlete level 

but highly variable on a between-athlete level. 

 

The present study highlights the complex issue of variability when prescribing exercise 

training interventions and affords the classification of individuals as “consistent” or 

“variable” based on their within-athlete variability in session responses (Atkinson, 

Williamson and Batterham 2019; Mann, Lamberts and Lambert 2014). For example, 

considering the session power output relative to %MMP, participants P2, P13, P15, and 

P17 were identified as variable (± 2 x SD of mean session difference across all 

participants) in at least two session formats. With regards to HR relative to HRmax, 

participant P5 was identified as being variable in all session formats, and participants P11 

and P15 were identified as variable in at least two training session formats. Interestingly, 

no participants who produced variable power outputs in CONT were variable with HR, 

whereas participant P9 was variable in both power and HR in LONG, and participants P5 

and P15 were variable in both power and HR in SHORT. The presence of large degrees of 

between-athlete variability in physiological responses could influence the phenomena in 

which participants are non-responsive to a training intervention for one parameter (e.g. 

V̇O2max), but respond in another (e.g. lactate threshold; Vollaard et al. 2009). The 

interaction between the magnitude of a given physiological stimulus and the variability of 

said stimulus is likely to have a large influence on the overall physiological adaptation 

following an exercise training intervention. This can be demonstrated by observing the 

BLa-1 response to the three session formats; SHORT and LONG both had similar and 

significantly higher BLa-1 levels than CONT, but between SHORT and LONG within-

athlete variability was 16.9 % and 14.1 %, respectively. This indicates that whilst the same 

levels of BLa-1 occur on average when the session is performed, the differences that an 

individual may experience each time they perform a training session are greater in 

SHORT, compared to LONG. With regards to the between-athlete variability, SHORT and 

LONG display 28.6 % and 23.1 % variability, respectively; this shows that the 

homogeneity of the BLa-1 response is much higher in LONG than in SHORT. 

 

Recent research has suggested that variations in power output within a training interval 

bout can result in increased time at higher %V̇O2max (e.g. > 95 %V̇O2max) compared to a 
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constant work rate at the same power output (Bossi et al. 2019; Billat et al. 2013). Similar 

findings were observed by Almquist et al. (2020), with greater time spent > 90 %V̇O2max 

and > 90 %HRmax during short interval versus longer interval protocols. While the interval 

sessions within the present study utilised short and long interval protocols, the difference in 

interval structure may explain the lower time spent > 90 %V̇O2max observed in comparison 

to previous findings (Almquist et al. 2020). For the short interval protocol, Almquist et al. 

(2020) utilised 3 sets of 13 x 30 sec work intervals with 15 sec recovery periods, in 

comparison with the present study which utilised 2 sets of 20 x 30 sec work intervals with 

30 sec recovery periods. Almquist et al. (2020) also differed the prescription of long 

intervals, using 4 x 5 min work intervals with 2.5 min recovery periods, compared with the 

present study, which utilised 4 x 5 min work intervals with 5 min recovery periods. These 

differences may explain the observed divergent findings in time spent at higher 

percentages of V̇O2max between studies. 

 

Currently, it is unclear whether a training session with highly variable physiological 

stimuli between- and within-athletes will result in a training response to a group 

intervention with a large degree of individual variability. There are many potential aspects 

of training stimulus and response that are yet to be fully understood. For example, a 

response may have low within-athlete variability, showing that it is consistent when each 

individual repeats the exercise bout, but there may be high between-athlete variability, 

showing that the levels of response differ greatly between each individual. The importance 

may lie in response of the desired magnitude (e.g., high V̇O2 response) with low between-

athlete variability, showing homogeneity across a group, and high between-athlete 

variability, showing individualisation of training stress on a given day. With coaches 

having used isoeffort training prescriptions to reach specified session efforts for many 

years (Seiler and Hetlelid 2005; Seiler and Sjursen 2004), the importance of the present 

data indicating the degrees of between-athlete and within-athlete variability can help our 

understanding about why these training methods are effective. As this present study 

focuses on the acute physiological response to exercise training sessions and the variability 

of these responses within and between athletes, future research may look to explore the 

levels of individual variability observed when maximal effort-based training sessions are 

repeated within a chronic training intervention. Whilst it has been suggested that acute 

exercise response does not always have a direct link with chronic training response 

(Cochran et al. 2014; Stepto et al. 2012; Nielsen et al. 2014), it is unclear whether the 

same can be said for levels of individual variability. Understanding the link between acute 
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training session variability and chronic training variability could provide researchers and 

practitioners with further insights into optimal individualisation of training. 

 

5.6 Conclusion 

In conclusion, the present study demonstrates that when sessions using short intervals are 

prescribed using a maximal isoeffort intensity prescription, a large degree of individual 

variability is observed compared to long or continuous training formats. It has also been 

identified that there may be training session formats that athletes are able to perform with 

less variability compared to other formats on an individual basis, presenting an opportunity 

for training individualisation. 
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6.1 Abstract 

Introduction: This study aimed to investigate the between-athlete variability associated 

with chronic training interventions using either long or short interval formats with maximal 

effort-based intensity prescriptions. Methods: Twenty-eight well-trained competitive 

cyclists (n=27 males, n=1 female; V̇O2max: 57.1 ± 8.3 ml·kg·min-1) were randomly 

assigned to a control (CON) or a short (SHORT) or long (LONG) interval group and 

completed 6 weeks of training consisting of 3 maximal isoeffort sessions each week. 

V̇O2max, MMP, and 20 min TT performance were recorded before and after the training 

period. Participants were classified as responders or non-responders based on the within-

athlete CV of the associated test measurement. Results: No differences in any measures 

were observed between groups at baseline (P ³ .136), and total training duration was 

similar in SHORT, LONG, and CON (48 h 25 min, 34 h 03min, and 40 h 41 min, 

respectively; P = .672). An interaction effect was observed between training group and 

MMP before and after the training intervention (P = .027, ηp2 = .251). An interaction effect 

was observed in MMP W.kg-1 (P = .003, ηp2 = .366) which increased in SHORT (P = .019, 

ηp2 = .629), with no difference in LONG and CON. An interaction effect was observed in 

relative TT power (P = .01, ηp2 = .307) which increased in SHORT (P = .015, ηp2 = .657), 

along with absolute TT power which also increased in SHORT (P = .042, ηp2 = .526). 

Participant response levels of 71 % (5/7), 40 % (4/10), and 27 % (3/11) in SHORT, LONG, 

and CON, respectively for V̇O2max, and 86 % (6/7), 60 % (6/10), and 27 % (3/11) in 

SHORT, LONG, and CON, respectively for absolute power during the TT. Conclusion: 

Training in SHORT increased MMP and both absolute and relative TT power, compared to 

no change in LONG or CON. Individual response levels indicate that effort-based training 

using SHORT intervals results in higher rates of training response compared to effort-

based training using LONG intervals in both V̇O2max and absolute TT power when total 

work duration is matched. 

 

6.2 Introduction 

Prescribing exercise training for improving endurance performance involves the deliberate 

manipulation of duration, frequency, and intensity of exercise, arranged in a manner that 

places physiological stress on the human body, inducing adaptations that can be associated 

with subsequent performance improvements (Borresen and Lambert 2008; Hawley and 

Burke 1998). Common methods of exercise intensity prescription, such as standardised 

percentages of various physiological markers, such as V̇O2max or MMP, frequently result in 
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divergent responses between individuals (Mann, Lamberts and Lambert 2014). The 

concept of individual variability to exercise training has been apparent within research for 

many years (Astorino and Schubert 2014; Sisson, Katzmarzyk, Earnest, et al. 2009; 

Scharhag-Rosenberger et al. 2012; Bouchard, An, Rice, Skinner, et al. 1999; Rankinen et 

al. 2012; Bouchard 2012; Gurd et al. 2016; Pickering and Kiely 2019a; Pickering and 

Kiely 2019b; Williamson, Atkinson and Batterham 2016; Atkinson, Williamson and 

Batterham 2018; Montero and Lundby 2017; Sarzynski, Ghosh and Bouchard 2017; 

Chmelo et al. 2015; Pandey et al. 2015; Bonafiglia et al. 2016; Sparks 2017). It has been 

indicated that a large portion of this variability in training response may be influenced by 

differences in systematic stress that occurs when exercise is completed using standardised 

training prescriptions, due to factors such as differences in where lactate threshold occurs 

relative to V̇O2max and MMP between individuals (Bouchard, Sarzynski, et al. 2011; 

Rankinen et al. 2012; Mann, Lamberts and Lambert 2014). As a result, high levels of 

individual variability in training response presents distinct challenges, particularly relating 

to the interpretation of research results, the statistical power of study designs, as well as the 

fundamental ability to prescribe training that has been individually optimised (Hecksteden 

et al. 2015). Even in studies showing significant group mean changes, it is common to 

observe high between-athlete variability in training response, which has recently led to a 

distinction being made between ‘high responders’ and ‘low responders’ and questioning 

the efficacy of applying findings based on group mean change to an individual (Mann, 

Lamberts and Lambert 2014). An individualised training prescription would therefore need 

to be standardised in a way that it could be applied across a group of athletes but also 

delivers a consistent level of systematic stress between individuals.  

 

An effort-based approach has been used extensively in the prescription of athletic training 

and is implemented by instructing athletes to self-pace session exercise intensity to 

produce a “maximal session effort” (Seiler and Hetlelid 2005; Seiler and Sjursen 2004; 

Seiler et al. 2013). Effort-based prescription methods have been previously implemented to 

compare various intermittent exercise protocols (Seiler et al. 2013; Seiler and Hetlelid 

2005; Seiler and Sjursen 2004), and later to compare intermittent and continuous exercise 

protocols (Nicolò, Bazzucchi, Haxhi, et al. 2014). When athletes self-pace, they regulate 

their work rate based on circumstantial factors with the goal of maintaining physiological 

homeostasis (Esteve-Lanao et al. 2008; Ulmer 1996) and avoiding premature fatigue or 

exhaustion (St Clair Gibson et al. 2006; Baron et al. 2011). The factors that the athlete 

relies on to adequately self-pace an exercise bout are a mixture of physiological (e.g., heart 

rate, ventilation/respiration rate), psychological (e.g., perception of time, motivation), and 
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biomechanical (e.g., the efficiency of movement and body posture) factors (Noakes 2011). 

The effort-based training intensity prescriptions may help to ensure consistency between-

session effort (Seiler and Sjursen 2004), would allow athletes to self-regulate their work 

rate and adjust for their perceived pre-exercise readiness to perform, combining factors 

such as sleep, stress, wellness, or anxiety (Azevedo et al. 2021; Abbiss and Laursen 2008; 

Azevedo et al. 2019; Millet 2011; Yoon et al. 2009; Ungureanu et al. 2020), and therefore 

possibly aid in reducing between-athlete variability to chronic training interventions. A 

recent investigation has been conducted comparing long and short interval formats using 

effort-matched intensity prescriptions over a period of three weeks with three sessions per 

week (Rønnestad et al. 2020). The short interval session was comprised of 3 sets of 13 x 

30 sec work bouts with 15 sec recovery between bouts and 3 min between sets, with the 

long interval session comprising of 4 sets of 5 min work bouts with 2.5 min recovery 

between sets. Work intensity was determined by the athletes being asked to maintain the 

highest average power during each interval session on a maximal effort basis. Rønnestad et 

al. (2020) found that short interval training resulted in greater improvements in peak 

aerobic power, %V̇O2max at LT, and increased power output at LT, despite no difference in 

the change in the V̇O2max observed between groups. Variability in training response was 

observed in both groups, with some athletes displaying high levels of response, non-

response, as well as adverse response. This highlights the ability for effort-based intensity 

prescriptions in HIIT to effectively improve performance, although variability was present 

at the individual level. 

 

So far, this thesis has demonstrated that the individual variability observed in the 

physiological response to isolated effort-based training session differs based on the interval 

format type. The findings of Chapter 5 indicated that when maximal effort-based intensity 

prescriptions are used, long interval (e.g., 5 min) session formats elicit a more homogenous 

training stimulus when compared to shorter intervals (e.g., 30 sec work/30 sec recovery). 

However, it is not clear whether the degree of individual variability observed in response 

to an acute session prescription translates to chronic training variability within groups. 

Therefore, the aim of this investigation is to compare the degrees of individual variability 

in training response to a 6-week training intervention comprising of two different interval 

session formats using maximal effort-based training intensity prescriptions. 
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Hypotheses 

H11 – Lower levels of individual variability in training response is observed in the group 

utilising long intervals compared to short intervals. 

H10 – There is no difference in levels of individual response between training groups. 

H21 – The training response magnitude is higher in the group utilising long intervals 

compared to short intervals. 

H20 – There is no difference in the training response magnitude between interval training 

groups. 

 

6.3 Methodology 

6.3.1 Participants 

Twenty-eight well-trained male and female (27 males and 1 female; mean ± SD: age 34 ± 

10 years, height 177.3 ± 9.1cm, mass 72.4 ± 10.6 kg, V̇O2max 57.1 ± 8.3 mL.kg.min-1, 

MMP 378 ± 61 W, HRmax 184 ± 10 bpm), cyclists with at least 3 years of cycling training 

and racing experience (corresponding to Performance Level 3 – 4; de Pauw et al. 2013; 

Decroix et al. 2016) provided written informed consent to voluntarily participate in the 

study which held full ethical approval from the local institutional ethics committee 

according to the Declaration of Helsinki. 

 

6.3.2 Study design and experimental procedures 

Participants visited the laboratory to perform baseline testing and then were randomly 

assigned to one of three groups: LONG, SHORT, or a control group (CON). Training 

groups LONG and SHORT completed 6 weeks of prescribed cycling training using 

maximal effort-based intensity prescriptions. Following the 6-week intervention, 

participants repeated the testing procedures in another visit to the exercise testing 

laboratory. An overview of the study design is presented in Figure 6.1. 

Figure 6.1 – Schematic of training intervention and testing time-points. 

 

6-week Training Intervention 

V̇O2max 

20min TT 
V̇O2max 

20min TT 

Time points Pre Post 
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All testing visits for each participant were completed within the same 3-h period of the 

day, and participants were asked to attend in a euhydrated state and to maintain a 

consistent diet and lifestyle, and to avoid alcohol and strenuous exercise the day before the 

sessions. To allow for adequate familiarisation prior to data collection, participants were 

asked to attempt to incorporate effort-based training bouts in their own training before 

commencing the study. A cooling fan was present, and plain water was available for 

participants to drink ad libitum. 

 

6.3.3 Maximal incremental test 

Participants completed a maximal incremental test on a bicycle ergometer (Cyclus2, RBM 

Electronics, Leipzig, Germany) to identify MMP, V̇O2max, and HRmax. After riding at 100 

W for a period of 10 min, the external load was increased by 20 W every 60 sec until 

volitional exhaustion, defined as the point where self-selected cadence dropped below 60 

rpm despite strong verbal encouragement. Respiratory gas exchange data were assessed 

continuously throughout all testing procedures using an online gas analyser (Metalyzer 3B, 

CORTEX Biophysik GmbH, Leipzig, Germany) and an appropriately sized facemask 

covering the nose and mouth. A 10 sec rolling average was used when analysing 

respiratory gas exchange data. Expired gas data were analysed to quantify V̇O2, V̇CO2, V̇E, 

V̇E /V̇O2 and V̇E /V̇CO2. MMP was calculated as the highest power output achieved over a 

period of 60 sec, V̇O2max was calculated as the highest V̇O2 averaged over a period of 30 

sec, and HRmax was identified as the highest HR value reached in the incremental test. 

 

6.3.4 20-min TT performance test 

Following 30 min recovery from the maximal incremental test (10 min cool-down, 10 min 

seated rest, 10 min warm-up), participants were instructed to achieve the highest possible 

average power output for the duration (Evertsen, Medbø and Bonen 2001). Power output, 

HR, and respiratory gas exchange data were recorded in the same manner as in the 

Maximal incremental test. Participants were able to freely choose riding cadence, self-

select power output, and view the duration remaining of the test. 
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6.3.5 Training intervention 

Each week of 6-week training intervention incorporated three effort-based training 

sessions, completed at least 24 h apart to allow for adequate spacing and recovery between 

sessions. Sessions were instructed to be completed within the same 3 h period between 

subjects to reduce diurnal variability. Elapsed session time and performance data were 

available for participants during all training sessions, along with a graphical representation 

of the session format. Participants were able to complete training sessions on their home 

ergometer or attend the laboratory for supervised training sessions, with participants 

completing at least one supervised session to ensure correct completion of the training 

prescription. Supervised training sessions were performed on identical electromagnetically 

braked CompuTrainer LabTM ergometers (CompuTrainer, RacerMate, Seattle, WA, 

USA). Home training was permissible only if individuals trained using the power meter 

installed on their bike during the incremental and time-trial tests to check the matching of 

power readings. Training data was recorded and compiled on an online training monitoring 

platform (TrainingPeaks, Peaksware, Boulder, CO, USA). It was stressed that the volume 

of endurance riding completed should be maintained in a consistent manner throughout the 

training intervention period. Participants were instructed to replace three weekly training 

sessions with the prescribed training sessions and were able to complete extra training that 

was in line with their habitual training load leading into the intervention period. The 

athletes were instructed to not complete any other set high-intensity training sessions in 

addition to the prescribed training sessions. 

 

Participants were divided into three training groups differing in prescribed training session 

format (details presented in Table 6.1 and Figure 6.2): 

LONG – Long interval group; three weekly sessions comprising of 4 x 5 min efforts with 

5 min active recovery between each effort, in addition to 2 – 3 additional endurance 

sessions, 

SHORT – Short interval group; three weekly sessions comprising of 2 sets of 20 x 30 sec 

efforts/30 sec active recovery, with 5 min active recovery between sets, in addition to 2 – 3 

additional endurance sessions, 

CON – Control group; monitored unsupervised endurance training in line with habitual 

endurance load. 
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The intensity of the work bouts during the LONG and SHORT interval sessions was 

prescribed using an effort-based prescription. Participants were instructed to self-select a 

workload that would allow them to reach maximal exertion by the end of the training 

session. Recovery periods were instructed to be active recovery at an intensity that feels 

extremely easy to complete. A standardised warm-up consisting of 5 min cycling at 100 W 

and 5 min at 150 W was completed prior to each training session, and a standardised cool-

down consisting of 5 min cycling at 150 W and 5 min at 100 W was completed following 

each session. Sessions were matched for overall maximal session effort basis (Nicolò et al. 

2014; Seiler et al. 2013) with a total training period of the session at 40 min, excluding 

warm-up, cool-down, and a 5 min recovery period between the two sets in SHORT. Each 

exercise session total effective period was segmented into four time points for analysis. 

 

Table 6.1 - Characteristics of the short interval (SHORT) and long interval (LONG) 
exercise protocols to be completed. 

 SHORT LONG 
   

Duration of work interval (s) 30 300 
Duration of rest period (s) 30 300 
Number of repeats per set 20 4 
Number of sets 2 1 
Recovery time between sets (s) 300 0 
Total work duration per session (s) 1,200 1,200 
Total rest duration per session (s) 1,200 1,200 
Total ‘training period’ duration (s) 2,400 2,400 
Total session time (s) 4,200 3,600 
   

 

  



121 

 

A 

 

B 

Figure 6.2 – Session format protocols; a) SHORT, b) LONG. Power outputs presented 
have been approximated for demonstration only. 

 

6.3.6 Data processing and statistical analysis 

Prior to statistical analysis, all data were checked for normality of distribution. Sphericity 

of the data was investigated using the Mauchly test, and the Greenhouse-Geisser 

adjustment was made when data was deemed non-spherical. Data are reported as mean ± 

SD, and CVs are presented as a percentage unless specified otherwise. A one-way 

ANOVA was used to analyse differences in pre-training baseline age, height, body mass, 

V̇O2max, MMP, HRmax, TT Power, TT HR, and TT V̇O2. Repeated-measures ANOVA was 

used to analyse the differences between groups in the changes in age, height, body mass, 

V̇O2max, MMP, HRmax, TT Power, TT HR, and TT V̇O2 following the training intervention. 

When significant differences were found, Bonferroni tests were used to determine where 

differences occurred. A repeated-measured one-way ANOVA was used to analyse the 

differences in training session power output and work done between training groups. Effect 

sizes were calculated using ηp2 and were defined as small, medium, or large based upon 

0.10, 0.25, and above 0.40, respectively (Cohen 1988). 

 

To assess individual training response, within-athlete CV was identified from previous 

research for absolute V̇O2max (CV = 5.6 % Katch, Sady and Freedson 1982), relative 

V̇O2max (3.2 % Katch, Sady and Freedson 1982), MMP (4.0 % Montero and Lundby 2017), 

HRmax (1.4 % Bagger, Petersen and Pedersen 2003), 20 min TT power (1.4 % MacInnis, 
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Thomas and Phillips 2019), 20 min TT V̇O2 (3.3 % Bagger, Petersen and Pedersen 2003), 

20 min TT HR (2.7 % Bagger, Petersen and Pedersen 2003). Training responses were then 

categorised into either: a training response, defined as an improvement greater than the 

within-athlete CV of the associated test measurement, a non-response defined as an 

improvement that is lower than the within-athlete CV of the associated test measurement, 

or a negative training response defined as a reduction in the associated test measurement 

that is larger than the within-athlete CV of the associated test measurement (Scharhag-

Rosenberger et al. 2012). 

Statistical analyses were conducted using the Statistical Package for the Social Sciences, 

version 26 for Mac OS X (SPSS, IBM®, Armonk, New York, USA), and an alpha level 

was set at P < .05 for the criteria for detection of significance in all cases. CV calculations 

and data processing were performed in Microsoft Excel (Excel v16.3 Microsoft, Redmond, 

Washington, USA). 

 

6.4 Results 

6.4.1 Participant details and baseline test results 

Baseline testing data are shown in Table 6.2. There was no difference at the pre-training 

time point between groups in age (F(2,25) = .314, P = .734), height (F(2,25) = .192, P = .826), 

weight (F(2,25) = 1.337, P = .281), absolute V̇O2max (F(2,25) = .039, P = .961), relative V̇O2max 

(F(2,25) = 1.642, P = .214), absolute MMP (F(2,25) = .162, P = .851), relative MMP (F(2,25) = 

1.871, P = .175), HRmax (F(2,25) = 2.160, P = .136), TT Power (F(2,25) = .07, P = .933), 

relative TT Power (F(2,25) = 1.09, P = .352), TT HR (F(2,25) = .869, P = .432), or TT V̇O2 

(F(2,25) = .503, P = .611), as determined by one-way ANOVA. Participants did not change 

age over the intervention period in either SHORT (P > .999), LONG (P = .168), or CON 

(P = .341). No change was observed in height over the intervention period in either 

SHORT (P = .433), LONG (P = .384), or CON (P = .655), in addition to no change in 

weight in SHORT (P = .064), LONG (P = .602), or CON (P - .351). 

 

6.4.2 Completed training 

The total training duration for each participant separated into group is presented in Figure 

6.3. There was no difference observed in total training duration in SHORT, LONG, and 

CON; 48 h 25 min, 34 h 03 min, and 40 h 41 min, respectively (F(2,25) = .404, P = .672). 

The total training duration between individuals displays large individual variability, 
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ranging from 84 h 06 min – 12 h 00 min in SHORT, 98 h 56 min – 12 h 00 min in LONG, 

and 133 h 13 min – 2 h 20 min in CON. Average work bout power during interval sessions 

was higher in SHORT (391 ± 72 W) than in LONG (274 ± 52 W; F(1,14) = 15.888, P = 

.001). Total work completed during interval training sessions was higher in SHORT (692.1 

± 107.2 kJ) than in LONG (546.1 ± 140.7 kJ; F(1,13) = 6.015, P = .029). Significant 

differences in session power output between groups were observed in every training 

session repeat, highlighted in Figure 6.4A. Differences in session work done between 

groups were observed during Sessions 9 to 18, highlighted in Figure 6.4B. 
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Table 6.2 – Participant age, body mass, MMP, absolute and relative V̇O2max, HRmax, and TT performances before training (Mean ± SD). * = P < .05 vs. pre-
training time point. 

  ALL   SHORT   LONG   CON  
             

 n =  28   7   10   11  
             

PR
E 

TR
A

IN
IN

G
 

Age (years) 34 ± 10   34 ± 12   36 ± 9   31 ± 10  
Height (cm) 177.3 ± 9.1   178.3 ± 5.6   178.2 ± 12.2   176.0 ± 8.2  

Body mass (kg) 72.4 ± 10.6   75.8 ± 9.6   74.7 ± 12.4   68.3 ± 8.1  
V̇O2max (L.min-1) 4.1 ± 0.6   4.0 ± 0.5   4.0 ± 0.6   4.2 ± 0.6  

V̇O2max (ml.kg.min-1) 57.1 ± 8.3   54 ± 8.7   54.8 ± 7.9   61.6 ± 7.6  
MMP (W) 378 ± 61   367 ± 61   373 ± 50   396 ± 69  

MMP (W.kg-1) 5.3 ± 0.9   5.0 ± 0.9   5.1 ± 0.8   5.7 ± 0.8  
HRmax (bpm) 184 ± 10   179 ± 10   182 ± 9   188 ± 10  

TT Power (W) 276 ± 56   274 ± 48   272 ± 56   281 ± 65  
TT Power (W.kg-1) 3.9 ± 0.8   3.7 ± 0.7   3.7 ± 0.8   4.1 ± 0.8  

TT HR 169 ± 10   168 ± 8   166 ± 9   172 ± 11  
TT V̇O2 47.5 ± 7.8   46.7 ± 7.6   46.0 ± 7.6   49.3 ± 8.5  

             

PO
ST

 T
R

A
IN

IN
G

 

Age (years) 34 ± 10   34 ± 13   36 ± 9   31 ± 11  
Height (cm) 177.3 ± 9.2   178.6 ± 5.9   177.9 ±12.2   175.8 ±8.9  

Body mass (kg) 72.1 ± 10.4   73.2 ± 9.6   74.9 ± 12.4   68.8 ±9.7  
V̇O2max (L.min-1) 4.1 ± 0.6   4.2 ± 0.6   4.1 ± 0.6   4.1 ± 0.7  

V̇O2max (ml.kg.min-1) 58.0 ± 8.0   57.4 ± 7.4   55.6 ± 7.9   60.6 ± 8.6  
MMP (W) 382 ± 61   385 ± 59   383 ± 53   379 ± 76  

MMP (W.kg-1) 5.3 ± 0.8   5.3 ± 0.9 *  5.2 ± 0.8   5.5 ± 0.9  
HRmax (bpm) 184 ± 11   179 ± 6   184 ± 12   187 ± 14  

TT Power (W) 283 ± 56 *  292 ± 52 *  279 ±53   281 ± 66  
TT Power (W.kg-1) 3.95 ± 0.7   4.0 ± 0.7 *  3.8 ± 0.7   4.1 ± 0.8  

TT HR 170 ± 10   170 ± 8   167 ± 11   172 ± 12  
TT V̇O2 49.1 ± 7.4 *  49.5 ± 7.4   47.0 ± 6.6   50.6 ± 9.7  

             

  



125 

           SHORT             LONG            CON 

   
Figure 6.3 – Total training duration for each participant over the 6-week training intervention period. 
  

0 2000 4000 6000 8000 10000

S1

S2

S3

S4

S5

S6

S7

Dura%on (min)

Pa
r%

cip
an

t n
um

be
r

0 2000 4000 6000 8000 10000

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

Dura%on (min)

Pa
r%

cip
an

t n
um

be
r

0 2000 4000 6000 8000 10000

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

Dura%on (min)

Pa
r%

cip
an

t n
um

be
r



126 

 

A 

 

B 

Figure 6.4 - Session power output (a) and work done (b) across the 18 sessions. Black bars represent LONG format sessions, and grey bars represent 
SHORT format sessions. Error bars ± SD. * = P < .05 vs. LONG. 

150

200

250

300

350

400

450

500

550

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

W
or

k 
bo

ut
 p

ow
er

 (W
)

Session

*
* * * * * * * * * * * * * * *

* *

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

W
or

k 
(k

J)

Session

* *
*

*
*

* * * * *



127 

6.4.3 Physiological and performance adaptations following training  

6.4.3.1 Maximal	incremental	test	

Absolute and relative V̇O2max, absolute and relative MMP, HRmax obtained during the 

maximal incremental test are presented graphically in Figure 6.5. There was no statistically 

significant interaction between the training group and the tests performed before and after 

training in relative V̇O2max (F(2, 25) = 1.117, P = .343, ηp2 = .082), and no differences were 

observed between groups before (P = .214) or after the intervention (P = .359). No change 

was observed in relative V̇O2max in LONG (F(1, 9) = .798, P = .395, ηp2 = .081), SHORT 

(F(1, 6) = 2.863, P = .142, ηp2 = .323), or CON (F(1, 10) = .023, P = .883, ηp2 = .002). There 

was no statistically significant interaction between the training group and the tests 

performed before and after training in absolute V̇O2max (F(2, 25) = .092, P = .912, ηp2 = 

.007), and no differences were observed between groups before (P = .961) or after the 

intervention (P = .989). No change was observed in absolute V̇O2max in LONG (F(1, 9) = 

1.465, P = .257, ηp2 = .140), SHORT (F(1, 6) = .265, P = .625, ηp2 = .042), or CON (F(1, 10) = 

.151, P = .706, ηp2 = .015). There was a statistically significant interaction effect between 

the intervention and time for absolute MMP (F(2, 25) = 4.183, P = .027, ηp2 = .251; 
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Figure 6.6), but differences between groups were not detected using follow-up tests (P > 

.05). A statistically significant interaction effect was found between the intervention and 

time for relative MMP (F(2, 25) = 7.219, P = .003, ηp2 = .366), which was significantly 

increased in SHORT (F(1, 6) = 10.154, P = .019, ηp2 = .629), but no effect was observed in 

LONG (F(1, 9) = 1.782, P = .215, ηp2 = .165) or CON (F(1, 10) = 3.183, P = .105, ηp2 = .241). 

There was no statistically significant interaction between the intervention and time on 

HRmax (F(2, 25) = 1.404, P = .264, ηp2 = .101), and no differences were observed between 

groups before (P = .136) or after the intervention (P = .341). No effect of the intervention 

was observed in HRmax in LONG (F(1, 9) = 1.405, P = .266, ηp2 = .135), SHORT (F(1, 6) = .0 

, P > .999, ηp2 = .0), or CON (F(1, 10) = 2.181, P = .171, ηp2 = .179).  
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             SHORT          LONG        CON  
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Figure 6.5 - Individual training responses from the maximal incremental test for a) relative 
V̇O2max, b) absolute V̇O2max, c) absolute MMP, d) relative MMP, and e) HRmax. * = P < .05 
vs. pre-training time point. † = significant interaction effect between group and time P < 
.05.  
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Figure 6.6 – Group mean differences in MMP before and after the training intervention 
across groups. Error bars display SD for each group. † = significant interaction effect 
between group and time (P < .05). 
 

6.4.3.2 20-min	TT	performance	test	

Absolute and relative power, average HR, and V̇O2max measured during the 20 min TT 

performance test are presented in Figure 6.7. There was no statistically significant 

interaction between the intervention and time on absolute TT power (F(2, 25) = 3.208, P = 

.058, ηp2 = .204), and no differences were observed between groups before (P = .933) or 

after the intervention (P = .902). Absolute TT power following the intervention was 

significantly increased in SHORT (F(1, 6) = 6.647), P = .042, ηp2 = .526), but no effect was 

observed in LONG (F(1, 9) = 3.684, P = .087, ηp2 = .290) or CON (F(1, 10) = .002, P = .967, 

ηp2 = .0). There was a statistically significant interaction between the intervention and time 

on relative TT power (F(2, 25) = 5.545, P = .01, ηp2 = .307), but no differences were 

observed between groups before (P = .352) or after the intervention (P = .607). Relative 

TT power following the intervention was significantly increased in SHORT (F(1, 6) = 11.5, 

P = .015, ηp2 = .657), but no effect was observed in LONG (F(1, 9) = 1.624, P = .235, ηp2 = 

.153) or CON (F(1, 10) = .448, P = .518, ηp2 = .043). There was no statistically significant 
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interaction between the intervention and time on TT HR (F(2, 25) = .466, P = .633, ηp2 = 

.036), and no differences were observed between groups before (P = .432) or after the 

intervention (P = .618). No effect of the intervention was observed in TT HR in LONG 

(F(1, 9) = .826, P = .387, ηp2 = .084), SHORT (F(1, 6) = 1.740, P = .235, ηp2 = .225), or CON 

(F(1, 10) = .001, P = .971, ηp2 = .0). There was no statistically significant interaction between 

the intervention and time on TT V̇O2 (F(2, 25) = .848, P = .440, ηp2 = .064), and no 

differences were observed between groups before (P = .611) or after the intervention (P = 

.546). No effect of the intervention was observed in TT V̇O2 in LONG (F(1, 9) = 1.253, P = 

.292, ηp2 = .122), SHORT (F(1, 6) = 3.104, P = .129, ηp2 = .341), or CON (F(1, 10) = 3.365, P 

= .096, ηp2 = .252).  
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             SHORT          LONG        CON  
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Figure 6.7 – Individual training responses from the 20 min TT performance test for a) 
absolute power, b) relative power, c) HR, and d) V̇O2. * = P < .05 vs. pre-training time 
point. 
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6.4.3.3 Variability	in	training	responses	

Different magnitudes of between-athlete variability were observed in training responses, as 

shown in Table 6.3, with SHORT displaying the largest between-athlete variability (70.5 

%), followed by LONG (44.9 %), and CON (24.9 %). However, when training responses 

are marked as either a positive response, non-response, or negative response, all 

participants, with the exception of participants 6 and 9 from CON, improved in at least one 

measurement Table 6.4 and Table 6.5. Favourable changes in absolute V̇O2max were 

identified in 71 % (5/7), 40 % (4/10), and 27 % (3/11) participants in, SHORT, LONG, and 

CON, respectively. Absolute power output during the 20 min TT performance test was 

improved in 86 % (6/7), 60 % (6/10), and 27 % (3/11) participants in, SHORT, LONG, and 

CON, respectively. 

 

Table 6.3 - Between-athlete variability observed following intervention period in measures 
from maximal incremental exercise test and 20 min TT expressed as CV. 

  SHORT   LONG   CON  
          

n =   7   10   11  
          

V̇O2max (L.min-1)  34.9 %   47.8 %   12.4 %  
V̇O2max (ml.kg.min-1)  88.7 %   31.4 %   3.7 %  

MMP (W)  3.5 %   34.8 %   42.2 %  
MMP (W.kg-1)  63.1 %   68.0 %   48.0 %  

HRmax (bpm)  106.9 %   58.1 %   53.6 %  
TT Power (W)  103.7 %   52.2 %   2.7 %  

TT Power (W.kg-1)  112.8 %   45.0 %   5.4 %  
TT HR (bpm)  51.2 %   27.3 %   2.1 %  

TT V̇O2 (ml.kg.min-1)  69.3 %   39.4 %   54.4 %  
          

Average CV  70.5 %   44.9 %   24.9 %  
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Table 6.4 – Individual response matrix for changes in absolute and relative V̇O2max, MMP, and HRmax measured during the maximal incremental test. Green 
squares indicate response, white squares indicate non-response, red squares indicate negative response. 
 

SH
O

R
T  

Participant number S1 S2 S3 S4 S5 S6 S7 S Response 
         

Absolute V̇O2max (L.min-1)        n = 2 (29%) 
Relative V̇O2max (ml.kg.min-1)        n = 5 (71%) 

Absolute MMP (W)        n = 4 (57%) 
Relative MMP (W.kg-1)        n = 5 (71%) 

HRmax (bpm)        n = 2 (29%) 
         

 
 

LO
N

G
 

Participant number L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 S Response 
            

Absolute V̇O2max (L.min-1)           n = 1 (10%) 
Relative V̇O2max (ml.kg.min-1)           n = 4 (40%) 

Absolute MMP (W)           n = 4 (40%) 
Relative MMP (W.kg-1)           n = 4 (40%) 

HRmax (bpm)           n = 5 (50%) 
            

 
 

C
O

N
 

Participant number C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 S Response 
             

Absolute V̇O2max (L.min-1)            n = 1 (9%) 
Relative V̇O2max (ml.kg.min-1)            n = 3 (27%) 

Absolute MMP (W)            n = 1 (9%) 
Relative MMP (W.kg-1)            n = 1 (9%) 

HRmax (bpm)            n = 1 (9%) 
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Table 6.5 – Individual response matrix for changes in absolute and relative power output, HR, and V̇O2 measured during the 20 min TT performance test. 
Green squares indicate response, white squares indicate non-response, red squares indicate negative response. 
 

SH
O

R
T  

Participant number S1 S2 S3 S4 S5 S6 S7 S Response 
         

V̇O2 (ml.kg.min-1)        n = 4 (57%) 
Absolute Power (W)        n = 6 (86%) 

Relative Power (W.kg-1)        n = 6 (86%) 
HR (bpm)        n = 2 (29%) 

         
 
 

LO
N

G
 

Participant number L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 S Response 
            

V̇O2 (ml.kg.min-1)           n = 4 (40%) 
Absolute Power (W)           n = 6 (60%) 

Relative Power (W.kg-1)           n = 5 (50%) 
HR (bpm)           n = 3 (30%) 

            
 
 

C
O

N
 

Participant number C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 S Response 
             

V̇O2 (ml.kg.min-1)            n = 5 (45%) 
Absolute Power (W)            n = 3 (27%) 

Relative Power (W.kg-1)            n = 2 (18%) 
HR (bpm)            n = 1 (9%) 
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6.5 Discussion 

The main finding of this study was that 6 weeks of effort-based training utilising a 

maximal session effort intensity prescription using a SHORT interval format resulted in 

significant improvements in relative MMP (5.0 ± 0.9 to 5.3 ± 0.9 W.kg-1; P = .019) and 

both absolute (274 ± 48 to 292 ± 52 W; P = .042) and relative (3.7 ± 0.7 to 4.0 ± 0.7 W.kg-

1; P = .015) TT power output. Individual variability in training response was lower in 

SHORT than in LONG. Large heterogeneity in training response was observed across 

groups, ranging from 10 % (Absolute V̇O2max in LONG) to 86 % response (Absolute and 

relative TT power in SHORT). 

 

The magnitude of the training response observed within this study is surprising considering 

the duration of the study in comparison to previously published research. A large meta-

analysis, incorporating 37 training studies with 334 untrained subjects in total, observed 

that using a mixture of HIIT and low-intensity training can result in an average increase of 

0.5 L.min-1 in V̇O2max (Bacon et al. 2013). In the present investigation, group-mean 

changes in V̇O2max were observed to be much lower than this, with the significant change 

in SHORT reaching 0.2 L.min-1, and the non-significant changes in LONG and CON being 

0.1 L.min-1 and -0.1 L.min-1, respectively. However, a large difference in the observed 

training response would likely be due to the difference in training status between the 

individuals in this study, and that of Bacon et al. (2013). Investigating the training 

durations completed by participants in the present study, the SHORT group completed ~ 8 

h of training per week, with LONG completing ~ 5.6 h and CON completing ~ 6.6 h per 

week, indicating a large albeit non-significant range in volume. In addition to this, it is 

possible that the sessions completed within the LONG group were not performed at a high 

enough intensity to deliver a training stimulus of the desired nature. When compared to the 

average work bout power measured during Chapter 5, SHORT interval sessions were 

similar (Ch 5; 382 ± 55 W vs Ch 6; 391 ± 72 W), whereas the work bout power outputs 

during LONG interval sessions in the present chapter were lower than those performed in 

Chapter 5 (Ch 5; 310W ± 45 W vs Ch 6; 274 ± 52 W). It is of note that the work bout 

power output during SHORT is lower than has been previously reported, with 464 ± 51 W 

being reported during 30:30 format intervals by (Nicolò, Bazzucchi, Haxhi, et al. 2014). 

Despite the differences in work bout power between Chapter 5 and (Nicolò, Bazzucchi, 

Haxhi, et al. 2014), similar levels of BLa-1 (9.5 ± 3.0 mmol.L-1 vs 8.5 ± 2.4 mmol.L-1, 

respectively), HR (164 ± 10 bpm vs 169 ± 5 bpm, respectively), and V̇O2 (3310 ± 470 
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ml.min-1 vs 3147 ± 234 ml.min-1, respectively) were observed, showing that training 

stimulus may have been in-line with previously reported investigations. When power 

output was compared as a % of MMP, the SHORT interval session resulted in similar 

%MMP between Chapter 5 and the present chapter (101 %, and 107 %, respectively), 

whereas the LONG interval prescription resulted in lower %MMP between Chapter 5 and 

the present chapter (82 %, and 73 %, respectively). Interestingly, the work bout power 

output within the LONG interval sessions in the current study was extremely close to the 

20 min TT power recorded before training for the LONG group (272 ± 56 W). It is 

therefore surprising that 6 weeks of training regularly at a power output measured for a 20 

min TT would not result in an increase in 20 min TT power itself. However, this also 

suggests that the interval power output produced by participants was not high enough, 

given the similarity between the 20 min TT power output and the interval power in the 

LONG work bouts. It is also likely that due to the matching of total work duration between 

LONG and SHORT, the LONG group did not complete as many repetitions as would be 

commonly found within training programmes. It has been shown that ten weeks of training 

including three weekly training sessions which incorporate six repeats of 5 min at V̇O2max 

has the potential to increase V̇O2max by 1.2 L.min-1 in recreationally active individuals 

(Hickson, Bomze and Holloszy 1977). Having an insufficient number of repeated work 

bouts during LONG could also further explain the findings of significant improvement in 

MMP and TT performance within SHORT in the present study, as not only was the 

absolute work bout power output lower in LONG, but the number of repetitions may not 

have been sufficient. 

 

Despite the limited number of significant changes following the training intervention in the 

present investigation, the use of effort-based training intensity prescriptions provides some 

insights into the potential for improved training individualisation. The effort-based 

intensity prescription was proposed to allow the exercising participants to self-regulate 

their exercise workload to a maximal tolerable stimulus, whilst taking into account internal 

and external stressors, continuing on from existing work on individualised training 

prescriptions (Kiviniemi et al. 2007; Capostagno, Lambert and Lamberts 2014). The levels 

of response to training in the present study were determined using the method utilised by 

Scharhag-Rosenberger et al. (2012), which involves identifying whether an individual has 

demonstrated changes that exceed the level of expected error (due to both biological 

variability and technical error of measurement) from laboratory testing. Despite the 

individualisation of training intensity by using effort-based prescriptions, large degrees of 
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individual variability are still present within the training adaptations following the 

intervention, as well as a lack of statistically significant changes in performance and 

physiological measures following training. Similar to the findings of Vollaard et al. (2009), 

the present study finds that response in one measurement does not guarantee a response in 

other measurements. Response levels of 86 %, 80 %, and 36 % in SHORT, LONG, and 

CON, respectively were identified for at least one laboratory measurement, supporting the 

notion that exercise response can be both modality- and measure-specific (Scharhag-

Rosenberger et al. 2012; Pickering and Kiely 2019a; Pickering and Kiely 2019b). This 

finding supports the notion that including HIIT can reduce levels of non-response (Bacon 

et al. 2013), however, as this study did not utilise a crossover design it may be possible that 

the findings of the current study are influenced by genetic factors that influence baseline 

phenotype and associated training response to different exercise formats (Gaskill, Rice, et 

al. 2001; Bouchard, An, Rice, Skinner, et al. 1999; Perusse et al. 2001; Rice et al. 2001; 

Rice et al. 2002). Despite this, within the interval training groups, two individuals 

displayed adverse response in MMP measured during the incremental exercise test (S3 and 

L8), and two individuals displayed adverse response in TT performance (S3 and L9), 

showing that both groups display similar levels of training response and non-response. 

 

6.6 Conclusion 

Following 6 weeks of training using a short interval training format and a maximal session 

effort intensity prescription, a significant improvement in MMP and both absolute and 

relative TT power was found, compared to no change in these parameters when using long 

intervals. Individual response levels indicate that short interval formats are most likely to 

result in positive training response, compared to long intervals or a control group 

completing endurance training. The small sample size within the SHORT group in this 

study, as well as the low training intensity observed in the LONG group, are potential 

limiting factors. 
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7.1 Abstract 

Introduction: In this study, untargeted qualitative UPLC- MS was applied to provide a 

comprehensive global overview of the metabolic responses to exercise sessions in order to 

gain further insight into the mechanisms behind heterogeneity in exercise training 

response. Methods: Seventeen well-trained male competitive cyclists (V̇O2max: 59.4 ± 8.2 

ml·kg-1·min-1) completed 9 exercise trials, each consisting of either short (SHORT) or long 

(LONG) interval, or continuous (CONT) effort-based training formats, each repeated 3 

times using a maximal isoeffort intensity prescription. Urine samples were collected during 

visits to the laboratory prior to exercise (Pre), immediately following cessation of exercise 

(Post), and 1 hour following exercise (1h Post). Samples were analysed using UPLC- MS 

to construct a metabolite profile of three exercise training sessions. Results: Immediately 

following LONG and SHORT, decreases in uric acid, citric acid and increases in 

hypoxanthine and lactate were observed versus resting samples. Immediately following 

CONT, increases in hypoxanthine and lactate were observed versus resting samples. In the 

hour following all session formats, lactate decreased and in addition histidine decreased 

and creatine, tryptophan, and tyrosine increased following LONG. Comparing resting 

samples and samples collected one hour following the session, LONG and SHORT 

resulted in increased lactate and reduced uric acid excretion. Citric acid excretion 

decreased between pre-session and one hour following LONG and CONT. In addition, 

differences in urinary excretion of uric acid, lactate, hypoxanthine, tyrosine, citric acid, and 

hippuric acid were associated with variability in participant acute power output during the 

iso-effort format. Conclusion: The findings of the present investigation show that distinct 

metabolomic differences are present between LONG, SHORT, and CONT session formats 

using a maximal effort-based intensity prescription. The findings also display key 

differences in metabolomic response to exercise based on the level of individual variability 

in power output during acute exercise. 

 

7.2 Introduction 

The previous chapters have indicated that LONG training sessions provide a more 

consistent training stimulus compared to SHORT training sessions on an acute session 

basis, but the individual rate of response is greater when using SHORT sessions in 

response to a 6-week training intervention. This indicates that there may be some key 

differences in response to these specific training sessions, beyond those previously 

explored in this thesis. 
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Metabolomics is a method that allows researchers to use biofluids or cell tissue extracts to 

provide a snapshot of the whole-body metabolic profile at a specific time point (Beckonert 

et al. 2007). Human urine has gained much attention for use in metabolomics 

investigations in recent years, with the number of reports which use urine as sample 

material is continuously growing (Bernini et al. 2011; Zhang et al. 2012; Khamis, Adamko 

and El-Aneed 2017; Shao et al. 2016; Law et al. 2017; Deng et al. 2019; Yang et al. 2019). 

Metabolomic analysis of urine is able to provide a reflection of the state of the human 

system at a given timepoint (Yin, Lehmann and Xu 2015; Nicholson, Lindon and Holmes 

1999). The current state of research into the impact of acute exercise on the human 

metabolome has a mixture of investigations seeking to understand the acute effects 

(Contrepois et al. 2020; Stathis, Carey and Snow 2005; Stathis et al. 1999; Sutton et al. 

1980; Gerber et al. 2014; Dudzinska et al. 2018; Kurgan et al. 2019; Siopi et al. 2017; 

Sahlin, Tonkonogi and Söderlund 1999; Kistner et al. 2020; Pechlivanis et al. 2015; 

Nieman, Gillitt and Sha 2018; Zhao et al. 2020; Lehmann et al. 2010; Lee et al. 2010; 

Mukherjee et al. 2014; Nieman et al. 2012; Peake et al. 2014; Schranner et al. 2020; 

Davison et al. 2018; Hodgson et al. 2013; Zafeiridis et al. 2016; Daskalaki et al. 2015; C. 

Enea et al. 2010; Huang et al. 2010; Danaher, Gerber, Wellard, et al. 2016; Bally et al. 

2017; Berton et al. 2017; Howe et al. 2018; Chorell et al. 2009; Nieman et al. 2014) as 

well as the adaptations to chronic training interventions lasting between 4 days and 1 year 

in duration (Stathis et al. 2006; Pechlivanis et al. 2013; San-Millán et al. 2020; Karl et al. 

2017; Saude et al. 2007; Wientzek et al. 2014). 

 

The synthesis of ATP from carbohydrate metabolism can be via the glycolytic pathway, 

resulting in pyruvate and lactate formation, or via oxidative phosphorylation. Lactate is an 

extremely common metabolite of investigation in exercise studies (Oliver Faude, 

Kindermann and Meyer 2009; Connor et al. 1982; Jang et al. 2018; Johnson and Edwards 

1937; Kondoh, Kawase and Ohmori 1992; Lewis et al. 2010; Nikolaidis et al. 2016; 

Nikolaidis et al. 2018; Pechlivanis et al. 2013; Pechlivanis et al. 2015), but other 

metabolites such as fumarate (Danaher, Gerber, Wellard, et al. 2016; Hodgson et al. 2013; 

Huang et al. 2010; Nieman, Gillitt and Sha 2018; Pechlivanis et al. 2015), succinate 

(Brugnara et al. 2012; Hochachka and Dressendorfer 1976; Jang et al. 2018; Kelly, Kelly 

and Kelly 2020; Lewis et al. 2010; Reddy et al. 2020; Starling 2020), and citric acid 

(Krebs and Johnson 1980; Krebs, Salvin and Johnson 1938; Peake et al. 2014; Chorell et 
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al. 2009) give a further insight into the exercise-related changes in processes such as 

carbohydrate metabolism and energy production. Steroids such as cortisone or cortisol are 

derived from cholesterol (Miller and Auchus 2011), and whilst it has been shown that 

steroid profile is altered by exercise, there appears no clear pattern of change within the 

current literature (Schranner et al. 2020; Daskalaki et al. 2015; Zhao et al. 2020; Al-

Khelaifi et al. 2018). 

 

Amino acid alterations during and following exercise display a wide range of responses 

and are involved in many biological processes (Schranner et al. 2020), such as glucogenic 

amino acids such as alanine, glutamine, glycine, and histidine (Pechlivanis et al. 2013; 

Jang et al. 2018; Duft et al. 2017); ketogenic amino acids such as lysine (Berton et al. 

2017; Chorell et al. 2009; Danaher, Gerber, Wellard, et al. 2016; Daskalaki et al. 2015; 

Howe et al. 2018; Lee et al. 2010; Siopi et al. 2017; Zhao et al. 2020); 

glucogenic/ketogenic amino acids such as isoleucine and tryptophan (Berton et al. 2017; 

Pechlivanis et al. 2013; Pechlivanis et al. 2015); and biogenic amines such as creatine and 

creatinine (Pechlivanis et al. 2015; Shi et al. 2007; Santone et al. 2014). Some amino acids 

are stable in their response to exercise, such as glycine, whereas tryptophan displays 

variable responses to exercise and depending on what body fluid was utilised for 

measurements (Strasser et al. 2016; Sheedy et al. 2014; Lustgarten et al. 2013; Daskalaki 

et al. 2015; Ito et al. 2003). Following exercise, tryptophan can be metabolized through a 

variety of pathways, such as the kynurenine pathway, which is stimulate when immune 

response is activated following exhaustive exercise (Strasser et al. 2016). Metabolites 

related to purine metabolism, such as creatine, hypoxanthine and uric acid, present a key 

opportunity to examine the exercise-induced alterations in ATP, AMP, and IMP utilisation 

and resynthesis and have been used previously in many exercise metabolomic studies 

(Sutton et al. 1980; Stathis, Carey and Snow 2005; Stathis et al. 1999; Gerber et al. 2014; 

Zieliński and Kusy 2012; Zieliński and Kusy 2015a; Zieliński and Kusy 2015b; Stathis et 

al. 2006; Hellsten-Westing et al. 1993; Zieliński, Kusy and Rychlewski 2011; Zieliński et 

al. 2009; Sahlin, Tonkonogi and Söderlund 1999; Hellsten-Westing, Sollevi and Sjödin 

1991; Pechlivanis et al. 2015; Kaya et al. 2006; Lewis et al. 2010). 

 

The aim of the current study was to compare the perturbations of metabolic profiles in key 

metabolites of interest following acute exercise of different session formats utilising a 
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maximal isoeffort training intensity prescription and investigate whether there are 

metabolites that are related to individual variability in acute exercise response can be 

identified. Many metabolites are measured during untargeted metabolomics analysis in 

response to exercise, many of which may be of unknown identity (Daskalaki, Easton and 

Watson 2015). To assist with the identification of compounds, selection of metabolites of 

interest prior to analysis can be conducted in order to putatively identify compounds 

discovered following OPLS-DA (Lee et al. 2006). The selected metabolites of interest in 

the current study are a mixture of metabolites associated with carbohydrate metabolism 

and the TCA cycle, amino acids, purines, and steroids (Schranner et al. 2020; Nieman, 

Gillitt and Sha 2018). 

 

Hypotheses 

H11 – Training session format groups display differences in metabolite profile across all 

time points (Pre, Post, 1hPost). 

H10 – There are no differences in metabolite profile across training session format groups. 

H21 – Differences in metabolite profile can be differentiated between variable and 

consistent participants. 

H20 – No differences in metabolite profile can be differentiated between variable and 

consistent participants. 

 

7.3 Methodology 

7.3.1 Study design and experimental procedures 

The samples utilised in this investigation were collected during the experimental data 

collection procedures within Chapter 5. Seventeen well-trained male competitive cyclists 

(V̇O2max: 59.4 ± 8.2 ml·kg·min-1) completed 9 exercise trials, each consisting of either 

short (SHORT) or long (LONG) interval, or continuous (CONT) effort based training 

formats, each repeated 3 times using a maximal isoeffort intensity prescription. Three 

separate sample analysis runs were completed containing samples from a single exercise 

training session format: LONG, SHORT, and CONT (further details are presented in 

Section 5.3.2). 
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7.3.2 Urine sample collection and preparation 

Urinary sample collection was completed by collecting spot urine samples prior to (Pre), 

immediately afterwards (Post), and 1 h following training sessions (1h Post; see Figure 

7.1), processed following the guidelines of Want et al. (2010), and were analysed using 

UPLC-MS (Danaher, Gerber, Wellard, et al. 2016; Enea et al. 2010; Lehmann et al. 2010). 

Further urine sample collection details are described in section Chapter 3 (Section 3.11.1). 

 

Figure 7.1 - Urine sampling timepoints 

 

7.3.3 UPLC-MS analysis 

A detailed overview of the UPLC-MS system setup, materials, and run details are 

presented in section Chapter 3 (Section 3.11.2) and details of run durations and injection 

numbers are presented in Table 7.1. Test mixes contained 17 (ESI+) and 15 (ESI-) known 

compounds from pure sources to putatively identify metabolites of interest in the samples 

(Table 7.2). Within each analysis batch (LONG, SHORT, and CONT), sample order was 

randomised to limit the impact of systematic error due to any potential degradation of the 

UPLC-MS system on the dataset over the acquisition time. 

 

Table 7.1 – Experimental design of the UPLC-MS System. 

 LONG SHORT CONT 
Acquisition Time (h) 43.5 45.8 50.2 
Injections 210 221 214 
Test Mixes 6 5 3 
Blanks 4 13 8 
cQCs 20 20 20 
QCs 16 15 15 
Samples 150 150 132 
Ionisation mode ESI+/ESI- ESI+/ESI- ESI+/ESI- 
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Table 7.2 - The [M+H]+/- and RT of each compound in the test mix samples used for the 
assessment of UPLC-MS reproducibility in ESI+ and ESI-. 

ESI+ 

Metabolite Formula Mass [M+H]+ RT (min) 

Glycine C2H5NO2 75.0320 76.0399 0.38 
L-Alanine C3H7NO2 89.0477 90.0555 0.44 
Creatinine C4H7N3O 113.0589 114.0667 0.42 
Succinate C4H6O4 118.0266 119.0344 1.16 
Creatine C4H9N3O2 131.0695 132.0773 1.26 
L-Isoleucine C6H13NO2 131.0946 132.1025 0.44 
Hypoxanthine C5H4N4O 136.0385 137.0463 0.88 
L-Glutamine C5H10N2O3 146.0691 147.0770 0.34 
L(+)-Lysine C6H14N2O2 146.1055 147.1134 0.38 
L-Histidine C6H9N3O2 155.0695 156.0773 0.36 
Uric acid C5H4N4O3 168.0283 169.0362 0.82 
Hippuric acid C9H9NO3 179.0582 180.0661 4.10 
L-Tyrosine C9H11NO3 181.0739 182.0817 1.16 
Citric acid C6H8O7 192.0270 193.0348 0.80 
L-Tryptophan C11H12N2O2 204.0899 205.0977 3.48 
Cortisone C21H28O5 360.1937 361.2015 6.35 
Cortisol C21H30O5 362.2093 363.2093 6.37 

ESI- 

Metabolite Formula Mass [M+H]- RT (min) 

Lactate C3H6O3 90.0317 89.0317 0.68 
Creatinine C4H7N3O 131.0695 112.0589 0.80 
Fumarate C4H2O4-2 113.9953 112.9953 0.95 
Succinate C4H6O4 118.0266 117.0266 1.06 
Creatine C4H9N3O2 131.0695 130.0695 0.44 
Hypoxanthine C5H4N4O 136.0385 135.0385 0.88 
L-Glutamine C5H10N2O3 146.0691 145.0691 0.39 
L-Histidine C6H9N3O2 155.0695 154.0695 0.36 
Uric acid C5H4N4O3 168.0283 167.0283 0.82 
Hippuric acid C9H9NO3 179.0582 178.0582 4.10 
L-Tyrosine C9H11NO3 181.0739 180.0739 1.16 
Citric acid C6H8O7 192.0270 191.0270 0.80 
L-Tryptophan C11H12N2O2 204.0899 203.0899 3.48 
Cortisone C21H28O5 360.1937 359.1937 6.35 
Cortisol C+H30O5 362.2093 361.2093 7.73 
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7.3.4 Data analysis 

7.3.4.1 Univariate	analysis	of	raw	data	

Details on the univariate analysis of raw data retention time, mass accuracy and variance 

are presented in Chapter 3 (Section 3.11.5). 

 

7.3.4.2 Data	pre-processing	

Details of data pre-processing parameters are presented in Chapter 3 (Section 3.11.6) and 

utilised the XCMS package for R software (Smith et al. 2006) which allowed the 

chromatographic dataset to be reduced into a single matrix for further analysis. 

 

7.3.4.3 Multivariate	analysis	

Details of multivariate data analyses, specifically PCA and OPLS-DA performed within 

SIMCA-P (Version 12, Umetrics, Sweden) are presented in Chapter 3 (Section 3.11.7). For 

each exercise group, pairwise OPLS-DA was performed to investigate acute changes in 

metabolic profile (e.g., Pre, Post, 1h Post). Additional OPLS-DA analyses were conducted 

with participants classified as either “variable” or “consistent” for each exercise session 

within Chapter 5 (Section 5.4.3). Variable participants were classified based on their 

exercise variability for %MMP (LONG = 6; SHORT = 4; CONT = 3) and %HRmax (LONG 

= 4, SHORT = 3, CONT = 4). The rationale for investigating variability relating to both 

MMP and HRmax is to isolate internal and external training load variability.  

 

7.4 Results 

7.4.1 Analysis of raw data 

Following all data pre-processing steps, a range of 123 – 183 metabolic features were 

detected across all ionisation modes and sample groups (Table 7.3). Comparisons of all 

cQC BPI chromatograms indicated that the UPLC-MS system used had been conditioned 

sufficiently for all experiments, in both ESI+ and ESI-, and cQC reached stability after 10 

injections. 
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Table 7.3 - Metabolic features present in dataset following each stage of filtering during 
XCMS pre-processing. 

  Raw Data Post MinFrac 
Filtering 

Post CV 
Filtering 

ESI+ 
LONG 234 171 141 

SHORT 247 168 136 
CONT 210 142 123 

ESI- 
LONG 366 247 183 

SHORT 361 235 142 
CONT 369 235 162 

 

The metabolites presented in Table 7.4 were excluded from identification following mass 

accuracy and peak intensity threshold failures. Inspection of QC samples was performed 

using the identified metabolites from test mix injections to assess the analytical 

reproducibility of the UPLC-MS systems’ mass accuracy (Table 7.5), retention time drift 

(Table 7.6), and alterations to the peak intensities (Table 7.7 and Table 7.8). L-Alanine and 

succinate failed to meet the ≤ 30 ppm mass accuracy threshold in ESI+, while all other 

metabolites met the threshold and remained stable for all sample runs for both ESI+ and 

ESI- (Table 7.5). The maximum retention time drift observed was 3.0 seconds in both ESI+ 

and ESI-. Retention time was also relatively stable across ESI+ and ESI- for LONG, 

SHORT, and CONT experimental runs (1.3 vs 1.3 sec, 0.9 vs 1.1 sec, and 1.1 vs 1.4 sec, 

respectively: Table 7.6). Peak intensity change data are presented in Table 7.7 and Table 

7.8, and indicated metabolites were excluded due to peak intensity CV values exceeding 

the accepted thresholds of 30 %.  

 

Table 7.4 – Metabolites excluded from identification based on failure of mass accuracy 
and peak intensity CV thresholds. SHORT ESI+ not included based on the lack of QC 
clustering fit from PCA analysis. 

 LONG SHORT CONT 

ESI+ 

L-Alanine 
L-Isoleucine 

L-Lysine 
Succinate 

- 
L-Glutamine 
L-Isoleucine 

Succinate 

ESI- L-Histidine Cortisol 
Creatine 

L-Histidine 
Cortisol 
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Table 7.5 - Mass accuracy for QC samples in ESI+ and ESI- UPLC-MS conditions. 

    ESI+  ESI- 

Metabolite [M+H] [M-H]  Standard 
Compound 

Ppm 
Error 

Theoretical 
Mass Diff. 

 Standard 
Compound 

Ppm 
Error 

Theoretical 
Mass Diff. 

Glycine 76.0399 -  76.0 0 0.0399  - - - 
Lactate - 89.0317  - - -  89.0 0 0.0317 

L-Alanine 90.0555 -  90.04 -2207.51 0.0155  - - - 
Creatinine 114.0667 112.0589  114.1 0 -0.0333  112.1 0 -0.0411 
Fumarate - 112.9953  - - -  113.0 0 -0.0047 
Succinate 119.0344 117.0266  119.1 840.3 -0.0656  117.0 0 0.0266 
Creatine 132.0773 130.0695  132.1 0 -0.0227  130.1 0 -0.0305 

L-Isoleucine 132.1025 -  132.1 0 0.0025  - - - 
Hypoxanthine 137.0463 135.0385  137.0 0 0.0463  135.0 0 0.0385 
L-Glutamine 147.077 145.0691  147.1 0 -0.0230  145.1 0 -0.0309 
L(+)-Lysine 147.1134 -  147.1 0 0.0134  - - - 
L-Histidine 156.0773 154.0695  156.1 0 -0.0227  154.1 0 -0.0305 
Uric acid 169.0362 167.0283  169.0 0 0.0362  167.0 0 0.0283 

Hippuric acid 180.0661 178.0582  180.1 0 -0.0339  178.1 0 -0.0418 
L-Tyrosine 182.0817 180.0739  182.1 0 -0.0183  180.1 0 -0.0261 
Citric acid 193.0348 191.027  193.0 0 0.0348  191.0 0 0.0270 

L-Tryptophan 205.0977 203.0899  205.1 0 -0.0023  203.1 0 -0.0101 
Cortisone 361.2015 359.1937  361.2 0 0.0015  359.2 0 -0.0063 
Cortisol 363.2093 361.2093  363.2 0 0.0093  361.2 0 0.0093 
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Table 7.6 – Retention time deviation for QC samples in ESI+ and ESI- UPLC-MS 
conditions. 

ESI+ 
 LONG SHORT CONT 

Metabolite Average 
(min) 

Drift 
(sec) 

Average 
(min) 

Drift 
(sec) 

Average 
(min) 

Drift 
(sec) 

Glycine 0.41 1.20 0.41 1.20 0.41 0.60 
L-Alanine 0.44 0.00 0.44 0.00 0.44 0.00 
Creatinine 0.42 0.60 0.42 0.00 0.42 0.00 
Succinate 1.17 1.20 1.16 1.20 1.17 1.80 
Creatine 0.44 1.80 0.44 0.00 0.44 0.00 
L-Isoleucine 1.17 1.80 1.16 1.20 1.17 1.20 
Hypoxanthine 0.89 0.60 0.88 1.20 0.88 1.20 
L-Glutamine 0.34 1.20 0.34 0.60 0.34 0.60 
L(+)-Lysine 0.39 1.20 0.38 0.60 0.39 1.20 
L-Histidine 0.36 0.60 0.37 0.60 0.36 1.20 
Uric acid 0.82 0.60 0.82 0.60 0.82 0.60 
Hippuric acid 4.11 1.80 4.09 1.80 4.10 1.80 
L-Tyrosine 1.17 1.80 1.16 1.20 1.17 1.80 
Citric acid 0.79 1.20 0.79 0.00 0.79 1.20 
L-Tryptophan 3.49 1.80 3.48 1.80 3.48 3.00 
Cortisone 6.36 2.40 6.35 1.80 6.35 1.80 
Cortisol 6.38 1.80 6.36 1.80 6.37 1.20 

ESI- 
 LONG SHORT CONT 

Metabolite Average 
(min) 

Drift 
(sec) 

Average 
(min) 

Drift 
(sec) 

Average 
(min) 

Drift 
(sec) 

Lactate 0.69 0.60 0.68 0.60 0.69 0.60 
Creatinine 0.80 1.20 0.79 1.20 0.79 1.20 
Fumarate 0.95 0.60 0.95 0.60 0.95 0.60 
Succinate 1.06 1.20 1.05 1.20 1.05 1.20 
Creatine 0.44 1.20 0.43 1.20 0.44 1.20 
Hypoxanthine 0.88 1.20 0.88 0.60 0.88 1.20 
L-Glutamine 0.38 0.60 0.39 0.60 0.38 0.00 
L-Histidine 0.37 1.20 0.36 1.20 0.37 1.20 
Uric acid 0.82 0.60 0.82 0.60 0.82 1.20 
Hippuric acid 4.10 2.40 4.10 1.20 4.10 2.40 
L-Tyrosine 1.17 1.80 1.16 1.80 1.17 1.20 
Citric acid 0.80 1.20 0.79 0.60 0.79 1.20 
L-Tryptophan 3.49 2.40 3.47 1.80 3.48 2.40 
Cortisone 6.36 1.80 6.34 2.40 6.35 3.00 
Cortisol 7.73 1.2 7.72 1.2 7.72 1.80 
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Table 7.7 - Peak intensity, variation, and percentage reduction for QC samples in ESI+. Bold CV values indicate failure of 0.3 CV threshold. 

 LONG (N=18) SHORT (N=17) CONT (N=17) 

Metabolite 

A
ve

ra
ge

 

C
V

 

%
 L

os
s  

A
ve

ra
ge

 

C
V

 

%
 L

os
s  

A
ve

ra
ge

 

C
V

 

%
 L

os
s 

Glycine 2.90E + 06 18.64 -46 % 2.98E + 06 15.63 -38 % 3.25E + 06 15.80 -42 % 
L-Alanine 2.56E + 05 41.58 -66 % 1.97E + 05 63.93 -80 % 3.82E + 05 24.32 -63 % 
Creatinine 9.34E + 07 12.46 -43 % 8.69E + 07 16.61 -66 % 9.24E + 07 13.78 -39 % 
Succinate 3.17E + 04 13.55 -41 % 2.50E + 04 18.73 -55 % 2.89E + 04 14.22 -41 % 
Creatine 9.51E + 05 7.33 -21 % 7.99E + 05 13.86 -38 % 9.44E + 05 12.04 -34 % 
L-Isoleucine 3.61E + 06 46.78 -69 % 2.43E + 06 52.07 -79 % 6.43E + 06 40.77 -69 % 
Hypoxanthine 1.43E + 07 8.33 -24 % 1.21E + 07 13.93 -38 % 6.05E + 06 12.38 -37 % 
L-Glutamine 4.93E + 05 26.10 -57 % 7.10E + 04 29.31 -63 % 8.70E + 04 49.86 -75 % 
L(+)-Lysine 1.02E + 05 39.20 -66 % 5.30E + 05 15.50 -52 % 4.20E + 05 27.42 -53 % 
L-Histidine 4.90E + 04 8.70 -28 % 4.43E + 04 20.31 -52 % 4.21E + 04 26.56 -64 % 
Uric acid 8.62E + 06 9.73 -28 % 7.02E + 06 12.24 -40 % 8.59E + 06 8.64 -30 % 
Hippuric acid 2.13E + 07 4.84 -18 % 1.89E + 07 7.39 -24 % 1.92E + 07 8.55 -27 % 
L-Tyrosine 1.63E + 06 8.94 -26 % 1.29E + 06 9.94 -29 % 1.54E + 06 11.88 -36 % 
Citric acid 1.29E + 06 10.05 -32 % 1.08E + 06 13.59 -38 % 9.87E + 05 16.93 -43 % 
L-Tryptophan 1.82E + 06 10.60 -29 % 1.32E + 06 7.96 -27 % 1.53E + 06 17.88 -48 % 
Cortisone 1.49E + 04 16.11 -45 % 1.28E + 04 15.65 -47 % 1.06E + 04 13.69 -46 % 
Cortisol 1.24E + 04 14.28 -38 % 1.20E + 04 13.07 -38 % 7.85E + 03 15.00 -37 % 
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Table 7.8 - Peak intensity, variation, and percentage reduction for QC samples in ESI-. Bold CV values indicate failure of 0.3 CV threshold. 

 LONG (N=18) SHORT (N=17) CONT (N=17) 

Metabolite 

A
ve

ra
ge

 

C
V

 

%
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s  
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%
 L

os
s 

Lactate 1.84E + 06 7.21 -22 % 1.34E + 06 8.33 -22 % 2.43E + 05 17.30 -37 % 
Creatinine 4.36E + 04 12.69 -50 % 3.94E + 04 11.87 -35 % 3.43E + 04 12.48 -34 % 
Fumarate 1.04E + 04 14.81 -43 % 7.17E + 03 14.97 -44 % 3.88E + 03 15.92 -38 % 
Succinate 2.60E + 05 5.63 -21 % 2.37E + 05 10.79 -32 % 2.61E + 05 4.66 -19 % 
Creatine 6.59E + 03 20.23 -51 % 5.64E + 03 20.81 -48 % 6.48E + 03 36.40 -68 % 
Hypoxanthine 9.63E + 05 12.06 -45 % 9.44E + 05 11.01 -44 % 3.68E + 05 12.32 -47 % 
L-Glutamine 2.19E + 04 19.00 -50 % 1.70E + 04 20.37 -52 % 1.72E + 04 14.18 -50 % 
L-Histidine 8.93E + 04 41.31 -68 % 4.27E + 04 21.14 -58 % 4.05E + 04 80.71 -85 % 
Uric acid 3.55E + 06 6.02 -17 % 3.16E + 06 7.12 -22 % 3.11E + 06 5.18 -17 % 
Hippuric acid 1.27E + 07 5.74 -17 % 1.13E + 07 5.91 -22 % 1.13E + 07 4.55 -14 % 
L-Tyrosine 2.69E + 04 20.34 -56 % 2.06E + 04 29.22 -68 % 1.76E + 04 17.14 -55 % 
Citric acid 5.44E + 06 7.79 -23 % 5.00E + 06 8.81 -25 % 4.57E + 06 9.65 -26 % 
L-Tryptophan 2.31E + 04 15.50 -44 % 1.70E + 04 22.56 -59 % 1.34E + 04 20.68 -55 % 
Cortisone 3.65E + 03 19.03 -58 % 4.10E + 03 14.75 -39 % 3.15E + 03 19.23 -54 % 
Cortisol 4.96E + 03 19.34 -47 % 9.85E + 03 48.77 -92 % 6.96E + 03 44.29 -75 % 
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7.4.2 PCA analysis and assessment of QC stability 

PCA analysis was conducted to observe any trends or patterns present in the datasets 

related to each training session format. The stability of the UPLC-MS system was assessed 

using repeated QC sample injections interspersed throughout the sample runs. The PCA 

model statistics are displayed in Table 7.9, outlining the predictive component of the PCA, 

Q2, the variance (R2X), and percentage of variance in PC1 and PC2. The PCA scores plots 

for the first two PCs are shown in Figure 7.2. Generally, all PCA models, except for 

SHORT in ESI+, show tight clustering of QC, indicating good analytical reproducibility 

throughout all analytical runs. However, two clusters of QC samples were observed for 

ESI+ for SHORT, and these two clusters were based on the two days of the analytical run 

being completed over a duration of a 6-day period, compared to the 2-day period of the 

other sample runs. Despite various corrections on the QC samples by applying appropriate 

normalisation, the QC cluster in the SHORT ESI+ remained split and no further analysis 

will be performed on this dataset. As the purpose of this investigation was to ascertain 

individual variability in metabolomic response to different training sessions, data points 

falling outside the 95 % Hotelling’s T2 ellipsis were included for further supervised 

analysis by OPLS-DA. In addition, the outlier samples were investigated and were due to 

biological variations in metabolites, not any analytical issue. The PCA score plots for ESI+ 

in LONG and SHORT revealed no identifiable clusters or trends based on participant, but a 

skewing of the data could be observed in both plots based on time point of collection (Pre, 

Post, 1hPost). Less of a trend based on the time point of collection could be observed in the 

PCA scores plot for ESI+ in CONT. No clusters or trends were observed based on 

participants in the PCA score plots for ESI- for LONG, SHORT, and CONT, but trends can 

be observed based on time point of collection in all three plots, respectively, but the 

direction of these trends was not similar between groups. 

 

Table 7.9 - PCA scores details. R2X = regression coefficient, Q2 = predictive component of 
the PCA to assess model validity, PC1/PC2 = principal component 1 (PC1) and principal 
component 2 (PC2) for each PCA model. SHORT ESI+ highlighted in red based on the 
lack of QC clustering fit from PCA analysis. 

 ESI+ ESI- 
 R2X Q2 PC1 PC2 R2X Q2 PC1 PC2 

LONG .274 .210 .212 .0062 .310 .256 .245 .065 
SHORT .334 .286 .261 .073 .273 .196 .203 .070 
CONT .252 .180 .176 .076 .314 .261 .234 .080 
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Figure 7.2 - PCA scores plots displaying good analytical reproducibility of the UPLC-MS 
as shown by tight QC clustering for LONG (A), SHORT (B), and CONT (C) in ESI+ and 
ESI-, with the exception of SHORT ESI+ highlighted with a red border that indicates the 
lack of QC clustering on the PCA scores plot.  

 ESI+ ESI- 

A 

  

B 

  

C 
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7.4.3 OPLS-DA analysis 

7.4.3.1 Acute	response	to	exercise	

To evaluate the time-dependent metabolomic perturbations following the training sessions, 

OPLS-DA models were generated comparing sample collection time points for each 

session format in a pairwise manner. The initial OPLS-DA model generated for CONT in 

ESI+ for Post vs 1hPost was deemed to be invalid (P = .21 from permutation testing), 

highlighted in red within Table 7.10, and was not included in any further analyses. All 

other OPLS-DA models generated positive Q2 values and passed permutation testing (n = 

100; P < .05). Figure 7.3, Figure 7.4, and Figure 7.5 display OPLS-DA scatter plots for 

both ESI+ and ESI- for LONG, SHORT, and CONT, respectively. Table 7.10 also presents 

model diagnostics, outlining variability in each model due to separation between groups, 

and due to within-group variability. 
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Table 7.10 - OPLS-DA scores based on acute exercise effects. Model diagnostics presented based on separation of scatter plots between groups, and within-
group variability as a % CV. SHORT ESI+ not included based on the lack of QC clustering fit from PCA analysis. OPLS-DA analyses which failed to 
establish valid models have been excluded. 

  Time R2X R2Y Q2 A Between-group separation 
based on predictive component 

Within-group variability based 
on orthogonal component P-Value 

E
SI
+  LONG 

Pre vs Post .644 .772 .696 2 18% 31% < .01 
Post vs 1h Post .590 .379 .098 2 8% 32% .01 
Pre vs 1h Post .599 .638 .524 2 18% 32% < .01 

CONT Pre vs Post .676 .656 .593 2 10% 36% < .01 
Pre vs 1h Post .629 .546 .441 2 9% 38% < .01 

E
SI
-  

LONG 
Pre vs Post .654 .757 .704 2 17% 24% < .01 

Post vs 1h Post .612 .577 .435 2 10% 38% < .01 
Pre vs 1h Post .605 .683 .576 2 11% 41% < .01 

SHORT 
Pre vs Post .657 .680 .594 2 17% 21% < .01 

Post vs 1h Post .602 .525 .367 2 9% 26% < .01 
Pre vs 1h Post .641 .660 .521 2 13% 24% < .01 

CONT 
Pre vs Post .416 .684 .527 2 8% 16% < .01 

Post vs 1h Post .584 .375 .133 2 5% 40% < .01 
Pre vs 1h Post .635 .688 .598 2 8% 41% < .01 

R2X = variation in X explained by the model, R2Y = variation in Y explained by the model, Q2 Y= goodness of prediction, A = number of orthogonal components, P-value = permutation 
test probability of spurious model generation. 
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 ESI+ ESI- 

A 

  

B 

  

C 

  

 
Figure 7.3 – OPLS-DA scores plots displaying separation of the LONG experimental run 
for Pre-Post (A), Post-1hPost (B), and Pre-1hPost (C) in ESI+ and ESI- modes. X-axis 
displays OPLS-DA predictive component, and Y-axis displays OPLS-DA orthogonal 
component.  
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Figure 7.4 – OPLS-DA scores plots displaying separation of the SHORT experimental run 
for Pre-Post (A), Post-1hPost (B), and Pre-1hPost (C) in ESI-. SHORT ESI+ not included 
based on the lack of QC clustering fit from PCA analysis. X-axis displays OPLS-DA 
predictive component, and Y-axis displays OPLS-DA orthogonal component. 

  

 ESI- 

A 
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Figure 7.5 – OPLS-DA scores plots displaying separation of the CONT experimental run 
for Pre-Post (A), Post-1hPost (B), and Pre-1hPost (C) in ESI+ and ESI-. CONT ESI+ Post-
1hPost not included based on an invalid OPLS-DA model. X-axis displays OPLS-DA 
predictive component, and Y-axis displays OPLS-DA orthogonal component. 

  

 ESI+ ESI- 
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Metabolites contributing to OPLS-DA separation 

For each valid OPLS-DA model, S-plots were used to extract metabolites that contribute to 

the separation in each model and these involved a range of metabolite classes, including 

alkaloids, amino acids, carboxylic acids, purine derivatives, organic acids, in addition to 

several unknown compounds (Table 7.11, Table 7.12, and Table 7.13). 

 

Urinary excretion of uric acid was observed to decrease compared to baseline (Pre vs Post) 

following LONG (ESI+ and ESI-) and SHORT (ESI-). Urinary excretion of citric acid was 

observed to decrease compared to baseline (Pre vs Post) following LONG (ESI+) and 

SHORT (ESI-). Urinary excretion of lactate was observed to increase compared to baseline 

(Pre vs Post) following LONG (ESI-), SHORT (ESI-), and CONT (ESI-). Urinary excretion 

of hypoxanthine was observed to increase compared to baseline (Pre vs Post) following 

LONG (ESI+ and ESI-), SHORT (ESI-), and CONT (ESI+ and ESI-). A decrease in the 

excretion of histidine, and an overall increased in creatine, tryptophan, and tyrosine was 

observed in the hour following the session (Post vs 1hPost) following LONG (ESI+). A 

decrease in the excretion of lactate was observed in the hour following the session (Post vs 

1hPost) following LONG (ESI-), SHORT (ESI-), and CONT (ESI-). An overall decrease in 

the excretion of uric acid was over the course of the session (Pre vs 1hPost) following 

LONG (ESI+) and SHORT (ESI-). An overall decrease in the excretion of citric acid was 

over the course of the session (Pre vs 1hPost) following LONG (ESI+) and CONT (ESI+ 

and ESI-). An overall increase in the excretion of lactate was observed in the hour 

following session (Pre vs 1hPost) following LONG (ESI-) and SHORT (ESI-). 
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Table 7.11 - Exercise induced acute metabolic alterations based on OPLS-DA and S-Plot 
analysis between Pre and Post time points in ESI+ and ESI- modes. SHORT ESI+ not 
included based on the lack of QC clustering fit from PCA analysis. Unknown metabolites 
are presented by m/z and retention time. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

L
O

N
G

 

SH
O

R
T

 

C
O

N
T

 

ESI+ 

Alkaloids Uric acid 169.0 0.82 ↓ -  
Carboxylic acids & 
derivatives Citric acid 193.0 0.78 ↓ -  

Purine derivatives Hypoxanthine 137.0 0.88 ↑ - ↑ 

Unknown 137/133 137.0 2.22 ↑ -  
169/35 169.0 0.58 ↑ -  

ESI- 

Alkaloids Uric acid 167.0 0.82 ↓ ↓  
Carboxylic acids & 
derivatives Citric acid 191.0 0.78  ↓  

Organic acids Lactate 89.0 0.68 ↑ ↑ ↑ 

Purine derivatives Hypoxanthine 135.0 0.88 ↑ ↑ ↑ 
Unknown 145.1/36 145.1 0.60   ↑ 

145.1/37 145.1 0.62 ↑   
191/32 191.0 0.53   ↑ 

↑ indicates increased urinary excretion of metabolite at Post compared to Pre. ↓ indicates decreased 
urinary excretion of metabolite at Post compared to Pre. 
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Table 7.12 - Exercise induced metabolic alterations determined by OPLS-DA and S-Plot 
analysis between Post and 1h-Post time points. SHORT ESI+ not included based on the 
lack of QC clustering fit from PCA analysis. CONT ESI+ not included based on the result 
of invalid OPLS-DA model. Unknown metabolites are presented by m/z and time. 

Ionisation mode Biological Class Metabolite m/z 
(M) 

RT 
(min) 

L
O

N
G

 

SH
O

R
T

 

C
O

N
T

 

ESI+ 

Amino acids & 
derivatives 

Creatine 132.1 1.27 ↑ - - 
L-Histidine 156.1 0.33 ↓ - - 
L-Tryptophan 205.1 3.50 ↑ - - 

L-Tyrosine 182.1 1.17 ↑ - - 

Unknown 137/133 137.0 2.22 ↓ - - 
169/208 169.0 3.47 ↑ - - 

169/222 169.0 3.70 ↑ - - 

ESI- 

Organic acids Lactate 89.0 0.68 ↓ ↓ ↓ 

Unknown 89/146 89.0 2.43 ↓   
89/181 89.0 3.02 ↓   
117/145 117.0 2.42  ↑  
117/166 117.0 2.77   ↑ 
145.1/83 145.1 1.38   ↑ 
145.1/84 145.1 1.40 ↑   
145.1/94 145.1 1.57   ↑ 
145.1/95 145.1 1.58 ↑ ↑  
145.1/117 145.1 1.95   ↑ 
145.1/118 145.1 1.97 ↑   
191/32 191.0 0.53  ↑  
191/70 191.0 1.17 ↑   
203.1/221 203.1 3.68  ↑  
359.2/83 359.2 1.38  ↑  
359.2/84 359.2 1.40 ↑   

↑ indicates increased urinary excretion of metabolite at 1h-Post compared to Post. ↓ indicates decreased 
urinary excretion of metabolite at 1h-Post compared to Post. 
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Table 7.13 - Exercise induced metabolic alterations determined by OPLS-DA and S-Plot 
analysis between Pre and 1h-Post time points. SHORT ESI+ not included based on the lack 
of QC clustering fit from PCA analysis. Unknown metabolites are presented by m/z and 
time. 
 

Ionisation mode Biological Class Metabolite m/z 
(M) 

RT 
(min) 

L
O

N
G

 

SH
O

R
T

 

C
O

N
T

 

 Alkaloids Uric acid 169.0 0.82 ↓ -  

ESI+ 

Carboxylic acids & 
derivatives Citric acid 193.0 0.78 ↓ - ↓ 

Purine derivatives Hypoxanthine 137.0 0.88 ↑ - ↑ 
Unknown 137/127 137.0 2.12 ↑ -  

147.1/48 147.1 0.80  - ↓ 

ESI- 

Alkaloids Uric acid 167.0 0.82  ↓  
Carboxylic acids & 
derivatives Citric acid 191.0 0.78   ↓ 

Purine derivatives Hypoxanthine 135.0 0.88 ↑ ↑ ↑ 

Organic acids Lactate 89.0 0.68 ↑ ↑  
Unknown 135/649 135.0 10.82 ↓ ↓  

145.1/37 145.1 0.62 ↑   
145.1/83 145.1 1.38   ↑ 
145.1/84 145.1 1.40 ↑   
145.1/95 145.1 1.58 ↑ ↑  
191/33 191.0 0.55 ↑ ↑ ↑ 
191/53 191.0 0.88 ↑   
359.2/84 359.2 1.40 ↑ ↑ ↑ 

↑ indicates increased urinary excretion of metabolite at 1h-Post compared to Pre. ↓ indicates decreased 
urinary excretion of metabolite at 1h-Post compared to Pre. 
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7.4.3.2 Within-athlete	variability	

To evaluate the variability-dependent metabolomic perturbations following the training 

sessions, OPLS-DA models were generated comparing participants who were identified as 

variable or consistent within Chapter 5 (Section 5.4.3) based on %MMP and %HRmax. The 

initial OPLS-DA model generated for CONT in ESI+ for %MMP was deemed to be invalid 

(P = .07 from permutation testing) and is highlighted in red within Table 7.14, and was not 

included in any further analyses. All other OPLS-DA models generated positive Q2 values 

and passed permutation testing (n = 100; P < .05). Figure 7.6 and Figure 7.7 display scores 

plots for valid OPLS-DA models in ESI+ and ESI- variable and consistent participant 

groups based on participant variability of training session power as %MMP, and training 

session HR as %HRmax, respectively. The OPLS-DA models for LONG %MMP in ESI-, 

LONG %HRmax in ESI-, and CONT %HRmax in ESI- displayed separation between variable 

and consistent groups in scatter plots, whereas other models did not show clear separation 

between groups despite valid models. Table 7.14 also presents model diagnostics, outlining 

variability in each model due to separation between groups, and due to within-group 

variability. 
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Table 7.14 - OPLS-DA scores based on variability analysis. Model diagnostics presented based on separation of scatter plots between groups, and within-
group variability as a % CV. SHORT ESI+ not included based on the lack of QC clustering fit from PCA analysis. OPLS-DA analyses which failed to 
establish valid models have been excluded. 

  Time R2X R2Y Q2 A Between-group separation 
based on predictive component 

Within-group variability based 
on orthogonal component P-Value 

E
SI
+  LONG %HRmax .566 .385 .210 2 8% 31% < .01 

CONT %MMP .594 .193 .098 2 7% 23% .02 
%HRmax .616 .292 .124 2 7% 30% .01 

E
SI
-  

LONG %MMP .589 .400 .263 2 5% 36% < .01 
%HRmax .576 .407 .241 2 5% 19% < .01 

SHORT %MMP .592 .257 .130 2 8% 37% .01 
%HRmax .606 .187 .068 2 8% 37% < .01 

CONT %MMP .552 .308 .171 2 7% 37% < .01 
%HRmax .592 .413 .186 2 12% 31% < .01 

R2X = variation in X explained by the model, R2Y = variation in Y explained by the model, Q2 Y= goodness of prediction, A = number of orthogonal components, P-value = permutation 
test probability of spurious model generation. 
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B - 
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Figure 7.6 – OPLS-DA plots displaying separation based on participant variability of 
training session power as %MMP for LONG (A), SHORT (B), and CONT (C) in ESI+ and 
ESI-. LONG ESI+ %MMP not included based on an invalid OPLS-DA model and SHORT 
ESI+ not included based on the lack of QC clustering fit from PCA analysis. 
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Figure 7.7 – OPLS-DA plots displaying separation based on participant variability of 
training session power as %HRmax for LONG (A), SHORT(B), and CONT (C) in ESI+ and 
ESI-. SHORT ESI+ not included based on the lack of QC clustering fit from PCA analysis. 
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Metabolites contributing to OPLS-DA separation 

For each valid OPLS-DA model, S-plots were used to extract metabolites that contribute to 

the separation in each model and these involved a range of metabolite classes, including 

amino acids, purine derivatives, organic acids, and several unknown compounds, and 

results are presented in Table 7.15, Table 7.16, and Table 7.17. 

 

Hypoxanthine excretion was decreased, and L-tyrosine and citric acid excretion was 

increased within the variable group versus the consistent group in LONG (ESI+) when 

based on session heart rate relative to %HRmax. Hypoxanthine excretion was increased 

within the variable group versus the consistent group in SHORT (ESI+) when based on 

both session power output relative to %MMP, as well as heart rate output relative to 

%HRmax. Uric acid was increased within the variable group versus the consistent group in 

SHORT (ESI+) when based on heart rate output relative to %HRmax, and lactate was 

increased within the variable group versus the consistent group in SHORT (ESI+) when 

based on session power output relative to %MMP. Uric acid and hippuric acid (ESI+), and 

lactate (ESI-) excretion was increased within the variable group versus the consistent group 

in CONT when based on session power output relative to %MMP. Citric acid excretion 

was increased within the variable group versus the consistent group in CONT (ESI+) when 

based on both session power output relative to %MMP and heart rate relative to %HRmax. 

  



168 

Table 7.15 - Exercise induced metabolic differences between variable and consistent 
participants determined by %MMP and %HRmax in LONG as determined by OPLS-DA 
and S-Plot analysis. %MMP ESI+ not included based on the result of invalid OPLS-DA 
model. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

%
M

M
P 

%
H

R
m

ax  

ESI+ 

Amino acids & derivatives L-Tyrosine 182.1 1.17 - ↑ 

Carboxylic acids & 
derivatives 

Citric Acid 193.0 0.78 - ↑ 

Purine derivatives Hypoxanthine 137.0 0.87 - ↓ 

Unknown 137/127 137.0 2.12 - ↓ 
169/26 169.0 0.43 - ↓ 

169/35 169.0 0.58 - ↓ 
182.1/145 182.1 2.42 - ↑ 

193/25 193.0 0.42 - ↑ 

ESI- 

Unknown 145.1/37 145.1 0.62  ↓ 

167/76 167.0 1.27  ↑ 
191/374 191.0 6.23 ↑  

203.1/246 203.1 4.10  ↑ 
203.1/253 203.1 4.22 ↑  

359.2/266 359.2 4.43  ↑ 
359.2/277 359.2 4.62  ↑ 

359.2/320 359.2 5.33  ↑ 
359.2/326 359.2 5.43  ↑ 

361.2/232 361.2 3.87  ↑ 
361.2/240 361.2 4.00  ↑ 

361.2/266 361.2 4.43  ↑ 
361.2/273 361.2 4.55  ↑ 

361.2/281 361.2 4.68  ↑ 
↑ indicates increased urinary excretion of metabolite in variable group versus consistent group. ↓ 
indicates decreased urinary excretion of metabolite in variable group versus consistent group. 
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Table 7.16 - Exercise induced metabolic differences between variable and consistent 
participants determined by %MMP and %HRmax in SHORT as determined by OPLS-DA 
and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

%
M

M
P 

%
H

R
m

ax  

ESI- 

Alkaloids Uric Acid 167.0 0.82  ↑ 

Purine derivatives Hypoxanthine 135.0 0.87 ↑ ↑ 

Organic acids Lactate 89.0 0.68 ↑  

Unknown 115/68 115.0 1.13 ↓ ↓ 
 117/172 117.0 2.87 ↑  

 117/186 117.0 3.10 ↑ ↑ 
 180.1/261 180.1 4.35 ↓ ↓ 

 191/32 191.0 0.53  ↓ 
 191/159 191.0 2.65 ↓ ↓ 

 203.1/221 203.1 3.68 ↓ ↓ 
 203.1/268 203.1 4.47 ↓ ↓ 

↑ indicates increased urinary excretion of metabolite in variable group versus consistent group. ↓ 
indicates decreased urinary excretion of metabolite in variable group versus consistent group. 
 

Table 7.17 - Exercise induced metabolic differences between variable and consistent 
participants determined by %MMP and %HRmax in CONT as determined by OPLS-DA 
and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

%
M

M
P 

%
H

R
m

ax  

ESI+ 

Alkaloids Uric Acid 169.0 0.82 ↑  

Benzenoids Hippuric Acid 180.1 4.10 ↑  

Carboxylic acids & 
derivatives Citric Acid 193.0 0.80 ↑  

Unknown 205.1/29 205.1 0.48 ↑  

ESI- 

Carboxylic acids & 
derivatives Citric Acid 191.0 0.78  ↑ 

Organic acids Lactate 89.0 0.67 ↑  

Unknown 117/145 117.0 2.42  ↑ 
 145.1/198 145.1 3.30  ↑ 

 191/32 191.0 0.53  ↑ 
 203.1/4.08 203.1 4.08 ↓  

↑ indicates increased urinary excretion of metabolite in variable group versus consistent group. ↓ 
indicates decreased urinary excretion of metabolite in variable group versus consistent group.  
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7.5 Discussion 

This study assessed the metabolomic perturbations incurred by the completion of three 

different training session formats using a maximal effort-based intensity prescription. The 

acute responses were assessed using baseline urine samples obtained prior to the training 

session, to those obtained immediately following the session, and one hour immediately 

following completion of the session. Comparisons of the urinary metabolome of variable 

and consistent participant groups based on within-athlete variability of session power as 

%MMP or session HR as %HRmax were also performed. 

 

The present investigation observed increased levels of excreted urinary lactate following 

all training session formats compared to baseline resting samples, similar to previous 

studies comparing high intensity and low-intensity training sessions (Peake et al. 2014). 

This increase in lactate excretion is commonly seen following exhaustive exercise (Hood et 

al. 1988; Cairns 2006) and can be reflective of the increase in lactate production and 

clearance following physically demanding exercise (Johnson and Edwards 1937; Cairns 

2006; Allen, Lamb and Westerblad 2008). Despite the excretion of lactate decreasing in 

the hour following all session formats, there was only an overall increase in the urinary 

excretion of lactate one hour after exercise versus pre-session samples in LONG and 

SHORT, which may reflect the differing levels of energy demand between the LONG, 

SHORT, and CONT exercise formats. There was also increased urinary excretion of 

hypoxanthine immediately following all sessions and remained elevated in the hour 

following the training sessions, a finding supported by previous research studies 

(Hargreaves et al. 1998; Green and Fraser 1988; Hellsten-Westing, Sollevi and Sjödin 

1991; Houston and Thomson 1977; Enea et al. 2010; Pechlivanis et al. 2010; Muhsen Ali 

et al. 2016; Mukherjee et al. 2014; Pechlivanis et al. 2015). Increased excretion of urinary 

hypoxanthine may reflect the increase in ATP metabolism due to the likely increased rate 

of ATP utilisation during the training sessions. The increased hypoxanthine can be linked 

to the reformation of ATP from two adenosine diphosphate (ADP) molecules, which 

results in inosine monophosphate (IMP). Following exercise, IMP is quickly restored to 

ATP (Lowenstein 1972), but a proportion of IMP is dephosphorylated to inosine, which is 

then oxidised to form hypoxanthine and then either excreted or oxidised in the kidneys to 

form xanthine and uric acid. 
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Over a period of 24 hours following bouts of high intensity exercise uric acid is commonly 

observed to increase, mainly due to the oxidisation of hypoxanthine in resting conditions 

(Green and Fraser 1988). The findings of the present investigation are contrary to this, with 

decreased uric acid excretion across the whole session, including the hour following 

exercise, in both LONG and SHORT sessions, along with the increased hypoxanthine 

excretion during these sessions. The divergent findings between the present investigation 

and (Green and Fraser 1988) may be due to the difference in training status and exercise 

performance between the sample groups, as well as a time frame of 24 hours between 

sample collections. Furthermore, despite increased hypoxanthine excretion being observed 

during CONT, there was no accompanying decrease in uric acid, which may be the result 

of a lower rate of ATP utilisation within this exercise format, allowing the process of 

oxidation of hypoxanthine into uric acid able to occur. The urinary excretion of amino 

acids has been explored greatly, with widely ranging results dependent on factors such as 

exercise modality, exercise intensity, dietary control, and participant fitness levels (Kistner 

et al. 2020; Pechlivanis et al. 2010; Muhsen Ali et al. 2016; Mukherjee et al. 2014; 

Pechlivanis et al. 2015; Siopi et al. 2017). Increased tyrosine excretion has been observed 

following 24 weeks of combined aerobic and strength training, correlating strongly with 

total strength and V̇O2max (Duft et al. 2017). The finding of increased excretion of tyrosine 

following LONG is supported by previous findings of elevated serum levels of tyrosine 

following an incremental exercise test until exhaustion (Strasser et al. 2016). Interestingly, 

reduced tyrosine excretion was observed following brief maximal exercise (Pechlivanis et 

al. 2015), which possibly suggests that shorter duration maximal exercise is not able to 

stimulate the phenylalanine metabolism into tyrosine, also supported by the time-

dependent increase in tyrosine excretion observed following exercise lasting between 15 

and 765 min in athletes (Haralambie and Berg 1976). This could explain the lack of 

tyrosine excretion following SHORT exercise format. 

 

It has been suggested that histidine could be used as a marker of exercise-induced muscle 

damage, based on the finding that prolonged and intense exercise generating free radicals 

and oxidative damage to cells (Reid et al. 1992; Powers and Jackson 2008), and histidine 

being utilised as a source of antioxidant to cells (Son, Satsu and Shimizu 2005), therefore 

indicating that elevated histidine may contribute to relieving oxidative stress following 

exercise. This notion is supported by the finding of elevated urinary excretion of histidine 

generally being observed following acute maximal exercise (Pechlivanis et al. 2013). 

However, this appears to contrast with the finding in the present investigation that histidine 
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excretion decreased following LONG. One possible explanation may be that the levels of 

exercise-induced muscle damage in the exercise sessions in the present study were not high 

enough to result in increased histidine excretion for use as an antioxidant. Interestingly, 

(Pechlivanis et al. 2013) reported decreased histidine excretion in the training group who 

had longer recovery duration between maximal efforts during training, which supports the 

notion that a higher level of exercise-induced muscle damage results in increased histidine 

excretion. The trained nature of the participants in this investigation would also likely 

impact the histidine response to exercise, as cycling training has been shown to not induce 

exercise-induced muscle damage (Nalcakan 2014). 

 

Tryptophan has been observed to decrease following variable length sub-maximal exercise 

(Thysell et al. 2012), as well as maximal HIIT using short duration sprints (Pechlivanis et 

al. 2010). This is in apparent contradiction to the findings of the present investigation, 

where urinary excretion of tryptophan increased in the one hour after exercise following 

LONG. However, following exercise there is a high demand for nicotinamide adenine 

dinucleotide (NAD+; Martin et al., 2020), which remains elevated for a short period (Sahlin 

et al. 1976), and then returns to a baseline or lower level (Coelho et al. 2016). It is possible 

that the reduction in tryptophan excretion one hour following LONG be due to tryptophan 

metabolism increasing transiently and then returning to a level lower than baseline. 

Urinary creatine was found to be increased in the one hour following exercise in LONG in 

the present study. Previously, reductions in urinary creatine have been observed that 

following repeated maximal sprint exercise, both in trained sprinters and untrained 

individuals (Bezrati-Benayed et al. 2014). The findings of the present study may reflect 

increased phosphocreatine recovery kinetics within the study sample population due to 

their training status, resulting in excess creatine for excretion (Forbes, Slade and Meyer 

2008) 

 

Citric acid, and the derivative citrate, are key intermediates in the Krebs Cycle, which is 

essential for oxidative energy production. Citrate is synthesised from acetyl CoA and 

oxaloacetate under the presence of citrate synthase (CS) and controlled by the presence of 

ATP (Wiegand and Remington 1986). Increased CS activity has been observed following 

training (Vigelsø, Andersen and Dela 2014), which would result in more citrate synthesis 

and therefore increase the urinary excretion of citrate (López et al. 2010; Nuñez et al. 

2012). Modest increases in plasma citrate following exercise have been observed (Lewis et 
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al. 2010). However, it has also been observed that acidosis results in decreased urinary 

citrate excretion (Unwin, Capasso and Shirley 2004; Simpson 1983). The findings of 

decreased citric acid excretion following LONG and SHORT would support this notion, 

with the high levels of metabolic acidosis during these formats. Interestingly, citric acid 

excretion remained supressed in the hour following only LONG, possibly reflecting post-

exercise metabolism differences between the two exercise formats. Furthermore, citric acid 

excretion was observed to be decreased between pre-exercise samples and the hour 

following exercise in CONT, which could reflect alterations in CS activity due to lower 

levels of ATP turnover within the longer duration and lower-intensity training session 

format. 

 

The urinary excretion of lactate was able to differentiate variable and consistent 

participants based on %MMP in SHORT and CONT formats, with increased excretion 

being found in variable participants. This may reflect the varying levels of utilisation of the 

glycolytic pathway and resultant lactate excretion within variable participants in SHORT, 

and subtle changes in workload relative to the participant’s individual lactate threshold. An 

increased level of urinary hypoxanthine excretion was observed in participants who display 

variable exercise performance during the SHORT interval format based on both %MMP 

and %HRmax. This may reflect the differing levels of ATP utilisation between sessions per 

participant. However, the higher levels of hypoxanthine excretion may potentially be a 

marker that reflects a higher level of overall performance level of participants within the 

variable group. There have been numerous investigations into the post-exercise excretion 

of hypoxanthine (Enea et al. 2010; Pechlivanis et al. 2010; Sahlin, Tonkonogi and 

Söderlund 1999; Hellsten et al. 2001; Chorell et al. 2012), and it has been suggested that 

hypoxanthine excretion may be a predictor of performance in highly trained athletes 

(Zieliński, Krasińska and Kusy 2013), but is also proposed as an indicator of exercise-

related energetic stress (Zieliński and Kusy 2015a; Zieliński and Kusy 2015b; Sahlin, 

Tonkonogi and Söderlund 1999). Interestingly, hypoxanthine excretion was decreased in 

the variable group based on %HRmax in LONG, contrary to the findings within the SHORT 

group, and indicating that hypoxanthine may not be a suitable target for variability-based 

phenotyping.  

 

Higher levels of uric acid excretion was observed in the variable group based on %HRmax 

in SHORT and %MMP in CONT, which could represent higher levels of hypoxanthine 
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oxidation and variable levels of ATP utilisation (Green and Fraser 1988). The effects of 

exercise on the metabolism of hippuric acid have not been extensively explored, with (Neal 

et al. 2013) reporting decreased hippuric acid following threshold-based training, and 

(Davison et al. 2018) reporting no change in hippuric acid to exercise. Within the present 

investigation, hippuric acid was observed to be increased in the variable group based on 

%MMP in CONT. The reasons for this increased hippuric acid excretion in variable 

participants would require further exploration to identify regulatory pathways. Hippuric 

acid is responsive to different dietary sources such as fruit, coffee, or tea, as well as 

influences of the gut microbiome, which could impact the findings of the present study 

(Toromanović et al. 2008; Clifford et al. 2000; Pero 2010). 

The observation of decreased histidine in variable participants based on % HRmax in CONT 

is in accordance with the findings of decreased histidine excretion following exercise in 

general (Thysell et al. 2012; Lewis et al. 2010). It is thought that histidine within microbes 

is a potential source of antioxidants on a cellular level (Son, Satsu and Shimizu 2005). This 

could imply that there is an increased need to relieve oxidative stress from exercise within 

participants who display variable exercise response. Excretion of tyrosine was increased in 

the variable group based on %HRmax in LONG. Increased tyrosine excretion may indicate 

the higher level of exercise intensity of the variable training sessions versus consistent 

groups. Increased excretion of tyrosine has been shown following HIIT exercise (Peake et 

al. 2014), as well as longer duration endurance exercise (Refsum, Gjessing and Strømme 

1979). Tyrosine is also influenced by the gut microbiome in a similar manner to hippuric 

acid, possibly supporting the finding of increased tyrosine and hippuric acid in these 

groups (Pero 2010). Interestingly, citric acid was increased in the variable group based on 

both %MMP and %HRmax in CONT, and only %HRmax in LONG. This could possibly 

indicate an increase in CS activity following the session, despite the increased metabolic 

acidosis, as well as TCA cycle activity generally being increased following exercise to 

regain homeostasis and energy balance (Leek et al. 2001). 

 

The lowest ranges of variability can be observed in SHORT, with 21% - 26% variability in 

OPLS-DA models from the orthogonal component being related to within-group variability 

when analysing the acute response to exercise, possibly reflecting a more homogenous 

exercise-induced metabolic perturbation. CONT displayed the highest within-group 

variability in both session execution and post-exercise metabolomic variability, with 40% 

for Post vs 1h Post and 41% for Pre vs 1h Post. Therefore, higher variability in how a 

training session is performed may result in higher variability in metabolomic profile. 
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However, despite this being observed for the Pre vs 1h Post and Post vs 1hPost time points, 

the Pre vs Post time points do not display the same relationship, with CONT displaying the 

lowest within-group variability (16%). This is possibly due to the lower magnitude of 

metabolic disturbance due to the lower power output session, as well as the likelihood that 

the metabolic disturbances from these shorter duration sessions resolving quickly 

following cessation of exercise (Chorell et al. 2009). The variability observed in 

metabolomic profile when samples are analysed grouped by whether individual 

participants were variable or consistent based on %MMP or %HRmax, indicates similar 

pattern of variability to the observed TV variability from Chapter 5; with LONG showing 

the lowest within-group variation (31% [HRmax in ESI+], 36% [MMP in ESI-], and 16% 

[HRmax in ESI-]), followed by CONT (37% [MMP in ESI-] and 31% [HRmax in ESI-]), and 

highest in SHORT (37% [MMP in ESI-] and 37% [HRmax in ESI-]). This highlights that 

there appears to be a similar pattern of variability observed in metabolomic profiles 

compared to variability in session performance in some measures, but how this equates to 

chronic training response has yet to be examined in the literature. 

 

A limitation of the present study relates to the limited number of identified metabolites, 

which resulted in many unknown metabolites, potentially resulting in biomarkers of 

exercise variability being overlooked or incomplete pathways of metabolism being 

identified. Future investigations may look to identify these unknown compounds; however, 

this identification of measured unknown metabolites remains one of the most challenging 

aspects of non-targeted metabolomics (Dunn, Broadhurst, et al. 2011b). An extensive list 

of metabolomic compounds that respond to exercise interventions, both acute and chronic, 

has been produced as part of a review (Daskalaki, Easton and Watson 2015), but 

constraints on the number of compounds available for selection in the current thesis were 

due to budget for purchasing the known compounds and commercial availability of these 

compounds. Another limitation of the present study relates to the lack of QC clustering 

within SHORT samples analysed in ESI+ mode resulted in the loss of some data for 

analysis. This separation of the QC samples could have been due to factors that affect 

system stability during run such as contaminant build-up in the system, or small alterations 

in the mobile phase composition.  
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7.6 Conclusion 

The findings of the present investigation show that distinct metabolomic differences are 

present between LONG, SHORT, and CONT session formats using a maximal effort-based 

intensity prescription. The findings also display key differences in metabolomic response 

to exercise based on the level of individual variability to the different acute exercise 

session formats. The findings suggest a similar pattern of variability observed in 

metabolomic profiles when compared to variability in training session performance. The 

importance of variability of acute metabolomic profile response on the magnitude and 

variability observed in chronic training response has yet to be established. 
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8.1 Abstract 

Introduction: The present study utilised untargeted qualitative UPLC-MS to provide a 

global overview of the changes in the urinary metabolome following 6-weeks of maximal 

isoeffort training sessions from 3 different training groups. Methods: Twenty-eight well-

trained competitive cyclists (n=27 males, n=1 female; V̇O2max: 57.1 ± 8.3 ml·kg-1·min-1) 

were randomly assigned to a control group (CON), or groups assigned short (SHORT) or 

long (LONG) interval sessions and completed 6 weeks of training consisting of 3 maximal 

isoeffort sessions each week. Urine samples were collected prior to (pre) and following the 

6-week training intervention, and samples were analysed using UPLC-MS to construct a 

metabolite profile for the two exercise intervention groups and the control group. OPLS-

DA analysis was performed comparing metabolomic profile prior to and following 6 weeks 

of the training intervention, as well as comparing the metabolomic profiles of responders 

and non-responders to each training intervention group based on classifications from 

Chapter 6. Results: Following the 6-week training intervention, OPLS-DA models were 

not able to identify differences between samples collected before and after the training 

intervention for any training groups. When baseline and post-training samples were 

analysed based on responder status regardless of training group, lactate, hypoxanthine, and 

succinate were able to differentiate between responders and non-responders to the training 

intervention. Within SHORT intervention group, uric acid, citric acid, succinate, and 

hippuric acid were able to differentiate between responders and non-responders. 

Conclusion: The findings of the present investigation highlight metabolite markers that are 

associated with chronic training responder status irrespective of training group, and 

markers that differentiate between LONG and SHORT interventions. 

 

8.2 Introduction 

The prescription of a standardised training intervention commonly results in divergent 

responses between individuals (Mann, Lamberts and Lambert 2014; Bouchard, An, Rice, 

Skinner, et al. 1999; Bouchard and Rankinen 2001; Rankinen et al. 2012; Morss et al. 

2004; Kraus et al. 2001; Bouchard, Blair, et al. 2012; Boule, Weisnagel, et al. 2005; 

Bouchard et al. 1994), which may be in part due to how exercise intensity is prescribed 

across individuals (Bouchard, Sarzynski, et al. 2011; Rankinen et al. 2012; Mann, 

Lamberts and Lambert 2014). The effort-based intensity prescription could present an 

option to individualise exercise intensity, such as prescribing a “maximal session effort” 

(Seiler and Hetlelid 2005; Seiler and Sjursen 2004; Seiler et al. 2013), requiring 
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participants to regulate their workload based on circumstantial factors with the goal of 

maintaining a target level of physiological stress (Esteve-Lanao et al. 2008; Ulmer 1996) 

to achieve a specified level fatigue or exhaustion (St Clair Gibson et al. 2006; Baron et al. 

2011). It has been suggested that the variability of performance might be intensity-

dependent when using effort-based training, with variability increasing as intensity 

increases (Nicolò et al. 2014; Seiler and Sylta 2017). However, based on the findings of 

Chapters 4 and 5, the present thesis has generally observed individual variability to 

decrease as exercise intensity increases. On a chronic training basis, the findings within 

Chapter 6 of this thesis indicate that using a maximal session effort intensity prescription 

and SHORT interval formats leads to a greater incidence of positive exercise training 

response compared to LONG interval formats. While it has been observed that factors such 

as baseline V̇O2max influences training response (Sisson, Katzmarzyk, Earnest, et al. 2009; 

Kohrt, Malley, Coggan, et al. 1991; Bouchard and Rankinen 2001), genetic factors can 

explain approximately 47 % of the observed variance in V̇O2max response (Bouchard, An, 

Rice, Skinner, et al. 1999). Further investigation has identified 39 single-nucleotide 

polymorphisms which were associated with exercise training response; of which, 21 were 

responsible for 49 % of the variability in V̇O2max response to training (Bouchard, Leon, et 

al. 1995; Morss et al. 2004; Kraus et al. 2001). 

 

Many investigations into the human metabolome response to chronic effects of exercise 

interventions have been conducted (Bragazzi et al. 2020; Bassini and Cameron 2014; 

Zieliński and Kusy 2012; Hellsten-Westing et al. 1993; Zieliński, Kusy and Rychlewski 

2011; Zieliński et al. 2009; van Velzen et al. 2008; Duft et al. 2017; Pla et al. 2020; 

Kistner et al. 2019; Kuehnbaum, Gillen, Kormendi, et al. 2015; Neal et al. 2013; 

Kuehnbaum, Gillen, Gibala, et al. 2015). The findings of Chapter 7, which investigated the 

acute metabolomic response to effort-based training sessions, displayed differences 

between variable and consistent individuals in the urinary excretion of uric acid, L-

histidine, L-tyrosine, citric acid, hypoxanthine, and lactate. However, whether there are 

metabolite markers that are associated with variability in chronic training response and 

whether these markers are also associated with acute variability is yet to be established. 

Therefore, the aim of the current study was to investigate the changes in metabolomic 

profile following a chronic training intervention using the same exercise formats and 

whether any metabolomic features are associated with chronic exercise training response. 
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Hypotheses 

H11 – Identified metabolomic profiles display differences between LONG, SHORT and 

CON training groups following six weeks of isoeffort based exercise. 

H10 – There are no differences in identified metabolomic profiles between LONG, 

SHORT, and CON training groups. 

H21 – Identified metabolomic profiles display differences between responders, non-

responders, and adverse-responders, both globally and within each training group. 

H20 – There are no differences in metabolomic profiles between responders, non-

responders, and adverse-responders both globally and within each training group. 

 

8.3 Methodology 

8.3.1 Study design and experimental procedures 

The samples utilised in this investigation were collected during the experimental data 

collection in Chapter 6. Twenty-eight well-trained competitive cyclists (n=27 males, n=1 

female; V̇O2max: 57.1 ± 8.3 ml·kg·min-1) were randomly assigned to a control (CON) or a 

short (SHORT) or long (LONG) interval group and completed 6 weeks of training 

consisting of 3 maximal isoeffort sessions each week. V̇O2max, MMP, and 20 min TT 

performance was recorded before and after the 6-week training period. Participants were 

classified as responders or non-responders based on whether their response falls above or 

below the within-athlete CV of V̇O2max, MMP, and 20 min TT, respectively. All samples 

were analysed in one analysis batch, which contained all experimental samples in a 

randomised order (further details are presented in Section 6.3.2). 

 

8.3.2 Urine sample collection and preparation 

Urinary sample collection was completed by collecting spot urine samples prior to the 

maximal incremental test procedure in Chapter 6, before the 6-week training intervention 

(Pre), and again following the 6-week intervention (Post; see Figure 8.1) processed 

following the guidelines of Want et al. (2010), and were analysed using UPLC- MS 

(Danaher, Gerber, Wellard, et al. 2016; Enea et al. 2010; Lehmann et al. 2010). Further 

urine sample collection details are described in section Chapter 3 (Section 3.11.1). 
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Figure 8.1 - Urine sampling timepoints 

 

8.3.3 UPLC-MS analysis 

A detailed overview of the UPLC-MS system setup, materials, and run details are 

presented in section Chapter 3 (Section 3.11.2), and details of run durations and injection 

numbers are presented in Table 8.1. Test mixes contained 12 (ESI+) and 12 (ESI-) known 

compounds from pure sources to identify metabolites of interest (Table 8.2). 

Randomisation of the sample order was performed to limit the impact of systematic error 

due to any potential degradation of the UPLC-MS system on the dataset over the 

acquisition time. 

 

Table 8.1 –Experimental design of the UPLC-MS System. 

 ALL 
Acquisition Time (h) 20.7 
Injections 100 
Test Mixes 7 
Blanks 10 
cQCs 20 
QCs 6 
Samples 58 
Ionisation mode ESI+/ESI- 

 

  

Training Period 
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Table 8.2 - [M+H]+/- and RT of each compound in the test mix samples used for the 
assessment of UPLC-MS reproducibility in ESI+ and ESI-. 

ESI+ 

Metabolite Formula Mass [M+H]+ RT (min) 

L-Alanine C3H7NO2 89.0477 90.0555 0.43 
Creatinine C4H7N3O 113.0589 114.0667 0.42 
Creatine C4H9N3O2 131.0695 132.0773 1.14 
L-Isoleucine C6H13NO2 131.0946 132.1025 0.43 
Hypoxanthine C5H4N4O 136.0385 137.0463 0.83 
Uric acid C5H4N4O3 168.0283 169.0362 0.78 
Hippuric acid C9H9NO3 179.0582 180.0661 3.90 
L-Tyrosine C9H11NO3 181.0739 182.0817 2.91 
Citric acid C6H8O7 192.0270 193.0348 0.75 
L-Tryptophan C11H12N2O2 204.0899 205.0977 3.32 
Cortisone C21H28O5 360.1937 361.2015 5.88 
Cortisol C21H30O5 362.2093 363.2093 5.85 

ESI- 

Metabolite Formula Mass [M+H]- RT (min) 

Lactate C3H6O3 90.0317 89.0317 0.65 
Creatinine C4H7N3O 131.0695 112.0589 0.74 
Fumarate C4H2O4-2 113.9953 112.9953 0.90 
Succinate C4H6O4 118.0266 117.0266 0.98 
Hypoxanthine C5H4N4O 136.0385 135.0385 0.84 
Uric acid C5H4N4O3 168.0283 167.0283 0.78 
Hippuric acid C9H9NO3 179.0582 178.0582 3.90 
L-Tyrosine C9H11NO3 181.0739 180.0739 3.90 
Citric acid C6H8O7 192.0270 191.0270 0.75 
L-Tryptophan C11H12N2O2 204.0899 203.0899 3.32 
Cortisone C21H28O5 360.1937 359.1937 5.88 
Cortisol C+H30O5 362.2093 361.2093 5.85 
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8.3.4 Data analysis 

8.3.4.1 Univariate	analysis	of	raw	data	

Details on the univariate analysis of raw data retention time, mass accuracy and variance 

are presented in Chapter 3 (Section 3.11.5). 

 

8.3.4.2 Data	pre-processing	

Details of data pre-processing parameters are presented in Chapter 3 (Section 3.11.6) and 

utilised the XCMS package for R software (Smith et al. 2006) which allowed the 

chromatographic dataset to be reduced into a single matrix for further analysis. 

 

8.3.4.3 Multivariate	analysis	

Details of multivariate data analyses, specifically PCA and OPLS-DA performed within 

SIMCA-P (Version 12, Umetrics, Sweden) are presented in Chapter 3 (Section 3.11.7). For 

each exercise group, OPLS-DA was performed in a pairwise fashion comparing Pre and 

Post to assess the changes of the urinary metabolome in response to the 6-week exercise 

training. Additionally, variability in response based on relative V̇O2max, relative MMP, and 

relative TT power data collected within Chapter 6 were also assessed. Comparisons were 

made between responders vs non-responders, non-responders vs negative responders, and 

responders vs negative-responders. In addition, non-responder and negative-responder 

groups were combined into a single group and compared to the responder group based on 

relative V̇O2max, relative MMP, and relative TT power.  

 

8.4 Results 

8.4.1 Analysis of raw data 

Following all data pre-processing steps, a range of 134 – 146 metabolic features were 

detected across all ionisation modes (Table 8.3). Comparisons of all cQC BPI 

chromatograms indicated that the UPLC-MS system used had been conditioned 

sufficiently for all experiments, in both ESI+ and ESI-, and cQC reached stability after 10 

injections. 
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Table 8.3 - Metabolic features present in dataset following each stage of filtering during 
XCMS pre-processing. 

 Raw Data Post MinFrac 
Filtering 

Post CV Filtering 

ESI+ 235 186 134 
ESI- 318 239 146 

 

Inspection of QC samples was performed using the putatively identified metabolites to 

assess the analytical reproducibility of the UPLC-MS systems’ mass accuracy (Table 8.4), 

retention time (Table 8.5), and peak intensity (Table 8.6). L-alanine failed to meet the ≤ 30 

ppm mass accuracy threshold in ESI+, and was excluded from further analysis, while all 

other metabolites met the threshold and remained stable for all sample runs for both ESI+ 

and ESI-. The maximum retention time drift observed was 1.8 sec in both ESI+ and ESI-. 

Graphical representation of peak intensity changes in the form of chromatogram overlays 

are displayed in for ESI+ and ESI-. All metabolites met the 30 % CV threshold in both ESI+ 

and ESI-. 
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Table 8.4 - Mass accuracy for samples in ESI+ and ESI- UPLC-MS conditions. 

    ESI+  ESI- 

Metabolite [M+H] [M-H]  Standard 
Compound 

Ppm 
Error 

Theoretical 
Mass Diff. 

 Standard 
Compound 

Ppm 
Error 

Theoretical 
Mass Diff. 

Lactate - 89.0317  - - -  89.0 0 0.0317 
L-Alanine 90.0555 -  90.04 -2207.51 0.0155  - - - 
Creatinine 114.0667 112.0589  114.1 0 -0.0333  112.1 0 -0.0411 
Fumarate - 112.9953  - - -  113.0 0 -0.0047 
Succinate - 117.0266  - - -  117.0 0 0.0266 
Creatine 132.0773 -  132.1 0 -0.0227  - - - 

L-Isoleucine 132.1025 -  132.1 0 0.0025  - - - 
Hypoxanthine 137.0463 135.0385  137.0 0 0.0463  135.0 0 0.0385 

Uric acid 169.0362 167.0283  169.0 0 0.0362  167.0 0 0.0283 
Hippuric acid 180.0661 178.0582  180.1 0 -0.0339  178.1 0 -0.0418 
L-Tyrosine 182.0817 180.0739  182.1 0 -0.0183  180.1 0 -0.0261 
Citric acid 193.0348 191.0270  193.0 0 0.0348  191.0 0 0.0270 

L-Tryptophan 205.0977 203.0899  205.1 0 -0.0023  203.1 0 -0.0101 
Cortisone 361.2015 359.1937  361.2 0 0.0015  359.2 0 -0.0063 
Cortisol 363.2172 361.2093  363.2 0 0.0172  361.2 0 0.0093 
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Table 8.5 – Retention time deviation for QC samples in ESI+ and ESI- UPLC-MS 
conditions. 

 ESI+  ESI- 
Metabolite Average (min) Drift (sec)  Average (min) Drift (sec) 

Lactate - -  0.65 0.02 
L-Alanine 0.44 0.60  - - 
Creatinine 0.42 0.00  0.74 0.01 
Fumarate - -  0.90 0.01 
Succinate - -  0.97 0.01 
Creatine 0.43 0.00  - - 
L-Isoleucine 1.05 1.20  - - 
Hypoxanthine 0.83 1.20  0.83 0.01 
Uric acid 0.77 0.60  0.77 0.02 
Hippuric acid 3.88 1.20  3.89 0.02 
L-Tyrosine 2.84 1.80  3.89 0.02 
Cirtic acid 0.73 0.60  0.73 0.01 
L-Tryptophan 3.31 1.20  3.32 0.03 
Cortisone 5.87 0.60  5.85 0.02 
Cortisol 5.84 0.60  5.78 0.04 

 

 

Table 8.6 - Peak intensity, variation, and percentage reduction for QC samples in ESI- and 
ESI+. 

 ESI+ (N=7) ESI- (N=7) 
Metabolite Average CV % Loss Average CV % Loss 

Lactate - - - 2.65E + 05 14.68 -41 % 
L-Alanine 4.98E + 05 29.74 -58 % - - - 
Creatinine 5.97E + 07 15.41 -32 % 4.33E + 04 5.15 -15 % 
Fumarate - - - 5.69E + 03 8.98 -22 % 
Succinate - - - 2.84E + 05 6.58 -15 % 
Creatine 6.62E + 06 22.85 -50 % - - - 
L-Isoleucine 7.17E + 05 7.03 -20 % - - - 
Hypoxanthine 6.74E + 06 3.38 -9 % 9.43E + 04 2.50 -7 % 
Uric acid 7.78E + 06 15.85 -43 % 3.04E + 06 2.87 -8 % 
Hippuric acid 2.42E + 07 3.29 -8 % 9.33E + 06 4.11 -10 % 
L-Tyrosine 1.02E + 06 5.83 -15 % 1.11E + 05 4.27 -10 % 
Citric acid 4.52E + 05 9.07 -22 % 4.05E + 06 3.13 -10 % 
L-Tryptophan 5.23E + 06 13.52 -36 % 1.58E + 04 13.19 -31 % 
Cortisone 3.09E + 04 8.80 -23 % 1.65E + 04 23.57 -48 % 
Cortisol 1.82E + 04 17.34 -34 % 8.45E + 03 18.37 -40 % 
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8.4.2 PCA analysis and assessment of QC stability 

PCA analysis was conducted to observe any trends or patterns present in the datasets 

related to each training intervention group. The stability of the UPLC-MS system was 

assessed using repeated QC sample injections interspersed throughout the sample runs. The 

PCA model statistics are displayed in Table 8.7, outlining the model statistics for Q2X, the 

variance (R2X), and percentage of variance in PC1 and PC2. The PCA scores plots for the 

first two PCs are shown in Figure 8.2. The PCA plots generated for ESI+ data display two 

QC samples that deviate from the central cluster (Figure 8.2A), and upon analysing these 

samples, the deviation is due to creatinine and uric acid. Excluding the two QC samples 

and surrounding data from the CON group in ESI+, the remaining QC is tightly clustered 

and allows comparison between SHORT and LONG interval groups (Figure 8.2B). From 

the PCA scores plot the interindividual variability in the experimental samples can be seen 

to be larger than the analytical variation as displayed by the QC sample cluster. Model 

statistics for the reduced dataset is also displayed in (Table 8.7). Samples identified as 

being outliers (Hotelling’s T2 > 99 %) were investigated and were due to biological 

variations in metabolites, not analytical errors. Therefore, all samples were included in 

further analyses. PCA analysis of pre and post training samples (Figure 8.3A), and 

participant training group samples (LONG, SHORT, CON [ESI- only] , Figure 8.3B) did 

not display any clear clustering. No observable sample clusters were present within the 

PCA score plots based on either participant training response level; responder, non-

responder, or adverse-responder based on relative V̇O2max, relative MMP, or relative 20 

minute TT power (Figure 8.4). 

 

Table 8.7 – PCA scores details. R2X = regression coefficient, Q2 = predictive component 
of the PCA to assess model validity, PC1/PC2 = principal component 1 (PC1) and 
principal component 2 (PC2) for each PCA model. 

 R2X Q2 PC1 PC2 
ESI+ Full 0.842 0.128 0.357 0.143 

ESI+ Segment 0.853 0.171 0.431 0.161 
ESI- 0.566 0.300 0.447 0.119 
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 ESI+ 

A 

 

B 

 
Figure 8.2 - PCA scores plots for ESI+ with A) complete dataset, and B) reduced dataset 
including only training intervention groups. 
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 ESI+ ESI- 

A 

  

B 

  
Figure 8.3 - PCA scores plots displaying good analytical reproducibility of the UPLC-MS 
as shown by QC clustering for in ESI+ and ESI-. A) samples identified by time-point (pre 
vs post-training), B) samples identified by training group (LONG, SHORT, CON). 
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Figure 8.4 - PCA scores plots displaying good analytical reproducibility of the UPLC-MS 
as shown by QC clustering for in ESI+ and ESI-. Individual variability groupings based on; 
A) V̇O2max/kg, B) MMP/kg, C) TT W/Kg. Data points coloured based on; Responder 
(Green), Non-responder (Orange), or Negative-responder (Blue). 
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8.4.3 OPLS-DA analysis 

8.4.3.1 Urinary	metabolome	changes	following	training	intervention	

To evaluate the chronic effects of each training intervention, OPLS-DA models comparing 

urine sample collected before and after the 6-week training intervention were performed 

for each exercise group separately. All initial OPLS-DA models generated resulted in 

negative Q2Y values and were subsequently deemed to be invalid (P > .05 from 

permutation testing, n = 100), and therefore no further analyses were conducted on these 

OPLS-DA models. 

 

8.4.3.2 Urinary	metabolome	differences	based	on	responder	status		

To evaluate the variability-dependent metabolomic perturbations following the training 

intervention, OPLS-DA models were generated comparing samples collected from 

participants that responded to, showed no response, or adversely responded to the training 

interventions based on three measures. Table 8.8 shows the summary OPLS-DA model 

statistics with permutation testing results (n = 100). In ESI+ ionisation mode, all OPLS-DA 

models were excluded based on a negative Q2 values. In ESI- ionisation mode, the models 

which passed permutation testing (n = 100) were individual variability based on relative 

V̇O2max between non-responders and negative-responders (Q2 = .165, P = .01), relative 

MMP between both responders and non-responders (Q2 = .164, P = .02) as well as 

responders and negative-responders (Q2 = .212, P = .02). All other models in ESI- 

ionisation mode failed permutation testing and were excluded from further analyses. Figure 

8.5 displays OPLS-DA scatter plots for relative V̇O2max comparing non-responders to 

negative-responders (Figure 8.5A), relative MMP comparing responders to non-responders 

(Figure 8.5B), and relative MMP comparing responders to negative-responders (Figure 

8.5C), respectively. Table 8.8 presents model diagnostics, outlining variability in each 

model due to separation between groups, and due to within-group variability. 
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Table 8.8 - OPLS-DA scores details comparing responders, non-responders, and negative-responders to training based on changes in V̇O2max, MMP W/kg, 
and TT W/kg. Model diagnostics presented based on separation of scatter plots between groups, and within-group variability as a % CV. CON ESI+ and ESI- 
OPLS-DA analyses were not performed due to exclusion from the dataset. OPLS-DA analyses which failed to establish valid models have been excluded. 

  Response R2X R2Y Q2 A Between-group separation based 
on predictive component 

Within-group variability based 
on orthogonal component 

P-Value 

E
SI
-  V̇O2max/kg Non vs Neg .595 .719 .165 2 8% 39% .01 

MMP/kg Res vs Non .629 .610 .164 2 6% 47% .02 
Res vs Neg .656 .661 .212 2 5% 49% .02 

R2X = variation in X explained by the model, R2Y = variation in Y explained by the model, Q2 = goodness of prediction, A = number of orthogonal components, P-value = 
permutation test probability of spurious model generation. “Res” = Responder, “Non” = Non-responder, “Neg” = Negative-responder. 
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Figure 8.5 – OPLS-DA plots displaying separation of experimental samples collected prior 
to and following the 6-week training intervention based on A) relative V̇O2max negative-
responder vs non-responder, B) relative MMP responder vs non-responder, and C) relative 
MMP responder vs negative-responder. OPLS-DA analyses which failed to establish valid 
models have been excluded.  

Negative 
Responder 

Non 
Responder 

Responder 
Non 
Responder 

Responder 
Negative 
Responder 



194 

Metabolites contributing to OPLS-DA separation 

From S-plot analysis, the OPLS-DA model separations involved a small range of 

metabolite classes, including dicarboxylic acids, organic acids, and purine derivatives 

(Table 8.9 and Table 8.10). Succinate excretion was decreased in the responder group 

versus the non-responder group based on relative MMP in ESI-. Lactate and hypoxanthine 

excretion was decreased in the responder group versus the negative-responder group based 

on relative MMP in ESI-. 

 

Table 8.9 – Metabolic features responsible for separation of variability groups based on 
relative V̇O2max as determined by OPLS-DA and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 
Non 
vs 

Neg 

ESI- 

Unknown 167/159 167.0 2.65 ↓ 

203.1/221 203.1 3.68 ↓ 

203.1/237 203.1 3.95 ↓ 

203.1/243 203.1 4.05 ↓ 

“Non” = non-responder, and “Neg” = negative-responder. ↑ indicates increased urinary excretion of 
metabolite versus non-responder group. ↓ indicates decreased urinary excretion of metabolite versus 
non-responder group. 
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Table 8.10 – Metabolic features responsible for separation of variability groups based on 
relative MMP as determined by OPLS-DA and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 
Pos 
vs 

Non 

Pos 
vs 

Neg 

ESI- 

Dicarboxylic acids Succinate 117.0 0.97 ↓  

Organic acids Lactate 89.0 0.65  ↓ 

Purine derivatives Hypoxanthine 135.0 0.83  ↓ 

Unknown 130.1/66 130.1 1.10 ↓  

167/56 167.0 0.93  ↓ 

167/191 167.0 3.18 ↓ ↓ 

180.1/226 180.1 3.77 ↑  

191/110 191.0 1.83 ↓  

191/121 191.0 2.02  ↑ 

203.1/237 203.1 3.95 ↑ ↑ 

361.2/298 361.2 4.97  ↓ 

“Pos” = responder, “Non” = non-responder, and “Neg” = negative-responder. ↑ indicates increased 
urinary excretion of metabolite versus responder group. ↓ indicates decreased urinary excretion of 
metabolite versus responder group.  
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8.4.3.3 Urinary	metabolome	differences	based	on	combined	responder	status	within	interval	

training	groups	

Further evaluation of the variability-dependent metabolomic perturbations following the 

training intervention within each intervention group was performed. Due to low sample 

sizes within intervention groups and to further isolate metabolites which can differentiate 

responders to exercise, the non-responder, and negative-responder groups were combined 

into a “combined non-responder” group and using OPLS-DA models were compared to the 

responder groups based on relative V̇O2max, relative MMP, and relative TT power. Table 

8.11 shows the summary of the comparisons with a valid OPLS-DA model with 

permutation testing results (n = 100) for SHORT between responders and combined non-

responders for relative V̇O2max (Q2 = .579, P = .03), relative TT power between both 

responders and combined non-responders (Q2 = .294, P = .05). All other models in both 

ESI+ and ESI- ionisation modes failed permutation testing and were excluded from further 

analyses. Figure 8.6 display OPLS-DA scatter plots for relative V̇O2max comparing 

responders and combined non-responders (Figure 8.6A), and relative TT power comparing 

responders and combined non-responders (Figure 8.6B), respectively. Table 8.11 also 

presents model diagnostics, outlining variability in each model due to separation between 

groups, and due to within-group variability. 
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Table 8.11 - OPLS-DA scores details comparing responder group and combined non-responder groups based on changes in V̇O2max, MMP W/kg, and TT 
W/kg for interval intervention groups. Model diagnostics presented based on separation of scatter plots between groups, and within-group variability as a % 
CV. OPLS-DA analyses which failed to establish valid models have been excluded. 

  Response R2X R2Y Q2 A Between-group separation based 
on predictive component 

Within-group variability based 
on orthogonal component 

P-Value 

E
SI
-  V̇O2max/kg SHORT .759 .942 .579 2 23% 44% .03 

TT W/kg SHORT .758 .901 .294 2 6% 61% .05 
R2X = variation in X explained by the model, R2Y = variation in Y explained by the model, Q2 = goodness of prediction, A = number of orthogonal components, P-value = 
permutation test probability of spurious model generation. 
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Figure 8.6 – OPLS-DA plots displaying separation of experimental samples collected prior 

to and following a 6-week training intervention using SHORT intervals based on responder 

or combined netagive and non-responder status based on A) Relative V̇O2max and B) 

Relative TT power. OPLS-DA analyses which failed to establish valid models have been 

excluded. 
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Metabolites contributing to OPLS-DA separation 

From S-plot analysis and based on the classification for significance, the OPLS-DA model 

separations involved a small range of metabolite classes, including alkaloids, carboxylic 

acids & derivatives, dicarboxylic acids, and purine derivatives (Table 8.12 and Table 8.13).  

 

Within ESI+ for SHORT comparing variability groups based on relative V̇O2max, increased 

uric acid, citric acid, succinate, and hippuric acid excretion was observed within 

responders versus combined non-responders. 

 

Table 8.12 – Metabolic features responsible for separation of variability groups based on 

relative V̇O2max as determined by OPLS-DA and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

SH
O

R
T

 

ESI- 

Alkaloids Uric acid 167.0 0.78 ↑ 

Carboxylic acids & derivatives Citric acid 191.9 0.75 ↑ 

Dicarboxylic acids Succinate 117.0 0.97 ↑ 

Purine derivatives Hippuric acid 178.1 3.90 ↑ 

Unknown 167/72 167.0 1.20 ↑ 

167/159 167.0 2.65 ↑ 

191/32 191.0 0.53 ↑ 

203.1/213 203.1 3.55 ↑ 

361.2/298 361.2 4.97 ↓ 

↑ indicates increased urinary excretion of metabolite in responder group versus non-responder group. ↓ 
indicates decreased urinary excretion of metabolite in responder group versus non-responder group. 
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Table 8.13 – Metabolic features responsible for separation of variability groups based on 

relative TT power as determined by OPLS-DA and S-Plot analysis. 

Ionisation 
mode Biological Class Metabolite m/z 

(M) 
RT 

(min) 

SH
O

R
T

 

ESI+ 

Unknown 145.1/190 145.1 3.17 ↑ 

167/191 167.0 3.18 ↑ 

180.1/249 180.1 4.15 ↑ 

203.1/221 203.1 3.68 ↑ 

203.1/258 203.1 4.30 ↑ 

203.1/313 203.1 5.22 ↑ 

361.2/255 361.2 4.25 ↑ 

361.2/298 361.2 4.97 ↑ 

↑ indicates increased urinary excretion of metabolite in responder group versus non-responder group. ↓ 
indicates decreased urinary excretion of metabolite in responder group versus non-responder group. 
 

8.5 Discussion 

This study assessed the differences in the urinary metabolome using untargeted UPLC-MS 

before and after a 6-week training intervention of two different interval training session 

formats using a maximal effort-based intensity prescription (Chapter 6). The ability to 

identify metabolites that increase or decrease with exercise training, as well as whether any 

metabolites can be attributed to exercise responder status, presents itself as a method of 

optimising exercise training prescription. No difference was observed using OPLS-DA 

between the samples taken before and after the training intervention when all groups were 

combined, as well as when each group was analysed individually. 

 

Uric acid is formed as the final compound of purine metabolism (Maiuolo et al. 2016; 

Becker 1993), and exercise results in increased concentrations of Uric acid within the body 

due to the increased rate of ATP turnover (Sutton et al. 1980; Sahlin, Palmskog and 

Hultman 1978). It has been observed that in the 24 h following bouts of high-intensity 

exercise increased concentrations of uric acid in human serum (Green and Fraser 1988). Of 

the total uric acid that is produced within the human body, approximately 30 % is degraded 

in the biliary and gastrointestinal tract during uricolysis, and the remaining 70 % is 

excreted through the kidneys (Sorensen and Levinson 1975). Whilst the alterations in uric 

acid excretion following acute exercise have been extensively examined, the alterations in 



201 

uric acid excretion following endurance training have received limited attention. Over the 

course of a 1-year training cycle, long-distance runners display stable uric acid 

concentrations, with non-significant elevations in concentrations usually observed during 

the pre-competition phase (Zieliński et al. 2009; Zieliński, Kusy and Rychlewski 2011; 

Zieliński and Kusy 2012). Interestingly, over a 2-week period within a 6-month military 

training schedule, uric acid at rest was found to increase (Chevion et al. 2003). Conversely, 

uric acid has been observed to decrease during intense training periods (Yan et al. 2009) 

but was also observed to be higher in more experienced athletes than less experienced 

athletes (Yan et al. 2009). In the present study, uric acid excretion increased in responders 

versus non-responders based on relative V̇O2max following SHORT training, which 

supports the previous findings of increased uric acid following training increased 

improvements in performance. However, the use of uric acid to assess training status has 

not been supported by previous research due to no observable change following training 

interventions (Zieliński and Kusy 2012; Lombardi et al. 2010). 

 

Whilst uric acid represents the end-product of purine metabolism; the intermediate 

compound hypoxanthine has been shown to be a strong predictor of performance in highly 

trained athletes, regardless of sport specialisation (Zieliński, Krasińska and Kusy 2013). 

Hypoxanthine can not only be used to indicate degradation of adenine nucleotides within 

muscle and therefore energetic stress during exercise (Zieliński and Kusy 2015a; Zieliński 

and Kusy 2015b; Sahlin, Tonkonogi and Söderlund 1999) and a marker of exercise 

intensity (Ka et al. 2003), but also it has potential to be utilised as a marker which can be 

used to differentiate performance levels (Zieliński, Krasińska and Kusy 2013). Acute 

exercise results in increased urinary excretion of hypoxanthine (Hargreaves et al. 1998; 

Green and Fraser 1988; Hellsten-Westing, Sollevi and Sjödin 1991; Houston and Thomson 

1977) and is commonly increased in post-exercise urine samples in several metabolomics 

investigations (Enea et al. 2010; Pechlivanis et al. 2010; Muhsen Ali et al. 2016; 

Mukherjee et al. 2014; Pechlivanis et al. 2015). In the present investigation, decreased 

hypoxanthine excretion was observed in the responder group versus the negative-responder 

group based on relative MMP in ESI-. Elevations in blood hypoxanthine concentrations 

following exercise were higher during the transition phase versus the competition phase in 

long- and middle-distance runners, as well as lower pre-exercise hypoxanthine 

concentration, mainly due to the maintenance of intramuscular IMP by the resynthesis of 

hypoxanthine (Figure 8.7; Zieliński et al. 2009; Zieliński, Kusy and Rychlewski 2011; 

Zieliński and Kusy 2012; Zieliński, Kusy and Słomińska 2013). Hypoxanthine 
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concentrations, both at rest and post-exercise, were able to differentiate performance level 

in both sprint and endurance-trained athletes, highlighting the applicability of this 

metabolite as a marker for training adaptation and performance status (Zieliński, Krasińska 

and Kusy 2013). It has also been observed that resting urinary hypoxanthine excretion was 

decreased following 6 weeks of threshold training, but not polarised training (Neal et al. 

2013). In contrast to this, increases in resting urinary hypoxanthine excretion after an 18-

month training intervention using middle-aged and older men has been observed, 

potentially highlighting the applicability of hypoxanthine as a training marker to higher 

trained athletes (Sheedy et al. 2014). 

 

 

Figure 8.7 – Main metabolic pathways of adenine nucleotide degradation during exercise 

and recovery period. Hx, hypoxanthine; AMP-s, AMP synthase; HGPRT, Hx- guanine 
phosphoribosyltransferase;; Ino, inosine; NH3, ammonia; PNC, purine nucleotide cycle; 
PRPP, phosphoribosyl pyrophosphate; UA, uric acid; X, xanthine (Taken from Zieliński 

and Kusy 2015a). 

 

One of the key intermediates in the Krebs Cycle is citric acid and is essential for oxidative 

energy production along with its derivative citrate. With the presence of CS, citrate is 

synthesised from acetyl CoA and oxaloacetate and rate-limited by the presence of ATP 

(Wiegand and Remington 1986). Within the present chapter, citric acid excretion was 
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increased in the responder group versus the combined non-responder group based on 

relative V̇O2max. This finding could reflect increased CS activity, as it has been shown that 

training increases CS activity (Vigelsø, Andersen and Dela 2014), resulting in greater 

citrate synthesis and increase the excretion of citrate in urine (López et al. 2010; Nuñez et 

al. 2012). Succinate has been recently attributed to having an important role in skeletal 

muscle remodelling following exercise (Reddy et al. 2020) through the SUCNR1 pathway. 

This is reflected by the increased succinate excretion in responders versus non-responders 

in SHORT based on relative V̇O2max. The present investigation also found that succinate 

was decreased in the responder group versus the non-responder group based on relative 

MMP. This may indicate the unsuitability for succinate to be a target for metabolic 

phenotyping based on training-related variability. Previous investigations have identified 

lower concentrations of excreted lactate following a training intervention (Pechlivanis et 

al. 2013), which indicates increased removal of lactate from the muscle and bloodstream 

and improvement in exercise performance as a result. Similarly, within the present 

investigation, lactate excretion was decreased in the whole cohort responder group versus 

the negative-responder group based on relative MMP. The present investigation indicated 

an increase in hippuric acid within responders versus combined non-responders based on 

relative V̇O2max. As the exercise-related effects on hippuric acid have not been extensively 

investigated (Neal et al. 2013; Davison et al. 2018), this provides an insight into how 

training-related performance changes may influence hippuric acid metabolism. 

 

Due to the small number of valid OPLS-DA models identifying separations between 

analysis groups, it is difficult to compare variability within the metabolomes of each group. 

Of the valid OPLS-DA models, it can be observed that lowest within-group variability can 

be observed between non-responders and negative responders based on relative V̇O2max 

(39%), which may highlight the potential small differences in training stimulus that could 

relate in training non-response or negative-response. Similarly, the OPLS-DA models 

comparing responders to both non-responders and negative-responders had significantly 

higher within-group variability at 47% and 49%, respectively. This could indicate that 

when a training response occurs, it coincides with a wide range of metabolic perturbations. 

Whether these perturbations are responsible for the training-related performance 

improvements, or a response to the changes, should be investigated further. However, a 

limitation within the current investigation is the small sample size within the responder, 

non-responder, and adverse-responder groups, in addition the unbalanced nature of the 

sample groups. With a larger sample cohort these limitations could be overcome, allowing 



204 

for more confidence to be given to any differences observed between groups from OPLS-

DA analysis. 

 

The human metabolome is sensitive to changes in dietary intake of participants (such as 

caffeine, protein, phytochemical intake etc.) and has been reported within previous 

nutrition metabolomics investigations (van Velzen et al. 2008) and has previously been 

reviewed (Gibney et al. 2005). Within the study design from Chapter 6, from which data 

was used within the current chapter, dietary intake was moderately controlled but not 

monitored or extensively controlled. Participants were instructed to avoid caffeine intake 

and fish in the days preceding testing and to repeat a similar dietary intake to pre-training 

testing following the training intervention. The presence of metabolites that are responsive 

to variations in dietary intake of fruits, tea, or coffee could indicate dietary standardisation 

was not sufficient within the current investigation (Toromanović et al. 2008; Clifford et al. 

2000; Pero 2010). The number of unknown metabolites identified within the present study 

highlights the limited number of putatively identified metabolites, potentially resulting in 

biomarkers of exercise variability being overlooked. Further limitations of this 

investigation relate to the lack of validated OPLS-DA models and small size of sample 

groups during OPLS-DA analyses. This may have been due to a smaller sample size within 

this investigation, but previous research has been able to successfully implement NMR (C. 

Enea et al. 2010), LC-MS (Rainer Lehmann et al. 2010), and GC-MS (Chorell et al. 2012; 

Nieman et al. 2012; Peake et al. 2014) methods with sample sizes ranging from 6 to 14 

participants. It is also possible that with the urine samples being collected at rest prior to 

and following an exercise training intervention, there may not have been a metabolic 

challenge present, such as exercise, to display differences in training adaptations between 

groups. The metabolomics investigation conducted by (Pechlivanis et al. 2013) measured 

the serum metabolome before and after the first session of the training intervention and 

compared to before and after the last session of the training intervention. Future 

investigations should examine the acute metabolomic response to exercise before and after 

a training intervention, as this may provide further insight into the physiological changes 

which differ between intervention groups. 

  



205 

8.6 Conclusion 

No differences were observed in the resting metabolomic profile prior to and following the 

training interventions, whether data were grouped with all training groups or separated into 

the different training prescription groups. The findings of the present investigation indicate 

differences in metabolomic profiles were observed between responders and non-responders 

across the whole study cohort, and further metabolites were identified to differentiate 

between responders and non-responders following LONG and SHORT interventions. 

While the present investigation identified a limited number of metabolites, the available 

data indicate that metabolomics can provide a promising approach to explore individual 

variability in chronic exercise response, especially if more sensitive analytical systems are 

utilised. 
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The aim of this thesis was to assess the efficacy of using effort-based intensity 

prescriptions as a tool to produce low levels of individual variability in response to training 

and whether metabolomics could identify potential metabolite markers which could help to 

indicate training responsiveness prior to training. 

 

The first experimental chapter (Chapter 4) investigated the within-athlete and between-

athlete variability in response to different effort-based intensity targets during single self-

paced exercise bouts of varying durations. As both intensity and duration of the exercise 

bouts were increased, within- and between-athlete variability in power output, work done, 

heart rate, V̇O2, V̇CO2, and V̇E decreased, but within- and between-athlete variability in 

muscle oxygenation data increased. This relationship agrees with previous findings by 

Bagger, Petersen and Pedersen (2003), who observed lower variability in physiological 

variables as intensity increases, with the lowest variability being recorded under maximal 

conditions. When exercising at higher absolute exercise intensity, a small change in power 

output can result in large changes in physiological response and fatigue compared to lower 

absolute exercise intensities (Burnley and Jones 2018); thus, participants are likely to 

control their exercise intensity within a closer bandwidth. However, it has also been 

observed that whilst variability may be low when athletes complete maximal or near-

maximal intensities, increasing the duration of the exercise trials may increase variability 

(Schabort et al. 1998). This is in contrast with the findings of Chapter 4, possibly due to 

differences in methodology. Schabort et al. (1998) instructed participants to complete the 

exercise “as fast as possible”, whereas in Chapter 4 the participants were instructed to 

modulate the external workload to achieve the desired RPE anchor. Schabort et al. (1998) 

found lowest within-athlete variability during a 100 km simulated time trial (1.7 %), 

followed by a 1 km sprint lasting 1 min 16 sec ± 6 sec (1.9 %), and highest variability 

during a 5 km effort lasting 5 min 31 sec ± 16 sec (2.0 %) It may have been the case that a 

shift of attentional focus towards internal-associative modes at the higher intensities and 

durations may have occurred in Chapter 4, as the task requires constant attention and 

modulation of workload in order to maintain the set RPE anchor (Noble and Robertson 

1996). The findings of this study are in-line with previous investigations showing that 

within-athlete variability is greater when exercising below V̇O2max (ranging from between 

5.6 - 55.9 % CV) versus exercising above V̇O2max (ranging from between 1.7 – 17 % CV; 

Gleser and Vogel 1971; Maughan, Fenn and Leiper 1989; McLellan, Cheung and Jacobs 

1995; Jeukendrup et al. 1996; Laursen et al. 2007; Coggan and Costill 1984; Lindsay et al. 

1996). However, it is uncertain whether high or low levels of within- and between-athlete 
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variability in acute exercise translates to differences in chronic training adaptations. 

Previous research has demonstrated that improving the individualisation of training 

intensities results in a reduction of training non-response (Wolpern et al. 2015). In 

(Wolpern et al. 2015), the prescription relative to the first and second ventilatory threshold 

resulted in all athletes responding to the training intervention, versus when intensity was 

prescribed using %HRR (41.7 % responders vs 58.3 % responders). With lower levels of 

within- and between-athlete variability in power output, work done, heart rate, V̇O2, V̇CO2, 

and V̇E as duration decreases and intensity increases when using self-paced targets, there 

may be a more homogenous and predictable training stimulus being generated. Further 

investigations may look to explore the differences in within- and between-athlete 

variability between self-paced exercise intensities and other individualised intensity 

prescription methods to evaluate which method generates the least variability in 

physiological stimulus from training. Once established, lower variability on both a within- 

and between-athlete basis would allow practitioners to prescribe training in a manner that 

targets a specific physiological response and is consistent between athletes. The practical 

applications of Chapter 4 would relate to the implementation of self-paced exercise bouts, 

or whole sessions, within an athletes’ training programming. The findings also provide a 

background understanding of the levels of variability a coach or practitioner may look to 

expect following efforts of differing durations or intensities. 

 

The findings of lower within- and between-athlete variability as intensity increases and 

duration decreases, suggest that using maximal effort-based intensity prescriptions during 

interval sessions may result in less variability in the acute physiological response to each 

training session. The second experimental chapter (Chapter 5) analysed the within-athlete 

and between-athlete variability in response to three different interval training session 

formats (SHORT, LONG, and CONT), during which an effort-based intensity prescription 

was used to achieve maximal exertion during each session. Interestingly, different levels of 

variability in physiological response were observed between LONG, SHORT and CONT 

exercise bouts. Within-athlete variability of session power output was greatest during 

SHORT, whereas between-athlete variability was greatest in CONT, and total variability 

was greatest in SHORT. Overall, on a single-session basis, the use of LONG formats 

provides the least individual variability in acute response compared to SHORT and CONT. 

This is in contrast with the finding that higher intensities during individual exercise bouts 

resulted in lower variability, but likely this is due to the prolonged undulating nature of the 

SHORT interval training format. In comparison to other investigations in the literature, the 
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findings of Chapter 5 display lower levels of between-athlete variability in power output 

and V̇O2 during SHORT (Nicolò et al. 2014). The between-athlete variability observed in 

BLa-1 in response to LONG within Chapter 5 is observed to be consistent with variability 

levels previously reported for longer duration efforts. Seiler and Sylta (2017) displayed 

increased consistency as interval duration decreases; 16 min (CV: 34 %), 8 min (CV: 26 

%), and 4 min intervals (CV: 21 %), and therefore the between-athlete CV of 26.1 % from 

the 5 min intervals, and 34.2 % from the 40 min continuous effort. This indicates that 

between-athlete variability likely reduces gradually as effort duration shortens, however, 

there is a time duration of interval training format at which this reduction in between-

athlete variability is reversed, exemplified by the 31.6 % between-athlete variability in 

BLa-1 during SHORT interval training sessions. The reason for this may relate to the 

combination of many factors, such as the similarities and differences in performance levels 

between the athletes within the study cohort relating to the power-duration relationship. 

The similarities in performance level of athletes may result in a common duration of effort 

which is most similar across all participants, reducing training-induced variability in acute 

exercise performance. Such an investigation into not only the between-athlete variability 

during interval training sessions but also the within-athlete variability has not been 

conducted and provides a valuable tool for understanding the training process and adaptive 

responses to training (Chrzanowski-Smith et al. 2020). With the differences in within-

athlete and between-athlete variability observed between the LONG and SHORT session 

performance and physiological response, it remains to be established whether high or low 

variability in acute training stimulus results in greater or lower chronic training response or 

higher or lower degrees of individual variability in training response. The findings of 

Chapter 5 may be implemented by coaches or practitioners to identify training sessions 

which athletes could repeat at regular intervals during training cycles. The expected 

within-athlete variability levels for each training session could be used to indicate when an 

athlete has exceeded the critical difference range, and therefore the change is likely to be 

reflective of true performance changes. 

 

The third experimental chapter (Chapter 6) investigated the effects of two maximal effort-

based training interventions (SHORT and LONG) on physiological adaptations and 

performance and a control group (CON). Over a six-week intervention period, only the 

SHORT group increased MMP and both absolute and relative TT power, compared to no 

change in LONG or CON. However, a low magnitude of training response can be observed 

when comparing the findings of Chapter 6 with studies which report ~ 0.5 L.min-1 
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improvements in V̇O2max following HIT training, potentially due to the trained nature of 

the participants within Chapter 6 (Bacon et al. 2013). The reasoning for this may also be 

due to a mixture of relatively low training volumes and absolute work intensity within 

Chapter 6. Training durations within Chapter 6 were ~ 8 h per week in SHORT, ~ 5.6 h per 

week in LONG, and ~ 6.6 h per week in CONT. The work bout power output during 

LONG interval sessions within Chapter 6 was lower than those performed in Chapter 5 (Ch 

5; 310 ± 45 W vs Ch 6; 274 ± 52 W) and much lower than commonly reported 5-min 

interval training power output in the literature (334 ± 39 W; Weston et al. 1997 and 333 ± 

27 W; Lindsay et al. 1996)). The recent findings of Rønnestad et al. (2020) demonstrated 

slightly higher work bout power output during 5-min interval sessions in comparison to the 

sessions completed within Chapter 6 (ranging from 295 W to 315 W). Moreover, the 

recovery period used within Rønnestad et al. (2020) was 2.5 min with 4 repeats being 

performed, indicating a higher training load was achieved compared to Chapter 6. It is also 

of note that the work bout power output during SHORT in both Chapter 5 (382 ± 55 W) 

and Chapter 6 (391 ± 72 W) is lower than has been previously reported in the literature, 

with 464 ± 51 W being reported during 30:30 format intervals (Nicolò, Bazzucchi, Haxhi, 

et al. 2014). However, the recent publication from Rønnestad et al. (2020) reported work 

bout power outputs to range from 381 W to 390 W in a 1-week intensive training 

intervention which resulted in a 5.7 % improvement in V̇O2max, demonstrating that these 

work bout power outputs are high enough to deliver a sufficient training stimulus. Despite 

the differences in work bout power between Chapter 5 and Nicolò, Bazzucchi, Haxhi, et al. 

(2014), similar levels of BLa-1 (9.5 ± 3.0 mmol.L-1 vs 8.5 ± 2.4 mmol.L-1, respectively), 

HR (164 ± 10 bpm vs 169 ± 5 bpm, respectively), and V̇O2 (3310 ± 470 ml.min-1 vs 3147 

± 234 ml.min-1, respectively) were observed, showing that training stimulus may have been 

in-line with previously reported investigations. Despite the small magnitude of training-

related performance improvements, SHORT intervals resulted in higher rates of training 

response in both V̇O2max and absolute TT power (71 %, and 86 %, respectively) compared 

to LONG (40 %, and 60 %, respectively) or CON (27 % and 27 %, respectively). A high 

degree of between-athlete variability in training response was still observed across all 

groups, ranging from as small as 10 % (Absolute V̇O2max in LONG) to 86 % response 

(Absolute and relative TT power in SHORT). This demonstrates that using short maximal 

effort-based intensity prescriptions may be optimal for reducing the level of participant 

non-response, but further research is required to establish other factors relating to 

individual training response. The findings of Chapter 6 support previous literature on the 

efficacy of the use of SHORT intervals within training programming (Rønnestad et al. 

2015; Rønnestad et al. 2020; Rønnestad et al. 2021) and highlight the importance of 
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ensuring training stimuli during LONG interval sessions is high enough due to the long 

work bout durations. However, despite the SHORT format being the most effective 

intervention of those investigated within this thesis, the occurrence of non-response or 

adverse-response was still present within the intervention. Future research should compare 

interval training interventions using short undulating intervals using effort-based intensity 

prescriptions and standardised prescription methods of varying intensities to further 

examine whether effort-based intensity prescriptions are more effective at lowering levels 

of non-response to training. Future research should also further investigate whether there is 

a difference in chronic training response magnitude and variability following training 

prescribed using sessions which result in either high levels of individual variability versus 

low levels of individual variability. Chapter 6 also indicates that despite efforts to reduce 

between-athlete variability in training improvements using effort-based intensity 

prescriptions, individual variability remains in training response when individual measures 

are investigated in isolation, but improvement can interestingly be observed across V̇O2max, 

MMP, and TT performances for each individual. 

 

The incorporation of metabolomics into this thesis allowed the comparison of the global 

metabolic response to acute training performance and physiological response and the 

alterations in chronic training changes in the metabolome. The finding of the importance of 

urinary hypoxanthine, uric acid, lactate, and citric acid in identifying variable participants 

could be used to explain the higher levels of physiological stimulus in response to these 

acute training sessions. Of the metabolites that were identified to be associated with 

variable acute training performance and response, some were identified as metabolites of 

interest following chronic training interventions. Both hypoxanthine and uric acid reflect 

exercise-induced alterations in ATP, AMP, and IMP utilisation during exercise, and can be 

used to establish metabolic differences to different exercise intensities or formats (Sutton et 

al. 1980; Stathis, Carey and Snow 2005; Stathis et al. 1999; Gerber et al. 2014; Zieliński 

and Kusy 2012; Zieliński and Kusy 2015a; Zieliński and Kusy 2015b; Stathis et al. 2006; 

Hellsten-Westing et al. 1993; Zieliński, Kusy and Rychlewski 2011; Zieliński et al. 2009; 

Sahlin, Tonkonogi and Söderlund 1999; Hellsten-Westing, Sollevi and Sjödin 1991; 

Pechlivanis et al. 2015; Kaya et al. 2006; Lewis et al. 2010). Excretion of hypoxanthine 

was increased in all acute exercise sessions; decreased hypoxanthine excretion was 

associated with variable performance during LONG interval sessions, whereas increased 

hypoxanthine excretion was associated with variable performance during SHORT interval 

sessions. On a chronic basis, hypoxanthine was decreased in positive training responders 
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based on MMP improvements. This highlights a potential carry-over from acute to the 

chronic metabolomic response, but also indicates that there may be an intensity-based 

difference in hypoxanthine response to exercise. This agrees with an investigation 

monitoring long-distance runners, which identified that factors including the exercise 

intensity, rate of reconversion of hypoxanthine to IMP by hypoxanthine-guanine 

phosphoribosyl-transferase (HGPRT), and excretion rate of hypoxanthine itself (Zieliński 

et al. 2009). Overall, it was found that chronic training resulted in reduced excretion of 

hypoxanthine (Zieliński, Kusy and Rychlewski 2011; Zieliński et al. 2009). Acute 

decreases in uric acid were observed following both LONG and SHORT training, but on a 

chronic basis, increased uric acid excretion was found to be associated with positive 

training response versus non-responders based on relative V̇O2max following the SHORT 

training intervention. This is in contrast to the previous finding of elevated uric acid during 

intense training periods (Yan et al. 2009), but it has also been shown that uric acid is 

elevated in more experienced athletes compared to less experienced athletes (Yan et al. 

2009), and other observations of increased uric acid excretion following acute exercise 

(Gerber et al. 2014; Kanďár et al. 2014; Stathis et al. 2006) and over chronic training 

interventions (Chevion et al. 2003; Zieliński et al. 2009; Zieliński, Kusy and Rychlewski 

2011). 

 

The finding of increased urinary lactate following acute training sessions was not 

unexpected, being one of the most abundantly detected metabolites within sports 

metabolomics investigations and an end product of glycolysis (Goodwin et al. 2007; 

Berton et al. 2017; Daskalaki, Easton and Watson 2015; Lewis et al. 2010a; Yan et al. 

2009; Pechlivanis et al. 2010; Mukherjee et al. 2014; Santone et al. 2014; Kujala et al. 

2013; Netzer et al. 2011; Enea et al. 2010; Sheedy et al. 2014; Nieman et al. 2012). The 

increased lactate following the maximal self-paced acute training sessions reflects previous 

findings of increased lactate excretion after exhaustive exercise This increase in lactate 

excretion is commonly seen following maximal exercise (Hood et al. 1988; Cairns 2006; 

Allen, Lamb and Westerblad 2008). However, the finding that increased urinary lactate 

excretion was associated with individual variability in session performance in both 

SHORT and CONT, but not the LONG training format, was a novel finding of this thesis. 

This pattern of variability is also highlighted within the BLa-1 samples collected within the 

sessions themselves, with the within- and between-athlete variability being similar in both 

CONT (18.6 % and 34.3 %, respectively) and SHORT (16.8 % and 31.3 %, respectively), 

whilst being lower in LONG (14.1 % and 25.9 %, respectively). Interestingly, when 
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compared to a previous investigation comparing acute response to continuous and 

intermittent self-paced interval sessions, the between-athlete variability in acute BLa-1 

response in the current thesis was lower during CONT and higher during SHORT (43.1 % 

and 28.2 %, respectively; Nicolò, Bazzucchi, Haxhi, et al. 2014). Another investigation 

which compared effort-matched short intervals (3 sets of; 13 x 30/15 sec) and long 

intervals (4 x 5 min) reported extremely low between-athlete variability in BLa-1 response 

16 % and 15 % (Almquist et al. 2020). These differences may be due to differences in the 

performance level of the athletes included in the studies, as Almquist et al. (2020) included 

athletes of level 4 – 5, and the present thesis included athletes of level 3 – 4 (de Pauw et al. 

2013). This suggests that maximal effort-based training may be most effective for use with 

higher level athletes at reducing between-athlete variability. On a chronic training basis, 

reduced excretion of lactate was able to differentiate between training responders and 

negative-responders based on relative MMP across all intervention groups. This is similar 

to previous interventions in trained participants (Pechlivanis et al. 2013), and it has been 

observed that trained endurance athletes are able to efficiently re-utilise lactate for both 

gluconeogenesis and oxidative metabolism (Emhoff et al. 2013). 

 

In addition to lactate, another metabolite which could provide an insight into energy 

demand and carbohydrate metabolism is citric acid, or the intermediate citrate (Krebs and 

Johnson 1980; Krebs, Salvin and Johnson 1938; Peake et al. 2014; Chorell et al. 2009). On 

an acute-session basis, decreased citric acid excretion was observed immediately following 

LONG and SHORT sessions, likely reflecting the high levels of metabolic acidosis during 

the sessions (Unwin, Capasso and Shirley 2004; Simpson 1983). Interestingly, decreases in 

citric acid excretion was observed between the start of the training session and one hour 

following the training session, but only in LONG and CONT session formats. Whilst this 

may reflect changes in CS activity, it is surprising as previous investigations have found 

increased excretion of the citric acid derivative citrate following acute running exercise 

(Pechlivanis et al. 2013). Following acute sessions of CONT, increased citric acid 

excretion was observed within variable versus consistent athletes, likely highlighting the 

fluctuations in CS activity when athletes complete continuous exercise (Leek et al. 2001). 

Increased citric acid excretion was observed in training responders versus non-responders 

to chronic training using SHORT based on relative V̇O2max, which is supported by previous 

observations of increased CS activity has been observed following training (Vigelsø, 

Andersen and Dela 2014), and urinary excretion of citric acid and citrate (López et al. 
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2010; Nuñez et al. 2012). However, following chronic training, differences in CS activity 

have been reported to range from between 0 % and 100 % (Green et al. 1992; Holloszy et 

al. 1970.; Starritt, Angus and Hargreaves 1999), highlighting that the use of citric acid as a 

biomarker may be challenging due to the many influences on the Krebs Cycle, CS activity, 

and citric acid excretion (Wiegand and Remington 1986). Increases in excretion of the 

dicarboxylic acid succinate was found to be associated with training responders versus 

non-responders based on V̇O2max following chronic SHORT training. However, contrary to 

this, reduced succinate excretion was associated with training responders versus non-

responders based on MMP across all training groups. Whilst succinate has been attributed 

to having an important role in skeletal muscle remodelling following exercise (Reddy et al. 

2020) through the SUCNR1 pathway, it is more commonly associated with its role within 

the TCA cycle for energy generation. With increased succinate excretion associated with 

training response following SHORT, this could reflect the higher energy turnovers 

encountered during chronic training using this format. However, this would not explain the 

observation of reduced succinate excretion in training responders versus non-responders 

based on MMP across all training groups, requiring further investigation into the pathways 

of excretion of succinate and associated metabolic consequences. 

 

Amino acids were observed to respond to acute exercise in the one hour following training, 

but no amino acids were observed to respond to chronic exercise interventions. The 

findings within this thesis of increased urinary excretion of tyrosine in the one hour 

following acute LONG training sessions are in apparent contradiction of decreased 

tryptophan excretion following sub-maximal exercise of varying lengths (Thysell et al. 

2012) and maximal sprint-based HIIT (Pechlivanis et al. 2010). The mechanisms for this 

may be related to high demand for NAD+ following high-intensity exercise for short 

periods (Sahlin et al. 1976; Coelho et al. 2016). The excretion of another amino acid, 

creatine, was observed to be increased in the hour following acute LONG training sessions, 

which may be due to excess creatine within the trained participants in this thesis (Forbes, 

Slade and Meyer 2008), with creatine and associated metabolites being regarded as 

indicators of muscle damage (Jang et al. 2018; Baird et al. 2012). In contrast to this 

finding, reduced creatine excretion has been reported from trained and untrained 

individuals following maximal sprint exercise, highlighting that in some exercise formats, 

creatine excretion may be reduced due to the resynthesis into phosphocreatine for energy 

(Bezrati-Benayed et al. 2014). A reduction in histidine in the hour following acute LONG 

training sessions is in contrast to previous research displaying an increase following 
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maximal exercise (Pechlivanis et al. 2013). However, this may be due to the body utilising 

histidine as an antioxidant following endurance exercise in the present investigation (Son, 

Satsu and Shimizu 2005), in contrast to the sprint exercise of Pechlivanis et al. (2013). 

Increased excretion of the amino acid tyrosine was able to differentiate between variable 

and consistent performance in acute LONG format training sessions. This is again in 

contrast with the previous findings of increased tyrosine excretion following maximal 

sprint training sessions (Pechlivanis et al. 2015). However, there may be a necessary 

threshold of exercise duration for tyrosine excretion to occur, with previous findings of 

increased tyrosine excretion following endurance exercise lasting between 15 and 765 min 

(Haralambie and Berg 1976), and the finding that no differences in tyrosine excretion was 

observed following the SHORT format exercise in the present thesis. 

 

9.1 Thesis limitations 

Whilst the athletes recruited to take part within the experiments reported in this thesis were 

all competitive cyclists, their associated performance level (Level 3 – 4; de Pauw et al. 

2013) may highlight that effort-based training could be more effective in populations of a 

higher performance level. A previous investigation utilising maximal effort-based intensity 

prescriptions displayed lower between-athlete variability (Almquist et al. 2020), 

highlighting an extremely homogenous group of high-level athletes. Future investigations 

should look to screen participants based on performance level to maintain a small range of 

performances within experimental groups. In addition, future research may investigate the 

differences in within- and between-athlete variability dependent on performance level may 

highlight whether the use of effort-based intensity prescriptions is more suited to use 

within athletes above a certain performance level. The inclusion of a comparison method 

of intensity prescription would have allowed this thesis to establish whether effort-based 

intensity prescriptions result in greater or lower within- and between-athlete variability to 

other common prescription methods. It has previously been shown that when training is 

prescribed based on graded exercise test data versus self-paced exercise test data, no 

differences in training responses were observed between groups (Hogg et al. 2018). 

However, other investigations have shown that some methods of training individualisation 

can be more effective than traditional standardised methods at improving exercise 

performance (Weatherwax et al. 2019). This highlights that more research is required to 

identify the most optimal standardised method for prescribing exercise which results in low 

levels of within- and between-athlete variability. The metabolomics investigations within 
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this current thesis were limited by the relatively low number of detected compounds, and 

by the large number of unknown compounds that were not able to be identified. The 

Waters ACQUITY QDa mass analyser used within this thesis would likely be better suited 

for targeted analyses within exercise metabolomics, rather than untargeted metabolomics 

investigations due to the low number of detected compounds. The QDa utilises a single 

quadrupole mass analyser design, which does increase the affordability of the system (Bu 

et al. 2016), there are limitations in the accuracy and sensitivity of the QDa system versus 

others such as TOF analysers with multiple quadrupole setup and ion mobility analysis 

capability (Marshall and Hendrickson 2008). Future untargeted investigations into the 

metabolomic responses to exercise should seek to utilise a system which results in greater 

number of detected compounds, and greater identification of unknown metabolites may be 

improved by the inclusion of more standard compounds. The observation that L-alanine 

failed the mass error threshold in both Chapters 7 and 8 indicates that there may have been 

an issue with the standard compound produced to identify this metabolite. More extensive 

comparisons of standard compound mixtures against analytical urine samples prior to 

experimental runs may ensure this is identified and rectified. The findings within Chapter 8 

suggest that there are only marginal differences in the resting metabolome following a six-

week training intervention, and it is possible that differences would have been observed if 

the metabolomic response to acute exercise was assessed prior to and following the 

training intervention. Future investigations may look to incorporate a study design similar 

to (Pechlivanis et al. 2013), where samples for metabolomic analysis were collected before 

and after the first session of the training intervention and compared to before and after the 

last session of the training intervention. This would provide further insight into the 

physiological changes which differ between intervention groups, further to any changes in 

the resting metabolome before and after a training intervention. 

 

9.2 Future directions of research 

The findings of this thesis highlight the importance of exploring the use of effort-based 

training intensity prescriptions further. Future investigations should compare the within- 

and between-athlete variability of effort-based prescriptions against other methods such as 

%V̇O2max, %LT, %HRR, and intensities prescribed relative to VT1/VT2 or LT1/LT2. This 

would establish whether effort-based intensity prescriptions allow athletes to effectively 

individualise their training to a greater extent than traditional standardised methods.  
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This thesis also highlights how metabolomics techniques could be integrated into exercise 

training research, providing a wealth of information regarding metabolites which are 

upregulated or downregulated, or baseline metabolites which are associated with positive 

training response. Future research may also look to perform repeated training interventions 

on individuals who are non-responsive to one form of training, to further examine whether 

training modality changes can improve the occurrence of training response. 

 

9.3 Conclusions 

The results of this thesis provide a comprehensive overview of the individual variability 

that occurs when exercise training intensity is prescribed using an effort-based approach. 

The first study investigated self-paced exercise bouts of different durations and intensity 

targets, and it has been established that effort-based intensity prescriptions at higher RPEs 

and shorter durations result in lower levels of individual variability. Following this, the use 

of maximal effort-based intensity prescriptions was applied to either long or short interval 

or continuous training sessions. It was found that long intervals resulted in the lowest 

levels of variability in both how the session was performed in addition to the physiological 

response to exercise, compared to the short interval and continuous sessions. Following 

metabolomic analysis of urine samples collected before, immediately after, and 1 h 

following each training session, it was found that metabolites relating to energy turnover, 

purine metabolism, and amino acid metabolism were associated with individuals that were 

consistent or variable in session performance. With the levels of within- and between-

athlete variability in acute session performance established, the chronic use of short and 

long interval formats using maximal effort-based intensity prescriptions were explored. It 

was found that chronic training using short interval formats and maximal effort-based 

intensity prescriptions resulted in greater training response versus the long interval formats 

and a control group. Despite the effectiveness of short interval format at increasing group-

mean performances, the between-athlete variability in chronic training response was also 

found to be highest when utilising this session format. A small number of metabolites 

relating to energy turnover were able to differentiate between training responders and non-

responders, as well as being associated with increased MMP or V̇O2max across all training 

groups.  
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