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Multivariate Relevance Vector Regression based
Degradation Modeling and Remaining Useful

Life Prediction
Xiuli Wang, Member, IEEE, Bin Jiang, Fellow, IEEE, Shaomin Wu, Ningyun Lu, Member, IEEE, and Steven

X. Ding,

Abstract—Relevance Vector Regression (RVR) is a use-
ful tool for degradation modeling and Remaining Useful Life
(RUL) prediction. However, most RVR models are for one-
dimensional degradation processes and can only handle
univariate observations. This paper proposes a degrada-
tion path based RUL prediction framework using a dynamic
Multivariate Relevance Vector Regression (MRVR) model.
Specifically, a multi-step regression model is established
for describing the degradation dynamics and extends the
classical RVR into a multivariate one with consideration
of the multivariate environment. The paper introduces a
matrix Gaussian distribution based RVR approach and
then estimates the hyperparameters with Nesterov’s ac-
celerated gradient method to avoid the exhausting re-
estimation phenomenon in seeking analytical solutions.
It further forecasts the degradation path for monitoring
the degradation status. Based on the forecasted path, the
RUL is predicted by the First Hitting Time (FHT) method.
Finally, the proposed methods are illustrated by two case
studies, one is presented in the paper and the other in
the supplement, both of which investigate the capacitors’
performance degradation in the traction systems of high-
speed trains.

Index Terms—Degradation process, Multivariate rele-
vance vector regression, Nesterov’s accelerated gradient,
Remaining useful life, First hitting time, Capacitors.

I. INTRODUCTION

REMAINING Useful Life (RUL), an important concept
in Prognostics and Health Management (PHM), has

attracted a great deal of attention in recent years. RUL is the
time between the current time instant and the end of the useful
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life. The prediction of RUL helps assess the health status of
a system and obtain an estimation of time before a failure
occurs, based on historical and on-going degradation evolution
and system’s operational and usage conditions [1]. Yang et
al. proposed a RUL prediction method based on a double-
convolutional neural networks (CNNs) model architecture [2].
Cheng et al. developed a novel data-driven framework to
exploit the adoption of deep CNNs in predicting the RULs
of bearings [3]. Chen et al. projected an attention-based deep
learning framework for a machine’s RUL prediction [4]. An
accurate prediction of the RUL provides valuable information
that enables the operator to anticipate the failure occurrence
in advance and then plan maintenance accordingly to avoid
system failures. It has been widely used for enhancing system
safety in various sectors, such as the electronic industry, the
chemical industry, the energy industry, etc [5–7].

Approaches to predicting RUL can be categorized into two
main groups, depending on the type of condition monitor-
ing data: direct and indirect [8]. The direct RUL prediction
approaches mainly focus on the Health Indicator (HI) con-
struction by extracting feature information from the acquired
data that can identify and quantify a history and on-going
degradation process [9]. The indirect approaches monitor and
forecast the evolution of a degradation signal firstly and then
predict the RUL [10]. As the quality of the constructed HI
largely influences the efficacy of the RUL prediction, this
paper proposes a degradation path based RUL method, which
is able to monitor the degradation status and predict the RUL,
without the need of HI construction.

As for the degradation process, kernel-based learning meth-
ods have been widely used for modeling the system degrada-
tion, among which the Support Vector Regression (SVR) and
Relevance Vector Regression (RVR) are the most well known
methods with competitive performance [11, 12]. The SVR is
built by minimizing the generalization error bound to achieve
generalized performance [13, 14]. The RVR is a Bayesian
regression framework, in which the weights of each input are
governed by a set of hyperparameters. These hyperparameters
describe the posterior distribution of the weights and are
estimated iteratively by maximizing the marginal likelihood
over the hyperparameters [15, 16]. As mentioned in [17], the
RVR offers some advantages over the SVR. The prediction of
the RVR is a probabilistic regression model under the Bayesian
framework. Moreover, compared to the SVR, the RVR results
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in a sparser model and facilitates utilizing arbitrary kernel
functions.

Although the RVR provides a promising performance in
terms of both accuracy and sparsity, it only allows regression
from multivariate inputs to a univariate output variable. In
other words, the RVR is not capable of identifying multi-
features for the degradation model. However, in the real
applications, there may be more than one degradation feature.
To overcome this drawback, a number of papers have been
devoted to extending RVR into a multivariate form. Thayanan-
than et al. proposed a RVR to learn a one-to-many mapping
from image features to state space for the pose ambiguity
problem [18, 19]. This method is just a mixture of RVRs with
different parameters, and it is essentially a univariate RVR
method. Mohsenzadeh et al. therefore proposed a relevance
sample-feature machine to perform a joint feature selection
and classifier design simultaneously [20]. Further, Mohsen-
zadeh et al. proposed an incremental relevance sample-feature
machine for high computational cost of large training sets [21].
Nevertheless, there is also a strong limitation that the weight
is designed to be separable with respect to the parameters
that determines the relevance samples and a parameter and
the relevance features in the data set, respectively.

Motivated by the aforementioned considerations, we pro-
pose a Multivariate RVR (MRVR) approach, in which the
weight matrix is inducted by a matrix Gaussian distribution
instead of separating into a vector distribution. To address
the RUL prediction issue under the dynamic degradation
path, a MRVR model is firstly constructed by extending the
classical RVR approach to a multivariate one, which is also
a multi-step model considering the dynamic characteristics
of the degradation process. Then, the hyperparameters of the
MRVR model are estimated by Nesterov’s Accelerated Gradi-
ent (NAG) method to obtain numerical solutions. Afterwards,
the degradation path is forecasted based on the estimated
hyperparameters. Concerning the forecasted path, the RUL is
predicted by the First Hitting Time (FHT) approach. The major
contributions and novelty are summarized as follows.

1) A degradation path based RUL framework is constructed
through a multi-step dynamic MRVR model for the
dynamic and multivariate degradation process. Different
from the existing RVR method, which is a static re-
gression model, our proposed model can describe the
relationship between time-related future features and his-
torical samples of features. The degradation tendency
can therefore be monitored in advance under this RUL
framework; and

2) The existing RVR is extended into a multivariate model,
in which the weight matrix obeys a matrix Gaussian
distribution. Due to the computational complexity of the
matrix distribution, the analytical solutions of the hyper-
parameters of MRVR cannot be obtained with commonly
used methods. The evidence function is deduced step by
step for hyperparameters estimation.

The remainder of this paper is arranged as follows. Section
II establishes a dynamic MRVR. Section III estimates the
hyperparameters of MRVR using the NAG method. Section

IV provides the degradation path and RUL prediction methods.
Section V uses a case study to demonstrate the feasibility and
effectiveness of the proposed algorithm. Finally, Section VII
concludes the paper and proposes future work.

II. DYNAMIC MODELING BASED ON MULTI-STEP MRVR

Given an observed degradation series x1:N =
{x1,x2, · · · ,xN} along with a series of time points
{t1, t2, · · · , tN}, where xn = [x1,n, · · · , xM,n]

T ∈ RM (n =
1, 2, · · · , N) is a multivariate vector, M represents the
dimension of the multivariate space, and N denotes the
sample size. A dynamic model can be established via a
multi-step MRVR as

xn+l = Wϕ(xn) + ϵ, (1)

where xn+l = [x1,n+l, · · · , xM,n+l]
T ∈ RM represents the

l−step prediction vector, and 1 < n + l ≤ N ; ϕ(xn) =
[1,K(xn,x1), · · · ,K(xn,xN )] ∈ RN+1 denotes a design
vector, in which K(xn,xj) ∈ R is a kernel function between
the vector xn and xj(j = 1, 2, · · · , N), W ∈ RM×(N+1)

is a weight matrix of the design vector ϕ(xn) ≜ ϕ, and
ϵ is assumed to be a Gaussian distributed random error
vector with the zero mean and a diagonal covariance matrix
Σ0 = diag{σ2

1 , σ
2
2 , · · · , σ2

M} ∈ RM×M , and diag(·) denotes
a diagonal matrix.

A kernel function projects the input features into a higher
dimensional space, by which the model becomes a linear
regression model. Commonly used kernels include the linear
kernel, the polynomial kernel, the Gaussian kernel, and the
S-type kernel [22]. As the Gaussian kernel owns a strong
generalization ability, it is adopted to construct the basis
function ϕ(xn) in this study.

The classical RVR is inherently a static univariate algorithm,
which may reduce model accuracy and cannot capture the
evolution of degradation features. Additionally, a univariate
RVR is often not powerful enough to describe the behavior
of engineering systems. The operation of many engineering
systems is influenced by multiple variables. For example,
current and voltage are indispensable for electrical systems.
Hence, this study develops a multivariate dynamic model that
describes the relationship between time-related future features
and historical samples of features. As shown in (1), it is an
extension of the classical RVR from a univariate static model
to a multivariate dynamic model.

The Probability Density Function (PDF) of xn+l condi-
tioned on W and Σ0 can be written by

p(xn+l|W ,Σ0) = (2π)−
M
2 |Σ0|−

1
2

× exp

(
−1

2
(xn+l −Wϕ)TΣ−1

0 (xn+l −Wϕ)

)
,

(2)

where | · | is the determinant of a square matrix. To avoid
the over-fitting problem of model (1), a prior matrix Gaussian
distribution is assigned on the M× (N+1) dimension weight
matrix W , which is denoted as W ∼ MNM,N+1(0,Ψ,Γ). It
suggests the random matrix W is governed by the zero mean
matrix and variance matrix Ψ = diag(Ψ1,Ψ2, · · · ,ΨM ) ∈
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RM×M , Γ = diag(Γ1,Γ2, · · · ,ΓN+1) ∈ R(N+1)×(N+1).
Then we have

p(W |Ψ,Γ) = (2π)−
M(N+1)

2 |Ψ|−N+1
2 |Γ|−M

2

× etr
(
− 1

2Γ
−1WTΨ−1W

)
,

(3)

where etr(·) is the exponential function of the trace of the
matrix.

The matrix Gaussian can be converted into a multivariate
Gaussian form by Lemma 1.

Lemma 1. (Vectorizable [23]) W obeys a M×(N+1)-matrix
Gaussian distribution, i.e. W ∼ MN (0,Ψ,Γ) if and only if
vec

(
WT

)
obeys a M(N + 1)-variate Gaussian distribution,

i.e. vec
(
WT

)
∼ NM(N+1) (0,Ψ⊗ Γ), where vec(·) is the

vector operator and ⊗ is the Kronecker product (or tensor
product).

On the basis of Lemma 1, the posterior PDF of vec(WT)
is given in (4) and its detailed derivation process is provided
in Appendix A.

p
(
vec(WT)|xn+1,Ψ,Γ

)
= (2π)−

M(N+1)
2 |Σ−1|

× exp

(
−1

2
(vec(WT)− µ)TΣ−1(vec(WT)− µ)

)
,

(4)

where the mean µ and variance Σ are

µ = vec
(
ΓϕxT

n+lΣ
−1
0 Ψ

)
+ vec

(
(ϕϕT)−1ϕxT

n+l

)
, (5)

and

Σ = Ψ⊗ Γ+Σ0 ⊗ (ϕϕT)−1 (6)

respectively. According to the mean of vec(WT), conditioned
on xn+l and shown in (5), the mean of p(W |xn+l,Ψ,Γ,Σ0)
is obtained by,

µ̃ = ΨΣ−1
0 xn+lϕ

TΓ+ xn+lϕ
T
(
ϕϕT

)−1
. (7)

According to [24], the matrix Σ in (6) can be decomposed into
a Kronecker product of two matrices, the covariance matrices
of W under the condition of xn+l are obtained, which is
denoted by Ψ̃ ∈ RM×M and Γ̃ ∈ R(N+1)×(N+1). Then, the
posterior distribution of weight matrix W is matrix Gaussian,
and its PDF is formulated in the following form.

p(W |xn+l,Ψ,Γ,Σ0) = (2π)−
M(N+1)

2 |Ψ̃|−N+1
2

×|Γ̃|−M
2 etr

(
− 1

2 Γ̃
−1(W − µ̃)TΨ̃−1(W − µ̃)

)
.

(8)

III. PARAMETER ESTIMATION

The hyperparameters Ψ, Γ and Σ0 should be estimated
to make the multi-step dynamic model (1) available. An
evidence function is evaluated firstly by the Bayes’ theorem.
The hyperparameters are then estimated via the NAG method.

A. Evaluation of the Evidence Function

Theoretically, when a new input vector xk (k > N ) is
available, the distribution of the predicted xk+l, based on the

former prediction xn+l, can be obtained by

p (xk+l|xn+l) =

∫∫∫∫
p (xk+l|W ,Σ0) p (W |xn+l,Ψ,Γ,Σ0)

× p (Ψ,Γ,Σ0|xn+l) dWdΨdΓdΣ0. (9)

Although we can integrate analytically over either W or
the hyperparameters Ψ, Γ and Σ0, the complete marginal-
ization over all of these variables is analytically intractable.
Here, the evidence approximation is applied in which the
hyperparameters Ψ, Γ and Σ0 are set to specific values by
maximizing the marginal likelihood function that integrates
over the parameters W .

From Bayes’ theorem, the posterior distribution for Ψ, Γ
and Σ0 is given by

p (Ψ,Γ,Σ0|xn+l) ∝ p (xn+l|Ψ,Γ,Σ0) p (Ψ,Γ,Σ0) . (10)

If the prior is relatively flat, then the hyperparameters Ψ, Γ
and Σ0 can be estimated by maximizing the marginal likeli-
hood function p (xn+l|Ψ,Γ,Σ0) in the evidence framework.
The marginal likelihood function p (xn+l|Ψ,Γ,Σ0) can be
obtained by integrating over the weight parameters W as

p (xn+l|Ψ,Γ,Σ0) =

∫
p (xn+l|W ,Σ0) p(W |Ψ,Γ)dW

=

∫
p
(
xn+l| vec

(
WT

)
,Σ0

)
p(vec

(
WT

)
|Ψ,Γ)d vec

(
WT

)
.

(11)

The integral will then be evaluated by completing the square
in the exponent and making use of the standard form for the
normalization coefficient of the Gaussian distribution. From
(2) and (3), the evidence function (11) can be written as

p (xn+l|Ψ,Γ,Σ0) =(2π)−
M(N+2)

2 |Σ0|−
1
2 |Ψ|−

N+1
2 |Γ|−M

2

×
∫

exp[−E(vec
(
WT

)
)]d vec

(
WT

)
,

(12)

where E(vec
(
WT

)
) is given by

E
(
vec

(
WT

))
=
1

2

(
(xn+l −Wϕ)

T
Σ−1

0 (xn+l −Wϕ)

+
(
vec

(
WT

))T
(Ψ⊗ Γ)−1 vec

(
WT

))
.

(13)
Then, the quadratic form of vec(WT) is given as

E(vec(WT)) =
1

2

(
vec

(
WT

)
− µ

)T
A

(
vec

(
WT

)
− µ

)
+E(µ),

(14)
where µ is the mean of the posterior distribution of
the vec(WT) and is provided in (5) and A =(
Σ−1

0 ⊗ ϕϕT
)
+ (Ψ ⊗ Γ)−1 happens to be the precision of

p(vec(WT)|xn+l,Ψ,Γ,Σ0). One can therefore have

E(µ) =
1

2
xT
n+l

(
Σ−1

0 −
(
Σ−1

0 ⊗ ϕT
)
A−1

(
Σ−1

0 ⊗ ϕ
))

xn+l.

(15)
The integral over W can be evaluated by converting it to the
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standard multivariate Gaussian, giving∫
exp

(
−E(vec(WT))

)
d vec(WT) = exp (−E (µ))

×
∫

exp

(
−1

2

(
vec(WT)− µ

)T
A

(
vec(WT)− µ

))
d vec(WT)

= exp (−E(µ)) (2π)
M(N+1)

2 |A|− 1
2 . (16)

Using (12), the negative log of the marginal likelihood is
acquired by

L (Ψ,Γ,Σ0) =
1

2
ln |Σ0|+

N + 1

2
ln |Ψ|+ M

2
ln |Γ|

+
1

2
ln |A|+ E(µ) +

M

2
ln(2π),

(17)

which is the required expression of the evidence function.

B. Hyperparameters’ Estimation by the NAG Method
Using the chain derivation rule of the multivariate composite

function, the partial derivatives of ln |A| and E(µ) to Ψi,
σ2
i (i = 1, 2, · · · ,M), and Γj , (j = 1, 2, · · · , N + 1) are

calculated as
∂ ln |A|
∂Ψi

=− tr
(
A−1

((
Ψ−2Eii

)
⊗ Γ−1

))
,

∂ ln |A|
∂Γj

=− tr
(
A−1

(
Ψ−1 ⊗

(
Γ−2Ejj

)))
,

∂ ln |A|
∂σ2

i

=− σ−4
i tr

(
A−1

(
Eii ⊗

(
ϕϕT

)))
,

∂E(µ)

∂Ψi
=
1

2
xT
n+l

(
Σ−2

0 ⊗
(
ϕTϕ

))
xn+l tr (Eii ⊗ Γ) ,

∂E(µ)

∂Γj
=
1

2
xT
n+l

(
Σ−2

0 ⊗
(
ϕTϕ

))
xn+l tr (Ψ⊗Ejj) ,

∂E(µ)

∂σ2
i

=
1

2
xT
n+l

(
−σ−4i Eii+2σ−4i

(
Eii⊗ϕT

)
A−1 (Σ−1

0 ⊗ϕ
)

−
(
Σ−1

0 ⊗ ϕT
) (

Eii⊗
(
ϕϕT

)−1) (
Σ−1

0 ⊗ϕ
))

xn+l,

(18)
respectively, where Eii is a matrix, in which the (i, i)th ele-
ment is 1, and zeros elsewhere. The derivatives of the negative
log marginal likelihood L with respect to hyperparameters Ψi,
Γj and σ2

i are as follows:

∂L
∂Ψi

=
N + 1

2Ψi
+

1

2

∂ ln |A|
∂Ψi

+
∂E(µ)

∂Ψi
,

∂L
∂Γj

=
M

2Γj
+

1

2

∂ ln |A|
∂Γj

+
∂E(µ)

∂Γj
,

∂L
∂σ2

i

=
1

2σ2
i

+
1

2

∂ ln |A|
∂σ2

i

+
∂E(µ)

∂σ2
i

.

(19)

It is noteworthy that by setting the left side of each equation
in (19) to 0, it is difficult to obtain explicit solutions of the
hyperparameters Ψi, Γj and σ2

i , and widely used re-estimation
methods also seem to be unreliable. So, the NAG method is
used to obtain numerical solutions of the hyperparameters in
this study [25]. An algorithm, i.e., Algorithm 1, is shown in
the following.

NAG prescribes a particular formula for the learning rate
α and the momentum constant u. Usually, the learning rate

Algorithm 1: Hyperparameter Ψi, (i = 1, 2, · · · ,M)
Estimation by NAG Method

Input: initial learning rate α0 > 0
, momentum constant u ∈ [0, 1], initial hyperparameter
Ψi0, and the total number of iterations S.

Output: optimal hyperparameter Ψ∗
i

for s = 1, 2, · · · , S do
αs = α010

−s/S ,
vs = uvs−1 − αs∇L (Ψi,s−1 + uvs−1),
Ψis = Ψi,s−1 + vs,
where ∇L (Ψi,s−1 + uvs−1) is calculated via

replacing Ψi with Ψi,s−1 + uvs−1 in the first
formula of (19).

end

is set large enough to ensure a fast convergence rate at the
beginning, and then slowly decays to ensure that optimal stable
points can be reached. So an exponential decay function αs =
α010

−s/S is chosen in this paper, where α0 is an initial value
of the learning rate, where s denotes an iteration variable and
S represents the total number of iterations. The momentum
constant u (∈ [0, 1]) controls the “decay” of the velocity vector
v. A higher value of u makes the gradient change in a quicker
way. So u usually takes a value close to 1, for example, 0.9.

Correspondingly, the hyperparameters Γj (j =
1, 2, · · · , N + 1) and σ2

i (i = 1, 2, · · · ,M) can be estimated
by following analogous procedures of the Algorithm 1. Due
to their similarity, no further discussion is presented here.

IV. DEGRADATION PATH AND RUL PREDICTION

A. The Predicted PDF of Degradation Path

With the estimated hyperparameters Ψ∗, Γ∗ and Σ∗
0, when

a new vector xk is available, the PDF of l−step prediction
xk+l based on the historical data can be calculated by

p (xk+l|xn+l) =

∫
p (xk+l|W ,Σ∗

0) p (W |xn+l,Ψ
∗,Γ∗) dW

=

∫
p
(
xk+l| vec(WT),Σ∗

0

)
p
(
vec(WT)|xn+l,Ψ

∗,Γ∗) dvec(WT)

(20)
The conditional PDF p

(
xk+l| vec(WT),Σ∗

0

)
and the poste-

rior weight PDF are given by replacing the estimated hyper-
parameters Ψ∗, Γ∗ and Σ∗

0 into (2) and (4), respectively. It
is obvious that (20) involves a convolution of two Gaussian
distributions, and it can be regarded as a marginal PDF by
taking (xk+l|xn+l) and vec(WT) as random variables.

Following a similar procedure to that shown in Appendix
A, the joint PDF can be obtained for the random variables
(xk+l|xn+l) and vec(WT). Then, the marginal PDF is easily
obtained from the partitioned mean and covariance matrices of
the joint distribution. The PDF of the degradation prediction
takes the form

p (xk+l|xn+l) = N
(
xk+l|Σ0(Σ

−1
0 ⊗ ϕT(xk))ΛΣ−1µ,Σk

)
,

(21)

4
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where µ and Σ are presented by (5) and (6), respectively. The
covariance Σk of the predictive distribution is given by

Σk = Σ0 +Σ0

(
Σ−1

0 ⊗ ϕT (xk)
)
Λ
(
Σ−1

0 ⊗ ϕ (xk)
)
Σ0,

(22)
in which

Λ =
(
Σ−1 +

(
Σ−1

0 ⊗ ϕ (xk)ϕ
T (xk)

)
−
(
Σ−1

0 ⊗ ϕ(xk)
)
Σ0

(
Σ−1

0 ⊗ ϕT (xk)
))−1

.

The first term in (22) represents the noise on the data whereas
the second term reflects the uncertainty associated with the
parameters W . Because the noise process and W are inde-
pendent and both are Gaussian, their covariances are additive.

B. RUL Prediction

As the FHT describes the relationship between the time and
the degradation path, it is used for RUL prediction with the
estimated degradation path. Given the observed measurements
x1,x2, · · · ,xk, the RUL of each variable at time tk is defined
by

Lik ≜ Li(tk) = inf{tl : xi(tk + tl) ≡ xi,k+l ∈ Bi|x1:k},
(23)

where inf{·} denotes the infimum of a discrete set in this
study; tl represents the time length of the multi-step prediction;
xi(tk + tl) represents the degradation path at time tk + tl,
which is denoted by xi,k+l and forecasted by the mean of
(21); x1:k denotes the historical measurements from t1 to tk;
and Bi refers to a boundary set (i.e., threshold set), containing
a boundary, barrier, or failure threshold, which is usually
determined by empirical knowledge [26].

The FHT is the time when the degradation path first hits
the boundary set Bi, which defines a stopping condition for
the degradation process. With (23), the predicted PDF of the
RUL can be completely derived according to [27], in which
the mean of the RUL is obtained by

Ei(tk) =

+∞∑
Lik=0

Lik · pi(Lik), (24)

where

pi(Lik) =
ϕ(gi,k+l)∆gi,k+l

1− Φ(gi,k)
, (25)

ϕ(·) and Φ(·) are the PDF and cumulative distribution function
of a standard normal random variable, respectively; gi,k+l =

(µ̃i,k+l − Hi)/
√
σ̃2
i,k+l, ∆gi,k+l represents the deviation of

gi,k+l on tk+l, where Hi ∈ Bi is a failure threshold of the ith-
variate; µ̃i,k+l is the mean of the predicted xi,k+l; and σ̃2

k+l

denotes the variance of xi,k+l. µ̃i,k+l and σ̃2
k+l are obtained

by extracting the ith term of the mean and variance from (21),
respectively.

According to (24) and the relationship between variance and
mean, the standard deviation of RUL is obtained by σi(tk) =√
Ei(t2k)− E2

i (tk), where Ei(t
2
k) denotes the mean of L2

ik,
which can be obtained by replacing Lik with L2

ik in (24).
Then, the lower and upper RUL uncertainty bounds at time

tk, D(tk) and U(tk), for each variable xi,k, are estimated by
the 3σ-criterion as follows,

Di(tk) = Ei(tk)− 3σi(tk) (26)
Ui(tk) = Ei(tk) + 3σi(tk) (27)

respectively.
As the RUL predictions seriously vary with the uncertainties

between different variables, the RUL values are different
for each variable. In order to reduce the effect of different
variables to the RUL prediction, the RUL, the lower and upper
bounds of the components are derived by averaging the RUL
predictions and the bounds of each variable, which are given
as below.

R̂UL(tk) =

M∑
i=1

Ei(tk)/M, (28)

D(tk) =

M∑
i=1

Di(tk)/M, (29)

and

U(tk) =

M∑
i=1

Ui(tk)/M, (30)

where R̂UL(tk), D(tk), and U(tk) are the estimates of the
RUL, the lower and upper bounds of components at time tk,
respectively.

Finally, an algorithm is proposed to show the entire pro-
cedure of estimating the model, the degradation path and the
RUL prediction in Algorithm 2, respectively.

V. CASE STUDY I
A. Platform Introduction and Feature Selection

In this section, an experimental platform, developed by the
CRRC Zhuzhou Institute and the Central South University,
China, is applied to validate the proposed MRVR method
[28, 29]. As shown in Fig. 1, the hardware-in-the-loop platform
chiefly includes a Traction Control Unit (TCU), a dSPACE
real-time simulator, a signal conditioner, a host PC, and a
power source. Briefly, fault injection algorithms, as well as
control programs of the rectifier-side and the inverter-side, are
loaded into the TCU. The whole methodology is integrated
into the dSPACE simulator. The signal conditioner converts
signals between the TCU and the dSPACE simulator. The host
PC controls the running times of the system and monitors the
sensor waveforms from the TCU and simulator.

DC-link capacitors are useful for maintaining the stability of
voltages for the traction converter, whose electrical diagram is
shown by Fig. 2. According to [30], a performance degradation
is simulated by an exponential decay function shown in the
following formula.

Cdeg =

{
C 0 ≤ t ≤ tdeg

C · e−a(t−tdeg) t ≥ tdeg
(31)

where Cdegra is the degraded capacitance value; C is the
nominal capacitance value; t is the simulation time; tdegra
is the start time of degradation; and a ∈ [0, 1] determines
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Algorithm 2: The MRVM based Degradation Path and
RUL Prediction

for Train Process do
Input: The observed degradation series x1:N =

{x1,x2, · · · ,xN}
Output: The estimated hyperparameters Ψ∗, Γ∗,

Σ∗
0

1. Establish the dynamic MRVM model as (1);
2. Introduce a prior matrix Gaussian distribution over

W as (3);
3. Evaluation the evidence function as (17);
4. Estimate the unknown hyperparameters Ψ, Γ, and

Σ0 by the NAG method referring the Algorithm 1.
end
for Degradation Path Prediction do

Input: The estimated hyperparameters Ψ∗, Γ∗, Σ∗
0

Output: The PDF of l−step prediction xk+l

1. Obtain the joint PDF for the random variables
(xk+l|xn+l) and vec(WT);

2. Partition mean and covariance matrices of the joint
distribution and get the PDF of the degradation
prediction as (21).

end
for RUL Prediction do

Input: The PDF of the degradation path
Output: The mean, the low and high bounds
of RUL
1. Induct the RUL mean, the low and high bounds of

each variate as (24), (26) and (27);
2. Obtain the RUL mean, the low and high bounds of

the component as (28), (29) and (30).
end

the degree of degradation. In this study, the value of normal
capacitance C is 4250µF. The sampling frequency is 2500Hz.
The total simulation time t is set to 1.3s. The degradation
start time tdegra is 0.3s. The degradation coefficient a is set
to 0.01 according to the engineering experience. Loading the
exponential decay function into the TCU, the up and down
terminal voltages of the DC-link, the sum of the three-phase
current of the inverter, and the electromagnetic torque of the
motor are collected from the PC and shown in Fig. 3.

As seen in Fig. 3, the curves varying with time go through
three stages: the features fluctuate steadily during their normal
stage; then the features degenerate with changing tendencies
during the degradation stage; finally the tendencies deteriorate
until the system’s self-protection is triggered, which suggests
the end of life. Considering the degradation path over time, we
further extract the peaks of the terminal voltages, the sum of
the three-phase current, and the electromagnetic torque from
the original data as the degradation features. The peak is
calculated by xp = max(x) for each variable. The whole
selected peaks are depicted in Fig. 4.

Fig. 1: The hardware-in-the-loop experimental platform.

Fig. 2: The electrical diagram of the traction converter.

B. Degradation Modeling and Degradation Path Estima-
tion

Starting from the 801st sampling point, the MRVR modeling
is performed by identifying the unknown hyperparameters Ψ,
Γ and Σ0, which are obtained by the NAG method proposed
in III-B. Then, according to the method proposed in IV-A, the
fitted model is extrapolated to estimate the propagation signals
for monitoring the degradation status in advance.

In order to thoroughly evaluate the performance of the pro-
posed MRVR, more degradation prediction results are acquired
from different training intervals (i.e. N’s are different). The
data measured from the 801st sampling point to the 1300th
were selected as the training set of the proposed MRVR model,
and then the 10-step (l in model (1)) ahead of the future
degradation path is estimated according to (21). The data from
the 801st sampling point to the 2000th of each feature is
also used as a new training set for the comparison purpose
of the MRVR method with different training intervals. The
performance of MRVR in predicting the features’ degradation
paths is shown in Figs. 5-6. Moreover, performance indexes,
the Mean Absolute Error (MAE) and Normalized Root Mean
Relative Error (NRMSE), are adopted to evaluate the predic-
tion performance with different training intervals under the

6
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(c) The electromagnetic torque of motor.

Fig. 3: Collected data from the experimental platform.

MRVR method [5]. As illustrated by the Table I, the accuracy
of prediction varies with the amount of the training data in
the sense that a large amount of training data lead to a higher
prediction accuracy.

Further, the estimation results of degradation path based on
MRVR are compared with the classical RVR to highlight the
superiority of the proposed method. The RVR based degra-
dation path estimation is performed on the same training set.
The forecast horizon as the MRVR method and the estimated
results are exhibited in Figs. 5-6. It is observed from Fig. 5
that the RVR based trained values cannot fit the actual ones
well when the amount of training data is small. With the
increasing of the training data, as shown in Fig. 6, the predicted
degradation path based on the RVR becomes as accurate as
the MRVR.

C. RUL Prediction and Prognostic Performance Evalua-
tion

Starting from the 1701st sampling point, inspections of
the degradation path of all features are made at predefined
inspection times. The interval between two successive inspec-
tions is equal to 30 sampling points, to avoid too frequent
and costly inspections of the component. At each inspection,
MRVR regression is performed on the training data. The fitted
model is then extrapolated to predict the times at which the
degradations reach their thresholds. The threshold for the up
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(c) The peak of electromagnetic torque.

Fig. 4: The peaks selected from the collected data.

and down terminal voltage, the sum of three-phase currents,
and the torque are 2087V , 3230V , 0.1766A, and 2254N ∗m,
respectively. The RUL, the low and high bounds of the RUL
are then calculated by (28)-(30). The predicted results are
shown in Fig. 7, with the comparative result based on the
RVR method.

As illustrated by Fig. 7, the RUL prediction accuracy for the
MRVR is apparently greater than the RVR, especially there is
lag prediction for the RVR before the 2080th sampling point.
This phenomenon is caused by the amount of the training data
for training the degradation model, and the accuracy of RUL
prediction extremely relies on the estimated degradation path.
With the increasing of the training data, the predicted RUL is
almost consistent with the actual one, both for the proposed
MRVR and the classical RVR method.

Performance indexes, MAE and NRMSE, are adopted to
evaluate the prediction performance between the MRVR and
the RVR method. The performance indexes are presented in
Table II. The performance indexes from Table II once again
demonstrate that the prediction accuracy of the MRVR is better
than that of the RVR.

VI. CASE STUDY II-PUBLIC PROGNOSTIC BEARING
DATASETS

A. Data Description
A group of public bearing datasets, i.e., XJTU-SY bearing

datasets, are used to demonstrate our proposed approach [31].

7



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

TABLE I: The performance metric comparisons with different training intervals under the MRVR method

Performance Metric 801st − 1300th 801st − 2000th

Uu(V ) Ud(V ) I(A) T (N ∗ m) Uu(V ) Ud(V ) I(A) T (N ∗ m)

MAE 4.3207 0.7780 4.6721 × 10−6 1.6472 6.7970 × 10−4 1.1628 × 10−4 1.7182 × 10−9 2.6296 × 10−4

NRMSE(%) 0.1967 0.0325 0.0051 0.1113 3.7127 × 10−5 5.3427 × 10−6 1.4818 × 10−6 1.8809 × 10−5

* Uu: Up terminal voltage; Ud: Down terminal voltage; I: the sum of three-phase currents; T: Electromagnetic torque.

(a) The estimated voltages of RVR and MRVR method.

(b) The estimated current of RVR and MRVR method.

(c) The estimated electromagnetic torque of RVR and MRVR method.

Fig. 5: The estimated degradation path of the RVR and the
MRVR method under the 500 training data.

TABLE II: The performance metric
comparisons between the MRVR and

the RVR

Performance
metric MRVR RVR

MAE 13.8804 24.6257
NRMSE(%) 3.4113 5.8745

(a) The estimated voltages of RVR and MRVR method.

(b) The estimated current of RVR and MRVR method.

(c) The estimated electromagnetic torque of RVR and MRVR method.

Fig. 6: The estimated degradation path of the RVR and the
MRVR method under the 1200 training data.

Fig. 7: The comparison of predicted RUL between the RVR
and the MRVR method.
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The XJTU-SY bearing datasets are provided by the Xi’an
Jiaotong University (XJTU) and the Changxing Sumyoung
Technology Co., Ltd. (SY), Zhejiang, China. Two accelerom-
eters are placed on the bearings and positioned at 90◦ to each
other: one is placed on the vertical axis and the other one on
the horizontal axis. Fig. 8 shows the horizontal and vertical
vibration signals of one bearing during the whole operating
life, in which the blue solid line illustrates the raw data and
the red dotted line illustrates the peaks extracted from the raw
data.
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(b) The vertical vibration signals.

Fig. 8: The data extracted from the bearing.

It can be seen from Fig. 8 that the complete bearing
degradation process is comprised of two different stages, i.e.,
the normal operating stage and the degradation stage. The
vibration signals in the normal operating stage only present
random fluctuations at a low level whereas in the degradation
stage they show an increasing trend over operating time. In
this paper, for the MRVR modeling, the degradation path and
RUL prediction, the horizontal and vertical data are collected
after the system has operated for 78 minutes. The bearings
are stopped when the amplitudes of the horizontal and vertical
vibration signals are higher than 25g and 15g, respectively.

B. Degradation Path Prediction
The proposed MRVR model (1) is trained by selecting

the extracted peaks during 80 − 100min as inputs and
80.6 − 100.6min data as outputs and following the training
process of Algorithm 2. Then, with this trained MRVR model,
degradation tendencies of the horizontal and vertical signals
are predicted based on the mean of the random variable
following the distribution shown in Eq (21), which are shown
in Fig. 9.

Moreover, the predicted results of the degradation path
based on MRVR are compared with the one based on RVR,
which is performed on the same training set. The results from

the RVR are also exhibited in Fig. 9. As illustrated by Fig.
9(a), the predicted degradation path based on the RVR exceeds
its failure threshold 25g before that based on the MRVR. As
shown in Fig. 9(b), however, the predicted degradation path
based on the RVR cannot follow the actual vertical amplitude
so well as that based on the MRVR. This confirms that the
MRVR outperforms the RVR.
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(a) The predicted amplitudes of the horizontal signal based on the RVR and MRVR.
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(b) The predicted amplitudes of the vertical signal based on the RVR and MRVR.

Fig. 9: The predicted degradation path based on the RVR
and the MRVR.

C. RUL Prediction

With the predicted amplitudes of the horizontal and vertical
signals, the RUL of the bearing is predicted by the FHT
method proposed in Section IV.B in this paper. It is assumed
that the bearing’s RUL is inspected every 2min. Then, the
RUL is predicted by Eq. (28) and compared with that based
the RVR method, which are shown in Fig 10.
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Fig. 10: The comparison of predicted RUL between the RVR
and the MRVR methods for bearing.

The performance metrics, MAE and NRMSE, are adopted
to evaluate the prediction performance between the MRVR and
the RVR. The comparison results are presented in Table 1.
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TABLE III: The performance
metric comparisons between the
MRVR and the RVR for bearing

Performance
metric MRVR RVR

MAE(min) 0.7960 2.3594
NRMSE(%) 8.7793 24.3193

Both the predicted values in Fig. 10 and the performance
indexes in Table III demonstrate that the prediction results
based on the MRVR outperform those based on the RVR.

VII. CONCLUSION

In this study, a degradation path based RUL framework
was constructed by a dynamic MRVR model. First of all,
a multi-step regression model was established for describing
the degradation dynamics. Then, the regression model was
extended into a MRVR one by introducing a matrix Gaussian
distribution into the classical RVR approach, wherein the
hyperparameters were estimated by the Nesterov’s accelerated
gradient method to avoid tricky analytical solutions. Based
on the degradation path forecasted by the MRVR approach,
the RUL was predicted through the FHT method. Finally, the
proposed schemes were demonstrated by a case study, which
investigated the capacitors’ performance degradation in the
traction systems of the high-speed trains.

The proposed MRVR approach is intrinsically a top-down
approach, which begins with all of the training samples and
then prunes out the irrelevance samples in each iterative. Our
future work will focus on an incremental version of MRVR in
order to reduce the computational complexity caused by a large
number of data. Moreover, robustness is an important property
for regression problems. The proposed MRVR is under a
Gaussian distributed framework, which owns a poor robust
property. The MRVR method will be extended to a robustness
form for the outlier regression problem in the future.

APPENDIX A
THE POSTERIOR DISTRIBUTION OF THE VECTORIZED

WEIGHT

Firstly, the distribution of the joint of xn+l and W needs
establishing. To do this, we define

z =

(
vec

(
WT

)
xn+l

)
. (32)

Then the log PDF of z is given by

ln p(z) = ln p(vec(WT)|Ψ,Γ) + ln p(xn+l|W ,Σ0)

=− 1

2
(vec(WT))T(Ψ⊗ Γ)−1 vec(WT)

− 1

2
(xn+l −Wϕ)TΣ−1

0 (xn+l −Wϕ) + const

=− 1

2
(vec(WT))T(Ψ⊗ Γ)−1 vec

(
WT

)
− 1

2
xT
n+lΣ

−1
0 xn+l +

1

2
xT
n+l(Σ

−1
0 ⊗ ϕT) vec(WT)

+
1

2
(vec(WT))T(Σ−1

0 ⊗ ϕ)xn+l

− 1

2

(
vec

(
WT

))T
(Σ−1

0 ⊗ (ϕϕT)) vec
(
WT

)
+ C

(33)

where ‘C’ denotes terms independent of vec(WT) and xn+l.
Since (33) is a quadratic function of the components of z, the
variable z is Gaussian distributed.

Next, an explicit expression for the conditional PDF
p(vec(WT)|xn+l,Ψ,Γ) should be sought. An important
property of the multivariate Gaussian distribution is that if
two sets of variables are jointly Gaussian, then the condi-
tional distribution of one set conditioned on the other is
also Gaussian [22]. Since Gaussian distribution is completely
characterized by its mean and its covariance, our goal will
be to identify expressions for the mean and covariance
of p(vec(WT)|xn+l,Ψ,Γ). Such problems can be solved
straightforwardly by regarding the xn+l in (33) as a con-
stant and setting the coefficient of the second order term in
vec(WT) to the precision (inverse covariance) matrix Σ−1

and the coefficient of the linear term in vec(WT) to Σ−1µ,
from which we can obtain mean µ and variance Σ. This
method is called “completing the square”.

So, consider the functional dependence of (33) on vec(WT)
in which xn+l is regarded as a constant. If all terms that are
second order are picked out from vec(WT), there is

−1

2
(vec(WT))T((Ψ⊗ Γ)−1 +Σ−1

0 ⊗ (ϕϕT)) vec(WT)

(34)

from which, it can immediately conclude that the covariance
(inverse precision) of p(vec(WT)|xn+l,Ψ,Γ,Σ0) is given by

Σ = Ψ⊗ Γ+Σ0 ⊗ (ϕϕT)−1. (35)

Now consider all of the terms in (33) that are linear in
vec(WT)

vec(WT)T(Σ−1
0 ⊗ ϕ)xn+l (36)

Then, the mean of p(vec(WT)|xn+l,Ψ,Γ) is obtained as

µ = Σ
(
Σ−1

0 ⊗ ϕ
)
xn+l

=
(
ΨΣ−1

0 ⊗ Γϕ
)
xn+l +

(
IM ⊗

(
ϕϕT

)−1
ϕ
)
xn+l

= vec
(
ΓϕxT

n+lΣ
−1
0 Ψ

)
+ vec

(
(ϕϕT)−1ϕxT

n+l

)
(37)

where IM denotes the identity matrix of order M . And the
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PDF of vec(WT) conditioned on xn+l, Ψ, and Γ are

p
(
vec(WT)|xn+1,Ψ,Γ

)
= (2π)−

M(N+1)
2 |Σ−1|

× exp

(
−1

2
(vec(WT)− µ)TΣ−1(vec(WT)− µ)

) (38)
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