
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Tang, Guolin, Long, Jianpeng, Gu, Xiaowei, Chiclana, Francisco, Liu, Peide and Wang, Fubin
  (2021) Interval Type-2 Fuzzy Programming Method for Risky Multicriteria Decision-Making
with Heterogeneous Relationship.   Information Sciences .    ISSN 0020-0255.    (In press)

DOI

Link to record in KAR

https://kar.kent.ac.uk/90984/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/479372787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Interval Type-2 Fuzzy Programming Method for Risky Multicriteria
Decision-Making with Heterogeneous Relationship

Guolin Tanga,b, Jianpeng Longc, Xiaowei Gud, Francisco Chiclanae,f, Peide Liub,∗, Fubin Wangb

aInstitute of Marine Economics and Management, Shandong University of Finance and Economics, Jinan, Shandong, China
bSchool of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, Shandong, China

cSchool of Automation, Central South University, Changsha, China
dSchool of Computing, University of Kent, Canterbury, UK

eInstitute of Artificial Intelligence (IAI), School of Computer Science and Informatics, De Montfort University, Leicester, UK
fDepartment of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

Abstract

We propose a new interval type-2 fuzzy (IT2F) programming method for risky multicriteria decision-making (MCD-
M) problems with IT2F truth degrees, where the criteria exhibit a heterogeneous relationship and decision-makers
behave according to bounded rationality. First, we develop a technique to calculate the Banzhaf-based overall per-
ceived utility values of alternatives based on 2-additive fuzzy measures and regret theory. Subsequently, considering
pairwise comparisons of alternatives with IT2F truth degrees, we define the Banzhaf-based IT2F risky consistency
index (BIT2FRCI) and the Banzhaf-based IT2F risky inconsistency index (BIT2FRII). Next, to identify the optimal
weights, an IT2F programming model is established based on the concept that BIT2FRII must be minimized and must
not exceed the BIT2FRCI using a fixed IT2F set. Furthermore, we design an effective algorithm using an external
archive-based constrained state transition algorithm to solve the established model. Accordingly, the ranking order
of alternatives is derived using the Banzhaf-based overall perceived utility values. Experimental studies pertaining to
investment selection problems demonstrate the state-of-the-art performance of the proposed method, that is, its strong
capability in addressing risky MCDM problems.

Keywords: risky multicriteria decision making, heterogeneous relationship, evolutionary computation, interval
type-2 fuzzy set, 2-additive fuzzy measure, regret theory

1. Introduction

Multicriteria decision-making (MCDM) has been extensively applied to different fields, such as postgraduate
course assessment [18], investment evaluation [13, 19], research and development project selection [20], and compre-
hensive logistics distribution center location selection [17]. The traditional linear programming technique for multidi-
mensional analysis of preference (LINMAP), which was proposed by Srininvasan and Schcker [31], is currently one5

of the most well-known MCDM approaches in modern decision theory because of its two advantages:

• It not only adopts the evaluations of alternatives on multiple criteria, but also considers the preferences of
decision-makers (DMs) on pairwise comparisons of alternatives.

• By incorporating mathematical programming, it can objectively determine the criteria weights and ideal solu-
tion.10
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In the traditional LINMAP method, all the decision information is expressed by real values. Owing to the uncertainty
and fuzziness of human thinking, some assessment values are insufficiently depicted by real values. In such cases,
type-1 fuzzy sets (T1FSs) [43] and their extended versions, such as trapezoidal fuzzy sets (TrFSs), intuitionistic fuzzy
sets (IFSs), interval-valued IFSs (IVIFSs), hesitant fuzzy sets (HFSs), probabilistic linguistic term sets (PLTSs), and
Pythagorean fuzzy sets (PFSs) can be regarded as useful tools for modeling decision information. Therefore, Li and15

Wan [11], Li and Wan [38, 39], Wan and Dong [36], Wan et al. [40], Liao et al. [12], Wan et al. [37], and Chen
[6] extended the LINMAP to TrFSs, IFSs, IVIFSs, HFSs, PLTSs, and PFSs, respectively, to solve fuzzy MCDM
problems.

The extended LINMAP methods reported in [6, 11, 12, 36–40] appear to be well developed, as all fuzzy MCDM
problems are effectively managed. However, four limitations remain to be addressed.20

• In reality, for some decision-making problems, such as green supplier selection [15, 28], online review sentiment
analysis [2], and overseas mineral investment [9], most of the decision information is unknown and many factors
are affected by uncertainty. In such cases, T1FSs and their extensions are inadequate for depicting decision
information because their membership function (MF) is uncertain. Hence, the extended LINMAP methods in
[6, 11, 12, 36–40] are unsuitable for addressing MCDM problems in settings with high uncertainties. Therefore,25

an alternative method must be developed to express decision-making information by capturing the effects of
uncertain MFs.

• In the actual MCDM, heterogeneous relationships often exist among the criteria. For example, an investment
company can be assessed based on product substitutability, development potential, investment safety index and
investment income. Product substitutability and development potential can be considered as negative synergetic30

interactive criteria, whereas development potential and investment income can be considered as positive syn-
ergetic interactive criteria. Hence, redundant and complementary relationships exist among the criteria [14].
However, the aforementioned LINMAP methods in [6, 11, 12, 36–40] assume that the criteria are independent;
therefore, they fail to solve such cases.

• For some MCDM problems, the DMs typically encounter an uncertain condition. The criteria values of decision35

problems are random variables that can be changed according to the natural state. DMs are uncertain of the real
state in the future; however, they can provide all possible states and quantify this randomness by establishing
a probability distribution. This type of MCDM problem is known as risky MCDM [16], which has a wide
range of practical backgrounds [27, 29]. To the best our knowledge, the extension of the LINMAP into a risky
decision-making environment has not yet been emphasized.40

• In risky decision-making activities, the DMs typically behave according to bounded rationality owing to cog-
nition limitation and incomplete information. For example, during investment company selection, the DMs not
only attend to the outcomes of the selected company, but also attend to the results of other companies and avoid
selecting a regrettable company. However, the LINMAP methods in [6, 11, 12, 36–40] are based on the expect-
ed utility theory and assume that the DMs are completely rational, which would result in apparent differences45

between the real MCDM behavior and the predicted values of the expected utility theory [26].

The MCDM methods in [3, 42] based on type-2 fuzzy sets (T2FSs) can address the first limitation. T2FSs [44] can
efficiently manage higher uncertainties because their MFs are three-dimensional and involve an uncertainty footprint.
Thus far, interval T2FSs (IT2FSs) [24] are the most widely used T2FSs owing to their low computational complexity.
Hence, Chen [5] and Haghighi et al. [8] proposed extensive LINMAPs to address MCDM problems in IT2F settings.50

In these models, although the criteria values are represented by IT2FSs, the comparisons of alternatives are still
expressed by ordered pairs with numerical truth degrees of 0 or 1. In practice, however, the DMs might not be certain
of all comparison values and thus might represent their opinions with an IT2F truth degree. Therefore, extending the
LINMAP to fit the IT2F MCDM problems with the IT2F truth degrees of alternative comparisons is a popular topic
worth investigating.55

The MCDM methods in [14, 22, 33, 46] based on fuzzy measures (FMs) can overcome the second weakness. FMs
introduced by Sugeno [32] only make monotonicity instead of the additivity property. It can capture complementary,
redundant, or independent characteristics among criteria. For example, let C = {c1, c2, · · ·, cn} be a set of criteria

2



and µ be a fuzzy measure of C. µ(S )(S ∈ C) can be considered as the importance of the decision criteria set S .
Thus, in addition to the common weights on criteria taken separately, the weights for any combination of criteria60

are also defined. Bedsides, we can say the following about any pair of criteria sets E, F ∈ C, E ∩ F = ∅: E
and F are independent if µ(E ∪ F) = µ(E) + µ(F); E and F exist a complementary relationship between them if
µ(E ∪ F) > µ(E) + µ(F), and E and F have redundant relationships if µ(E ∪ F) < µ(E) + µ(F). Therefore, FMs are
excellent for heterogeneous relationships among the criteria. To consider the heterogeneous relationships among the
criteria, Zhang et al. [46] and Liu et al. [22] proposed an IVIF LINMAP model and a double-hierarchy hesitant fuzzy65

linguistic LINMAP model based on FMs, respectively. It is noteworthy that FMs are defined on a power set, rendering
the methods in [22, 46] exponentially complex. Hence, it is difficult to derive FMs for each combination of criteria
when the number of criteria is significant. To simplify the complexity of identifying FMs, two special cases of FMs
are used: λ FMs [32] and 2-additive FMs (2AFMs) [7]. For λ FMs, only n coefficients are required to derive them
for a decision-making problem with n criteria, whereas they can only depict the homogeneous relationship among70

the criteria [33]. For 2AFMs, n(n + 1)/2 coefficients are required to derive them for a decision-making problem with
n criteria. Meanwhile, they can describe the heterogeneous relationship between the two criteria [33]. Accordingly,
2AFMs can describe the heterogeneous relationships among criteria over λ FMs. Therefore, we use 2AFMs to solve
the second weakness.

The MCDM methods in [27, 29, 41, 45] based on behavior decision theory can manage the last two issues.75

Two significant representatives of behavior decision theories are prospect theory and regret theory. Prospect theory,
pioneered by Kahneman and Tversky [10], can capture DMs’ reference dependence, loss aversion, and diminishing
sensitivity. Regret theory, presented by Bell [1] and Loomes and Sugden [23], can reflect the anticipated regret and
rejoice of DMs. To consider the psychological behaviors of DMs, Zhang et al. [41] and Zhang et al. [45] extended
prospect theory and regret theory to the LINMAP, respectively, and constructed fuzzy mathematical programming80

models. However, these two models failed to address high-type fuzzy MCDM problems. Compared with prospect
theory, regret theory has better expressive power, fewer parameters, and a simpler calculation process. Therefore, the
combination of LINMAP with regret theory in IT2F settings requires further discussion and research.

The MCDM methods in [5, 8] can address the first issue, as IT2FSs have stronger capability and flexibility in
describing uncertainties. Meanwhile, the MCDM methods in [33] can better manage the second issue, as 2AFMs85

can not only consider the heterogeneity among the criteria, but also simplify the complexity of identifying FMs. The
MCDM methods in [29, 45] can better address the last two issues, as regret theory can simply and consistently de-
scribe the regret aversion of DMs. To the best of our knowledge, the study of risky MCDM problems capturing the
heterogeneous relationship among the criteria and regret aversion of DMs in higher uncertain settings has not been
reported hitherto. Based on the analysis above for addressing such MCDM problems, it is justifiable to extend 2AFMs90

and regret theory to the LINMAP in IT2F settings to establish an IT2F programming model. Additionally, because the
established model involves a complex objective function and many constraints, an intelligent optimization algorithm
is designed using an external archive-based constrained state transition algorithm (EA-CSTA) [47] to solve the estab-
lished model. Therefore, the main objective of this study is to propose an IT2F programming method for addressing
IT2F risky MCDM problems with heterogeneous relationships and bounded rationality. The main contributions of95

this study are as follows:

• IT2FSs are used to describe the decision information of truth degrees of the comparisons and criteria of alter-
natives to accurately and flexibly address MCDM problems that involve a high degree of uncertainty.

• A calculation formula of Banzhaf-based overall perceived utility values of alternatives is developed based on
2AFMs and regret theory to fully consider the heterogeneous relationship among the criteria and effectively100

reflect the DMs’ regret aversion.

• A novel IT2F programming model is established based on the LINMAP; its solution algorithm is then designed
using the EA-CSTA, which can objectively identify the optimal weights.

• An IT2F programming method that can overcome the drawbacks of existing IT2F MCDM methods in [5, 15,
27, 28] is proposed to manage risky MCDM problems. Compared with these existing methods, the proposed105

method not only flexibly describes higher uncertainties, but also fully considers the heterogeneous relationship
among the criteria and effectively captures the DMs’ regret aversion.
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The remainder of this paper is organized as follows. In Section 2, we provide preliminaries regarding IT2FSs,
2AFMs, and regret theory. Section 3 formulates the risky MCDM problem with a heterogeneous relationship and
bounded rationality and depicts a resolution procedure for it. In Section 4, according to the resolution procedure,110

an IT2F programming model is established, and its solution is proposed based on the EA-CSTA. In Section 5, the
applicability and superiority of the proposed method are explained based on a numerical example. The conclusions
are summarized in Section 6.

2. Preliminaries

In this section, we introduce some basic information regarding IT2FSs, 2AFMs, and regret theory, which will be115

utilized later in this article.

2.1. IT2FSs

Definition 1 [24]: It is assumed that X is the universe of discourse. A type-2 fuzzy set (T2FS) Ä defined on X can
be denoted as:

Ä = {((x, u), v(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

where x represents the primary variable, u is the secondary variable, and Jx ⊆ [0, 1] represents the primary membership
function at x. Thus, (1) can be equivalently expressed as

Ȧ =

∫
x∈X

∫
u∈Jx

v(x, u)/(x, u) =

∫
x∈X

(∫
u∈Jx

v(x, u)/u
)
/x (2)

where
∫

u∈Jx
v(x, u)/u represents the secondary membership function at x. The integral sign

∫ ∫
represents the traversal

for all available x and u.
Definition 2 [24]: For a T2FS Ä, if v(x, u) = 1 for all x ∈ X, then Ä becomes an IT2FS Ȧ, and it is denoted as:

Ȧ =

∫
x∈X

∫
u∈Jx

1/(x, u) =

∫
x∈X

(∫
u∈Jx

1/u
)
/x (3)

Definition 3 [5]: An IT2FS is called a trapezoidal IT2FS (Fig. 1) when the upper and lower MFs are both TrFSs,
i.e.,

A =
(
Au, Al

)
=

(
(au, bu, cu, du; hu), (al, bl, cl, dl; hl)

)
(4)

where Au and Al are TrFSs; au, bu, cu, du, al, bl, cl, and dl denote the reference points of the trapezoidal IT2FS A,
verifying 0 ≤ au ≤ bu ≤ cu ≤ du, 0 ≤ al ≤ bl ≤ cl ≤ dl; hl and hu indicate the heights of Au and Al, respectively,
verifying that 0 ≤ hl ≤ hu ≤ 1. The upper MF Au(x) and lower MF Al(x) are represented by

Au(x) =


(x−au)hu

bu−au , au ≤ x < bu

hu, bu ≤ x ≤ cu

(du−x)hu

du−cu , cu < x ≤ du

0, otherwise

(5)

Al(x) =


(x−al)hl

bl−al , al ≤ x < bl

hl, bl ≤ x ≤ cl

(dl−x)hu

dl−cl , cl < x ≤ dl

0. otherwise

(6)
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Fig. 1. A trapezoidal IT2FS A with geometrical interpretation.

To calculate the centroid interval [Bl
A, B

u
A] of IT2FS A, the centroid calculation approach [21] was developed using

the following formulas:

Bl
A =

∫ Bl
A

au
(Bl

A − x)Au(x)dx +

∫ du

Bl
A

(Bl
A − x)Al(x)dx, (7)

Bu
A = −

∫ Bu
A

au
(Bu

A − x)Al(x)dx −
∫ du

Bu
A

(Bu
A − x)Au(x)dx. (8)

Definition 4 [4]: It is assumed that A1 and A2 are two trapezoidal IT2FS. Their operations are as follows.

A1 ⊕ A2 = ((au
1 + au

2, b
u
1 + bu

2, c
u
1 + cu

2, d
u
1 + du

2; min{hu
1, h

u
2}), (a

l
1 + al

2, b
l
1 + bl

2, c
l
1 + cl

2, d
l
1 + dl

2; min{hl
1, h

l
2}));

kA1 = ((kau
1, kbu

1, kcu
1, kdu

1; hu
1), (kal

1, kbl
1, kcl

1, kdl
1; hl

1)).

Definition 5 [25]: It is assumed that A is a trapezoidal IT2FS. Then, its expected value is

EA =
1
16

(hu + hl)(au + al + bu + bl + cu + cl + du + dl).

For any two IT2FSs A1 and A2, if EA2 > EA2 , then A1 > A2.120

2.2. 2-Additive Fuzzy Measure

To derive a 2AFM, the following theorem was proven.
Theorem 1 [7]: For the set C = {c1, c2, · · ·, cn}, µ is a 2AFM on C if the following restrictions are verified:

1) µ({c j}) ≥ 0 (∀c j ∈ C);

2)
∑

{c j,cq}⊆C

µ({c j, cq}) − (n − 2)
∑
{c j}⊆C

µ({c j}) = 1;

3)
∑

{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2).

Although µ(S )(S ⊆ C) can be regarded as the importance of decision criteria set S , it can only model the hetero-
geneous relationship between two criteria, which may result in information loss. To capture the overall heterogeneous
relationship among the criteria, the following generalized Banzhaf function with 2AFM is provided:125

Theorem 2 [33]: It is assumed that µ is a 2AFM on set C. The generalized Banzhaf index with 2AFM µ is

ψ(B) =
∑

{c j,cq}⊆B

µ({c j, cq}) +
∑

c j∈B,cq∈C\B

1
2

(
µ({c j, cq}) − |B|µ(c j)

)
−
|C| + |B| − 4

2

∑
c j∈B

µ({c j}), (9)
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where B represents any subset of C, C\B represents the difference set between C and B, and |B| and |C| are the cardinal
numbers of the coalitions B and X, respectively. If only one element c j exists in the set B, namely, B = {c j}, then (9)
becomes the Banzhaf function with 2AFM:

ψ({c j}) =
3 − n

2
µ({c j}) +

∑
cq∈C\c j

1
2

(
µ({c j, cq}) − µ({cq})

)
. (10)

From Theorem 1 and (10), it is apparent that ψ({c j}) ≥ 0 and
∑n

i=1 ψ({c j}) = 1. This implies thatψ = (ψ({c1}), ψ({c2}),
· · ·, ψ({cn})) can be regarded as a weighting vector, called a Banzhaf-based weighting vector. The significant features
of the Banzhaf-based weighting vector are that it not only provides the importance of the criteria, but also globally
captures the heterogeneous relationships among them.

2.3. Regret Theory130

As one of the most popular non-expected utility theories, regret theory [1, 23] depicts preferences using a bivariate
utility function, which captures the DMs’ feelings of regret and rejoice.

It is assumed that x1 and x2 are the possible results derived by selecting alternatives z1 and z2, respectively. Then,
the DM’s perceived utility for alternative z1 is

V1 = u(x1) + R(u(x1) − u(x2)), (11)

where u(·) denotes the utility function and verifies u′(·) > 0 and u′′(·) < 0; u(x1) and u(x2) are the utilities that the
DMs would obtain from alternatives A1 and A2 directly, respectively; R(·) denotes a regret–rejoice function and verifies
R(0) = 0, R′(·) > 0, and R′′(·) < 0; R(u(x1)−u(x2)) is a regret–rejoice function concerning u(x1)−u(x2). According to135

the value of R(u(x1) − u(x2)), the different feelings of the DMs can be observed when selecting alternative A1 instead
of A2. Specifically, if R(u(x1) − u(x2)) > 0, the DMs would rejoice, and if R(u(x1) − u(x2)) < 0, then the DMs would
regret; if neither applies, then the DMs would neither rejoice nor regret.

Because real MCDM problems typically include more than two alternatives, regret theory based on two alterna-
tives is extended to regret theory based on multiple alternatives, as described below.140

It is assumed that the results x1, x2, · · ·, and xm can be obtained by selecting alternatives z1, z2, · · ·, and zm,
respectively. Then, the DMs’ perceived utility for alternative zi (i = 1, 2, · · ·,m) is

Vi = u(xi) + R(u(xi) − u(x∗)), (12)

where x∗ = max{x1, x2, · · ·, xm} and R(u(xi) − u(x∗)) ≤ 0.

3. Framework for Risky MCDM Problem in IT2F Settings

In this section, we first illustrate the risky MCDM problem in IT2F settings and then present its resolution frame-
work.

3.1. Description of Risky MCDM Problem in IT2F Settings145

For convenience, the following notations are used to express the risky MCDM problem with heterogeneous rela-
tionships and incomplete weight information in IT2F settings.

Z = {z1, z2, · · ·, zm} : the set of m alternatives, where zi(i = 1, 2, · · ·,m) represents the ith alternative.
C = {c1, c2, · · ·, cn} : the set of n criteria, where c j( j = 1, 2, · · ·, n) represents the jth criterion. These criteria are

classified into two categories: costs and benefits. It is assumed that Cd and Cb are the sets of cost and benefit criteria,150

respectively, verifying Cd ∪Cb = C and Cd ∩Cb = ∅. Here, a heterogeneous relationship exists among the criteria.
ω = (µ({c1}), µ({c2}), · · ·, µ({cn−1, cn})) : the vector of n(n + 1)/2 2AFMs on the criteria set, where µ({c j})( j =

1, 2, · · ·, n) represents the weight of criterion c j, such that 0 ≤ µ({c j}) ≤ 1, and µ({c j, cq})( j, q = 1, 2, · · ·, n; j , q)
represents the weight of criteria set {c j, cq}, such that 0 ≤ µ{c j, cq} ≤ 1. Owing to the complexities and uncertainties
of real MCDM problems and the DMs’ limited experience in the problem, information regarding the weights of the155

criteria is often incomplete.
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Θ = {θ1, θ2, · · ·, θo}: the set of o natural states, where θτ(τ = 1, 2, · · ·, o) represents the τth natural state.
P = (p1, p2, · · ·, po) : the probability (weighting) vector of o natural states, where pτ(τ = 1, 2, · · ·, o) represents the

probability that state θτ occurs, verifying pτ ≥ 0 and
∑o
τ=1 pτ = 1. In this study, information regarding the probability

vector is partially known.160

Ãτ = [Ãτ
i j]m×n(τ = 1, 2, · · ·, o): risky decision matrices, where Ãτ

i j is the outcome of alternative zi with respect to
criterion c j in state θτ.

Ωτ = {< (k, i), tτ(k, i) > |zk ≥τ zi with tτ(k, i)(k, i = 1, 2, · · ·,m)}: DM preferences derived using pairwise compar-
isons of the alternatives, where (k, i) represents an ordered pair of alternatives zk and zi that the DMs prefer zk to zi

(expressed by zk ≥τ zi) with the truth degree tτ(k, i) in state θτ.165

The main issue addressed in this study is the method of selecting the optimal alternative(s) by utilizing three
different types of decision information (criteria values, pairwise comparisons of alternatives, and weighting vectors)
while capturing the heterogeneous relationships among the criteria and the DMs’ regret revision.

3.2. Constructed Framework

To address this issue, a resolution framework was constructed, as shown in Fig. 2. The resolution framework170

consists of four parts. In the following section, we briefly describe each part.

• Acquire Information Phase. In this section, a group of DMs is formed. Subsequently, the alternative, criteria,
and natural state sets are identified. In addition, linguistic terms and their associated IT2FSs are determined.
Moreover, the DMs provide three different types of assessment information: information regarding the criteria
values, pairwise comparisons of alternatives, and weighting vectors of criteria and natural states.175

• Calculate Banzhaf-based Perceived Utility Value Phase. In this section, the IT2F utility value and regret/rejoice
value with respect to the criteria values are proposed. Subsequently, a new technique is developed to calculate
the Banzhaf-based overall perceived utility values of alternatives based on 2AFMs and regret theory to capture
the heterogeneous relationship among the criteria and the DM’s regret revision.

• Construct IT2F Programming Model Phase. In this section, the Banzhaf-based IT2F risky consistency index180

(BIT2FRCI) and the Banzhaf-based IT2F risky inconsistency index (BIT2FRII) are defined. Subsequently, a
novel IT2F programming model is established based on LINMAP.

• Solve Model and Rank Alternative Phases. In this section, the established IT2F programming model is con-
veyed equivalently into a nonlinear mathematical programming model. Subsequently, the EA-CSTA-based
optimization algorithm is designed to address the programming model and derive the optimal weights of the185

criteria and natural states. Accordingly, we can compute the optimal Banzhaf-based overall perceived utility
values of the alternatives. Finally, the ranking order of the alternatives is derived.

4. The Developed IT2F Mathematical Programming Method

According to the resolution process depicted in Section 3, we provide a detailed description of the developed IT2F
programming method.190

4.1. Information Acquisition

A group of DMs is gathered for scientific assessment and decision. Subsequently, an alternative set Z, criteria set
C, and natural state set Θ are identified. Furthermore, the group of DMs provides the following three types of decision
information:

The DM provides the criteria values based on the linguistic term set L={”Very bad”(VB), ”Bad”(B), ”Medium195

Bad”(MB), ”Medium”(M), ”Medium Good”(MG), ”Good”(G), ”Very Good”(VG)}. Hence, the risky decision matri-
ces Ãτ = [Ãτ

i j]m×n(τ = 1, 2, · · ·, o) are derived. Subsequently, the evaluation values are conveyed to the IT2Fs according
to Table 1. The MFs of the IT2FSs linguistic terms are shown in Fig. 3. Additionally, Table 2 lists the complementary
relations of the linguistic terms.
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alternatives

Solve it by EA-CSTA-based

optimization algorithm

Compute optimal overall

perceived utility value

Start

Fig. 2. Constructed Evaluation Framework.

Table 1
Linguistic Terms and their Corresponding IT2FSs.

Linguistic terms IT2FSs

VB ((0, 0, 0, 0.1; 1), (0, 0, 0, 0.05; 0.9))
B ((0, 0.1, 0.15, 0.3; 1), (0.05, 0.1, 0.1, 0.2; 0.9))
MB ((0.15, 0.3, 0.35, 0.5; 1), (0.2, 0.25, 0.3, 0.4; 0.9))
M ((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))
MG ((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))
G ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))
VG ((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))

0 0.2 0.4 0.6 0.8 0.90.1 0.3 0.5 0.7 1

0.9

1
VB B MB M MG G VG

Fig. 3. MFs of IT2FSs Linguistic Terms.
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Table 2
Complementary Relations.

Linguistic terms (L) VB B MB M MG G VG

Complementary terms (Lc) VG G MG M MB B VB

For pairwise comparisons of alternatives, the DMs represent their truth degrees based on Table 1. Using an200

ordered pair of the alternatives z1 and z2 as an example, the DMs prefer z1 to z2 with truth degree ”VG” in state θ1.
Subsequently, the preference relation between alternatives z1 and z2 in state θ1 is denoted by 〈(1, 2), t1(1, 2)〉, where
t1(1, 2) = VG. Therefore, all preference relations 〈(k, i), tτ(k, i)〉 between the ordered pairs of alternatives zk and zi in
state θτ are derived, denoted by Ωτ = {〈(k, i), tτ(k, i)〉|zk ≥τ zi with tτ(k, i)(k, i = 1, 2, · · ·,m)}.

For information regarding the weights of the criteria and natural states, the DMs express them using interval205

numbers. For example, when assessing the weight of c1, the DMs assume that their weights are 0.2, 0.25, 0.3 and
0.4, respectively. Subsequently, 0.2 ≤ µ(c1) ≤ 0.4 denotes the value range of the weight of c1. Therefore, all interval
weights of criteria c j and criteria set {c j, cq} are derived. For simplicity, let Λ be the set of all interval weights of
c j( j = 1, 2, · · ·, n) and {c j, cq}( j, q = 1, 2, · · ·, n; j , q) provided by the DMs. Analogously, the set of all interval
weights of natural states is derived and represented by Γ.210

4.2. Calculation of Banzhaf-based Perceived Utility Value
4.2.1. Normalization of Decision-Making Information

Because the risky MCDM problem involves two types of criteria, i.e., the benefit and cost criteria, the effect of
different criteria types must be removed by normalizing the decision matrix [Ãτ

i j]m×n(τ = 1, 2, · · ·, o). In this study, the

cost criteria values are transformed into benefit criteria values based on Table 2, where the decision matrix [Ãτ
i j]m×n is

conveyed into the normalized decision matrix [Aτ
i j]m×n , where

Aτ
i j =

Ãτ
i j, if c j ∈ Cb

(Ãτ
i j)

c. if c j ∈ Cd
(13)

Here, (Ãτ
i j)

c is the complement of Ãτ
i j such that (Ãτ

i j)
c ∈ Lc.

4.2.2. Derivation of Optimal Ideal Solutions
According to the expected value of IT2FS in Definition 5, we can derive the optimal ideal solution A

τ
= (A

τ

1, A
τ

2, · ·

·, A
τ

n), where

A
τ

j = max
i

(Ãτ
i j)( j = 1, 2, · · ·, n). (14)

4.2.3. Calculation of Centroid Interval of IT2FSs215

To reduce tedious operations of IT2FSs and to simplify the risky MCDM problem, the centroid calculation ap-
proach [21] is used to derive the defuzzified value Bτi j = [Bl

Aτi j
, Br

Aτi j
] of the IT2F criteria value Aτ

i j(i = 1, 2, · · ·,m),
where

Bl
Aτi j

=

∫ Bl
Aτi j

aτu
i j

(Bl
Aτi j
− x)Aτu

i j (x)dx +

∫ dτu
i j

Bl
Aτi j

(Bl
Aτi j
− x)Aτl

i j(x)dx, (15)

Bu
Aτi j

= −

∫ Bu
Aτi j

aτu
i j

(Bu
Aτi j
− x)Aτl

i j(x)dx −
∫ dτu

i j

Bu
Aτi j

(Bu
Aτi j
− x)Aτu

i j (x)dx, (16)

where Aτu
i j (x) and Aτl

i j(x) are the upper and lower MFs of Aτ
i j, respectively.
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Similarly, we can derive the defuzzified value vector of the optimal ideal solution A
τ
, expressed by B

τ
= (B

τ

1, B
τ

2, · ·220

·, B
τ

n).

4.2.4. Calculation of Utility Value Matrix
Because Bτi j is an interval value, it can be considered as a special random variable, denoted by B̂τi j, with the utility

function u(B̂τi j), and the probability density function f (B̂τi j), where they verify u′(B̂τi j) > 0, u′′(B̂τi j) > 0,
∫ +∞

−∞
f (B̂τi j)dB =

1, and f (B̂τi j) ≥ 0. Hence, the utility value of Bτi j is

Uτ
i j =

∫ Bu
Aτi j

Bl
Aτi j

u(B̂τi j) f (B̂τi j)dB̂τi j. (17)

Accordingly, the utility value matrix [Uτ
i j]m×n is derived.

In practice, we can express the utility of the DMs using the power function, that is, u(B̂τi j) = (B̂τi j)
α, where α

represents the risk aversion coefficient of the DMs and verifies 0 < α < 1 [35]. The effect of α on the utility function225

u(B̂τi j) is shown in Supplementary Fig. 4 for a better demonstration. As shown in the figure, the greater the value of
parameter α, the greater is the degree of risk aversion of the DMs. In this study, we set α = 0.88, as suggested in [35].
In addition, we assume that B̂τi j obeys a normal distribution or uniform distribution. Both of them are the most typical
forms of distribution functions.

If B̂τi j is normally distributed B̂τi j ∼ N(ντi j, (σ
τ
i j)

2), where ντi j and στi j denote the mean and standard deviation,

respectively, then according to the 3σ principle [30] in probability and statistics, the possibility of B̂τi j is 99.73% in

interval [Bl
Aτi j
, Bu

Aτi j
], i.e., ν =

Bl
Aτi j

+Bu
Aτi j

2 and σ =
Bu

Aτi j
−Bl

Aτi j

6 . Hence, the probability density of B̂τi j is

f (B̂τi j) =
3
√

2
√
π(Bu

Aτi j
− Bl

Aτi j
)
e
−

18(B̂τi j−

Bl
Aτi j

+Bu
Aτi j

2 )2

(Bu
Aτi j
−Bl

Aτi j
)2

. (18)

If B̂τi j is uniformly distributed B̂τi j ∼ U(Bl
Aτi j
, Bu

Aτi j
), the probability density of B̂τi j is

f (B̂τi j) =


1

Bu
Aτi j
−Bl

Aτi j

, Bl
Aτi j
≤ B̂τi j ≤ Bu

Aτi j

0. otherwise
(19)

Analogously, we can derive the utility vector of the optimal ideal solution A
τ
, denoted by U

τ
= (U

τ

1,U
τ

2, · · ·,U
τ

n).230

4.2.5. Calculation of Regret Value Matrix
To derive the regret value Rτ

i j of the alternative zi relative to the optimal ideal solution Aτ concerning criterion c j in
state θτ, we must first determine the regret-rejoice function. The following function is used to denote the regret–rejoice
function:

Rτ
i j = 1 − e−δ(4Uτ

i j), (20)

where 4Uτ
i j is the difference between Uτ

i j and U
τ

j , and δ represents the regret aversion coefficient with δ ≥ 0 [1]. The
effect of δ on the regret–rejoice function Rτ

i j is depicted in Supplementary Fig. 5 for a better illustration. As shown in
the figure, the greater the value of parameter δ, the greater the degree of the DMs’ regret aversion. In this study, we
set δ = 0.3, as suggested in [45]. Accordingly, the regret value matrix [Rτ

i j]m×n is derived.235
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4.2.6. Calculation of Overall Perceived Utility Value
According to (11), (17), and (20), we derive the perceived utility value Vτ

i j of the alternative zi concerning criterion
c j in state θτ as follows:

Vτ
i j = Uτ

i j + Rτ
i j. (21)

Accordingly, the perceived utility matrix [Vτ
i j]m×n is derived.

Subsequently, the perceived utility value Vτ
i of alternative zi in state θτ is derived as follows:

Vτ
i =

n∑
j=1

w jVτ
i j, (22)

where w j is the weight of the criterion c j. Considering the advantage of the Banzhaf-based weighting vector ψ
in modeling the heterogeneous relationships among the criteria, we replace w j with ψ({c j}) in (22) to obtain the
Banzhaf-based perceived utility value as follows:

Vτ
i =

n∑
j=1

ψ({x j})Vτ
i j, (23)

where ψ({c j}) is the Banzhaf value on criterion c j.
Finally, we derive the Banzhaf-based overall perceived utility value Vi of alternative zi as follows:

Vi =

o∑
τ=1

pτVτ
i =

o∑
τ=1

n∑
j=1

pτψ({x j})Vτ
i j, (24)

where pτ represents the probability that state θτ occurs.

4.3. Construction of IT2F Mathematical Programming Model240

4.3.1. Definitions of Banzhaf-based IT2F Risky Consistency and Inconsistency Indices
As stated above, the DMs provide subjective preference relations between alternatives, represented by Ωτ =

{〈(k, i), tτ(k, i)〉|zk ≥τ zi with tτ(k, i)(k, i = 1, 2, · · ·,m)}(τ = 1, 2, · · ·, o), where tτ(k, i) denotes an IT2FS expressed
by tτ(k, i) = ((au

tτ(k,i), b
u
tτ(k,i), c

u
tτ(k,i), d

u
tτ(k,i); hu

tτ(k,i)), (a
l
tτ(k,i), b

l
tτ(k,i), cl

tτ(k,i), d
l
tτ(k,i); hl

tτ(k,i))). We assume that the support of
Ωτ is Ωτ

0 = {〈(k, i)〉|Etτ(k,i) > 0}. It is noteworthy that the preference relations provided by the DMs are pairwise245

comparisons of alternatives on all criteria instead of on each criterion, thereby capturing the DMs’ view on ordered
pairs of alternatives.

The ordered pair of alternatives (k, i) ∈ Ωτ
0 captures the subjective preference of the DMs; therefore, it is a type of

subjective criterion for determining the ranking order of alternatives. Nevertheless, from (23), the larger the Banzhaf-
based perceived utility value Vτ

i , the better the alternative zi in state θτ. Consequently, the Banzhaf-based perceived250

utility value Vτ
i is a type of objective criterion for determining the ranking order of alternatives. For a good decision,

the subjective criterion should be consistent with the objective criterion as much as possible.
We assume that the criteria weighting vector ψ is provided by the DMs in advance. Subsequently, we derive all

the Banzhaf-based perceived utility values Vτ
k and Vτ

i for each (k, i) ∈ Ωτ
0 using (23) in state θτ. If Vτ

k ≥ Vτ
i , then

the Banzhaf-based perceived utility value of alternative zk is not lower than that of alternative zi in state θτ. Hence,255

the objective ranking order of alternatives zk and zi in state θτ obtained by Vτ
k and Vτ

i based on the criteria weighting
vector ψ is consistent with the subjective preference relation provided by the DMs. In contrast, if Vτ

k < Vτ
i , then

the objective ranking order based on the criteria weighting vector will be inconsistent with the subjective preference
relation. Therefore, the criteria weighting vector ψ will not be selected appropriately.

To measure the degree of consistency between the ranking order of alternatives zk and zi in state θτ obtained by Vk

and Vi, as well as the preferences provided by the DMs (who prefer zk to zi in state θτ), the following Banzhaf-based
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IT2F consistency is provided:

(Vτ
k − Vτ

i )+ =

tτ(k, i)(Vτ
k − Vτ

i ), Vτ
k ≥ Vτ

i

((0, 0, 0, 0; 1), (0, 0, 0, 0; 0.9)). Vτ
k < Vτ

i

(25)

Clearly, the ranking order of alternatives zk and zi derived by Banzhaf-based perceived utility values Vτ
k and Vτ

i is
consistent with the subjective preferences provided by the DMs if Vτ

k ≥ Vτ
i . In such a case, (Vτ

k − Vτ
i )+ is defined as

tτ(k, i)(Vτ
k − Vτ

i ). On the other hand, the ranking order of alternatives zk and zi derived using Banzhaf-based perceived
utility values Vτ

k and Vτ
i is inconsistent with the subject preferences provided by the DMs if Vτ

k < Vτ
i . In such a case,

(Vτ
k − Vτ

i )+ is defined to be ((0, 0, 0, 0; 1), (0, 0, 0, 0; 0.9)). Therefore, the Banzhaf-based IT2F consistency index can
be rewritten as

(Vτ
k − Vτ

i )+ = tτ(k, i) max{0,Vτ
k − Vτ

i }. (26)

Consequently, the Banzhaf-based IT2F overall consistency index in state θτ is defined as

Gτ =
∑

(k,i)∈Ωτ
0

(Vτ
k − Vτ

i )+ =
∑

(k,i)∈Ωτ
0

tτ(k, i) max{0,Vτ
k − Vτ

i }. (27)

Definition 6: The BIT2FRCI is defined as

G =

o∑
τ=1

pτGτ =

o∑
τ=1

pτ
∑

(k,i)∈Ωτ
0

(Vτ
k − Vτ

i )+ =

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i) max{0,Vτ
k − Vτ

i }. (28)

Similarly, to measure the degree of inconsistency between the ranking order of alternatives zk and zi in state θτ

obtained by Vk and Vi as well as the preferences provided by the DMs (who prefer zk to zi in state θτ), the following
Banzhaf-based IT2F risky inconsistency in state θτ is provided:

(Vτ
k − Vτ

i )− =

tτ(k, i)(Vτ
i − Vτ

k ), Vτ
k < Vτ

i

((0, 0, 0, 0; 1), (0, 0, 0, 0; 0.9)). Vτ
k ≥ Vτ

i

(29)

Subsequently, (29) can be equivalently transformed into

(Vτ
k − Vτ

i )− = tτ(k, i) max{0,Vτ
i − Vτ

k }. (30)

Consequently, the Banzhaf-based IT2F overall inconsistency index in state θτ is defined as

Bτ =
∑

(k,i)∈Ωτ
0

(Vτ
k − Vτ

i )− =
∑

(k,i)∈Ωτ
0

tτ(k, i) max{0,Vτ
i − Vτ

k }. (31)

Definition 7: The BIT2FRII is defined as

B =

o∑
τ=1

pτBτ =

o∑
τ=1

pτ
∑

(k,i)∈Ωτ
0

(Vτ
k − Vτ

i )− =

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i) max{0,Vτ
i − Vτ

k }. (32)

Remark 1: G and B are IT2FSs because their truth degrees are expressed by IT2FSs. Although a number of studies260

have extended consistency and inconsistency indices into various fuzzy environments, to the best our knowledge,
IT2FSs have not been used to depict fuzzy truth degrees. This is the main difference between the studies in [5, 6, 8,
11, 12, 22, 36–41, 45, 46] and this study.

4.3.2. Establishment of IT2F Programming Model
In a typical LINMAP, a mathematical programming model is applied to determine the weight vector by minimizing

the overall inconsistency index under the restriction that the overall inconsistency index does not exceed the overall
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consistency index minus a positive constant. Therefore, the following model is established using Theorems 1 and 2 to
derive the optimal weighting vectors of the criteria ω∗ and natural states P∗:

min

B =

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i) max{0,Vτ
i − Vτ

k }



s.t.



G − B ≥ ρ;
ψ({c j}) = 3−n

2 µ({c j}) +
∑

cq∈C\c j

1
2 (µ({c j, cq}) − µ({cq}) ( j = 1, 2, · · ·, n);

µ({c j}) ≥ 0 (∀c j ∈ C);∑
{c j,cq}⊆C

µ({c j, cq}) − (n − 2)
∑
{c j}⊆C

µ({c j}) = 1;∑
{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2);

µ({c j}), µ({c j, cq}) ∈ Λ (∀{c j}, {c j, cq} ⊆ C);
pτ ≥ 0, pτ ∈ Γ (τ = 1, 2, · · ·, o);
o∑
τ=1

pτ = 1,

(33)

where ρ = ((au
ρ, b

u
ρ, c

u
ρ, d

u
ρ; hu

ρ), (a
l
ρ, b

l
ρ, c

l
ρ, d

l
ρ; hl

ρ)) is an IT2FS, called the priori threshold.265

For each (k, i) ∈ Ωτ
0, let λτki = max{0,Vτ

i − Vτ
k }. Subsequently, λτki ≥ 0 and λτki ≥ Vτ

i − Vτ
k . In addition, based on

(26) and (30), we derive (Vτ
k − Vτ

i )+ − (Vτ
k − Vτ

i )− = tτ(k, i)(Vτ
k − Vτ

i ). Moreover, based on (28) and (32), we derive
G − B =

∑o
τ=1 pτ

∑
(k,i)∈Ωτ

0
tτ(k, i)(Vτ

k − Vτ
i ). Therefore, (33) can be rewritten as

min

B =

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i)λτki



s.t.



o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i)(Vτ
k − Vτ

i ) ≥ ρ;

Vτ
k − Vτ

i + λτki ≥ 0 ((k, i) ∈ Ωτ
0; τ = 1, 2, · · ·, o);

λτki ≥ 0 ((k, i) ∈ Ωτ
0; τ = 1, 2, · · ·, o);

ψ({c j}) = 3−n
2 µ({c j}) +

∑
cq∈C\c j

1
2 (µ({c j, cq}) − µ({cq}) ( j = 1, 2, · · ·, n);

µ({c j}) ≥ 0 (∀c j ∈ C);∑
{c j,cq}⊆C

µ({c j, cq}) − (n − 2)
∑
{c j}⊆C

µ({c j}) = 1;∑
{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2);

µ({c j}), µ({c j, cq}) ∈ Λ (∀{c j}, {c j, cq} ⊆ C);
pτ ≥ 0, pτ ∈ Γ (τ = 1, 2, · · ·, o);
o∑
τ=1

pτ = 1.

(34)

Remark 2: (34) can be known as an IT2F model because its constraints’ coefficients, right-hand vector, and ob-
jective function include IT2FSs. Although the methods in [5, 8] are also based on IT2FSs, they are real mathematical
programming models.

Remark 3: Because (34) is based on 2AFMs and regret theory, it not only considers the heterogeneous relationship
among the criteria, but also reflects the DM’s regret revision. Although the models in [22, 46] consider the hetero-270

geneous relationship among the criteria, whereas the model in [45] reflects the DMs’ regret revision, these existing
models fail to capture these two aspects simultaneously. This is another prominent difference between the models in
[22, 45, 46] and our model.
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4.4. Solution Approach of IT2F Programming Model

Based on Definition 3, for (34), the objective function and left part of ” ≥ ” in the first constraint are IT2FSs,
respectively, that is,

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i)λτki

=


 o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkia
u
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkib
u
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkic
u
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkid
u
tτ(k,i); min

τ,(k,i)
hu

tτ(k,i)

 , o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkia
l
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkib
l
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkic
l
tτ(k,i),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkid
l
tτ(k,i); min

τ,(k,i)
hl

tτ(k,i)


 . (35)

and

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτtτ(k, i)(Vτ
k − Vτ

i )

=


 o∑
τ=1

∑
(k,i)∈Ωτ

0

pτ × au
tτ(k,i)(V

τ
k − Vτ

i ),
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτbu
tτ(k,i)(V

τ
k − Vτ

i ),
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτcu
tτ(k,i)(V

τ
k − Vτ

i ),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτdu
tτ(k,i) × (Vτ

k − Vτ
i ); min

τ,(k,i)
hu

tτ(k,i)

 ,
 o∑
τ=1

∑
(k,i)∈Ωτ

0

pτal
tτ(k,i) × (Vτ

k − Vτ
i ),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτbl
tτ(k,i)(V

τ
k − Vτ

i ),

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτcl
tτ(k,i)(V

τ
k − Vτ

i ),
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτdl
tτ(k,i) × (Vτ

k − Vτ
i ); min

τ,(k,i)
hl

tτ(k,i)


 . (36)

As no approach exists for addressing such an IT2F programming model, we herein propose an approach for275

addressing this model according to the expected value of IT2FS. Based on (35), (36), and Definition 5, (34) is equiva-
lently expressed as

14



min

B =

 o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkia
u
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkib
u
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkic
u
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkid
u
tτ(k,i)

+

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkia
l
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkib
l
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkic
l
tτ(k,i) +

o∑
τ=1

∑
(k,i)∈Ωτ

0

pτλτkid
l
tτ(k,i)


×

(
min
τ,(k,i)

hu
tτ(k,i) + min

τ,(k,i)
hl

tτ(k,i)

)}

s.t.



 o∑
τ=1

∑
(k,i)∈Ωτ

0

pτau
tτ(k,i)(V

τ
k − Vτ

i ) +
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτ × bu
tτ(k,i)(V

τ
k − Vτ

i ) +
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτcu
tτ(k,i)(V

τ
k − Vτ

i )

+
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτdu
tτ(k,i)(V

τ
k − Vτ

i ) +
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτ × al
tτ(k,i)(V

τ
k − Vτ

i ) +
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτbl
tτ(k,i)(V

τ
k − Vτ

i )

+
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτcl
tτ(k,i)(V

τ
k − Vτ

i ) +
o∑
τ=1

∑
(k,i)∈Ωτ

0

pτ × dl
tτ(k,i)(V

τ
k − Vτ

i )
)
×

(
min
τ,(k,i)

hu
tτ(k,i) + min

τ,(k,i)
hl

tτ(k,i)

)
≥ (au

ρ + al
ρ + bu

ρ + bl
ρ + cu

ρ + cl
ρ + du

ρ + dl
ρ)(h

u
ρ + hl

ρ);
Vτ

k − Vτ
i + λτki ≥ 0 ((k, i) ∈ Ωτ

0; τ = 1, 2, · · ·, o);
λτki ≥ 0 ((k, i) ∈ Ωτ

0; τ = 1, 2, · · ·, o);
µ({c j}) ≥ 0 (∀c j ∈ C);
ψ({c j}) = 3−n

2 µ({c j}) +
∑

cq∈C\c j

1
2 (µ({c j, cq}) − µ({cq}) ( j = 1, 2, · · ·, n);∑

{c j,cq}⊆C
µ({c j, cq}) − (n − 2)

∑
{c j}⊆C

µ({c j}) = 1;∑
{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2);

µ({c j}), µ({c j, cq}) ∈ Λ (∀{c j}, {c j, cq} ⊆ C);

pτ ≥ 0, pτ ∈ Γ (τ = 1, 2, · · ·, o);
o∑
τ=1

pτ = 1.

(37)

Remark 4: (37) includes |Ω0|
τ + (n2 + 3n)/2 unknown variables, n + 1 equalities, and n×2n−1 + |Ωτ

0|+ 1 inequalities
(excluding the constraints in Λ and Γ), where |Ω0| is the cardinality of set Ω0. In general, the greater the value of |Ωτ

0|,
the more accurate the derived weighting vectors.280

Because (37) involves a complex objective function and many constraints, it is difficult to solve using classical
exact algorithms, and a significant amount of calculation time is required. To solve this model, an intelligent optimiza-
tion algorithm is applied. One of the most typical intelligent optimization algorithms is the state transition algorithm
(STA) [48]. Unlike most existing evolutionary algorithms, the STA is an individual-based optimization approach. It
exhibits excellent local and global search abilities owing to its four types of state transformation operators: rotation,285

translation, expansion, and axesion. Recently, an improved algorithm called the EA-CSTA [47] has been presented.
The EA-CSTA uses an external archive to save multiple potential solutions and adopts a preference trade-off strategy
to select solutions. Hence, it improves the diversity of the solutions and the probability of investigating the global
solution. Therefore, we design an EA-CSTA-based optimization algorithm to solve (37) and derive the optimal vector
ω∗ = (µ∗({c1}), µ∗({c2}), · · ·, µ∗({cn−1, cn})) of (n2 + n)/2 fuzzy measures on the criteria set and optimal possibility290

vector P∗ = (p∗1, p∗2, · · ·, p∗o) of o natural states, such that the objective value in (37) is minimal. The detailed procedure
description is provided in Appendix II in the supplementary material. Algorithm 1 presents the pseudocode for (37).

295
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Algorithm 1 Pseudocode of EA-CSTA-based optimization algorithm for (37)
Require: miter: maximum number of iterations; S E: number of samples; S A: capacity of external archive; ν: penalty factor; f c: decent efficient;

α: rotation factor; β: translation factor; γ: expansion factor; δ: axesion factor; αmax: maximum value of α; αmin: minimum value of α; δmax:
maximum value of δ; δmin: minimum value of δ.

Ensure: ω∗: optimal fuzzy measures on criteria set; P∗: optimal possibility vector of natural states.
1: Generate S E samples W1 = [W1

1,W
1
2, · · ·,W

1
S E], where W1

ι = (ω1
ι ; P1

ι ) is ιth (ι = 1, 2, · · ·, S E) sample, where ω1
ι = (µ1

ι ({c1}), µ1
ι ({c2}), · ·

·, µ1
ι ({cn−1, cn}))T and P1

ι = (p1
ι1, p1

ι2, · · ·, p1
ιo)T .

2: [B1,D1]← cal objective cons violation(W1).
3: [W1

f ,W
1
in f ]← divide(W1,D1).

4: f p1 ← S E1
f /S E.

5: if 0 < f p1 < 1 then
6: num1

f ← S A ∗ (1 − f p1).

7: num1
in f ← S A ∗ f p1.

8: W̄1
f ← sort fea candidates(W1

f , num1
f ).

9: Tnor(W1
in f )← normalize inf candidates(W1

in f , ν).

10: W̄1
in f ← sort inf candidates(W1

in f ,Tnor(W1
in f ), num1

in f ).

11: W̄1 ← [W̄1
f , W̄

1
in f ].

12: else if f p1 = 0 then
13: num1

in f ← S A.

14: Tnor(W1
in f )← normalize inf candidates(W1

in f , ν).

15: W̄1
in f ← sort inf candidates(W1

in f ,Tnor(W1
in f ), num1

in f ).

16: W̄1 ← W̄1
in f .

17: else
18: num1

f ← S A.

19: W̄1
f ← sort fea candidates(W1

f , num1
f ).

20: W̄1 ← W̄1
f .

21: end if
22: for iter = 1 : miter do
23: if α < αmin then
24: α = αmax.
25: end if
26: if δ < δmin then
27: δ = δmax.
28: end if
29: W̄e−iter ← expansion (W̄iter , γ, S A, S E).
30: W̄r−iter ← rotation (W̄e−iter , α, S A, S E).
31: W̄a−iter ← axesion (W̄r−iter , δ, S A, S E).
32: W̄iter+1 ← translation (W̄a−iter , β, S A, S E).
33: α← α / f c.
34: δ← δ / f c.
35: end for
36: [Bmiter+1,Dmiter+1]← cal objective cons violation(W̄miter+1).
37: W∗ ← sort(W̄miter+1,Bmiter+1,Dmiter+1).

Based on (24) and the optimal weighting vectors ω∗ and P∗, we compute the optimal Banzhaf-based overall
perceived utility value V∗i of each alternative zi(i = 1, 2, · · ·,m). Accordingly, the ranking order of the alternatives is
derived. To summarize, the resolution process for the IT2F programming method is outlined as follows:300

Phase 1. Information Acquisition
Step 1: A group of DMs is formed, which identifies the alternative set Z = {z1, z2, · · ·, zm}, criteria set C =

{c1, c2, · · ·, cn}, and natural state set Θ = {θ1, θ2, · · ·, θo}.
Step 2: The DMs provide three types of decision information, i.e., the risky decision matrices Ã

τ
= [Ãτ

i j]m×n(i =

1, 2, · · ·,m; j = 1, 2, · · ·, n; τ = 1, 2, · · ·, o), truth degrees of alternatives’ pairwise comparisons Ωτ, and incomplete305

weight information of criteria Λ and natural states Γ.
Phase 2. Calculation of Banzhaf-based Perceived Utility Values
Step 3: Normalize the risky decision matrices Ãτ = [Ãτ

i j]m×n(τ = 1, 2, · · ·, o) into Aτ = [Aτ
i j]m×n using (10).
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Step 4: Derive the optimal ideal solution A
τ

= (A
τ

1, A
τ

2, · · ·, A
τ

n) in each state θτ(τ = 1, 2, · · ·, o) using (11).
Step 5: Calculate the centroid intervals of IT2FSs using (12)–(13).310

Step 6: Calculate the utility value matrix Uτ = [Uτ
i j]m×n in each state θτ(τ = 1, 2, · · ·, o) using (14).

Step 7: Calculate the regret value matrix Rτ = [Rτ
i j]m×n in each state θτ(τ = 1, 2, · · ·, o) using (17).

Step 8: Calculate the perceived utility matrix Vτ = [Vτ
i j]m×n in each state θτ(τ = 1, 2, · · ·, o) using (18).

Phase 3. Construction of the IT2F Programming Model
Step 9: Compute the BIT2FRCI and BIT2FRCI using (25) and (29), respectively.315

Step 10: Establish the IT2F programming model using (31).
Phase 4. Solution Approach for the IT2F Programming Model
Step 11: Transform the IT2F programming model into a nonlinear programming model using (34).
Step 12: Solve the nonlinear programming model using the EA-CSTA-based optimization algorithm to derive

the optimal fuzzy measures ω∗ = (µ∗({c1}), µ∗({c2}), · · ·, µ∗({cn−1, cn})) on the criteria set and probability vector P∗ =320

(p∗1, p∗2, · · ·, p∗o) of natural states.
Step 13: Calculate the Banzhaf value ψ({c j}) on each criterion c j( j = 1, 2, · · ·, n) using (7).
Step 14: Compute the Banzhaf-based overall perceived utility value Vi of each alternative zi(i = 1, 2, · · ·,m) using

(21).
Step 15: Rank the alternatives z1, z2, · · ·, and zm and select the optimal alternative based on V1,V2, · · ·, and Vm.325

5. Application Examples

In this section, a practical example is provided to illustrate the proposed IT2F programming method. In addition,
a comparative analysis is presented to demonstrate the superiority of the proposed method.

5.1. Decision-Making Steps

Example 1. It is assumed that an international investment bank wishes to select a company to invest. Five candidate330

companies are to be assessed: travel company z1, software company z2, food company z3, construction company z4,
and motorcar company z5. It is assumed that four criteria are considered, i.e., product substitutability c1, development
potentials c2, investment safety index c3, and investment income c4. Among these attributes, c1 is the cost criterion,
whereas c2, c3, and c4 are the benefit criteria. The criteria are assumed to be independent, and their importance given
by the DMs is Λ = {0.15 ≤ µ({c1}) ≤ 0.2, 0.2 ≤ µ({c2}) ≤ 0.3, 0.2 ≤ µ({c3}) ≤ 0.3, 0.3 ≤ µ({c4}) ≤ 0.4}. According to335

historical data, three natural states Θ = {θ1, θ2, θ3} exist for the criteria: high risk θ1, medium risk θ2, and low risk θ3. It
is assumed that the uncertain probability information is expressed as Γ = {0.4 ≤ p1 ≤ 0.45, 0.35 ≤ p2 ≤ 0.375, 0.175 ≤
p3 ≤ 0.2}. The seven IT2FSs linguistic terms in Table 1 are used to assess the companies based on the criteria above.
The risky decision matrices Ãτ = [Ãτ

i j]5×4(τ = 1, 2, 3) are listed in Table 3. With the DMs’ comprehension and judge-
ments, the seven IT2FSs linguistic terms in Table 1 are used to evaluate the preference relations between companies,340

i.e., Ω1 = {〈(1, 2), t1(1, 2)〉, 〈(2, 5), t1(2, 5)〉, 〈(3, 1), t1(3, 1)〉, 〈(3, 2), t1(3, 2)〉, 〈(3, 4), t1(3, 4)〉, 〈(5, 4), t1(5, 4)〉}, Ω2 =

{〈(2, 1), t2(2, 1)〉, 〈(2, 5), t2(2, 5)〉, 〈(3, 1), t2(3, 1)〉, 〈(3, 2), t2(3, 2)〉, 〈(3, 4), t2(3, 4)〉, 〈(5, 4), t2(5, 4)〉} and Ω3 = {〈(2, 1),
t3(2, 1)〉, 〈(4, 1), t3(4, 1)〉, 〈(5, 1), t3(5, 1)〉, 〈(5, 3), t3(5, 3)〉}, where the corresponding IT2F truth degrees are t1(1, 2) =

VG, t1(2, 5) = MG, t1(3, 1) = G, t1(3, 2) = G, t1(3, 4) = MG, t1(5, 4) = G; t2(2, 1) = G, t2(2, 5) = MG, t2(3, 1) =

G, t2(3, 2) = M, t2(3, 4) = M, t2(5, 4) = M; t3(2, 1) = G, t3(4, 1) = VG, t3(5, 1) = G, t3(5, 3) = G. Hence, the supports345

of Ω1, Ω2 and Ω3 are Ω1
0 = {(1, 2), (2, 5), (3, 1), (3, 2), (3, 4), (5, 4)}, Ω2

0 = {(2, 1), (2, 5), (3, 1), (3, 2), (3, 4), (5, 4)} and
Ω3

0 = {(2, 1), (4, 1), (5, 1), (5, 3)}, respectively.
To select the optimal company, our proposed IT2F programming method is used, and the detailed process is pro-

vided in Appendix III in the supplementary material. Based on Appendix III, it is clear that if B̂τi j(i = 1, 2, 3, 4, 5; j =

1, 2, 3, 4; τ = 1, 2, 3) is assumed to be uniformly distributed, then the ranking order of the companies is z3 > z2 > z5 >350

z4 > z1, where the optimal company is z3.
In addition, it is assumed that B̂τi j(i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; τ = 1, 2, 3) obeys a normal distribution instead of

a uniform distribution. Therefore, using our proposed IT2F programming method for the application example above,
we derive the Banzhaf-based overall perceived utility value Vi of each company zi(i = 1, 2, · · ·, 5) as follows:

V1 = 0.5700,V2 = 0.6781,V3 = 0.7118,V4 = 0.5853,V5 = 0.6569.
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Table 3
Risky Decision-Making Matrices for Example 1.

θ1 θ2 θ3

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

z1 G MB MG VG G M VG G MB M VG MG
z2 MB G B MG B VG MG G VB G G MG
z3 VG VG MG VG MB G G G MB G MB G
z4 VG M VG MB MB VG VG MG B MG VG MB
z5 VB B MG M MB G MG VG B VG MG G

Because V3 > V2 > V5 > V4 > V1, the ranking order of the companies is z3 > z2 > z5 > z4 > z1, which is the same as
that derived by our proposed IT2F programming method, where B̂τi j obeys a uniform distribution.

5.2. Comparative Analysis

To illustrate the feasibility and superiority of our proposed IT2F programming method, the experimental results355

obtained from our proposed method are compared with those of the following state-of-the-art methods: Qin et al.’s
method [27] based on the vlsekriterijumska optimizacija i kompromisno resenje in serbian (VIKOR) and prospect
theory, Qin et al.’s method [28] based on an acronym in Portuguese for interactive multicriteria decision making
(TODIM), Chen et al.’s method [5] based on LINMAP, and Liu et al.’s method [15] based on a partitioned Bonferroni
mean (PBM) operator. It is noteworthy that some minor errors were discovered in the definitions of Qin et al. [27],360

Qin et al. [28], and Liu et al.’s methods [15]. According to the formula of the rank-based distance function [28],
Definition 7 on [page 119] of Qin et al.’s method [27], Definition 9 on [page 630] of Qin et al.’s method [28], and
Definition 3.8 on [page 298] of Liu et al.’s method [15] should be revised as follows:

Definition 8: Let A1 and A2 be two IT2FSs, and let 1̃ = ((1, 1, 1, 1; 1), (1, 1, 1, 1; 1)). Then, their ranking based on
the rank-based distances D(A1 − 1̃) and D(A2 − 1̃) is as follows:365

1) If D(A1 − 1̃) > R(A2 − 1̃), then A1 is inferior to A2, represented by A1 < A2.
2) If D(A1 − 1̃) = R(A2 − 1̃), then A1 is indifferent to A2, represented by A1 = A2.
3) If D(A1 − 1̃) < R(A2 − 1̃), then A1 is superior to A2, represented by A1 > A2.
For a fair comparison, it is assumed that for these existing methods, the possibility vector of natural states is

p = (0.45, 0.375, 0.175), which is the same as that derived using our proposed method. Furthermore, these existing
methods cannot directly address risky MCDM problems with incomplete criteria weights. In order to apply Qin et
al.’s method [27] to address Example 1, we first use the deviation maximization method [9] to determine the weights
of the criteria. In order to apply Qin et al. [28] and Liu et al.’s methods [15] to address Example 1, the application
example is transformed into a group decision-making problem, where risky decision matrices are regarded as group
decision matrices, and the experts’ weights are regarded as the natural states’ possibilities; subsequently, the deviation
maximization method [9] is used to determine the weights of the criteria. To apply Chen et al.’s method [5] to address
Example 1, Equation (62) in [5] is extended to the following form:

min


o∑
τ=1

pτ
∑

(k,i)∈Ωτ
0

Fτ
k,i



s.t.



o∑
τ=1

∑
(k,i)∈Ωτ

0

n∑
j=1

pτ(CIτβk j −CIτβi j )w j ≥ η;

n∑
j=1

(CIτβk j −CIτβi j ) + Fτ
k,i ≥ 0 ((k, i) ∈ Ωτ

0);

w j ≥ 0 ( j = 1, 2, · · ·, n);
n∑

j=1
w j = 1,

where CIτβk j is the closeness-based index of the alternative zk(k = 1, 2, · · ·,m) based on the Minkowski distance dβ
with respect to criterion c j( j = 1, 2, · · ·, n) in state θτ(τ = 1, 2, · · ·, o), pτ is the occurrence possibility of natural370
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state θτ, w j is the weight of criterion c j, Ωτ
0 = {(k, i)|zk ≥τ zi for k, i = 1, 2, · · ·,m} is provided by the DM a priori,

and Fτ
k,i = 0 ∨

n∑
j=1

(CIτβk j − CIτβi j ). Moreover, for Qin et al.’s method [27], α, β, λ, γ and δ are set to 0.88, 0.88,

2.25, 0.61, and 0.69, respectively, as recommended by [35]; for Qin et al.’s method [28], the attenuation factor of
loss θ is set to 1, as suggested in [28]; for Chen et al.’s method [5], η is set to 0.0178 according to the expected
value of ρ = ((0, 0, 0, 0.1; 1), (0, 0, 0, 0.05; 0.9)) in Example 1; for Liu et al.’s method [15], p and q are set to 1 and375

2, respectively, according to the characteristics presented in Example 1. Table 9 reports the ranking orders of the
companies in Example 1 .

Table 9
Ranking results for different methods for example 1.

Method Theoretical Foundation Outcome Ranking Order

Qin et al.’s method [27] Prospect Theory π1 = 0,π2 = 0.9331, V3 > V2 > V5 > V4 > V1(based on the VIKOR) π3 = 1,π4 = 0.334,π5 = 0.7944

Prospect Theory

S 1 = 0.5508,S 2 = 0.2708,S 3 = 0.2509,

V3 = V2 > V5 > V4 > V1
Qin et al.’s Method [28] S 4 = 0.5235,S 5 = 0.37; R1 = 0.3,R2 = 0.2,
(based on the TODIM) R3 = 0.136,R4 = 0.3,R5 = 0.1864;Q1 = 1,

Q2 = 0.2282,Q3 = 0,Q4 = 0.9544,Q5 = 0.3522
Chen et al.’s Method [5] Expected Utility Theory WI

2
1 = 0.4792,WI

2
2 = 0.6247, V3 > V2 > V5 > V4 > V1

(based on the LINMAP) WI
2
3 = 0.6661,WI

2
4 = 0.4853,WI

2
5 = 0.5884

Liu et al.’s Method[15] Expected Utility Theory D(V1 − 1̃) = 0.8109, D(V2 − 1̃) = 0.7918, V3 > V2 > V5 > V4 > V1(based on the PBM Operator) D(V3 − 1̃) = 0.7836,D(V4 − 1̃) = 0.8080, D(V5 − 1̃) = 0.7972
The IT2F Programming Method Regret Theory V1 = 0.5706, V2 = 0.6794, V3 > V2 > V5 > V4 > V1(Obeying the Uniform Distribution) V3 = 0.7118, V4 = 0.5863, V5 = 0.6596
The IT2F Programming Method Regret Theory V1 = 0.5700, V2 = 0.6781, V3 > V2 > V5 > V4 > V1(Obeying the Normal Distribution) V3 = 0.7118, V4 = 0.5853, V5 = 0.6569

*Note: πi is the global prospect value of alternative zi; S i, Ri and Qi are the group utility value, individual regret value and compromise value
of alternative zi, respectively; Ii is the comprehensive closeness-based value of alternative zi; D(Vi − 1̃) is the ranked-based distance between
Vi and 1̃.

As shown in Table 9, Qin et al.’s [27], Chen et al.’s [5], Liu et al.’s [15], and our proposed IT2F programming
methods yield the same ranking result, that is, V3 > V2 > V5 > V4 > V1, whereas Qin et al.’s method [28] yields a
different ranking result, that is, V3 = V2 > V5 > V4 > V1, where it could not distinguish the ranking order between380

companies z3 and z2. This verifies that our proposed method is suitable and can overcome the shortcomings of Qin et
al.’s method [28]. Because the ranking results derived from Qin et al.’s [27], Chen et al.’s [5], Liu et al.’s [15], and
our proposed IT2F programming methods are identical, the advantage of our proposed method compared with the
other three approaches is not highlighted. Hence, we provide another example to further explain the superiority of our
proposed IT2F programming method.385

Example 2. In Example 1, to select the optimal investment company, four criteria were considered: product sub-
stitutability c1, development potential c2, investment safety index c3, and investment income c4, which were assumed
to be independent. Nevertheless, in practice, these criteria exhibit a heterogeneous relationship, ranging from redun-
dancy to complementarity. In general, the lower the product substitutability, the better the development potential; the
higher the investment safety index, the lower the investment income. Consequently, it is unreasonable to assume that
the criteria were independent. In such a situation, Example 1 is changed to presume that a heterogeneous relationship
exists among the criteria on the following weight information of incomplete attributes:

0.15 ≤ µ({c1}) ≤ 0.2, 0.2 ≤ µ({c2}) ≤ 0.3, 0.2 ≤ µ({c3}) ≤ 0.3, 0.3 ≤ µ({c4}) ≤ 0.4,
0.2 ≤ µ({c1, c2}) ≤ 0.3, 0.2 ≤ µ({c1, c3}) ≤ 0.3, 0.2 ≤ µ({c2, c3}) ≤ 0.4, 0.3 ≤ µ({c3, c4}) ≤ 0.7.

The evaluation values remain identical to those shown in the risky decision matrix in Table 3. For a better comparison,
we assume that the possibility vector of natural states is p = (0.45, 0.375, 0.175), which is the same as that in Example
1. To further explain the advantage of our proposed IT2F programming method, we use Qin et al. [27], Qin et al.
[28], Chen et al. [5] and Liu et al.’s methods [15] to address Example 2. The experimental results from the existing
approaches [5, 15, 27, 28] and our proposed method are listed in Table 10, where we assume that the values of the390
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parameters in these methods are the same as those in Example 1.

Table 10
Ranking results for different methods for example 2.

Method Theoretical Foundation Outcome Ranking Order

Qin et al.’s Method [27] Prospect Theory π1 = 0,π2 = 0.9331, V3 > V2 > V5 > V4 > V1(based on the VIKOR) π3 = 1,π4 = 0.334,π5 = 0.7944

Prospect Theory

S 1 = 0.5508,S 2 = 0.2708,S 3 = 0.2509,

V3 = V2 > V5 > V4 > V1
Qin et al.’s Method [28] S 4 = 0.5235,S 5 = 0.37; R1 = 0.3,R2 = 0.2,
(based on the TODIM) R3 = 0.136,R4 = 0.3,R5 = 0.1864;Q1 = 1,

Q2 = 0.2282,Q3 = 0,Q4 = 0.9544,Q5 = 0.3522
Chen et al.’s Method [5] Expected Utility Theory WI

2
1 = 0.4792,WI

2
2 = 0.6247, V3 > V2 > V5 > V4 > V1

(based on the LINMAP) WI
2
3 = 0.6661,WI

2
4 = 0.4853,WI

2
5 = 0.5884

Liu et al.’s Method [15] Expected Utility Theory D(V1 − 1̃) = 0.8109, D(V2 − 1̃) = 0.7918, V3 > V2 > V5 > V4 > V1(based on the PBM Operator) D(V3 − 1̃) = 0.7836, D(V4 − 1̃) = 0.8080, D(V5 − 1̃) = 0.7972
The IT2F Programming Method Regret Theory V1 = 0.6364, V2 = 0.7088, V3 > V2 > V1 > V5 > V4(Obeying the Uniform Distribution) V3 = 0.8028, V4 = 0.5629, V5 = 0.6348
The IT2F Programming Method Regret Theory V1 = 0.5706, V2 = 0.6794, V3 > V2 > V1 > V5 > V4(Obeying the Normal Distribution) V3 = 0.7118, V4 = 0.5863, V5 = 0.6596

*Note: The meanings of πi, S i, Ri, Qi and Ii are the same as those in Table 9.

As shown in Table 10, when the independent criteria of the risky MCDM problem are changed to heterogeneous
criteria, Qin et al.’s method [28] still maintains the same ranking order, that is, V3 = V2 > V5 > V4 > V1, because
it could not distinguish the ranking order between companies z3 and z2 nor consider the heterogeneous relationship
among the criteria. In Example 2, it is known that the lower the product substitutability, the better the development395

potential, that is, product substitutability and development potential, are negatively interactive. Accordingly, the
comprehensive weight of the two criteria considered simultaneously should be smaller than the sum of the weights of
the two criteria when they are considered individually. Therefore, the ranking result derived using Qin et al.’s method
[28] is not suitable because it disregards the heterogeneous relationship among the criteria and fails to distinguish
the ranking order between companies z3 and z2. Additionally, one can observe that when the independent criteria400

of the risky MCDM problem are changed to heterogeneous criteria, Qin et al. [27], Chen et al. [5], and Liu et al’s
methods [15] still yield the same rankings because they are based on the following equalities: µ({c j, cq}) = µ({c j}) +

µ({cq})( j, q = 1, 2, · · ·, n; j , q), which are invalid in Example 2. Therefore, the ranking result derived using Qin et
al.[27], Chen et al.[5], and Liu et al.’s methods [15] are not suitable. Furthermore, when the independent criteria of the
risky MCDM problem are changed to heterogeneous criteria, the preferred order derived using our proposed approach405

changes from V3 > V2 > V5 > V4 > V1 to V3 > V2 > V1 > V5 > V4, although that of the best company remains the
same. Clearly, the ranking result of the companies using our proposed approach is reasonable because it is based on
the following inequalities: µ({c1, c2}) = 0.3 < µ({c1}) + µ({c2}) = 0.35, µ({c1, c3}) = 0.3 < µ({c1}) + µ({c3}) = 0.35,
µ({c2, c4}) = 0.7053 > µ({c2}) + µ({c4}) = 0.5. Hence, our proposed approach captures the negative synergetic
interaction of criteria c1 and c2, the negative synergetic interaction of criteria c1 and c3, and the positive synergetic410

interaction of criteria c2 and c4. Therefore, our proposed approach yields a realistic ranking result, unlike the existing
approaches [5, 15, 27, 28].

5.3. Further Analysis
Next, we discuss the characteristics of Qin et al.’s [27], Qin et al.’s [28], Chen et al.’s [5], Liu et al.’s [15], and our

proposed IT2F programming methods, described as follows:415

• With regard to the information regarding the pairwise comparisons of alternatives, Qin et al. [27], Qin et
al. [28], and Liu et al’s methods [15] use only criteria values to rank alternatives and disregard information
regarding the pairwise comparisons of alternatives. Chen et al.’s method [5] adopts the information regarding
the pairwise comparisons of alternatives to make decisions; however, the information is in the form of ordered
pairs with real truth degrees 0 or 1. Crisp values and type-1 fuzzy sets may be inadequate for practical cases420

owing to the increasing complexity of decision-making problems. In our proposed method, IT2FSs are used to
denote the truth degrees for the comparison of alternatives, which are more accurate and effective for expressing

20



vague and imprecise information. Therefore, our proposed method is more valid and suitable for practical
decision-making problems with higher degrees of uncertainty.

• With regard to the heterogeneous relationship among the criteria, Qin et al.[27], Qin et al. [28], and Chen et425

al.’s methods [5] assume that the criteria are independent and fail to consider the heterogeneous relationships
among the criteria. In Liu et al.’s method [15], the PBM operator presumes that the criteria are partitioned into
several clusters, where the criteria in identical clusters are interrelated, whereas those in various clusters are
irrelevant. However, Liu et al.’s method [15] could not consider the negative and positive synergetic interac-
tions among the criteria simultaneously. Not considering the heterogeneous relationships among the criteria430

may result in less convincing outcomes. In our proposed method, 2AFMs are applied to model negative syn-
ergetic interactions, positive synergetic interactions, and the independence of the criteria. Consequently, our
proposed method is more convincing and generic than existing methods [5, 15, 27, 28] because it can address
both independent and dependent risky MCDM problems, whereas the methods in [5, 27, 28] can only address
independent decision-making problems, and Liu et al.’s method [15] can only address partially heterogeneous435

decision-making problems.

• With regard to the theoretical foundation, Chen et al. [5] and Liu et al.’s methods [15] are based on the expected
utility theory, which assumes that DMs are completely rational in the decision procedure. In actual risky
MCDM problems, DMs typically behave in bounded rationality. Hence, these two methods may cause an
irrational divergence between real decision-making behaviors and the predictable values of the expected utility440

theory owing to omitted emotions, such as regret, rejoice, and reward. Qin et al. [27] and Qin et al.’s methods
[28] are based on prospect theory, which emphasizes the role of DMs’ loss aversion in the decision-making
procedure. Our proposed method is based on regret theory, which highlights the role of DMs’ regret aversion
in the decision-making process. Hence, the last three methods reflect the psychological behaviors of DMs and
can overcome the limitations of Chen et al. [5] and Liu et al.’s methods [15]. Compared with prospect theory,445

regret theory involves fewer parameters and has better descriptive power. Accordingly, our proposed method
can simplify the computational complexity and is more convenient to implement in actual applications.

• With regard to the weight information of criteria, Qin et al [27] and Qin et al.’s methods [28] assign weight
information in advance; hence, subjective randomness is difficult to avoid. Liu et al.’s method [15] assumes that
the weights of criteria are completely unknown and only relies on the decision matrix to determine them, which450

may be inconsistent with the actual weight information owing to the omitted valuable subjective judgments of
the DMs. By employing LINMAP, Chen et al.’s method [5] can only derive the weights of independent criteria
objectively. Utilizing subjective and objective information, our proposed method is based on the LINMAP
and 2AFMs, which not only accurately determines the weights of independent criteria, but also reasonably
determines the weights of the dependent criteria. Therefore, our proposed method is more comprehensive and455

applicable to real decision-making problems with incomplete weights.

Based on previous analyses, the characteristics of all the approaches involved are summarized in Table 11. It is
clear that our proposed IT2F programming method outperforms comparative methods for risky MCDM problems.
Furthermore, our proposed method can be a strong alternative to state-of-the-art approaches for solving IT2F MCDM
problems, and its unique characteristics render it highly attractive for solving risky MCDM problems with IT2F truth460

degrees on alternatives’ comparisons.

Table 11
Comparisons of Different Approaches.

Methods
Features Can Use the Information Can Consider the Heterogeneous Can Reflect DM’s Can Determine the

on Pair-wise Comparisons Relationship among the Criteria Psychology Behavior Weight Information

Qin et al.’s method [27] No No Yes (Loss Aversion) No
Qin et al.’s method [28] No No Yes (Loss Aversion) No
Chen et al.’s method [5] Yes (0 or 1) No No Yes (Independent)
Liu et al.’s method [15] No Yes (Partially) No Yes (Completely Unknown)
Our proposed method Yes (IT2Fs) Yes (Totally) Yes (Regret Aversion) Yes (Dependent and Independent)
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6. Conclusion

In risky MCDM, three types of assessment information (criteria values, pairwise comparisons of alternatives,
and weight information) are typically provided. The criteria often exhibit heterogeneous relationships, and the DMs
commonly behave in bounded rationality. Herein, we proposed a novel IT2F programming method to manage such465

risky MCDM in an IT2F setting. Four phases were involved: an information acquisition phase, the calculation of the
Banzhaf-based perceived utility value phase, the construction of an IT2F programming model phase, and the solution
approach of the IT2F programming model phase.

• In the first phase, we used IT2FSs to depict the criteria values and the pairwise comparisons of alternatives. The
prominent feature of IT2FSs is that they comprise primary and secondary MFs; as such, they are an excellent470

tool for addressing higher uncertainties.

• In the second phase, we introduced 2AFMs and regret theory into the risky MCDM procedure and developed a
novel technique to calculate the Banzhaf-based IT2F perceived utility values of alternatives. This implies that
the effects of regret aversion and heterogeneous relationships were quantified, while selection was performed
from multiple alternatives in IT2F settings.475

• In the third phase, based on the LINMAP method, we established an IT2F programming model, which can
effectively combine three types of assessment information and objectively identify the optimal 2AFMs on the
criteria set and the optimal probabilities of the natural states.

• In the fourth phase, using the EA-CSTA, we designed an algorithm to solve the established mathematical
programming model.480

To explain the validity and advantages of our proposed IT2F programming method, a comparative analysis was
performed using our proposed method and previous MCDM methods in [5, 15, 27, 28]. From the experimental results,
we conclude that our proposed method outperforms the MCDM methods presented in [5, 15, 27, 28]. In future work,
we will focus on the following issues: (1) Because some parameters of our proposed method were provided by the
DMs in advance, the identification of the related parameters using machine learning is a potential research topic. (2)485

It is desirable to explore our proposed method in various areas, such as project selection [20], online review sentiment
analysis [2] and stock investment [34]. (3) Based on multi-time assessment information, the analysis of a dynamic
IT2F programming method is a valuable research direction.
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Appendix II595

The detailed procedure description of the EA-CSTA-based optimization algorithm is provided as follows:
Step 1: Initialize samples W1, which comprise S E samples W1 = [W1

1,W
1
2, · · ·,W

1
S E]. The ιth (ι = 1, 2, · · ·, S E)

sample is denoted by W1
ι = (ω1

ι ; P1
ι ), where ω1

ι = (µ1
ι ({c1}), µ1

ι ({c2}), · · ·, µ1
ι ({cn−1, cn}))T and P1

ι = (p1
ι1, p1

ι2, · · ·, p1
ιo)T ,

where µ1
ι ({c j})( j = 1, 2, · · ·, n), µ1

ι ({c j, cq}(q = 1, 2, · · ·, n; j , q) and p1
ιτ(τ = 1, 2, · · ·, o) are randomly generated, and

they verify the following conditions: µ1
ι ({c j}) ≥ 0, µ1

ι ({c j}) ∈ Λ, µ1
ι ({c j, cq} ∈ Λ, p1

ιτ ≥ 0 and p1
ιτ ∈ Γ. Additionally,600
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µ1
ι ({cn, cn−1}) is determined by µ1

ι ({cn, cn−1}) = (n−2)
∑
{c j}⊆C

µ1
ι ({c j})−1−

∑
{c j,cp}⊆C\{cn,cn−1}

µ1
ι ({c j, cp}), and p1

ιo is determined

by p1
ιo = 1 − p1

ι1 − p1
ι2 − · · · − p1

ιo−1. In this study, we set S E = 30.
Step 2: Calculate the objective value B1

ι and constraint violation degree D1
ι of each sample W1

ι (ι = 1, 2, · · ·, S E),
where B1

ι and D1
ι are determined by the objective function and constrained conditions in (34), respectively. According

to the definition of constraint violation degree in [45], we observe that D1
ι ≥ 0. In general, if D1

ι > 0, then W1
ι is an605

infeasible solution; otherwise, it is a feasible solution.
Step 3: Select S A potential solutions W̄1 = [W̄1

1, W̄
1
2, · · ·, W̄

1
S A] from S E samples W1 and save them in an external

archive. The S A potential solutions W̄1 comprise num1
f potential feasible solutions W̄1

f and num1
in f potential infeasible

solutions W̄1
in f . To maintain diversity of the potential solutions and avoid falling into a local optimum, the tradeoff

scheme is applied to determine the values of num1
f and num1

in f , and the preference scheme is applied to select num1
f610

potential feasible solutions W̄1
f and num1

in f potential infeasible solutions W̄1
in f . In this study, we set S A = 20. This

mainly includes the following substeps.
Step 3.1: Classify S E samples W1 into S E1

f feasible candidates W1
f = [W1

f 1,W
1
f 2, ···,W

1
f S E1

f
] and S E1

in f infeasible

candidates W1
in f = [W1

in f 1,W
1
in f 2, · · ·,W

1
in f S E1

in f
] according to the values of D1

ι (ι = 1, 2, · · ·, S E). Subsequently, the

ratio of feasible solutions f p1 in the total solutions is derived using f p1 = S E1
f /S E.615

Step 3.2: Based on the tradeoff scheme, the values of num1
f and num1

in f can be computed using as follows:

num1
f =

S A × (1 − f p1), 0 < f p1 < 1
S A, f p1 = 1

(35)

num1
in f =

S A × f p1, 0 < f p1 < 1
S A. f p1 = 0

(36)

Step 3.3: The preference scheme is applied to determine num1
f potential solutions W̄1

f . Therefore, the feasible
candidates W1

f are sorted in ascending order of their objective values, and the first num1
f solutions W̄1

f are saved in the
external archive as part of the potential solutions W̄1.

Step 3.4: The normalized penalty function strategy and preference scheme are applied to determine num1
in f po-

tential solutions W̄1
in f . Specifically, we first derive the normalized objective value Bnor(W1

in fχ) and the normalized
constraint violation Dnor(W1

in fχ) of infeasible candidate W1
in fχ(χ = 1, 2, · · ·, S E1

in f ) as follows:

Bnor(W1
in fχ) =

B(W1
in fχ) −min(B(W1

in fχ))

max(B(W1
in fχ)) −min(B(W1

in fχ))
, (37)

Dnor(W1
in fχ) =

D(W1
in fχ) −min(D(W1

in fχ))

max(D(W1
in fχ)) −min(D(W1

in fχ))
, (38)

Subsequently, Tnor(W1
in fχ) is derived as follows:

Tnor(W1
in fχ) = Bnor(W1

in fχ) + νDnor(W1
in fχ), (39)

where ν denotes the penalty factor. In this study, we set ν = 1.5. Finally, the infeasible candidates W1
in f are sorted in

ascending order of the values Tnor(W1
in fχ), and then the first num1

in f solutions W̄1
in f are saved in the external archive as620

the other part of the potential solutions W̄1.
Step 4: Initialize the values of parameters α, β, γ, and δ, where α is a rotation factor, β is a translation factor, γ is

an expansion factor, and δ is an axesion factor. In this study, we set α = 2, β = 100, γ = 2, and δ = 6.
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Step 5: Set the number of iterations iter to 1. Update the values of α and δ, expand S A potential solutions W̄iter

to S A× S E solutions Ŵiter using expansion transformation, select S A solutions W̄e−iter, and save them in the external625

archive. Similarly, rotation, axesion and translation are adopted sequentially. Subsequently, the number of iterations
iter is increased by one for each iteration until the number of iterations iter reaches a predefined number miter of
iterations. This includes the following steps:

Step 5.1: Update the values of α and δ using α = α/ f c and δ = δ/ f c, respectively. Subsequently, the values of α
and δ are determined according to the following rules: if α < αmin, then α = αmax; if δ < δmin, then δ = δmax. In this630

study, we assume that f c = 2, αmax = 1, αmin = 10−4, δmax = 3, and δmin = 10−6.
Step 5.2: The process of expansion transformation is as follows: expand S A potential solutions W̄iter to S A × S E

solutions Ŵiter = [Ŵiter
1 , Ŵiter

2 , · · ·, Ŵiter
S A ], where Ŵiter

κ = [Ŵiter
κ1
, Ŵiter

κ2
, · · ·, Ŵiter

κS E
](κ = 1, 2, · · ·, S A). It is noteworthy

that Ŵiter
κ is derived using the following rules: (1) Set the number of iterations ite to 1. (2) The solution is repeatedly

expanded using Ŵiter
κite

= W̄iter
κ + γReW̄iter

κ , and Re ∈ R((n2+n+2o)/2)×((n2+n+2o)/2) is a random diagonal matrix whose635

elements obey the standard normal distribution. (3) If the number of iterations ite is smaller than S E, then ite is
increased by one and proceeds to (1). Otherwise, derive S E solutions Ŵiter

κ . Next, the solutions Ŵiter are combined
with S A solutions W̄iter of the external archive and (S A + 1)×S E solutions W̃iter are derived. Finally, similar to Steps
2 and 3, we derive S A solutions W̄e−iter from (S A + 1) × S E solutions W̃iter, and save them in the external archive.

Step 5.3: Similarly, rotation, axesion, and translation are adopted sequentially; therefore, S A solutions W̄iter+1 are640

derived and then saved in the external archive. With respect to these three state transformation operators’ formulas,
please refer to references [45] and [52].

Step 5.4: If the number of iterations iter is smaller than the predefined number miter of iterations, then increase
iter by 1 and proceed to Step 5.1. Otherwise, the optimal solution W∗ of the external archive in Step 5.3 is the optimal
weighting vector.645

Appendix III

To select the optimal company, the following steps are required:
Steps 1-2: See the detailed description of Example 1.
Step 3: Because c1 is a cost criterion, and c2, c3 and c4 are benefit criteria, we should normalize risky decision

matrices Ãτ = [Ãτ
i j]5×4(τ = 1, 2, 3) using (10) and Table II. The normalized decision matrices A1, A2, and A3 are listed650

in Table 4.

Table 4
Normalized Risky Decision-Making Matrices for Example 1.

θ1 θ2 θ3

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

z1 B MB MG VG B M VG G MG M VG MG
z2 MG G B MG G VG MG G VG G G MG
z3 VB VG MG VG MG G G G MG G MB G
z4 VB M VG MB MG VG VG MG G MG VG MB
z5 VG B MG M MG G MG VG G VG MG G

Step 4: Using (11) to compute the optimal ideal solution A
τ

in each state θτ(τ = 1, 2, 3), we derive the following:
A

1
= (VG,VG,VG,VG), A

2
= (G,VG,VG,VG), A

3
= (VG,VG,VG,G).

Step 5: Using (12)–(13) to calculate the centroid intervals of IT2FSs, we derive the centroid interval matrices B1,
B2, and B3, as shown in Table 5.655

Similarly, we derive the following defuzzified value vector B
τ

of each optimal ideal solution A
τ
(τ = 1, 2, 3):

B
1

= ([0.9644, 0.9841], [0.9644, 0.9841], [0.9644, 0.9841], [0.9644, 0.9841]),

B
2

= ([0.8485, 0.9020], [0.9644, 0.9841], [0.9644, 0.9841], [0.9644, 0.9841]),

B
3

= ([0.9644, 0.9841], [0.9644, 0.9841], [0.9644, 0.9841], [0.8485, 0.9020]).
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Table 5
Centroid Interval Matrices for Example 1.

θ1 θ2

c1 c2 c3 c4 c1 c2

z1 [0.0982, 0.1602] [0.2812, 0.3324] [0.6803, 0.7323] [0.9644, 0.9841] [0.0982, 0.1602] [0.4642, 0.5324]
z2 [0.6803, 0.7323] [0.8485, 0.9020] [0.0982, 0.1602] [0.6803, 0.7323] [0.8485, 0.9020] [0.9644, 0.9841]
z3 [0.0159, 0.0356] [0.9644, 0.9841] [0.6803, 0.7323] [0.9644, 0.9841] [0.6803, 0.7323] [0.8485, 0.9020]
z4 [0.0159, 0.0356] [0.4642, 0.5324] [0.9644, 0.9841] [0.2812, 0.3324] [0.6803, 0.7323] [0.9644, 0.9841]
z5 [0.9644, 0.9841] [0.0982, 0.1602] [0.6803, 0.7323] [0.4642, 0.5324] [0.6803, 0.7323] [0.8485, 0.9020]

θ2 θ3

c3 c4 c1 c2 c3 c4

z1 [0.9644, 0.9841] [0.8485, 0.9020] [0.6803, 0.7323] [0.4642, 0.5324] [0.9644, 0.9841] [0.6803, 0.7323]
z2 [0.6803, 0.7323] [0.8485, 0.9020] [0.9644, 0.9841] [0.8485, 0.9020] [0.8485, 0.9020] [0.6803, 0.7323]
z3 [0.8485, 0.9020] [0.8485, 0.9020] [0.6803, 0.7323] [0.8485, 0.9020] [0.2812, 0.3324] [0.8485, 0.9020]
z4 [0.9644, 0.9841] [0.6803, 0.7323] [0.8485, 0.9020] [0.6803, 0.7323] [0.9644, 0.9841] [0.2812, 0.3324]
z5 [0.6803, 0.7323] [0.9644, 0.9841] [0.8485, 0.9020] [0.9644, 0.9841] [0.6803, 0.7323] [0.8485, 0.9020]

Step 6: It is assumed that B̂τi j(i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; τ = 1, 2, 3) is uniformly distributed. Subsequently, (14)
is used to derive the utility value matrices U1, U2, and U3, as shown in Table 6.

Table 6
Utility Value Matrices for Example 1.

θ1 θ2 θ3

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

z1 0.1650 0.3535 0.7364 0.9773 0.1650 0.5417 0.9773 0.8893 0.7386 0.5417 0.9773 0.7364
z2 0.7364 0.8893 0.1650 0.1650 0.8893 0.9773 0.7364 0.8893 0.9773 0.8893 0.8893 0.7364
z3 0.0398 0.9773 0.7364 0.9773 0.7364 0.8893 0.8893 0.8893 0.7364 0.8893 0.3535 0.8893
z4 0.0398 0.5417 0.9773 0.3535 0.7364 0.9773 0.9773 0.7364 0.8893 0.7364 0.9773 0.3535
z5 0.9773 0.1650 0.7364 0.5417 0.7364 0.8893 0.7364 0.9773 0.8893 0.9773 0.7364 0.8893

Similarly, we derive the following optimal ideal solution utility vectors U
1
, U

2
, and U

3
:

U
1

= (0.9773, 0.9773, 0.9773, 0.9773),U
2

= (0.8893, 0.9773, 0.9773, 0.9773),U
3

= (0.9773, 0.9773, 0.9773, 0.8893).

Step 7: (17) is used to calculate the regret value matrices R1, R2, and R3, as shown in Table 7.

Table 7
Regret Value Matrices for Example 1.

θ1 θ2 θ3

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

z1 -0.2760 -0.2058 -0.0750 0 -0.2427 -0.1396 0 -0.0267 -0.0742 -0.1396 0 -0.0470
z2 -0.0750 -0.0267 -0.2760 -0.0750 0 0 -0.0750 -0.0267 0 -0.0267 -0.0267 -0.0470
z3 -0.3248 0 -0.0750 0 -0.0470 -0.0267 -0.0267 -0.0267 -0.0750 -0.0267 -0.2058 0
z4 -0.3248 -0.1396 0 -0.2058 -0.0470 0 0 -0.0750 -0.0267 -0.0750 0 -0.1744
z5 0 -0.2760 -0.0750 -0.1396 -0.0470 -0.0267 -0.0750 0 -0.0267 0 -0.0750 0.8893

Step 8: (18) is used to calculate the perceived utility matrices V1, V2, and V3, as shown in Table 8.
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Table 8
Perceived Utility Value Matrices for Example 1.

θ1 θ2 θ3

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

z1 -0.1110 0.1477 0.6614 0.9773 -0.0777 0.4021 0.9773 0.8626 0.6644 0.4021 0.9773 0.6894
z2 0.6614 0.8626 -0.1110 0.6614 0.8893 0.9773 0.6614 0.8626 0.9773 0.8626 0.8626 0.6894
z3 -0.2849 0.9773 0.6614 0.9773 0.6894 0.8626 0.8626 0.8626 0.6614 0.8626 0.1477 0.8893
z4 -0.2849 0.4021 0.9773 0.1477 0.6894 0.9773 0.9773 0.6614 0.8626 0.6614 0.9773 0.1791
z5 0.9773 -0.1110 0.6614 0.4021 0.6894 0.8626 0.6614 0.9773 0.8626 0.9773 0.6614 0.8893

Subsequently, using (21) to compute the Banzhaf-based overall perceived utility value Vi of each alternative zi(i =

1, 2, · · ·, 5), we derive the following:

V1 = p1 × (−0.1110ψ({c1}) + 0.1477ψ({c2}) + 0.6614ψ({c3}) + 0.9773ψ({c4})) + p2 × (−0.0777ψ({c1}) + 0.4021ψ({c2})
+ 0.9773ψ({c3}) + 0.8626ψ({c4})) + p3 × (0.6644ψ({c1}) + 0.4021ψ({c2}) + 0.9773ψ({c3}) + 0.6894ψ({c4})),

V2 = p1 × (0.6614ψ({c1}) + 0.8626ψ({c2}) − 0.1110ψ({c3}) + 0.6614ψ({c4})) + p2 × (0.8893ψ({c1}) + 0.9773ψ({c2})
+ 0.6614ψ({c3}) + 0.8626ψ({c4})) + p3 × (0.9773ψ({c1}) + 0.8626ψ({c2}) + 0.8626ψ({c3}) + 0.6894ψ({c4})),

V3 = p1 × (−0.2849ψ({c1}) + 0.9773ψ({c2}) + 0.6614ψ({c3}) + 0.9773ψ({c4})) + p2 × (0.6894ψ({c1}) + 0.8626ψ({c2})
+ 0.8626ψ({c3}) + 0.8626ψ({c4})) + p3 × (0.6614ψ({c1}) + 0.8626ψ({c2}) + 0.1477ψ({c3}) + 0.8893ψ({c4})),

V4 = p1 × (−0.2849ψ({c1}) + 0.4021ψ({c2}) + 0.9773ψ({c3}) + 0.1477ψ({c4})) + p2 × (0.6894ψ({c1}) + 0.9773ψ({c2})
+ 0.9773ψ({c3}) + 0.6614ψ({c4})) + p3 × (0.8626ψ({c1}) + 0.6614ψ({c2}) + 0.9773ψ({c3}) + 0.1791ψ({c4})),

V5 = p1 × (0.9773ψ({c1}) − 0.1110ψ({c2}) + 0.6614ψ({c3}) + 0.4021ψ({c4})) + p2 × (0.6894ψ({c1}) + 0.8626ψ({c2})
+ 0.6614ψ({c3}) + 0.9773ψ({c4})) + p3 × (0.8626ψ({c1}) + 0.9773ψ({c2}) + 0.6614ψ({c3}) + 0.8893ψ({c4})).

(40)

Steps 9-10: Because ψ({c1}), ψ({c2}), ψ({c3}), ψ({c4}), p1, p2, and p3 are unknown, using (31), we set ρ =660

((0, 0, 0, 0.1; 1), (0, 0, 0, 0.05; 0.9)) and establish (41) to determine them.
Step 11: Using (34), the IT2F programming model (41) is transformed into a nonlinear programming model (42).
Step 12: After applying the EA-CSTA-based optimization algorithm to solve (42) using MATLAB version

R2017b, the values of the objective function in successive iterations are derived, as depicted in Fig. 6.
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Fig. 6. Values of Objective Function in Successive Iterations of the EA-CSTA-based Optimization Algorithm.
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Subsequently, the EA-CSTA-based algorithm yields the optimal fuzzy measures ω∗ on the criteria set and proba-
bility vector P∗ of the natural states as follows:

µ∗({c1}) = 0.1912, µ∗({c2}) = 0.2306, µ∗({c3}) = 0.2845, µ∗({c4}) = 0.2937, µ∗({c1, c2}) = 0.4218,
µ∗({c1, c3}) = 0.4757, µ∗({c1, c4}) = 0.4849, µ∗({c2, c3}) = 0.5151, µ∗({c2, c4}) = 0.5243,
µ∗({c3, c4}) = 0.5782; p∗1 = 0.4500, p∗2 = 0.3750, p∗3 = 0.1750.

Step 13: Using (7) to calculate the Banzhaf value ψ({c j})( j = 1, 2, 3, 4) on each criterion c j, we derive the follow-665

ing:
ψ({c1}) = 0.15, ψ({c2}) = 0.2715, ψ({c3}) = 0.2785, ψ({c4}) = 0.3.
Step 14: Based on ψ({c j})( j = 1, 2, 3, 4), using (40) to compute the Banzhaf-based overall perceived value Vi of

each company zi(i = 1, 2, · · ·, 5), we derive the following:

V1 = 0.5706,V2 = 0.6794,V3 = 0.7118,V4 = 0.5863,V5 = 0.6596.

Step 15: Because V3 > V2 > V5 > V4 > V1, the ranking order of the companies is z3 > z2 > z5 > z4 > z1, where
the best company is z3.

30



min
{
B = ((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))p1λ

1
12 + ((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p1λ

1
25

+ ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1λ
1
31 + ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1λ

1
32

+ ((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p1λ
1
34 + ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1λ

1
54

+ ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p2λ
2
21 + ((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p2λ

2
25

+ ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p2λ
2
31 + ((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2λ

2
32

+ ((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2λ
2
34 + ((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2λ

2
54

+ ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3λ
3
21 + ((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))p3λ

3
41

+ ((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3λ
3
51 +((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3λ

3
53

}

s.t.



((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))p1(−0.7724ψ({c1}) − 0.7149ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}))
+((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p1(−0.3159ψ({c1}) + 0.9736ψ({c2}) − 0.7724ψ({c3}) + 0.2593ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1(−0.1739ψ({c1}) + 0.8296ψ({c2}) + 0ψ({c3}) + 0ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1(−0.9463ψ({c1}) + 0.1147ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}))
+((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p1(0ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.8296ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p1(1.2622ψ({c1}) − 0.5131ψ({c2}) − 0.3159ψ({c3}) + 0.2544ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p2(0.9670ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0ψ({c4}))
+((0.5, 0.7, 0.75, 0.9; 1), (0.6, 0.65, 0.7, 0.85; 0.9))p2(0.1999ψ({c1}) + 0.1147ψ({c2}) + 0ψ({c3}) − 0.1147ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p2(0.7671ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}))
+((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2(−0.1999ψ({c1}) − 0.1147ψ({c2}) + 0.2012ψ({c3}) + 0ψ({c4}))
+((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2(0ψ({c1}) − 0.1147ψ({c2}) − 0.1147ψ({c3}) + 0.2012ψ({c4}))
+((0.3, 0.5, 0.55, 0.7; 1), (0.4, 0.45, 0.5, 0.6; 0.9))p2(0ψ({c1}) − 0.1147ψ({c2}) − 0.3159ψ({c3}) + 0.3159ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3(0.3129ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}))
+((0.9, 1, 1, 1; 1), (0.95, 1, 1, 1; 0.9))p3(0.1982ψ({c1}) + 0.2593ψ({c2}) + 0ψ({c3}) − 0.5103ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3(0.1982ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.1999ψ({c4}))
+((0.7, 0.9, 0.95, 1; 1), (0.8, 0.85, 0.9, 0.95; 0.9))p3(0.2012ψ({c1}) + 0.1147ψ({c2}) + 0.5137ψ({c3}) + 0ψ({c4}))
≥ ((0, 0, 0, 0.1; 1), (0, 0, 0, 0.05; 0.9));
−0.7724ψ({c1}) − 0.7149ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}) + λ1

12 ≥ 0;
−0.3159ψ({c1}) + 0.9736ψ({c2}) − 0.7724ψ({c3}) + 0.2593ψ({c4}) + λ1

25 ≥ 0;
−0.1739ψ({c1}) + 0.8296ψ({c2}) + 0ψ({c3}) + 0ψ({c4}) + λ1

31 ≥ 0;
−0.9463ψ({c1}) + 0.1147ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}) + λ1

32 ≥ 0;
0ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.8296ψ({c4}) + λ1

34 ≥ 0;
1.2622ψ({c1}) − 0.5131ψ({c2}) − 0.3159ψ({c3}) + 0.2544ψ({c4}) + λ1

54 ≥ 0;
0.9670ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0ψ({c4}) + λ2

21 ≥ 0;
0.1999ψ({c1}) + 0.1147ψ({c2}) + 0ψ({c3}) − 0.1147ψ({c4}) + λ2

25 ≥ 0;
0.7671ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}) + λ2

31 ≥ 0;
−0.1999ψ({c1}) − 0.1147ψ({c2}) + 0.2012ψ({c3}) + 0ψ({c4}) + λ2

32 ≥ 0;
0ψ({c1}) − 0.1147ψ({c2}) − 0.1147ψ({c3}) + 0.2012ψ({c4}) + λ2

34 ≥ 0;
0ψ({c1}) − 0.1147ψ({c2}) − 0.3159ψ({c3}) + 0.3159ψ({c4}) + λ2

54 ≥ 0;
0.3129ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}) + λ3

21 ≥ 0;
0.1982ψ({c1}) + 0.2593ψ({c2}) + 0ψ({c3}) − 0.5103ψ({c4}) + λ3

41 ≥ 0;
0.1982ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.1999ψ({c4}) + λ3

51 ≥ 0;
0.2012ψ({c1}) + 0.1147ψ({c2}) + 0.5137ψ({c3}) + 0ψ({c4}) + λ3

53 ≥ 0;
λ1

12, λ
1
25, λ

1
31, λ

1
32, λ

1
34, λ

1
54, λ

2
21, λ

2
25, λ

2
31, λ

2
32, λ

2
34, λ

2
54, λ

3
21, λ

3
41, λ

3
51, λ

3
53 ≥ 0;

ψ({c j}) = − 1
2µ({c j}) +

∑
cq∈C\c j

1
2 (µ({c j, cq}) − µ({cq}) ( j = 1, 2, 3, 4);∑

{c j ,cq}⊆C
µ({c j, cq}) − 2

∑
{c j}⊆C

µ({c j}) = 1;∑
{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2).

0.15 ≤ µ({c1}) ≤ 0.2, 0.2 ≤ µ({c2}) ≤ 0.3, 0.2 ≤ µ({c3}) ≤ 0.3, 0.3 ≤ µ({c4}) ≤ 0.4;
0.4 ≤ p1 ≤ 0.45, 0.35 ≤ p2 ≤ 0.375, 0.175 ≤ p3 ≤ 0.2; p1 + p2 + p3 = 1.

(41)
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min
{
B = 0.9322p1λ

1
12 + 0.8075p1λ

1
25 + 0.8906p1λ

1
31 + 0.8906p1λ

1
32 + 0.8075p1λ

1
34 + 0.8906p1λ

1
54

+ 0.8372p2λ
2
21 + 0.7541p2λ

2
25 + 0.8372p2λ

2
31 + 0.6591p2λ

2
32 + 0.6591p2λ

2
34 + 0.6591p2λ

2
54

+ 0.8372p3λ
3
21 + 0.8788p3λ

3
41 + 0.8372p3λ

3
51 +0.8372p3λ

3
53

}

s.t.



0.9322p1(−0.7724ψ({c1}) − 0.7149ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}))
+0.8075p1(−0.3159ψ({c1}) + 0.9736ψ({c2}) − 0.7724ψ({c3}) + 0.2593ψ({c4}))
+0.8906p1(−0.1739ψ({c1}) + 0.8296ψ({c2}) + 0ψ({c3}) + 0ψ({c4}))
+0.8906p1(−0.9463ψ({c1}) + 0.1147ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}))
+0.8075p1(0ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.8296ψ({c4}))
+0.8906p1(1.2622ψ({c1}) − 0.5131ψ({c2}) − 0.3159ψ({c3}) + 0.2544ψ({c4}))
+0.8372p2(0.9670ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0ψ({c4}))
+0.7541p2(0.1999ψ({c1}) + 0.1147ψ({c2}) + 0ψ({c3}) − 0.1147ψ({c4}))
+0.8372p2(0.7671ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}))
+0.6591p2(−0.1999ψ({c1}) − 0.1147ψ({c2}) + 0.2012ψ({c3}) + 0ψ({c4}))
+0.6591p2(0ψ({c1}) − 0.1147ψ({c2}) − 0.1147ψ({c3}) + 0.2012ψ({c4}))
+0.6591p2(0ψ({c1}) − 0.1147ψ({c2}) − 0.3159ψ({c3}) + 0.3159ψ({c4}))
+0.8372p3(0.3129ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}))
+0.8788p3(0.1982ψ({c1}) + 0.2593ψ({c2}) + 0ψ({c3}) − 0.5103ψ({c4}))
+0.8372p3(0.1982ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.1999ψ({c4}))
+0.8372p3(0.2012ψ({c1}) + 0.1147ψ({c2}) + 0.5137ψ({c3}) + 0ψ({c4})) ≥ 0.0178;
−0.7724ψ({c1}) − 0.7149ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}) + λ1

12 ≥ 0;
−0.3159ψ({c1}) + 0.9736ψ({c2}) − 0.7724ψ({c3}) + 0.2593ψ({c4}) + λ1

25 ≥ 0;
−0.1739ψ({c1}) + 0.8296ψ({c2}) + 0ψ({c3}) + 0ψ({c4}) + λ1

31 ≥ 0;
−0.9463ψ({c1}) + 0.1147ψ({c2}) + 0.7724ψ({c3}) + 0.3159ψ({c4}) + λ1

32 ≥ 0;
0ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.8296ψ({c4}) + λ1

34 ≥ 0;
1.2622ψ({c1}) − 0.5131ψ({c2}) − 0.3159ψ({c3}) + 0.2544ψ({c4}) + λ1

54 ≥ 0;
0.9670ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0ψ({c4}) + λ2

21 ≥ 0;
0.1999ψ({c1}) + 0.1147ψ({c2}) + 0ψ({c3}) − 0.1147ψ({c4}) + λ2

25 ≥ 0;
0.7671ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}) + λ2

31 ≥ 0;
−0.1999ψ({c1}) − 0.1147ψ({c2}) + 0.2012ψ({c3}) + 0ψ({c4}) + λ2

32 ≥ 0;
0ψ({c1}) − 0.1147ψ({c2}) − 0.1147ψ({c3}) + 0.2012ψ({c4}) + λ2

34 ≥ 0;
0ψ({c1}) − 0.1147ψ({c2}) − 0.3159ψ({c3}) + 0.3159ψ({c4}) + λ2

54 ≥ 0;
0.3129ψ({c1}) + 0.4605ψ({c2}) − 0.1147ψ({c3}) + 0ψ({c4}) + λ3

21 ≥ 0;
0.1982ψ({c1}) + 0.2593ψ({c2}) + 0ψ({c3}) − 0.5103ψ({c4}) + λ3

41 ≥ 0;
0.1982ψ({c1}) + 0.5752ψ({c2}) − 0.3159ψ({c3}) + 0.1999ψ({c4}) + λ3

51 ≥ 0;
0.2012ψ({c1}) + 0.1147ψ({c2}) + 0.5137ψ({c3}) + 0ψ({c4}) + λ3

53 ≥ 0;
λ1

12, λ
1
25, λ

1
31, λ

1
32, λ

1
34, λ

1
54, λ

2
21, λ

2
25, λ

2
31, λ

2
32, λ

2
34, λ

2
54, λ

3
21, λ

3
41, λ

3
51, λ

3
53 ≥ 0;

ψ({c j}) = − 1
2µ({c j}) +

∑
cq∈C\c j

1
2 (µ({c j, cq}) − µ({cq}) ( j = 1, 2, 3, 4);∑

{c j ,cq}⊆C
µ({c j, cq}) − 2

∑
{c j}⊆C

µ({c j}) = 1;∑
{c j}⊆S \cq

(µ({c j, cq}) − µ({c j})) ≥ (|S | − 2)µ({cq}) (∀S ⊆ C with cq ∈ S and |S | ≥ 2).

0.15 ≤ µ({c1}) ≤ 0.2, 0.2 ≤ µ({c2}) ≤ 0.3, 0.2 ≤ µ({c3}) ≤ 0.3, 0.3 ≤ µ({c4}) ≤ 0.4;
0.4 ≤ p1 ≤ 0.45, 0.35 ≤ p2 ≤ 0.375, 0.175 ≤ p3 ≤ 0.2; p1 + p2 + p3 = 1.

(42)
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