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Abstract: It has been established in literature that the addition of nanoparticles to lubricants at an 

optimum concentration results in a lower coefficient of friction compared to lubricants with no na-

noparticle additives. This review paper shows a comparison of different lubricants based on the 

COF (coefficient of friction) with nanoadditives. The effect of the addition of nanoparticles on the 

friction coefficient was analyzed for both synthetic and biolubricants separately. The limitations as-

sociated with the use of nanoparticles are explained. The mechanisms responsible for a reduction in 

friction when nanoparticles are used as an additive are also discussed. Various nanoparticles that 

have been most widely used in recent years showed good performance within lubricants, including 

CuO (copper oxide), MoS2 (molybdenum disulfide), and TiO2 (titanium dioxide). The paper also 

indicates some research gaps that need to be addressed. 

Keywords: nanoparticles; friction; wear; tribology; biolubricants; synthetic oils; lubrication  

mechanisms; agglomeration 

 

1. Introduction 

The high friction and wear in engine components results in major dissipation of en-

gine power. Almost 17–19% of an engine’s generated power is used to overcome friction 

[1]. In recent years, due to an increase in the number of vehicles on the road, the fuel 

demand has been increased [2]. In order to overcome this rise in fuel demand, the auto-

mobile industry is continuously working to produce vehicles with better fuel economy by 

improving the tribological performance of engines. In an internal combustion engine, lub-

ricant oil plays a vital role in achieving better fuel savings through a reduction in the fric-

tion and wear of interacting surfaces. Over the past few decades, several studies have 

been conducted to improve lubrication systems, so that the friction and wear in engine 

components can be reduced. With the recent advancements of nanotechnology, nano-

materials have emerged as a potential source to enhance the tribo-performance of differ-

ent lubrication systems [3]. With this, a number of experimental investigations have been 

performed to evaluate the effects of the addition of nanoparticles to different lubricants. 

Due to their extremely small size, nanoparticles fill the valleys on the interacting surfaces, 

resulting in a reduction in friction and wear [4]. It has also been found that nanoparticles 

tend to develop a three-body rolling influence between the interacting surfaces, which 

results in friction reduction [5]. Experiments have shown that when nanoparticles are 

used in optimum concentrations, they also improve the anti-wear (AW) and extreme pres-

sure (EP) characteristics of lubricants [6]. Moreover, nanoparticles have better thermal 

conductivity compared to the base oil, which improves the stability of tribopairs by taking 

away the heat generated by friction. The nanoparticles mostly used are environmentally 
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friendly as they tend to minimize the use of the certain additives that have a hazardous 

impact on the environment [7]. 

To date, a number of nanoparticles have been used with various base oils, and the 

effects on the wear and friction performance of these base oils have been studied [8–11]. 

Those nanomaterials that are most used as lubricant additives include graphene [12–14], 

graphene oxide [15], carbon nanotubes [16,17], boron nitride [18], silicon dioxide [19], cop-

per oxide [20], and titanium dioxide [21]. Additionally, a few studies have also been con-

ducted on combinations of different nanomaterials (hybrid nanoparticles) as lubricant ad-

ditives [22–24]. In these studies, nanoparticles in different concentrations were used under 

varying operating conditions. The nanoparticle concentrations and operating conditions 

were varied to identify the optimum concentrations of the nanoparticles for a specific lub-

ricant under specific operating conditions. At optimum concentration, the friction and 

wear were found to be minimal compared to base oils without nanoparticles. 

It has already been established in the literature that the lubrication regime between 

two interacting surfaces can be categorized into mixed and boundary lubrication and elas-

tohydrodynamic/hydrodynamic lubrication regimes, depending on the film thickness ra-

tio, also known as the lambda (λ) ratio, as shown in Figure 1 [25], where the λ-ratio is 

defined as the ratio between the minimum film thickness and the composite surface 

roughness. High friction and wear in the boundary lubrication regime due to asperities 

contact result in a major loss of energy, which makes the use of additives essential this 

regime [26]. In order to decrease friction and wear for various lubrication conditions, there 

is a need to modify the already available lubricants. In this regard, the use of nanolubri-

cants in internal combustion engines has been the focus of many researchers, leading to 

improvements in the tribological characteristics of the interacting surfaces [27].  

 

Figure 1. Classification of the lubrication regime based on the lambda ratio. BL, body lubrication; 

ML, mixed lubrication; EL, elastohydrodynamic lubrication. 

Although a large number of experimental studies have been conducted in order to 

evaluate the effect of the addition of nanoparticles on the tribological characteristics, there 

are still certain areas that are yet to be explored in order to fully understand the effects of 

nanoparticles on the performance of lubricant oils. This review discusses the nanomateri-

als used as additives in the last five years and compares their effect on the friction perfor-

mance of different synthetic and biolubricants in detail. Only those nanoparticles with 

sufficient data available are considered. This article also explains the mechanisms respon-

sible for the anti-wear and antifriction behavior of nanolubricants, along with the issues 

involved in the stability of nanoparticles in lubricants. 
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2. Lubrication Mechanisms of Nanoparticles 

In the literature, several mechanisms responsible for the reduction in friction and 

wear have been discussed. These mechanisms vary for different nanoparticles [28]. It has 

been found that the adsorption of nanocomposite carbon additives on the interacting sur-

face enhances the tribological performance of SN/GF-5 lubricants [17]. WS2 (tungsten di-

sulfide) nanoparticles form a protective layer and cause a patching effect, making the in-

teracting surfaces smoother, which in turn leads to improved tribological properties of 

lubricant oil [29]. An experimental study showed the formation of chemical bonds be-

tween MWCNTs (multi-walled carbon nanotubes) and nanoparticles of CuO when used 

with 10w-40 oil. TiO2 nanoparticles have the potential to produce both primary and the 

secondary effects when they are used in lubricant oil as additives. Primary effects refer to 

the formation of a protective film between the interacting surfaces where nanoparticles 

produce a ball-bearing effect, thus changing sliding friction into rolling friction. Mean-

while, secondary effect refers to the compensation of the wear loss produced due to rub-

bing of the interacting surfaces by deposition of nanoparticles on wear scars [30]. The 

mechanisms responsible for the improved tribological performance when nanoparticles 

are used as additives are categorized as: (1) Effect of rolling, (2) effect of mending, (3) effect 

of polishing, and (4) effect of the tribofilm (protective film) formation [31,32]. In rolling or 

ball-bearing effects, nanoparticles produce a three-body rolling effect between the inter-

acting surfaces, converting sliding friction into rolling friction, as shown in Figure 2A. 

Mending effects refer to the deposition of nanoparticles, filling the valleys and grooves on 

the interacting surface, as displayed in Figure 2B. Polishing effects refer to the breaking of 

large asperities on the surface and making it smooth, as shown in Figure 2C. In the tri-

bofilm formation mechanism, nanoparticles form a protective film between the interacting 

surfaces, which helps to prevent direct contact of these surfaces, as shown in Figure 2D. 

Quasi-spherical and spherical nanoparticles generally exhibit a rolling effect between the 

interacting surfaces. When a nanolubricant containing such nanoparticles is employed be-

tween the interacting bodies, positive results can be obtained owing to the rolling of such 

nanoparticles between the interacting surfaces. Mending effect also known as self-sustain-

ing effect, in which nanoparticles adhere to the interacting surfaces and tend to fill the 

valleys on the interacting surfaces, thus resulting in lowering in surface roughness. Pol-

ishing effect is also known as smoothing effect, which is mostly produced by the 

nanolubricants containing hard nanoparticles. Such nanoparticles tend to break large as-

perities, which accumulate in the valleys of the interacting surfaces, thus resulting in a 

smooth surface. In tribofilm formation, a chemical reaction between the interacting sur-

faces and the medium between the interacting surfaces take place, and, as a result, a chem-

ical layer is formed on the interacting surfaces [3].  

 

Figure 2. Lubrication mechanisms of nanoparticles. (A) Rolling Effect; (B) Mending Effect; (C) 

Polishing Effect; (D) Protective Film. 
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3. Nanoparticles in Synthetic Lubricants 

In the last five years, a number of nanomaterials have been used as additives in syn-

thetic lubricants. The effect of the addition of these nanomaterials on the friction perfor-

mance of synthetic lubricants is discussed in this section. This study is focused only on 

those nanomaterials that have been used by different researchers in their experimenta-

tions. 

3.1. TiO2 Nanoparticles 

Various studies in recent years have been devoted to the use of TiO2 nanoparticles in 

different synthetic oils [33–36]. The effect of the addition of nanoparticles on the friction 

performance of several lubricants is shown in Figure 3. TiO2 nanoparticles were added in 

different concentrations in SAE 5w-30 oil, and tribological tests with pin-on-disk configu-

ration were conducted under different operating conditions. The results of the experi-

ments showed that the coefficient of friction (COF) decreased by almost 30% compared to 

base oils when optimum concentration of the nanoparticles was used [21]. In another 

study, when TiO2 nanoparticles were used as an additive in SAE 5w-30 at an optimum 

concentration of 0.25%, tested with a pin-on-ring configuration, the COF was reduced by 

48% compared to base oil [35]. Meanwhile, the COF was reduced by almost 35% when 

TiO2 nanoparticles were used in SAE 10w-30 at an optimum concentration of 0.5% [37]. 

The addition of nanoparticles in a 0.01% volume concentration improved the COF of SAE 

40 engine oil by almost 1.5% compared to pure SAE 40 in a four-ball tribotester [38]. This 

positive behavior of TiO2 nanoparticles can be attributed to the conversion of sliding fric-

tion to rolling friction due to the presence of nearly spherical nanoparticles at the interface 

of the interacting bodies [39]. It can be seen from Figure 3 that among the other lubricants, 

TiO2 performed exceptionally well with SAE 10w-30 and reduced the COF by a greater 

percentage, which shows that TiO2 nanoparticles are much more compatible with SAE 

10w-30 oil compared to other oils. 

 

Figure 3. Effect of TiO2 NPs on the friction performance of synthetic lubricants. 

3.2. Graphene (Gr) Nanoparticles 

Graphene nanoparticles and graphene nanosheets have been considered as a friction 

modifier by many researchers [40]. In a previous study, graphene nanoparticles were used 

as an additive in SAE 5w-30 at different concentrations and were tested using a ball-on-

plate tribotester. It was found that the optimum concentration of graphene nanoparticles 

for SAE 5w-30 is 0.10 wt%, and at this concentration, the COF was reduced by almost 10%. 

The reduction in the COF when using Gr nanoparticles was attributed to the tribofilm 



Materials 2021, 14, 6310 5 of 24 
 

formation between the interacting surfaces. Gr nanosheets also enhanced the performance 

of 5w-30 lubricant oil and reduced the COF by almost 28%. This reduction in the COF was 

attributed to the ability of Gr nanoparticles to fill the valleys between asperities [4]. Figure 

4 illustrates a comparison of the COF, when Gr nanoparticles and Gr nanosheets were 

used as additives in different lubricants. Trimethylolpropane trioleate (TMPTO) was used 

as a lubricant in a study where Gr nanoparticles were used as an additive. It was reported 

that when 0.25 wt% of Gr nanoparticles was employed as an additive, the friction perfor-

mance of the base oil was enhanced by almost 25% compared to base oil when the sample 

was tested on a tribotester with a ball-on-plate configuration [41]. This positive effect on 

the tribological properties of the lubricant was because of the accumulation of nanoparti-

cles in the valleys between the asperities of the interacting surfaces. The COF was reduced 

by almost 10% when 0.10 wt% of Gr nanoparticles was used as an additive in trime-

thylolpropane ester (TMP ester). Gr nanoparticles increased the oxidative stability of the 

base oil, resulting in a thicker and the stronger tribofilm between the interacting surfaces 

[42]. Polyalphaolefin (PAO) was used as a base lubricant in a previous study to find the 

effects of Gr nanoparticles on its tribological properties, and it was found that when only 

0.01 wt% of Gr nanoparticles was used as an additive, the COF was reduced by almost 

142% [14]. The positive interaction between the base oil and Gr nanoparticles resulted in 

the formation of an effective tribofilm. Moreover, the Gr nanoparticles filled the valleys 

between asperities and were adsorbed on the interacting surfaces, resulting in a lower 

coefficient of friction [14]. A comparison of the effect of the addition of graphene nano-

particles on the COF related to different lubricant oils showed that graphene nanoparticles 

are more suitable to be used with PAO, because the reduction in the COF of the interacting 

surfaces was much higher compared to that of other nanolubricants. 

 

Figure 4. Effect of Gr NPs on the friction performance of synthetic lubricants. 

3.3. Copper (Cu) Nanoparticles 

A few studies have reported the use of copper nanoparticles with synthetic lubricants 

[43,44]. Figure 5 shows the effect of the addition of nanoparticles on the friction perfor-

mance of different synthetic lubricants. It has been reported that when copper nanoparti-

cles are employed as an additive in SAE 5w-40 oil at an optimum concentration of 0.8 

wt%, the resulting COF is reduced by almost 13% when tests are conducted on a four-ball 

tribotester. In same study, Cu nanoparticles were also used as additives in SAE 5w-20 oil, 

and it was found that when 1.6 wt% of Cu nanoparticles were added, the COF was re-

duced by 28.5% [45]. It has also been reported that the COF of the lubricant oil SAE 40 is 
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improved by a factor of 14% when Cu nanoparticles at an optimum concentration of 0.01 

vol% are used in a four-ball tribotester [38]. 

 

Figure 5. Effect of Cu NPs on the friction performance of synthetic lubricants. 

The improvement in the tribological characteristics of lubricant oil by adding Cu na-

noparticles can be attributed to the spherical morphology of Cu nanoparticles, which 

transforms sliding friction into rolling friction, producing a ball-bearing effect between 

interacting surfaces [46]. Among the lubricants in which Cu nanoparticles have been used, 

a positive effect on the COF is much prominent for SAE 5w-20 compared to other lubri-

cants, which shows that Cu nanoparticles are more compatible with this lubricant oil com-

pared to others. 

3.4. Zinc Oxide (ZnO) Nanoparticles 

Zinc oxide nanoparticles have been used as a potential source to reduce the friction 

of lubricants in recent years [47]. Not much research has been conducted to test the suita-

bility of ZnO nanoparticles with different lubricants. In a previous study, ZnO nanoparti-

cles in different concentrations were used as additives in SAE 10w-40. The concentration 

of the nanoparticles ranged between 0.1 and 0.8 wt%. The results of the tribological tests 

with a pin-on-disk configuration showed that 0.6 wt% gave the optimum results and re-

duced the friction of the interacting surfaces by 22% compared to lubricant oil with no 

nanoparticle additives [48]. Figure 6 displays the effect of the addition of nanoparticles on 

the friction performance. ZnO nanoparticles have ability to transform sliding friction to 

rolling friction, which is the major reason for their positive effect on the tribological prop-

erties. Moreover, ZnO nanoparticles also helped in development of lubricating layers on 

the interacting surfaces, which resulted in a reduced COF compared to oil with no nano-

particle additives [49]. Only a few researchers have used ZnO nanoparticles in their stud-

ies to check their suitability as a friction modifier. Thus, there is a need to check the suita-

bility of these nanoparticles with different synthetic lubricants in order to evaluate their 

effect on the COF and to find a lubricant oil with which these nanoparticles show their 

best performance. 
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Figure 6. Effect of ZnO NPs on the friction performance of synthetic lubricants. 

3.5. Hexa-Boron Nitride (h-BN) Nanoparticles 

A significant number of experimental studies have been performed to evaluate the 

effects of h-BN nanoparticles on different lubricants [50]. These studies have concluded 

that h-BN nanoparticles can be used as friction and wear modifiers, as they influence the 

tribological properties of different lubricants in a positive manner. In an experimental 

study, h-BN nanoparticles were used with SAE 5w-30 at a concentration of 0.5 wt%. The 

results of the tribological test using a four-ball tribotester showed that the COF was re-

duced by 10% at this concentration [51]. In another study, h-BN nanoparticles were used 

as an additive to evaluate their effects on the friction performance of polyalphaolefin 

(PAO). Tribological experiments with a pin-on-disk configuration were conducted at an 

optimum weight concentration of 0.5 wt% of h-BN nanoparticles. The results showed that 

when h-BN nanoparticles were used at this optimum concentration, the COF of the rub-

bing surfaces was reduced by almost 5.4% compared to PAO with no nanoparticle addi-

tive [52]. The effects of h-BN nanoparticles on the tribological performance of SAE 20w-

50 were investigated by a group of researchers. In this experimental research, h- BN na-

noparticles were used at three different concentrations 1 wt%, 2 wt%, and 3 wt% in a four-

ball tribotester. The minimum value of the COF was achieved when 3 wt% of h-BN nano-

particles was employed as an additive. At this optimum concentration, the COF was re-

duced by almost 26.8% compared to oil with no nanoparticle additive [8]. The friction 

performance of SAE 15w-40 was greatly enhanced by the addition of h-BN nanoparticles. 

In an experimental study, 0.5 vol% of h-BN nanoparticles was used as an additive. The 

results of tribological tests with a four-ball configuration showed that when h-BN nano-

particles were used at this optimum concentration, the COF was reduced by almost 50% 

[18]. This synergetic behavior of h-BN nanoparticles shows that they can be used as fric-

tion modifiers owing to their positive effect on the friction performance of different lubri-

cants. 

This positive effect of the h-BN nanoparticles on the friction performance is due to 

the formation of a boron-oxide tribofilm on the interacting surface because of tribochem-

ical reactions [18]. Moreover, the high thermal conductivity of h-BN nanoparticles helps 

to carry away the heat generated due to rubbing, helping the lubricant to maintain its 

viscosity, which ultimately results in less metal-to-metal contact and a reduction in fric-

tion and wear [53]. Figure 7 shows a comparison of the COF of different lubricants with 

and without the addition of h-BN nanoparticles. Figure 7 shows that the h-BN nanoparti-

cles performed extremely well compared to the other lubricants and decreased the COF 

in the case of SAE 15w-40 by a huge percentage, which shows that these nanoparticles are 

highly compatible with SAE 15w-40. 
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Figure 7. Effect of h-BN NPs on the friction performance of synthetic lubricants. 

3.6. Molybdenum Disulfide (MoS2) Nanoparticles 

In the past few years, molybdenum disulfide has appeared as a potential source for 

reducing the wear and friction associated with different lubricants [54]. A large number 

of experimental investigations have been performed to assess the effect of MoS2 nanopar-

ticles on the wear and friction performance of different lubricants. In one such study, na-

noparticles of MoS2 were used as an additive in SAE 5w-30 engine oil at different concen-

trations. The results of the tribological tests using a four-ball configuration showed that 

when 0.5 wt% of MoS2 was used as an additive, the COF was minimal. When compared 

to oil with no nanoparticle additive, the COF was reduced by almost 15% at this optimum 

concentration [51]. MoS2 nanoparticles positively affected the friction performance of 

molding oil when used in a piston skirt-liner tribometer. The COF was greatly reduced by 

using MoS2 nanoparticles as an additive. The minimum COF was found when 1 wt% of 

MoS2 nanoparticles were used as an additive. At this optimum concentration, the COF 

decreased by almost 50% in comparison to molding oil with no nanoparticle additive [22]. 

In another study, HD 50 Engine Oil (SAE 50) was used as a lubricant in the presence of 

MoS2 nanoparticles on a pin-on-disk tribotester. The addition of MoS2 nanoparticles en-

hanced the tribological properties of the lubricant and helped to reduce the COF and wear 

of the interacting surfaces. The concentration of nanoparticles in the lubricant ranged be-

tween 0.25 and 1.25 wt% and the optimum concentration was found to be 1 wt% of MoS2 

in HD 50 engine oil. The nanoparticles tended to agglomerate at concentrations higher 

than the optimum concentration. The COF was found to be reduced by 67.6% compared 

to oil with no nanoparticle additive [23]. MoS2 nanoparticles were not able to enhance the 

friction performance of the SAE 5w-40 engine oil as much under the tested conditions on 

a four-ball tribotester. Two concentrations, 0.15 wt% and 0.20 wt%, of MoS2 nanoparticles 

were tested as additives in SAE 5w-30 engine oil. Among these concentrations, 0.20 wt% 

of MoS2 appeared as the optimum concentration and reduced the COF by almost 3.37% 

[55]. In another experimental study, MoS2 nanoparticles were used at a concentration of 

0.5 wt% in polyalphaolefin (PAO) on a four-ball tribotester. The results of the experiment 

showed that the COF was reduced by 12.24% compared to PAO with no nanoparticle ad-

ditive [56]. MoS2 nanoparticles were employed as an additive in SAE 20w-40 oil at four 

different particle concentrations ranging between 0.25 and 1 wt%, and the optimum con-

centration was found to be 0.50 wt% of MoS2. The COF was reduced by 16.44% at this 

optimum concentration, while at higher concentrations, the reduction in COF was not as 

evident due to the increased agglomeration of the nanoparticles [57]. The addition of MoS2 

nanoparticles reduced the COF of interacting surfaces (pin-on-disk) by almost 17.11% 

when used at a concentration of 0.50 wt% in SAE 20w-50 [58]. Figure 8 shows the compar-

ison of results when MoS2 nanoparticles were used as an additive in different lubricants. 



Materials 2021, 14, 6310 9 of 24 
 

 

Figure 8. Effect of MoS2 NPs on the friction performance of synthetic lubricants. 

The comparison in Figure 8 shows that MoS2 nanoparticles perform much better with 

SAE 50 and greatly reduce the average COF, which shows that MoS2 nanoparticles are 

highly compatible with SAE 50. The capability of MoS2 nanoparticles to reduce the COF 

in the tested lubricants can be accredited to the conversion of sliding friction to rolling 

friction, where MoS2 produces a three-body rolling effect [59]. Moreover, they also help in 

the formation of tribofilms between interacting surfaces, which ultimately result in a re-

duction in the COF and wear compared to oils with no nanoparticle additive [60,61]. 

3.7. Multiwalled Carbon Nanotubes (MWCNTs) 

MWCNTs have emerged as a potential source to reduce the wear and friction be-

tween interacting surfaces [62]. In the past few years, a number of researchers related to 

the field of tribology have focused their intentions on finding the tribological effect of 

adding MWCNTs to different lubricants. In a previous study, researchers used MWCNTs 

as an additive in SAE 15w-40. Tribological tests using a pin-on-disk configuration were 

carried out by adding five different MWCNT concentrations ranging between 0.3 and 

1.3wt%. The results of the experiment showed that when 1 wt% of MWCNTs was used as 

an additive, the COF was reduced to a minimum. At this optimum concentration, the COF 

was reduced by 39.55% when compared to oil with no nanoparticle additive [16]. In an-

other study, MWCNTs were added to SAE 10w-40 oil to evaluate their effects on the tribo-

logical performance of the mentioned oil using a four-ball tribotester. The concentration 

at which MWCNTs were used was reported to 0.18 wt%. When compared to the oil with 

no nanoparticle additive, the COF was reduced by almost 22.12% at a concentration of 

0.18 wt% [63]. The effects of the addition of MWCNTs in 500 N mineral oil were investi-

gated in an experimental study, in which 0.20 wt% of MWCNTs were added to the men-

tioned oil. The results of the test showed that the COF was reduced by 32.47% when com-

pared to the oil with no nanoparticle additive [64]. Figure 9 shows a comparison of the 

average COF when MWCNTs were used as an additive in different lubricants. It can be 

seen that MWCNTs reduced the COF by a high percentage when used with SAE 15w-40 

compared to other lubricants. The reduction in the COF of the interacting surfaces result-

ing from adding MWCNTs to lubricant oil was attributed to their high young modulus, 

which enables them to shear as a result of a high friction force. MWCNTs have the poten-

tial to be adsorbed on rubbing surfaces, which helps to avoid metal-to-metal to contact. 

Moreover, the sliding or rolling associated with MWCNTs between the interacting sur-

faces results in a reduction in the COF and enhances the wear resistance [65]. 
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Figure 9. Effect of MWCNTs on the friction performance of synthetic lubricants. 

3.8. Copper Oxide (CuO) Nanoparticles 

Among the nanoparticles used as friction modifiers, CuO nanoparticles are the most 

abundantly used. Extensive experimental studies have been performed to examine the 

effects of these nanoparticles on the wear, friction, and overall tribological characteristics 

of different lubricants. In an experimental study, CuO nanoparticles were added at differ-

ent concentrations ranging between 1 and 2wt% to molding oil. The results of the tribo-

logical test with a pin-on-disk configuration showed that when 1.3 wt% of CuO nanopar-

ticles were employed as an additive, the COF reduced to a minimum and started increas-

ing when the nanoparticle concentration increased further. This increase in the COF after 

attaining a minimum value at a specific concentration was associated with the agglomer-

ation of the nanoparticles due to their increased concentration. On average, the COF was 

reduced by almost 39.22% compared to molding oil with no nanoparticle additive [66]. 

CuO nanoparticles exhibited good friction performance when used with HD 50 Engine 

Oil (SAE 50), when a concentration ranging between 0.25 and 1.45 wt% was employed as 

an additive. The results of the tribological test using a pin-on-disc tribotester showed that 

the COF was reduced to a minimum when 1 wt% of CuO nanoparticles was used, while 

the agglomeration of nanoparticles at concentrations above 1 wt% resulted in an increased 

COF. At the optimum concentration of nanoparticles, the COF was reduced by 53.98% 

compared to engine oil with no nanoparticle additive [23]. Nanoparticles of CuO were not 

able to modify the friction performance of SAE 10w-30 oil in a positive manner. The re-

sulting average COF when CuO nanoparticles were used as an additive was increased 

compared to oil with no nanoparticle additive under tested experimental conditions. 

Through statistical analysis, it was found that when 0.0086 wt% of CuO nanoparticles was 

used as an additive in SAE 10w-30 and a 75.152 N load was applied at a rotational speed 

of 291.3360 rpm, the COF could be reduced to a minimum [67]. On average, the COF was 

increased when CuO nanoparticles were deployed as additives in SAE 15w-40 using a 

four-ball tribotester. The COF was found to be decreased compared to oil with no nano-

particle additive when 0.1 wt% of CuO nanoparticles was used and the temperature of the 

experimentation was kept at 60 °C. However, on other tested conditions, SAE 15w-40 re-

sulted in a lower COF compared to oil with an additive [68]. PAO showed synergetic re-

lation with CuO nanoparticles, resulting in a reduced COF compared to PAO with no 

nanoparticle additive. It was found that when 0.5 wt% of CuO nanoparticles was used in 

PAO, the COF was reduced by 6.96% compared to PAO with no nanoparticle additive 

[52]. The COF resulting by using CuO nanoparticles in SAE 20w-50 was found to be re-

duced compared to oil with no nanoparticle additive. Tribological experiments using a 

pin-on-disk configuration were conducted using nanoparticles at three different concen-

trations ranging between 0.25 and 1 wt%. The results showed that the COF was reduced 
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by 11.14% compared to oil with no nanoparticles when 0.25 wt% of CuO nanoparticles 

was used [58]. Figure 10 shows an average effect of CuO nanoparticles on the COF when 

used in different lubricant oils. The reduction in the average COF resulting from the use 

of CuO nanoparticles could be associated with the development of a three-body layer ef-

fect between the interacting surfaces [69]. Moreover, the size and hardness associated with 

CuO nanoparticles also participated in reducing the friction and wear between the inter-

acting surfaces [70]. CuO nanoparticles showed extremely good performance with mold-

ing oil and HD 50 Engine oil, while these nanoparticles were not able to perform well with 

SAE 10w-30 and SAE 15w-40 under certain operating conditions. Thus, there is a need to 

perform further tribological tests with a diverse range of operating conditions to properly 

predict this negative behavior of CuO nanoparticles on both lubricant oils. 

 

Figure 10. Effect of CuO NPs on the friction performance of synthetic lubricants. 

3.9. Alumina (Al2O3) Nanoparticles 

A few studies have been performed in order to evaluate the tribological performance 

of alumina nanoparticles with different lubricants in recent years [71]. The effects of alu-

mina on the tribological performance of SAE 5w-30 lubricant oil was investigated in a 

previous study. These nanoparticles improved the friction performance, and the COF was 

reduced by almost 24.22% in comparison to oil with no nanoparticle additive in a tribo-

logical test conducted using piston ring assembly [72]. In another study, alumina nano-

particles were used with SAE 20w-40 oil in a pin-on-disk tribometer to investigate its im-

pact on the tribological performance. A set of eighteen tests was conducted and the con-

centration, applied load, rotation speed, and size of the nanoparticles were varied. The 

results of these tribological tests showed that when nanoparticles with a size of 60 nm 

were used at a concentration of 1 wt% under a load of 160 N and an operating speed of 

800 rpm, the COF was reduced to a minimum. Under these operating conditions, the COF 

was found to be 0.0256, almost 59.17% less than oil with no nanoparticle additive [73]. 

This decline in COF due to the presence of alumina nanoparticles between the interacting 

surfaces was because of the inherent ball-bearing effect, the mending effect, and the for-

mation of a thin tribofilm. The tribofilm developed as a result of a chemical interaction 

between alumina nanoparticles, lubricant oil, and the wear debris [73]. Figure 11 shows 

the effect of the addition of alumina nanoparticles on friction performance of different 

lubricants. 
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Figure 11. Effect of Al2O3 NPs on the friction performance of synthetic lubricants. 

It can be seen that the alumina nanoparticles performed efficiently with SAE 20w-40 

and reduced the COF by a higher percentage compared to SAE 5w-30, which shows that 

alumina is highly suitable for use as a friction modifier in SAE 20w-40. 

3.10. Silica (SiO2) Nanoparticles 

Silica nanoparticles have emerged as good source to modify the tribological proper-

ties of different lubricants. A number of studies have been conducted in recent years in 

order to validate the synergetic behavior of silica nanoparticles with different lubricant 

oils. In an experimental study, silica nanoparticles were used with SAE 20w-50 oil. The 

experiments were conducted using samples with two different concentrations of nano-

particles. One of the samples contained 0.5 wt% of SiO2, while the other contained 1 wt% 

of SiO2. The outputs of the tribological tests were compared with outputs from oil with no 

nanoparticle additive. The results showed that when 0.50 wt% of silica nanoparticles was 

used, the COF was reduced to a minimum. On average, by using silica nanoparticles as 

an additive, the COF was reduced by almost 17.89% compared to oil with no nanoparticle 

additive. In the same study, SAE 15w-50 was also used to check the suitability of adding 

silica nanoparticles. The same two concentrations were used in this case as well. The re-

sults of the tribological tests with a pin-on-disk configuration indicated that when 1 wt% 

of silica nanoparticles was used, the COF was reduced to a minimum compared to oil with 

no nanoparticle additive. On average, the silica nanoparticles were able to reduce the COF 

associated with SAE 15w-50 by almost 36.84% [21]. Four different samples were prepared 

by adding 0.25, 0.5, 0.7, and 1 wt% of silica nanoparticles in SAE 5w-40. The results of the 

tribological tests using a ball-on-plate configuration showed that when 0.7 wt% of silica 

nanoparticles was used, the COF was reduced to a minimum compared to oil with no 

nanoparticle additive. On average, the silica nanoparticles were able to reduce the result-

ing COF by almost 36.56% [9]. Figure 12 shows the variation in the COF related to different 

lubricants when silica nanoparticles were used as an additive. SiO2 nanoparticles filled the 

valleys between the interacting surfaces and resulted in a lower COF. The deep grooves 

and valleys on the interacting surfaces were filled by silica nanoparticles, which adhered 

there and reduced COF, forming a protective layer [74]. SAE 15w-50 performed extremely 

well with silica nanoparticles, and the COF was reduced by a higher percentage in this 

case compared to other lubricants. This shows that silica nanoparticles are highly compat-

ible with SAE 15w-50 oil. 
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Figure 12. Effect of SiO2 NPs on the friction performance of synthetic lubricants. 

3.11. Tungsten Disulfide (WS2) Nanoparticles 

A few studies have been conducted on the usage of WS2 nanoparticles with several 

lubricants. In one such study, WS2 nanoparticles were used with SAE 5w-30 oil on a four-

ball tribotester in order to determine its tribological behavior with the mentioned oil. The 

authors also investigated the influence of particle size on the overall tribological proper-

ties. Samples with different concentrations of micro- to nano-sized particles of WS2 were 

prepared. The results showed that nanoparticles were better than micro-particles at re-

ducing the friction coefficient. On average, the COF was found to be reduced by almost 

25.89% when WS2 nanoparticles were used compared to oil with no nanoparticle additive, 

while the minimum COF was found at 1 wt% of WS2 nanoparticles [75]. In another exper-

imental study, the tribological behavior of WS2 nanoparticles was investigated with PAO 

using a four-ball tribotester. A sample containing 0.5 wt% of WS2 nanoparticles was used 

in a tribological test, and its effect on the COF and wear was investigated. The results of 

the test showed that, on average, the COF was reduced by almost 8.17% compared to oil 

with no nanoparticle additive [56]. Figure 13 shows the effect on the COF associated with 

different lubricants when WS2 nanoparticles were used as an additive. The boundary fric-

tion was reduced due to the laminar structure of the tribofilm associated with WS2. More-

over, WS2 nanoparticles filled the gaps and covered the reacted tribofilm, making it a po-

tential source for COF reduction [76]. 

 

Figure 13. Effect of WS2 NPs on the friction performance of synthetic lubricants. 
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4. Nanoparticles in Biolubricants 

Biolubricants have attracted significant attention in the past few years due to their 

sustainability and environmentally friendly properties. It has been found that biolubri-

cants have the potential to replace conventional lubricants [77]. A number of nanoparticles 

have been investigated with biolubricants in the past five years, but these studies are 

much lower in number compared to studies conducted with synthetic oils. Among the 

nanoparticles discussed above, CuO and MoS2 are most the widely used in biolubricants. 

CuO nanoparticles show extremely good performance with biolubricants and reduce the 

COF of the interacting surfaces by high percentages compared to biolubricants with no 

nanoparticle additive. Although a large number of nanoparticles have been used as fric-

tion modifiers in biolubricants, there are many nanomaterials that still need to be tested 

with biolubricants. Graphene nanoparticles have shown positive behavior and an increase 

in friction resistance when used with synthetic lubricants. However, the effect of graphene 

nanoparticles on the friction performance of biolubricants is not well established in the 

literature. Thus, there is a need to test such nanoparticles with biolubricants to fully un-

derstand their effect on the friction performance of biolubricants. It has also been found 

in some studies that when hybrid nanoparticles (combination of two or more nanomateri-

als) are used as an additive, the COF is reduced by a higher percentage compared to indi-

vidual nanomaterials. Therefore, there is a need to conduct experimental studies to exam-

ine the effect of such hybrid nanoparticles on the tribological performance of biolubri-

cants. Moreover, actual engines need to be tested with biolubricants with nanoparticles as 

additives to check the suitability of such lubricants under actual operating conditions. The 

effect on the tribological properties of biolubricants by the addition of nanoparticles is 

discussed in this section. 

4.1. Titanium Dioxide (TiO2) Nanoparticles 

Figure 14 shows the variation in COF when TiO2 nanoparticles were used in different 

base oils. It has been found that TiO2 nanoparticles are unable to perform positively with 

rapeseed oil. For example, in a previous study, the COF was increased under the tested 

range of operating conditions using a four-ball tribotester compared to neat rapeseed oil, 

and it was suggested that experiments must be conducted with some other sets of operat-

ing conditions in order to find the suitability of TiO2 nanoparticles with rapeseed oil [78]. 

Meanwhile, the addition of TiO2 nanoparticles in pongamia oil reduced the COF by almost 

10% when an optimum concentration of 0.1 wt% of nanoparticles was used on a pin-on-

disk tribometer. This decrease in the coefficient of friction was accredited to the deposition 

of nanoparticles on the interacting surfaces, which resulted in a strong protective film be-

tween the interacting surfaces [79]. Although these nanoparticles influenced the tribolog-

ical properties of biolubricants, their performance with synthetic lubricants was much bet-

ter with synthetic oils, as discussed previously. 

 

Figure 14. Effect of TiO2 NPs on the friction performance of bio-lubricants. 
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4.2. Zinc Oxide (ZnO) Nanoparticles 

The literature shows that ZnO nanoparticles can be employed to enhance the tribo-

logical properties of biolubricants in only few a studies. These nanoparticles perform well 

when used with natural castor oil (NCO) and reduce the COF, resulting from rubbing 

surfaces. Experiments have been performed under different operating conditions, with 

the concentration of nanoparticles in lubricant samples varying. For example, tribological 

tests were conducted at four different concentrations of nanoparticles using a four-ball 

test rig. The concentrations used were 0.1 wt%, 0.5 wt%, 1 wt%, and 2 wt% of ZnO. The 

results of the test showed that when 0.1 wt% of ZnO nanoparticles was used as an addi-

tive, the COF was reduced to a minimum, while on average, ZnO nanoparticles reduced 

the COF by 14.74% compared to NCO with no nanoparticle additive [6]. Figure 15 shows 

the effect of the addition of nanoparticles on the average COF associated with NCO. This 

synergetic behavior of ZnO nanoparticles can be associated with ZnO nanoparticle’s abil-

ity to form a tribofilm between the interacting surfaces and to produce a three-body roll-

ing effect that turns sliding friction into rolling friction [80]. Only a few experimental stud-

ies have been performed to evaluate the friction performance of ZnO nanoparticles with 

biolubricants. Thus, there is a need to conduct experimental studies using ZnO nanopar-

ticles as a friction modifier with different biolubricants. 

 

Figure 15. Effect of ZnO NPs on the friction performance of bio-lubricants. 

4.3. Hexa-Boron Nitride (h-BN) Nanoparticles 

Like the nanoparticles previously discussed, h-BN nanoparticles are not used widely 

in biolubricants in the literature. Only a few experimental studies have been conducted in 

which h-BN nanoparticles were used as an additive to reduce the COF of the interacting 

surfaces. In one of the experimental studies, h-BN nanoparticles were used with castor oil 

to examine the effects of the addition of h-BN nanoparticles. Four different concentrations 

of h-BN nanoparticles were used as an additive, namely, 1 wt%, 2 wt%, 5 wt%, and 8 wt%, 

and tribological tests using a ball-on-plate configuration were performed to find the effect 

of these concentrations on the performance of the lubricant. The optimum concentration 

of h-BN nanoparticles for castor oil was found to be 1 wt%. It was found that the COF was 

reduced by almost 30.2% at this optimum concentration, while at a higher concentration, 

the reduction in the COF was not as high because the nanoparticles agglomerated at 

higher concentrations [81]. Figure 16 shows a comparison of the average COF with and 

without nanoparticles in castor oil. The positive behavior of these nanoparticles with cas-

tor oil can be associated to the potential of these nanoparticles to establish a tribochemical 

film on the interacting surface. It has been found that these nanoparticles can form a boron 

oxide (B2O3)-based tribofilm, which helps to reduce the COF of interacting surfaces [18]. 

Although a few experimental studies have been performed to check the suitability of h-

BN nanoparticles as a friction modifier, there are still a number of biolubricants that are 
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yet to be considered in order to fully predict the suitability of these nanoparticles as fric-

tion modifiers for biolubricants. 

 

Figure 16. Effect of h-BN NPs on the friction performance of bio-lubricants. 

4.4. Molybdenum Disulfide (MoS2) Nanoparticles 

MoS2 nanoparticles have been used as friction modifiers in a few biolubricants [82]. 

In one such study, MoS2 nanoparticles were used in castor oil to check their suitability as 

friction modifiers. Two samples containing 1 wt% and 2 wt% of MoS2 were used. Tribo-

logical tests using a pin-on-disk configuration showed that when 1 wt% of MoS2 nanopar-

ticles was used as an additive, the COF was reduced to a minimum. At this optimum 

concentration, the COF was reduced by almost 81.7%, while, on average, the COF was 

found to be reduced by 51.76% compared to castor oil with no nanoparticle additive [66]. 

In another study, MoS2 nanoparticles were used as a potential source to reduce the COF 

associated with sunflower oil. MoS2 nanoparticles performed tremendously well with 

sunflower oil and reduced the COF by a huge percentage. Five samples were prepared 

with concentrations of nanoparticles ranging between 0.1 and 1.25 wt%. The results of the 

tribological tests using a pin-on-disk tribotester showed that the COF was reduced to a 

minimum when 1 wt% of MoS2 nanoparticles was used, and started increasing at higher 

concentrations due to the increased agglomeration of nanoparticles at such concentra-

tions. On average, the COF was reduced by almost 57.89% compared to oil with no nano-

particle additive [23]. Figure 17 shows the effect of MoS2 nanoparticles on the COF of cas-

tor oil and sunflower oil. It can be seen that in both cases, the COF was greatly reduced 

compared to oils with no nanoparticle additive, which shows that the subjected nanopar-

ticles are compatible with both base lubricants. The positive behavior of MoS2 nanoparti-

cles in terms of reducing the COF of biolubricants can be attributed to their capability of 

forming molybdenum (Mo)- and sulfur (S)-based tribofilms between interacting surfaces, 

which helps to reduce the COF of interacting surfaces [83]. Moreover, MoS2 nanoparticles 

also tend to fill the valleys formed by the asperities on the surface, which also helps in the 

reduction of the COF [84]. Although MoS2 nanoparticles have shown good performance 

with the discussed biolubricants, there are still a number of biolubricants that are yet to 

be tested with MoS2 nanoparticles to declare them as a friction modifier for the biolubri-

cants. 
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Figure 17. Effect of MoS2 NPs on the friction performance of bio-lubricants. 

4.5. Copper Oxide (CuO) Nanoparticles 

Amongst the nanoparticles used in biolubricants, CuO has been the most common in 

the last five years. Nanoparticles of CuO perform well with most biolubricants considered 

[85,86]. In an experimental study, CuO nanoparticles were used with castor oil. Two sam-

ples were prepared, one with 1 wt% and the other 2 wt% of CuO nanoparticles. Tribolog-

ical experiments using a pin-on-disk arrangement were conducted, subjected to various 

operating conditions, and the results of the tests were compared to those of oil with no 

nanoparticle additive. The results of the test showed that the COF was reduced to a min-

imum when 1 wt% of CuO nanoparticles was used as an additive, while the COF in-

creased at higher concentrations. At an optimum concentration, the COF was found to be 

reduced by almost 76.02% compared to castor oil without nanoparticles, while, on aver-

age, the COF was reduced by 41.42% compared to base castor oil [66]. Coconut oil with 

no nanoparticle additive showed a very low COF compared to other biolubricants. Nano-

particles of CuO reduced the COF of coconut oil even further. Five samples with concen-

trations of nanoparticle ranging between 0.25 and 1.25 wt% were used as an additive. The 

results of the tribological tests using a block-on-plate test configuration showed that the 

COF was reduced to the minimum when 0.5 wt% of CuO nanoparticles was used. On 

average, CuO nanoparticles were able to reduce the COF of coconut oil by almost 55.55% 

compared to coconut oil without nanoparticles [87]. In another experimental study, the 

tribological suitability of CuO nanoparticles was checked with sunflower oil. Five samples 

with nanoparticle concentrations ranging between 0.25 and 1.25 wt% were used. The COF 

was found to be reduced to a minimum when 1 wt% of CuO nanoparticles was used as 

an additive. On average, the COF was found to be reduced by almost 45.49% compared 

to sunflower oil with no nanoparticle additive when used in a pin-on-disc tribotester [23]. 

Punga oil also performed well with CuO nanoparticles. The COF was greatly reduced 

when CuO nanoparticles were employed as an additive in punga oil. In an experimental 

study, CuO nanoparticles were used in different concentrations in punga oil to check the 

suitability of CuO nanoparticles as a friction modifier using a pin-on-flat arrangement of 

the tribometer. The COF was found to be minimum when 1 wt% of CuO nanoparticles 

was employed as an additive. On average, the nanolubricant was able to reduce the COF 

of the interacting surfaces by 22.22% compared to punga oil with no nanoparticle additive 

[68]. In another study, soybean oil was used as a base oil and its compatibility with CuO 

nanoparticles was evaluated using a four-ball tribotester. The COF of the nanolubricant 

was reduced compared to soybean oil with no nanoparticle additive, but this reduction in 

the COF was not so prominent. On average, the COF of the nanolubricant was reduced 

by 3.66% compared to soybean oil with no nanoparticle additive [88]. In the same experi-

mental study, RBD (refined, bleached, and deodorized) palm oil was also used as a test 
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base lubricant. Similarly to the case of soybean oil, the COF reduction was not as promi-

nent in this case either. Still, on average, the COF in the case of the nanolubricant was 

reduced by almost 5.62% compared to RBD palm oil with no nanoparticle additive [88]. 

The friction performance of rapeseed oil was improved by using CuO nanoparticles as an 

additive. Tribological tests were conducted using five samples of nanoparticles with con-

centrations ranging between 0.1 and 1 wt%. The results from a four-ball tribotester 

showed that the COF was reduced to a minimum when 0.50 wt% of CuO nanoparticles 

was used as an additive in rapeseed oil. On average, CuO nanoparticles were able to re-

duce the COF by almost 14.67% compared to rapeseed oil without a nanoparticle additive 

[20]. Figure 18 shows a comparison of the COF when CuO nanoparticles were employed 

as additives in different biolubricants. It can be seen that the nanolubricant performed 

well and reduced the COF in each case, and showed the best performance with sunflower 

oil. From the comparison shown in Figure 18, it can be established that CuO nanoparticles 

can be employed as a potential source to reduce the COF. This positive behavior associ-

ated with CuO nanoparticles can be attributed to the ball-bearing effect produced by CuO 

nanoparticles [89]. Moreover, CuO nanoparticles also have the potential to adhere to the 

interacting surfaces and filling the valleys formed by large asperities, which also helps in 

reducing the COF [90]. It can be seen that CuO nanoparticles reduced the average COF by 

higher percentages when used with castor oil and sunflower oil, which shows that CuO 

nanoparticles are highly compatible with lubricants compared to others. 

 

Figure 18. Effect of CuO NPs on the friction performance of bio-lubricants. 

4.6. Alumina (Al2O3) Nanoparticles 

Alumina nanoparticles have been used in a few studies to enhance the tribological per-

formance of biolubricants. In one of these studies, alumina nanoparticles were used as a 

friction modifier in polanga oil. Four different samples were prepared. The concentration of 

nanoparticles in the base oil ranged between 0.01 and 0.1 wt%. Tribological tests employing 

a four-ball configuration were conducted using these samples, and the results were com-

pared with those of polanga oil with no nanoparticle additive. The results of the tests 

showed that the COF was reduced to a minimum when 0.08 wt% of alumina nanoparticles 

was used. On average, alumina nanoparticles were able to reduce the COF of the interacting 

surfaces by almost 27.76% compared to polanga oil with no nanoparticle additive [91]. Fig-

ure 19 shows the effect of the addition of nanoparticles on the COF. The positive behavior 

associated with the use of alumina nanoparticles can be associated with the accumulation 

of nanoparticles in the valleys of the interacting surfaces and the formation of a tribofilm at 
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the interacting surface [92]. There are not enough studies in the literature where alumina 

nanoparticles have been used as friction modifiers in biolubricants. Only a few experimental 

studies have been conducted in the last five years. Thus, there is a need to carry out further 

experimental studies using alumina nanoparticles in different biolubricants to properly 

compare their effects on friction performance when used with different biolubricants. 

 

Figure 19. Effect of Alumina (Al2O3) NPs on the friction performance of bio-lubricants. 

4.7. Silica (SiO2) Nanoparticles 

A limited number of studies have been conducted in recent years to check the suita-

bility of silica nanoparticles with biolubricants. In an experimental study, silica nanopar-

ticles were used with coconut oil, using a block-on-ring configuration. Five samples were 

prepared with different concentrations of nanoparticles. The concentrations ranged be-

tween 0.25 and 1.25wt% of silica nanoparticles. The results of the experiment showed that 

the COF was reduced to a minimum when 1 wt% of silica nanoparticles was used. On 

average, silica nanoparticles were able to reduce the COF of the interacting surface by 

almost 50.85% compared to coconut oil with no nanoparticle additive [90]. Figure 20 

shows the effect of the addition of nanoparticles on the COF. Although silica nanoparticles 

performed well with coconut oil, there is still a need to check the suitability of silica nano-

particles for other biolubricants as well. The positive behavior associated with the use of 

silica nanoparticles on the COF could be a result of the deposition of silica nanoparticles 

on the interacting surfaces [93]. 

 

Figure 20. Effect of Silica (SiO2) NPs on the friction performance of bio-lubricants. 
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Among the nanoparticles discussed above, CuO and MoS2 are most widely used in 

biolubricants. CuO nanoparticles show extremely good performance with biolubricants 

and reduce the COF of interacting surfaces by high percentages compared to biolubricants 

with no nanoparticle additive. Although a large number of nanoparticles have been used 

as friction modifiers in biolubricants, there are many nanomaterials that still need to be 

tested with biolubricants. Graphene nanoparticles show positive behavior and increase 

the friction resistance when used with synthetic lubricants. However, the effect of gra-

phene nanoparticles on the friction performance of biolubricants is not well established in 

the literature. Thus, there is a need to test such nanoparticles with biolubricants to fully 

understand their effect on the friction performance of said biolubricants. It has also been 

found in some studies that when hybrid nanoparticles (combination of two or more na-

nomaterials) are used as an additive, the COF is reduced by a higher percentage compared 

to individual nanomaterials [94]. Therefore, there is a need to conduct experimental stud-

ies to examine the effect of such hybrid nanoparticles on the tribological performance of 

biolubricants. Moreover, actual engines need to be tested with biolubricants with nano-

particles as additives to check the suitability of such lubricants under actual operating 

conditions. 

5. Limitations of Nanolubricants 

Although nanoparticles have the potential to enhance the tribological properties of 

lubricants and to reduce the COF and wear of interacting surfaces, there are certain limi-

tations in terms of using nanoparticles as additives. One such limitation is associated with 

the use of nanoparticles is agglomeration, which deteriorates their positive effect on the 

COF and wear. Agglomeration refers to the grouping of nanoparticles to form larger par-

ticles with less surface energy and a high surface area [95]. It has been found in many 

studies that when the concentration of nanoparticles is increased beyond the optimum 

concentration, agglomeration of the nanoparticles starts and the tribological performance 

of lubricants starts deteriorating [96,97]. Another problem associated with use of nano-

particles is their dispersion stability in lubricant oil, which adversely affects the tribologi-

cal performance of this oil [75]. The dispersion stability of nanoparticles in lubricant oils 

can be improved by using suitable surfactants and surface modification techniques 

[98,99]. 

6. Conclusions 

This paper showcased a comprehensive review on the use of nanoparticles as lubri-

cant additives by comparing their effect on the friction performance of different synthetic 

and biolubricants. The COF (coefficient of friction), mechanisms responsible for improve-

ments in tribological properties, and limitations with the use of nanoparticles were thor-

oughly discussed. It was found that among the nanoparticles considered, CuO (copper 

oxide), molybdenum disulfide (MoS2), and titanium dioxide (TiO2) show better tribologi-

cal performance with lubricant oils compared to other nanoparticles. From a comparison, 

it was found that the most compatible lubricants for MoS2 are SAE 50 oil and sunflower 

oil. CuO nanoparticles also showed higher compatibility with both SAE 50 oil and sun-

flower oil compared to other lubricants. TiO2 nanoparticles were found to be the most 

suitable in order to reduce friction when used with SAE 10w-30 oil and pongamia oil. 

However, there is a need to conduct more research regarding the use of nanoparticles as 

additives in biolubricants. Moreover, the effects of nanolubricants on the performance of 

actual engines need to be studied. 
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