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This paper proposes a highly efficient quantum algorithm for portfolio optimisation
targeted at near-term noisy intermediate-scale quantum computers. Recent work by
Hodson et al. (2019) explored potential application of hybrid quantum-classical algo-
rithms to the problem of financial portfolio rebalancing. In particular, they deal with
the portfolio optimisation problem using the Quantum Approximate Optimisation Al-
gorithm and the Quantum Alternating Operator Ansatz. In this paper, we demonstrate
substantially better performance using a newly developed Quantum Walk Optimisation
Algorithm in finding high-quality solutions to the portfolio optimisation problem.

1 Introduction
Quantum computers are powerful devices that utilise intrinsic properties of quantum mechanics,
such as superposition and entanglement, to provide substantial speedups for solving computation-
ally hard problems [1, 2]. A recent influx of interest and technological advancements in this field
have lead to the discussion of practical applications especially in the Noisy Intermediate-Scale
Quantum (NISQ) era [3]. This includes solving difficult financial problems [4–7]; one such problem
is portfolio optimisation and periodic re-balancing [8]. When considering a set of n assets there
are 3n different portfolio combinations when we consider three different discrete asset positions:

1. Long position: the buying of an asset such as a stock, commodity or currency with the
expectation that it will rise in value;

2. Short position: the selling of an asset with the expectation that it will drop in value;

3. No position: neither a long nor short position is taken.

In this work, we take the mean-variance Markowitz model [9, 10] as the basis for portfolio
optimisation, which is fundamental to modern portfolio theory. Although this model was developed
in the 1950s, its simplicity, relative accuracy and relevance persists as an area of exploration for
the quantum computing community [8].

Financial portfolio optimisation and the Markowitz model have been shown, when discrete
asset constraints are involved, to fall into the category of NP-hard combinatorial optimisation
problems [11, 12]. Thus, the portfolio optimisation problem provides a real-world model to inves-
tigate quantum speedups through quantum approximate optimisation algorithms. Of interest are
implementations appropriate for near-term noisy intermediate-scale quantum (NISQ) computers,
which have become increasingly available in the cloud, and are fast approaching sufficient scale
and fidelity [3].

The problem of portfolio optimisation and rebalancing using the Markowitz model with discrete
asset constraints has been previously evaluated using the Quantum Approximate Optimisation
Algorithm and Quantum Alternating Operator Ansatz [8]. Collectively known as QAOA, the
algorithms were developed by [13] and [14] to solve combinatorial optimisation problems. The latter
algorithm generalises the original QAOA to incorporate optimisation constraints. Since we aim to
compare these algorithms in this paper, we distinguish them as QAOA and QAOAz respectively.
These algorithms are known as hybrid quantum-classical algorithms, as they utilise both quantum
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computing advantages and classical optimisation in order to minimise a given objective function.
QAOA can be thought of as a Trotterised approximation to the Quantum Adiabatic Algotithm
(QAA) [14], where the system is evolved into the ground state of some operator that encodes the
problem solution. As a heuristic or approximation algorithm, QAOA accepts high-quality solutions
when the optimal solution is not found.

Specifically, QAOA-based algorithms utilise an alternating state evolution consisting of solution-
quality-dependant phase shifts and a mixing of probability amplitude across a state-space of pos-
sible solutions. Using a hybrid quantum-classical variational scheme, the expectation value of an
operator encoding the objective function of an associated scalar optimisation problem is minimised;
such that the probability of measuring the system in a state corresponding to a high quality solution
is amplified.

This paper evaluates a further development in QAOA schema known as the Quantum Walk
Optimisation Algorithm (QWOA) [15]. QWOA utilises an efficient indexing algorithm in conjunc-
tion with a generalisation of the QAOA mixing operator to a continuous-time quantum walk over a
circulant graph that connects all feasible solutions. Our earlier work indicated that QWOA offers
significant advantages over pre-existing methods through a reduction in the search space and an
unbiased encoding of optimisation constraints [15]. In this paper we provide numerical evidence
for the efficacy of QWOA through its application to portfolio optimisation.

The paper is organised as follows. In Sec. IIA, we introduce the Markowitz model for portfo-
lio optimisation, along with its quantum encoding for approximate optimisation. In Sec. IIB, we
compute the size of the search space for QAOAz and QWOA. This is followed by a detailed descrip-
tion and circuit comparison of the three quantum approximate optimisations under consideration.
Finally, in Sec. III and Sec. IV, we present numerical results and analysis.

2 Portfolio Optimisation Problem Formulation
The formalisation and models used in this paper are based upon the work done by Hodson et al.
[8] as to provide a basis for comparison between QAOA, QAOAz, and QWOA.

2.1 The Markowitz model
The discrete mean-variance Markowitz model can be expressed through minimisation of the ob-
jective function

c(z) = λ

n∑
i,j=1

σijzizj − (1− λ)
n∑
i=1

rizi (1)

which we subject to the optimisation constraint

n∑
i=1

zi = A . (2)

In the above formulation, z = z1 . . . zn encodes a particular choice of portfolio from n assets, where
for each asset i we have zi ∈ {1,−1, 0} representing the choice of a long position, a short position,
or no position. Associated with each asset is an expected return ri, and the correlation between
two assets i and j is given by the covariance σij . These values are derived from historical data.
The risk aversion parameter λ, taking a value between 0 and 1, reflects the balance between returns
and risk. As this risk parameter approaches 0, the optimal portfolio is based purely on obtaining
maximum returns. As λ approaches 1, the only consideration becomes minimisation of risk (for
example, leading to a preference for government bonds over real estate). The value A defines the
net total of discrete lots to be invested for the portfolio. Note that in the definition of A, the signed
quantity zi is summed rather than the absolute value |zi|, which is a formulation generally used in
portfolio rebalancing to treat the relative net position with respect to an existing portfolio [8].

The mean-variance formulation is standard and well-studied in finance, both in the continuous
and discrete domain [16, 17]. The model formalises the idea of portfolio diversification, where an
investor can reduce risk by owning a number of assets having low correlations on returns. The
application of discrete variables commonly applies to situations where the class of assets is traded

Accepted in Quantum 2021-07-26, click title to verify. Published under CC-BY 4.0. 2



in discrete quantities (e.g. real estate), and when the cost of a single asset is substantial (bonds
often meet this criteria). It additionally is applicable where one wishes to subdivide a fixed budget
equally amongst the assets in the portfolio.

In order to ‘quantise’ the formulation and encode each portfolio using a quantum register, we
require two qubits per asset as shown in Table 1, representing the three possible position choices
for each asset.

‘Short’ qubit ‘Long’ qubit zi value |z〉 encoding
|0〉 |0〉 0 |00〉
|0〉 |1〉 1 |01〉
|1〉 |0〉 −1 |10〉
|1〉 |1〉 0 |11〉

Table 1: Qubit encoding of the possible asset positions.

2.2 Counting valid portfolios
For the QWOA, it is a necessary condition [15] to identify the cardinality of the solution set for
any given parameters (n,A). It is also useful to see the difference in the size of the constrained
search subspace to compare between QAOA, QAOAz and QWOA.

As there are n assets under consideration, and each asset uses two qubits to encode its position,
the Hilbert space is of size N = 22n, which is the ordinary QAOA search space. However, only a
subset of these states correspond to valid portfolio configurations that satisfy the constraint given
in Eq. (2). Furthermore, portfolio configurations that include a stock with both position qubits set
to |1〉 are degenerate – the |11〉 configuration is interpreted as equivalent to the |00〉 configuration,
i.e. no position. This means there can be a large amount of degeneracy amongst the ‘valid’ states.

We aim to count the number of valid and non-degenerate states, which we will later see cor-
responds to the size of the search subspace for QWOA. First, we note that the number of valid
nondegenerate (n,A)-portfolios has an exact correspondence with the number of lattice paths from
(0, 0) to (n,A) with steps taken from the set {U = (1, 1), D = (1,−1), H = (1, 0)}. An example of
this correspondence is given in Fig. 1. Choosing a long position on a stock is equivalent to stepping
diagonally up, while choosing a short position is equivalent to stepping diagonally down. Choosing
no position on a stock takes a step horizontally. To satisfy the investment constraint of having A
more long positions than short positions, the path must end at (n,A).

(0,0)

(4,4)

(4,-4)

(4,-1)

U	=	long	position	=	01

H	=	no	position	=	00

D	=	short	position	=	10

Figure 1: An illustrative lattice representation of three example portfolios which contain four assets and require
one more short position than long position. The red, blue and green paths represent the portfolios 01101000,
10000110 and 00101001 respectively. There are a total of M(4,−1) = 16 paths that reach this endpoint.
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Theorem 1. The number of such lattice paths, plotted in Fig. 2, is given by

M(n,A) =
n∑
j=0

(
n

j

)(
n− j

1
2 (n+A− j)

)
(3)

where the second binomial coefficient is set to 0 if its bottom parameter is not an integer.
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Figure 2: Log-number of valid non-degenerate portfolios for values of n and A.

Proof. We follow the techniques used in [18]. In particular, the lattice path is similar to a so-
called Motzkin path, for which the number of paths is given by Eq. (10.43) in [18]. Suppose that
there are j H-moves in a given path from (0, 0) to (n,A). If these are removed, we are left with
a path from (0, 0) to (n − j, A) using only diagonal moves. Performing the coordinate mapping
(x, y) 7→ ( 1

2 (x+y), 1
2 (x−y)) transforms the problem into finding a path to ( 1

2 (n+A−j), 1
2 (n−A−j))

using standard basis steps (1, 0) and (0, 1). The number of paths to this endpoint with standard
basis steps, using Eq. (10.3) in [18], is (

n− j
1
2 (n+A− j)

)
, (4)

where the binomial coefficient is 0, if the bottom component is fractional. There are
(
n
j

)
ways

to re-insert the originally removed H-moves, and after summing over j we arrive at the desired
result.

The search space of QAOAz is larger than M(N,A), since we will later see that it incorpo-
rates valid but also degenerate solutions. The number of all valid portfolio encodings, including
degeneracies, can be expressed as

V(n,A) =
n∑
j=0

2j
(
n

j

)(
n− j

1
2 (n+A− j)

)
=
(

2n
n+A

)
, (5)

since if there are j H-moves the corresponding j stocks may each be encoded as |00〉 or |11〉. More
simply, the second expression is derived from choosing (n + A) bits to flip in the 2n-qubit state
encoding. In the following section it will be shown that this is the size of the search space for
QAOAz.
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2.3 Quantum Approximate Optimisation Algorithms
The Quantum Approximate Optimisation Algorithms evolve a given initial state as

|ψf 〉 =
p∏
i=1

Umix(ti)UC(γi) |ψ0〉 . (6)

Here, UC(γ) |z〉 = e−iγc(z) |z〉 for any portfolio qubit encoding |z〉 as per Table 1, applying a
relative phase shift to the solution proportional to the variational parameter γ and to the value
of the portfolio with respect to the objective function. This operator, as defined based on the
objective function c(z) given in Eq. (1), is the same for all methods discussed in this section. We
also define the corresponding Hamiltonian C such that UC(γ) = e−iγC , which encodes the values
of the objective function c(z) as its diagonal elements. The operator Umix is the mixing operator
that differs depending on the choice of connectivity between solution states. In this section, we
contrast three different algorithms that have differing Umix operators and associated initial states
|ψ0〉. The integer parameter p is the number of QAOA iterations, with increased p providing
improved solution quality at the cost of increased circuit depth and (~t,~γ) are circuit parameters
which are classically optimised in order to minimise the expectation value 〈ψf |C |ψf 〉. In this
framework, a lower expectation value corresponds to a greater probability of measuring a portfolio
with an optimal, or near optimal, balancing of predicted future returns and risk.

2.3.1 Quantum Approximate Optimisation Algorithm (QAOA)

For the original QAOA scheme, the mixing operator Umix is defined as UQAOA(t) = e−it
∑

i
X(i)

.
One method of encoding the investment constraint is to incorporate it within the objective function.
This so-called ‘soft constraint’ occurs as the addition of a penalty function to Eq. (1),

ζ(z) = ε(A−
n∑
i=1

zi)2 (7)

where ε > max(c(z)) − min(c(z)). Thus for QAOA applied to portfolio optimisation, C |z〉 =
(c(z) + ζ(z)) |z〉. Final states with minimal expectation value correspond to ‘good’ solutions to the
given optimisation problem. The penalty function penalises portfolios with a net long position of
more than or less than A assets. With the use of the ε inequality, this penalty function ensures that
the minimum objective function value corresponds to a state which satisfies the constraint. The
soft constraint method enables the QAOA algorithm to optimise given the constraint, but there
are states in which the constraint is not satisfied which are still being considered by the algorithm.

The initial state for the soft constraint method is simply an equal superposition across all states,

|ψ0〉 = 1√
22n

N−1∑
i=0
|i〉 . (8)

2.3.2 Quantum Alternating Operator Ansatz (QAOAz)

This extension of the QAOA provides a means of constraining the optimisation process to the
subspace of valid solutions by modification of the mixing operator. The phase unitary, UC(γ),
maintains the same form for all algorithms discussed in this paper. However, the mixing operator
is now replaced by UQAOAz, which is an approximation to the time evolution of the ‘dual parity
ring’ Hamiltonian as given in [8, 19],

Hring =
2n∑
a=1

(
X(a)X(a+2) + Y (a)Y (a+2)

)
, (9)

where all addition is modulo n. This Hamiltonian preserves the Hamming weight of both the
short and long qubits independently, and consequently meets the A-constraint. Hadfield et al. [19]
provide a method for approximating the time evolution of the dual parity ring mixer Hamiltonian by
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decomposing it into three non-commuting unitaries. The QWOAz mixer for portfolio optimisation
is thus defined as

UQAOAz(t) = Ulast(t)Ueven(t)Uodd(t) ≈ e−itHring (10)

where

Uodd(t) =
∏
a odd,
a 6=n

e−it(X
(2a+1)X(2(a+2))+Y (2a+1)Y (2(a+2)))e−it(X

(2(a+1))X(2(a+2))+Y (2(a+1))Y (2(a+2))) ,

(11)

Ueven(t) =
∏
a even

e−it(X
(2a+1)X(2(a+2))+Y (2a+1)Y (2(a+2)))e−it(X

(2(a+1))X(2(a+2))+Y (2(a+1))Y (2(a+2))) ,

(12)

Ulast(t) =
{
e−it(X

(2n)X(1)+Y (2n)Y (1))e−it(X
(2n−1)X(2)+Y (2n−1)Y (2)), n odd,

I, n even.
(13)

where again all addition is modulo n. In the above expressions, the first exponential acts indepen-
dently on the short position qubits, whilst the second acts on the long position qubits. When given
an initial state satisfying Eq. (2), the action of the dual parity ring mixer ensures that QAOAz has
non-zero amplitude only in solution states satisfying the net investment constraint.

The mixing operator UQAOAz creates a structure known as parity bands, which are a result
of the preservation of both the long and short qubits independently. Given there are more than
one way to satisfy the investment constraint (e.g. for n = 5 and A = 4, two valid portfolios are
4 long positions and 1 no position, or 5 long positions and 1 short position), the parity bands
are disconnected. Consequently, there is no ability to transfer amplitude between parity bands
through this mixing operator. We must thus ensure the initial state is in a superposition across
all possible valid parity bands. Given n assets with a net portfolio position of A, a simple initial
state given in [8] that meets this criteria is

|ψ0〉 = 1
2(n−A)/2 |01〉⊗A ⊗ (|00〉+ |11〉)⊗(n−A) , (14)

which represents an equal superposition over all the (degenerate) portfolios having exactly A more
long positions than short positions and (n−A) no-positions. This initial state is efficient to prepare,
but at the cost of bias – the probability amplitude is binomially distributed across parity bands
[8].

2.3.3 Quantum Walk Optimisation Algorithm (QWOA)

QWOA generalises the original QAOA mixer as a continuous-time quantum walk (CTQW) over the
subspace of valid solutions [15]. QWOA again evolves the initial state as given by Eq. (6), but with
a new quantum walk mixer UQWOA. The quantum analogy to the classical random walk, a CTQW
is the evolution of a quantum system under a Hamiltonian defined by a graph adjacency matrix
[20, 21]. The advantage of QWOA for the portfolio optimisation problem lies in its flexibility in
‘connecting’ only the solutions in the valid subspace, the ability to eliminate degenerate portfolio
states (thus significantly reducing the search space), and complete global symmetry amongst valid
solutions (eliminating bias of one valid solution over another due to mixing asymmetry).

In order to implement a QWOA mixer on a desired subspace of solutions S, we first design an

efficiently computable bijection S id−→ {0, 1, . . . , |S| − 1} [15], as illustrated in Table 2. In the case
of portfolio optimisation, we need a classical algorithm idn,A(x) to index the valid and canonical
(non-degenerate) portfolio encodings x. In the following, we provide such an algorithm to compute
idn,A(x) for any given valid portfolio x and id−1

n,A(j) for any given index j.
We use a simple recursion relation to index, based on the counting function in Eq. (3). Observe

thatM(n,A) =M(n−1, A)+M(n−1, A−1)+M(n,A+1). Using the lattice analogy, the number
of paths reaching (n,A) is the sum of the number of paths one step from (n,A). This inspires
a recursive ranking algorithm as per Algorithm 1. The un-indexing algorithm works similarly,
mapping an integer index to a binary portfolio representation as per Algorithm 2.
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x id(x)
010100002 0
010001002 1
000101002 2
010000012 3
000100012 4
000001012 5
100101012 6
011001012 7
010110012 8
010101102 9


Table 2: Indexing function for n = 4, A = 2, a bijection between the portfolio binary encodings and the integers.

Algorithm 1 id(n,A, x)
if x = 0 then return 0 end if
xf ← x& 112 . last two bits of x
x′ ← x� 2 . remove last two bits
switch xf do

case 002: r ← id(n− 1, A, x′) . H-move
case 012: r ←M(n− 1, A) + id(n− 1, A− 1, x′) . U -move
case 102: r ←M(n− 1, A) +M(n− 1, A− 1) + id(n− 1, A+ 1, x′) . D-move

return r

Algorithm 2 id−1(n,A, j, x = 0)
if n = 0 then return x end if
if j <M(n− 1, A) then . H-move

r ← id−1(n− 1, A, j, x)� 2
else if j <M(n− 1, A) +M(n− 1, A− 1) then . U -move

j′ ← j −M(n− 1, A)
r ← 012 | (id−1(n− 1, A− 1, j′, x)� 2)

else . D-move
j′ ← j − (M(n− 1, A) +M(n− 1, A− 1))
r ← 102 | (id−1(n− 1, A+ 1, j′, x)� 2)

end if
return r

The quantum circuit shown in Fig. 3 performs the unitary mapping U†# |j〉 =
∣∣id−1(n,A, j)

〉
,

i.e. un-indexes an integer to the corresponding portfolio. The correctness of the circuit follows
directly from Algorithm 2, where we use the property that y = 0 and A = 0 at the end of the
recursive sequence to ensure that there are no registers entangled with the output. Clearly by
reversing the circuit, the indexing unitary U# is obtained. In the sub-circuit shown in Fig. 3a,

we rely on a unitary implementation of the counting function Mj
k |A〉 |0〉 = |A〉 |M(j, A+ k)〉.

Since j is known classically for each sub-circuit, and we must have −j ≤ A + k ≤ j, this can be
implemented by classically pre-computing the unique possible values of M(j, A+ k) and applying
at most j+ 1 = O(n) controlled additions of these possible values (where the control is on equality
with each possible value of A+ k). In addition, the given indexing sub-circuit uses O(1) quantum
comparators and other controlled subtraction/addition operations. This leads to a sub-circuit
complexity of O(n) as per Fig. 3a and thus an overall indexing gate complexity of O(n2) as per
Fig. 3b, omitting polylogarithmic factors.

The quantum circuit for quantum portfolio indexing relies on three main registers. An ancilla
register of size O(logn) is used to track the value of A through the indexing process. The input
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|A〉 /
Mj

0 (Mj
0)† Mj

−1 (Mj
−1)†

+1 −1 |A′〉

|0〉 / •
−

•
−

|0〉
|y〉 / • • |y′〉
· · ·
|0j〉 < • • • |xj〉

|0j+1〉 < • • |xj+1〉
· · ·

(a)

|A〉 /
Ũn−1 Ũ1

|0〉
|y〉 / |0〉
|01〉

Ũ1
|x1〉

|02〉 |x2〉
· · · · · · · · ·

∣∣id−1(n,A, y)
〉

|0n−1〉
Ũn−1

|xn−1〉
|0n〉 |xn〉


(b)

Figure 3: (a) The jth sub-circuit for QWOA portfolio un-indexing, which we label as Ũj . This circuit, given the
index y, decodes the jth and (j + 1)th bits of the portfolio representation. (b) Illustration of the quantum un-
indexing circuit U†# for QWOA portfolio optimisation. This performs the unitary mapping |y〉 7→

∣∣id−1(n,A, y)
〉

.

index is held in a register of size O(logM(n,A)) = O(n), and the output portfolio encoding is
also O(n). Note that the second ancilla register shown in Fig. 3a is not required and is shown for
graphical convenience – the un-set bits of the output register can be used instead.

With the indexing unitary in hand, the M valid portfolios can be ‘connected’ using any M-
vertex graph over which an efficient quantum walk can be implemented. In particular, [15] describes
an efficient approach for using an arbitrary circulant graph as a mixer, since this class of graphs
can be simulated efficiently using the Quantum Fourier Transform [22–29]. In this work, we choose
the complete graph, KM, due to its efficiency of implementation and global symmetry. Details
of the circuit for quantum walk over KM can be found in [15, 30, 31], having asymptotic gate
complexity O(n) to simulate the walk with exponential precision, again omitting polylogarithmic
factors. Thus, we have

UQWOA(t) = U#e
−itKMU†# , (15)

where the depth of the mixing unitary is dominated by that of the indexing procedure, leading to
an overall complexity of O(n2). The associated equal superposition initial state is

|ψ0〉 = 1√
M

U†#

M−1∑
x=0
|x〉 . (16)

2.3.4 Comparison of mixing circuits

In Fig. 4, we represent the Hamiltonian underlying each mixing operator as the adjacency matrix of
a graph for a 3-asset example problem, to illustrate the connectivity between solutions. The generic
QAOA mixing operator can be considered as a quantum walk on the 2n-dimensional hypercube
shown in Fig. 4a. QAOAz mixes only valid solutions, but as per Fig. 4b there are a number of
disconnected graph components, asymmetry in vertex degree and connectivity, and degeneracy
amongst some of the valid portfolio solutions. Finally, associated with QWOA is a complete graph
connecting the canonical valid solutions.
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(a)

000111001101

010011

010110

100101

011001

011100

110001

110100

011111

110111111101

000001

000100010000

(b)

000001

000100

010000

010110

011001

100101

(c)

Figure 4: An example (n = 3, A = 1) of the graph representation of each underlying mixing Hamiltonian.
Black vertices are valid non-degenerate solutions, orange vertices are degenerate solutions, and red vertices
correspond to invalid portfolio configurations. (a) QAOA operates on the full 26-dimensional Hilbert space,
connected as a hypercube. (b) QAOAz uses the dual parity ring mixer on long and short qubits, and thus
each graph component connects solutions of equal Hamming weight. (c) QWOA mixes uniformly between valid
non-denegerate solutions, with full symmetry and transitivity amongst vertices and edges.

In Fig. 5 we contrast the search space and gate complexity for the three approaches. Also
shown is a plot of the search space for varying n, with fixed A = 0. QAOA scales like 4n, while
QAOAz scales like 4n

√
πn

for large n. QWOA in contrast reduces the search space by more than

half on mean, scaling approximately as 3n

2
√
πn

(this result is obtained by observing that for even

n, M(n, 0) are the sum of squared trinomial coefficients). We argue that the significant reduction
in the size of the search space is worth the quadratic increase in mixing circuit complexity as per
Fig. 5a. As shown in the following section, QWOA converges to high-quality solutions far more
quickly, with a small choice of p producing near-optimal solutions.

QAOA QAOAz QWOA
Search space 22n ( 2n

n+A
)

M(n,A)
Gate complexity O(n) O(n) O(n2)

(a)

QAOA
QAOAz
QWOA

0 10 20 30 40 50
0

20

40

60

80

100

n

lo
g 2
(se

ar
ch

sp
ac

e)

(b)

Figure 5: (a) comparison of the mixing operators for the three approaches, where the QWOA complexity is
derived in Section 2.3.3. (b) comparison of the search space size for A = 0.

3 Numerical Results and Analysis
Numerical simulation of the portfolio optimisation problem was carried out for QAOA, QAOAz
and QWOA, using the software package QuOP MPI [32, 33]. For all reported results, the ~γ and ~t
parameters were optimised using the Broyden-Fletcher-Goldfarb-Shanno algorithm. The Newton-
Conjugate-Gradient, Nelder-Mead Simplex and Powell’s method algorithms were also considered.
However, these yielded equivalent, or uniformly poorer, results.

The simulations utilised daily share prices from two data sets, Data Set A and B, which selected
n = 8 stocks from the ASX.20 index. The adjusted close price was used to ensure that all
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possible corporate actions were considered in the share performance, such as dividends. Data Set
A contained the daily adjusted close prices from 01/01/2017 to 31/12/2018 for the shares: AMP,
ANZ, AMC, BHP, BXB, CBA, CSL and IAG. Data Set B ranged over the period of 24/03/2020
to 06/09/2020 and selected shares based on sectors heavily impacted by the COVID-19 pandemic:
FLT, QAN, WEB, REX, AIZ, SYD, SCG and CTD. Both data sets were obtained from Yahoo
Finance using a Python based API [34]. For all simulations, A = 4 and λ = 0.5. In each case, the
presented results correspond to the mean and standard deviation for 15 repeats of each algorithm.
These used the same set of randomly generated initial ~γ and ~t values, uniformly distributed between
0 to 2π.

With N = 8 and A = 4, the search spaces of the three algorithms are 216 for QAOA, 1820
for QAOAz and 266 for QWOA. The size of the disconnected QAOAz parity bands are shown in
Fig. 6a for N = 8 along with the distribution of |ψ0〉 across all bands satisfying A = 4. We note
that the largest connected components correspond to states satisfying A equal or close to 0, and
that the binomial distribution of the initial state centers on these larger components. As mixing
of probability amplitude does not occur across the parity bands, the probabilities shown in Fig. 6b
are the maximum possible for a single state in each of the parity bands, as opposed to QAOA and
QWOA which converge to a single state as p→∞. For Data Set A, this influences the minimum
possible objective function value which is −0.318 for QAOA and QWOA, and −0.305 for QAOAz.
For Data Set B the minimum is −1.25 for QAOA, QWOA and QAOAZ as the optimal portfolio
exists in all four of the populated QAOAz parity bands. The small and fully-connected search
space of QWOA is expected to result in it outperforming QAOA and QAOAz at sufficiently high
p.
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Figure 6: (a) QAOAz parity band size and associated constraint value, A, for N = 8 assets. Parity bands
satisfying A = 4 are outlined in black. (b) Probability distribution of |ψ0〉 over the QAOAz parity bands for
A = 4 as a function of Hamming weight. This distribution occurs across the 5 outlined parity bands in Fig. 6a
where the Hamming weight increases down the outlined diagonal.

Of critical note is that the classical optimisation component suffers from the curse of dimension-
ality as the number of optimisation parameters increase (i.e. with increasing p). Each time p in-
creases by 1, two additional independent classical optimisation parameters are needed to maximally
explore the available search subspace. In hybrid quantum-classical optimisation an estimation of
〈ψf |C |ψf 〉 is obtained by repeated sampling of the |ψf 〉 state, and the optimisation parameters
are tuned to optimise this quantity. Consequently, with increasing dimensionality the classical
optimisation deteriorates [35], making less progress per optimisation iteration, and thus increas-
ing the overall number of quantum circuit shots required. A practical hybrid quantum-classical
variational algorithm must therefore demonstrate rapid convergence at low p. In this sense, the
polynomial difference in circuit depth per iteration given in Fig. 5 is negligible compared to the
exponentially increasing classical parameter space with increasing p. In the following numerical
results we demonstrate that QWOA is by far the best candidate in this regard out of the three
considered algorithms, needing drastically smaller p to reach a given expected solution quality
〈ψf |C |ψf 〉.
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3.1 Data Set A (01/01/2017 to 31/12/2018)
Fig. 7a shows the final value of the optimised objective function for QAOA, QAOAz and QWOA.
On average, QAOA performs poorly as compared to the other two algorithms. Additionally,
QAOA consistently exhibits the largest standard deviation in the optimised objective function
value 〈ψf |C |ψf 〉 with a maximum of 12.96 as compared to 0.038 for QAOAz and 0.011 for QWOA.
This is consistent with the inclusion of invalid portfolio states and the QAOA mixing operator’s
action over the complete Hilbert space, as per Fig. 5, which increases the likelihood of the classical
optimiser converging to a poor local minima when compared to QAOAz or QWOA. Note that the
minimum objective function value (red line), derived from the globally optimal portfolio selection,
is obtained by classical brute-force iteration through all feasible solutions and shown for the purpose
of comparison.
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Figure 7: Expected portfolio quality for Data Set A as a function of p. (a) Comparison of QAOA, QAOAz and
QWOA. (b) Excluding QAOA.

The optimised expectation value after p iterations for QAOAz and QWOA is shown in Fig. 7b.
QAOAz shows diminishing improvement past p ≈ 8, reaching an expected portfolio value approx-
imately 0.2 above the optimum portfolio objective function value after 19 iterations. To explore
the reason behind this performance, Fig. 8b plots the QAOAz output state probabilities for solu-
tions contained in the parity band of Hamming weight 8, see also Fig. 6, which corresponds to a
parity band containing the optimal solution. It is clear that degeneracy plays a part, with the two
highest-probability states in the parity band representing the same portfolio. Even though this
is a parity band containing the (degenerate) optimal solution state, its associated probability has

(a) (b)

Figure 8: Comparison of output state probabilities for QWOA and QAOAz using p = 19 with Data Set A, with
optimal solutions indicated by arrow. (a) QWOA amplifies the optimal portfolio to over 40% probability, as
well as boosting other high-quality portfolios. (b) QAOAz does not amplify the (degenerate) optimal solutions
in this parity band, instead converging to solutions of comparatively lower quality.
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not been amplified, remaining below 10−9. Conversely, QWOA exhibits rapid improvement with
p over the range considered as per Fig. 7b and, as shown in Fig. 8a, is able to amplify the optimal
portfolio configuration to above 40% probability by p = 19.

Overall, the superior performance of QWOA at low p is consistent with the algorithm’s reduc-
tion of the search space to 0.406% of QAOA and 14.61% of QAOAz; along with a reduction in state
and mixing bias. Given n = 8 with an investment constraint of A = 4, there are 1554 degenerate
states, which are not equally distributed over the valid solutions. As per Eq. (5), the number
of the degenerate states for a given portfolio is directly related to the number of ‘no positions’
it contains, with a higher number corresponding to more degenerate states. This clearly effects
the performance of QAOA and QAOAz, producing lower-quality portfolios on average for a given
choice of p.

Fig. 9a and Fig. 9b show the expected annual return and expected annual risk for Data Set
A. These values were obtained by multiplying the probability of a each portfolio configuration by
the corresponding annual return and risk respectively. QWOA performs significantly better than
QAOA and QAOAz with respect to the annual return. We note that, as the mean-variance model
is trying to find the best combination of return vs risk, the optimal portfolio will not necessarily
exhibit the lowest possible risk - as low risk assets are typically associated with decreased return.
Fig. 9c displays the historic mean return and the projected return of the final QWOA state at
p = 19. It is clear that the obtained data is a good match for the historic data used, with an
accurate representation of the trend and volatility of the data.

1 3 5 7 9 11 13 15 17 19
p

0

20

40

60

80

E
x
p

ec
te

d
A

n
n
u

al
R

et
u

rn
(%

)

QAOA

QAOAz

QWOA

(a)

1 3 5 7 9 11 13 15 17 19
p

15

20

25

30

35

E
x
p

ec
te

d
A

n
n
u

al
R

is
k

(%
)

QAOA

QAOAz

QWOA

(b)

2017 2018 2019 2020

0

50

100

Date

R
et

ur
ns

(%
)

(c)

Figure 9: Expected annual portfolio return (a) and expected annual risk (b) for the algorithms with increasing
p for Data Set A. The historic mean return for Data Set A is shown in (c) along with the projected expected
return given by the final QWOA state at p = 19; with the yellow region being the 1-σ risk region and the dotted
line the expected value.
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3.2 Data Set B (24/03/2020 to 06/09/2020)
Data Set B is consistent with the pattern of performance observed for Data Set A. As shown in
Fig. 10a and Fig. 10b, QWOA consistently finds the best expected solution quality, followed by
QAOAz and then QAOA. The same trend in the standard deviation of 〈ψf |C |ψf 〉 is also observed
with QAOA having a maximum of 12.75, followed by 0.61 for QAOAz and 0.115 for QWOA.
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Figure 10: Expected portfolio quality for Data Set B as a function of p. (a) Comparison of QAOA, QAOAz and
QWOA. (b) Excluding QAOA.

As shown in Fig. 10b, QWOA again offers significant advantage over QAOAz. As previously
discussed, the QAOAz parity mixer is expected to lead to performance variation dependant on the
distribution of the optimal solutions amongst the disconnected parity bands. However, for Data
Set B, the optimal solution is present in each of the 5 parity bands, as opposed to Data Set A, which
contained the optimal solution in only 3 of the 5 graphs (of sizes 448, 784 and 448 respectively).
A convergence to the optimal solution is observed in the QWOA numerical simulations, shown in
Fig. 7b and Fig. 10b.

Reinforcing the above observations, we note significant differences between QAOAz and QWOA
in the probability distribution of the optimised state |ψf 〉 for p = 19, as shown in Fig. 11. QWOA
manages to boost the probability of the optimal portfolio state to approximately 20%. It also
amplifies other high-quality portfolios, as demonstrated in Fig. 11a. Examining the parity band
shown in Fig. 11b, the optimised parameters amplify solutions of comparatively lower quality than
the optimum with the probability for the degenerate optimal solutions remaining below 10−6.
Also notable is the presence of solution degeneracy, with the 12 significantly amplified portfolios
corresponding to four distinct degenerate solutions.

(a) (b)

Figure 11: Comparison of output state probabilities for QWOA and QAOAz using p = 19 with Data Set B, with
optimal solutions indicated by arrow. (a) QWOA amplifies the optimal portfolio to almost 20% probability, as
well as other high-quality portfolios. (b) QAOAz does not amplify the (degenerate) optimal solutions in this
parity band, instead converging to solutions of comparatively lower quality.
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Figure 12: Expected annual portfolio return (a) and expected annual risk (b) for the considered algorithms with
increasing p for Data Set B. The historic mean return for Data Set A is shown in (c) along with the projected
expected return given by the final QWOA state at p = 19; with the yellow region being the 1-σ risk region and
the dotted line the expected value.

Fig. 12a and Fig. 12b display the expectation value for the returns and expected risk. QWOA
yields the highest expected return for p > 2. Unlike Data Set A, QAOA is observed to provide
the next best expected return for p > 7. However, this is associated with a consistently higher
expected risk as compared to QAOAz and QWOA, which indicates convergence to a sub-optimal
local minima. The mean expected return and risk across across the occupied QAOAz parity
bands is 490% and 542%, taking into account the binomial distribution of the initial state. This
is significantly different from the expected risk and return observed for QAOAz in Fig. 12a and
Fig. 12b for p ≥ 3 which, in combination with the relatively flat QAOAz response to increasing
p, is indicative of convergence to a state highly influenced by solution degeneracy. As shown in
Fig. 12c, the projected return of the final QWOA state at p = 19 is a good match for the historic
data used, as it again accurately represents the trend and volatility of the data.

3.3 Analysis
The above results illustrate that the QWOA has an improved rate of convergence (expected solution
quality gained per iteration) over the other two approaches. Additionally, the stability of the
classical parameter optimisation procedure is higher, as indicated by the smaller error bars. The
reasons behind this are multifaceted. The primary improvement is derived from the fact that the
combinatorial domain consisting ofM(n,A) valid portfolios is not a binary power in general – if it
were, there would be no ‘leftover’ computational basis states that do not represent a valid solution.
In this case, the QWOA would not gain an advantage from considering the valid subspace of
solutions. Note that this same advantage holds in general, even under various modifications of the
objective function. For example, even if the number of possible asset positions is increased from 3
to 4 such that there is no degeneracy in the qubit encoding, introducing an investment constraint
will again reduce the number of valid solutions down from 4n to (in general) a non-binary power.
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Thus, QWOA will achieve this advantage over any QAOA-based algorithm that cannot restrict to
only the subspace of non-degenerate valid solutions.

The secondary advantage is the choice of the complete graph as the mixer between valid solu-
tions. This leads to an improvement over QAOAz, which has a non solution-transitive connectivity
as shown in Fig. 4b and does not have a connected solution space. Furthermore, the complete graph
is likely the optimal choice of mixer for combinatorial optimisation, based on its proven optimality
with respect to spatial database search [36–38]. This holds intuitively, considering the maximal
symmetry and connectivity, and the minimal possible graph diameter of 1. These conclusions are
supported by the smooth convergence of the QWOA optimisation procedure, where the optimisa-
tion of the variational parameters ~t represent optimisation of quantum walk times on the complete
graph.

Note that the above comments do not depend on portfolio optimisation-specific assumptions.
The ‘energy penalty’ constraint encoding approach of the QAOA is applicable to any optimisa-
tion problem, and the parity ring mixer formulation of QAOAz is applicable to a wide range of
nontrivial combinatorial optimisation domains [19]. Thus, we suggest that these results apply to
general ‘black-box’ optimisation problems where the number of valid solutions is not a power of
2. An example of another applicable real-world combinatorial optimisation problem is the well-
known Travelling Salesman Problem on n cities [39], where the n! feasible solutions necessarily
incur leftover states for any qubit solution representation. Rather than introducing degenerate
solutions or energy penalties, it is advantageous to restrict strictly to the non-degenerate subspace
of valid solutions using the QWOA. As demonstrated by the results in this section, the modest
polynomial increase in circuit depth of the QWOA is worth the alleviation of the exponential curse
of dimensionality with respect to the classical parameter optimisation.

4 Conclusion
This paper carries out a detailed comparison between the performance of the well-known Quan-
tum Approximate Optimisation Algorithm (QAOA), the Quantum Alternating Operator Ansatz
(QAOAz), and the newly-developed Quantum Walk Optimisation Algorithm (QWOA) on the NP-
hard problem of portfolio optimisation with discrete asset constraints. We perform a detailed
analysis of the different mixing operators involved with each technique, and the associated search
subspaces.

Our numerical simulations highlight key advantages of QWOA when compared to both QAOA
and QAOAz. QWOA reduces the search space by a significant factor, leading to consistently
improved performance in obtaining a high quality portfolio configuration using fewer iterations,
and with significantly smaller standard deviation across numerical simulations. Additionally, the
global symmetry of the QWOA mixing operator leads to clear advantages in convergence rate and
expected solution quality, while QAOA and QAOAz are hindered by bias in the mixing operator
over nontrivial feasible solution spaces. These results show not only the applicability of quantum
combinatorial optimisation algorithms to an important real-world problem in the financial realm,
but also express the advantages of using the QWOA on arbitrary optimisation problems with
complex discrete constraints and associated solution domains.
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