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Kurzzusammenfassung

Die Hauptthemen dieser Arbeit sind einerseits eine tiefgehende Analyse von nichtlinearen
differential-algebraischen Gleichungen (DAEs) vom Index 2, die aus der modifizierten
Knotenanalyse (MNA) von elektrischen Schaltkreisen hervorgehen, und andererseits
auf der Basis dieser Analyse die Entwicklung von Konvergenzkriterien für Waveform
Relaxationsmethoden zum Lösen gekoppelter Probleme. Ein Schwerpunkt in beiden
genannten Themen sind die Beziehungen zwischen der Topologie eines Schaltkreises und
mathematischen Eigenschaften der zugehörigen DAE.

Der Analyse-Teil umfasst eine detaillierte Beschreibung einer Normalform für Schalt-
kreis DAEs vom Index 2 und Folgerungen, die sich für die Sensitivität des Schaltkreises
bezüglich seiner Input-Quellen ergeben. Wir präsentieren Abschätzungen, die Auf-
schluss darüber geben, wie stark sich eine Änderung in den Input-Quellen auf an-
dere Größen im Schaltkreis auswirkt. Entscheidende Konstanten dieser Abschätzungen
werden angegeben und mit der topologischen Position der jeweiligen Input-Quelle im
Schaltkreis in Beziehung gesetzt.

Technologische Geräte basieren auf zunehmend komplexen Schaltkreisen, für deren
Modellierung sich oftmals eine Betrachtung als gekoppeltes System empfiehlt. Waveform
relaxation (WR) ist ein geeigneter Ansatz zur Lösung solch gekoppelter Probleme, da
sie das Verwenden von auf die Subprobleme angepassten Lösungsmethoden und Schritt-
weiten ermöglicht. Es ist bekannt, dass WR zwar bei Anwendung auf gewöhnliche Dif-
ferentialgleichungen konvergiert, falls diese eine Lipschitz-Bedingung erfüllen, selbiges
jedoch bei DAEs nicht ohne Hinzunahme eines Kontraktivitätskriteriums sichergestellt
werden kann. Wir beschreiben allgemeine Konvergenzkriterien für WR auf DAEs vom
Index 2. Auf der Basis der Ergebnisse aus dem Analyse-Teil leiten wir außerdem topolo-
gische Konvergenzkriterien für gekoppelte Probleme zweier Schaltkreise und solche, bei
denen ein elektromagnetisches Feld mit einem Schaltkreis gekoppelt ist, her. Anhand
von Beispielen wird veranschaulicht, wie überprüft werden kann, ob ein hinreichendes
Konvergenzkriterium erfüllt ist. Weiterhin werden die Konvergenzraten des Jacobi WR
Verfahrens und des Gauss-Seidel WR Verfahrens angegeben und verglichen. Simula-
tionen von einfachen gekoppelten Beispiel-Systemen zeigen drastische Unterschiede des
Konvergenzverhaltens von WR Methoden, abhängig davon, ob die topologischen Kon-
vergenzbedingungen erfüllt sind oder nicht.
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Abstract

The main topics of this thesis are firstly a thorough analysis of nonlinear differential-
algebraic equations (DAEs) of index 2 which arise from the modified nodal analysis
(MNA) for electrical circuits, and secondly, based on this analysis, the derivation of
convergence criteria for waveform relaxation (WR) methods on coupled problems. In
both topics, a particular focus is put on the relations between a circuit’s topology and
the mathematical properties of the corresponding DAE.

The analysis encompasses a detailed description of a normal form for circuit DAEs
of index 2 and consequences for the sensitivity of the circuit with respect to its input
source terms. More precisely, we provide bounds which describe how strongly changes
in the input sources of the circuit affect its behaviour. Crucial constants in these bounds
are determined in terms of the topological position of the input sources in the circuit.

The increasingly complex electrical circuits in technological devices often call for cou-
pled systems modelling. Allowing for each subsystem to be solved by dedicated numerical
solvers and time scales, WR is an adequate method in this setting. It is well-known that
while WR converges on ordinary differential equations if a Lipschitz condition is satis-
fied, an additional convergence criterion is required to guarantee convergence on DAEs.
We present general convergence criteria for WR on higher index DAEs. Furthermore,
based on our results of the analysis part, we derive topological convergence criteria for
coupled circuit/circuit problems and field/circuit problems. Examples illustrate how to
practically check if the criteria are satisfied. If a sufficient convergence criterion holds, we
specify at which rate of convergence the Jacobi and Gauss-Seidel WR methods converge.
Simulations of simple benchmark systems illustrate the drastically different convergence
behaviour of WR depending on whether or not the circuit topological convergence con-
ditions are satisfied.
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Notation

Abbreviations

MNA modified nodal analysis
ODE ordinary differential equation
DAE differential-algebraic equation
WR waveform relaxation
IV initial value
IVP initial value problem
GS Gauss-Seidel
KCL Kirchhoff current laws
KVL Kirchhoff voltage laws
C capacitance
G conductance
R resistance
L inductance
V voltage source
I current source

symbols

A incidence matrix
L Laplacian matrix or generalized Laplacian matrix
I identity matrix
A> transposed of A
| · | vector norm in Rn

| · |∗ induced matrix norm
‖ · ‖ maximum norm on continuous function space
xk superscript k denotes iteration counter

ḟ used only in Chapter 4: time derivative of f
f ′ derivative of f
G = (V,E) graph
V set of nodes
E set of edges
|V | cardinality of finite set V
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1. Introduction

Over the past decades until today, the research in the field of circuit simulation is
regularly confronted with new challenges arising from the symbiotic relationship with
industrial development of electronic devices, which relies on increasingly complex electri-
cal circuits. The evolution of differential-algebraic equations (DAEs) and their analysis
in mathematics was significantly stimulated by this relationship. DAEs can be viewed
as dynamical systems involving algebraic constraints. Compared to ordinary differential
equations, the presence of constraints in DAEs bears certain particularities which usu-
ally pose additional difficulties for the numerical treatment, even more when they are
only given implicitly. In electrical circuit models, the Kirchhoff laws are an instance for
algebraic constraints.

In the 1980s, the notion of an index of DAEs was of growing importance. This concept
is not easy to grasp since there exist many definitions of it, designed to suit specific
classes of DAEs in various fields of applications. However, all the index definitions
attempt to measure the level of difficulty imposed by the algebraic constraints, which is
closely related to the number of differentiations of an input function required to solve
the DAE. This classification of DAEs gave rise to the quest for certain DAE normal
forms, where the dynamic parts of the DAE and the diffferent algebraic constraints
are separated and can be identified directly. As with the index, different mathematical
communities proposed different normal forms. One important index concept, along with
a related normal form, is the tractability index [GM86,LMT13]. For circuit simulation,
usually based on models like differential-algebraic models as for instance modified nodal
analysis (MNA), the index of a circuit’s describing DAE is one key for an adequate choice
of solvers. However, the tractability index, like others, is generally hard to compute for
DAEs of complex circuits. Therefore, a result from Estevez Schwarz and Tischendorf
[ET00], which presented criteria by which the index of a circuit DAE can be determined
only by means of the circuit’s topology, was widely noticed. Furthermore, they found
that the index of MNA DAEs (that is, circuit DAEs arising from MNA) can not exceed
two if only standard elements are considered. Another important question was answered
on the basis of the tractability index by [Tis04], where it was shown that MNA DAEs of
index one and two are locally uniquely solvable. This result was extended to arbitrary
bounded time intervals for MNA DAEs of index one [Mat12] and of higher index [Jan15].
The latter also presented a new DAE index concept, the dissection index, which is
strongly inspired by the tractability index.

In the first part of the thesis, we exploit the principal idea of the dissection index to
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propose a detailed normal form for MNA DAEs. We propose assumptions on the MNA
DAEs which guarantee that the corresponding normal form right hand side is locally
Lipschitz continuous. It is shown that the normal form implies an alternative way of
proof for the global existence and uniqueness result in [Jan15] for MNA DAEs of index
two. Building on the normal form, we then study systematically the transient perturba-
tions caused by perturbations of a circuit’s independent sources, providing error bounds
for the solution variables in dependence of the magnitude of a perturbation function.
Like the perturbation index [HLR89], we classify the type of bound by means of the
highest involved derivative of the perturbation, so that we have index-zero, index-one
and index-two type bounds. However, in contrast to the perturbation index which con-
siders a broader class of perturbations, we only admit certain structured perturbations
which can interpreted as source perturbations.

We find that the sensitivity of a circuit to a source term is determined by the source’s
topological position in the circuit. Refinements of the results are presented adressing the
effect of a current source perturbation on specifically the voltage over that current source.
One part of the results is in accordance with the topological index results in [ET00] and
could therefore be somewhat anticipated, another part seems to reveal new insight.

The second part of the thesis is devoted to waveform relaxation (WR), which is an
iterative method for the numerical solution of dynamical systems. It is particularly
well-established in circuit simulation, and additionally, it is naturally suitable to treat
coupled and multiphysical systems. WR is known to converge if applied to ordinary
differential equations if the vector field satisfies a Lipschitz condition [Bur95]. However,
on DAEs, convergence can not be guaranteed unless the DAE satisfies and additional
contractivity condition. Since the seminal works of Lelarasmee, Ruehli and Sangiovanni-
Vincentelli [Lel82, LRS82], this fact was adressed by a great number of articles which
formulated WR convergence criteria for different classes of DAEs, cf. [WOSR85,MN87,
Sch91,CI94,JK96,Mie00,JW01,AG01,SZF06,Ebe08,SGB10,Schö11,WV12,BBGS13] to
name only some of them.

This work offers a WR convergence criterion for a novel class of nonlinear implicit
DAEs of higher index. It is worth noticing, however, that the criteria therein are difficult
to check in general. This is a common problem shared with the proposed criteria of the
just cited articles. Roughly speaking, the criteria are usually either formulated directly
for DAEs in certain normal forms, or, as in our case, a normal form of the DAE seems
indispensable to check if the required criteria are satisfied.

For that reason, in the case of coupled circuit DAEs, we exploit the perturbation
analysis of the first part of the thesis to express the WR convergence criteria in topo-
logical terms, reformulating them as topological conditions on the position of certain
coupling elements. These topological conditions are easier to check than the original
abstract criteria. Notably, we can view the problems in each step of the iterative WR as
circuits with perturbed inputs, where the input perturbation changes in each iteration
step. This allows to apply the circuit topological results from the perturbation analy-
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sis to WR convergence analysis. The systematically topological approach to the WR
convergence analysis and the resulting topological WR convergence criteria for coupled
circuits are, to the knowledge of the author, a new contribution to the WR field. While
it should be mentioned that topological coupling conditions which guarantee fast WR
convergence were formulated in [Lel82,WOSR85,BBGS13], these results rely on consid-
erably more restrictive coupling conditions and did not aim for a systematic topological
study.

Apart from circuit/circuit couplings, topological convergence criteria are also provided
for a coupled field/circuit model, where the electromagnetic field model is a DAE after
space discretization.

This work is organized as follows:

Chapter 2 establishes the basics for what follows. Notably, it derives the MNA circuit
model in Section 2.1, briefly introduces DAEs in Section 2.2 and provides selected results
from graph and matrix theory in Section 2.3.

The analysis of electrical circuits is contained in Chapter 3. Section 3.1 is mainly
concerned with certain transformation matrices which are used in Section 3.2 to derive
a DAE normal form for MNA DAEs in the linear case. This linear result can be seen as
a preparation for the nonlinear case, since the main principles of the linear case remain
valid in the nonlinear case. Of course, considering nonlinear circuits also poses some
new problems. Section 3.3 provides the tools to tackle them.

The main results of the chapter are then formulated in Sections 3.4 and 3.5. First, a
detailed DAE normal form for nonlinear MNA DAEs of index two is offered in Section
3.4. On the basis of the normal form, the results of the transient perturbation analysis
are presented in Section 3.5.

In chapter 4, we turn our focus to a convergence analysis of WR on coupled DAEs
and coupled circuits in particular. The main result of Section 4.1 is a WR convergence
theorem for coupled nonlinear higher index DAEs of a general form. Section 4.2 offers a
WR convergence theorem for coupled circuits with topologically formulated convergence
criteria. The result is illustrated by prototypical examples. Section 4.3 formulates
topological WR convergence criteria for a coupled field/circuit model. The theoretical
convergence results are tested and confirmed by numerical simulations of toy examples
in Section 4.4

Finally, we briefly summarize the results and formulate open questions in Chapter 5.
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Part I.

Analysis of electrical circuits
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2. Basics: A circuit model,
differential-algebraic equations and
graphs

This thesis is devoted to the analysis of the modified nodal analyis (MNA), which is
a widely used electrical circuit model. Two important characteristics set the frame for
this work:

• The MNA model is a differential-algebraic equation (DAE).

• Electrical circuits can be naturally represented by graphs.

After setting up the MNA model in Section 2, we therefore collect some mainly well-
known basics of DAEs (Section 2.2) and graph theory (Section 2.3). Trying to be concise,
we stick only to the results which shall prove to be useful in later chapters. For more
detail and a comprehensive introduction, we refer to the textbooks [CDK87, Rec89] for
circuit theory, [HLR89, Ria08, LMT13] for DAEs and [GR01, Bap10, Mol12, Bol13] for
graph theory.

2.1. A lumped circuit model: Modified nodal analysis

The basic mathematical system of equations investigated in this thesis describes a
lumped (electrical) circuit model. This system recurs prominently in each chapter, being
examined from different angles.

Lumped circuit models are based on the assumption of instantaneous electromagnetic
wave propagation and the absence of interference between the elements. This assump-
tion implies that the current through and the voltage across an element are well-defined
and independent of space. Therefore, the resulting model is a system of (differential)
equations only in time and not in space, which greatly reduces the mathematical com-
plexity of the problem at hand. From an industrial point of view, this is crucial since it
allows for lower computing time and costs.

However, a suitable model for industrial circuit simulation has to reconcile two con-
trary ambitions: On the one hand, a low computing time. On the other hand, the
model should of course reflect the physical behaviour of the circuit adequatly. When-
ever neglecting the effects of wave propagation is not reasonable and leads to inaccuracies
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of unacceptable magnitude, spatially distributed models resulting in partial differential
equations should be combined with lumped circuit models, cf. [Tis04, Schö11, Bau12,
Cor20,CPST20]. The results of [CPST20] are presented in Sections 4.3 and 4.4.

Either way, decades of successful implementation in industrial circuit simulation are
a strong evidence advocating the use of lumped circuit models.

In a lumped circuit model, the physical elements are replaced by one or several inter-
connected lumped (idealized) elements which describe the essential behavior of this ele-
ment and neglect other effects. Combining the model equations of the lumped elements
with the Kirchhoff laws enables us to set up a reasonable system of model equations
which describes the behavior of the whole network. The unknowns in these systems are
the current through and the voltages across some or all elements of the circuit. They are
determined by a differential-algebraic equation, which is, loosely speaking, a differential
equation with algebraic constraints. One difficulty of these systems is that the con-
straints are usually given implicitly. Depending on which of the Kirchhoff laws are used
and how they are combined with the element equations, we can obtain different circuit
models, cf. [CDK87]. Here, we introduce the well-established MNA. For a detailed and
thorough introduction and derivation of the model, we recommend [Rei14].

We refer to the contact points or terminals of an element as its nodes, and our main
focus is on elements with two nodes, also known as two-terminals. Furthermore, leaving
aside controlled sources and more complex mixed elements, we restrict ourselves to
circuits consisting of nonlinear resistors, inductors, capacitors and independent current
and voltage sources. However, we shall provide brief remarks and references subsequent
to the major theorems on whether or not the required assumptions hold for circuits with
generalized elements.

2.1.1. The element equations

In the following, we present how the elements of a nonlinear circuit are modeled in a
lumped circuit and we introduce the Kirchhoff laws.

A nonlinear resistor is modeled by the equation

v(t) = r(i(t)) or i(t) = g(v(t)), (2.1)

where i(t) and v(t) are scalars representing the current flow through the element and
the voltage between the two nodes of the element, and r and g are nonlinear functions
describing the resistance and the conductance of the resistor.

A voltage source and a current source provide a voltage vs and a current is,

v(t) = vs(t), i(t) = is(t). (2.2)

The functions vs and is can be nonlinear.
A capacitor stores the electric charge q. The lumped element is described by

q(t) = qc(v(t)), (2.3)
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where qc is a nonlinear function. Considering that it holds i(t) = q′(t) at all times t, we
obtain

i(t) =
d

dt
qc(v(t)). (2.4)

Inductances are lumped models of coils. They store energy in their magnetic fields and
they are described by

φ(t) = φl(i(t)), (2.5)

whith φ the magnetic flux. At all times t, it holds v(t) = φ′(t) and accordingly

v(t) =
d

dt
φl(i(t)). (2.6)

2.1.2. Modified nodal analysis: linear and nonlinear circuit model

Before presenting the circuit model, we briefly introduce some basics. First, we introduce
the Kirchhoff laws, which are fundamental for circuit theory as they define the laws which
must be respected when interconnecting elements.

After that, reduced incidence matrices are defined. They allow for an elegant and
compact representation of the circuit equations.

Kirchhoff laws They consist of the Kirchhoff current law (KCL) and the Kirchhoff
voltage law (KVL). The KCL states that the sum of all currents entering any node of an
arbitrary lumped circuit is equal to the sum of all currents leaving the node. The KVL
states that the sum of voltages in any loop of an arbitrary circuit is zero. A loop is a
subcircuit with at least two elements where each node connects precisely two elements.

Incidence matrix Two elements are called incident, if they are interconnected, that is,
they share a common node. A node and an element are called incident, if the node is a
terminal of the element.

We associate an arbitrary orientation with each element, see Figure 2.1. That way, we
set a flow direction, that is, a sign for the current flow through each element. Further-
more, we number the elements and the nodes of the network arbitrarily. For a network
with n nodes and b elements, the incidence matrix Ā ∈ Rn×b is defined by

āij =


+1 if element bj leaves node ni,

−1 if element bj enters node ni,

0 if bj and ni are not incident.

(2.7)

For convenience, we sort the elements by type, that is, Ā =
(
Āc Ār Āl Āv Āi

)
,

where the subscripts indicate the element type.
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Figure 2.1.: A circuit with the nodes n1, n2, n3, n4. An arbitrary orientation is assigned
to each element.

Example 2.1.1 For the circuit in Figure 2.1, we obtain the incidence matrix

Ā =
(
Āc Ār Āl Āv Āi

)
=


1 1 1 0 0
0 0 −1 0 −1
−1 0 0 −1 1
0 −1 0 1 0

 .

Remark. In the example, the incidence matrices Ā? of the respective elements are column
vectors. Not that this is due to the minimal nature of the example. Usually, a circuit
has several elements of each type, and accordingly the matrices Ā? have more than one
column.

Reference node and reduced incidence matrix Incidence matrices do not have full
row rank n, but if the corresponding network is connected, any choice of n − 1 rows is
linearly independent, see Chapter 2.3. This is the mathematical motivation for defining
a reference node in the circuit. The corresponding incidence matrix row is deleted,
resulting in a reduced incidence matrix A. That way, the KCL of the reference node
is not taken into account; its node potential is set to zero. The reference node is often
chosen such that it corresponds to the mass node of the physical system.

Example 2.1.2 Choosing n4 as the reference node, the reduced incidence matrix of the
circuit in Figure 2.1 becomes

A =
(
Ac Ar Al Av Ai

)
=

 1 1 1 0 0
0 0 −1 0 −1
−1 0 0 −1 1

 .
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The (reduced) incidence matrix allows for a compact notation of the system of nodal
equations, referred to as the KCL, in a circuit:

Ai = Acic +Arir +Alil +Aviv +Aiii = 0, i =


ic
ir
il
iv
ii

 (2.8)

where i? is the vector of currents through the respective elements.

Substituting potential difference for voltage Furthermore, the KVL implies that we
can replace the unknown voltage v over an element by the potential difference ei− ej of
its two terminal nodes ni, nj, that is, v = ei − ej. Since usually the number of elements
in a circuit is considerably higher than the number of nodes, replacing the voltages
by (differences of) node potentials reduces the number of unknowns. By means of the
incidence matrix, we can denote

A>c e = vc, A>r e = vr, A>l e = vl, A>v e = vv, A>i e = vi (2.9)

where e the vector of node potentials (except the potential at the reference node).

Network equations If we combine the KCL (2.8) and the element equations (2.1)-(2.6)
and substitute the node potentials for the voltages by using equation (2.9), we obtain

Acic +Arir +Alil +Aviv +Aiii = 0,

ir = g(A>r e),

ic =
d

dt
qc(A>c e),

A>l e =
d

dt
φl(il),

A>v e = vs,

ii = is.

Note that here, the unknowns and functions are vector-valued in contrast to the single
element equations (2.1)-(2.6).

Inserting ir, ic, is yields the nonlinear MNA

Ac
d

dt
qc(A>c e) +Arg(A>r e) +Alil(t) +Aviv +Aiis = 0, (2.10a)

d

dt
φl(il)−A>l e = 0, (2.10b)

A>v e− vs = 0. (2.10c)
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If the relevant functions are differentiable, we obtain

d

dt
qc(A>c e) = C(A>c e)A>c e′,

d

dt
φl(il) = L(il)i

′
l,

with C,L the Jacobians of qc, φl. Note that these Jacobian matrices are naturally di-
agonal by definition of qc and φl. The given definitions are adequate to describe two-
terminal elements; we remark, however, that the case of multiport elements gives rise to
non-diagonal Jacobians in general.

Insertion into (2.10a)-(2.10c) leads to an equivalent formulation of the nonlinear MNA:

AcC(A>c e)A>c e′ +Arg(A>r e) +Alil +Aviv +Aiis = 0, (2.11a)

L(il)i
′
l −A>l e = 0, (2.11b)

A>v e− vs = 0. (2.11c)

An electrical circuit is called linear, if the current-voltage relations for all resistors,
capacitors, and inductors are linear. That is, they are described by

ir = Gvr, ic = Cv′c, vl = Li′l,

where G,C, L are diagonal matrices with diagonal entries greater zero. The source
functions vs, is may still be nonlinear. Proceeding analoguously to the nonlinear case
yields the linear MNA

AcCA>c e′ +ArGA>r e+Alil +Aviv +Aiis = 0, (2.12a)

Li′l −A>l e = 0, (2.12b)

A>v e− vs = 0. (2.12c)

Each diagonal entry of G, C and L correspond to a one element and is called its con-
ductance, capacitance and inductance, respectively. The reciprocals of conductance and
capacitance are called resistance and elastance.

Assumption 2.1.3 (MNA) The linear MNA (2.12) and the nonlinear MNA (2.11)
meet the following properties:

(i) Av has full column rank, and
(
Ac Av Ar Al

)
has full row rank.

(ii) The input functions is, vs are continuously differentiable.

The Kirchhoff laws require (i), as the two conditions are equivalent to the topological
conditions “the circuit contains no V-loop” and “the circuit contains no I-cutset”, as
we shall see in Section 2.3.1. Together, the assumptions provide well-posedness of the
MNA, where (ii) ensures sufficient smoothness of the input functions and (i) is necessary
to guarantee existence and uniqueness of solutions.

11



Remark 2.1.4 The basic MNA model introduced here leads to diagonal matrices C(·),
L(·) and (if exists) g′(·). However, incorporation of for instance controlled sources or the
MOSFET model may require a model which leads to non-diagonal incremental matrices
C(·), L(·) and g′(·) [ET00, Bod07]. In order to cover such generalizations, we shall not
assume that L(·), C(·) and g′(·) are diagonal unless explicitly stated.

2.2. Differential-algebraic equations (DAEs)

DAEs are differential equations. Like ODEs, they do not involve partial derivatives.
But the term ODE is commonly used for either explicit ODEs or, at least, for (implicit)
ODEs which can be equivalently transformed into an explicit ODE. DAEs, however,
are differential equations which can not be equivalently transformed into an explicit
ODE; instead, parts of the solution are given by possibly implicit algebraic constraints.
Formally, a DAE reads

F : Rn × Rn × I ⊂ R, (y, x, t) 7→ F (y, x, t), F (x′, x, t) = 0, (2.13)

where F is continuous and continuously differentiable in y. Then, Equation (2.13) is a
DAE, if the partial derivative ∂F

∂y
(y, x, t) is singular for all (y, x, t) ∈ Rn × Rn × I. If

the defining singularity condition is violated on any subdomain, then by the implicit
function theorem we can, at least locally, solve for x′ and thereby transform the system
into an explicit ODE.

This DAE definition is concise and easy to comprehend. The appearance of x′ in
Equation (2.13) seems to indicate that we seek solutions in C1. However, this is not
necessarily the case. If F depends in fact only on parts of x′, then we require only these
parts to be differentiable, see Example 2.2.1 for g not differentiable. This is not reflected
in Equation (2.13) in order to keep notation compact. The following examples reveal
essential features of DAEs.

Example 2.2.1 For f : Rn × I ⊂ R→ Rn, g : Rn × I → Rm continuous, we consider

y′ = f(y, t), (2.14a)

z = g(y, t). (2.14b)

In this DAE the constraint g for the algebraically fixed variable z is explicitly given, and
the differentiated variable y is determined by an ODE independently of z. If a DAE is
given in this form, it is said to be fully decoupled.

The presence of algebraic constraints gives rise to some problems which are charac-
teristic for DAEs:

(i) Not for all initial values x0 ∈ Rn is a DAE solvable. A consistent initial value of
a DAE is one for which there exists a solution.

12



(ii) Solvability of a DAE requires sufficient smoothness of inhomegeinities, also called
input functions.

(iii) Solving a DAE (numerically) possibly requires not only integrations, but also dif-
ferentiations.

In the example DAE 2.14, we can choose initial values for y. For each initial value
y0 := y(t0), there exists only one initial value z0 := z(t0) for which the DAE has a
solution, namely z0 = g(y0, t0).

Example 2.2.2 For some input function r, we consider the linear DAE(
1 1
1 1

)
x′ +

(
1 1
0 1

)
x = r(t). (2.15)

With a nonsingular matrix T and new coordinates v := T−1x, we equivalently transform
the system as follows:

T>ATv′ + T>BTv = T>r(t).

We choose T so that

T :=

(
1 1
0 −1

)
, T>AT =

(
1 0
0 0

)
, T>BT =

(
1 0
1 1

)
.

Writing out the equations with v = (v1, v2)> and T = (T1 T2), that means

v′1 + v1 = T>1 r, (2.16a)

v1 + v2 = T>2 r. (2.16b)

We notice that the DAE (2.16) is of the decoupled form of the DAE (2.14) with

f(t, y) = −y + T>1 r, g(t, y) = −y + T>2 r.

Clearly, v = T−1x solves the decoupled DAE (2.16) if and only if x solves (2.15). In that
case, we say we have decoupled the DAE (2.15), and Equation (2.16a) is its inherent
ODE.

Example 2.2.3 (Index 2 DAE in normal form)

y′ = f(y, z1, z2, z3, t) (2.17a)

z1 = g1(y, z2, z3, z
′
3, t) (2.17b)

z2 = g2(y, z3, t) (2.17c)

z3 = g3(t). (2.17d)

This DAE is given in a somewhat “half-decoupled” form, since the variables are given
explicitly, but to fully decouple the equations, we still need to insert and thereby elim-
inate the variables zi in the dynamic equation. In contrast to DAE (2.14), solving the
system requires a differentiation of z3 = g3(t).
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The index of a DAE

In DAE literature, the so-called index of a DAE is ubiquitous. An adequate choice of
a numerical solver for a DAE should take its index into account, the determination of
which is therefore of high relevance.

There are many definitions of a DAE index. However, they all attempt to quantify
the level of difficulty of a DAE for numerical analysis and simulation. Since a major
problem for simulation is the ill-posedness of numerical differentiation, the index of a
DAE is closely related to the number of differentiations needed in order to solve it, as
can be seen well in the perturbation index [HLR89].

Definition 2.2.4 (Perturbation index) If x is a solution of (2.13) on [t0, T ] with
initial value x0, and xδ is a solution of a perturbed system

F ((xδ)′, xδ, t) = δ

with initial value xδ0, then the DAE (2.13) has perturbation index k along x if k is the
smallest number such that there exists c > 0 and an estimate of the form

‖x− xδ‖ ≤ c
(
|x0 − xδ0|+ ‖δ‖+ · · ·+ ‖δ(k−1)‖

)
for all (sufficiently smooth) perturbations δ. Here, δ(k) denotes the k-th derivative, and
‖ · ‖ and | · | are the maximum norm and a vector norm.

Among the most important index concepts are the Kronecker index [Gan05], tractabil-
ity index [GM86, LMT13] and the differentiation index [CG95, Gea88]. Except for the
Kronecker index, which is from the nineteenth century, most index concepts were de-
velopped in the eighties or nineties of the twentieth century. The mentioned indices
coincide on classes of DAEs which meet certain linearity requirements. Notably, it was
shown in [Tis04] that the differentiation index, the tractability index and the perturba-
tion index coincide on the class of MNA equations (2.11) independently of the topology
of the described circuit at hand.

The different index concepts mainly differ in two aspects. First, whether or not
they come with a method to obtain a certain normal form or DAE decoupling, which
normally goes hand in hand with determining the index. Secondly, the indices apply
to different ranges of (generalized) DAE classes. A good introduction to DAEs and
survey on different index concepts, including some important ones not mentioned here,
is [Meh12].

The perturbation index is very directly defined via the number of differentiations im-
pacting the solution of a perturbed system. Considering that differentiations pose major
challenges in numerical analysis, this index is specifically apt for numerical convergence
analysis or perturbation analysis. However, it does not offer a DAE decoupling method.
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2.3. Graphs and matrices

We have seen that electrical circuits can be modeled with a DAE for which (reduced)
incidence matrices play an important role. Many graph theoretical results adress the
close relation of incidence matrices and the corresponding network. In this section, we
“cherry-pick” only those which are relevant in the subsequent chapters. For a compre-
hensive introduction, we refer to standard textbooks, e.g. [CDK87,GR01,Bap10,Bol13].

Basic graph theoretical definitions and terminology A graph G = (V,E) is a non-
empty set of points V (G) called nodes along with a (possibly empty) set of line segments
E(G) called edges joining pairs of nodes. The number of nodes and edges in a graph is
denoted by |V (G)| and |E(G)|. If it is clear from the context which graph they belong
to we write just V and E. Both the edges and the nodes are numbered from 1 to |V |
and from 1 to |E|, respectively, and are referred to by these numbers. We admit multiple
edges, that is, more than one edge joining the same pair of nodes. However, edges joining
a node with itself, called selfloops, are excluded. Our graphs are weighted, which means
that each edge k is associated with a weight wk > 0.

If two nodes are joined by an edge, they are adjacent. The edge is incident with the
two nodes it joins and vice versa. Also, two edges are incident if they have an incident
node in common. Given two nodes i, j and two edges k, l, we write i ∼ j if the nodes
are adjacent, and i ∼ k and k ∼ l for the respective node to edge and edge to edge
incidences. The degree deg(i) of a node i is the number of edges it is incident with. The
weighted degree degw(i) of a node i is the sum of weights of its incident edges, that is,
degw(i) =

∑
k∼iwk. The condensed weight ωij =

∑
k∼i∧k∼j w(k) between adjacent nodes

i and j is the sum of weights of edges which join the nodes.
A subgraph of G = (V,E) is a graph G̃ = (Ṽ , Ẽ) such that Ṽ ⊆ V and Ẽ ⊆ E. We

write G̃ ⊆ G and call G the supergraph of G̃ in this case. If G̃ = (V, Ẽ), that is, G̃
contains all nodes of the supergraph, it is a spanning subgraph. A path is a graph such
that precisely two nodes have degree one, all other nodes have degree two, and each edge
is incident with at least one other edge. Two nodes of a graph G are connected, if there
exists a path P ⊆ G which contains them. A graph is connected, all of its pairs of nodes
are connected. A connected component of G is a maximal connected subgraph, that is,
a connected subgraph C ⊆ G such that none of its nodes is adjacent to any node not
belonging to C. A loop is a connected graph such that each node has degree 2. A forest
is a graph which does not contain loops, and a tree is a connected forest. In a connected
graph G = (V,E), a cutset is a subset Ecut ⊆ E such that G − Ecut is not connected,
and adding any one edge of Ecut to G− Ecut yields a connected graph.

The edges are given an arbitrary but fixed orientation, that is, one of its incident nodes
is designated its start node and the other one is designated the end node. This has no
meaning apart from fixing a sign of flow, that is, a positive and a negative direction.

Remark. Due to the historical development of graph theory in different scientific com-
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munities, the terminology is not unanimous in the literature.

2.3.1. Incidence and Laplacian matrices

We introduced the incidence matrix of a circuit in Subsection 2.1.2, Equation (2.7).
The definition can naturally be applied to graphs if we replace elements by edges. The
following relations between incidence and Laplacian matrix on the one hand and the
corresponding graph on the other hand are well-known in graph theory and circuit
theory. They refer to the non-reduced incidence and Laplacian matrix if not stated
otherwise. The bar in Ā, L̄ indicates this.

Lemma 2.3.1 Let G = (V,E) be a connected graph with incidence matrix Ā ∈ R|V |×|E|.
Then, any |V | − 1 rows of Ā are linearly independent.

Lemma 2.3.2 Let G = (V,E) be a graph with |C| connected components and incidence
matrix Ā ∈ R|V |×|E|. Then, rank Ā = |V | − |C|.

Lemma 2.3.3 Let G be a graph with incidence matrix Ā. Then, G is a forest if and
only if Ā has full column rank.

Remark. Considering the equality of row rank and column rank in a matrix and Lemma
2.3.1, it follows immediately that Lemma 2.3.3 holds for reduced incidence matrices as
well.

Proofs can be found for instance in [CDK87, pp. 25-26] for Lemma 2.3.1, and [Bap10,
Theorem 2.3] and [Bap10, Lemma 2.5] for Lemma 2.3.2 and 2.3.3.

Definition 2.3.4 (Laplacian matrix) Let G = (V,E) be a graph. The Laplacian
matrix L̄(G) ∈ R|V |×|V | is defined by the node to node relations

L̄ij =


degw(i), if i = j,

0, if i 6= j and the nodes i and j are not adjacent,

−ωij, if i 6= j and the nodes i and j are adjacent,

(2.18)

where degw(i) is the weighted degree and ωij is the condensed weight between adjacent
nodes i and j.

Remark. By construction, the Laplacian matrix is symmetric and all row sums (and
column sums) are zero.

The Laplacian matrix appears also by the names graph Laplacian, Kirchhoff matrix or
admittance matrix in the literature. Note that the Laplacian matrix fully describes the
topology of the graph except for the fact that it makes no difference between multiple
and simple edges. More precisely, replacing a simple edge of weight w by multiple edges
whose weight sum amounts to w results in the same Laplacian matrix.

Incidence and Laplacian matrices are closely related as we see in the next lemma,
cf [Mol12, pp. 95-96].
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Lemma 2.3.5 (Laplacian and incidence matrix) Let G = (V,E) be a graph with
incidence matrix Ā and Laplacian matrix L̄. Let furthermore W ∈ R|E|×|E| be a diagonal
matrix which stores the edge weights w1, . . . , w|E|. It holds ĀW Ā> = L̄.

Remark. It follows immediately that the relation also holds for reduced matrices, that
is,

AWA> = L ∈ R(|V |−1)×(|V |−1),

where A is the reduced incidence matrix (for a given reference node) and the L is the
reduced Laplacian matrix, that is, the principal submatrix of L̄ which arises from deletion
of the row and column corresponding to the reference node.

Remark. Revisiting the linear MNA Equations (2.12), we can replace the terms AcCA>c
and ArGA>r by Lc and Lr, where the latter are reduced Laplacian matrices of the
respective spanning subgraphs. The capacitances and conductances of the elements
then take the role of edge weights in the circuit representing graph.

Definition 2.3.6 (Generalized inverses) Let an arbitrary matrix A ∈ Rn×n be given.
Then, Ag is called a g-inverse of A, if

AAgA = A.

If Ag moreover satisfies AgAAg = Ag, then it is called a reflexive g-inverse.
Furthermore, A† is called Moore-Penrose inverse of A, if it is a reflexive g-inverse and

satisfies additionally

A†A = (A†A)>, AA† = (AA†)>.

Remark. The Moore-Penrose-inverse, also called {1, 2, 3, 4}-inverse, exists and is unique
for any real square matrix, cf [Pen55].
The following result is mentioned without a proof in [Bap10, p.133] as “easy-to-check”.

Lemma 2.3.7 Let G be a connected graph with fixed reference node r, Laplacian matrix
L̄ and reduced Laplacian L. Furthermore, let L̄g be the matrix which is obtained from
L−1 when a zero row and column is “squeezed into” the r-th row and column, that is,
the r-th row and column are zero and the former (r+k)-th row and column are now row
and column r + k + 1 for k ≥ 0. Then, L̄g is a g-inverse of L̄.

Proof: Denoting the number of nodes of G by n, we assume for notational simplicity
that the reference node is the n-th node so that

L̄g =

(
L−1 0

0 0

)
.

17



Lemma 2.3.1, 2.3.2 and 2.3.5 and the connectedness of G assure the existence of L−1.
Denoting (L̄)ij = l̄ij and x̄>n :=

(
l̄n1 · · · l̄n(n−1)

)
, it follows

L̄L̄gL̄ =

(
L x̄n
x̄>n l̄nn

)(
L−1 0

0 0

)(
L x̄n
x̄>n l̄nn

)
=

(
L x̄n
x̄>n x̄>nL−1x̄n

)
It remains to show that x̄>nL−1x̄n = l̄nn. We note that due to the zero row sum property,
the vector of all ones, which we denote by 1, lies in the kernel of L̄. It follows that
1 ∈ ker L̄L̄gL̄, which implies that all row sums are zero and notably x̄>nL−1x̄n = l̄nn. �

Lemma 2.3.8 Let G be a graph with Laplacian matrix L̄, and let A and Ā be two
g-inverses of L̄ with coefficients aij and āij. It holds

aii − aij − aji + ajj = āii − āij − āji + ājj ∀i, j.

The proof can be found in [Bap10, Lemma 9.10].

2.3.2. The r-distance in graphs

While effective resistance between two nodes in a resistive network is known and used
in electrical circuit theory for much longer, [KR93] in a classical article formulated a
mathematical framework and identified the effective resistance as a distance measure in
graphs when the conductances are understood as edge weights. They named this newly
identified graph distance resistance distance. It has proved to be the more adequate
distance concept than the standard shortest path distance in many application areas.
Among them are molecular graphs and the Kirchhoff index in chemistry [KR93,BBLK94,
GM96, PL18], control theory [BH06], communication theory [TYN18, PYZ18], random
walks [Che18,YK19] and power networks [DB10,DB12].

Remark. The common names resistance distance and effective resistance for the subse-
quently defined distance could be misleading in our case since we shall use it in capacitive
and inductive subgraphs. Therefore, we decided to use the neutral name “r-distance”
instead.

Definition 2.3.9 (The r-distance in a graph (“resistance distance”)) Let G be
a connected graph with (weighted) Laplacian matrix L̄. The r-distance between two
nodes i, j of a graph is defined by

dGr (i, j) = (êi − êj)>L̄†(êi − êj) = L̄†ii + L̄†jj − 2L̄†ij.

where êi is the i-th unit vector and L̄† is the Moore-Penrose inverse of L̄.

Due to Lemma 2.3.8, r-distance can be defined equivalently with any other g-inverse.
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Corollary 2.3.10 Let G be a connected graph with fixed reference node and Laplacian
matrix L̄, and let L̄g be a generalized inverse of L̄. Then, it holds

dGr (i, j) = L̄gii + L̄gjj − L̄
g
ij − L̄

g
ji.

If node j is the reference node, then dGr (i, j) = L̄gii.

Definition 2.3.11 (Distances in graphs) Let G = (V,E) be a graph and i, j, k ∈ V
arbitrary nodes. A function dG : V × V → R is a distance function on G, if it satisfies
the following three axioms.

1. dG(i, j) ≥ 0 and dG(i, j) = 0 ⇐⇒ i = j

2. dG(i, j) = dG(j, i)

3. dG(i, k) + dG(k, j) ≥ dG(i, j).

Lemma 2.3.12 (“resistance is distance”, [KR93]) The r-distance dGr (i, j) defines
a distance function in a graph.

In a tree, or more precisely, if the path between two nodes is unique, the r-distance
coincides with the standard shortest-path distance. One of the useful properties of the
effective resistance, however, is that it that takes into account all paths between two
nodes, not just the shortest path; the existence of alternative paths strictly decreases
the distance. This is expressed by the following two lemmata, cf. [KR93].

Lemma 2.3.13 Let G = (V,E) be a graph and i, j ∈ V . The r-distance dGr (i, j) is
a nonincreasing function of the edge weights. This function is constant only for those
edges not lying on any path between i and j.

Lemma 2.3.14 Let G = (V,E) and G+ = (V,E+) with E ⊆ E+ be two graphs, and let
i, j ∈ V . Then, dG+

r (i, j) ≤ dGr (i, j). Equality holds if and only if each edge lying on a
path between i and j is element of E.

2.3.3. Edge contraction and corresponding algebraic operation

In this section, after shortly introducing the well-known edge contraction on graphs, we
present corresponding algebraic processes for the incidence and the Laplacian matrix.
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Edge contraction Given an edge i of a graph G = (E, V ), the graph G/i is obtained
from G by contracting the edge i; that is, G/i arises from G when the incident nodes of
edge i are identified and all resulting self-loops are removed.

If H ⊆ G is a subgraph, we write G/H for the graph obtained by contracting each
connected component of H to one node, that is, successively contracting each edge of H.
The contracted graph G/H is well-defined since it is independent of the order of edge
contractions.

More details can be found in most graph theoretical textbooks, e.g. [GR01,Bol13].

Remark. Note that the bigger part of graph theoretical literature defines the contraction
process so that arising parallel edges are removed, while we allow for parallel edges in
contracted graphs. This is due the definition of a “graph” as a simple graph in the bigger
part of the literature. However, in a circuit context it is natural to consider parallel edges
in a (contracted) graph.

Corresponding algebraic operation The following matrix shall allow us to define an
operation on the incidence and Laplacian matrix which can be seen as algebraic coun-
terpart of graph contraction.

Definition 2.3.15 ((0, 1) node component matrix) Let G = (V,E) be a graph with
connected components C1, . . . , C |C|. We define the (0, 1) node component matrix Q̄ ∈
R|V |×|C| of G by

(Q̄)ij =

{
1, if node i ∈ Cj,

0, else.

Remark. Note that isolated nodes count for connected components, too.

Remark. Similarly to incidence and Laplacian matrices, we define for a given reference
node the reduced (0, 1) node component matrix Q ∈ R(|V |−1)×(|C|−1) so that it arises from
Q̄ if the row corresponding to the reference node and the column corresponding to the
connected component which contains the reference node are deleted.

Remark. Note that for a given graph the columns of Q̄ form a basis of ker Ā>.

Lemma 2.3.16 (Contraction of a transposed incidence matrix) Let G = (V,E)
be a graph with spanning subgraphs Gx = (V,Ex), Gxt = (V,Ext) and Gy = (V,Ey),
where Ex, Ey is a partition of E and Ext ⊆ Ex is the subset of X-edges whose start and
end node belong to distinct connected components of Gy. Let furthermore Q̄y ∈ R|V |×|Cy |
be the (0, 1) node component matrix of Gy as in Definition 2.3.15. It holds:

1. The incidence matrix of a contracted graph is given by

Ā(G/Gy) = Ā((Gy ∪Gxt)/Gy) = Q̄>y Ā(Gxt) ∈ R|Cy |×|Ext |.
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2. Denoting by aix/y and ãix/y the columns of Ā(G/Gy) and Q̄>y Ā(Gx) which correspond

to edge i, it holds aix/y = ãix/y if i ∈ Ext, and ãix/y = 0 if i ∈ Ex \ Ext.

Remark. By definition, the edge set Ext consists of all edges which are part of an
X-cutset in G; here, X-cutset means a cutset being a subset of Ex.

Proof: 1. We notice that G/Gy = (Gy∪Gxt)/Gy since any edge i /∈ (Ey∪Ext) becomes
a selfloop and is removed in the contraction process. This explains the first equality.
We write Ā? for Ā(G?) in the following. Considering that no edge i ∈ Ext can enter and
leave the same connected component Cj

y of Gy by definition, we get

(Ā>xtQ̄y)ij =


1, if edge i ∈ Ext leaves Cj

y

−1, if edge i ∈ Ext enters Cj
y

0, if edge i ∈ Ext is not incident with Cj
y ,

where Cj
y is the j-th connected component of Gy. Again by definition, any edge i ∈ Ext

enters and leaves precisely one component Cj
y , respectively. Considering furthermore

that the nodes in (Gy ∪ Gxt)/Gy are the connected components of Gy, we obtain that
Ā>xtQ̄y = Ā>((Gy ∪ Gxt)/Gy), and hence the second equality of the first statement
follows.

2. The equality aix/y = ãix/y if edge i ∈ Ext is a direct consequence from the first

statement, and ãix/y = 0 if i ∈ Ex \ Ext follows immediately from the structure of Q̄y

and Āx.
�

Corollary 2.3.17 (Contraction of a Laplacian matrix) Let G = (V,E) be a graph
with spanning subgraphs Gx = (V,Ex) and Gy = (V,Ey), where Ex, Ey is a partition of
E. Let furthermore L̄x/y and L̄x be the Laplacian matrices of G/Gy and Gx, and Q̄y the
(0, 1) node component matrix as in Definition 2.3.15. It holds

L̄x/y = Q̄>y L̄xQ̄y ∈ R|Cy |×|Cy |,

where |Cy| is the number of connected components of Gy.

Remark. We formulated Lemma 2.3.16 and Corollary 2.3.17 in the non-reduced version
to avoid circumstantial case distinctions. However, in the following we shall use them
in a reduced version. That is, given a reference node in the node set V , we replace all
occurring incidence and Laplacian matrices and and the (0, 1) node component matrix
by their reduced versions. It is easy to check that the results remain valid.
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2.4. Conclusion

In this chapter, we presented a differential-algebraic circuit model, namely the MNA,
and mostly well-known selected basics of DAE and graph theory. With the exception
of the algebraic contraction process in Subsection 2.3.3, the given content is covered
in textbooks on circuit theory [CDK87,Rec89], DAEs [HLR89,Ria08,LMT13] or graph
theory [GR01,Bap10,Mol12,Bol13].

Lemma 2.3.16 and especially Corollary 2.3.17 in Subsection 2.3.3 can be seen as an
algebraic analogue to the operation of (successive edge) contraction graphs. In the next
chapter, they are essential for a topological understanding of relevant parts of the MNA
equations after a DAE decoupling, that is, after transforming the DAE to some normal
form. In contrast to the other results of the chapter, the author could not find 2.3.16
and 2.3.17 in this form in the literature.
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3. Structural analysis of electrical
circuits

We have seen in the previous chapter that it is desirable for the analysis to transform
an implicit DAE into a normal form where an inherent ODE and algebraic constraints
are decoupled from each other. Such a decoupled normal form is indispensable for the
analysis of both dynamical properties and questions regarding the numerical treatment
of the DAE. A well-known difficulty concerning network describing DAE models is the
physical and network topological interpretation of the decoupled DAE. There are several
approaches to transform a DAE into a normal form, but none of them comes with a
satisfactory overall topological interpretation. In other words: The decoupled DAE can
be analysed well as an abstract mathematical object, but it is hard to keep track of
some physical meaning of the decoupled system’s parameters and variables. Relating
the decoupled DAE with the network topology is therefore usually laborious, but fruitful.

This chapters’ main results are presented in Sections 3.4 and 3.5, to which the pre-
ceding sections are paving the way. The chapter is organized as follows:

Section 3.1 establishes the preliminaries for a decoupling of the linear circuit DAE
model. Essentially, it introduces transformation matrices, which we shall call kernel
splitting pairs, and which play a central role for the decoupling in the linear case as well
as in the nonlinear case.

The decoupling for linear circuit DAEs is then presented in Section 3.2. The de-
coupling involves a high number of transformation matrices and notational definitions.
Since most of the required notation for the linear case is still valid in the nonlinear case,
this chapter can be seen is an intermediate point on our way to the nonlinear decoupling
result, which allows to become familiar with the notation before tackling the problems
posed by nonlinearity.

Section 3.3 then establishes nonlinear preliminaries, mainly related with Lipschitz
continuity and strong monotonicity.

A decoupled normal form for nonlinear circuit DAEs is presented in Section 3.4, along
with an existence and uniqueness result on bounded time intervals. The section is
concluded by a discussion of the results in the context of comparable literature.

Finally, Section 3.5 exploits the normal form of the preceding section and offers a sys-
tematic study of the sensitivity of a circuit to (perturbations of) its independent voltage
and current sources. The results show that the sensitivity to a source is determined by
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the topological position of the sources in the circuit. A discussion of the section’s results
follows.

3.1. Preliminaries from linear algebra

In this section, we collect simple results which are regularly exploited in the proof of the
circuit DAE decoupling in Section 3. Transforming the circuit DAE by means of the
subsequently defined kernel splitting pairs is the basic idea of our decoupling approach.
This idea stems from [Jan15].

Lemma 3.1.1 Let A ∈ Rm×n, B ∈ Rm×k. It holds

im B = kerA> ⇐⇒ kerB> = im A.

Proof: Obviously,

im B ⊆ kerA> ⇐⇒ A>B = 0 ⇐⇒ B>A = 0 ⇐⇒ im A ⊆ kerB>.

Considering the rank nullity theorem, we obtain

rank B = def A> ⇐⇒ m− rank B> = m− def A> ⇐⇒ def B> = rank A.

Combining the two observations yields

im B = kerA> ⇐⇒ im B ⊆ kerA> ∧ rank B = def A>

⇐⇒ im A ⊆ kerB> ∧ def B> = rank A

⇐⇒ kerB> = im A.

�

Lemma 3.1.2 Let A ∈ Rn×m and B ∈ Rn×k be such that
(
A B

)
is invertible. Let

furthermore R ∈ Rm×m and S ∈ Rk×k be invertible. Then,
(
AR BS

)
is invertible.

Proof: Factorizing yields
(
AR BS

)
=
(
A B

)(R 0
0 S

)
and both factors are invert-

ible. �

Lemma 3.1.3 Let W ∈ Rm×m be positive definite and A ∈ Rk×m. Then,

(i) kerAWA> = kerA>,

(ii) AWA> is positive definite if kerA> = {0}.
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Proof: Concerning (i), the inclusion kerA> ⊆ AWA> is obvious, so we only show the
converse inclusion. Due to positive definiteness of W it holds

AWA>x = 0 =⇒ x>AWA>x = 0 =⇒ A>x = 0,

hence kerAWA> ⊆ kerA>.
Let now x 6= 0 be arbitrary. If kerA> = {0}, then y := A>x 6= 0. It follows

x>AWA>x = y>Wy > 0

since W is positive definite. This proves (ii). �

Definition 3.1.4 (kernel matrix and kernel splitting pair) For any matrix A 6= 0
with nontrivial kernel, we say Q is a kernel matrix of A, if the columns of Q form a
basis of kerA.

If Q is a kernel matrix of A, we say that {P,Q} is a kernel splitting pair of A, if
the combined matrix

(
P Q

)
is nonsingular.

Example 3.1.5 (kernel splitting pairs) Let

A =

(
1 0 0
0 0 0

)
.

Two possible choices for kernel splitting pairs are {P1, Q} and {P2, Q}, defined as

Q =

0 0
1 0
0 1

 , P1 =

1
0
0

 , P2 =

1
1
1

 .

The example illustrates that while the image of Q and the rank of P are fixed for a given
A, the image of P depends on the choice of P . The following lemma summarizes some
simple results.

Lemma 3.1.6 (kernel splitting pairs) Let A 6= 0 be a matrix with nontrivial kernel,
and let {P,Q} be an arbitrary orthogonal kernel pair of A. Then the following properties
are satisfied.

1. P and Q have full column rank.

2. im Q = kerA and AQ = 0.

3. kerP = kerAP = {0} and kerA> = kerP>A>.

4. rank P = rank A.

5. If A has full row rank, then {A>, Q} is a kernel splitting pair of A.
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Proof: 1. and 2. follow trivially from the definition.

3. The full column rank of P implies kerP = {0}. We consider x ∈ kerAP . It follows
Px ∈ kerA = im Q. That is, there exists y such that Px = Qy, which is equivalent to(
P Q

)( x
−y

)
= 0. Since

(
P Q

)
is nonsingular, this implies x = 0.

For the second statement, we notice

kerA> = ker

(
P>

Q>

)
A> = ker

(
P>A>

0

)
= kerP>A>.

4. If we denote by m the number of columns of A, then P and Q have m rows, and
since

(
P Q

)
is square, it holds

m = rank P + rank Q.

Furthermore, the rank nullity theorem yields

m = rank A+ dim kerA = rank A+ rank Q.

From the two equations, it follows immediately that rank A = rank P .

5. A> has full column rank since A has full row rank. Furthermore, considering the
full column rank of Q and AQ = 0, it follows that

(
A> Q

)
has full columnn rank. It

is left to show that
(
A> Q

)
is square. Considering the previous result, 4., this is the

case if rank A> = rank A, which holds unconditionally. �

Remark. For a matrix with full column rank, a kernel matrix Q does not exist, while
for a zero matrix there is no corresponding P . However, each matrix M 6= 0 ∈ Rm×n

with a nontrivial kernel has a kernel splitting pair {P,Q}. To name one, we only have
to choose a basis of kerM and collect the basis vectors as columns of a matrix Q. To
construct P , we choose any matrix such that

(
P Q

)
is nonsingular.

Lemma 3.1.7 Let G = (V,E) be a graph with spanning subgraphs Gx = (V,Ex) and
Gy = (V,Ey), where Ex, Ey is a partition of E. Let Qx be a kernel matrix of A>x . Then,

kerQ>xAy = {0} ⇐⇒ (L ⊆ G is a loop =⇒ L ⊆ Gx)

Proof: “ =⇒ ” First, we note that full column rank of Q>xAy implies full column rank
of Ay. Hence, Lemma 2.3.3 implies that Gy contains no loops. Furthermore, we obtain

kerQ>xAy = {0} =⇒ im Ay ∩ kerQ>x = {0} 3.1.1
=⇒ im Ay ∩ im Ax = {0}.

Hence, no column of Ay can be represented as a linear combination of columns of Ax.
Lemma 2.3.3 now implies that any subgraph of G which is a loop can not contain edges
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of both Ex and Ey, which yields the desired result.
“ ⇐= ” First, we notice that from the precondition of this case and Lemma 2.3.3, it
follows that Ay has full column rank. Let now Fx = (V,EFx), Fx ⊆ Gx be a spanning
forest, that is, Fx consists of spanning trees of the connected components of Gx. Then,
Lemma 2.3.3 implies that im AFx = im Ax. Furthermore, (V, (EFx ∪ Ey)) ⊆ G is a
forest due to the precondition. Thus, the incidence matrix (AFx Ay) has full column
rank with Lemma 2.3.3. We obtain

im AFx ∩ im Ay = {0} =⇒ im Ax ∩ im Ay = {0} 3.1.1
=⇒ kerQ>x ∩ im Ay = {0}.

Together with the full column rank of Ay, this yields the desired result. �

3.2. Linear decoupling

In this section, we examine the linear MNA Equations (2.12).

Assumption 3.2.1 (Passivity) The matrices C, L and G from the linear MNA (2.12)
are positive definite.

This passivity assumption is usually employed in literature, cf. [ET00, Tis04, Bar04,
Bod07]. These works examine the nonlinear case, but the passivity assumption therein
coincides with the above assumption in the linear case.

Kernel splitting pairs for Theorem 3.2.6 Next, we present two tables with kernel
splitting pairs, which are listed in the bottom row. The top row displays the matrices
which the pairs correspond to. For transposed incidence matrices and corresponding
kernel matrices, we employ the general notation A>?/• := A>? Q•.

This notation is motivated by Lemma 2.3.16: If we choose Q• as the (0, 1) node
component matrix from Definition 2.3.15, the nonzero columns of A?/• form the incidence
matrix of the contracted graph G?/G•. However, this specific choice of kernel matrices
is only motivating the notation; it is not necessary for what follows.

matrix A>c A>v/c := A>v Qc

(
Ac Av

)> A>r/cv := A>r Qcv

(
Ac Av Ar

)>
kernel spl. pair {Pc, Qc} {Pv, Qv} {Pcv, Qcv} {Pr, Qr} {Pcvr, Qcvr}

(3.1)

matrix Ǎv/c := P>v Av/c = P>v Q
>
c Av Al/cvr := Q>cvrAl Å>v := Q̆>v A>v Pc

kernel spl. pair {Ǎ>v/c, Q̆v} {A>l/cvr, Q̆l} {Åv, Q̊v}
(3.2)
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We notice that in table (3.2), we made a specific choice for the P? matrices. To see
that this choice actually yields kernel splitting pairs {P?, Q?}, we first observe that Ǎv/c,
Al/cvr and Å>v have full row rank. This is ensured by construction of Pv in the case of

Ǎv/c and by the following Lemma 3.2.2 in the case of Al/cvr and Å>v . The full row rank
allows to apply Lemma 3.1.6(5), which states that the choice P? := A>? leads to kernel
splitting pairs indeed.

While the specific choice of these matrices is not necessary to obtain the subsequent
decoupling results, it proves convenient since it brings forth certain symmetries in the
decoupled equations.

Lemma 3.2.2 Let Assumption 2.1.3(i) hold. Then, the matrices Al/cvr and Å>v defined
in Table (3.2) have full row rank.

Proof: We show that the transposed matrices have full column rank.

We obtain for any y ∈ kerA>l/cvr and x := Qcvry

A>l Qcvry = 0 =⇒ A>l x = 0 ∧

A>cA>v
A>r

x = 0 =⇒


A>c
A>v
A>r
A>l

x = 0 =⇒ x = 0.

Since Qcvr has full column rank, it follows y = 0. Hence, A>l/cvr = A>l Qcvr has only the
trivial kernel and therewith full column rank.

The matrix Åv has full column rank since

ker Åv = kerP>c AvQ̆v = ker

(
P>c AvQ̆v

0

)
= ker

(
P>c
Q>c

)
AvQ̆v = kerAvQ̆v = {0}.

�

Assumption 3.2.3 (Index 2 rank conditions) The row rank of
(
Ac Av Ar

)
is not

full, and / or Av/c has a nontrivial kernel.

Remark. Considering Lemma 2.3.1 and Lemma 3.1.7, these rank conditions are equiv-
alent to the topological conditions “the circuit (graph) contains an LI-cutset” and / or
“the circuit (graph) contains a CV-loop with at least one V-edge”. If either of the two
conditions hold, the DAE of the linear MNA (2.12) has index two; otherwise, it has
index zero or one, cf. [ET00].

Lemma 3.2.4 It holds im Qcv = im QcQv and im Qcvr = im QcQvQr.
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Proof: We have to show that

im QcQv = ker
(
Ac Av

)>
, im QcQvQr = ker

(
Ac Av Ar

)>
.

The inclusion “⊆” follows directly from the definition in both cases. The converse
inclusions are left to show.

“im QcQv ⊇ ker
(
Ac Av

)>
”: Let x ∈ ker

(
Ac Av

)>
, which is equivalent to x ∈

kerA>c and x ∈ kerA>v . We recall that kerA>c = im Qc and kerA>v Qc = im Qv by
definition. Hence, there exists y such that

Qcy = x =⇒ y ∈ kerA>v Qc = im Qv =⇒ ∃z : Qvz = y.

Consequently, x = Qcy = QcQvz ∈ im QcQv.

“im QcQvQr ⊇ ker
(
Ac Av Ar

)>
”: Analogously to the previous case, let x ∈

ker
(
Ac Av Ar

)>
, then there exists y such that

Qcy = x =⇒ y ∈ im Qv =⇒ ∃z : Qvz = y =⇒ kerA>r QcQvz = A>r Qcy = A>r x = 0,

from which the desired result follows immediately. �

The following Lemma shall be used to prove the subsequent decoupling Theorem 3.2.6.

Lemma 3.2.5 (Nonsingularity of transformation matrix Te) The matrix Te, de-
fined by

Te :=
(
PcÅv PcQ̊v QcPv QcvPr Qcvr

)
,

is nonsingular.

Proof: We define R1 = Pc
(
Åv Q̊v

)
and R2 := Qc

(
Pv Qv

)
. By Lemma 3.1.2 and the

nonsingularity of kernel splitting pairs, we obtain the nonsingularity of(
Pc
(
Åv Q̊v

)
Qc

(
Pv Qv

))
=
(
R1 R2

)
.

We apply Lemma 3.1.2 once more to obtain the nonsingularity of(
R1 R2

(
Pr Qr

))
=
(
PcÅv PcQ̊v QcPv QcQvPr QcQvQr

)
.

Lemma 3.2.4 furthermore implies

im
(
PcÅv PcQ̊v QcPv QcQvPr QcQvQr

)
= im

(
PcÅv PcQ̊v QcPv QcvPr Qcvr

)
,

which, together with the nonsingularity of the former matrix, yields the nonsingularity
of the latter one. �

In order to avoid too lengthy formulas in the following decoupling Theorem 3.2.6, we
introduce a few shorthands.
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Linear MNA decoupling Glossary In addition to the definitions from the Tables (3.1),
(3.2), we define

Te =
(
PcÅv PcQ̊v QcPv QcvPr Qcvr

)
,

Tl =
(
A>l/cvr Q̆l

)
,

Tv =
(
Ǎ>v/c Q̆v

)
,

T−e =
(
PcÅv PcQ̊v QcPv QcvPr

)
,

T̄−e =
(
PcÅv PcQ̊v QcPv

)
,

ē =

ē1
...
ē5

 , ē1234 =

ē1
...
ē4

 , ē123 =

ē1

ē2

ē3

 , īl =

(
īl1
īl2

)
, īv =

(
īv1
īv2

)
,

Ǎv/c = P>v Av/c,
Ľv/c = Ǎv/cǍ>v/c,
Lr = ArGA>r ,

Ľr/cv = P>r Q
>
cvLrQcvPr,

Ľc = P>c AcCA>c Pc,
Ll/cvr = Al/cvrL−1A>l/cvr,
M † = (M>M)−1M> for any matrix M with full column rank. (3.3)

Remark. For full column rank matrices, M † defines a so-called Moore-Penrose inverse.

Remark. The notation for incidence and related matrices follows the general pattern

– A>? ,A>• with kernel splitting pairs {P?, Q?} and {P•, Q•}, where in the basic MNA
model A? is the incidence matrix of element type ?. Note, however, that in order
to allow for generalized models, we do not require A? to be an incidence matrix in
what follows, cf. Remark 2.1.4.

– A>?/• := A>? Q• with kernel splitting pair {P?/•, Q?/•}.

– Ǎ>? := A?P? and Ǎ>?/• := A>?/•P?/•. These matrices have full column rank with

Lemma 3.1.6(3).

– Kernel splitting pairs of (non-transposed) matrices A?/• or Ǎ?/• are denoted by

{P̆?/•, Q̆?/•}.
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– L? := A?W?A>? and L?/• := A?/•W?A>?/• with a symmetric and positive definite
matrix W?.

– Ľ? := Ǎ?W?Ǎ>? and Ľ?/• := Ǎ?/•W?Ǎ>?/•. These matrices are nonsingular with
Lemma 3.1.3.

In Tables (3.1) and (3.2), only Å>v and its kernel splitting pair is an exception as it does
not match the previously described notational pattern.

Another notational irregularity regards W? as it can represent the weight matrix of
the edge type ? (in the case of C), the inverse weight matrix (in the cases of R,L) or
the identity (in the case of V ).

The general notation is motivated by Lemma 2.3.16 and Corollary 2.3.17, which state
that if A?,A• are incidence matrices Q• is a particularly chosen kernel matrix of A>• ,
then A?/• is, up to zero columns, the incidence matrix of the contracted graph G?/G•.

Theorem 3.2.6 (Index two MNA decoupling) Let the Assumptions 2.1.3 and 3.2.3
be satisfied. Then, ē, īl, īv solve the DAE

ē′2 = −Q̊†vĽ−1
c P>c

(
LrT−e ē1234 +AlTlīl +AvTv īv +Aiis

)
(3.4)

ī′l2 = Q̆†lL
−1A>l Teē (3.5)

ē5 = L−1
l/cvrAl/cvr

(
A>l/cvr ī′l1 − L

−1A>l T−e ē1234

)
(3.6)

īv2 = −[Å>v Ľ−1
c Åv]−1Å>v

(
Åvē′1 + Ľ−1

c P>c
(
LrT−e ē1234 +AlTlīl +AvǍ>v/cīv1 +Aiis

))
(3.7)

ē3 = (Ǎ>v/c)†
(
vs −A>v Pc(Åvē1 + Q̊vē2)

)
(3.8)

ē4 = −Ľ−1
r/cvP

>
r Q

>
cv

(
LrT̄−e ē123 +AlTlīl +Aiis

)
(3.9)

īv1 = −Ľ−1
v/cP

>
v Q

>
c

(
LrT−e ē1234 +AlTlīl +Aiis

)
(3.10)

ē1 = (Å>v Åv)−1Q̆>v vs, (3.11)

īl1 = −(Al/cvrA>l/cvr)−1Ai/cvris. (3.12)

if and only if e = Teē, il = Tlīl, iv = Tv īv solve the linear MNA (2.12).

Proof: We introduce the new coordinates Teē = e, Tlīl = il, Tv īv = iv and we consider
the transformed system

T̃>e [LcTeē′ + LrTeē+AlTlīl +AvTv īv +Aiis] = 0 (3.13)

T̃>l
[
LTlī

′
l −A>l Teē

]
= 0 (3.14)

T>v
[
A>v Teē− vs

]
= 0, (3.15)
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where

T̃e :=
(
Pc(Ľ−1

c )>Åv Pc(Ľ−1
c )>Q̊v QcPv QcvPr Qcvr

)
,

T̃l :=
(

(L−1)>A>l/cvr (L−1)>Q̆l

)
.

The proof consists of three steps:

1. The transformations performed to obtain System (3.13)-(3.15) from the linear
MNA (2.12) are nonsingular equivalence transformations.

2. System (3.13)-(3.15) written down blockwise by the blocks of T̃>e , T̃>l and T>v reads
(3.16)-(3.24).

3. System (3.4)-(3.12) is obtained by equivalence transformations from the blockwise
System (3.16)-(3.24) so that Table (3.25) holds.

1. Note that the transformations matrices Te, Tl, Tv, T̃e and T̃l are all nonsingular: This is
guaranteed by Lemma 3.2.5 for Te and by Lemma 3.1.6(5) for Tl and Tv, whereas Lemma
3.1.2 yields the nonsingularity of T̃l. Concerning T̃e, we first notice that

(
Pc(Ľ−1

c )> Qc

)
is nonsingular due to Lemma 3.1.2; Consequently, nonsingularity of T̃e is obtained analo-
gously to the lines of proof of Lemma 3.2.5 when substituting R̃1 := Pc(Ľ−1

c )>
(
Åv Q̊v

)
for R1.

Hence, ē, īl, īv solve the transformed DAE (3.13)-(3.15) if and only if e = Teē, il =
Tlīl, iv = Tv īv solves linear MNA (2.12).

2. The equivalently transformed system (3.13)-(3.15) written down blockwise by the
blocks of T̃>e , T̃>l and T>v reads

Å>v Åvē′1 + Å>v Ľ−1
c Åv īv2 + Å>v Ľ−1

c P>c
(
LrT−e ē1234 +AlTlīl +AvǍ>v/cīv1 +Aiis

)
= 0, (3.16)

Q̊>v Q̊vē
′
2 + Q̊>v Ľ−1

c P>c
(
LrT−e ē1234 +AlTlīl +AvTv īv +Aiis

)
= 0, (3.17)

Ľv/cīv1 + P>v Q
>
c

(
LrT−e ē1234 +AlTlīl +Aiis

)
= 0, (3.18)

Ľr/cvē4 + P>r Q
>
cv

(
LrT̄−e ē123 +AlTlīl +Aiis

)
= 0, (3.19)

Al/cvrA>l/cvr īl1 +Ai/cvris = 0, (3.20)

−Ll/cvrē5 +Al/cvr
(
A>l/cvr ī′l1 − L

−1A>l T̄−e ē1234

)
= 0, (3.21)

Q̆>l Q̆lī
′
l2
− Q̆>l L−1A>l Teē = 0, (3.22)

Ǎv/cA>v Pc(Åvē1 + Q̊vē2) + Ľv/cē3 − Ǎv/cvs = 0, (3.23)

Å>v Åvē1 − Q̆>v vs = 0. (3.24)

The derivation of this blockwise representation from the former compact one is straight-
forward. The difficulty is, however, to become familiar with the bulk of notation and
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matrices introduced for this theorem. Therefore, we provide brief clarifying hints for
each equation of the block-wise representation (3.16)-(3.24).

Multiplying Eq. (3.13) by Å>v Ľ−1
c P>c yields Eq. (3.16):

First, we notice that

LcTe = AcCA>c
(
PcÅv PcQ̊v QcPv QcvPr Qcvr

)
= Lc

(
PcÅv PcQ̊v 0 0 0

)
,

LrTe = Lr
(
PcÅv PcQ̊v QcPv QcvPr 0

)
by construction of Qc and Qcvr. Moreover,

Å>v Ľ−1
c P>c LcTeē′ = Å>v Ľ−1

c P>c Lc(PcÅvē′1 + PcQ̊vē
′
2) = Å>v Åvē′1

by construction of Q̊v and since Ľc = P>c LcPc by definition. Furthermore,

Å>v Ľ−1
c P>c AvTv īv = Å>v Ľ−1

c P>c Av(Ǎ>v/cīv1 + Q̆v īv2)

= Å>v Ľ−1
c P>c AvǍ>v/cīv1 + Å>v Ľ−1

c Åv īv2

by definition of Åv. Then, Equation (3.16) follows readily when Equation (3.13) is left
multiplied by the first block of T̃>e , namely Å>v Ľ−1

c P>c .

Multiplying Eq. (3.13) by Q̊>v Ľ−1
c P>c yields Eq. (3.17):

This equation is obtained by analogous considerations as for the previous equation.

Multiplying Eq. (3.13) by P>v Q
>
c yields Eq. (3.18):

We notice that P>v Q
>
c Lc = 0 and

P>v Q
>
c AvTv īv = Ǎv/c(Ǎ>v/cīv1 + Q̆v īv2) = Ľv/cīv1 .

Multiplying Eq. (3.13) by P>r Q
>
cv yields Eq. (3.19):

This follows from

P>r Q
>
cvLrTeē = P>r Q

>
cvLr(T̄−e ē123 +QcvPrē4) = P>r Q

>
cvLrT̄−e ē123 + Ľr/cvē4.

Multiplying Eq. (3.13) by Q>cvr yields Eq. (3.20):

By construction of Qcvr, it is Q>cvrLc = Q>cvrLr = 0 and Q>cvrAv = 0. Furthermore,

Q>cvrAlTlīl = Al/cvr(A>l/cvr īl1 + Q̆līl2) = Al/cvrA>l/cvr īl1 .
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Multiplying Eq. (3.14) by Al/cvrL−1 yields Eq. (3.21):

This follows from

Al/cvrL−1LTlī
′
l = Al/cvrA>l/cvr ī′l1 ,

Al/cvrL−1A>l Teē = Al/cvrL−1A>l T−e ē1234 +Al/cvrL−1A>l Qcvrē5

= Al/cvrL−1A>l T−e ē1234 + Ll/cvrē5.

Multiplying Eq. (3.14) by Q̆>l L
−1 yields Eq. (3.22):

This is obvious considering that Q̆>l A>l/cvr = 0 by construction of Q̆>l .

Multiplying Eq. (3.15) by Ǎv/c yields Eq. (3.23):

First, we note that

A>v Te = A>v
(
PcÅv PcQ̊v QcPv 0 0

)
.

Furthermore,

Ǎv/cA>v Teē = Ǎv/cA>v (PcÅvē1 + PcQ̊vē2 +QcPvē3)

= Ǎv/cA>v Pc(Åvē1 + Q̊vē2) + Ǎv/cǍ>v/cē3.

Multiplying Eq. (3.15) by Q̆>v yields Eq. (3.24):
We observe that

Q̆>v A>v Te = Q̆>v A>v
(
PcÅv PcQ̊v QcPv 0 0

)
=
(
Å>v Åv Å>v Q̊v Q̆>v Ǎ>v/c 0 0

)
=
(
Å>v Åv 0 0 0 0

)
.

3. Next, we show that Equations (3.16)-(3.24) are equivalent to Equations (3.4)-(3.12),
or more precisely that each equation of one system is equivalent to one equation of the
other, as displayed in following table.

Equation (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

equiv. transformed to Eq. (3.7) (3.4) (3.10) (3.9) (3.12) (3.6) (3.5) (3.8) (3.11)

(3.25)

For the table to hold, we need to confirm that the matrices operating on the underlined
variables in Equations (3.16)-(3.24) are invertible.
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We start by noticing that the matrices Ǎ>v/c = A>v QcPv, A>r QcvPr and A>c Pc have full

column rank by construction of Pv, Pr and Pc and by Lemma 3.1.6(3). Hence, Lemma
3.1.3 yields the invertibility (and positive definiteness) of Ľv/c, Ľr/cv and Ľc. The first
two, Ľv/c and Ľr/cv, are the relevant matrices for matrices for Equations (3.18), (3.19)
and (3.23).

Furthermore, Ľ−1
c is positive definite since Ľc is. Considering additionally that Åv has

full column rank with Lemma 3.2.2, this implies the invertibility of Å>v Ľ−1
c Åv, which is

the relevant matrix for Equation (3.16).
Lemma 3.2.2 also provides that A>l/cvr has full column rank, which yields the invert-

ibility of Ll/cvr and Al/cvrA>l/cvr and therewith the solvability of Equations (3.21) and

(3.20) as desired.
The remaining matrices in question belong to the Equations (3.17), (3.22) and (3.24);

their invertibility follows immediately from the full column rank of Q̊v, Q̆l and Åv. �

Corollary 3.2.7 (Index two MNA full decoupling) Let the Assumptions 2.1.3 and
3.2.3 for the linear MNA (2.12) be satisfied. Then, there exists a nonsingular matrix
T =

(
T0 T1 T2 T3

)
and matrices F?, G? such that the variables y, z1, z2, z3 solve the

fully decoupled DAE

y′ = Fy + Fss+ Fs′s
′ (3.26a)

z1 = G1y +G1,ss+Gs′s
′ (3.26b)

z2 = G2y +G2,ss, (3.26c)

z3 = G3,ss (3.26d)

where s := ( isvs ), if and only if
( e
il
iv

)
= x = T0y + T1z1 + T2z2 + T3z3 solves the linear

MNA (2.12).
More precisely, the following relations with the normal form (3.4)-(3.12) from the

decoupling Theorem 3.2.6 hold with Mcv := [Å>v Ľ−1
c Åv]−1 :

y =

(
ē2

īl2

)
, z1 =

(
ē5

īv2

)
, z2 =

 ē3

ē4

īv1

 , z3 =

(
ē1

īl1

)
, Gs′ =

(
−L−1

l/cvrAi/cvr 0

0 −M−1
cv Q̆

>
v

)

and T =
(
T0 T1 T2 T3

)
arises from

(
Te 0 0
0 Tl 0
0 0 Tv

)
if the columns are adequatly permuted,

that is,

T0 =

(
PcQ̆v 0

0 Q̆l
0 0

)
, T1 =

(
Qcvr 0

0 0
0 Q̆v

)
, T2 =

(
QcPv QcvPr 0

0 0 0
0 0 Ǎ>

v/c

)
, T3 =

(
PcÅv 0

0 A>
l/cvr

0 0

)
.

Proof: The desired result follows readily from the decoupling Theorem if we eliminate
the variables contained in z1 and z2 from Equations (3.4)-(3.12) by insertion in the right
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hand side and resort the equations according to the order proposed by y, z1, z2, z3. The
matrix G1,s′ arises from insertion of ī′l1 = −(Al/cvrA>l/cvr)−1Ai/cvri′s (differentiation of

Equation (3.12)) and ē′1 = (Å>v Åv)−1Q̆>v v
′
s (differentiation of Equation (3.11)) into the

right hand sides of Equations (3.6) and (3.7). �

The index 1 case and other special cases For the decoupled Representation (3.4)-
(3.12) in Theorem 3.2.6 and the resulting Corollary 3.2.7, we implicitly assumed that
all the relevant matrices for which we define kernel splitting pairs in Tables (3.1) and
(3.2) are nonzero matrices with a nontrivial kernel, since otherwise the corresponding
kernel splitting pairs are not well-defined. While this implicit assumption helps us to
establish a consistent notation and to avoid many case distinctions, its violation poses
no mathematical problem.

In the following, we provide a brief and rather informal recipe to find the normal form
in these cases, and notably in the index-1 case. For that, it is useful to introduce matrices
with zero rows and matrices with zero columns, that is, A ∈ R0×n and B ∈ Rn×0.
For a matrix A ∈ R0×n consisting of zero rows, we define kerA := Rn, and for the
multiplication with a matrix M ∈ Rn×n we define AM ∈ R0×n and MB ∈ Rn×0.
Finally, we define the kernel splitting pair for any matrix R ∈ Rn×m, kerR = {0} as
{PR = Im, Q ∈ Rm×0}, and for the zero matrix 0 = S ∈ Rn×m as {PS ∈ Rm×0, QS = Im}.
Here, Im denotes the (m × m) identity matrix. To avoid confusion, we shall denote
Im =: I for the remainder of this paragraph.

For an example, we first consider the case kerP>v Q
>
c Av

3.1.6
= kerQ>c Av = {0}, which

implies that the circuit has no CV-loop with at least one voltage source. Then, we
obtain {P̆v = I, Q̆v ∈ Rn×0} as the corresponding kernel splitting pair. It follows that
Å>v ∈ R0×m and the corresponding splitting pair becomes {P̊v ∈ Rm×0, Q̊v = I}. Hence

Tv = I, Te =
(
Pc QcPv QcvPr Qcvr

)
.

Consequently, the variables īv2 and ē1 vanish along with Equations (3.7) and (3.11) in
the normal form of decoupling Theorem 3.2.6.

Similarly, if kerA>r Qcv = {0}, which means that there exists no LI-cutset in the circuit,
it follows that Qr ∈ Rk×0 and Q̆l = I, so that

Tl = I, Te =
(
PcÅv PcQ̊v QcPv Qcv

)
and the variables ē5 and īl1 and Equations (3.6) and (3.12) vanish.

If the circuit is of index one, that is, kerQ>c Av and kerA>r/cv have a trivial kernel,

then in the resulting normal form the variables ē5, īv2 , ē1, īl1 vanish as well as Equations
(3.6),(3.7),(3.11),(3.12). In the compact representation of Corollary 3.2.7, the variables
z1 and z3 and Equations (3.26b) and (3.26d) vanish and Fs′ = 0.

To sum it up, if the index-two Assumption 3.2.3 does not hold, or more generally
any of the matrices in Tables (3.1), (3.2) is the zero matrix or has a trivial kernel,

36



then this actually facilitates the DAE decoupling since one has to perform less equation
and / or variable splittings. However, the difficulty lies in developping a notational
framework which encompasses each possible case. Since we did not tackle this challenge,
this paragraph provides an informal and pragmatic guide of how to find the simplified
normal form in the index 1 case or other cases where one or several matrices in Tables
(3.1), (3.2) have a nontrivial kernel and / or are zero matrices.
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3.3. Preliminaries for nonlinear circuits

Here we present results which enable us to achieve nonlinear decoupling results similar
to the linear case and exploit them for a perturbation analysis in the subsequent section.

Definition 3.3.1 (Lipschitz continuity) Let Dn ⊆ Rn and Dl ⊆ Rl. A function
f : Dn → Rm is Lipschitz continuous, if

∃L > 0 : |f(x1)− f(x2)| ≤ L|x1 − x2| ∀x1, x2 ∈ Dn,

and f is locally Lipschitz continuous, if f|Bn : Bn → Rm is Lipschitz continuous for any
compact subset Bn ⊆ Dn.

A function g : Dl ×Dn → Rm is Lipschitz continuous in the second argument y, if

∃L > 0 : |g(x, y1)− g(x, y2)| ≤ L|y1 − y2| ∀x ∈ Dl, y1, y2 ∈ Dn,

and it is locally Lipschitz continuous in the second argument y, if g|(Dl×Bn) is Lipschitz
continuous in the second argument for any compact subset Bn ⊆ Dn.

Remark. Note that the Lipschitz constant L for g is independent of x, but the local
Lipschitz constants for f and g depend on the subset Bn in contrast to the global
Lipschitz constants. The given definition of local Lipschitz continuity, cf. [Tes12], is
equivalent to the following more common definition

f : D → Rn is locally Lipsch. cont. ⇐⇒ ∀x ∈ D ∃ Ux ⊆ D : f|Ux is Lipsch. cont.

Definition 3.3.2 (Strong monotonicity, uniform definiteness, boundedness)
Consider the functions f : Rn → Rn, g : Rn × Rm → Rm and M : Dn → Rm×m,
Dn ⊆ Rn.

• f is strongly monotone if there exists a constant µf > 0 such that

(x2 − x1)>(f(x2)− f(x1)) ≥ µf |x2 − x1|2, ∀x1, x2 ∈ Rn, (3.27)

• g is strongly monotone in the second argument if there exists a constant µg > 0
such that

(y2 − y1)>(g(x, y2)− g(x, y1)) ≥ µg|y2 − y1|2, ∀x ∈ Rn, y1, y2 ∈ Rm, (3.28)

• M is uniformly positive definite if there exists a constant µM such that

y>M(x)y ≥ µM |y|2, ∀x ∈ Dn, y ∈ Rm, (3.29)
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• M is bounded, if there exists C > 0 such that

|M(x)|∗ ≤ C ∀x ∈ Dn,

where | · |∗ is the induced matrix norm.

Remark. Due to equivalence of norms in Rn, the above concepts are well-defined inde-
pendently of the chosen norm. Note furthermore that in general, positive definiteness
of M(x) for all x does not imply uniform positive definiteness of M .

A proof for the following lemma and theorem can be found in [OR70, Theorems 5.4.3.
and 6.4.4].

Lemma 3.3.3 Let D ∈ Rn and f : Rm → Rm be continuously differentiable with Jaco-
bian matrix f ′(x). Then, f is strongly monotone if and only if f ′ is uniformly positive
definite.

Theorem 3.3.4 (Browder Minty) Let f : Rn → Rn be continuous and strongly
monotone. Then, the equation

f(x) = y

has a unique solution x ∈ Rn for each y ∈ Rn. Furthermore, the inverse function
f−1 : Rn → Rn is globally Lipschitz continuous.

The previous two results can be extended to parameter-dependent equations, cf. [Mat12,
Lemma 3.4] and [JMT15, Lemma 2.6].

Lemma 3.3.5 Let f : Rn × Rm → Rm be continuous and continuously differentiable
w.r.t. z ∈ Rm with Jacobian ∂f

∂z
(x, z) at the point (x, z). Then, f is strongly monotone

w.r.t. z if and only if ∂f
∂z

is uniformly positive definite, which means here

∃µ > 0 : y>
∂f

∂z
(x, z)y ≥ µy>y ∀x ∈ Rn, z ∈ Rm, y ∈ Rm.

Remark. Notice that the constant µ is independent of the parameters x, z.

Lemma 3.3.6 (Parameter-dependent Browder Minty) Let I ⊂ R be an interval
and f : Rn ×Rm ×I → Rm be a continuous function. Then, for all (x, t) ∈ Rn ×I, the
equation

f(x, y, t) = 0 (3.30)

has a unique solution y ∈ Rm if f is strongly monotone w.r.t. y and globally Lipschitz
continuous w.r.t. x. The solution depends on (x, t) and we write y = Ψ(x, t) with the
continuous function Ψ : Rn × I → Rm which is globally Lipschitz continuous w.r.t. x.
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The following Lemma’s purpose for us is only to simplify the proof of the Lemma 3.3.8
thereafter.

Lemma 3.3.7 Let M : Dn → Rm×m be uniformly positive definite and let | · | be a vector
norm. Then, there exists µM > 0 such that

|M(x)y| ≥ µM |y| ∀x ∈ Dn, y ∈ Rm.

Proof: There exists µ̃M > 0 such that

|y|2|M(x)y|2 ≥ y>M(x)y ≥ µ̃M |y|22 ∀x ∈ Dn, y ∈ Rm

for the euclidean vector norm | · |2. The first inequality is Cauchy-Schwarz, and the
second one holds since M is uniformly positive definite. Hence, it holds

|M(x)y|2 ≥ µ̃M |y|2 ∀x ∈ Dn, y ∈ Rm.

Due to equivalence of norms, we can conclude that for an arbitrary vector norm | · | there
exists µM such that

|M(x)y| ≥ µM |y| ∀x ∈ Dn, y ∈ Rm.

�

Lemma 3.3.8 Let M : Dn → Rm×m, Dn ⊆ Rn be Lipschitz continuous and uniformly
positive definite. Then, the function

M−1 : Dn → Rm×m, x 7→ [M(x)]−1

is Lipschitz continuous.

Proof: M(x) is invertible for all x ∈ Rn since M(x) is positive definite for all x.

We use the induced matrix norm |A|∗ := supz 6=0
|Az|
|z| , for which it holds the submulti-

plicativity property |AB| ≤ |A∗||B|∗ ∀A,B ∈ Rm×m. Furthermore, we exploit Lemma
3.3.7 and the fact that z 7→M(x)z is surjective for arbitrary x. For x, y ∈ Dn arbitrary,
it holds

|[M(x)]−1 − [M(y)]−1|∗ = |[M(y)]−1M(y)[M(x)]−1 − [M(y)]−1M(x)[M(x)]−1|∗
≤ |[M(y)]−1|∗|M(y)−M(x)|∗|[M(x)]−1|∗

≤ sup
u6=0

|[M(x)]−1u|
|u|

sup
v 6=0

|[M(y)]−1v|
|v|

L|x− y|

= sup
ũ6=0

|[M(x)]−1M(x)ũ|
|M(x)ũ|

sup
ṽ 6=0

|[M(y)]−1M(y)ṽ|
|M(y)ṽ|

L|x− y|

= sup
ũ6=0

|ũ|
|M(x)ũ|

sup
ṽ 6=0

|ṽ|
|M(y)ṽ|

L|x− y|

3.3.7

≤ sup
ũ6=0

|ũ|
µ|ũ|

sup
ṽ 6=0

|ṽ|
µ|ṽ|

L|x− y|

=
L

µ2
|x− y|.
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Lemma 3.3.9 Let f : Rn → Rn be strongly monotone. Let furthermore B ∈ Rn×k be
an arbitrary matrix and A ∈ Rm×n be a matrix with full row rank. Then, the function

fA : Rk × Rm → Rm, (x, z) 7→ Af(Bx+ A>z)

is strongly monotone w.r.t. z.

Proof: Since A> has full column rank, the function |·|A, defined by |z|A := |A>z| defines
a norm for any vector norm | · |. Strong monotonicity of f guarantees the existence of a
µ > 0 such that

[x1 − x2]>[f(x1)− f(x2)] ≥ µ|x1 − x2|2 ∀x1, x2 ∈ Rn.

Defining yi := Bx+A>zi for arbitrary x ∈ Rk and considering the equivalence of norms
in Rn yields the existence of µ̃ > 0 such that

[z1 − z2]>[fA(x, z1)− fA(x, z2)] = [y1 − y2]>[f(y1)− f(y2)]

≥ µ|y1 − y2|2

= µ|z1 − z2|2A
≥ µ̃|z1 − z2|2

for all z1, z2 ∈ Rm. �

Corollary 3.3.10 Let M : Rn → Rn×n be uniformly positive definite and let A have
full row rank. Then, x 7→ AM(x)A> is uniformly positive definite.

Proof: Since A> has full column rank, it holds A>y 6= 0 for any y 6= 0, and |·|A> := |A>·|
defines a norm for any vector norm | · |. Due to uniform positive definiteness of M , there
exists µ̃, µ > 0 such that for any x, y it holds

y>AM(x)A>y ≥ µ̃|A>y|2 = µ̃|y|2A> ≥ µ|y|2,

where the last estimate holds due to equivalence of norms in Rn. �

Lemma 3.3.11 Let M : Rn → Rm×m be a continuous function. Then, it holds

(i) If M is uniformly positive definite, then x 7→ [M(x)]−1 is bounded.

If M(x) is furthermore symmetric and positive definite for all x ∈ Rn, it holds

(ii) M is uniformly positive definite if and only if x 7→ [M(x)]−1 is bounded.
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Proof: (i): Let M be uniformly positive definite. By Lemma 3.3.7, there exists µ > 0
for any norm | · | such that |M(x)y| ≥ µ|y| ∀x, y.

Furthermore, since M(x) is nonsingular for all x ∈ Rn, it holds

|M(x)−1| = sup
y

|M(x)−1y|
|y|

= sup
y

|M(x)−1(M(x)y)|
|M(x)y|

= sup
y

|y|
|M(x)y|

≤ sup
y

|y|
µ|y|

=
1

µ
.

(ii): Since (i) proves the statement “ =⇒ ”, we only have to show “ ⇐= ”. We
note that M(x) is symmetric and positive definite if and only if [M(x)]−1 is symmetric
and positive definite. Furthermore, the spectra are reciprocals in that case, that is,

σ([M(x)]−1) = {λ1(x), · · · , λm(x)}, σ(M(x)) = { 1

λ1(x)
, . . . ,

1

λm(x)
},

where σ denotes the spectrum of a matrix. Boundedness of [M(x)]−1 implies bounded-
ness of its eigenvalues:

∃C > 0 : λmax(x) ≤ C ∀x ∈ Rn.

Denoting the eigenvalues of M(x) by ηi(x), it follows for the minimal eigenvalue

ηmin(x) =
1

λmax(x)
≥ C.

Since there exists a basis of eigenvectors, this implies

y>M(x)y ≥ Cy>y.

�

Lemma 3.3.12 Let D ⊆ Rn be a compact set and the functions

M : D → Rn×n, G : D → Rn×m

be Lipschitz continuous. Then, the functions K1 and K2, defined by

A1 : D → Rn×m, x 7→M(x)G(x),

A2 : D ×D → Rn×m, (x, y) 7→M(x)G(y)

are Lipschitz continuous.

Proof: Let LM and LG be the Lipschitz constants of x 7→M(x) and x 7→ G(x), and let
maxx∈D |x| = CD. We obtain for arbitrary x1, x2 ∈ D, the vector norm | · | and induced
matrix norm | · |∗

|A1(x1)− A1(x2)|∗ = |M(x1)G(x1)−M(x2)G(x2)|∗
= | (M(x1)−M(x2))G(x2) +M(x1)(G(x1)−G(x2))|∗
≤ LM |G(x2)|∗|x1 − x2|+ LG|M(x1)|∗|x1 − x2|
≤ (LMCG + LGCM)|x1 − x2|,
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where CG := maxx∈D |G(x)|∗ and CM := maxx∈D |M(x)|∗. Such bounds exist as G and
M are continuous functions on a compact set. The inequality chain yields Lipschitz
continuity of A1.

For A2, we obtain analogously

|A2(x1, y1)− A2(x2, y2)|∗ = |M(x1)G(y1)−M(x2)G(y2)|∗
= | (M(x1)−M(x2))G(y2) +M(x1)(G(y1)−G(y2))|∗
≤ LMCG|x1 − x2|+ LGCM |y1 − y2|.

Since |(a, b)|+ := |a|+ |b| defines a norm on Rn×Rn, it follows for
L = max{LMCG, LGCM} that

|A2(x1, y1)− A2(x2, y2)|∗ ≤ L|(x1 − x2, y1 − y2)|+,

which yields the desired result due to equivalence of norms in Rn × Rn. �

Lemma 3.3.13 Let f : [t0, T ] ⊂ R→ Rn be continuous. Then, it holds∣∣∣∣∫ T

t0

f(t)dt

∣∣∣∣ ≤ ∫ T

t0

|f(t)| dt.

A proof can be found in [OR70, Theorem 3.2.11.].

Lemma 3.3.14 (Gronwall Lemma) Let I = [t0, T ] be a compact interval, β > 0 a
constant and α,Ψ : I → R continuous functions satisfying

Ψ(t) ≤ α(t) + β

∫ t

t0

Ψ(s)ds ∀t ∈ I.

If α is nondecreasing, that is, α(s) ≤ α(t) if s ≤ t, then

Ψ(t) ≤ α(t)eβ(t−t0) ∀t ∈ I.

Remark. Note that if α(t) is nonnegative for all t ∈ I, it holds Ψ(t) ≤ cα(t) for all
t ∈ I, where c := eβ(T−t0).

A proof of a slightly more general version of the Gronwall Lemma, considering a
time-dependent β, can be found in [Tes12, Lemma 2.7].

3.4. Nonlinear decoupling

This section, in which we develop a decoupling of the nonlinear MNA Equations (2.11),
is strongly based on the linear decoupling from Section 3.2.
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Assumption 3.4.1 The functions

C : Rn → Rn×n, L : Rm → Rm×m, g : Rk → Rk

from the nonlinear MNA (2.11) are continuous. Furthermore, C(x) and L(y) are positive
definite for all x ∈ Rn and y ∈ Rm, and g is strongly monotone.

For the nonlinear decoupling, we shall employ the same kernel matrices as defined in
Tables (3.1) and (3.2) and the same decoupling Glossary (3.3), requiring only a few
adaptations.

Nonlinear Extension of the linear MNA decoupling Glossary (3.3) The only nec-
essary adaptation is that C and L are state-dependent (matrix-valued) functions now,
and g is a function instead of a matrix. Hence, all the matrices defined in the Glossary
(3.3) which involved L or C become matrix valued functions now. Matrices formerly
involving G become vector-valued functions involving g now. We define

Lc(ē12) :=AcC(A>c Teē)A>c = AcC(A>c PcÅvē1 +A>c PcQ̊vē2)A>c
ḡ(ē1234) :=Arg(A>r Teē) = Arg(A>r T−e ē1234)

Ľr/cv(·) : = P>r Q
>
cvArg′(·)A>r QcvPr

Mcv(ē12) :=ÅvĽc(ē12)−1Å>v , (3.31)

where g′ denotes the Jacobian of g if g ∈ C1.

Theorem 3.4.2 (Nonlinear MNA decoupling) Consider the nonlinear MNA (2.11),
and let the Assumptions 2.1.3, 3.2.3 and 3.4.1 be satisfied. Then, there exists a function
Ψg such that ē, īl, īv solve the DAE

ē′2 = −Q̊†v[Ľc(ē12)]−1P>c [ḡ(ē1234) +AlTlīl +AvTv īv +Aiis] (3.32)

ī′l2 = Q̆†l [L(Tlīl)]
−1A>l Teē (3.33)

ē5 = [Ll/cvr(Tlīl)]−1Al/cvr
(
A>l/cvr ī′l1 − [L(Tlīl)]

−1A>l T−e ē1234

)
(3.34)

īv2 = −[Mcv(ē12)]−1Å>v
(
Åvē′1 + [Ľc(ē12)]−1P>c

(
ḡ(ē1234) +AlTlīl +AvǍ>v/cīv1 +Aiis

))
(3.35)

ē3 = (Ǎ>v/c)†
(
vs −A>v Pc(Åvē1 + Q̊vē2)

)
(3.36)

ē4 = Ψg (ē123, īl, is) (3.37)

īv1 = −Ľ−1
v/cP

>
v Q

>
c (ḡ(ē1234) +AlTlīl +Aiis) (3.38)

ē1 = (Å>v Åv)−1Q̆>v vs, (3.39)

īl1 = −(Al/cvrA>l/cvr)−1Ai/cvris. (3.40)
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if and only if e = Teē, il = Tlīl, iv = Tv īv solve the MNA (2.11).
The function Ψg : Rn → Rm is Lipschitz continuous. If the conductance function g

from the MNA (2.11) is C1, then for a solution of the DAE (3.32)-(3.40) it holds

∂Ψg

∂is
(ē123, īl, is) = −

[
Ľr/cv(ξ)

]−1
P>r Ai/cv, (3.41)

where ξ := A>r (T̄−e ē123 +QcvPrΨg (ē123, īl, is)).

Proof: We closely follow the proof of the linear case. Analogously to Equations (3.13)-
(3.15), we obtain

[T̃e(ē12)]> [Mc(ē12)Teē
′ + ḡ(ē1234) +AlTlīl +AvTv īv +Aiis] = 0 (3.42)

[T̃l(Tlīl)]
> [L(Tlīl)Tlīl

′ −A>l Teē
]

= 0 (3.43)

T>v
[
A>v Teē− vs

]
= 0, (3.44)

where the matrix valued functions T̃e(·) and Tl(·) are defined by

T̃e(ē12) :=
(
Pc[Ľc(ē12)−1]>Åv Pc[Ľc(ē12)−1]>Q̊v QcPv QcvPr Qcvr

)
,

T̃l(Tlīl) :=
(

[L(il)
−1]>A>l/cvr [L(il)

−1]>Q̆l

)
.

We notice that Assumption 3.4.1 and Lemma 3.3.3 imply that C(y) and L(x) are positive
definite for all arguments. Hence we can employ the same reasoning like in the linear
case for any fixed argument and we obtain nonsingularity of T̃e(ē12) and T̃l(Tlīl) for all
arguments analogously.

Hence, ē, īl ,̄iv solve the transformed DAE (3.42)-(3.44) if and only if e = Teē, il =
Tlīl, iv = Tv īv solves the nonlinear MNA (2.11).

Writing the system by the blocks of T̃e(·), T̃l(·) and Tv yields a slightly modified system
(3.16)-(3.24), where the modifications consist in replacing

1. the constant matrices Ľc, Ll/cvr and L by the state-dependent matrices Ľc(ē12),
Ll/cvr(Tlīl) and L(Tlīl),

2. the term LrT−e ē1234 by ḡ(ē1234),

3. Equation (3.19) by

P>r Q
>
cv (ḡ(ē1234) +AlTlīl +Aiis) = 0. (3.45)

Recalling that

P>r Q
>
cvḡ(ē1234) = P>r Q

>
cvArg(A>r T̄−e ē123 +A>r QcvPrē4) =: ĝ(ē1234),
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we notice that ĝ is strongly monotone in ē4 due to Lemma 3.3.9 considering that g
is strongly monotone due to Assumption 3.4.1 and Lemma 3.3.3. Then, Lemma 3.3.6
implies that we can solve Equation (3.45) for ē4 yielding (3.37). Insertion of the solution
function Ψg(·) = ē4 of (3.37) into (3.45) and differentiating by is yields

0 =
d

dis
P>r Q

>
cv

(
A>r g(A>r T̄−e ē123 +A>r QcvPrΨg (ē123, īl, is)) +AlTlīl +Aiis

)
=Ľr/cv

(
A>r (T̄−e ē123 +QcvPrΨg (ē123, īl, is))

)(∂Ψg

∂is
(ē123, īl, is)

)
+ P>r Q

>
cvAi

which can be solved for the desired derivative of Ψg.
The remaining modified equations are equivalent to the according Equations (3.32)-

(3.36), (3.38)-(3.40) by the same arguments like in the linear case if we consider that
C(y) and L(x) are positive definite and hence nonsingular for all arguments. �

Assumption 3.4.3 We consider the functions

L : Rn → Rn×n, C : Rm → Rm×m, g : Rk → Rk

from the nonlinear MNA (2.11). It holds

(i) L and C are locally Lipschitz continuous, and g is Lipschitz continuous.

(ii) L and C are uniformly positive definite, and g is strongly monotone.

Furthermore, for the functions defined by

L−1 : Rn → Rn×n, Ľ−1
c : Rm → Rm×m

x 7→ [L(x)]−1, z 7→ [P>c AcC(A>c Pcz)A>c Pc]−1,

it holds

(iii) L−1 and Ľ−1
c are uniformly positive definite.

(iv) L−1 and Ľ−1
c are locally Lipschitz continuous.

Lemma 3.4.4 Let the matrix-valued functions L and C from the nonlinear MNA (2.11)
be continuous, bounded and furthermore symmetric and positive definite for all x ∈ Rn

and y ∈ Rm. Then,

• Assumption 3.4.3(iii) holds.

• Assumptions 3.4.3(i) and 3.4.3(ii) imply 3.4.3(iv).
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Proof: Recalling that A>c Pc has full column rank by construction of Pc, we notice that
P>c AcC(P>c Acz)A>c Pc inherits boundedness, symmetry and positive definiteness from
C(y). Hence, the preconditions for L and C yield uniform positive definiteness of L−1

and Ľ−1
c by Lemma 3.3.11(ii). Furthermore, uniform positive definiteness combined with

local Lipschitz continuity of L and C yield local Lipschitz continuity of L−1 and Ľ−1
c

with Lemma 3.3.8. �

Theorem 3.4.5 Let Assumptions 2.1.3, 3.2.3 and 3.4.3 hold. Then, there exists a
nonsingular matrix T = (T0 T1 T2 T3) and a DAE of the fully decoupled form

ẏ = f(y, s,G3s
′) (3.46a)

z1 = g1(y, s,G3s
′) (3.46b)

z2 = g2(y, s) (3.46c)

z3 = M3G3s (3.46d)

such that y, z1, z2, z3 solve this DAE if and only if x =
( e
il
iv

)
= T0y + T1z1 + T2z2 + T3z3

solves the nonlinear MNA (2.11) with s = ( isvs ).

Furthermore, the DAE (3.46) has the following properties:

(i) It holds

G3 =

(
−Ai/cvr 0

0 Q̆>v

)
.

The matrices Ai/cvr := Q>cvrAi, Qcvr and Q̆v are defined in Tables (3.1)-(3.2).

(ii) The right hand side of (3.46) is locally Lipschitz continuous, that is,

f : Rn × Rm × Rk → Rn, g1 : Rn × Rm × Rk → Rp, g2 : Rn × Rm → Rq

are locally Lipschitz continuous.

(iii) If a solution exists on a time interval [t0, T ], then y satisfies an estimate of the
form

‖y‖[t0,t] ≤ c
(
|y(t0)|+Ht‖G3s

′‖[t0,t] +Ht‖θ(s)‖[t0,t]

)
eβ(t−t0) ∀t ∈ [t0, T ],

where c > 0 and β > 0 are constants, Ht := t − t0, θ is a continuous function
and ‖ · ‖[t0,t] is the maximum norm on C([t0, t],Rn). The constants c and β are
independent of s.

(iv) For any compact time interval [t0, T ] ⊆ R, any continuously differentiable input
s and any initial value y0 = y(t0) ∈ Rn, the corresponding IVP (3.46) is globally
uniquely solvable.
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Proof: The proof is strongly based on the Theorem 3.4.2 and the notation therein. The
fully decoupled normal form (3.46) is obtained by collecting the variables of Equations
(3.32)-(3.40) in the vectors

y :=

(
ē2

īl2

)
, z1 :=

(
ē5

īv2

)
, z2 :=

 ē3

ē4

īv1

 , z3 :=

(
ē1

īl1

)

and by appropriate elimination by insertion of the respective variables in the right hand
sides which is described in greater detail in the following. Clearly, as y, z1, z2, z3 are only
a certain resorting of the variables ē, īl, īv, it holds

x =

 ē
il
iv

 =

Te 0 0
0 Tl 0
0 0 Tv


︸ ︷︷ ︸

=;K

 ē
īl
īv

 = T


y
z1

z2

z3


where T is a permutation of K according to the resorting of the variables.

In the following, we first show from bottom to top that how the fully decoupled normal
form (3.46a)-(3.46d) is obtained from the “half-way” decoupled normal form (3.32)-
(3.40), along with a proof of Lipschitz continuity (on bounded sets) of each equation.
After that, we prove the unique solvability of the system of equations.

Equation (3.46d) follows readily from Equations (3.39)-(3.40) with

M3 =

(
0 (Al/cvrA>l/cvr)−1

(Å>v Åv)−1 0

)
and G3 as desired.

Equation (3.46c): We define for shortness

ϕīl1 (is) := −(Al/cvrA>l/cvr)−1Ai/cvris,

ϕē1(vs) := (Å>v Åv)−1Q̆>v vs

which are the right hand sides of Equations (3.39)-(3.40).
Insertion into Equations (3.36)-(3.38) yields

ē3 = (Ǎ>v/c)†
(
vs −A>v Pc(Åvϕē1(vs) + Q̊vē2)

)
=: ϕē3(y, vs)

ē4 = Ψg(ϕē1(vs), ē2, ϕē3(vs, y), ϕīl1 (is), īl2 , is) =: ϕē4(y, s)

īv1 = −Ľ−1
v/cP

>
v Q

>
c

(
ḡ(ϕē1(vs), ē2, ϕē3(y, vs), ϕē4(y, s)) +Al(A>l/cvrϕē1(vs) + Q̆līl2) +Aiis

)
=: ϕīv1 (y, s),
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which is a system of the form (3.46c). This system is locally Lipschitz continuous as a
composition of the locally Lipschitz continuous functions Ψg and ḡ and linear functions.

Equation (3.46b) is obtained from Equations (3.34)-(3.35) after adequate variable in-
sertions, which we will perform in greater detail in the following.

We first define

Tlīl = A>l/cvrϕīl1 (is) +
(
0 Q̆l

)
y =: ϕ1(y, is)

A>c Teē = A>c Pc(Åvϕē1(vs) +
(
Q̆v 0

)
)y =: ϕ2(y, vs)

A>l T−e ē1234 = A>l
(
PcÅvϕē1(vs) + PcQ̊vē2 +QcPvϕē3(y, vs) +QcvPrϕē4(y, s)

)
=: ϕ3(y, s)

and

P>c (ḡ(ē1234) +AlTlīl +AvǍ>v/cīv1 −Aiis)
=P>c (ḡ(ϕē1(vs), ē2, ϕē3(y, vs), ϕē4(y, s)) + ϕ1(y, is) +AvǍ>v/cϕīv1 (y, s)−Aiis) =: ϕ4(y, s)

with linear functions ϕ1, ϕ2, ϕ3 and the locally Lipschitz continuous function ϕ4 : Rn →
Rk, which is composed of linear functions and the locally Lipschitz continuous functions
ḡ and Ψg. Now we can rewrite Equations (3.34)-(3.35) as

z1 =

(
ē5

īv2

)
= K1(y, s)G3s

′ −K1(y, s)K2(y, s)

(
ϕ3(y, s)
ϕ4(y, s)

)
=: g1(y, s,G3s

′), (3.47)

with

K1(y, s) :=

(
[Ll/cvr(ϕ1(y, is))]

−1 0

0 −[Å>v [Ľc(ϕ2(y, vs))]
−1Åv]−1

)
, (3.48)

K2(y, s) :=

(
Al/cvr[L(ϕ1(y, is))]

−1 0

0 −Å>v [Ľc(ϕ2(y, vs))]
−1

)
, (3.49)

which yields an equation of the form (3.46b).

K1 and K2 are bounded, since their diagonal blocks are bounded: L and C are uni-
formly positive definite by Assumption 3.4.3. Hence, Corollary 3.3.10 yields uniform
positive definiteness of Ľc, and Lemma 3.3.11 implies that L−1 and Ľ−1

c are bounded.
Analogously, Assumption 3.4.3 guarantees uniform positive definiteness of L−1 and Ľ−1

c .
Then, Corollary 3.3.10 implies that Ll/cvr and Å>v [Ľc(·)]−1Åv are uniformly positive
definite, and their inverses are hence bounded with Lemma 3.3.11.

Furthermore, K1 and K2 are locally Lipschitz continuous on Rn (with n of appropriate
size), since their diagonal blocks are locally Lipschitz continuous:

For K2 this follows from Assumption 3.4.3(iv) and linearity of ϕ1 and ϕ2. Regarding
K1, Assumption 3.4.3 yields uniform positive definiteness of L−1, and Ľ−1

c , which implies
with Corollary 3.3.10 that Ll/cvr and Å>v Ľ−1

c Åv is uniformly positive definite. Further-

more, by definition Ll/cvr and Å>v Ľ−1
c Åv clearly inherit local Lipschitz continuity from
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L−1 and Ľ−1
c , respectively. From there, Lemma 3.3.8 yields local Lipschitz continuity of

both diagonal blocks of K1.
Altogether, we obtain that the right hand side function g1 (defined in (3.47)) is locally

Lipschitz continuous. This follows from the (global) Lipschitz continuity of ϕ3, ϕ4,
(which contain the Lipschitz continuous nonlinearities g and Ψg by definition) and of
K1 and K2. Lemma 3.3.12 then yields local Lipschitz continuity of g1.

Equation (3.46a) is obtained from Equations (3.32)-(3.33):

y′ =

(
ē2

īl2

)′
(3.50)

=

(
Q̊†v[Ľc(ϕ2(y, vs))]

−1 0

0 Q̆†l [L(ϕ1(y, is))]
−1

)[(
ϕ4(y, s)
ϕ3(y, s)

)
+

(
0 Åv
A>l/cvr 0

)
z1

]
= K3(y, s)

(
ϕ3(y, s)
ϕ4(y, s)

)
+K3(y, s)B

[
K1(y, s)G3s

′ −K1(y, s)K2(y, s)

(
ϕ3(y, s)
ϕ4(y, s)

)]
= K4(·)G3s

′ +K5(·)
(
ϕ3(·)
ϕ4(·)

)
=: f(y, s,G3s

′) (3.51)

with

K3(y, s) :=

(
0 Q̊†v[Ľc(ϕ2(y, vs))]

−1

Q̆†l [L(ϕ1(y, is))]
−1 0

)
, B :=

(
A>l/cvr 0

0 Åv

)
,

and K4(·) := K3(·)BK1(·) and K5(·) := K3(·) − K3(·)BK1(·)K2(·). The function f
is locally Lipschitz continuous since K1, K2 and the blocks of K3 are locally Lipschitz
continuous as shown above when we derived Equation (3.46b). Repeated application of
Lemma 3.3.12 then yields local Lipschitz continuity of f .

(iii) and (iv): The system (3.46a)-(3.46d) is globally uniquely solvable on [t0, T ] for
a given initial value y0 if and only if the inherent ODE (3.46a) is globally uniquely
solvable, which we shall show by means of an a-priori estimate and continuation of a
local solution.

We first observe that for y ∈ Rn, s ∈ Rm arbitrary, it holds for ϕ34 := ( ϕ3
ϕ4 )

|ϕ34(y, s)| − |ϕ34(0, s)| ≤ |ϕ34(y, s)− ϕ34(0, s)| ≤ Lϕ34 |y|.

due to Lipschitz continuity of ϕ34. Note that Lϕ34 is independent of y and s since ϕ34 is
(globally) Lipschitz continuous.

Considering furthermore the boundedness of Ki(·), i ∈ {1, 2, 3} and building the inte-
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gral formulation of Equation (3.46a) yields for all t ∈ [t0, T ]

|y(t)| =
∣∣∣∣y(t0) +

∫ t

t0

K3(·)BK1(·)G3s
′(τ)−K3(·) (I − BK1(·)K2(·))ϕ34(·)dτ

∣∣∣∣
≤ |y(t0)|+

∫ t

t0

|K3(·)BK1(·)G3s
′(τ)| dτ +

∫ t

t0

|K3(·) (I − BK1(·)K2(·))ϕ34(·)| dτ

≤ |y(t0)|+ C1

∫ t

t0

|G3s
′(τ)| dτ + C2

∫ t

t0

|ϕ34(·)| dτ

≤ |y(t0)|+ C1Ht‖G3s
′‖[t0,t] + C2

∫ t

t0

|ϕ34(0, s(τ)| dτ + C2

∫ t

t0

Lϕ34 |y(τ)|dτ

≤ |y(t0)|+ C1Ht‖G3s
′‖[t0,t] + C2Ht‖ϕ34(0, s)‖[t0,t]︸ ︷︷ ︸

=:α(t)

+C2Lϕ34︸ ︷︷ ︸
=:β

∫ t

t0

|y(τ)|dτ

where (·) := (y(τ), s(τ)) and Ht := t− t0 for shortness. Furthermore, we defined

C1 := M3|B|∗M1, C2 := M3 +M3|B|∗M1M2, Mi := max
x∈Rn
|Ki(x)|∗

for the induced matrix norm | · |∗.
At this point, we can apply the Gronwall Lemma 3.3.14 which reveals the following

a-priori estimate for t ∈ [t0, T ]: If y exists on [t0, T ], then it satisfies the bound

‖y‖[t0,t] ≤ α(t)eβ(t−t0) ∀t ∈ [t0, T ].

This confirms (iii).
Knowing that we have a local unique solution due to local Lipschitz continuity of the

vector field f , this solution can furthermore be continuated within a Lipschitz rectangle
by the Theorem of Picard-Lindelöf, and the a-priori estimate combined with the fact
that f is Lipschitz continuous on arbitrary bounded sets guarantee that the solution
does not reach the boundaries of such a rectangle until we reach the end T of the time
interval [t0, T ]. Hence, the local unique solution is indeed a global one on [t0, T ], which
proves (iv). �

Corollary 3.4.6 Let Assumptions 2.1.3, 3.2.3 and 3.4.3 hold. Then, there exists a
full rank matrix A ∈ Rn×m, n < m, such that there exists a global unique solution
x ∈ C([t0, T ],Rm) of the nonlinear MNA (2.11) for any bounded time interval [t0, T ] and
any initial value Ax(t0) =: xIV0 ∈ Rn.

Proof: By Theorem 3.4.5, the decoupled system (3.46) has a global unique solution for

all initial values y(t0) ∈ Rn, and furthermore, if
(
y> z>1 z>2 z>3

)>
is the solution of

(3.46), then

x = T
(
y> z>1 z>2 z>3

)>
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solves the MNA (2.11). Since T is nonsingular, we get

T−1x =
(
y> z>1 z>2 z>3

)>
.

and

y(t0) = Ax(t0),

where A consists of the first ny rows of T−1. �

Discussion

Here we discuss Theorems 3.4.2 and 3.4.5 and Corollary 3.4.6 and put them into context,
as they will be the fundamental basis of the perturbation results in the following section.

In their article [ET00], Tischendorf and Estevez Schwarz presented a DAE normal form
for nonlinear MNA equations of index two (and smaller) along with an algorithm of how
to achieve it, using the concept of the tractability index [GM86,LMT13]. Essentially, the
idea is to transform a DAE by means of projectors onto and along (constant) kernels of
the matrix-valued functions describing the DAE. The Application of this idea specifically
and in great detail to the MNA model in [ET00] was the basis for several numerical and
analytical results regarding the MNA. A widely noticed result offered in the same article
was the topological index result, which allowed to compute the index of the MNA only
by means of topological criteria, namely the existence of cutsets and loops of certain
subcircuits. The same framework was exploited in [Tis04] to prove a local existence and
uniqueness results for (solutions of) nonlinear index two MNA DAEs.

For MNA DAEs of index one, [Mat12, JMT15] then obtained global solvability and
perturbation index results, which were then generalized to higher index circuit DAEs
by [Jan15]. To achieve global existence and uniqueness results, in these works the
assumptions are strengthened so that the elements are globally passive instead of only
locally, which mathematically translates to uniformly positive definite matrix-valued
functions L and C instead of only positive definiteness for all arguments. Additionally,
the Lipschitz condition on g is strengthened from local to global.

The DAE decoupling approach in [Jan15] is slightly different from the one in [ET00,
Tis04], but clearly inspired by it. Instead of transforming the MNA by means of (square)
projectors, the transformation matrices in [Jan15] are rectangle and of full rank. An
advantage of this approach is that it leads to a normal form of the same size as the
original MNA, while the projector approach inflates the system.

The normal form in the decoupling Theorem 3.4.2 in the present work is based on
such rectangle transformations P and Q as introduced in [Jan15], {P,Q} being named
kernel splitting pairs. A related but less detailed normal form was given in [PT19]. The
one presented here provides a very high level of detail, which allows us to derive new
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topological results concerning perturbation sensitivity in the following section, where we
relate a circuit’s sensitivity to its input with the topologial position where the input en-
ters the circuit. Furthermore, the observations of section 2.3.3 allow us to topologically
interprete certain matrix products which systematically arise in the transformation to
the DAE normal form: Namely, products of the form Q>•A? as incidence matrices and
Q>•A?A>? Q• as Laplacian matrices (of certain contracted graphs), where A? is an inci-
dence matrix of a ?-subcircuit and K• belongs to a kernel splitting pair of a •-subcircuit
and is chosen as the (0, 1) node component matrix as defined in 2.3.15. Our general
notation A?/• and L?/• should indicate this possibility of interpretation. Theorem 3.5.5
in the following section provides a first result exploiting this insight.

However, our decoupling admits generalizations in the MNA model as required for
instance for transistors or controlled sources [ET00, Bod07]. In fact, being formulated
on the basis of rank assumptions, it does not even require that the matrices A? are
incidence matrices. Roughly speaking, the construction of a normal form for Theorem
3.4.2 works for any system satisfying the rank (and other) Assumptions therein, but the
benefits of a topological interpretation, presented in the next section, can be exploited
only if A? are incidence matrices.

Based on the decoupling Theorem 3.4.2, we derive Theorem 3.4.5. This theorem offers
various valuable results:

• A more compact representation of a normal form, however giving detail on the
index two impact determined by G3. The right hand side of the normal form is
Lipschitz continuous.

• An a-priori estimate for the solution.

• A global existence and uniqueness result (on compact time intervals).

The a-priori estimate and existence and uniqueness (in a slightly generalized model)
were already shown in [Jan15, Theorem 5.20] using a different approach of proof. (Local)
Lipschitz continuity of the right hand side of the normal form is a property we introduced
along with the necessary strengthening of the assumptions, which we want to discuss
in the following. Apart from the standard MNA Assumptions 2.1.3 and the index two
Assumption 3.2.3, Theorem 3.4.5 requires Assumption 3.4.3.

Local Lipschitz continuity of C, L, L−1 and Ľ−1
c as required in Conditions 3.4.3(i),(iv)

is not needed to obtain the existence and uniqueness result. This can be seen from the
proof, and is in accordance with [Jan15], where it is also not required. However, it is
necessary in order to obtain a (locally) Lipschitz continuous right hand side, which shall
allow us to derive the perturbation results in the following section.

Condition 3.4.3(ii), assuming uniform positive definiteness of C and L and strong
monotonicity of g, is equivalent to Assumptions made in [Mat12,Jan15] for global exis-
tence and uniqueness results.
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Condition 3.4.3(iii) requires uniform positive definiteness of L−1 and Ľ−1
c and implies

boundedness of L and Ľc. Lemma 3.4.4 shows that for symmetric and positive definite
matrices L and C, we can equivalently replace Condition 3.4.3(iii) by boundedness of
L and C. Condition 3.4.3(iii) is used in the proof precisely to warrant boundedness of
K1 defined in Equation 3.48 and therewith boundedness of the products involving K1 in
Equation (3.51) which finally yields an a-priori bound for solutions. The proof reveals
that the boundedness of these products is the necessary and sufficient condition for
that. As the mentioned products are very lengthy, we required the sufficient Condition
3.4.3(iii) for reasons of a more convenient representation.

We remark, however, that no comparable condition is required in [Jan15, Theorem
5.20]. Therefore, it seems worth investigating if Condition 3.4.3(ii) implies boundedness
of the prdocuts in Equation (3.51) so that Condition 3.4.3(iii) can be dropped.

The existence of a global and unique solution of the (untransformed) MNA DAE,
given in Corollary 3.4.6, is a direct consequence of Theorem 3.4.5. Its main purpose is
to provide a formal representation of consistent initial values for the MNA through the
matrix A given in the corollary. It is of theoretical nature, since such a matrix A, or
consistent initial values for higher-index DAEs in general, are usually hard to find in
practice. We refer to [Est00,Bau12] for more detail on consistent initialization.

3.5. Transient perturbation analysis

In this subsection we examine sensitivity of the MNA equations with respect to pertur-
bations of the source terms. We provide results which resemble the defining estimate of
the perturbation index 2.2.4. However, the main difference is that we admit only certain
structured perturbations, that is, perturbations of current and voltage sources.

We denote the vector of current source perturbations by iδ, and instead of is, the
perturbed system has the current input is + Piδ iδ. Here, Piδ is the matrix which arises
from the identity matrix In ∈ Rn×n where each column represents one current source
(and hence n is the number of current sources in the circuit) when columns corresponding
to current sources which are not perturbed are deleted.

That way, if 1 ≤ m ≤ n current sources are perturbed, the vector iδ hasm components,
and the vector’s i-th component (Piδ iδ)i 6= 0 if and only if the i-th source is perturbed.

For voltage sources, Pvδ and vδ are defined analogously.

Writing x =
( e
il
iv

)
, we shall compare (solutions of) the perturbed IVP

AcC(A>c eδ)A>c (eδ)′ +Arg(A>r eδ) +Aliδl +Aviδv +Aiis = −AiPiδ iδ (3.52a)

−L(iδl )(i
δ
l )
′ +A>l eδ = 0 (3.52b)

A>v eδ − vs = Pvδvδ (3.52c)

Axδ(t0) = (xIV0 )δ, (3.52d)

54



to the unperturbed IVP of the nonlinear MNA (2.11), that is,

AcC(A>c e)A>c e′ +Arg(A>r e) +Alil +Aviv +Aiis = 0 (3.53a)

−L(il)i
′
l +A>l e = 0 (3.53b)

A>v e− vs = 0 (3.53c)

Ax(t0) = xIV0 , (3.53d)

where A is a matrix as in Corollary 3.4.6 such that the IVPs have a unique solution on
bounded time intervals (provided the assumptions of the corollary hold).

We shall examine the sensitivity of solutions of the MNA with respect to such pertur-
bations. More precisely, we present network topological results answering the following
questions:

• |x− xδ|: How can we express this difference in terms of (derivatives of) the source
term perturbations δ =

(
iδ
vδ

)
?

• |vij−vδij|: Considering only current source perturbations δ = iδ, how can we express
this difference in terms of (derivatives of) iδ? Here, vij is the vector of voltages
over perturbed current sources.

Remark. In the previous two sections, we required only that the matrices A? satisfy cer-
tain rank conditions. Here, however, we shall assume throughout that they are incidence
matrices in order to exploit the circuit’s topology.

For a given initial point t0 and a norm | · |, we define the balls

B1(T,M) :=

{
δ ∈ C1([t0, T ],Rn) : max

t∈[t0,T ]
|δ(t)| ≤M ∧ max

t∈[t0,T ]
|δ′(t)| ≤M

}
(3.54)

B(T,M) :=

{
δ ∈ C([t0, T ],Rn) : max

t∈[t0,T ]
|δ(t)| ≤M

}
(3.55)

Theorem 3.5.1 (Sensitivity to source perturbation) Let | · | be a vector norm,
B1(T,M) and B(T,M) be defined as in (3.54) and (3.55), and let the MNA Assump-
tions 2.1.3 and 3.4.3 hold. We consider the IVPs (3.52) and (3.53), which represent the
MNA of a circuit, and their solutions xδ and x. The following two estimates hold:

1. For all M > 0 and all T > 0, there exists c2 > 0 such that for all
δ =

(
iδ
vδ

)
∈ B1(T,M) and all t ∈ [t0, T ], it holds

|x(t)− xδ(t)| ≤ c2

(
|xIV0 − (xIV0 )δ|+

∫ t

t0

|δ(τ)|dτ +

∫ t

t0

|δ′(τ)|dτ + |δ(t)|+ |δ′(t)|
)
.

(3.56)
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2. If each perturbed current source in the circuit forms a loop with CVR-edges and no
perturbed voltage source forms a loop with CV-edges, then for all M > 0 and all
T > 0 there exists c1 > 0 such that for all δ =

(
iδ
vδ

)
∈ B(T,M) and all t ∈ [t0, T ],

it holds

|x(t)− xδ(t)| ≤ c1

(
|xIV0 − (xIV0 )δ|+

∫ t

t0

|δ(τ)|dτ + |δ(t)|
)
. (3.57)

Remark. Out terminology is such that an element forms a loop with for instance CVR-
edges, if no edges other than CVR are involved in that loop. This means that a loop
with (for instance) CV-edges is also a loop with CVR-edges.

Proof: We shall show the statements in order.

1. We write

Pδ :=

(
Piδ 0
0 Pvδ

)
, δ :=

(
iδ
vδ

)
,

and we notice that the IVPs (3.52) and (3.53) differ only in initial values and the source
functions: The source term of the MNA is s = ( isvs ), and the source term of the perturbed
MNA is s+ Pδδ.

Applying Theorem 3.4.5 to the perturbed and the unperturbed MNA yields equivalent
equations of the form (3.46) for both systems. Building the difference of the dynamic
part (3.46a) of the perturbed and unperturbed equations in integral formulation, we
obtain for all t ∈ [t0, T ] and all δ ∈ B1(T,M)

|∆y| = |y(t0) +

∫ t

t0

f(yδ, s+ Pδδ,G3(s+ Pδδ)
′)dτ − yδ(t0)−

∫ t

t0

f(y, s,G3s
′)dτ |

≤ |∆y(t0)|+
∣∣∣∣∫ t

t0

f(yδ, s+ Pδδ,G3(s+ Pδδ)
′)− f(y, s,G3s

′)dτ

∣∣∣∣
≤ |∆y(t0)|+

∫ t

t0

|f(yδ, s+ Pδδ,G3(s+ Pδδ)
′︸ ︷︷ ︸

αδ

)− f(y, s,G3s
′︸ ︷︷ ︸

α

)|dτ

where we dropped the arguments t and τ for better readability and denoted ∆y := y−yδ.
The inequality between the second and the third line holds due to Lemma 3.3.13.

We notice that s and s′ are bounded as fixed continuously differentiable functions
on the compact time interval [t0, T ], δ and δ′ are bounded since δ ∈ B1(T,M), and
Theorem 3.4.5(iii) yields boundedness of y and yδ. Note that the bound for yδ holds
uniformly for all δ ∈ B1(T,M). Hence, the arguments α(t) and αδ(t) are contained in
a compact subset Ω ⊂ Rn at all times t ∈ [t0, T ] and for all δ ∈ B1(T,M) and f is
Lipschitz continuous on Ω since f is locally Lipschitz continuous by Lemma 3.4.5.
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For any Lipschitz continuous function g with Lipschitz constant L, it holds

|g(a, b)− g(ã, b̃)| = |g(a, b)− g(ã, b) + g(ã, b)− g(ã, b̃)|
≤ |g(a, b)− g(ã, b)|+ |g(ã, b)− g(ã, b̃)| ≤ L|a− ã|+ L|b− b̃|.

That way, we obtain

|∆y| ≤ |∆y(t0)|+ L0

∫ t

t0

|∆y|dτ + L0|Pδ|∗
∫ t

t0

|δ|dτ + L0|G3Pδ|∗
∫ t

t0

|δ′|dτ, (3.58)

where | · |∗ is the induced matrix norm of | · | and L0 is the Lipschitz constant of f on
Ω. At this point we can apply the Gronwall Lemma 3.3.14, which yields

|∆y| ≤
(
|∆y(t0)|+ L0|Pδ|∗

∫ t

t0

|δ|dτ + L0|G3Pδ|∗
∫ t

t0

|δ′|dτ
)
eL0(t−t0)

and consequently the existence of cy > 0 such that

|∆y| ≤ cy

(
|∆y(t0)|+

∫ t

t0

|δ|dτ +

∫ t

t0

|δ′|dτ
)
.

The algebraic equations (3.46b)-(3.46d), boundedness of sources s, perturbations δ
and solutions y and yδ on [t0, T ] along with local Lipschitz continuity of g1 and g2 on
arbitrary bounded subsets of Rn, which is warranted by Theorem 3.4.5, yield for all
t ∈ [t0, T ] and all δ ∈ B1(T,M)

|∆z1 | = |g1(yδ, s+ Pδδ,G3(s+ Pδδ)
′)− g1(y, s,G3s

′)| ≤ L1(|∆y|+ |Pδ|∗|δ|+ |G3Pδ|∗|δ′|)
(3.59)

|∆z2 | = |g2(yδ, s+ Pδδ)− g2(y, s)| ≤ L2(|∆y|+ |Pδ|∗|δ|) (3.60)

|∆z3 | = |G3(s+ Pδδ)−G3s| ≤ |G3Pδ|∗|δ|, (3.61)

where ∆zi := zi − zδi and L1, L2 are the Lipschitz constants of g1, g2 on a bounded set
which contains the relevant arguments. Dependence of t is again dropped in the notation
for better readability.

Furthermore, Theorem 3.4.5 yields the existence of matrices Ti such that

x = T0y + T1z1 + T2z2 + T3z3, xδ = T0y
δ + T1z

δ
1 + T2z

δ
2 + T3z

δ
3,

where x is the solution of the nonlinear MNA and xδ is the solution of the perturbed
nonlinear MNA. It follows for ∆x := x− xδ and an appropriate constant c2 > 0

|∆x| = |T0∆y + T1∆z1 + T2∆z2 + T3∆z3 |
≤ |T0|∗|∆y|+ |T1|∗|∆z1 |+ |T2|∗|∆z2 |+ |T3|∗|∆z3 |

= c2

(
|∆y(t0)|+ |δ|+ |δ′|+

∫ t

t0

|δ|dτ +

∫ t

t0

|δ′|dτ
)
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which proves the first statement. The crucial point here is to note for fixed T and M , c
does not depend on t ∈ [t0, T ] or δ ∈ B1(T,M).

2. Revisiting Inequalities (3.58)-(3.61), we see that |δ′| only appears with a certain
factor, namely |G3Pδ|∗|δ′|. To prove the second statement, it is therefore sufficient to
show that G3Pδ = 0 provided the preconditions of the second statement hold. We recall
that this product is defined by

G3Pδ =

(
−Ai/cvr 0

0 Q̆>v

)(
Piδ 0
0 Pvδ

)
=

(
−Q>cvrAiPiδ 0

0 Q̆>v Pvδ

)
and by construction of Piδ , the matrix AiPiδ =: Aδ is the incidence matrix of the
perturbed current sources.

Lemma 2.3.3 implies that if all perturbed current sources build a loop with CVR-
edges, then im Aδ ⊆ im Acvr. Furthermore, it is kerQ>cvr = im Acvr with Lemma 3.1.1.
This proves that Q>cvrAiPiδ = 0 in that case.

Now we show that Q̆>v Pvδ = 0. We first examine Q̆>v , which is the kernel matrix of
P>v Q

>
c Av as defined in Table (3.2). We notice that kerP>v Q

>
c Av = kerQ>c Av by Lemma

3.1.6(3), and hence im Q̆v = kerQ>c Av, and, by Lemma 3.1.1, ker Q̆>v = im A>v Qc.
Furthermore, Lemma 2.3.16 yields that Q>c Av =

(
Av/c 0

)
if the V-edges are sorted

accordingly, that is, those V-edges which form loops with C-edges (that is, whose incident
nodes are C-connected) are represented by zero columns and the remaining V-edges are
represented by Av/c. Here, Av/c is the incidence matrix of the contracted Graph Gcv/Gc.
We recall that this graph arises from the graph containing all C- and V-edges and all
nodes of the circuit when all C-edges are contracted.

To sum it up, we have

ker Q̆>v = im

(
A>v/c

0

)
. (3.62)

On the other hand, the matrix Pvδ consists of columns which are unit vectors denoted
here by êi. More precisely, êi is a column of Pvδ if and only if V-edge i corresponds to a
perturbed voltage source.

Let now edge i be such a perturbed V-edge for which the precondition holds, that
is, i does not form a loop with CV-edges. In the following we show that it then holds
êi ∈ im A>v/c. Combined with the previous considerations, this implies the desired result

Q̆>v Pvδ = 0 if the precondition holds.
For the remainder of this proof, given any graphs G1 = (V1, E1), G2 = (V2, E2) and

any edge j ∈ E1 with incident nodes nk, nl ∈ V1, we define the operations + and − as
G2 + j := (V2 ∪ {nk, nl}, E2 ∪ {j}) and G1 − j := (V1, E1 \ {j}).

Edge i remains undeleted in the contracted graph Gcv/Gc and it does not belong to
a loop in the contracted graph. Therefore, the end node nk and the start node nl of
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i belong to different connected components in Gcv/Gc − i. We denote the component
which contains nk by C−ik and we consider the graph C−ik + i.

Due to the zero-sum property of the columns of incidence matrices, it holds that the
rows a non-reduced incidence matrix are linearly dependent and the sum of (all) its rows
is zero.

For the non-reduced incidence matrix AC−ik +i with rows aj, this means that∑
j=1,...,|N−ik +i|

aj = 0,

where N−ik + i is the node set of C−ik + i and |N−ik + i| its cardinality. Let al be the row
which corresponds to nl. We notice that al = êi since nl is a leaf (a node with degree 1)
which is only incident to edge i in the graph C−ik + i. Therefore, it holds∑

j=1,...,l−1,l+1,...,|N−ik +i|

aj = −êi.

This implies that the columns of A>v/c which correspond to nodes of C−ik span êi. Com-

bined with Equation (3.62), this proves the second statement. �

Remark 3.5.2 The estimations in Theorem 3.5.1 have a similar structure as the def-
inition of the perturbation index given in 2.2.4. The difference is that the perturbation
index admits more general perturbations, while in Theorem 3.5.1, only perturbations of
the input terms are admitted.

Therefore, it is possible that a circuit DAE has for instance perturbation index two, but
satisfies an index-one type estimate of the form (3.57). The converse situation, however,
is not possible.

Figure 3.1 shows an example circuit. According to Theorem 3.5.1, the voltage source V1

and the current source I1 are “index-one inputs”, that is, a perturbation of them leads
to the index-one type Estimate (3.57), and V2 and I2 are “index-two inputs” whose
perturbation leads to the index-two type Estimate (3.56).

In the example circuit in Figure 3.2, I1 is an “index one input” since it forms a loop
with CVR-edges (in fact with CV-edges), and I2 is an “index-two input”.

For the remaining theorems of the section, we want to look at the IVP where only
current sources are perturbed:

AcC(A>c eδ)A>c (eδ)′ +Arg(A>r eδ) +Aliδl +Aviδv +Aiis = −AiPiδ iδ (3.63a)

−L(iδl )(i
δ
l )
′ +A>l eδ = 0 (3.63b)

A>v eδ − vs = 0 (3.63c)

Axδ(t0) = (xIV0 )δ, (3.63d)
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C2

V2 C1

I1

I2

L2

R1V1

L1

C3

Figure 3.1.: The voltage source V2 forms a CV-loop with C1 and C3, whereas any loop
containing V1 must contain either L1 or R1 and is hence not a CV-loop.
Similarly, any loop containing the current source I2 must contain contain
also L2 and is hence not a CVR-loop. I1, however, forms a CVR-loop with
R1, V1, C2, C3. This means the circuit is “index-one sensitive” to perturba-
tions of I1 and V1, that is, a perturbation of (only) them leads to Estimate
(3.57) in Theorem 3.5.1. Perturbations of V2 and / or I2 lead to the index-
two type Estimate (3.56).

We notice that Piδ is constructed such that it deletes columns corresponding to unper-
turbed current sources in the product AiPiδ and leaves the columns corresponding to
perturbed sources unchanged. Therefore, we define

Aδ := AiPiδ , (3.64)

which is the incidence matrix of the perturbed current sources.

Theorem 3.5.3 (Sensitivity of voltages over perturbed currents) Let | · | be a
vector norm, B(T,M) be defined as in (3.55), and let the MNA Assumptions 2.1.3 and
3.4.3 hold. We consider the IVPs (3.53) and (3.63), which represent the MNA of a
circuit, and their solutions x and xδ.

If each perturbed current source in the circuit forms a loop with CV-edges, then for all
T > 0 and all M > 0 there exists c > 0 such that for all t ∈ [t0, T ] and all iδ ∈ B(T,M),
it holds

|A>δ (e(t)− eδ(t))| ≤ c

(
|xIV0 − (xIV0 )δ|+

∫ t

t0

|iδ(τ)|dτ
)
. (3.65)

Remark. Note that e and eδ are the node potentials of the circuit (the former in the
perturbed case, the latter in the unperturbed case). Accordingly, A>δ e and A>δ eδ are the
vectors describing the voltage over the current sources which are perturbed.
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Proof: This proof is based on Theorem 3.4.2 and the notation therein. The idea is to
rewrite both the perturbed and the unperturbed MNA in the normal form (3.32)-(3.40),
build the difference of the equations which determine ē1, . . . , ē5 and exploit e = Teē. We
recall that the perturbed and unperturbed MNA only differ in the current source terms.

First, we notice that by construction of Piδ , we know that AiPiδ =: Aδ is the incidence
matrix of the perturbed current sources. Lemma 2.3.3 implies that if all perturbed cur-
rent sources build a loop with CV-edges, then im Aδ ⊆ im Acv ⊆ im Acvr. Furthermore,
it is kerQ>cv = im Acv and kerQ>cvr = im Acvr with Lemma 3.1.1. Hence Q>cvAδ = 0 and
Q>cvrAδ = 0.

For the transformation matrix Te from the decoupling Theorem 3.4.2, this means that

A>δ Te = A>δ (PcÅv PcQ̊v QcPv QcvPr Qcvr) = A>δ (PcÅv PcQ̊v QcPv 0 0).

Furthermore, considering Equation (3.39), we have ēδ1− ē1 = 0. Thus, using the notation
∆ē := ēδ − ē and ∆ēi := ēδi − ēi, we obtain

A>δ Te(∆ē) = A>δ (PcQ̊v∆ē2 +QcPv∆ē3) (3.66)

Building the difference of Equation (3.36) of the perturbed and unperturbed MNA yields

∆ē3 = (Ǎ>v/c)†A>v PcQ̊v∆ē2 =: M∆ē2 , (3.67)

since vs cancels out and ∆ē1 = 0. Hence, we can rewrite for ∆e := eδ − e

A>δ ∆e = A>δ [PcQ̊v∆ē2 +M∆ē2 ] =: M̃∆ē2 . (3.68)

Exploiting Theorem 3.4.5, we obtain analogously to Inequality (3.58) from the preceding
proof of Theorem 3.5.1∣∣∣∣(∆ē2

∆īl2

)∣∣∣∣ = |∆y|

=

∣∣∣∣y(t0) +

∫ t

t0

f(yδ, s+ Pδiδ, G3(s+ Pδiδ)
′)dτ − yδ(t0)−

∫ t

t0

f(y, s,G3s
′)dτ

∣∣∣∣
≤ |∆y(t0)|+

∣∣∣∣∫ t

t0

f(yδ, s+ Pδiδ, G3s
′)− f(y, s,G3s

′)dτ

∣∣∣∣
≤ |∆y(t0)|+ L0

∫ t

t0

|∆y|dτ + L0|Pδ|∗
∫ t

t0

|iδ|dτ ∀t ∈ [t0, T ].

where L0 is the Lipschitz constant of f on a compact set which contains the relevant
arguments (for greater detail, see derivation of (3.58)) and the second line holds since
G3Pδ = 0 in our case as shown in the proof of the second statement of Theorem 3.5.1.
By | · |∗, we denote an induced matrix norm. Note that Pδ =

(
Piδ
0

)
since only current
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C1

I1

I2

L2

V1

C2

Figure 3.2.: The current source I1 forms a CV-loop with C1, C2 and V1, whereas any loop
which contains I2 must contain L1 and is hence not a CV-loop. This means
that the voltage over I1 is “ODE-sensitive” to perturbations of I1, that is, a
perturbation of I1 leads to Estimate (3.65) in Theorem 3.5.3, where the left
hand side of the estimate describes (the norm of) the voltage over I1 in this
case. In contrast, I2 does not satisfy the requirements for Theorem 3.5.3.

sources are perturbed. Using the Gronwall Lemma 3.3.14, we obtain a bound for |∆y|
for an appropriate cy > 0:

|∆y| ≤ cy

(
|∆y(t0)|+

∫ t

t0

|iδ|dτ
)
, (3.69)

which implies the existence of a constant cē2 > 0 such that

|∆ē2 | ≤ cē2

(
|∆y(t0)|+

∫ t

t0

|iδ|dτ
)
. (3.70)

For given T > 0, M > 0 the constants in these estimates are independent of t ∈ [t0, T ]
and iδ ∈ B(T,M) as argued in the derivation of Inequality (3.58).

Considering Equations (3.66) and (3.67), we can conclude the desired result

|Aδ∆e| ≤ |M̃ |∗|∆ē2 |[t0,t] ≤ |M̃ |∗cē2
(
|∆y(t0)|+

∫ t

t0

|iδ|dτ
)
,

where M̃ is defined as in (3.67). �

In the example circuit in Figure 3.1, neither I1 nor I2 form a loop with CV-edges,
hence they do not satisfy the preconditions for Theorem 3.5.3.

In Figure 3.2, I1 forms a loop with CV-edges and Theorem 3.5.3 can be applied.

In the next theorem, we consider circuits in which only one current source is perturbed.
In this case, Piδ is a column vector and iδ(t) ∈ R a scalar value. The incidence matrix
of the perturbed current source, AiPiδ = Aδ =: aδ is then a column vector.
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Specific choice of kernel splitting pairs We choose specific kernel splitting pairs
(P?, Q?) (which were defined in 3.1.4) to obtain the normal forms in the Decoupling
Theorems 3.4.2 and 3.4.5. Recall that kernel splitting pairs are transformation matrices
with which we achieved these normal form for circuit DAEs, and Tables (3.1) and (3.2)
define precisely which kernel splitting pairs are needed for the DAE decoupling.

Let G = (V,E) be a disconnected (subgraph of a) circuit graph and Cj = (V j, Ej),
j = 1, . . . , |C| its connected components. For convenience, let the reference node of the
circuit be contained in the component C |C|. Furthermore, let

Q ∈ R(|V |−1)×(|C|−1)

be the reduced (0, 1) component kernel matrix of G as defined in 2.3.15 and subsequent
remarks.

For nC1 ∈ C1, nC2 ∈ C2, . . . , n|C|−1 ∈ C |C|−1 an arbitrary selection of one node per
connected component (except the component which contains the reference node), we
then define

P ∈ R(|V |−1)×(|V |−|C|)

such that it arises from the identity matrix I|V |−1 ∈ R(|V |−1)×(|V |−1) after deletion of the
columns nC1 , . . . , n|C|−1.

It is easy to check that this way, the pair {P,Q} is a kernel splitting pair of the
transposed incidence matrix A> of G. The benefits of this definition are that certain
products with Laplacians and incidence matrices maintain a topological meaning:

On the one hand, by construction of P , a product MP arises from M after deletion of
the columns nC1 , . . . , n|C|−1. That way, in a circuit graph context, multiplying P (from
the right) to a transposed incidence matrix corresponds to “setting one reference node
in each connected component” in the graph.

On the other hand, we can exploit the Results 2.3.16 and 2.3.17 for a topological
interpretation of products of transposed incidence matrices and Laplacians with Q. Ac-
cording to these results, such products correspond to certain graph contractions, which
motivated our notational convention A?/•.

Definition 3.5.4 Let a circuit graph G with numbered CV-components be given. Let
the conductance function g be C1 with a diagonal Jacobian g′. For a node i, let p(i) be
the CV-component which contains i. We define

Rij := d
Gr/cv
r (p(i), p(j)),

where dGr is the r-distance as defined in 2.3.9 and Gr/cv := Grcv/Gcv is a contracted
graph based on edge contraction as defined in the first paragraph of Subsection 2.3.3.
The nodes of Gr/cv are the CV-components of G, and its edge weights are given by the
diagonal entries of g′.
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Remark. The representation of a nonlinear circuit as a graph requires state-dependent
edge weights. In that case, the “resistive distance“ Rij = Rij(A>r e) is a function of the
state.

Remark. The MNA model (2.11) gives rise to matrices C, L and g′ which are diagonal
if only the basic (nonlinear) RLC-elements and independent sources are to be modelled.
However, elements like transistors may require to admit non-diagonal matrices C, L and
g′. For that reason, we did not assume that C, L and g′ are diagonal up to this point.

In contrast, the following result is based on the assumption that g′ is diagonal. The
reason behind this is that we want to exploit the structure of weighted Laplacian matrices
A∗g′A>∗ for certain incidence matrices A∗. By definition, such matrix products are
Laplacians if the weight matrix g′ is diagonal, cf. Section 2.3.1. Notably, the r-distance
in graphs, which is defined by means of Laplacian matrices, plays an important role in
the following theorem.

Remark. The graph Gr/cv is generally not connected, such that d
Gr/cv
r (p(i), p(j)) is not

necessarily a real number / well-defined. However, we apply this distance only to CVR-

connected nodes, for which d
Gr/cv
r (p(i), p(j)) ∈ R is therefore well-defined.

Remark. If two nodes i and j belong to the same CV component in a graph G, then
they are identified in the contracted graph Gr/cv. Hence, Rij := 0 in that case.

Theorem 3.5.5 (Voltage over one perturbed current source) Let | · | be a vector
norm, B(T,M) be defined as in Equations (3.54) and (3.55), and let the MNA Assump-
tions 2.1.3 and 3.4.3 hold. We consider the IVPs (3.53) and (3.63), which represent the
MNA of a circuit, and their solutions x and xδ.

We assume that only one current source is perturbed so that Piδ ∈ Rn×1 and iδ(t) ∈
R, and we denote the voltage over this current source by v∗ (Equation (3.53)) and vδ∗
(Equation (3.63)).

If the conductance function g is continuously differentiable and its Jacobian matrix
g′(x) is diagonal for all x, and if furthermore the perturbed current source forms a loop
with CVR-edges, then for all M > 0 and all T > 0 there exists c > 0 such that for all
iδ ∈ B(T,M) and all t ∈ [t0, T ], it holds

|v∗(t)− vδ∗(t)| ≤ c

(
|xIV0 − (xIV0 )δ|+

∫ t

t0

|iδ(τ)|dτ
)

+ sup
e∈Rn

Rij(A>r e)|iδ(t)|. (3.71)

Remark. The proof also reveals that the supremum in Equation (3.71) is finite, hence
well-defined.

Remark. The supremum of Rij is generally not a known parameter in a circuit in the
case of a nonlinear graph. However, since it describes the r-distance between two nodes
in a contracted (resistive) graph, the monotonicity properties of this distance concept (cf.
Lemma 2.3.13 and 2.3.14) offer insight on which topological manipulations or changes
of the conductance functions increase or decrease Rij.
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Proof: The proof is strongly based on the decoupling Theorem 3.4.2, and the notation
therein shall be required here.

First, we notice that, with the notation ∆e := eδ− e and analogous definitions for the
other variables,

∆e = Te∆ē = PcÅv∆ē1 + PcQ̊v∆ē2 +QcPv∆ē3 +QcvPr∆ē4 +Qcvr∆ē5 (3.72)

and by Equation (3.39), we have

∆ē1 = 0. (3.73)

This implies by Equation (3.36)

∆ē3 = (Ǎ>v/c)>A>v PcQ̊v∆ē2 =: M∆ē2 . (3.74)

We introduce the notation aδ := AiPiδ . We do not use a capital letter for aδ as a
reminder that aδ has only one column. This column represents the incidences of the
perturbed current source.

It follows from Equation (3.40) that

∆īl1
= 0 (3.75)

since

aδ/cvr = 0 (3.76)

as shown in the proof of the second statement of Theorem 3.5.1. It follows that ∆y,
built from Equations (3.32)-(3.33), does not involve derivatives anymore after insertion,
since the differentiated quantities ∆īl1

and ∆ē1 are both zero now, which implies for all

t ∈ [t0, T ] and all iδ ∈ B(T,M)

|∆y(t)| ≤ cy

(
|∆y(t0)|+

∫ t

t0

|iδ|dτ
)

(3.77)

analogously to Equation (3.69) in the proof of Theorem 3.5.3. As ē2 is contained in y,
such a bound holds also for ∆ē2 .

We notice that if the current sources are sorted conveniently, then is =
(
i−s
i∗s

)
, where

i−s is the vector of current inputs from unperturbed sources and i∗s is the (unperturbed)
scalar input from the source which is perturbed. Being a little sloppy on column and
row vector representation, we write

Ψg(ē123, īl, is) = Ψg(ē123, īl, i
−
s , i
∗
s).
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From the partial derivative ∂Ψg
∂is

given in Equation (3.41) of the Decoupling Theorem
3.4.2, it follows

|a>δ/cvPr
∂Ψg

∂i∗s
(ē123, īl, i

−
s , i
∗
s)| = |a>δ/cvPr

[
Ľr/cv(ξ)

]−1
P>r aδ/cv|

≤ sup
ζ∈Rn
|a>δ/cvPr

[
Ľr/cv(A>r ζ)

]−1
P>r aδ/cv|,

where | · | is the absolute value in R, ξ := A>r (T̄−e ē123 + QcvPrΨg (ē123, īl, is)) and n is
the number of rows of Ar. Furthermore, aδ/cv := Q>cvaδ and we recall that aδ is the
column of Ai which corresponds to the perturbed input. Hence, a Lipschitz constant of
a>δ/cvPrψg(·) w.r.t. i∗s is given by

L
i∗s
Ψg

= sup
e∈Rn
|a>δ/cvPr

[
Ľr/cv(A>r e)

]−1
P>r aδ/cv|

to show
= sup

e∈Rn
Rij(A>r e). (3.78)

Recalling that g is strongly monotone, it follows with Corollary 3.3.10 that Ľr/cv is
uniformly positive definite, and has therefore a bounded inverse with Lemma 3.3.11.
Hence, the supremum in the above equation is well-defined.

Furthermore, we notice that the term whose supremum we take is scalar since aδ/cv is
a column vector, and nonnegative since Ľr/cv is symmetric and positive definite for all
arguments, implying the same properties for the inverse.

To show that the second equation of (3.78) holds, we show that

a>δ/cvPr
[
Ľr/cv(A>r e)

]−1
P>r aδ/cv = Rij(A>r e) ∀e ∈ Rn. (3.79)

Lemma 2.3.16 and Corollary 2.3.17 allow to interprete aδ/cv as the incidence matrix of
a single-edge subgraph of the contracted graph Gi/cv, and Q>cvArg′(·)A>r Qcv as a weighted
Laplacian of Gr/cv. Furthermore, Pr by construction ”sets one reference node in each (yet
ungrounded) component of Gr/cv“, which algebraically corresponds to deleting columns
of a matrix when multiplied to it from the right. It follows, with two exceptions discussed
subsequently, that

a>δ/cvPr
[
Ľr/cv(A>r e)

]−1
P>r aδ/cv = (êp(i) − êp(j))>[Ľr/cv(A>r e)]−1(êp(i) − êp(j)), (3.80)

where êi denotes the i-th uni vector and p(i) and p(j) are the incident nodes of the edge
from Gi/cv represented by aδ/cv. By Corollary 2.3.10, the right hand side of Equation 3.80
is precisely the r-distance between p(i) and p(j) in Gr/cv, and hence Rij by Definition
3.5.4.

There are two special cases to be mentioned: In the first case, the edge represented
by aδ/cv forms a loop with CV-edges. Then, it gets deleted in the contraction process.
Lemma 2.3.16 states that it follows aδ/cv = 0. This is in accordance with the topological
definition of Rij, since the nodes i and j in that case get identified in the contraction
process and it holds p(i) = p(j) in Gr/cv.
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The second special case is that one of the incident nodes, say i, is ”set as a reference
node by Pr“, that is, the corresponding nonzero entry in aδ/cv gets deleted in the product
aδ/cvP

>
r . Then, Equation 3.80 becomes

a>δ/cvPr
[
Ľr/cv(A>r e)

]−1
P>r aδ/cv = ê>p(j)[Ľr/cv(·)]−1êp(j).

On the basis of Lemma 2.3.7 and 2.3.8, Corollary 2.3.10 states that this expression
determines the distance between the reference node and p(j) in the graph Gr/cv, which
confirms our desired Equality 3.79.

Having convinced ourselves that the Lipschitz constant can be expressed as in Equa-
tion (3.78), and considering that Ψg is globally Lipschitz continuous (in all variables),
Equation (3.37) from the decoupling Theorem implies the existence of a c > 0 such that

|a>δ/cvPr∆ē4(t)| ≤ c

(
|∆y(t0)|+

∫ t

t0

|iδ(t)|
)

+ L
i∗s
Ψg
|iδ(t)|. (3.81)

where we inserted Equations (3.73),(3.75),(3.74) and (3.77), (note that y consists of ē2

and īl2).
Inserting the gathered information about each summand of Equation (3.72), we obtain

an estimate of the same form as (3.81), but with a different constant c̃ (since ∆ē1 and
a>δ Qcvr∆ē5 vanish, ∆ē3 can be expressed in terms of ∆ē2 , and ∆ē2 is contained in ∆y,
for which estimate (3.77) holds), that is:

|v∗(t)− vδ∗(t)| = |a>δ ∆e| ≤ c̃ (|∆y(t0)|+ |∆y(t)|) + L
i∗s
Ψg
|iδ(t)|

�

Figures 3.3 and 3.4 illustrate Estimate (3.71) of Theorem 3.5.5. The resistive distance
Rij therein can be understood as the resistive distance between the CV-components
which contain the incident nodes of the perturbed current source. If Rij is small, than a
perturbation of a current source has only a mild effect on the voltage over that current
source.
Rij is composed of those resistances which are not deleted in the contracted graph

Gr/cv, in other words those which have incident nodes in different CV-components. The
remaining resistances are irrelevant for Rij. If the relevant resistances are linear, Rij can
theoretically be computed by only the circuit topology and the conductances.

If any of the relevant resistances are nonlinear, however, then the conductances g(A>r e)
depend on the voltage across them. Since these voltages are generally not known a-priori,
Rij(A>r e) must be considered unknown. Nontheless, the estimate has some interesting
consequences even in that case when we take into account the monotonicity properties
of the r-distance, cf. Lemma 2.3.13 and 2.3.14. They imply that the distance Rij is a
decreasing function of the connectivity of Gr/cv. More precisely, given a circuit graph
G, the following actions are decreasing Rij:
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G4 G2

I1

G
1

G3

ij

kl

G2 G1

Figure 3.3.: The circuit on the left has three CV-components: The isolated nodes i and
k and the component which contains all the remaining (green) nodes with
j and l among them. If the current source I1 is perturbed, the magnitude
of the index-one impact of the perturbation on the voltage over I1 is given
by Rij according to Theorem 3.5.5, where Rij = G−1

1 + G−1
2 is the resistive

distance between the CV-components which contain the incident nodes i
and j of I1. On the right, we see the contracted graph Gr/cv, on which
Definition 3.5.4 is based. Its edge weights are the conductances Gi = R−1

i .
The resistances G3 and G4 get deleted in the contraction process since they
form loops with CV-elements each.

• increasing conductances (replacing g by g̃ > g in the case of a constant conduc-
tance),

• adding R-paths between CV-components.

Discussion

In this section, we presented three related results all aiming at quantifying the sensitivity
of a circuit with respect to perturbations of its independent sources. The first result,
Theorem 3.5.1, is not surprising in the light of [ET00], where the index of a circuit
DAE was linked with the existence or absence of C-paths, LI-cutsets and CV-loops.
In contrast to Theorem 3.5.1, which presented estimates for the effect of perturbations
on the entire solution vector x, the next result, Theorem 3.5.3, offers an estimate for
only the voltage over a perturbed current source. While this result seems not precisely
implied in the results of [ET00], it follows the same ”routine“ of a thorough analysis
of a normal form, in our case the normal form presented in the previous chapter, and
evaluating crucial null spaces. Finally, Theorem 3.5.5 differs from the first two results
in that it quantifies the ”leading constant“ of a perturbation estimate in terms of the
circuit topology. The contracted graphs used for that appear in the circuit context
in [Chen76, Est00, Ebe08]. However, the identification of certain relevant matrices of
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G4 G2

I1

G
1

G3 G0

k̃

ij

kl

G2 G1

G0

Figure 3.4.: A circuit graph on the left side and the corresponding contracted graph Gr/cv

on the right. The only change compared to Figure 3.3 is that we added the
CR-path on the nodes k, k̃, i. Due to the monotonicity properties of the
r-distance, cf. Lemma 2.3.14, it holds R+

ij < Rij, where R+
ij and Rij are the

resistive distance between i and j in the circuit displayed here and in Figure
3.3, respectively. Precisely, we have R+

ij = G−1
2 + 1

G0+G1
in this case. Note

that in the nonlinear case, the conductances Gi are state-dependent.

the circuit DAE normal form as Laplacians of such contracted graphs, and the resulting
Theorem 3.5.5, is a new result.

The following chapter deals with waveform relaxation and certain source couplings of
coupled circuits. The convergence analysis therein is based on the results of this section.
In particular, the relevance of precisely the sensitivity of the voltage over a perturbed
current source can be seen there.

Equally, the sensitivity of a current through a perturbed voltage source would be of
interest. However, results comparable to Theorems 3.5.3 and 3.5.5, but for perturbed
voltage sources instead of perturbed current sources, could not yet be achieved.

3.6. Conclusion

The main results of this chapter are presented in Sections 3.4 and 3.5.
A DAE normal form for nonlinear circuit DAEs of index two, with a locally Lipschitz

continuous right hand side, is presented in Section 3.4, which furthermore provides a an a
priori estimate for solutions and a global existence and uniqueness result. The transient
perturbation analysis in Section 3.5 offers a systematic study of a circuit’s sensitivity
with respect to its independent sources. Both sections are concluded by discussions of
the results.
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Part II.

Waveform relaxation
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4. Convergence of waveform relaxation
on coupled DAEs and coupled
circuits

The modeling of a large number of today’s applications is increasingly complex and in
many cases calls for a multiphysical approach resulting in coupled systems. Waveform re-
laxation (WR) methods (also called dynamic iteration in literature) are well-established
iterative methods for coupled dynamical problems. They allow for simulator coupling,
hence for each subsystem to be solved by a dedicated numerical solver taking into ac-
count the different structure and time scales of the subsystems. Another situation which
requires simulator coupling is when proprietary blackbox solvers for coupled physical
problems such as field/circuit problems or coupled power/gas networks are involved.

WR methods can be seen as generalization, or enhancement, of the well-known Picard
iteration. They were first introduced in 1982 by [Lel82] and [LRS82] in the context of
electrical circuits, where they have, under certain assumptions, proven to be particularly
efficient [WV12].

For Lipschitz continuous ODE problems (on bounded time intervals), WR methods
are known to be unconditionally convergent [Lel82, Bur95]. However, this is not true
in general in the case of DAEs. Therefore, a number of studies were dedicated to
finding convergence criteria for different classes of coupled DAEs, e.g. [Lel82, LRS82,
WOSR85, MN87, Sch91, CI94, JK96, Mie00, JW01, AG01, Bar04, SZF06, Ebe08, SGB10,
Schö11, WV12, BBGS13]. A discussion of these articles in comparison to the results
presented here can be found at the end of Section 4.1.

Generally, for a given coupled problem, the convergence criteria of the mentioned
works have in common that checking if they are satisfied can be costly; it usually
requires the computation of certain Lipschitz constants in the system, which, loosely
speaking, can be determined via the norm of (inverses of) certain Jacobian matrices of
system functions. Furthermore, the coupled DAE is not necessarily given in the required
(normal) form.

For that reason, we shall look at the question of WR convergence on coupled circuit
DAEs from a novel perturbation-based point of view, strongly relying on the circuit
topological analysis and perturbation results of the previous chapter, notable Section
3.5. That way, we are able to provide sufficient convergence criteria in terms of the
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circuit topological relations between the coupling nodes, that is, the contact points
between the subsystems. The coupling conditions which guarantee convergence are less
restrictive than in previous literature discussing topological WR convergence criteria, cf.
e.g. [AG01,Bar04,BBGS13].

The guiding questions to be adressed throughout this chapter shall remain the follow-
ing:

• What are sufficient conditions on the coupled (circuit) DAEs to guarantee WR
convergence?

• At which rate does WR converge if the convergence conditions are satisfied?

The chapter is organized as follows:

Section 4.1, apart from setting up the preliminaries, introduces the WR algorithm
and provides a convergence result for WR on coupled DAEs of higher index, where
no circuit structure is assumed yet. Section 4.2 combines this convergence result with
the circuit analysis of the previous chapter, leading to topological convergence criteria
for coupled circuits. Sections 4.1 and 4.2 are both concluded by discussions of the
results. In Section 4.3, we present WR convergence criteria for a coupled field/circuit
model. Finally, numerical simulations of toy examples confirming our theoretical results
of Sections 4.2 and 4.3 are presented in the fourth section. The simulations also show
that WR can fail indeed if the convergence criteria are not satisfied.

4.1. WR on coupled DAEs

Not adressing circuit related questions yet, this section shall introduce the WR algorithm
and provide a convergence result for coupled DAEs.

Preliminaries A Lipschitz continuous function f : Dn → Rn, where Dn ⊆ Rn, is
contractive, if its Lipschitz constant is smaller one, that is,

∃ 0 < L < 1 : |f(x1)− f(x2)| ≤ L|x1 − x2| ∀x1, x2 ∈ Dn.

A sequence (xk)k∈N ∈ X in a Banach space (X, ‖ · ‖X) has linear rate of convergence c,
if it is convergent to x∗ and

∃ 0 < c < 1 : ‖xk − x∗‖X ≤ c‖xk−1 − x∗‖X ∀ 1 ≤ k ∈ N,

and it has rate of convergence
√
c, if

∃ 0 < c < 1 : ‖xk − x∗‖X ≤ c‖xk−2 − x∗‖X ∀ 2 ≤ k ∈ N.
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Remark. For equivalent norms, Lipschitz continuity is norminvariant. However, con-
tractivity is not, since the magnitude of the Lipschitz constant L is generally norm-
dependent. That is, a (Lipschitz continuous) function may be contractive with respect
to one norm and not contractive with respect to another (equivalent) norm. Hence, the
notion of contractivity implies the choice of a fixed norm.

For practical reasons we change our notational convention for time derivatives: While
we denoted the derivative of a differentiable function x : I → Rn by x′ in in the previous
chapters, we now denote

d

dt
x(t) = ẋ(t).

In the previous chapters, this dot notation for the derivative would have been unsound
when applied to the often needed letter i. Now, however, we need to “make space” for
the superscript indicating the iteration step of WR methods, which is compatible with
dot notation but would be conflicting with prime notation of derivatives.

4.1.1. The WR algorithm

Here we introduce the WR algorithm. Before we get to DAEs, we have a look at coupled
ODEs first.

For an ODE ẏ = f(y) with an initial value y0 = y(t0) which is given in the partitioned
form

ẏ1 = f1(y1, y2), y1,0 = y1(t0),

ẏ2 = f2(y1, y2), y2,0 = y2(t0),

the Picard iteration reads

ẏk1 = f1(yk−1
1 , yk−1

2 ), y1,0 = y1(t0),

ẏk2 = f2(yk−1
1 , yk−1

2 ), y2,0 = y2(t0),

where k = 0, 1, 2, . . . indicates the iteration step. To get the iteration started, we need
initial guess functions y0

1 and y0
2. Note that these are not initial values, but functions over

the entire time interval in question. Usually, they are chosen as constant extrapolation
of the given initial values.

While the Picard iteration is convergent (for ODEs), the slow rate of convergence
makes the use of this technique inefficient [Bur95]. Therefore, WR methods rely on
more current iterates in the right hand side. That is, the Jacobi WR reads

ẏk1 = f1(yk1 , y
k−1
2 ), y1,0 = y1(t0),

ẏk2 = f2(yk−1
1 , yk2), y2,0 = y2(t0),
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and the Gauss-Seidel WR (GS WR) reads

ẏk1 = f1(yk1 , y
k−1
2 ), y1,0 = y1(t0),

ẏk2 = f2(yk1 , y
k
2), y2,0 = y2(t0).

We notice that in the Gauss-Seidel WR, using the current iterate yk1 in the second
subsystem requires the solution of the first subsystem. In other words, the trade-off is
parallelism against (the hope for) a faster rate of convergence here. Indeed, for coupled
ODEs and certain classes of coupled DAEs, it has been shown that if both the GS
WR and the Jacobi WR converge, then the GS WR has a better rate of convergence,
e.g. [Bur95,JK96].

Applying the Picard iteration straightforwardly to DAEs does not work, as for a
general linear DAE Eẋ+ Fx = g we obtain for in the k-th iteration step the equation

Eẋk + Fxk−1 = g(t),

which we have to resolve for xk. For E singular, the problem is ill-posed since matrix
pencil {E, 0} is singular.

Hence, we focus solely on the Jacobi and GS WR, who can be used straightforwardly
on DAEs if mild assumptions on the subsystems are satisfied.

Coupled DAE problem For simplicity, we shall restrict ourselves on (no more than)
two subsystems in the remainder of this work. They shall be given in an input-output
formulation on a compact time interval I = [t0, T ] as follows:

f1(ẋ1, x1, s2, t) = 0, p1(x1) = s1, A1x1(t0) = xIV1,0 (4.1a)

f2(ẋ2, x2, s1, t) = 0, p2(x2) = s2, A2x2(t0) = xIV2,0. (4.1b)

Here, f1 and f2 represent the subsystems, p1(x1) = s1 is the output of the first subsystem
and the input of the second subsystem, and vice versa for p(x2) = s2. That way, the
output equations are coupling conditions. Depending on the viewpoint, we refer to s1 as
output of the first subsystem or coupling input of the second subsystem. The matrices
A1 ∈ Rn×m, n < m and A2 ∈ Rk×l, k < l are matrices which take the role of A in
Corollary 3.4.6 for each subsystem. Then, xIV1,0 and xIV2,0 are those initial values which are
not fixed by algebraic constraints.

Waveform relaxation iteration schemes The iteration scheme of the GS WR method
applied to the coupled DAE (4.1) reads

f1(ẋk1, x
k
1, s

k−1
2 , t) = 0, p1(xk1) = sk1, A1x1(t0) = xIV1,0 (4.2a)

f2(ẋk2, x
k
2, s

k
1, t) = 0, p2(xk2) = sk2, A2x2(t0) = xIV2,0 (4.2b)

where k denotes again the iteration index. The Jacobi WR iteration scheme reads

f1(ẋk1, x
k
1, s

k−1
2 , t) = 0, p1(xk1) = sk1, A1x1(t0) = xIV1,0 (4.3a)

f2(ẋk2, x
k
2, s

k−1
1 , t) = 0, p2(xk2) = sk2 A2x2(t0) = xIV2,0. (4.3b)
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4.1.2. Convergence

We shall relate the convergence behaviour to the subsystems’ sensitivity to perturbations
of the input functions. Therefore, we examine the perturbation sensitivity of the two
subproblems in (4.1) independently of one another: We consider

f1(ẋ1, x1, s2, t) = 0, p1(x1) = x1out, A1x1(t0) = xIV1,0 (4.4)

and the perturbed problem

f1(ẋδ1, x
δ
1, s2 + δs2 , t) = 0, p1(xδ1) = xδ1out, A1x

δ
1(t0) = (xIV1,0)δ. (4.5)

Analogously, we consider the second subproblem independently:

f2(ẋ2, x2, s1, t) = 0, p2(x2) = x2out, A2x2(t0) = xIV2,0 (4.6)

and the perturbed problem

f2(ẋδ2, x
δ
2, s1 + δs1 , t) = 0, p2(xδ2) = xδ2out, A2x2(t0)δ = (xIV2,0)δ. (4.7)

We assume that the subproblems are uniquely solvable.

Assumption 4.1.1 Consider the IVPs (4.4) and (4.6), where the functions f1, f2, p1, p2

are the same as in the coupled DAE (4.1).
The output functions p1 and p2 and the inputs s1 and s2 are continuous.
Furthermore, the IVP (4.4) has a unique solution (x1, x1out) ∈ C([t0, T ],Rn) for all

T > t0, all initial values xIV1,0 and all (continuous) inputs s2, and analogously, the IVP
(4.6) has a unique solution (x2, x2out) ∈ C([t0, T ],Rn) for all T > t0, all initial values
xIV2,0 and all (continuous) inputs s1.

Note that this Assumption implies also the existence of global and unique solutions for
the coupled IVP (4.1).

Assumption 4.1.2 We consider the IVPs (4.4)-(4.7), where the functions f1, f2, p1, p2

are the same as in the coupled DAE (4.1). Let xIV1 = (xIV1 )δ and xIV2 = (xIV2 )δ. Further-
more, let | · | be a vector norm and the ball B(T,M) be defined as in Equation (3.55).

If Assumption 4.1.1 holds, then for all T > t0 and all M > 0, there exist constants
c > 0 and k1, k2 ≥ 0, k1k2 < 1 such that for all t ∈ [t0, T ] and all δs1 , δs2 ∈ B(T,M),
the following four conditions hold :

|xδ1(t)− x1(t)| ≤ c

(∫ t

t0

|δs2(τ)|dτ + |δs2(t)|
)

(4.8)

|xδ1out(t)− x1out(t)| ≤ c

∫ t

t0

|δs2(τ)|dτ + k1|δs2(t)| (4.9)

|xδ2(t)− x2(t)| ≤ c

(∫ t

t0

|δs1(τ)|dτ + |δs1(t)|
)

(4.10)

|xδ2out(t)− x2out(t)| ≤ c

∫ t

t0

|δs1(τ)|dτ + k2|δs1(t)| (4.11)
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Remark. Note that for given T and M , the constants c, k1, k2 are independent of
t ∈ [t0, T ] and δs1 , δs2 ∈ B(T,M).

Remark. The special cases where k1 = 0 or k2 = 0 shall play an important role in the
following.

Using the same informal but intuitive terminology as in Section 3.5, we could rephrase
the Conditions (4.8) and (4.10) as “both subsystems are index-one sensitive with respect
to their coupling inputs.” Note that this does not imply anything about the index of the
subsystems or the coupled DAE (4.1). The sensitivity to the coupling inputs expresses
precisely what determines the convergence behaviour of WR, which in each iteration
step can be viewed as a problem with perturbed coupling inputs. The special case that
k1 = 0 or k2 = 0 could be informally reformulated as “one subsystem’s output is ODE
sensitive to the coupling input”.

Theorem 4.1.3 (Convergence of WR on coupled DAEs) We consider the coupled
problem (4.1) and the corresponding GS WR (4.2) and Jacobi WR (4.3). Let ‖ · ‖[t0,t]

be the maximum norm on C([t0, T ],Rn). Furthermore, let Assumption 4.1.1 and As-
sumption 4.1.2 hold, and let c, k1, k2, k1k2 < 1 be the constants from 4.1.2, and let
ĉ = c(c+ k1 + k2).

Then, for all T ∈ Icon :=
[
t0,

1−k1k2
ĉ

+ t0
)

and all continuous initial guess functions
(s0

1, s
0
2), it holds:

1. The GS sequence xk, defined by Iteration (4.2), converges in
(C([t0, T ],Rn), ‖·‖[t0,T ]) to the solution x of (4.1) and has linear rate of convergence
HT ĉ+ k1k2, where HT := T − t0.

2. The Jacobi sequence xk, defined by Iteration (4.3), converges in
(C([t0, T ],Rn), ‖ · ‖[t0,T ]) to the solution x of (4.1) and has rate of convergence√
HT ĉ+ k1k2.

Remark. Note that T < 1−k1k2
ĉ

+ t0 implies that the contraction factor HT ĉ + k1k2 is
smaller one indeed.

Proof: We first show convergence of the Jacobi sequence. The convergence proof for
the GS sequence is kept short since it works analogously to the Jacobi part.

Jacobi sequence: We start with the Jacobi WR. Let T ∈ Icon arbitrary but fixed,

and let (x1, x2, s1, s2) be the solution of the coupled DAE (4.1). Furthermore, let xk1, s
k
1

be the solution of (4.3a) for given input sk−1
2 , and let xk2, s

k
2 be the solution of (4.3b)

for given input sk−1
1 . Assumption 4.1.1 makes sure that continuity of sk−1

1 , sk−1
2 implies

continuity of sk1, sk2. For fixed k, Equations (4.3a) and (4.3b) can be seen as independent
problems with source perturbations δks2 := sk2− s2 and δks1 := sk1− s1. Let k ≥ 2 be fixed.

We choose M such that δk̃s1 , δ
k̃
s2
∈ B(T,M) for all k̃ ∈ N, k̃ < k. This is possible since δk̃si
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are continuous functions on a compact interval. By Condition (4.11) from Assumption
4.1.2, we have for all t ∈ [t0, T ]

∣∣sk2(t)− s2(t)
∣∣ ≤ c

∫ t

t0

∣∣sk−1
1 (τ)− s1(τ)

∣∣ dτ + k2

∣∣sk−1
1 (t)− s1(t)

∣∣ ,
and an analogous estimate for |sk1(t)− s1(t)| by Condition (4.9). This implies

∥∥sk2 − s2

∥∥ ≤ c

∥∥∥∥∫ ·

t0

∣∣sk−1
1 (τ)− s1(τ)

∣∣ dτ∥∥∥∥+ k2

∥∥sk−1
1 − s1

∥∥
≤ cHT

∥∥sk−1
1 − s1

∥∥+ k2

∥∥sk−1
1 − s1

∥∥ . (4.12)

for the maximum norm ‖ · ‖ on [t0, T ] which is based on the vector norm | · |. Exploiting
Condition (4.9) and inserting (4.12) then yields∥∥sk1 − s1

∥∥ ≤cHT

∥∥sk−1
2 − s2

∥∥+ k1

∥∥sk−1
2 − s2

∥∥
≤c2H2

T

∥∥sk−2
1 − s1

∥∥+ ck2HT

∥∥sk−2
1 − s1

∥∥+ ck1HT

∥∥sk−2
1 − s1

∥∥
+ k1k2

∥∥sk−2
1 − s1

∥∥
= (HT c(HT c+ k1 + k2) + k1k2)

∥∥sk−2
1 − s1

∥∥
≤ (HT ĉ+ k1k2)

∥∥sk−2
1 − s1

∥∥ . (4.13)

Now the precondition T ∈ Icon yields

T < t0 +
1− k1k2

ĉ
⇐⇒ HT ĉ+ k1k2 < 1.

Since (sk−2
2 −s2) ∈ B(T,M), it follows that (sk2−s2) ∈ B(T,M). Analogously we obtain

(sk1 − s) ∈ B(T,M).
This implies that Conditions (4.9) and (4.11) still hold in next iteration step k + 1

(with the same constants c, k1, k2).
Hence, the sequences given by sk1 and sk2 converge to s1 and s2 in (C([t0, T ],Rn, ‖ · ‖)

with rate of convergence
√
HT ĉ+ k1k2. Conditions (4.8) and (4.10) then imply conver-

gence with the same rate for xk1 and xk2, since

|xk1(t)− x1(t)| ≤ c

(∫ t

t0

|sk2(τ)− s2(τ)|dτ + |sk2(t)− s2(t)|
)

implies

‖xk1 − x1‖ ≤ c

(∥∥∥∥∫ ·

t0

|sk2(τ)− s2(τ)|dτ
∥∥∥∥+ ‖sk2 − s2‖

)
≤ cHT‖sk2 − s2‖+ c‖sk2 − s2‖ = c(1 +HT )‖sk2 − s2‖ =: c̃‖sk2 − s2‖.
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GS sequence: As this proof is analogous to the Jacobi case, we keep it short. We

choose again T ∈ Icon arbitrary and M such that δk̃s1 , δ
k̃
s2
∈ B(T,M) for all k̃ ∈ N, k̃ < k.

Conditions (4.9) and (4.11) yield

|sk−1
2 − s2| ≤ c

∫ t

t0

∣∣sk−1
1 − s1

∣∣ dτ + k2

∣∣sk−1
1 − s1

∣∣ ,
and ∣∣sk1 − s1

∣∣ ≤c ∫ t

t0

∣∣sk−1
2 − s2

∣∣ dτ + k1

∣∣sk−1
2 − s2

∣∣ ,
leading to an estimate ∥∥sk1 − s1

∥∥ ≤ (HT ĉ+ k1k2)
∥∥sk−1

1 − s1

∥∥ .
Since by precondition HT ĉ+k1k2 < 1, this makes sure that (sk1−s1) ∈ B(T,M). Hence,
we obtain an analogous estimate for ‖sk2 − s2‖.

This means the sequences sk1 and sk2 converge with linear rate of convergence HT ĉ +
k1k2. Conditions (4.8) and (4.10) then imply convergence with the same rate for xk1 and
xk2. �

Discussion of Theorem 4.1.3 and state of the art

Here we discuss the convergence Theorem 4.1.3 and its preconditions and compare it to
the state of the art in the field.

First, we notice that the considered coupled DAE form (4.1) has a high level of gen-
erality. It is implicit and nonlinear, and no assumptions concerning the index of the
coupled DAE or its subsystems are made. Furthermore, (global) Lipschitz continuity of
f is not required. Also, the crucial convergence Criteria (4.8)-(4.11) from Assumption
4.1.2 do not imply a restriction on the index of the coupled DAE or its subsystems.
However, the fact that (4.8)-(4.11) hold on a bounded ball B(T,M) of arbitrary size is
usually related to vector fields f1, f2 which are locally Lipschitz continuous on the whole
euclidean space Rn. Compared to the literature in the field, this level of generality for
the DAE class is exceptional.

Among the articles investigating WR convergence criteria for higher index DAEs, the
DAE class is strongly restricted to linear DAEs [Mie00], pseudo-dynamic Hessenberg
DAEs [SZF06] or DAEs in a semi-explicit normal form which satisfies a number of
global Lipschitz and contractivity conditions [CI94]. A main challenge for the latter
article here is to compute these Lipschitz constants (and the normal forms in the first
place).

Furthermore, numerous relevant articles studied coupled semi-explicit DAEs of index
one. The seminal works of Lelarasmee [Lel82, LRS82] as well as [WOSR85] examined
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DAEs with global Lipschitz and contractivity conditions. Two years later, [Sch91] refor-
mulated the convergence criteria of [Lel82] in an attempt to make the easier to check.
The works of [JK96,JW01] carried out the convergence proofs in a functional analytical
(operator-based) framework in order to admit generalizations concerning DAEs with
delay. These mentioned works have in common that they require globally Lipschitz con-
tinuous vector fields describing the coupled DAEs, resulting in convergence results on
time intervals of arbitrary size.

Semi-explicit DAEs of index one satisfying a contractivity condition and a local Lip-
schitz condition are considered in [Ebe08], who assumed that the DAEs can be re-
duced to their inherent ODEs, [AG01] with a focus on mechanical applications, [Schö11]
and [BBGS13]. The local Lipschitz condition leads to convergence results on suffi-
ciently small time intervals as is the case in the present work. Furthermore, the last two
mentioned works provide applications to coupled circuits, notably field/circuit systems,
and [Ebe08] offers a lot of formal detail for the (WR) partitioning of coupled circuits
and adresses practical challenges for the simulation.

Finally, [AG01,Ebe08,BBGS13,Schö11] also adress the error propagation from window
to window : As Theorem 4.1.3 in the present work as well as the results in the mentioned
articles show, convergence can considerably accelerated by reducing the length of the
time interval over which we integrate. This insight led to the common practice of win-
dowing in WR simulation, which means the time interval I of interest is partitioned into
the smaller intervals I1, I2, · · · , In. Then, WR is applied on I1, and after a certain
number of iterations, the computed data is used to create initial guesses on I2 and the
WR process starts there, and so on. Naturally, this raises the question of how sensitive
the WR method reacts to faulty initial data and if the convergence acceleration in a
single window dominates the error resulting from faulty initial data.

The coupled DAE (4.1) along with the convergence Conditions (4.8)-(4.11), in con-
trast to the mentioned articles, does not (explicitly) require a restriction of the DAE
index, a DAE given in a normal form, or a Lipschitz condition. We believe this formu-
lation is therefore benefitial, since it identifies that the convergence behaviour of a WR
method is exclusively determined by the sensitivity of the subsystems to the coupling
input. This sensitivity is limited by the perturbation index; however, the perturbation
index, admitting general perturbations, is not a sharp measure when a specific input
perturbation is considered. In short, the DAE can have a high index on the one hand,
and at the same time be only mildly sensitive with respect to perturbations of a specific
input.

For semi-explicit index one DAEs, Conditions (4.8)-(4.11) and k1k2 < 1 in Assumption
3.4.3 are comparable to the criterion offered for instance in [Schö11, BBGS13], since
they are usually derived by means of a local Lipschitz condition, and the contractivity
condition here and therein both limit the impact of non-dynamic coupling inputs.

All of the mentioned articles, including the present work until this point, have in com-
mon that for a given coupled DAE, it is generally hard to check (that is, compute) if the
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respective contractivity condition is satisfied. If a crucial contractivity constant is zero,
this implies a better rate of WR convergence on the one hand and it is generally easier
to determine than a nonzero contractivity constant. For both reasons, it is recommend-
able to model coupled problems in practice such that such the mentioned contractivity
constant is zero, which in our case means k1 = 0 or k2 = 0, where k1 and k2 are the
constants from Conditions (4.8)-(4.11).

Bearing in mind the practical problem of determining if the contractivity condition is
satisfied, we designed the Conditions (4.8)-(4.11) to be of the same form as the perturba-
tion results for circuits in Section 3.5. For coupled circuits (that is, coupled DAEs whose
at least one subsystem is a circuit), this offers the opportunity to check if the conditions
are satisfied by purely topological criteria regarding the position of the coupling inputs
in the circuit. The next Section shall elaborate on that.

4.2. WR on coupled circuits

In this section, we shall combine the perturbation results of Section 3.5 with the Conver-
gence Theorem 4.1.3 to derive topological convergence criteria for coupled circuit/circuit
problems of index two. Before we come to the main results in Subsection 4.2.2, we briefly
introduce the coupled circuit model.

4.2.1. Partitioned model and WR algorithm

We employ a source coupling, as illustrated in Figures 4.1 and 4.2. In the following, we
briefly introduce the source coupling. For a detailed description of this coupling model
we refer to [Ebe08, Section 4.3]. In terms of the circuit graph G = (V,E), such a source
coupling is based on an (arbitrary) edge partition Ē ⊆ E, E̊ ⊆ E, and a resulting node
partition V̄ , V̊ , Vm, where V̄ is the set of nodes which are incident with edges of only
Ē, V̊ is the set of nodes which are incident with edges of only E̊, and Vm is the set of
coupling nodes V̊m, which are those that have incident edges in both Ē and E̊.

The idea of source coupling is to introduce certain dummy sources, which we shall refer
to as coupling inputs, into the circuit (see Figures 4.1 and 4.2). That way, the coupled
subsystems of the partitioned circuit can be interpreted as circuits again. Formally, we
duplicate the coupling nodes to have them as independent nodes in each subsystem.
This can be seen well in the Examples in Figures 4.1 and 4.2.

The resulting coupled model of the IVP then reads

f̄( ˙̄x, x̄, t) + Ā∗mīm = 0, Ā>mē = v̊m p̄(x̄, īm) = īm, Āx̄(t0) = x̄IV0
(4.14a)

f̊( ˙̊x, x̊, t) = Å∗mīm, p̊(̊x) = Å>me̊ =: v̊m, Åx̊(t0) = x̊IV0
(4.14b)
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i j

j
i

im = ivm

vm = ei − ej

ji

ji
im = ivm

vm = ei − ej

ji

Figure 4.1.: The picture on the left shows an (arbitrary) circuit which is partitioned into
a blue and a red subcircuit. The coupling nodes are i and j with node
potentials ei and ej. The middle and the right picture depict source cou-
pling models of the partitioned circuit. In the middle, the coupling nodes
are internal unknowns of the red subsystem and externally given input vari-
ables for the blue subsystem, whereas the right picture shows the converse
coupling situation.

l
i j

l

ji

im1 = iv1im2 = iv2

vm1 = el − ejvm2 = ei − el

ji

Figure 4.2.: The left picture displays an (arbitrary) circuit which is partitioned into a
blue and a red subcircuit. The right picture shows a possible corresponding
source coupling.
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Both subsystems (4.14a) can be understood as the MNA of a circuit; however, the cou-
pling voltage v̊m of (4.14a) and the coupling current īm of (4.14b) are not independent,
but computed as internal variable of the other subsystem; īm is, as an internal unknown,
the (vector of) current flow between two coupling nodes in Subsystem (4.14a). At the
same time, it is the coupling current in Subsystem (4.14b). Analogously, v̊m is the cou-
pling voltage in Subsystem (4.14a) and, as an internal unknown, the voltage across the
coupling nodes in Subsystem (4.14b).

That way, these coupling terms īm and v̊m describe the input that Subsystem (4.14a)
receives from Subsystem (4.14b), namely īm, and conversely the input that (4.14b)
receives from (4.14a), namely v̊m.

The matrix Ā∗m is defined by Ā∗m =
(
Ām

0

)
, where Ām is the incidence matrix describing

the coupling currents.The number of columns of Ām is n−1, if n is the number of coupling
nodes. Furthermore, x̄ = (ē, īl, īv) contains the node potentials ē corresponding to the
(duplicated) coupling nodes V̊m and the nodes V̄ and currents i corresponding to edges of
Ē; the corresponding KCL and element equations are described by f̄+ Ā∗mīm = 0. Note,
however, that the voltage drop Ā>mē = v̊m between two (duplicated) coupling nodes in
(4.14a) is forced to be the same as in (4.14b) by the coupling condition. That way, we
make sure that the potentials at the coupling nodes and their duplicates are the same.
The variable x̊ = (̊e, i̊l, i̊v) contains the node potentials and currents corresponding to
nodes of V̊ and V̊m and edges of E̊, and f̊ = Å∗mīm describes the corresponding KCL and
element equations. Here, Å∗m =

(
Åm

0

)
describes the position of the coupling currents in

Subsystem (4.14b). Finally, p̊ and p̄ are the output functions, which are clearly linear,
and Ā and Å are matrices as in Corollary 3.4.6, selecting consistent initial values.

Remark. We consider the (monolithic) MNA of a circuit with graph G, and for a given
partition the MNA of the two coupled circuits built from G as in Figures 4.1 and 4.2,
and we assume that the monolithic and the coupled system both have a unique solution.
Let these solutions be denoted by x for the monolithic system and ycoupl = (y, yin) for
the coupled system, where ycoupl is sorted such that yin are currents through or voltages
across coupling inputs.

Then, the Kirchhoff laws warrant x = y. This justifies the coupled model (4.14).

Definition 4.2.1 (Coupling terminology) Consider the coupled circuit model (4.14)
and the corresponding circuit graphs. We say that Subsystem (4.14a) is voltage-driven,
and Subsystem (4.14b) current-driven. The voltages v̊m are called coupling voltages,
and the currents īm are called coupling currents. We refer to the corresponding edges,
whose incidences are described by Ām and Åm, as coupling current edges and coupling
voltage edges.

Remark. Since many of the following examples are coupled circuits with two coupling
nodes, it is worth noticing that in this case we have precisely one coupling voltage and
one coupling current, that is, Ām and Åm are column vectors and īm and v̊m are scalar
values.
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For the coupled system, the standard MNA rank assumptions should be met:

Assumption 4.2.2 We consider a circuit which is partitioned into a voltage-driven and
a current-driven subsystem. Any two coupling nodes are not V-connected in the voltage-
driven subsystem, and they are CVRL-connected in the current-driven subsystem.

This assumption guarantees that the rank assumption in 2.1.3 holds for each of the
subcircuits.

The Jacobi WR iteration scheme of the coupled circuit model (4.14) reads

f̄( ˙̄xk, x̄k, t) + Ā∗mīkm = 0, Ā>mēk = v̊k−1
m , p̄(x̄k, īkm) = īkm, Āx̄k(t0) = x̄IV0

(4.15a)

f̊( ˙̊xk, x̊k, t) = Å∗mīk−1
m , p̊(̊xk) = Å>me̊k =: v̊km, Åx̊k(t0) = x̊IV0 ,

(4.15b)

and the GS WR scheme reads

f̄( ˙̄xk, x̄k, t) + Ā∗mīkm = 0, Ā>mēk = v̊k−1
m , p̄(x̄k, īkm) = īkm, Āx̄k(t0) = x̄IV0

(4.16a)

f̊( ˙̊xk, x̊k, t) = Å∗mīkm, p̊(̊xk) = Å>me̊k =: v̊km, Åx̊k(t0) = x̊IV0 .
(4.16b)

4.2.2. Convergence

We briefly review Theorems 3.5.1, 3.5.3 and 3.5.5, which adressed the perturbation
sensitivity to inputs in Section 3.5, and the convergence Theorem 4.1.3 for coupled DAEs.
Combined, they directly imply topological convergence criteria for coupled circuits.

First, we interprete the iterates v̊km = v̊m + v̊kδ and īkm = īm + ikδ from the WR Schemes
(4.15) and (4.16) as values of perturbed sources, which implies the definitions

v̊kδ := v̊km − v̊m īkδ := īkm − īm

for the input perturbations.
That way, we can view the subsystems of the Jacobi scheme (and analogously for GS)

as the input-perturbed subsystems of the coupled circuit.

Then, we recall that the Jacobi and GS scheme (4.15) and (4.16) of the coupled circuit
(4.14) imply the assumption that the iterative schemes and the coupled circuit have the
same dynamic (that is, not algebraically fixed) initial values.

Now we compare the theorems of Section 3.5 with the conditions of the convergence
Theorem 4.1.3.

Second statement of Theorem 3.5.1: With the remaining two theorems of the section
only offering results about the sensitivity to current sources, this is the only theorem pro-
viding results about the circuit’s sensitivity to voltage sources (besides current sources,
too).
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If the second statement of Theorem 3.5.1 holds for one subcircuit, a direct comparison
shows that it satisfies an estimate of the form of Condition (4.8) in Assumption 4.1.2.
Furthermore, since the coupled circuit (4.14) has linear output functions (defined by
p̄(x̄, īm) = īm and p̊(̊x) = Å>me̊, where x̊ = (̊e>, i̊>l , i̊

>
v )>), a subcircuit for which the

second statement of Theorem 3.5.1 holds equally satisfies a condition of the form (4.9)
for the output with some constant k1 which is not further specified.

A voltage-driven subcircuit satisfies the preconditions of the second statement of 3.5.1,
if no coupling voltage forms a loop with CV-edges, and a current-driven subcircuit
satisfies the preconditions, if each coupling current forms a loop with CVR-edges.

Theorem 3.5.3: This theorem applies only to current source perturbations, and pro-
vides a bound for their impact on the voltage across these perturbed inputs. If the
current-driven subcircuit satisfies the precondition, namely “each coupling current forms
a loop with CV-edges”, then the output satisfies a condition of the form (4.8) with k1 = 0.

These observations immediately yield the following convergence theorem for WR on
coupled circuit/circuit systems.

Theorem 4.2.3 (WR convergence for coupled circuit/circuit system) Let (4.14)
be the nonlinear MNA of a coupled circuit whose both subcircuits satisfy Assumptions
2.1.3 and 3.4.3.

Let the coupling inputs of the coupled circuit Equations (4.14) satisfy the following
topological properties:

(i) No coupling voltage edge forms a loop with CV-edges in the voltage-driven subcircuit
which corresponds to Subsystem (4.14a). Here, (other) coupling voltage edges are
considered V-edges, too.

(ii) each coupling current edge forms a loop with CV-edges in the current-driven sub-
circuit which corresponds to Subsystem (4.14b).

Then, there exists a constant ĉ > 0 such that for HT := T − t0 sufficiently small to
satisfy HT <

1
ĉ
, it holds:

1. The GS sequence xk, defined by Iteration (4.16), converges in
(C([t0, T ],Rn), ‖ · ‖[t0,T ]) to the solution x of (4.14), and it has linear rate of con-
vergence HT ĉ.

2. The Jacobi sequence xk, defined by Iteration (4.15), converges in
(C([t0, T ],Rn), ‖ · ‖[t0,T ]) to the solution x of (4.14), and it has rate of convergence√
HT ĉ.

Proof: The considerations preceding the theorem show that if (i) and (ii) are satisfied,
the coupled circuit satisfies the Conditions (4.8)-(4.11) with k1 ∈ R and k2 = 0 (or
k1 = 0 and k2 ∈ R, the order is irrelevant). Hence, the convergence Theorem 4.1.3
applies with k1k2 = 0. �
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G

Circuit A

i j

(a) Partitioned circuit

Circuit A

j
i

im = ivm

vm = ei − ej

ji

(b) A is voltage-driven

Circuit A

ji
im = ivm

vm = ei − ej

ji

(c) A is current-driven

Figure 4.3.: (a) shows a partitioned circuit with coupling nodes i, j. The blue subcircuit
consists only of G and the red subcircuit A is arbitrary. In (b) and (c), the
two source coupling options are depicted.

If k1 = 0 or k2 = 0 does not hold, we have to determine both constants in order to check if
k1k2 < 1 is satisfied. Theorem 3.5.5 allows to compute such a k-constant corresponding
to the output voltage of the current-driven subcircuit. This is discussed in Example
4.2.4.

Examples

Here we discuss some prototypical examples of circuit/circuit couplings, which are de-
picted in Figures 4.3, 4.4 and 4.5. For each of these cases, we briefly discuss convergence
criteria for both options of source coupling.

Example 4.2.4 (Circuit/resistance (Figure 4.3)) We consider the coupled circuit
in Figure 4.3a.

Source coupling leaves us a choice: The resistance can be the voltage-driven subsystem,
which implies that subcircuit A is current-driven. This coupling situation is depicted in
Figure 4.3b. Conversely, the resistance can be the current-driven subsystem and circuit
A voltage-driven. This coupling corresponds to Figure 4.3c.

In Figure 4.3b, where the resistance subsystem is voltage-driven, the convergence The-
orem 4.2.3 yields that

• WR is convergent with rate
√
Hc (Jacobi) or Hc (GS) if H is sufficiently small

and the coupling nodes are CV-connected in subcircuit A

for some generally unknown (or hard to obtain) constant c, where H denotes the time
interval length. Note that according to the theorem, this still holds if the resistance
subsystem is replaced by any LRI circuit, or even by any circuit as long as the coupling
nodes are not CV-connected in the (sub)circuit replacing the resistance.
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C

Circuit A

i j

(a) Partitioned circuit

Circuit A

j
i

im = ivm

vm = ei − ej

ji

(b) A is current-driven

Circuit A

ji
im = ivm

vm = ei − ej

ji

(c) A is voltage-driven

Figure 4.4.: (a) shows a partitioned circuit with coupling nodes i, j. The blue subcircuit
consists only of C and the red subcircuit A is arbitrary. In (b) and (c), the
two source coupling options are depicted.

L

Circuit A

i j

(a) Partitioned circuit

Circuit A

j
i

im = ivm

vm = ei − ej

ji

(b) A is current-driven

Circuit A

ji
im = ivm

vm = ei − ej

ji

(c) A is voltage-driven

Figure 4.5.: (a) shows a partitioned circuit with coupling nodes i, j. The blue subcircuit
consists only of L and the red subcircuit A is arbitrary. In (b) and (c), the
two source coupling options are depicted.
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G1

G3

G2

i j

im = ivm

vm = ei − ej

Figure 4.6.: A specific circuit discussed in Example 4.2.4. The CV-components contain-
ing the coupling nodes are dashed.

If the coupling nodes in circuit A are not CV-connected, but CVR-connected, Theorem
4.2.3 does not apply. However, we can derive a criterion exploiting Theorems 3.5.5 and
4.1.3. This scenario with a specific subcircuit A is shown in Figure 4.6, where the
coupling nodes are R-connected.

For simplicity and to sketch the principal idea, we assume linear resistors in the fol-
lowing. The Jacobi WR scheme of the coupled system reads

ikvm = G(ek−1
i − ek−1

j )

fA(ẋk, xk, t) = (êi − êj)ik−1
vm ,

where ei denotes a node potential and êi the i-th unit vector. (That both are described by
the letter e is a coincidence here). The functions fA describes MNA of circuit A. In the
first subsystem, ivm is both the output and the only unknown. Hence, the first subsystem
satisfies Conditions (4.8) and (4.9) of the convergence Theorem 4.1.3 with k1 = G. Note
that this still holds for the case of resistive networks if we adjust k1 = Gij and Gij is the
effective conductance between the coupling nodes.

The second subsystem represented by circuit A satisfies Condition (4.10) since we as-
sumed that the coupling current forms a loop with CVR-edges, and in that case Theorem
3.5.1 yields an according estimate. Applying Theorem 3.5.5 to circuit A yields the con-
stant k2 : The estimate therein satisfies Condition 4.11 with k2 = RA

ij, where RA
ij is the

resistive distance as defined in 3.5.4 and the superscript A only indicates that it is mea-
sured in circuit A. RA

ij measures the resistive distance between the two CV-components
containing the coupling nodes i and j.

Hence, we obtain for Figure 4.3b that

• GS WR converges with rate Hc+ G
GAij

, if H is sufficiently small, the coupling nodes
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are CVR-connected in subcircuit A and

GRAij =
G

GA
ij

< 1, GA
ij := (RA

ij)
−1.

In the generalized case, where the resistance is replaced by a resistive network, this
criterion becomes GijR

A
ij =

Gij
GAij

< 1. We could therefore reformulate the topological

criterion as: The coupling nodes are CVR-connected in A and the effective conductance
Gij between the coupling nodes in the resistive (voltage-driven) subsystem is smaller
than the “effective conductance” GA

ij between the coupling nodes in the (current-driven)
subcircuit A.

In the specific example in Figure 4.6, we accordingly obtain WR convergence if Gblue <
G1 +G2. The conductances G3 and G4 are irrelevant.

If the resistance G2 in Figure 4.6 is replaced by a capcitance or a voltage source, the
coupling nodes become CV-connected and we obtain convergence according to Theorem
4.2.3. If G2 is replaced by an inductance or voltage source instead, the convergence
criterion becomes Gblue < G1.

In Figure 4.3c, the resistance is the current-driven subsystem. Our results do not
provide any prediction for a possible convergence of WR. Both subcircuits satisfy the
preconditions of the second statement of Theorem 3.5.1, and hence Conditions (4.8)-
(4.11) are satisfied for k1 = G−1 = R and some k2, which we can not further specify.

Example 4.2.5 (Circuit/capacitance (Figure 4.4)) We have the same situation as
in Example 4.2.4, but the resistance therein is replaced by a capacitance.

In the coupling situation of Figure 4.4b, the capacitance is the voltage-driven subsys-
tem. The preconditions of Theorem 4.2.3 guaranteeing WR convergence are not satisfied.
According to Theorem 3.5.1, a perturbation of the coupling voltage leads to an index-two
type estimate. Hence, the coupling from Figure 4.4b is not recommendable for WR.

If the capacitance is the current-driven subsystem as shown in Figure 4.4c, the situa-
tion is much better: Theorem 4.2.3 yields for some c > 0 that

• WR converges with rate
√
Hc (Jacobi) or Hc (GS), if H is sufficiently small and

the coupling nodes i and j are not CVR-connected in the (voltage-driven) subcircuit
A.

Note that this criterion is still satisfied if the capacitance is replaced by any subcircuit
with a CV-path between the coupling nodes i and j.

Example 4.2.6 (Circuit/inductance (Figure 4.5)) Here, one subcircuit is repre-
sented by an inductance.

In the coupling situation of Figure 4.5b, the inductance is the voltage-driven subsystem.
Theorem 4.2.3 yields that the existence of a constant c > 0 such that
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• WR converges with rate
√
Hc (Jacobi) or Hc (GS), if H is sufficiently small and

the coupling nodes are CV-connected in (the current-driven) subcircuit A.

However, it is easy to see that the criterion of Theorem 4.2.3 is not sharp here. Let
us, for simplicity, consider a linear inductance. The Jabobi WR scheme of the coupled
system then reads

Likvm = ikvm(t0) +

∫ t

t0

ek−1
i − ek−1

j dτ

fA(ẋk, xk, t) = (êi − êj)ik−1
vm ,

where ei denotes a node potential and êi the i-th unit vector, and fA describes MNA of
circuit A. In the first subsystem, ivm is both the output and the only unknown. Clearly,
the first subsystem satisfies Conditions (4.8) and (4.9) with k1 = 0 of the convergence
Theorem 4.1.3. Circuit A is the current-driven subsystem. It satisfies the preconditions
for the index-one type estimate of the second statement of Theorem 3.5.1 if the coupling
nodes i and j are CVR-connected in A. Consequently, the second subsystem satisfies
Conditions (4.10) and (4.11) for some k2 if the coupling nodes are CVR-connected.
Since k1 = 0 and hence k1k2 = 0, the convergence Theorem 4.1.3 then yields for Figure
4.5b that

• WR converges with rate
√
Hc (Jacobi) or Hc (GS), if H is sufficiently small and

the coupling nodes are CVR-connected in (the current-driven) subcircuit A,

which relaxes the requirement on the coupling nodes in A from CV-connected to only
CVR-connected.

This “lack of sharpness” in the topological convergence criterion of Theorem 4.2.3 is
due to an incomplete understanding of voltage source perturbations. For current source
perturbations, Section 3.5 yields Theorems 3.5.3 and 3.5.5, which can be seen as refine-
ments of Theorem 3.5.1 adressing only the voltage over a perturbed current source. In
contrast, analogous results could not (yet) be achieved for voltage source perturbations.

Without elaborating further we mention here that replacing the inductance by an LR-
series in Figure 4.5b, we have the same situation: the topological convergence criterion of
Theorem 4.2.3 requires that the coupling nodes are CV-connected in (the current-driven)
subcircuit A. However, it is easy to check that here too the output current of the LR-
subcircuit is of ODE-type, that is, the LR subsystem satisfies Conditions (4.8) and (4.9)
with k1 = 0, which means that the general convergence Theorem 4.1.3 implies that CVR-
connected coupling nodes in subcircuit A are sufficient to guarantee WR convergence.

The coupling in Figure 4.5c, where the inductance is the current-driven subsystem,
is not recommendable. The preconditions for the index-one type estimate of the second
statement of Theorem 3.5.1 are not fulfilled. Hence, we have no basis for Theorem 4.1.3
to apply.
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Discussion

As a direct consequence of on the hand the perturbation analysis in Section 3.5, notably
Theorems 3.5.1 and 3.5.3, and on the other hand the convergence Theorem 4.1.3 for
coupled DAEs, we obtained convergence Theorem 4.2.3 for coupled circuits. It mainly
provides a sufficient topological convergence criterion. If this criterion is satisfied, WR
converges with rate Hc (or

√
Hc in the Jacobi case) for some constant c and the time

interval lenght H. This means that choosing H → 0 sufficiently small, the convergence
gets arbitrarily fast, which is a good situation to apply the windowing technique. The
constant c, however, is generally unknown, so that the rate Hc is no guarantee for fast
convergence for any fixed H.

While the focus of this work are coupled DAEs, it is worth mentioning the well-
known fact that WR methods converge even superlinearly in the case of coupled ODEs,
cf. e.g. [Gand15]. This seems to indicate the possibility of superlinear convergence for
coupled DAEs if certain favourable dynamic coupling structures are satisfied.

One practical challenge is disregarded in Theorems 4.1.3 and 4.2.3, namely consistent
initialization. Since we deal with (implicit) index-two DAEs, this is a complex matter,
which we bypassed by assuming that the set of variables whose initial values are not
algebraically fixed is given. (Precisely, this assumption is implied in the matrix A, which
first appeared in Corollary 3.4.6 and which is generally hard to obtain.) For a systematic
study of consistent initialization for DAEs and circuit DAEs, we refer to [Est00,Bau12].
In [Cor20], the problem of consistent initialization is discussed in the context of WR.

We want to point that according to the convergence Theorem 4.1.3, we have to expect
WR convergence also for weaker (topological) requirements than formulated in Theorem
4.2.3, leading to a rate of convergence of Hc + k (or

√
Hc+ k in the Jacobi case) with

k < 1. However, for the practical application to complex problems, including such cases
in a convergence criterion seems of less interest for two reasons:

Firstly, the convergence rate is obviously “worse”, meaning even for H small we can
not reach a rate of convergence below 0 < k < 1 (or

√
k).

Secondly, WR in that case could only be guaranteed to converge if k < 1. This
means to predict convergence, we have to specifically determine k, which is usually
costly. For coupled circuit problems, such a constant k generally depends on the elements
resistances, inductances and / or capacitances. For nonlinear circuits, these values are
state-dependent, which makes the precise computation of k a nearly hopeless project.

An Example for this case where k 6= 0 is discussed in 4.2.4 (Figure 4.3b).

It is worth noticing that convergence Theorem 4.2.3 has one more “blind spot” where
it fails to predict WR convergence. Example 4.2.5 (Figure 4.5b) provides a scenario for
this situation and discusses it. This blind spot stems from an incomplete understanding
of perturbation of voltage sources: For the effect of current source perturbations on the
circuit, Theorem 3.5.3 can be seen as a refinement or add-on of Theorem 3.5.1, specifying
in which situations the perturbation of the voltage over a perturbed current source is of
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ODE-type. A comparable result must be expected to exist for perturbed voltage sources,
but could not yet be formulated. The mentioned blind spot is due to the lack of such a
result.

Apart from these two special cases of a nonzero k and the blind spot, the examples
mainly serve the purpose to illustrate the topological convergence criterion by simple, but
enlightening prototypical cases. Even though no rigorous proof is given, the examples
strongly suggest that it can be crucial for WR convergence which subsystem is chosen
as current-driven and which one as voltage-driven.

To our best knowledge, a comparable result to Theorem 4.2.3, providing a sufficient
topological convergence criterion for nonlinear index-two coupled circuit DAEs, does not
exist in literature. In [Lel82,WOSR85,AG01,Bar04,BBGS13], instances for convergent
coupling settings are given. However, they rely on the comparably restrictive coupling
conditions.
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4.3. WR on coupled field/circuit models

Lumped circuit models such as MNA are well-established in electrical engineering. How-
ever, they neglect the spatial dimension and therefore distributed phenomena like the
skin effect. For certain devices, this may lead to inaccuracies of unacceptable mag-
nitude in the simulation, e.g. for electric machines [Sal95] or the quench protection
system of superconducting magnets in particle accelerators [Bor+17]. These cases call
for field/circuit coupling [SGB10], [CSMBPAV17]. To solve such coupled systems, it is
often advisable to use WR methods, since they allow for dedicated step sizes and suit-
able solvers for the different subsystems, and even for the use of proprietary blackbox
solvers. The coupled field/circuit model considered here is a DAE in the time domain
after space discretisation of the field system.

This section presents convergence criteria for coupled field/circuit models whose

• space-discrete field DAE is of index 1.

• field surrounding circuit DAE is of index 2.

As in the previous sections, the convergence criteria are formulated in terms of the circuit
topology between the coupling nodes.

This whole Section 4.3 and the field/circuit simulation results in the subsequent Sec-
tion 4.4 were developped in a joint work with Idoia Cortes Garcia, Sebastian Schöps and
Caren Tischendorf, cf. [CPST20].

4.3.1. Coupled field/circuit model and WR algorithm

To describe the electromagnetic (EM) field part, we consider a magnetoquasistatic ap-
proximation of Maxwell’s equations in a reduced magnetic vector potential formula-
tion [ET18]. This leads to the curl-curl eddy current partial differential equation (PDE).
The circuit side is formulated with the MNA. For the numerical simulation of the coupled
system, the method of lines is used with a finite element (FE) discretisation. Altogether,
this leads to a time-dependent coupled system of DAE initial value problems (IVPs),
described by

Mȧ+K(a)a−Xim = 0, X>ȧ = vc, pm(a, im) = im (4.17)

fMNA(ẋ, x, t) =

(
Amim

0

)
, pc(x) = A>me =: vc. (4.18)

The circuit Equation (4.18) arises from the MNA. The incidence matrix Am describes
the position of the field device in the circuit. Its number of rows equals the number
of nodes in the circuit (minus one due to the reference node). As used throughout

the thesis, x =
( e
il
iv

)
collects all node potentials e and currents through inductors and
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voltage sources il and iv. Furthermore, im is the current through the field device, which
acts like an (externally computed) current source on the circuit.

The first Equation (4.17) represents the space-discrete field model based on the ma-
trices

(M)ij =

∫
Ω

σωi · ωj dV, (K(a))ij =

∫
Ω

ν(a)∇× ωi · ∇ × ωj dV , (4.19)

which follow from the Ritz-Galerkin approach using a finite set of Nédélec basis functions
ωi [Mon03] defined on the domain Ω. Here, σ denotes the space-dependent electric
conductivity and ν(a) the magnetic reluctivity that can additionally depend nonlinearly
on the unknown magnetic vector potential a.

The current through the field device is described by im. Furthermore, the excitation
matrix is computed from a winding density function χj modelling the j-th stranded
conductor [Schö11] as

(X)ij =

∫
Ω

χj · ωi dV . (4.20)

Assumption 4.3.1 The space-discrete field DAE (4.17) meets the following properties:

(i) M is symmetric and positive semi-definite.

(ii) X has full column rank.

(iii) X>M = 0.

(iv) The function κ defined by κ(a) := K(a)a is strongly monotone and locally Lipschitz
continuous.

The assumptions are in agreement with previous formulation in the literature, e.g.
[CGS20, Schö11]. The first Assumption 4.3.1(i) follows naturally if a Ritz-Galerkin
formulation (4.19) is chosen.

The full column rank Assumption 4.3.1(ii) follows from the fact that the columns are
discretisations of different coils that are located in spatially disjoint subdomains.

The orthogonality Assumption 4.3.1(iii) is a consequence of the stranded conductor
model, in which eddy currents are neglected [Schö11] and thus a vanishing conductivity
is assumed. On the continuous level, conductive domains are disjoint to the support
of the stranded conductor winding functions. This assumption may be violated on the
discrete level, e.g. if coils and conductors are in contact due to the support of the basis
functions, see [Schö11, Assumption 3.5].

Finally, the monotonicity Assumption 4.3.1(iv) follows from the strong monotonicity
of the underlying nonlinear material law, i.e. the BH-curve [Pec04].
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4.3.2. Analysis of the space-discrete field DAE

In order to apply Theorem 4.1.3 to the WR scheme of a coupled field/circuit problem,
examine the sensitivity of the field DAE (4.17) to perturbations of the WR input vc.

Lemma 4.3.2 Let Assumption 4.3.1 hold. Then, for a given continuous source term
vc, there exists a coordinate transformation (w, u) = T−1a and a system of the form

u̇ = θ(u) +Gvc, w = Ψ(u), im = ϕ(u) (4.21)

where θ, Ψ and ϕ are locally Lipschitz continuous, such that (a, im) solves the space-
discrete field DAE

Mȧ+K(a)a−Xim = 0, X>ȧ = vc (4.22)

if and only if (u,w, im) solves Equation (4.21).

Proof: We recall that X>M = 0 and X has full column rank by Assumption 4.3.1.
Hence, the columns Xi of X can be extended to a basis BM of kerM such that

BM = {X1, . . . , Xn, b1, . . . , bl}

and the vectors Xi ⊥ bj for any i = 1, . . . , n and j = 1, . . . , l. Note that this way of
construction guarantees that bj ∈ (kerM ∩ kerX>) for j = 1, . . . , l.

By means of this basis, we define the matrices

QMX :=
(
b1 · · · bl

)
, QM :=

(
QMX X

)
and a matrix PM such that T :=

(
QMX X PM

)
is nonsingular and the columns satisfy

the pairwise orthogonality conditions

P>MXi = 0 ∀i = 1, . . . , n, P>Mbi = 0 ∀j = 1 . . . , l.

The pair {PM , QM} is a kernel splitting pair in the sense of Definition 3.1.4.

Writing κ(a) := K(a)a, we equivalently transform the field DAE with new coordinates
Tα = a:

T>MTα̇ + T>κ(Tα)− T>Xim = 0,

X>T α̇ = vc.
(4.23)

With α := ( wu ) and u := ( u1u2 ), it holds

Tα = QMXw +Xu1 + PMu2
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and the transformed DAE (4.23) has the detailed form

Q>MXκ(QMXw + (X PM)u) = 0,

X>κ(Tα)−X>Xim = 0,

P>MMPM u̇2 + P>Mκ(Tα) = 0,

X>Xu̇1 = vc.

Next we show that

(i) the first equation can be resolved for w.

(ii) the underlined matrices are nonsingular.

(i) Since κ is strongly monotone and QMX has full column rank, it follows with Lemma
3.3.9 that

(w, u) 7→ Q>MXκ(QMXw + (X PM)u)

is strongly monotone w.r.t. w. Thus, Lemma 3.3.6 yields the desired the existence of a
Lipschitz continuous Ψ such that w = Ψ(u).

(ii) Obviously X>X is nonsingular since X has full column rank.
Recalling that M is symmetric and positive semi-definite, it follows that there exists

a matrix L such that the factorization M = L>L holds. Furthermore, MPM = L>LPM
has full column rank with Lemma 3.1.6. This implies full column rank of LPM , and
consequently

P>MMPM = P>ML
>LPM

is nonsingular.
Inverting the nonsingular matrices then yields a system of the form

u̇ = θ̃(u,w) +Gvc, w = Ψ(u), im = ϕ̃(u,w).

Defining θ(u) := θ̃(u,Ψ(u)) and ϕ(u) := ϕ̃(u,Ψ(u)) then yields the desired result, where
local Lipschitz continuity of ϕ and θ follows from local Lipschitz continuity of κ and Ψ.

�

We assume that there exists an a priori estimate for the inherent ODE u̇ = θ(u) + Gvc
of the field DAE.

Assumption 4.3.3 On a fixed time interval [t0, T ], consider the space-discrete field
DAE and the corresponding inherent ODE u̇ = θ(u)+Gvc as in Lemma 4.3.2 Then, any
solution u of the inherent ODE satisfies an a priori bound of the form

|u(t)| ≤ |u(t0)|+ c(t)|vc(t)| ∀t ∈ [t0, T ],

where c(t) is continuous.
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4.3.3. Convergence

For given (consistent) initial values, we consider the Jacobi WR of the coupled DAE
(4.17)-(4.18), which reads

Mȧk +K(ak)ak −Xikm = 0, X>ȧ = vk−1
c , pm(ak, ikm) = ikm, Ama(t0) = aIV0

(4.24)

fMNA(ẋk, xk, t) =

(
Amik−1

m

0

)
, pc(x

k) = A>mek =: vkc Acx(t0) = xIV0 .

(4.25)

Remark. Note that this Jacobi WR scheme implies that the circuit subsystem is current-
driven; that is, it receives currents ik−1 as inputs in each iteration step, and the coupling
voltage input vc is internally computed. Conversely, the field subsystem is voltage-driven.

Theorem 4.3.4 Consider the coupled field/circuit DAE (4.17)-(4.18). Let the field sub-
system (4.17) satisfy Assumptions 4.3.1 and 4.3.3, and let the circuit subsystem (4.18)
satisfy Assumptions 2.1.3 and 3.4.3.

Furthermore, let the coupling inputs of the coupled circuit Equations (4.14) satisfy the
following topological property:

(i) Each coupling current edge forms a loop with CVR-edges in the circuit which cor-
responds to Subsystem (4.18).

Then, there exists a constant ĉ > 0 such that for HT := T − t0 sufficiently small to
satisfy HT <

1
ĉ
, it holds:

The Jacobi sequence (ak, ikm, x
k), defined by Iteration (4.24)-(4.25), converges in

(C([t0, T ],Rn), ‖ · ‖[t0,T ]) to the solution (a, im, x) of (4.17)-(4.18), and it has rate of
convergence

√
HT ĉ.

Remark. The convergence result holds for any continuous initial guess functions v0
c , i

0
m.

Remark. An analogous result holds for the GS WR, where we obtain linear rate of
convergence HT ĉ. This follows from Theorem 4.1.3, whose preconditions are satisfied as
the subsequent proof shows.

Proof: Instead of the field DAE (4.17), we consider the equivalent normal form (4.21).
From Assumption 4.3.3, it follows that for any constant C > 0 and any bounded input
vc ∈ B(C), where B(C) is a ball of continuous functions on [t0, T ] bounded by C (cf.
(3.55)), the corresponding solution |u(vc)(t)| is bounded. This implies that for any
C > 0 and any vc, v

δ
c ∈ B(C), the corresponding solutions u and uδ stay within a

domain on which θ is (globally) Lipschitz continuous with a Lipschitz constant L which
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is independent of vc, v
δ
c . Hence, we can derive

|u(t)− uδ(t)| ≤ |u(t0)− uδ(t0)|+
∫ t

t0

|θ(u(τ))− θ(uδ(τ))|dτ + |A|∗
∫ t

t0

|vc(τ)− vδc(τ)|dτ

≤ |u(t0)− uδ(t0)|+ L

∫ t

t0

|(u(τ))− (uδ(τ))|dτ + |A|∗
∫ t

t0

|vc(τ)− vδc(τ)|dτ,

with | · |∗ an induced matrix norm. Then, the Gronwall Lemma 3.3.14 yields for some
c > 0

|u(t)− uδ(t)| ≤ c

(
|u(t0)− uδ(t0)|+

∫ t

t0

|vc(τ)− vδc(τ)|dτ,
)

(4.26)

For the output im = ϕ(u), it follows for some c̃ > 0 that

|im(t)− iδm(t)| ≤ c̃

(
|u(t0)− uδ(t0)|+

∫ t

t0

|vc(τ)− vδc(τ)|dτ,
)

(4.27)

due to local Lipschitz continuity of ϕ and the a priori estimate for u.
If u(t0) = uδ(t0), Equations (4.26) and (4.27) satisfy Conditions (4.8) and (4.9) with

k1 = 0.

Concerning the circuit subsystem, we note that we have only perturbed current sources
and each of the corresponding edges forms a loop with CVR-edges by precondition.
Hence, the second statement of Theorem 3.5.1 and the linearity of the output function
imply that Conditions (4.10) and (4.11) hold for some k2.

Since k1 = 0, it follows that k1k2 = 0 regardless of k2. Thus, the preconditions of the
convergence Theorem 4.1.3 are satisfied. �

Sketch for a field model with relaxed assumptions

A careful review of the proof of the decoupling Lemma 4.3.2 hints at the following: If
we drop or relax Assumption 4.3.1(iii), this may lead to a normal form, where instead
of im = ϕ(u) in Equation (4.21), we obtain an output im which depends on the input
vc, that is,

im = ϕ̃(u, vc)

for some locally Lipschitz continuous function ϕ̃. Analogous considerations as in the
proof of Theorem 4.3.4 reveal that the decoupled field DAE still satisfies conditions of
the form (4.8) and (4.9) (of the convergence Theorem 4.1.3), but in contrast to the
case considered therein, they hold for some constant k1 ∈ R; we do not obtain k1 = 0
anymore.
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To guarantee convergence, we can still strengthen the requirements on the topological
position of the coupling elements in the circuit: According to Theorem 3.5.3, the circuit
subsystem satisfies conditions of the form (4.10) and (4.11) with k2 = 0, if the coupling
current edges according to im form loops with CV-loops. This yields convergence of WR
again according to Theorem 4.1.3.

That way, we compensate the relaxed assumptions on the field model with stronger
assumptions on the coupling conditions for the circuit: Instead of requiring that the
coupling current edges form loops with CVR-edges, we now require that they form loops
with CV-edges.

To sum it up, we get the following result:

• Consider the case that relaxed assumptions on the field model result in a normal
form (4.21) of the field DAE, where im = ϕ(u) is replaced by an equations of the
form im = ϕ̃(u, vc). Then, WR is convergent if each coupling current of the circuit
subsystem forms a loop with CV-edges.

In Figure 4.10, the example on the left satisfies this stronger requirement for the
circuit, since the coupling nodes are connected by a (dashed) CV-path. The example
on the right does not satisfy it. In fact, the coupling nodes there are not even CVR-
connected.

4.4. Numerical tests

This section presents simulations of toy examples for coupled circuit/circuit (Subsection
4.4.1) and field/circuit (Subsection 4.4.2) problems. Each of the subsections features
one problem on which WR is convergent and one on which WR is divergent.

4.4.1. Circuit/Circuit

To illustrate the convergence behaviour of the GS WR scheme according to the derived
criteria, we consider the toy example coupled circuits in Figures 4.7a and 4.7b with
two coupling nodes. Both are described with linear MNA (2.12) and the (arbitrary)
parameters R = 1Ω, L1 = 0.1H, L2 = 5H, C = 1F, is(t) = sin(2t) + 5 sin(20t) and
vs(t) = sin(t) + sin(20t) are set.

The GS WR algorithm is applied on the simulation time window I = [0, 0.8] s and
the internal time integration is performed with the implicit Euler scheme with time step
size δt = 10−2 s.

The coupled circuit in Figure 4.7a satisfies the conditions of the convergence Theorem
4.3.4: In the voltage-driven subcircuit, represented by the single element subcircuit L1 in
blue, the coupling voltage does not form a loop with CV-elements. In the current-driven
subcircuit drawn in red, the coupling current forms a loop with CV-elements.
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Figure 4.7.: Two examples of a circuit/circuit coupling. For WR, we chose the blue
inductance L1 as the voltage-driven subsystem in both cases. Hence, the
coupling voltage does not form a loop with CV-elements in the voltage-
driven subsystem. In (a), the coupling current forms a loop with the dashed
CV-elements in the current-driven subcircuit drawn in red. In (b), the
coupling current forms no loop with CV-elements, not even with CVR-
elements. The LI-cutset between the coupling nodes is dashed. The node n
is labeled since its potential is displayed in the plots in Figure 4.8.

The theoretical result is illustrated by the successful simulation, see Figure 4.8a, of the
model shown in Figure 4.7a which satisfies the convergence criterion of Theorem 4.3.4.
However, numerical simulations displayed in Figure 4.8b of the model shown in Fig-
ure 4.7b show that WR can diverge indeed if the criterion is not satisfied: The coupling
current does not form a loop with CV-elements in the (red) current-driven subcircuit.
In fact, it does not even form a loop with CVR-elements.

4.4.2. Field/Circuit

As in the previous subsection for the circuit/circuit case, we here present illustrative
examples for the field/circuit case which confirm our theoretical convergence result 4.3.4.

The toy example circuits in Figures 4.10a and 4.10b are again described with linear
MNA (2.12) and the (arbitrary) parameters R = 1Ω, L = 5H, C = 1F, is(t) = sin(2t) +
5 sin(20t) and vs(t) = sin(t) + sin(20t) are set. The field model is taken from [Mee18].

The GS WR algorithm is applied on the simulation time window I = [0, 0.8] s and
the internal time integration is performed with the implicit Euler scheme with time step
size δt = 10−2 s.

The theory is illustrated by the successful simulation, see Figure 4.11a, of the model
shown in Figure 4.10a which satisfies the convergence criterion of Theorem 4.3.4: The
coupling current in the circuit subsystem forms a loop with CVR-elements (even with
CV-elements). Numerical simulations of the model shown in Figure 4.10b show that
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(a) Convergent case.
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Figure 4.8.: Monolithic and WR solution for k = 1, 2, 3 iterations in (a) and k = 1, 2
in (b). Due to rather slow convergence in (a), we showed a third iteration.
Figure (a) refers to the circuit/circuit example in 4.8a and Figure (b) refers
to 4.8b.

WR can diverge indeed if the criterion is not satisfied.

4.5. Conclusion

This chapter is concerned with the convergence analysis of WR.
First, a convergence theorem for WR on coupled DAEs is presented in Section 4.1.

This theorem is exploited in Section 4.2 to derive topological WR convergence criteria
for coupled circuits. The topological criteria are illustrated by prototypical examples.
Sections 4.1 and 4.2 are concluded by discussions of the results. Section 4.3 offers
topological WR convergence criteria for a coupled field/circuit model. The theoretical
results of the preceding sections are confirmed by simulations of numerical tests with
toy examples, which are presented in Section 4.4.
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Primary coil

Figure 4.9.: Single phase isolation transformer (‘MyTransformer’), see [Mee18].

qv qi

LG
C

n3

EM

(a) Convergent case.

qv qi

LG
C

n3

EM
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Figure 4.10.: Field/circuit coupling with field model from Figure 4.9. For WR, we chose
the field as the voltage-driven subsystem. In (a), the input element forms
a loop with CVR-elements (in the circuit subsystem). The CVR-elements
are dashed. More precisely, it forms two such loops: One loop with the
resistance, and one loop with the CV-path. However, the existence of at
least one loop is relevant. In (b), the coupling element forms no loop with
CVR-elements. The LI-cutset between the coupling nodes is dashed. The
node n is labeled since its potential is displayed in the plots in Figure 4.11.
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(a) Convergent case of the field/circuit coupling
from Figure 4.10a.
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(b) Divergent case of the field/circuit coupling
from Figure 4.10b

Figure 4.11.: Monolithic and WR solution for k = 1, 2 iterations. In (a), the graph of the
monolithic solution is covered by the second iterate due to fast convergence.
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5. Summary and Outlook

This thesis is devoted to the study of a differential-algebraic electrical circuit model.
Specifically, the focus is two-fold: In the first part of the thesis, the class of circuit
describing differential-algebraic equations (DAEs) arising from the model is analyzed.
The second part examines the convergence behaviour of waveform relaxation (WR),
which is an iterative method to solve dynamical systems numerically.

Regarding the analysis, we provided a detailed DAE normal form for nonlinear circuit
DAEs of index two, and we formulated assumptions guaranteeing the right hand side
of the normal form is locally Lipschitz continuous. Furthermore, offering an alternative
proof, we reproduced an existence and uniqueness result on bounded time intervals for
the circuit DAE. This result was first proved by [Jan15].

Exploiting the normal form, we established a systematic perturbation analysis which
relates the circuit’s sensitivity with respect to its independent sources on the one hand
to the network-topological position of the sources on the other hand. That way, we can
predict that the effect of an input perturbation on the circuit is comparably mild if the
position of the input satisfies certain toplogical criteria. Refinements of the criteria are
given if the perturbed input is a current source.

Building on the ground of the analysis, the second part of the thesis is dedicated to
WR and the quest for criteria guaranteeing WR convergence. It is a well-known fact
that WR can diverge on coupled DAEs, and WR convergence can not be guaranteed
unless the coupled DAE satisfies certain contractivity conditions. This fact, along with
sufficient contractivity conditions for different DAE classes, was broadly discussed in the
literature since the seminal work of Lelarasmee [Lel82] in 1982.

We first prove a convergence result containing sufficient WR contracticity conditions
on a general class of nonlinear implicit coupled DAEs of index two. However, similarly
to conditions formulated previously in the literature, it is hard to check if the conditions
are satisfied in general. Essentially, this requires the determination of certain Lipschitz
constants of a normal form. For that reason, prepared by the previous perturbation
analysis and the general WR convergence result, we offer a theorem stating comparably
“easy-to-check” topological contractivity conditions for the case of coupled circuit DAEs.
Furthermore, topological WR convergence criteria are given for the case of a specific
field/circuit model. Finally, the theoretical results are confirmed by simulations of toy
examples of circuit/circuit and field/circuit couplings.

A few questions arise naturally from this work.
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Concerning the perturbation analysis, we mentioned that we presented refinements of
the results for the case of perturbed current sources. We expect that similar refinements
exist for the case of perturbed voltage sources. To find them, besides being of general
interest for the circuit analysis, would presumably also allow to formulate topological
WR convergence criteria for coupled circuit scenarios which are not yet covered by our
results.

The fact that the presented WR convergence results are formulated on sufficiently
small time intervals rises the question if, or under which conditions, the convergence re-
sults can be maintained on arbitrary bounded intervals. The “ingredients” for a global
convergence result, namely an a-priori estimate for solutions and local Lipschitz conti-
nuity of the circuit DAE normal form, seem to be available.

On a more general note, the derivation of comparable topological WR convergence
criteria in other coupled multiphysical systems such as power/gas would be a interesting
challenge. The circuit DAE normal form which this work is based on is formulated under
the assumption of more or less general rank conditions, which allows to apply similar
principles to derive normal forms for other DAEs evolving from flow networks.

Finally, we find it intriguing to explore the opportunities of a consequent topological
interpretation of normal forms for circuit DAEs. When presenting the circuit normal
form, we indicated that Laplacian matrices and their inverses of certain contracted
graphs appear regularly therein. A first result exploiting this insight is given by Theorem
3.5.5, giving hope that more results of this type, expressing relevant (Lipschitz) constants
of the circuit DAE in terms of its topology, can be achieved.
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