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Although giraffes maintain the usual mammalian cervical number of seven vertebrae, their first thoracic vertebra (T1) exhibits

aberrant anatomy and has been hypothesized to functionally elongate the neck. We test this “functional elongation hypothesis”

by combining phylogenetically informed analyses of neck length, three-dimensional (3D) vertebral shape, and of the functional

significance of shape differences across a broad sample of ruminants and camelids. Digital bone models of the cervicothoracic

transition were subjected to 3D geometric morphometric analysis revealing how the shape of the seventh cervical (C7) has con-

verged in several long-necked species. However, we find a unique “cervicalization” of the giraffe’s T1. In contrast, we demonstrate

a “thoracalization” of C7 for the European bison. Other giraffids (okapi and extinct Sivatherium) did not exhibit “cervicalized” T1

morphology. Quantitative range of motion (ROM) analysis at the cervicothoracic transition in ruminants and camelids confirms

the “functional elongation hypothesis” for the giraffe in terms of increased mobility, especially with regard to dorsoventral flex-

ion/extension. Additionally, other factors related to the unique morphology of the giraffe’s cervicothoracic transition such as neck

posture and intervertebral stability are discussed and should be considered in future studies of giraffe neck evolution.

KEY WORDS: Camelidae, Cetartiodactyla, geometric morphometrics, range of motion, Ruminantia, vertebral column.

The neck of the giraffe (Giraffa camelopardalis: Mammalia,

Ruminantia) is an icon of evolutionary biology. Its exceptional

length is achieved while adhering to the mammalian “rule of

seven” cervical vertebrae (Flower and Gadow 1885; Simmons

and Scheepers 1996; Mitchell and Skinner 2003; Van Sittert et al.

2010; Arnold et al. 2017). Goethe (2012) and Owen (1866) al-

ready were familiar with the puzzling observation and mainte-

nance of just seven but extraordinary elongate cervicals in the

giraffe. Lankester (1908) was the first to note structural differ-

ences of the cervicothoracic transition in giraffes in comparison

to other mammals and proposed a functional elongation of the

neck. This “functional elongation hypothesis” posits that while
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maintaining a count of seven cervicals, the first thoracic verte-

bra (T1) has been functionally incorporated into the giraffe neck

despite maintaining its thoracic (i.e., rib-bearing) identity.

Specifically, Lankester (1908) qualitatively compared the

cervical shape of giraffes to other mammal species. The author

found that in the okapi and other ungulates, the articulation be-

tween the seventh cervical (C7) and T1 changes (from laterally

facing zygapophyseal facets to medially facing zygapophyseal

facets), whereas in the giraffe this change in the articulation pat-

tern occurs between T1 and T2. Lankester’s “functional elonga-

tion hypothesis” has been substantiated by recent evidence for

unique musculoskeletal features in agreement with increased mo-

bility at the giraffe’s cervicothoracic transition (Gunji and Endo

2016). Solounias (1999) reinvestigated Lankester’s observations
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and noted that many anatomical characters of the giraffe are lo-

cated one vertebra posteriorly compared to other mammals (e.g.,

roots of the brachial plexus and insertion of thoracic longus colli

muscles). He proposed that the giraffe escapes from the “rule of

seven” and possesses eight cervical vertebrae with insertion of

an additional vertebra between C2 and C6 (Solounias 1999). In

contrast to a homeotic variation (i.e., the transformation of one

morphology into another), a change in the number of segments is

referred to as a meristic variation (Bateson, 1894). Mitchell and

Skinner (2003) and Badlangana and Adams (2009) criticized this

idea based on the articulation of a rib on the giraffe’s T1 that

attaches directly to the sternum—the defining characteristic of a

thoracic vertebra. However, all authors agree that T1 of the giraffe

appears to be a transitional vertebra, because of its short spinous

process compared to other thoracic vertebrae. Moreover, T1 is

considered “semicervical” because its postnatal growth exponent

is between that of the cervical series (faster growth) and the tho-

racic series (slower growth) (van Sittert et al. 2010). Unexpect-

edly, Danowitz et al. (2015b) found that elongation of the neck

preceded the origin of the Giraffidae perhaps hinting at neck elon-

gation occurring within the Pecora, a clade of ruminants nested

within the Cetartiodactyla. In light of this debate, it is necessary

to revisit shape evolution of the neck-trunk transitional region of

giraffes using methodology that accounts for three-dimensional

(3D) vertebral shape, morphofunctional consequences, and for

phylogenetic context. These new data will allow us to elucidate

this long-standing evolutionary conundrum.

To test the “functional elongation hypothesis” of giraffe neck

evolution, the shapes of the vertebrae making up the cervicotho-

racic transition (C7 and T1) of 37 species representing all major

lineages of Ruminantia, and, for comparison due to their rela-

tively long necks, the Camelidae (Mammalia, Cetartiodactyla)

were analyzed (Fig. 1). We tested for a relationship of shape

changes with relative neck length and also conducted “virtual

experiments” using digital 3D surface models of the vertebrae

to assess the range of motion (ROM) between C7 and T1 to

characterize specifics of neck elongation in giraffes in contrast to

other relatively long-necked species as well as to all other species

analyzed. A phylomorphospace and a phenogram were created to

visualize how shape diversity of C7 and T1 as well as morpholog-

ical disparity between C7 and T1 (quantified as Procrustes differ-

ence) relate to phylogeny, respectively. We then directly studied

the association between the morphological data (shape, relative

neck length) and the functional data (ROM) using phylogenetic

generalized least squares regression (PGLS). We expected to

find similarity of C7 shape shared by relatively long-necked

species (see below) and quantified this potential convergence.

For the giraffe, we further expected to find a diverging shape of

T1 in comparison to all other species that results in increased

mobility at the cervicothoracic boundary. This combination of

diverging T1 shape and increased C7/T1 mobility would provide

quantitative evidence for the “functional elongation hypothesis.”

Three-dimensional models of partially damaged Sivatherium gi-

ganteum cervical specimens were included in a separate analysis

of vertebral shape to elucidate the form-function relationship

of the cervicothoracic transition within giraffids. Sivatherium

giganteum is a large, fossil giraffid with robust physique, but a

relatively short neck (Basu et al. 2016). In contrast to the extant

giraffe and due to their nonelongated necks, we hypothesized

the other giraffids in our sample (okapi and S. giganteum) to not

exhibit a combination of homeotic changes (i.e., “cervicaliza-

tion” of T1) and increased C7/T1 mobility as expected for the

giraffe.

Materials and Methods
SPECIMENS

Vertebrae stemming from the collections of major German

natural history museums, the Koninklijke Maatschappij voor

Dierkunde of Antwerp, and the Natural History Museum of Lon-

don were included in this study. All analyzed specimens appeared

to be skeletally mature (indicated by epiphyseal fusion). One

Camelus bactrianus (SMF 25542) specimen lacked complete epi-

physeal fusion in the vertebrae, but long bones of this specimen

clearly indicated an adult individual and it was included in the

analysis. No vertebrae showed any obvious pathologies. Both

sexes were sampled indifferently; wild-caught animals were pre-

ferred but zoo animals were also included in the study to compose

a larger dataset.

The sample includes vertebrae from 37 extant ruminant and

camelid species and one extinct giraffid. A total of 108 specimens

(i.e., 54 C7/T1 pairs) were included (SI 1 and 2). The vertebrae

of S. giganteum belong to two different individuals and both were

not completely preserved, but were examined using an adjusted

set of landmarks (see below). In both specimens of S. giganteum,

a part of the dorsal spinous process is missing. In the C7 speci-

men, the transverse process and parts of the interior costal facet

are missing as well. In the T1 specimen, parts of the vertebral

body and the interior costal facet are damaged (SI 3).

DATA ACQUISITION

Three-dimensional surface models of specimens were acquired

using either microcomputed tomography (µCT) or photogram-

metry (PH). All surface models are available on the public

database MorphoMuseum (https://doi.org/10.18563/journal.m3.

129; Müller et al. 2021). For µCT (YXLON FF35 CT scan-

ner, Museum für Naturkunde, Berlin), resolution ranged from

56 to 196 µm depending on the size of the vertebrae. The raw

data obtained by the CT scanner were further edited with Fiji
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Figure 1. Phylogeny of cetartiodactyls considered in this study. Symbols were assigned to the seven families examined (marked by gray

boxes). The time-calibrated tree is based on the study by Toljagic et al. (2018). Timescale inmillion years ago (MYA). Antil.=Antilocapridae;

Mosch. = Moschidae. See SI 2 for an overview of C7/T1 vertebrae pairs.

plug-ins for ImageJ (version 1.51k; Schneider et al. 2012, Schin-

delin et al. 2012). Scans were cropped to reduce the amount of

data and the contrast was increased before being saved as 16-bit

binary tiff stacks (image sequences). The created tiff stacks were

imported into Amira (Thermo Fisher Scientific, version 6.0.0), a

software for visual data analysis (Stalling et al. 2005), and 3D

bone surface models were created using the software’s segmen-

tation editor. The number of polygons was reduced to 1,000,000

consistent for all specimens.

For PH, high-resolution images were taken using a Canon

EOS 1200D digital camera with 18–55 mm standard zoom lens.

Specimens were fixed to a flat surface using modeling clay, and

photos were taken from around the specimen. Afterward, the ver-

tebra was turned upside-down and the process was repeated. The

EVOLUTION MARCH 2021 643
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images (about 70 images per specimen) were uploaded in Agisoft

Metashape (version 1.5.2), an image-based 3D modeling soft-

ware creating 3D objects from still images (Rcljić et al. 2019).

Using the commands “align photos,” “build dense cloud,” and

“build mesh,” surface models were generated. The two result-

ing models (e.g., top and bottom aspects of the vertebra) were

loaded into MeshLab (version 1.3.4 beta; Cignioni et al. 2008)

and merged using the “alignment” function. Vertebrae C7 and T1

of S. giganteum were digitized at the Structure and Motion Lab-

oratory of the Royal Veterinary College, London, using PH. Ver-

tebrae of one specimen of G. camelopardalis (KMDA M-10861)

were digitized at the Department of Veterinary Science, Univer-

sity of Antwerp, using a surface laser scanner. Both datasets were

made available to us prior to the study.

To test whether the digitizing method has an influence on

the results, two models of the same vertebra (C7 Vicugna vicugna

SMF 94752) were created using µCT and PH and were included

in a geometric morphometrics analysis with other specimens.

The two models plot extremely close to one another in the mor-

phospace (see SI 4). Hence, errors introduced into the analysis by

the method of model creation were neglected in our analysis.

Comparative data for neck and overall vertebral column

lengths were not available in the published literature for most of

the species. We therefore determined relative neck length. Rel-

ative neck length was the ratio between occiput to cervicotho-

racic boundary distance and overall occiput-tailhead distance (SI

5). This measure was derived from lateral aspect photos of the

species found on the internet with lengths measured using Im-

ageJ (Schindelin et al. 2012).

COMPARATIVE SHAPE ANALYSIS

Vertebral shape was assessed using 3D geometric morphomet-

rics. As vertebrae principally are bilaterally symmetrical struc-

tures, landmarks were only placed on one side (left side) of the

vertebra to quantitatively evaluate morphological differences. A

set of 31 landmarks was used (Fig. S6). All landmarks are type

II or type III (Bookstein 1997; SI 7 for landmark definitions).

To include C7 and T1 of S. giganteum in an additional analysis,

this landmark set had to be adjusted. Because the spinous process

is missing in both fossil vertebrae specimens and the transverse

process is missing in C7, seven landmarks were excluded.

Three-dimensional surface models (∗.ply) were loaded into

IDAV Landmark (version 3.0) (Wiley et al. 2005) and land-

marks were digitized on the surface of the 3D scans. Before

placing landmarks, the dorsal lines of the vertebral bodies were

aligned horizontally. Landmarking was performed by just one of

us (MAM) to keep the error introduced through the unavoidably

subjective placement of landmarks to a minimum.

The 3D coordinates of both vertebrae in each landmark set

(i.e., the full landmark set and the reduced landmark set to allow

inclusion of the fossil specimens) were superimposed by a gen-

eralized least squares Procrustes analysis (GPA) (Gower 1975;

Rohlf and Slice 1990; O’Higgins 2000; Rohlf and Corti 2000) us-

ing Morphologika2 (version 2.5). Because in some cases several

specimens of one species’ vertebrae were analyzed, these data

were averaged for species-level analyses.

To examine shape variation, principal component analyses

(PCA) based on the superimposed Procrustes coordinates were

carried out (Jolliffe 2011). In GPA, the information about size of

the specimens is preserved in centroid size (Zelditch et al. 2004).

To test if shape variation is a function of size, a multivariate re-

gression analysis (log-transformed centroid size against all PCs)

was performed implemented in Morphologika2. XY-plots of the

first four PCs with 95% confidence ellipses were created.

The distance in the multivariate morphospace between two

vertebrae was quantified using the Procrustes distance. This met-

ric provides a measure of the morphological similarity (low Pro-

crustes distance) and morphological disparity (high Procrustes

distance), respectively, between C7 and T1, considering all di-

mensions. The Procrustes distances (of each vertebra) from the

mean provides a measure of the morphological disparity within

the sample. It quantifies how morphologically similar or differ-

ent the vertebrae are depending on their position (C7 and T1,

respectively). The “morphol.disparity” function from the R pack-

age “geomorph” (Adams et al. 2017) was used to test if the mor-

phologies of C7 are significantly more diverse than that of T1 or

not.

PHYLOGENETIC COMPARATIVE METHODS

Because closely related species share a recent common history,

the data cannot be considered as independent (Harvey and Pagel

1991). Phylogenetic relationships from a molecular tree of Tol-

jagic et al. (2018) were used. The time-calibrated tree was pruned

to the 37 extant species that were sampled for our analyses. The

resulting tree was used in all following phylogenetically informed

analyses. Phylogenetically informed analyses were performed us-

ing the software R version 3.6.3 (respective packages are indi-

cated below) (R Development Core Team, 2019). The fossil S.

giganteum was considered the sister taxon to the extant giraffe

(G. camelopardalis) based on Danowitz et al. (2015a).

The “phylomorphospace” function in the R package “phy-

tools” (Revell 2012) was used to project the phylogenetic tree

into the morphospace resulting from the PCA (Sidlauskas 2008).

A phenogram using the Procrustes distance between C7 and T1

was built with the function “phenogram” from the R package

“phytools” (Revell 2012) to visualize morphological disparity

in relation to phylogeny. The phylogenetic signal in univariate

data (i.e., neck length, ROM) was estimated using Blomberg’s

K (Blomberg et al. 2003) with the function “phylosig” in the R

package “phytools” (Revell 2012). The degree of phylogenetic
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signal in the multivariate data (i.e., Procrustes shape variables)

was estimated using the multivariate version of Blomberg’s K-

statistic (Kmult: Adams 2014) with the function “physignal” in the

R package “geomorph” (Adams et al. 2017). It allowed us to test

whether the same trait properties are present in related taxa more

frequently than expected by Brownian motion (Blomberg et al.

2003).

Distantly related, putative convergent taxa fall closer to one

another in morphospace than to their relatives (Stayton 2006). To

test for convergent evolution in vertebral shape, we used the R

package “convevol” (Stayton 2017). Morphospace was defined

as the first three PC axes of the shape analysis for this analy-

sis (about 87% of total variance explained); subsequent PC axes

each contribute less than 5% of the variance. The function “con-

vrat” quantifies the degree of convergence providing the measure

C1 (Stayton 2015). C1 represents the proportion of the maximum

distance between the lineages that have been brought together by

subsequent evolution. It ranges from 0 (i.e., not convergent at all)

to 1 (i.e., fully convergent) (Stayton 2015). The significance of

convergence (as quantified by ‘convrat’) was evaluated using the

“convratsig” function (500 simulations).

RANGE OF MOTION

To assess ROM at the cervicothoracic transition (i.e., between C7

and T1) of all 37 extant species, 3D bone models were imported

into Autodesk Maya (version 2016) and arranged in the osteo-

logical neutral pose (ONP; SI 8). Following Vidal et al. (2020),

the ONP is defined as the full articulation of the zygapophyseal

facets, with complete overlap of the facet outlines in all three

anatomical planes (anteroposterior, lateral-medial, and dorsoven-

tral). These authors further detail that zygapophyseal joint cap-

sules are not thicker than a flat sheet with the same outline as the

bony facet and argue that using the zygapophyses to define a neu-

tral pose is better suited than using the intervertebral soft tissue

at the vertebral centra (Vidal et al. 2020).

A center of rotation was found by fitting (i.e., manually ad-

justing size and position) a semitransparent sphere matching the

curvature of the zygapophyseal facets of C7 with the sphere’s sur-

face from the lateral and dorsal perspectives (see Kuznetsov and

Tereschenko, 2010; Belayaev et al. 2020 for a similar approach

of using zygapophyseal curvature; SI 8). Next, a Maya “joint”

is placed into the center of the fitted sphere (cf. Arnold et al.

2014), with the axes of the joint set to match the anteroposterior,

lateral-medial, and dorsoventral axes of T1. Articulation of the

capitulum of the first rib usually spans the cervicothoracic tran-

sition and is composed of the caudal costal facet on C7 and the

cranial costal facet on T1 (both facets are thus also referred to as

demi-facets). To account for potential limitations in ROM due to

the presence of the rib at the cervicothoracic transition, two addi-

tional spheres were fitted (one on each body side) into the costal

facets to model the capitulum of the left and right first rib.

To finally derive ROM as osteologically plausible dorsoven-

tral flexion/extension, lateral bending, and intervertebral torsion,

we virtually moved the 3D bone model of an individual’s C7

relative to the individual’s T1 (SI 8). ONP was used as a refer-

ence pose for ROM measurement. The angle (in degree) of de-

flection was measured using the Maya “joint” (cf. Arnold et al.

2014; Nyakatura et al. 2015). Movement was considered implau-

sible when either (i) C7 post- and T1 prezygapophyses were no

longer overlapping (Taylor and Wedel, 2013; Krings et al. 2017)

or (ii) when bone collisions occurred in the model (Pierce et al.

2012; Arnold et al. 2014; Nyakatura et al. 2015; Manafzadeh and

Padian 2018; Regnault and Pierce, 2018; Nyakatura et al. 2019;

Manafzadeh and Gatesy 2020).

Bone collisions were identified by one of us (LM) and

the degree of possible deflection (positive and negative rotation

around each of the three anatomical axes) was quantified sepa-

rately. The sum of all plausible movements was defined as cumu-

lative ROM. This methodology does not account for soft tissues

that had been demonstrated to further restrict mobility (Arnold

et al. 2014; Manafzadeh and Padian 2018). However, assessment

of ROM using bone models derived from museum collections

allows to effectively include a larger number of specimens (no

cadavers needed) and often even fossils. Unfortunately, speci-

mens of S. giganteum could not be included in this analysis, be-

cause alignment of the zygapophyses was impossible as speci-

mens likely stem from different individuals.

The significance of the observed shape changes at the cervi-

cothoracic transition associated with neck length and ROM was

evaluated by performing a phylogenetic generalized least squares

regression (PGLS) on the aligned Procrustes coordinates using

the function “procD.pgls” (1000 random permutations) (“geo-

morph” package in R; Adams et al. 2017).

Results
COMPARATIVE SHAPE ANALYSIS

In the 3D geometric morphometric analysis of the two cervi-

cothoracic vertebrae (C7 and T1) for 37 ruminant and camelid

species, the first two principal components (PCs) together ex-

plain 82% of the total variance in shape (Fig. 2A). PC1 (71%)

reflects changes in the length of the vertebral body and the height

of the spinous process (longer processes and shorter bodies with

increasing PC score). PC2 (11%) especially shows alterations in

the inclination of the spinous processes (more cranial orienta-

tion with increasing PC score). PC3 explains 5% of the variance

(mainly related to changes in the length of the vertebral arch);

all other PCs had eigenvalues of less than 5% (SI 9). Ninety-five

percent of the total variance in shape is explained by the first 11
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Figure 2. Three-dimensional shape analysis of vertebrae at the cervicothoracic transition (C7 and T1) in representatives of ruminants

and camelids. (A) PC1/PC2 scatter plot of PCA using the full landmark set (37 extant species) with 95% confidence ellipses. The phylogeny

is projected into the morphospace. The dotted ellipse highlights the convergent occupation of the morphospace by C7 vertebrae of

long-necked species (Camelidae, Giraffa camelopardalis, and bovid Litocranius walleri). Lateral views of vertebrae models (scaled to

approximately same size of vertebral centrum) illustrate shape changes across the morphospace. (B) PC1/PC2 scatter plot of PCA using

the adjusted landmark set (37 extant species and damaged specimens of Sivatherium. giganteum). Note that T1 of Giraffa camelopardalis

plots outside the 95% confidence ellipse in panels A and B.
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Table 1. Phylogenetic generalized least squares (PGLS) regression results for the cervicothoracic transition.

Regression model df SS F-value r2 Z P-value

C7 shape∼ROM 1 0.221 3.127 0.084 2.005 0.022∗
C7 shape∼neck length 1 0.178 2.480 0.068 1.642 0.044∗
T1 shape∼ROM 1 0.215 2.495 0.068 2.495 0.083
T1 shape∼neck length 1 0.103 1.147 0.033 1.147 0.292
Procrustes distance C7-T1∼ROM 1 0.032 11.674 0.256 1.731 0.008∗
Procrustes distance C7-T1∼neck length 1 0.093 96.877 0.740 2.486 0.001∗
Neck length∼ROM 1 58.306 10.606 0.238 1.628 0.007∗

PCs (SI 10). The phylogenetic signal considering all Procrustes

shape variables was statistically significant, but low for C7

(Kmult = 0.35, P = 0.001) and for T1 (Kmult = 0.46, P = 0.046).

Multivariate regression revealed that allometry accounts for about

0.98% of total variance (Wilks’ lambda = 0.76, F = 1.77, P =
0.079). The 95% confidence ellipses of PC1 and PC2 of C7 and

T1 slightly overlap (Fig. 2A). Due to their large vertebral bod-

ies and short spinous processes, the cervical vertebrae plot fur-

ther left and the thoracic vertebrae with relatively short vertebral

bodies and long spinous processes further right (along PC1). The

morphological variance in C7 is greater than in T1 (Procrustes

variance: C7 = 0.084, T1 = 0.049, P = 0.023). The C7 of rel-

atively long-necked species (all camelids, the gerenuk, and the

giraffe have a relative neck length of ≥50%; SI 5) occupies a

common area of the morphospace of PC1 (Fig. 2A). Testing the

hypothesis that long-necked species convergently evolved similar

C7 morphology revealed moderate but significant convergence

when considering PC1-3 (C1 = 0.351, P = 0.005). By compari-

son, we did not find evidence for considerable convergent evolu-

tion of T1 morphology of long-necked species (C1 = 0.108, P =
0.464).

T1 of the giraffe plots clearly apart from the other T1 ex-

amined in this analysis and falls within the 95% confidence el-

lipse of the cervical vertebrae. It is the only thoracic vertebra not

falling into the 95% confidence ellipse of our dataset. Notice-

ably, C7 of Bison bonasus (the European bison) plots within the

95% confidence ellipse of T1 and is the only C7 falling out of the

C7 95% confidence ellipse in the PC1-PC2 scatter plot. PC3 and

PC4 reveal shape alterations in the length of the vertebral arch

(PC3) and the height of the vertebral body (PC4) (SI 9). Overall

shape differences between C7 and T1 are reflected in Procrustes

distances between these two bones of each species (Fig. 3). The

largest distances between C7 and T1 were found in the Camel-

idae and the giraffe (also note the large phenotypical difference

between okapi and giraffe that evolved in relatively little time;

Fig. 3). The smallest differences between both vertebrae were

found in the European bison. PGLS reveals that the shape dif-

ference between C7 and T1 is significantly explained by relative

neck length (P = 0.001; Table 1).

COMPARATIVE SHAPE ANALYSIS INCLUDING

SIVATHERIUM

Analysis of vertebrae of the cervicothoracic transition (C7 and

T1) including S. giganteum was conducted using an adjusted

landmark set due to missing parts in the fossil specimens. About

60% of the variance is explained by PC1 and PC2 (Fig. 2B). Here,

PC1 (37%) reflects alterations in the size of the zygapophyses and

the inclination of the neural arch. PC2 (24%) depicts changes in

the height of the neural arch and the length of the vertebral body.

PC3 explains 10% of the variance (SI 9); all other PCs had eigen-

values of less than 5%. Ninety-five percent of the total variance

in shape is explained by the first 19 PCs (SI 10). Nevertheless,

the 95% confidence ellipses of C7 and T1 only slightly overlap

in the PC1 versus PC2 scatterplot (Fig. 2B), too. C7 and T1 of

S. giganteum plot within the respective 95% confidence ellipses

and plot closer to the okapi than to the giraffe. Even without the

consideration of the spinous and transverse processes, T1 of the

giraffe plots outside the 95% confidence ellipse of T1 within the

morphospace of C7 and differs clearly from the thoracic verte-

brae of all other species in this analysis, too.

ROM BETWEEN C7 AND T1

Cumulative ROM showed a statistically significant phylogenetic

signal (K = 0.81, P = 0.001) and was largely determined by

dorsoventral flexion/extension (SI 5). Sister taxa tend to share

similar intervertebral mobility, whereas less closely related taxa

are more (functionally) divergent (Fig. 3). The giraffe is a notable

exception to this overall pattern and deviates substantially from

its closest extant relative, the okapi, in terms of mobility. Ad-

ditionally, larger values for cumulative ROM were often found

in species with larger differences in shape between C7 and T1

(e.g., in the Camelidae and the giraffe). In contrast, smaller val-

ues tended to be found in species with high similarity in C7/T1

shape. The giraffe was found to have the second largest cumula-

tive ROM (65.2°) and the largest dorsoventral flexion/extension

mobility (55.2°) (SI 5). The giraffe’s C7/T1 mobility was more

than twice as large as in the okapi (cumulative ROM: 29.2°;

dorsoventral flexion/extension: 19.4°, SI 11). The high similarity

of the European bison’s C7 with T1 of the other analyzed species
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Figure 3. Phenogram of Procrustes distances between C7 and T1 of all extant species in this study (left) and the cumulated range of

motion between both vertebrae (right, gray bars) as well as relative neck length (right, white bars).

is accompanied by a relatively low (but not the lowest) cumula-

tive ROM. PGLS demonstrates that the shape difference between

C7 and T1 is significantly explained by differences in ROM (P =
0.008; Table 1).

Discussion
COMBINED ANALYSIS OF 3D SHAPE AND FUNCTION

CONFIRMS “FUNCTIONAL ELONGATION

HYPOTHESIS”

To test the “functional elongation hypothesis,” the cervi-

cothoracic vertebral morphology of cetartiodactyl species was

quantitatively examined using 3D geometric morphometrics and

phylogenetically informed comparative methods. Functional sig-

nificance of differences in the morphometric data was further

evaluated in terms of mobility (ROM).

Using geometric morphometrics, subtle shape differences

between vertebrae can be quantified (Arnold et al. 2016; Ran-

dau et al. 2017; Böhmer 2017; Jones et al. 2018; Arnold 2020).

C7 and T1 of the giraffe show striking morphological differences

to their respective counterparts in other cetartiodactyl species. C7

of the giraffe differs from C7 of the okapi and most other species

in our dataset by a shorter spinous process and relatively larger

vertebral body. Both are characteristics of more anterior cervical

vertebrae (Solounias 1999; Danowitz and Solounias 2015; Gunji

and Endo 2016). However, similar C7 morphology evolved in all

long-necked taxa of our dataset (see below). In mammals, C7 is

commonly referred to as “vertebra prominens” because of its long

spinous process (Cramer and Darby 2014), but this is not present

in the giraffe. Another difference to general mammal C7 mor-

phology concerns the transverse foramen and ventral tubercles

(Solounias 1999). These characteristics are present in C7 in the
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giraffe, but not in C7 of other mammals. This may have func-

tional implications considering the neck musculature. The cer-

vical longus colli muscle (the cervical part of the major neck

flexor) originates from the ventral tubercles of the cervical verte-

brae. Presence of these tubercles on C7 in the giraffe thus demon-

strates a homeotic shift by one vertebra (Gunji and Endo 2016).

To further substantiate this notion of a homeotic shift, we addi-

tionally tested whether the C7/T1 articulation of the giraffe has

a similar ROM, that is, function, as the C6/C7 articulation of the

closest relative (okapi). We found that at the C6/C7 articulation,

the okapi exhibits a cumulative ROM of 76.7° with similar values

to the C7/T1 articulation of the giraffe for possible dorsoventral

flexion/extension (53.5° in okapi vs. 55.2° in giraffe) and lateral

bending (9.0° vs. 6.0°), but considerably larger values for tor-

sion (14.2° vs. 4.0°). Ultimately, homeotic shifts as present in the

giraffe (summarized in SI 12) can be assumed to be introduced

through changes of the Hox code and have been induced experi-

mentally in mice (Chen et al. 1998; Wellik 2009). To test this in

giraffe, developmental studies in this non-model species are nec-

essary and are thus not possible at this point (Böhmer et al. 2018).

T1 of the giraffe is most similar to C7 of the other species

and shown here to differ from their respective T1 by a shorter

and more anterior leaning spinous process as well as a relatively

larger vertebral body and a more ball-like shape of the anterior

articulating surface of the vertebral centrum (see also Lankester

1908; Badlangana and Adams 2009; Damian et al. 2013). This

demonstrates that T1 of the giraffe resembles the posterior-most

cervical vertebra of the other species. Additionally, we demon-

strate quantitatively that C7 and T1 of the giraffe possess rela-

tively smaller zygapophysial facets and neural arches. In studies

concerned with archosaur neck anatomy, these properties were

proposed to result in an increased flexibility of the cervicotho-

racic region, mainly allowing larger dorsoventral movements of

the neck (e.g., Stevens and Parrish 2005a; Cobley et al. 2013;

Krings et al. 2014; Krings et al. 2017). Finally, thoracic vertebrae

of giraffe, okapi, and other ruminants and camelids usually pos-

sess three costal facets (cranial costal facet, caudal costal facet,

and transverse costal facet). T1 of G. camelopardalis, in contrast,

lacks the cranial and caudal facets and possesses an isolated facet

on the lateral side of the vertebral body beneath the transverse

process (Gunji and Endo 2016). This morphological feature

results in (i) the first rib having contact with the isolated facet of

T1 without touching the caudal part of C7 and (ii) the second rib

articulating with the cranial costal facet and the transverse costal

facet of T2 without contacting the caudal part of T1 (Fig. 4). To-

gether, this condition of the giraffe’s T1 provides support for the

“functional elongation hypothesis” by suggesting that T1 of the

giraffe adopted the kinematic function of a cervical vertebra and

increased mobility to the neck (cf. Gunji and Endo 2016). These

characters potentially contribute to the extreme elongation of the

giraffe neck by mobilizing the anterior-most part of the thoracic

vertebral column. In line with our expectation, our detailed

anatomical analysis demonstrated homeotic shifts in C7 and T1

(SI 12). In addition, our functional analysis demonstrated pro-

nounced mobility in comparison to other ruminants and camelids,

especially in terms of dorsoventral flexion/extension. The giraffe

exhibited the largest dorsoventral ROM of our dataset. Together,

our analysis thus corroborates the “functional elongation hy-

pothesis” of the giraffe neck-giraffes indeed are pushing the

boundary.

The aberrant morphology of T1 may be related to other func-

tions than mobility. For example, aberrant shape of the giraffe’s

T1 may also be related to a stabilizing function. Exceptional

neck elongation is involving large moments (consider an approx-

imately 2 m lever arm of the head’s mass) at the cervicothoracic

transition. Musculoskeletal adaptations as identified by Gunji and

Endo (2016) could contribute to relatively large mobility while

also helping to satisfy an increased demand for stabilization. The

head and neck of giraffes participate in rhythmic up-and-down

movements during locomotion that has been demonstrated to sig-

nificantly influence the dynamics of the gait (Loscher et al. 2016;

Basu et al. 2019). Additionally, the upright posture of the long

neck increases the mechanical load on the skeletal elements of the

cervicothoracic transition (see below). These additional potential

explanations for aberrant vertebral shape should be the focus of

future research, for example, by use of modeling approaches such

as multibody dynamics or finite element analysis of vertebrae un-

der load.

EVOLUTIONARY TRENDS WITHIN RUMINANTIA AND

CAMELIDAE

Although Danowitz and Solounias (2015) described the C7 of the

giraffe as “unique not only to giraffids but also to mammals,” the

present study demonstrates that concerning the main shape dif-

ferences, other long-necked ruminants such as Litocranius wal-

leri (the gerenuk) and camelids exhibit similar specializations

in C7 as the giraffe (longer vertebral bodies, shorter and rather

posterior sloping spinous processes) contrasting the other species

in our sample (Fig. 4A). Our quantitative analysis found a sig-

nificant albeit moderate convergence between the C7 shape of

the long-necked species of Cetartiodactyla. The convergent shape

thus represents a case of parallel evolution from similar ancestors

rather than classic convergence. A cervical-like angle of the zy-

gapophyses has also been documented in carnivorans (Jones et al.

2020) and perissodactyls (Jones 2016). This C7 morphology is

accompanied by a more vertical posture of the neck in giraffe

(Danowitz and Solounias 2015) and the gerenuk (Gunji and Endo

2019), but not within the Camelidae, and seems to have evolved

convergently within the long-necked lineages. However, T1 of the

non-giraffid ruminants and camelids analyzed in our dataset are
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Figure 4. Morphology of the cervicothoracic vertebrae in exemplar ruminants and camelids. All specimen scaled to similar size for

comparison. (A) Convergent shape evolution of C7 in “long-necked” species. (B) “Thoracalized” morphology of C7 in the European bison

and “cervicalized” morphology of T1 in the giraffe in comparison to the goat (i.e., a ruminant with a “regular” neck). Yellow arrows show

the inclination of the spinous process; blue arrows highlight the length of the spinous process. (C) Occurrence of isolated costal facets in

the kanchil and the giraffe in comparison to the okapi (i.e., a ruminant with a “regular” neck).

inconspicuous and do not differ from species with shorter necks,

whereas T1 of the giraffe clearly does.

C7 of the European bison plots outside the 95% confidence

ellipse of C7 and within that of T1. The shape of C7 of the bison

thus resembles the shape of a thoracic vertebra (long spinous pro-

cess and short vertebral body; Fig. 4B). Shorter and wider verte-

brae may help absorb high compressive forces during impacts of

ramming behavior (Vander Linden and Dumont 2019). The large

spinous process helps to accommodate the enormous withers in

bison. Besides the “cervicalized” T1 of the giraffe, we therefore

suggest a “thoracalized” C7 of the European bison. The thora-

calized shape of the bison’s C7 is accompanied by one of the
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Figure 5. Dorsal inflection caused by a “keystone-shaped” vertebra at the base of the neck in exemplar species. “Keystone-shaped”

vertebra appears to be T1 in the giraffe in contrast to C7 in other species and reflects the more linear posture. All vertebrae are arranged

in ONP with the T1 caudal articular surface of the centrum oriented vertically.

smallest cumulative ROM between C7 and T1 of our dataset.

Thus, this characteristic may be associated with an increased sta-

bilization of the cervicothoracic transition in these short-necked

and heavy-headed species displaying ramming behavior (cf. Wat-

son et al. 2009).

We observed one species of the Tragulidae, Tragulus javan-

icus (the kanchil), showing a similar specialization in T1 with

regard to the rib facets when compared with the giraffe (Fig. 4C).

T1 of T. javanicus possesses an isolated facet beneath the trans-

verse process and lacks the cranial costal facet. The caudal costal

facet is present in the kanchil, however, which is additionally also

missing in T1 of the giraffe. In the kanchil, the first rib articulates

with T1 without touching the caudal part of C7, but the second

rib maintains contact to the caudal part of T1. This morphologi-

cal condition could, although less so than in the giraffe, again be

interpreted to indicate an increased flexibility in the neck of T.

javanicus. However, this was not supported by our ROM study,

which found relatively small mobility at the cervicothoracic tran-

sition in the kanchil.

CERVICOTHORACIC TRANSITION IN SIVATHERIUM

RESEMBLES NON-GIRAFFID SPECIES

Analysis of the cervicothoracic vertebrae of the fossil giraffid S.

giganteum did not allow the consideration of the spinous process

and other features, but nevertheless a clear separation of C7 and

T1 within the morphospace was found. T1 of the giraffe clustered

with the C7 of the other species in this analysis, too. The aim of

this analysis was the location of the fossil giraffid S. giganteum

in the 3D morphospace to allow a functional interpretation.

C7 and T1 of the fossil plot close to other species and within

the respective 95% confidence ellipses for C7 and T1. Both

vertebrae plot closer to the vertebrae of the okapi than to the

vertebrae of the giraffe. Danowitz and colleagues described the

length-to-width ratio of C3 of O. johnstoni, S. giganteum, and

other extinct giraffids as secondarily shortened compared to the

primitive giraffid Canthumeryx sirtensis (Danowitz et al. 2015a;

Danowitz et al. 2015b). Consistent with their interpretation, our

findings demonstrate that 3D shapes of the vertebrae making up

the cervicothoracic transition in S. giganteum differ from those
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of the giraffe. Alternative to the interpretation of Danowitz and

colleagues, the first giraffids could have been relatively short-

necked and potentially acquired elongated necks independently

in basal extinct giraffids such as C. sirtensis and extant giraffes.

IMPLICATIONS FOR NECK POSTURE

At rest, quadrupedal mammals generally hold their necks ori-

ented more or less upright with varying degrees of curvature

(Vidal et al. 1986; Fig. 5). The variation in resting neck posture

appears to influence the patterns of bending moments and com-

pressive forces in the vertebral column along the anteroposterior

body axis (Christian 2002). In quadrupedal mammals with more

curved necks, loads induced by the cervical vertebral column are

transferred via dorsal muscles and ligaments (Slijper 1946). In

bipedal mammals with less curved necks, the load almost entirely

rests on the vertebral bodies. In contrast to other ruminants and

camelids, the resting posture of the neck in the giraffe is rela-

tively straight up with a forward inclination of about 30° (Chris-

tian 2002). Load induced by the head-neck system in the giraffe

is transferred to a much greater degree onto the vertebral bodies

than in more curved necks. Again, in addition to its functional

significance in terms of mobility, the aberrant vertebral shape of

the giraffe’s cervicothoracic transition may thus be linked to the

particular posture of the neck associated with its extreme length.

The characteristic curvature in the neck of mammals arises

from the morphology of the vertebrae in undeflected state (i.e.,

ONP). In particular, a “keystone-shaped” vertebra at the base of

the neck contributes to it (Stevens and Parrish 2005b). In mam-

mals, this is generally C7. At ONP, the articulation between C7

and T1 creates a small inclination angle (e.g., Cervus elaphus)

(Fig. 5). By contrast, the keystone-shaped vertebra appears to be

shifted caudally from C7 to T1 in the giraffe. At ONP, the articu-

lation between C7 and T1 forms a larger inclination angle in the

giraffe. This has implications for the reconstruction of the neck

posture in fossil relatives. As quantified here, the cervicothoracic

transition in the fossil giraffid S. giganteum resembles that of the

okapi more than that of the giraffe and its keystone-shaped verte-

bra is C7 (Fig. 5). Consequently, the neck posture of S. giganteum

is more likely to have resembled that of the okapi and likely was

not as straight as in the giraffe. Including more fossil giraffids

in a future study may provide new insights into the evolution of

the cervicothoracic transition in relation to total neck length. At

which length and, thus, mass of the neck did the caudal shift of

the keystone-shaped vertebra occur to form the relatively linear

and upright neck characteristic for the modern giraffe?

Conclusion
Our quantitative analysis of 3D shape evolution of the cervi-

cothoracic transition in cetartiodactyls demonstrates that the cer-

vicothoracic transitions of long-necked species convergently de-

viate in their morphology of C7 in comparison to species with

shorter necks. Their morphology is consistent with that of the

giraffe’s C7 (e.g., longer vertebral bodies, shorter and rather pos-

teriorly inclined spinous processes). The exceptionally long neck

of the giraffe, however, is additional supported by a unique “cer-

vicalized” morphology of T1 characterized by a shorter, posteri-

orly oriented spinous process as well as a small neural arch, large

cranial bulge of the articulating surface of the vertebral centrum,

and a large caudal extremity (i.e., a number of homeotic changes

toward a morphology that resembles that of a cervical). Indeed,

these properties did result in increased quantified mobility cor-

roborating the “functional elongation hypothesis.” Moreover, T1

shape contributes to the relatively linear resting posture of the

neck characteristic for giraffes. It may be interpreted as an adap-

tation to the particular posture of the neck associated with its ex-

ceptional length inducing large loads. We therefore suggest ex-

ploring other functional relationships than just mobility in future

studies. Modeling approaches could help to better understand the

aberrant vertebral morphology at the cervicothoracic transition

in giraffes in terms of head-neck mass support and maintaining

mobility with an elongated neck. The opposite phenomenon to

the observed “cervicalization” of a thoracic vertebra also exists,

as C7 of the European bison possesses a “thoracalized” morphol-

ogy likely related to increased stabilization of the cervicothoracic

transition. The cervicothoracic transition in the fossil giraffid S.

giganteum is more similar to the okapi and other cetartiodactyls

without a specifically long-necked morphology than to the

giraffe.
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Reljić, I., I. Dunder, and S. Seljan. 2019. Photogrammetric 3D scanning of
physical objects: tools and workflow. TEM Journal 8:383–388.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biol-
ogy (and other things). Methods in Ecology and Evolution 3:217–223.

Rohlf, F. J. & Corti, M. 2000. Use of two-block partial least-squares to study
covariation in shape. Systematic Biology 49:740–753.

Rohlf, F. J., and D. Slice. 1990. Extensions of the Procrustes method for the
optimal superimposition of landmarks. Systematic Biology 39:40–59.

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T.
Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. 2012.
Fiji: an open source platform for biological-image analysis. Nature
Methods 9:676–682.

Schneider, C., W. Rasband, and K. Eliceiri. 2012. NIH image to ImageJ: 25
years of image analysis. Nature Methods 9:671–675.

Sidlauskas, B. 2008. Continuous and arrested morphological diversification
in sister clades of characiform fishes: a phylomorphospace approach.
Evolution: International Journal of Organic Evolution 62:3135–3156.

Simmons, R. E., and L. Scheepers. 1996. Winning by a neck: sexual selection
in the evolution of the giraffe. The American Naturalist 148:771–786.

Slijper, E. J. 1946. Comparative biologic-anatomical investigation on the ver-
tebral column and spinal musculature of mammals. North-Holland Pub-
lishing Company, Amsterdam, Netherlands.

Solounias, N. 1999. The remarkable anatomy of the giraffe’s neck. Journal of
Zoology 247:257–268.

Stalling, D., M. Westerhoff, and H.-C. Hege. 2005. Amira: a highly interactive
system for visual data analysis. The Visualization Handbook 38:749-
767.

Stayton, C. T. 2006. Testing hypotheses of convergence with multivariate
data: morphological and functional convergence among herbivorous
lizards. Evolution 60:824–841.

———. 2015. The definition, recognition, and interpretation of convergent
evolution, and two new measures for quantifying and assessing the sig-
nificance of convergence. Evolution 69:2140–2153. https://doi.org/10.
1111/evo.12729.

———. 2017. Convevol: analysis of convergent evolution. R package. Avail-
able via https://cran.r-project.org/package=convevol.

Stevens, K. A., and J. M. Parrish. 2005a. Digital reconstructions of sauro-
pod dinosaurs and implications for feeding. Pp. 178–200 in K. A. Curry
Rogers and J. A. Wilson, eds. The sauropods: evolution and paleobiol-
ogy. University of California Press, Berkeley, CA.

Stevens, K. A., and J. M. Parrish. 2005b. Neck posture, dentition, and feeding
strategies in Jurassic sauropod dinosaurs. Pp. 212–232 in V. Tidwell
and K. Carpenter, eds. Thunder-lizards: the sauropodomorph dinosaurs.
Indiana Univ. Press, Bloomington, IN.

Taylor, M. P., and M. J. Wedel. 2013. The effect of intervertebral cartilage on
neutral posture and range of motion in the necks of sauropod dinosaurs.
PLoS One 8:e78214.

Toljagic, O., K. L. Voje, M. Matschiner, L. H. Liow, and T. F. Hansen. 2018.
Millions of years behind: slow adaptation of ruminants to grasslands.
Systematic Biology 67:145–157.

Van Sittert, S. J., J. D. Skinner, and G. Mitchell. 2010. From fetus to adults
– an allometric analysis of the giraffe vertebral column. Journal of Ex-
perimental Zoology Part B: Molecular and Developmental Evolution
314:469–479.

Vander Linden, A., and E. R. Dumont. 2019. Intraspecific male combat be-
havior predicts morphology of cervical vertebrae in ruminant mammals.
Proceedings of the Royal Society London B 286:20192199.

Vidal, P. P., W. Graf, and A. Berthoz. 1986. The orientation of the cervical
vertebral column in unrestrained awake animals. Experimental Brain
Research 61:549–559.

Vidal, D., P. Mocho, A. Páramo, J. L. Sanz, and F. Ortega. 2020. Ontogenetic
similarities between giraffe and sauropod neck osteological mobility.
PLoS One 15:e0227537.

Watson, C., G. Paxinos, and G. Kayalioglu. 2009. The spinal cord: a Christo-
pher and Dana Reeve Foundation text and atlas. Academic Press, Cam-
bridge, MA.

654 EVOLUTION MARCH 2021

https://doi.org/10.1242/jeb.227108
https://doi.org/10.18563/journal.m3.129
https://doi.org/10.1111/evo.12729
https://doi.org/10.1111/evo.12729
https://cran.r-project.org/package=convevol


CERVICOTHORACIC TRANSITION IN CETARTIODACTYLA

Wellik, D. M. 2009. Hox genes and vertebrate axial pattern. Current Topics
in Developmental Biology 88:257–278.

Wiley, D. F., N. Amenta, D. A. Alcantara, D. Ghosh, Y. J. Kil, E. Delson,
W. Harcourtsmith, R. J. Rohlf, K. St John, and B. Hamann. 2005. Evo-
lutionary morphing. Proceedings of the IEEE Visualization 2005:431–
438.

Zelditch, M. L., D. L. Swiderski, H. D. Sheets, and W. L. Fink. 2004. Geo-
metric morphometrics for biologists: a primer. Elsevier Academic Press,
New York.

Associate Editor: A. Kaliontzopoulou
Handling Editor: A.G. McAdam

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Supplementary Material
SI 1: Complete specimen list.
SI 2: Overview of C7/T1 pairs for all 38 species analyzed.
SI 3: 3D surface models of fossil giraffid Sivatherium giganteum.
SI 4: Comparison of digitization method (µCT vs. photogrammetry).
SI 5: Range of motion and relative neck length (largest values in bold print).
SI 6: Morphology of vertebra and definition of landmarks (landmark set used in this study shown on C7 of Giraffa camelopardalis ZMB 66393).
SI 7: Landmark definitions. Definitions follow Arnold et al. (2016).
SI 8: Assessment of range of motion (ROM) using 3D bone models.
SI 9: PC plots (PC3 vs. PC4) for the full landmark set (A) and the adjusted landmark set (SI 6) using only those landmarks that were identifiable also on
the fossil specimens (B).
SI 10: Principal components of analyses that explain a cumulative variance of 95%. A: Analysis of cervicothoracic transition (C7. T1).
SI 11: Renderings of C7 (green) and T1 (yellow) pairs to illustrate cumulative range of motion in exemplar species.
SI 12: Morphological traits at the cervicothoracic transition in giraffe and okapi demonstrates homeotic shifts (number of apparent cranial steps in cervical
count) in the giraffe neck.

EVOLUTION MARCH 2021 655


