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Abstract

This paper studies a systemic risk indicator, Financial Risk Meter (FRM), which is calculated

based on quantile Lasso regression. The standard FRM index is the average of daily penaliza-

tion parameters for all selected financial institutions. This paper extends the standard FRM

to numerous novel FRM candidates that could capture systemic risk and predict the upcoming

recession. FRM candidates are defined by using quantiles of penalization parameters derived

from the distribution of financial institutions’ returns. The co-movement of FRM candidates

and commonly used systemic risk measures are checked with the correlation coefficient, the

Kolmogorov-Smirnov test statistic and the Granger causality test. Furthermore, FRM candi-

dates are able to predict the probability of economic recessions by applying binary regression

models. Empirical experiments are implemented during two periods, namely the financial

crisis of 2007 and the COVID-19 pandemic, in two major financial markets, the Americas

and Europe stock markets. The results prove that FRM candidates are suitable systemic risk

measures and recession predictors, since they can capture the increase of overall distress and

market downturn, move similarly and even better than popular systemic risk measures for both

Americas and Europe stock markets. Additionally, the recession probabilities estimated from

FRM candidates are close to the actual recession indicators. In conclusion, FRM candidates

can be regarded as systemic risk indicators in terms of feasibility and robustness.

Keywords: systemic risk, Financial Risk Meter (FRM), Quantile Regression, Lasso regu-

larization, penalization parameters, recession prediction, financial crisis of 2007, COVID-19

pandemic.
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1 Introduction

After the financial crisis of 2007, market participants have paid much attention to systemic

risk. At the same time, governments and international organisation are calling for increased

regulation of systemic risk. These works intended to shed light on understanding the systemic

risk, how dangerous the systemic risk is in terms of the whole financial system, and how to

measure systemic risk to eliminate the negative influences of systemic risk so that reasonable

precautions may be taken before suffering catastrophic losses?

There are various definitions and explanations about systemic risk. Schwarcz (2008) defined

systemic risk as “the risk that an economic shock such as market or financial institutional

failure triggers either (X) the failure of a chain of markets or institutions or (Y) a chain

of significant losses to financial institutions, resulting in increases in the cost of capital or

decreases in its availability, often evidenced by substantial financial-market price volatility”.

Federal Reserve Governor Daniel Tarullo defined systemic risk as “financial institutions are

systemically important if the failure of the firm to meet its obligations to creditors and

customers would have significant adverse consequences for the financial system and the

broader economy”, which is cited by Brownlees et al. (2012). Both definitions indicate that

considering the interdependence and interconnectedness of institutions in the financial system,

the bankruptcies or critical financial intermediaries’ failure will cause the spread of systemic

distress along with capital-market linkages of institutions and even the whole economic system.

For example, the financial crisis of 2007 was caused by the banking panic. As Yu et al. (2019)

mentioned, after the bankruptcy of Lehman Brothers, a sequence of the international bank

was bankrupted due to their interdependence of Lehman Brothers. As a result, the stability

of entire financial system was threatened international, and the broad economy suffered from

the great recession, see Hautsch et al. (2015) and Brownlees et al. (2012).

This paper is in the context of one systemic risk measure called Financial Risk Meter

(FRM), which was proposed by Härdle et al. (2016), Zbonakova et al. (2016), Mihoci et al.

(2020), Yu et al. (2017), and Yu et al. (2019). FRM is an augmented systemic risk measure

that expresses the high-dimensional tail risk with a single accurate value indicator. The

standard FRM is the average over series of the penalization parameters λ for all selected

financial institutions. The penalization parameters in linear quantile Lasso regressions, which

expresses financial institutions based on related institutions and macroeconomic factors, are

subsequently estimated by the generalized approximate cross-validation criterion (GACV).

The quantile in each linear quantile regression is set as 5% or 10%, which corresponds to tail
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risk. In this paper, despite the standard FRM based on all financial institutions, we want

to extend the definition of standard FRM using quantiles of the distribution of penalization

parameters. So that the newly defined FRM is related to the each financial institution’s rank

order in terms of penalization parameters, i.e. only a portion of financial institutions are

included into defining FRM candidates. As data input for FRM calculation, the empirical

penalization parameters across two time intervals with high systemic risk in the Americas

and Europe are estimated. For both regions, the first period ranges from 03 April 2007 until

31 December 2009 and the second period is from 01 January 2019 until 31 December 2020.

Based on characteristics of the time series of penalization parameters, novel FRM candidates

with Interquartile range (IQR) and quantiles at 50%, 60%, 70%, 80%, 90% of a series of

penalization parameters for all financial are proposed. All novel FRM and the standard FRM

for each market are called FRM candidates for the respective market from now on. This

paper aims to compare all FRM candidates so as to select an optimal FRM that works well

as a systemic risk measure and can be further applied in related fields like predicting the

upcoming recession. The first procedure compares these FRM candidates with commonly used

systemic risk measures based on testings for correlation, goodness-of-fit and Granger causality.

Furthermore, these FRM candidates are applied to forecast the probability of observing a

current recession since the high risk of systemic risks is in line with the recession periods by

Hautsch et al. (2015). Each FRM candidate can capture the evolution of systemic risk, and

forecast recession will be taken as a suitable systemic risk measure.

The striking result of the paper is that there is no significant difference among these

FRM candidates. All FRM candidates are qualified and useful systemic risk measures for

the Americas and Europe. They fluctuate similarly to other systemic risk measures and

have the ability to predict the upcoming and the end of the recession. This finding proves

that penalization parameters from our linear Lasso quantile regression generate a robust

estimation of FRM. The properties of various FRM candidates calculated based on different

subsamples of financial institutions are not differentiated significantly from the property of

the standard FRM based on the whole sample. Moreover, the result of this paper implies

that the standard FRM proposed by previous research is practical and meaningful because no

novel FRM candidate has an overwhelming advantage over it.

The paper is structure as follows: after reviewing literature about systemic risk measures,

especially the tail risk measure methodologies in chapter 2, the FRM framework is elaborated

in chapter 3. The linear quantile lasso regression model and the estimation procedure of
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penalization parameters are presented in chapter 3.1 and 3.2. Chapter 3.3 describes the

empirical application of the model based on data collected from the two periods mentioned

above. According to the characteristics of penalization parameters which are interpreted

in chapter 3.4, the mathematical representations and empirical distribution of novel FRM

candidates are described in chapter 3.5. In the next two chapter, all comparison methods and

results are presented. The comovement tests, i.e. correlation test and Kolmogorov-Smirnov

test as well as Granger causality test of individual FRM candidates and individual commonly

used systemic risk measures, are available in chapter 4. In chapter 5, recession prediction

models and corresponding implied recession probabilities for all FRM candidates are reported.

The last chapter 6 are conclusions and discussions.

All underlying codes have been written in the R software. They can be downloaded at

www.quantlet.de, which is indicated in this paper with .

2 Literature Review

FRM is a systemic risk measure, which integrates joint tail risk comovement of critical

financial institutions into one index. Before investigating how FRM works, systemic risk and

common systemic risk measurements will be introduced. The methodology in the context of

tail risk measures are explained successively: based on Value at Risk (VaR) in chapter 2.2,

Adrian and Brunnermeier (2011) proposed a quantile regression based linear bivariate model

see chapter 2.3. In chapter 2.4, Hautsch et al. (2015) extended the bivariate model into a

high-dimensional linear model. Fan et al. (2018) achieved the balance between precision and

dimension through applying a non-linear Single Index Model (SIM) to previous algorithms in

chapter 2.5. These researches have motivated the idea of using penalization parameters as a

systemic risk measure.

2.1 Systemic risk measures

As Schwarcz (2008) emphasized, systemic risk is not caused by normal market volatility. It

cannot be avoided through diversification and therefore affects almost all market participants.

Moreover, Schwarcz (2008) mentioned that because of the ongoing trend towards disinterme-

diation or enabling companies to access the ultimate source of funds, systemic risk should

increasingly be viewed by its impact on the whole financial markets. The cross-sectional

interdependencies among financial institutions may reveal the overall risk level of the financial

market. Therefore, financial institution-specific risk cannot be appropriately evaluated without

3
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considering potential risk spillover effect from other institutions by Hautsch et al. (2015). The

systemic risk measure that aimed at analyzing, monitoring and controlling system risk should

take the inevitable consequences followed by institutions being under distress or bankruptcies

into account.

For major financial markets, there are already several widely used systemic risk measures.

For example, Zbonakova et al. (2016), Yu et al. (2017) and Yu et al. (2019) indicated that

CBOE Volatility Index (VIX), Systemic Risk Index (SRISK), financial turbulence index (FT),

and Google Trends data (GT) are common systemic risk measures in Americas, and Mihoci

et al. (2020) mentioned that Composite Indicator of Systemic Stress (CISS) and Euro Stoxx

50 Volatility Index (VSTOXX) are most widely used in European counties.

VIX, the expected volatility measure based on S&P500 index over the next 30 days,

is published by the Chicago Board Options Exchange (CBOE). Corrado and Miller (2005)

proved that VIX performed well to forecast the volatility in the American stock market. The

VIX index is well-known as a “fear indicator” for stock markets according to Brownlees et al.

(2012). Kritzman and Li (2010) introduced a mathematical measure of financial turbulence

using Mahaland’s distance. Kritzman and Li (2010) defined financial turbulence as a condition

in which asset prices, conditioning on their historical patterns of behaviour, behave in an

uncharacteristic fashion such as extreme price moves, decoupling of correlated asset and

convergence of uncorrelated assets. The turbulence for a particular time period t will be high

if the asset return either move further from the average of historical joint returns of assets or

not follow the historical correlation structure. Corresponding mathematical representation is

available in 4.1. SRISK proposed by Brownlees et al. (2012), Brownlees and Engle (2017) is to

measure expected capital shortage across all financial institutions over a given time horizon.

The capital shortfall of a firm depends on its degree of leverage, and the expected equity

loss resulted from a crisis. Preis et al. (2013) argued that query data from Google Trends

of the keyword related to finance reflected human interaction with the Internet in response

to changes in the financial markets. It may offer a perspective on the behaviour of market

participants in periods of large market movement like a financial crisis. In this paper, we

apply the Google Trends volumes of the keyword “financial crisis” as a systemic risk measure.

In the Euro area, Hollo et al. (2012) introduced CISS, which is used to measure the

current state of distress and instability in the financial system and to condense that state of

instability into a single statistic. The CISS not only captures the real-time stress level in the

entire financial system but also can be compared and studied empirically in the context of
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early warning signal models. VSTOXX measures implied variance across all options over a

given time horizon. The option contracts on Euro Stoxx 50 are products of Eurex among the

Exchange with the highest trading volumes, see Qontigo (2020).

2.2 Value at Risk (VaR)

As Adrian and Brunnermeier (2011) indicated, systemic risk measures capture the potency

for spreading financial distress or risk across the institution by gauging this increase in tail

comovement. The value at risk (V aR) has established its role in the tail risk measure field. It

measures the level of financial risk within one institution by estimating its profits and losses in

future periods. Under this condition, the definition of V aR by Jorion (2007) was reinterpreted

by Adrian and Brunnermeier (2011) and Härdle et al. (2017), i.e. for the cutoff return of the

institution j at target time period t such that there is a pre-specified probability q that the

actual log return will be smaller. This definition could be mathematically represented as

P(Xj,t ≤ V aRqj,t)
def
= q, (2.1)

where Xj,t is the log return of institution j at time t for which the V aRqj,t is defined with

q ∈ (0, 1). V aRqj,t could be calculated with rectangular moving average (RMA) and Delta-

Normal model see Härdle et al. (2017). If taking quantile q as 99%, V aRqj,t is the minimal log

return of institution j at time t that the probability of having a lower expected log return is

99 percent. Several methodologies regarding tail risk measure elaborated in next chapters are

based on V aR.

2.3 Bivariate CoVaR

The risk that the stability of the whole financial system is threatened does not necessarily be

reflected by the individual institution risk measure V aR. Hence, Adrian and Brunnermeier

(2011) and Tobias and Brunnermeier (2016) proposed a systemic risk measure CoV aR,

i.e. adding to existing tail risk measure the prefix “Co”, which stands for the conditional

comovement. CoV aR is defined as the V aR of one institution j conditional on one particular

institution i being in distress:

P{Xj ≤ CoV aRqj|i|Xi = V aRq (Xi)}
def
= q. (2.2)

Once in the case where j = system, CoV aR denotes the return of all financial institutions

in one system conditional on the institution i being at its V aR level, i.e. CoV aRsystem|i

reflect how the whole system was affected by the failure of the institution i. On the other
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hand, CoV aRj|system characterizes which institution is suffered from the highest risk when

a financial crisis occurs. The difference between CoV aR conditional on the distress of an

institution and CoV aR conditional on the normal state of the institution is called ∆CoV aR:

∆CoV aRqj|i = CoV aRq
j|Xi=V aRq

i
− CoV aRq

j|Xi=V ar50i
. (2.3)

The advantage of ∆CoV aR is that for two institutions that are equally risky according to

VaR, the institution with the higher ∆CoV aR contributes more to the systemic risk than

another institution. By Adrian and Brunnermeier (2011), the difference between the V aR

of the financial system conditional on the distress of a specific institution i and the V aR

of the financial system conditional on the media state of the institution is captured by

∆CoV aRqsystem|i. Moreover, ∆CoV aRqj|system, which is called “exposure CoV aR”, measures

institution j’s increase in V aR in the case of under a financial crisis, i.e. the extent to which

the systemic financial event influences an institution. In summary, taking i and j as different

institutions and financial system makes CoV aR and ∆CoV aR generally enough to measure

the risk spillover from institution to institution across the whole financial network.

To capture time-varying CoV aRt and V aRt, a vector of lagged macroeconomic variable

Mt−1 is considered as conditioning variables:

P{Xj,t ≤ CoV aRqj|i,t|Xi,t = V aRq (Xi,t) ,Mt−1}
def
= q. (2.4)

Xj,t is the growth rate of market-valued assets based on balance sheet data and market

equity data, including leverage, size, and market-to-book. Under this setting, we use quantile

regression to estimate CoV aR. Quantile regression introduced by Koenker and Bassett Jr

(1978) aims to estimate the conditional quantile function, in which quantile of the conditional

distribution of the response variables are expressed as functions of observed covariates, e.g.

equation 2.4. In the financial risk world, it was observed that error distribution with longer

tails than Gaussian distribution was common. Koenker and Bassett Jr (1978) mentioned that

in these cases, weights on extreme observations should be put to modify the sample mean, i.e.

giving different weights to positive and negative residuals. Quantiles yield minimizing the sum

of asymmetrically weighted absolute residuals. Analogue to linear regression, the estimates

of conditional quantile regression are obtained by minimizing the sum of residuals, which

herein are asymmetrically weighted with the loss function. Because of this advantage, quantile

regression is “gradually developing into a comprehensive strategy for completing the regression

picture” according to Koenker and Hallock (2001). Following Tobias and Brunnermeier (2016),

we focus on the ∆CoV aRqsystem|i,t from now on. Firstly, we estimate Xi,t and Xsystem,t based
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on following quantile regressions:

Xi,t = αqi + γqiMt−1 + εqi,t, (2.5a)

Xsystem|i,t = αqsystem|i + γqsystem|iMt−1 + βqsystem|iXi,t + εqsystem|i,t. (2.5b)

Then the estimated values are further applied if F−1εi,t (q|Mt−1) = 0 and F−1εi,t (q|Mt−1, Xi,t) = 0

are assumed:

V aRqi,t = α̂qi + γ̂qiMt−1, (2.6a)

CoV aRqsystem|i,t = α̂system|i + γ̂qsystem|iMt−1 + β̂qsystem|iV aR
q
i,t. (2.6b)

Finally, ∆CoV aRqsystem|i,t for each institution is computed as:

∆CoV aRqi = CoV aRqi,t − CoV aR
q
50,t = β̂qsystem|i

(
V aRqi,t − V aR

q
50,t

)
, (2.7)

where βsystem|i reflects the degree of interconnectedness between institution i and the whole

financial system, i.e. how the institution influences the rest of the financial system by Härdle

et al. (2016).

2.4 High-dimensional CoVaR

Hautsch et al. (2015) argued that CoV aR has several drawbacks. Based on the equation

2.6b, CoV aR varies over time only through the channel of individual V aRs. Due to the

multicollinearity, V aR is not modelled in terms of firm-specific variables. Thus, the variation

in underlying macroeconomic factors reflect changes in firm’s systemic relevance. Under this

background, Hautsch et al. (2015) refined the CoV aR algorithm by adding a set of lagged

company-specific characteristics Ci,t−1 to the set of lagged macroeconomic factors Mt−1. The

combined set of tail risk drivers, which is denoted as Wt−1, replaces Mt−1 in the two-stage

linear quantile regressions 2.5a and 2.5b as well as equations 2.6a and 2.6b.

However, shrinking the high-dimensional set of possible cross-linkages between all financial

institutions to a feasible number of relevant risk connections is the major challenge faced

by Hautsch et al. (2015). Osborne et al. (2000) mentioned that high-dimensional data

with highly correlated covariates tends to have an extremely high variance of least-square

coefficient estimates. The normally calculated estimator has poor forecast ability due to

unstable combination weights see Bayer (2018), since it is challenging to balance the model

flexibility and statistical precision. As Hautsch et al. (2015) argued, appropriate model

selection techniques are not straightforward because the test of individual significance of
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single variables does not account for the collinearity between the covariates. On the other

hand, a sequence of significance tests has too many possible variations to be checked. Hence,

the penalization parameters like Lasso, ridge and elastic are generally applied to quantile

regression estimator for regularization purpose, i.e. eliminating the multicollinearity among

predictors. The L1- norm penalization regression, known as the least absolute shrinkage

and selection operation (Lasso) by Tibshirani (1996) could not only shrink the estimated

coefficients towards zero but also cause several of them to be precisely zero when making λ

sufficient large. By shrinking or setting some coefficients to zero, the variance is to be reduced

more than the increase of bias. In terms of the mean squared error, the overall prediction

accuracy and interpretation ability of the whole predictors are improved straightforwardly

by Tibshirani (1996). Although the exact calculation of the bias-variance trade-off is still

unexplored for the asymmetric loss function in quantile regression cases, intuitively, it should

be reasonable that a decrease of the variance of the estimated error decreases the expected

loss of the estimation error, see Bayer (2018). Since the subset selection property is not shared

with other types of penalization like L2-norm penalty and the parsimonious model puts more

light on the relationship between the response and covariates, the L1−norm penalty may

perform better in where there are many noise variables, particularly with high dimensional

data p ≥ n. In other words, by Tibshirani (1996), the form of Lasso regression is standard

for a high-dimensional conditional mean regression problem. Therefore, tail risk drivers are

selected in a data-driven way by adopting Lasso to quantile regression, following Belloni et al.

(2011). εqi,t is estimated in a quantile Lasso regression with a fixed individual penalization

parameter λ, which is constant and determined in a completing data-driven way for each

financial institution. If any component of Lasso-selected relevant drivers W q
i is related to

another institution j, then the estimated coefficient of this component marks the impact of

institution j on institutions i.

2.5 Single-Index-based CoVaR

Fan et al. (2013) and Fan et al. (2018) proposed a nonlinear Single Index Model (SIM)

combining with CoVaR by Adrian and Brunnermeier (2011), Tobias and Brunnermeier (2016)

and Hautsch et al. (2015) to investigate possible non-linearities in tail interconnectedness based

on several facts: Firstly, nonlinearity may occur by employing the methodologies introduced

by Adrian and Brunnermeier (2011) and Hautsch et al. (2015) because of the complexity of

financial system, see Härdle et al. (2016). Secondly, the selected factors are difficult to be
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interpreted, and need to be summarized to be an index according to Fan et al. (2018). SIM

performs efficiently with variable selection in the case of high-dimensional covariates since

the index yields interpretability and low dimension simultaneously, i.e. SIM is a data driven

technique that combines dimension reduction, variable selection and generalized tail event by

Fan et al. (2018). The model motivated by Adrian and Brunnermeier (2011) and Hautsch

et al. (2015) are defined based on SIM quantile variable selection technique:

Xi,t = g
(
R>βqi|Ri,t

)
+ εi,t, (2.8)

where g (·) is an unknown smooth link function, R̂i,t
def
= [Wi,t−1, X−i,t]. X−i,t is a vector of log

returns for all institutions except the institution i. If taking F−1
εi|R̂

(p|R) = 0, then analogue to

Equation 2.6b

ĈoV aR
q

i|R̂i,t
= ĝ

(
R̂i,tβ̂i|R̂i,t

)
, (2.9)

where R̂i,t
def
=
[
Wt−1, V̂ aR

q

−i,t

]
. V̂ aR

q

i,t is estimated V aRs from equation 2.6a for all institution

except i-th institution. In the equation 2.9, not only the influence of financial institutions

except for i are included, but also non-linearity reflected in the shape of link function g (·) is

incorporated. The minimal average contrast approach (MACE) with Lasso penalization is

adopted to estimated the shape of smooth link function g (·) and β, more details see Fan et al.

(2018).

Fan et al. (2018) applied CaV iaR test for backtesting the estimations of VaR, CoVaR

and SIM-based CoVaR. This comparison is conducted based on the data of 200 financial

institutions collected from 2006 until 2015. SIM-based CoV aR performed better than CoV aR

by Adrian and Brunnermeier (2011) and V aR in overall period from 2006 to 2015. Both

SIM-based CoV aR and V aR performed well during the crisis period.

While estimating SIM-based CoV aR, it was found that the series of time-varying penaliza-

tion parameter has a striking pattern: higher values correspond to financial crisis period, and

lower values tend to be generated during stable periods. This finding has led to the idea to

use the Lasso penalization parameter λ as a systemic risk measure by Yu et al. (2019). Above

mentioned methodologies by Hautsch et al. (2015) and Fan et al. (2018) provide one series of

penalization parameters for individual financial institution. Yu et al. (2019), Yu et al. (2017)

and Mihoci et al. (2020) would like to generalize the penalization parameters for all financial

institutions to reflect the whole financial system, i.e. the overall behaviour of λ then works as

a systemic risk measure. Härdle et al. (2016) concluded that both linear quantile regression

and SIM are valid in terms of backtesting. The analysis of the entire financial system is based

on empirical data for a enormous number of financial institutions within a long time interval.
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Although SIM method performs better for a single institution, generating λ series during

100 institutions for more than 300 trading days with SIM is already not realistic. In this

paper, linear quantile Lasso regression is applied to construct FRM framework considering its

overwhelming advantage of being time-saving. More details about FRM methodology will be

elaborated in the next chapter 3.
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3 FRM Framework

As mentioned in chapter 2, the penalization parameters estimated in linear quantile Lasso

regression is expected to capture the overall behaviour of a financial system. The linear quantile

Lasso regression, which is proposed based on the methodologies in chapter 2 will be explained

in detail in chapter 3.1. Approaches to estimating and optimizing penalization parameters will

also be discussed in chapter 3.2. In this paper, we would like to define novel FRM candidates

based on the distribution of estimated penalization parameters. The distribution of daily series

of penalization parameters is available in chapter 3.3. The probabilities of above-mentioned

distribution are used to define novel FRM candidates see chapter 3.5.

3.1 Linear Quantile Lasso Regression

Following Härdle et al. (2016), Yu et al. (2019), Mihoci et al. (2020), FRM is proposed in

the context of methodologies elaborated in chapter 2. Let the stock price of a financial

institution j at time t be Pt such that the log return of this stock at day t is calculated as

Xj,t = log( Pt
Pt−1

). Xs
j,t is a J-dimensional vector of log returns for all financial institutions on

a specified trading day t ∈ {2, . . . , T} in the moving window s. s denotes the index of moving

window, s ∈ {2, . . . , (T − (n− 1))}. T is the total number of time series observations and n

is the length of window size. Then the linear quantile Lasso regression is analogue to the

equation 2.5a and 2.8:

Xs
j,t = αsj,t +As>j,t β

s
j + εsj,t (3.1)

with Asj,t
def
=

Xs
−j,t

M s
t−1

 . M s
t−1 the m-dimensional vector of macroeconomic variables includes

log returns of macroeconomic factors at the corresponding trading day t−1 within the moving

window s. Xs
−j,t is the (J − 1)-dimensional vector of log returns of all other institutions

expect for institution j. βsj is a p = (J +m− 1) dimensional vector reflecting time-varying

interdependence between the financial institution j and both financial institution 1, . . . , j −

1, j + 1, . . . , J and the m-dimensional macroeconomic factors in the moving window s. αsj,t is

a constant intercept for each moving window.

Following Li and Zhu (2008) and Belloni et al. (2011), the regularized model with penal-

ization parameter λ ≥ 0:

min
αs
j ,β

s
j

{ 1

n

s+n−1∑
t=s

ρτ (Xs
j,t − αsj,t −As>j,t βsj ) + λsj‖βsj‖1} (3.2)
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is referred to as the quantile Lasso regression for the 100τ% quantile function. Here τ ∈ (0, 1)

represented the tail risk level, which is normally defined as 5% or 10%. The necessaries and

advantages of using Lasso in the high-dimensional model have been explained in chapter 2.4.

‖βsj‖1 is the sum of all βj within one moving window s. The loss or equivalently the check

function ρτ could be rewritten as the asymmetric absolute deviation function by Belloni et al.

(2011):

ρτ (u) = |u|c|τ − I{u<0} |, (3.3)

with c = 1, 2. c = 1 corresponds to quantile regression which is hereinafter applied and c = 2

corresponds to expectile regression, see Ren et al. (2021). Taking u = Xs
j,t − αsj −As>j,t , then

the first part of equation 3.2 is rewritten as:

ρτ (Xs
j,t − αsj −As>j,t βsj ) =


τ ·
(
Xs
j,t − αsj −As>j,t

)
if Xs

j,t − αsj −As>j,t βsj > 0,

−(1− τ) · (Xs
j,t − αsj −As>j,t βsj ) otherwise.

(3.4)

As Belloni et al. (2011) argued, the use of penalization parameters may restore the consistency

of high-dimensional quantile regression. As Bayer (2018) argues, the optimal quantile estima-

tion consequently minimizes the expected loss of the error and penalization part because of

the consistent check function.

3.2 penalization parameter λ

The choice of regularization parameter λ is critical since it balances the quantile loss and

the penalty in equation 3.4 proposed by Li and Zhu (2008). Since the L1-norm loss function

and penalization parameter are non-differentiable, numerical estimation and optimization

is not a trivial problem. Zbonakova et al. (2016) mentioned that appropriate penalization

parameters λ could be determined in a completely data-driven way. The research by Osborne

et al. (2000) has led light to derive a formula for estimating penalization parameterλ in linear

Lasso regression, see also Zbonakova et al. (2016). If λ is treated as a fixed value in the

objective function of the penalized regression within each moving window s:

f (β, λ) =
1

n

s+n−1∑
t=s

(
Xs
j,t − αsj −As>j,t β

)2
+ λ

p∑
j=1

|βj | (3.5)

where Xt is a vector of log returns over a moving window and A is a design matrix. Then

f (β, λ) is a convex function in β. Moreover, as β →∞, then f (β, λ)→∞. Therefore, there

is at least one minimum of the function f (·, λ) and β̂ (λ) minimizes f (β, λ) if and only if the

null-vector is an element of the sub-differential ∂βf (β, λ). From the formulation of penalized
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regression model and its objective function 3.5, Osborne (1985) and Mihoci et al. (2020) have

defined the sub-differential as:

∂βf (β, λ) = −A> ((X − α)−Aβ) + λv (β) (3.6)

where v (β) = (v1 (β) , . . . , vp (β))> is given as vi (β) = 1 if βj > 0, vi (β) = −1 if βj < 0, and

vi (β) ∈ [−1, 1] if βj = 0. Then β̂ minimizes f (·, λ) if the condition is to be satisfied:

0 = −A>
(

(X − α)−Aβ̂ (λ)
)

+ λv
(
β̂ (λ)

)
. (3.7)

Mihoci et al. (2020) and Zbonakova et al. (2016) emphasized that λ is firstly selected and

then β̂ (λ) which minimizes the function 3.5 is searched. Hence, the estimation of a parameter

vector β is denoted as a function of λ. The definition of v (β) implies that v (β) · β = ‖β‖1,

‖ · ‖ denotes L1-norm with p elements. Then the equation 3.7 is rewritten as:

λ =

(
(X − α)−Aβ̂ (λ)

)>
Aβ̂ (λ)

‖β̂ (λ) ‖1
. (3.8)

Zbonakova et al. (2016), Zboňáková et al. (2019) and Mihoci et al. (2020) indicated that

the form of λ characterizes three main effects which influence the values of the penalization

parameter λ:

1. The variance or magnitude of the residuals
(

(X − α)−Aβ̂ (λ)
)

. As the variance of

residuals increases, so does the associated λ leading to an increase of sparsity of β̂ (λ).

An increase in the variance of residuals indicates a drop in the signal, so the ration of

the data is raised. If the size of the residual decreases, the value of λ decreases.

2. The absolute size of model coefficients β̂ of the model. This effect could translated

into the effect of the number of nonzero covariates, which is so-called active set of

the model q = ‖β‖0 =
∑p

j=1 I (βj 6= 0). It has to be explained that a small number

of λ is required in order to recover regression coefficients with a large L1-norm. The

contributions of these effects are discussed and empirically tested by Zboňáková et al.

(2019) in the L1-regularized linear model using time-varying data. If the size of the

active set increases, the value of λ will decrease.

3. The correlation within design matrix A the matrix A>A. The change of λ is no longer

linear dependent on the change of A>A. As the correlation of covariates increases, the

higher value from the numerator of λ makes it higher. However, the active set of model

coefficients decreases once we reach the peak of multicollinearity, which results in a

decrease of λ.
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According to the work by Tibshirani (1996) and Li and Zhu (2008), the equation 3.5 could

be rewritten as a constrained optimization problem:

min
αj ,βj

1

n

s+n−1∑
t=s

ρτ (Xs
j,t − αsj,t −As>j,t βsj ), (3.9a)

subject to |βsj‖1 ≤ u (3.9b)

for u > 0. Equations 3.9a and 3.9b can be rewritten as a Lagrangian primal function, details

see Li and Zhu (2008). Through setting the derivatives of the Lagrangian primal function 3.9b

to zero and the keeping all Lagrangian multipliers non-negative, Li and Zhu (2008) derived

the size of penalization parameter λ in quantile Lasso regressions as follows:

λ =
θ>Aβ̂ (λ)

‖β̂ (λ) ‖1
(3.10)

where θ> = (θs, · · · , θs+n−1) satisfies the following relationships:

θt =


τ if Xs

j,t − αsj −As>j,t βsj > 0,

(1− τ) if Xs
j,t − αsj −As>j,t βsj < 0,

∈ (−(1− τ), τ) if Xs
j,t − αsj −As>j,t βsj = 0.

(3.11)

Equation 3.10 for λ in the quantile Lasso regression revealed that λ depends on the size of

residual, the active set of model coefficients which is influenced by the covariance matrix of

the design matrix. By Härdle et al. (2017), considering the definition of the design matrix in

3.1, equations 3.8 and 3.10 could be interpreted that λ depends not only on the volatility but

also the connectedness of financial institutions.

In theory, every solution of the Lasso optimization problem holds the equation 3.8 and

3.10 since after λ being chosen, the model is post-fitted according to the given λ. The

standard approaches for choosing the regularization parameter λ include information criteria

and cross-validation. The latter methods have three forms, namely k-folds, leave-one-out

and generalized cross-validation (Koenker et al., 1994). Among former approaches, Schwarz

information criterion (SIC) by Koenker et al. (1994), also known as Bayesian Information

Criterion (BIC) is the most widely used criterion for selecting λ. Cross-validation is aimed to

minimize prediction error on each grid of the penalization parameter λ. Although, as Leng

et al. (2006) argued, this method of choosing penalization parameter based on predicting

accuracy is generally not consistent when variable selection is required. The generalized

approximate cross-validation(GACV) by Yuan (2006) is still efficient in terms of model error.
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Following criteria are conducted in previous research about FRM:

SIC(λsj) = ln(
1

n

s+(n−1)∑
t=s

ρτ (Xs
j,t − αsj,t −As>j,t βsj ) +

lnn

2n
df, (3.12)

GACV (λsj) =

∑s+(n−1)
t=s ρτ (Xs

j,t − αsj,t −As>j,t βsj (λ))

n− df
, (3.13)

where df is a measure of the effective dimensionality of the fitted model. Li and Zhu (2008)

proved that the number of interpolated observations Xj,t, or equivalently, the number of

non-zero coefficients of the fitted model is an estimate of the df . Because GACV also works for

p > n, in where the size of covariates including the number of institutions and macroeconomic

factors could be larger than the moving window size. Moreover, in terms of statistical efficiency,

GACV outperforms SIC argued by Yuan (2006). Therefore, GACV is implemented in this

paper as the criterion to optimize our penalization parameter λ in our quantile Lasso model.

3.3 Empirical penalization parameters λ̂j

In this chapter, we apply data from the real stock markets to quantile Lasso regression model

introduced in chapter 3.1, and penalization parameter estimation and optimization algorithm

described in chapter 3.2, then we obtain empirically estimated penalization parameters λ of

individual financial institutions in the stock market during a particular time period respectively.

Based on the characteristics of these estimated penalization parameters, we will define other

FRM candidates to capture systemic risk.

This paper focuses on two major stock markets, the Americas and Europe, because both

stock markets attract large financial institutions to be published there. The performance

of publicly traded financial institutions in both stock markets reflects whether the financial

system works properly. Moreover, Zbonakova et al. (2016), Yu et al. (2017), Yu et al. (2019)

and Mihoci et al. (2020) have proved that penalization parameters λ fluctuate similar along

with the evolution of systemic risk. Furthermore, we are interested in the performance of

systemic risk measures under high systemic risk and we want to reduce the computation cost,

so we focus on the application around the financial crisis of 2007 and the current COVID-19

pandemic. The purpose of choosing two stock markets and two time intervals is to double-check

and compare the performance of FRM candidates under financial distress that occurred for

different reasons in two regions.

Analogue to the procedure introduced by Mihoci et al. (2020), we need to first collect

the relevant data about individual financial institutions and the overall market on each
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trading day for both stock markets. In order to prevent the possible survivorship bias, a

list of financial institutions that have been an active constituent of the aimed stock market

indices are selected. In the Americas, all (395) financial institutions from the US’s S&P 1500

Composite Index and the Canadian TSX Toronto Composite Index have been considered. At

the same time, all (187) financial institutions from S&P 600 Europe have been selected among

17 European countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy,

Luxembourg, Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland and the

United Kingdom. For each component of the above mentioned financial institution lists, daily

closing prices Pt and the market capitalization at the closing price are downloaded from the

Bloomberg dataset. Moreover, the daily value of six macroeconomic factors for the Americas

and seven macroeconomic factors for Europe are also downloaded from the Bloomberg dataset.

Detailed information on these factors is available in Table 3.1. All macroeconomic factors

are chosen in line with Adrian and Brunnermeier (2011) in order to capture the common

explored macroeconomic risks in both markets. In this setup, data from 02 January 2007 until

31 December 2009 is collected to represent the stock market change around the financial crisis

of 2007, while the stock market during COVID-pandemic is reflected with the data from 03

October 2020 and 31 December 2020. Since Equation 3.1 takes the log-returns of stock prices

and macroeconomic factors into account, for the first moving window s = 2, A2
j,2 includes

the log-returns of individual financial institutions X2
j,2 that is obtained from the logarithm of

difference between the stock prices on 04 January 2007 and those on 03 January 2007, and

the log-returns of macroeconomic factors are calculated as the difference between values on 03

January 2007 and on 02 January 2007. T = 782 indicates the last series of log returns within

the first time interval. Analogously, 587 series of log returns are collected in the Americas

and Europe around the COVID-19 pandemic.

Despite that FRM@Americas and FRM@Europe candidates are separately computed

based on their data sources, the basic settings of linear quantile Lasso regression models are

identical for both markets. In each stock market, we selected the largest 100 (J=100) financial

institutions from the financial institutions list on every trading day based on daily market

capitalization. The largest 100 financial institutions for each market vary over time so that

we capture the crucial market participants precisely. We determine J as 100 according to

the following reasons mentioned by Yu et al. (2017). Firstly, the market capitalization of the

largest 100 institutions covers more than 85% of total market capitalization in the US stock

markets. Secondly, if we use 200 financial institutions, the smaller companies in this set change
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FRM@Americas FRM@Europe

S&P 500 Index Returns S&P Europe 600 Index Returns

CBOE Volatility Index(VIX) Returns Euro Stoxx 50 Volatility Index Returns

REIT Index Returns MSCI Europe REIT Index Returns

3 months Treasury Constant Maturity

Rate

1 year German Treasury Constant Maturi-

ty

3 months Treasury Constant Maturity

Rate Differences to 10 year Treasury Con-

stant Maturity Rate Spread Differences

German Treasury Constant Maturity Rate

1 to 10 years Slope Spread Differences

Moodys Seasoned Baa Corp Bond Yield

Spread to 10 year Treasury Constant Ma-

turity Rate Spread Differences

Barclays Bloomberg EuroAgg Corporate

Yield Spread to 10 year German Trea-

sury Constant Maturity Rate Spread Dif-

ferences

10 year Italy Treasury to 10 year German

Treasury Constant Maturity Rate Spread

Differences

Table 3.1: Macroeconomic risk factors for FRM@Americas and FMR@Europe.

regularly due to bankruptcies or other reasons. The financial institutions list for Europe is

smaller than 200. Moreover, the penalization parameters estimated based on the largest 100

or 200 institutions are very similar. Then each linear quantile Lasso regression for Americas

has 105 covariates and each regression for Europe has 106 covariates. The moving window

size is determined as 63 days (n=63), which represents three months since only trading days

are considered as stated by Härdle et al. (2017). Yu et al. (2017) found that deciding on the

optimal window size is a trade-off. On the one hand, the moving window size smaller than 50

may be imprecise. On the other hand, the larger moving window size leads to more lagged

data. Relying on the estimate of standard FRM with n = 63 and n = 126, Yu et al. (2017)

concluded that standard FRM with n = 63 leads standard FRM with n = 126 at least 22

trading days. Therefore, the moving window size is set to be n = 63. We take tail risk level τ

as 5%, following Mihoci et al. (2020).

With reference to the data input and parameter settings, I will elaborate the process of

estimating penalization parameters step by step. Within each moving window, the algorithm

designed by Li and Zhu (2008) is used to estimate penalization parameter λ in the aforemen-
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tioned linear quantile Lasso regression model. The estimation result at 64th trading day is

calculated based on log returns within the first moving window s = 2, i.e. the log-returns of

macroeconomic factors from trading day s− 1 = 1 until trading day s+ (n− 2) = 63 and the

log-returns of financial institutions from trading day s = 2 until trading day s+ (n− 1 = 64)

are considered. Based upon the τ at 5%, among 63 quantile regressions within each moving

window for each institution, the first 5% of them and the rest 95% are differently treated in

accordance with the check function 3.4. Optimized penalization parameter on each trading

day for each financial institution λ̂sj has the minimal GACV value among all GACV (λj) after

25 iterations. Next, we repeat this estimation and optimization process for J institutions.

Because on each trading day t within a given window s, we take the log return of 100 largest

financial institutions Xs
1,t, . . . , X

s
100,t on each market as the dependent variable Xs

j,t in equation

3.1 sequentially. In other words, we get J = 100 linear regressions on a given trading day

within a given moving window. As a result, we obtain a vector λ̂sj ∈ {λ̂s1, . . . , λ̂s100} within

the moving window s. Then after rolling the moving window along the pre-defined time

interval, we get T − 63 series of penalization parameters λ from T − 63 moving windows. To

simplify the notation hereinafter, we take the set of penalization parameters estimated from

s-th moving window as the penalization parameters on the s+ (63− 1)-th trading day. Thus,

we attain estimated penalization parameters λ for Americas and Europe from 02 April 2007

until 31 December 2009 (719 trading days) and from 01 January 2019 until 31 December

2020 (524 trading days). In order to find out reasonable quantiles to define novel FRM, the

characteristics of empirically estimated penalization parameters λ̂j,t are illustrated in the next

chapter.

3.4 Distribution of penalization parameter λ̂j

The λ̂j,t estimated based on stock returns and macroeconomic factors over the last 63 trading

days reveals the interconnections among large financial institutions in the corresponding

financial system will be visualized and investigated in this chapter. To understand the risk

level of an individual institution that is mirrored by the estimated penalization parameter

λ̂j within the predetermined time frame, we have produced a daily boxplot to visualize the

descriptive statistics of these estimated penalization parameters on each trading day. After

sorting the financial institutions in ascending order by their daily λ̂j values, the lower bound

and upper bound of daily boxplot in Figure 3.1 show the penalization parameter value of

the 25-th financial institution and the 75-th financial institution on corresponding trading
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day. Red and blue lines in Figure 3.1 represent the maximal and averaged daily estimated

penalization parameters λ̂j respectively.

From left plots in 3.1, we observe that λ̂ in the Americas and in Europe are generally stable

from April 2007 until the second quarter of 2008. λ̂ increases during the third quarter of 2008,

which corresponds to the bankruptcy of Lehman Brothers and the start of an international

bank crisis. The peak at the end of 2008 indicates the great financial crisis and great recession.

Our penalization parameters captured the increase of stress level before the upcoming of a

worldwide crisis comparing with the timeline of the financial crisis of 2007. For both markets,

estimated penalization parameters λ̂ recovered to a stable pattern after the curve around

March 2009. The decrease of stress is the response to government interactions, and the

rebound could be a seasonal downturn in stock markets. The crisis decayed quickly during

the second quarter of 2009, when the global financial markets were recovering. The second

plot in both figures is the results for the COVID-19 pandemic. It shows that λ̂ in Europe

and the Americas kept at a low level and stable until the beginning of 2020. λ̂ increases

suddenly in March 2020 because of the spread of Coronavirus. The high-stress level of λ̂

across the second quarter of 2020 is the result of worldwide preventive measures, including

lockdowns, travel restrictions, faculty and store closures. From the above analysis, we may

conclude that the estimated penalization parameters could capture periods with high systemic

risk correctly and efficiently. Comparing λ̂ of 2007-2008 with λ̂ of 2019-2020, we found that

the λ̂ reacted with delay after the outbreak of COVID-19 in the Americas and Europe, and

the high-stress level has no seasonal fluctuations. This finding implies that the penalization

parameter may capture high systemic risk much better and earlier, for which trigger event is

relative to financial institutions. Comparing the results for Americas and in Europe at the

same time period, λ̂ in Americas tends to be higher than λ̂ in Europe.

In both markets, we observe that several maxima were extraordinary high. Moreover, many

financial institutions were detected as outliers on specific trading days since they had high

daily penalization parameters, which are identified with ◦. Higher λ̂j,t indicates the institution

j has a high-risk level as companies at the origin of the crisis. Therefore, the institutions

having λ̂j,t that is picked out with black circles are expected to have high “co-stress” or even

to be seen as major contributors of systemic stress by Mihoci et al. (2020). In the context

of standard FRM, it may be sensitive to these financial institutions with high “co-stress”.

The outstanding maxima may lead to an overestimated standard FRM. This motivates us to

define novel FRM with quantiles so that only partition of the penalization parameters will be
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Figure 3.1: Boxplot, average and maxima of estimated daily penalization parameters from

April 2007 to December 2009 and from January 2019 to December 2020 in the Americas (top)

and Europe (bottom).

FRMQLambdaboxplot

20

https://github.com/ranqingsong/FRMQ/tree/main/FRMQLambdaboxplot


Figure 3.2: Kernel density estimation examples of λ̂j,t for 100 financial institutions on

20070801, 20190603, 20191203, 20081003, 20090202, 2020602.

FRMQlambdaDistr

employed as a systemic risk measure. During the period with higher financial distress, for both

financial markets, the distances between upper and lower bounds of boxplots are larger. This

finding is consistent with the estimated distribution of daily penalization parameters series in

Figure 3.2. Figure 3.2 shows kernel density estimations of daily penalization parameters on

six trading days in the Americas and in Europe. 20081003, 20090202 and 20200602 in Figure

3.2 are selected from periods under high stress, while the other three lines are examples from

stable periods. During trading days under high risk, the daily series of λ̂j,t have a flatter and

broader distributions than the series of λ̂j,t estimated from stable periods. On the basis of this

fact, we would like to take the variability of daily penalization parameters λ̂j,t as a systemic

risk measure. From Figure 3.2 we discover that daily penalization parameters λ̂j,t tend to be

distributed as Weibull distribution. Although the exact distributions of λ̂j,t series are still

unknown, we may conclude that they are right-skewed distributions. Consequently, if a fixed

proportion of financial institutions should be considered as a systemic risk measure, the size of
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this proportion should be relatively large. For example, if we take the penalization parameters

of the best 70 financial institutions into account rather than that of the best 30 financial

institutions, the differentiation of penalization parameter value due to the change of general

systemic risk will be larger. Thus, it is reasonable that in further analysis, we will focus on

financial institutions with relative high risks. The definition of novel FRM premised on the

characteristics of daily penalization parameters for financial institutions will be demonstrated

in the next chapter.

3.5 Definition and visualization of Financial Risk Meter (FRM)

Yu et al. (2019), Yu et al. (2017) and Mihoci et al. (2020) defined standard FRM as

FRM s
mean = J−1

J∑
j=1

λ̂sj (3.14)

in the specified moving window s for j companies. Analogue to the notation of penalization

parameters, FRM s
mean is further denoted as FRMmean,t, which denotes FRM on trading day

t with t = s+ (63− 1). Standard FRM is induced by risk levels of all financial institutions

represented with values of penalization parameters. The maxima and outliers of daily

penalization parameters may result in an unrobust FRM. Therefore, in this paper, we extend

the previous analysis by defining the following novel FRM candidates based on p-th quantile

of F for 0 < p < 1:

F−1 (p) = inf{λ̂t : F
(
λ̂t

)
≥ p}, (3.15)

where λ̂t is a vector of λ̂j for all financial institutions on trading day t. F is the empirical

cumulative distribution function of λ̂t such that F (FRMp−,t) ≤ p ≤ F (FRMp,t). FRMp,t

delivers the level of estimated penalization parameter collected from best p institutions. Better

institutions herein corresponds to lower values of penalization parameters, which signify

that these financial institutions are less like to contribute to a growing systemic risk. As

argued in chapter 3.4, we have found that the increased value of λ̂t for each one percent

in left tail of daily λ̂t distribution is smaller than that in right tail because of the positive

skewness of density distributions in Figure 3.2. In other words, taking a large p may result

in a significant difference of F−1 (p), equivalently to FRMp,t. Therefore, we are interested

in p larger than 50%. We define FRMq50, FRMq60, FRMq70, FRMq80, FRMq90 to reflect

the interdependent stress level among 50, 60, 70, 80, 90 top financial institutions. In other

words, these novel FRM candidates discover the distress level referring to 50, 40, 30, 20 and 10

most risky financial institutions. The interquartile range, which is calculated as the distance
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between first and third quartile of λ̂, increases under high distress in Figure 3.1 and Figure

3.2. Then we derive FRMIQR = 1
2

(
F−1 (75%)− F−1 (25%)

)
to represent systemic risk with

the volatility level of penalization parameters. To simplify the notation, we denote standard

FRM and novel FRM for each trading day as FRMp,t with the index of FRM measures

q ∈ {mean, q50, q60, q70, q80, q90, IQR}. All novel FRM definitions and standard FRM for

Americas and Europe are taken as FRM candidates for the optimal FRM@Americas and

FRM@Europe.

Figure 3.3: Time series of standard FRM, FRMq50, FRMq60, FRMq70, FRMq80, FRMq90,

FRMIQR for Americas (top) and Europe (bottom) from April 2007 to December 2009 and

from January 2019 to December 2020.

FRMQdefineFRMs

Figure 3.3 visualizes evolution of FRMp,t@Americas and FRMp,t@Europe candidates.

In both markets, the overall fluctuations of FRM candidates are identical to the evolution

of penalization parameters in chapter 3.4. FRM@Americas and FRM@Europe candidates

hold identical characteristics during two time intervals, so the following interpretations are

appropriate to both markets during both periods. It is observed that novel FRM candidates

shift almost parallel upwards along with the increase of their underlying probabilities, especially
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during stable periods. Standard FRM lies above FRMq50 and is close to FRMq60. The change

of FRMq80 and FRMq90 is much more considerable than the change of other FRM candidates

when large variations came, such as around October 2008 and around March 2020. Moreover,

the distance between two the higher quantiles is also larger than the distance between the

two lower quantiles. For example, FRMq80 and FRMq90 is larger than the distance between

FRMq50 and FRMq60. This difference is enlarged under high stress. However, it is impossible

to detect whether FRM candidates based on higher quantiles could forecast the upcoming

crisis much earlier than other candidates from the visualization plots. Despite the lower

values, the trend and peak of FRMIQR are similar to that of standard FRM. In summary,

novel FRM candidates generally perform similarly to the standard FRM. Above mentioned

findings could be proved by the kernel density estimations of all FRM candidates in Figure

3.4. In both markets during both periods, all density distributions of FRM candidates are

bimodal. The first peak stands for the FRM value that occurred most frequently within a

stable period, and the second peak corresponds to the mode of FRM value during periods

under high distress. FRM defined in different ways have the same mode during stable periods.

However, FRM derived with higher quantiles tend to deliver a higher value under distress.

After comparing the same candidates in two markets, we may conclude that FRM@Americas

are likely to be higher than FRM@Europe, especially when the whole financial system was

under stress. In other words, financial institutions based in the Americas may suffer more losses

during the financial crisis of 2007 and the COVID-19 pandemic than financial institutions

based in Europe. We cannot distinguish the density distributions of FRM candidates during

the financial crisis between the density distributions of FRM candidates during the COVID-19

pandemic easily. It means although the COVID-19 pandemic is not due to regular activities in

financial markets, it made an enormous influence on the financial system. All FRM candidates

are able to capture the volatility of systemic risk regardless of its cause.

In this chapter, we recognize that it is hard to distinguish FRM candidates based on

visualization plots. Hence, in the next chapter 4.1, we will implement correlation, goodness-

of-fit and causality tests between individual FRM candidates and individual commonly used

systemic risk measures to compare the capabilities of FRM candidates in terms of measuring

systemic risk in American and European countries.
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Figure 3.4: Kernel density estimation of standard FRM, FRMq50, FRMq60, FRMq70,

FRMq80, FRMq90, FRMIQR in the Americas and Europe.

FRMQFRMdistr
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4 Comparison of FRM and other systemic risk measures

Yu et al. (2017), and Yu et al. (2019) have proved the mutual correlations and causalities

between standard FRM@Americas and other systemic risk measures like V IX, SRISK,

Google Trends and Financial Turbulence. Moreover, Mihoci et al. (2020) illustrated the

similarity between standard FRM@Europe and systemic risk measures for Europe, namely

CISS and VSTOXX. In this chapter, we will extend the correlation and causality tests firstly

to standard FRM@Europe, and secondly to other novel FRM candidates for both markets.

Another extension is that we will try to test the goodness-of-fit between the distribution of

FRM candidates and the distribution of each systemic risk measures.

4.1 Data source of other systemic risk measures

Historical time series of estimated penalisation parameters λ̂ and FRM candidates have been

illustrated in chapters 3.3 and 3.5. The overall trend seems to be reasonable according to

the results of previous research and our common sense. However, we still need statistical

methodologies to validate that FRM candidates are qualified systemic risk measures. Moreover,

FRM candidates are not distinctly differentiated from each other. Thus, several systemic risk

measures are introduced to validate the co-movement and co-stress of FRM candidates in term

of working as a systemic risk indicator in American and European countries. For Americas,

as mentioned in Chapter 2.1, we collected daily VIX index from Bloomberg database, weekly

Google Trends (GT) data in the United States and Canada with the keyword “financial risk”

with R package by Massicotte et al. (2016), and monthly SRISK data in the United States

and Canada from Engle et al. (2020). Cubic interpolation is applied to transform weekly GT

series and monthly SRISK records into daily time series, see Yu et al. (2017). For Europe,

daily CISS are downloaded from European Central Bank Statistical Data Warehouse and

daily VSTOXX are also from the Bloomberg database. For both markets, we calculated a

Financial turbulence index (FT) according to the algorithm introduced by Kritzman and

Li (2010) and Zbonakova et al. (2016) based on the same data that is applied to calculate

FRM candidates. Kritzman and Li (2010) proposed a turbulence index measure the financial

turbulence statistically:

dt = (Xt − µ) Σ−1 (Xt − µ)> , (4.1)

where dt is the turbulence for a given time t, Xt is a series of historical stock returns for time

t. µ is sample average historical returns, and Σ is a covariance matrix of historical returns.
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We take stock returns of a list of financial institutions as Xt. The financial institutions list is

a joint list of the largest 100 financial institutions within the whole time frame for simplicity.

t is specified as the same time frame in which FRM candidates are calculated. Following Yu

et al. (2017), all series are standardized to interval zero and one for comparison purposes.

VIX and VSTOXX, as the most commonly used systemic risk measures in the Americas and

Europe, are macroeconomic factors that are considered to calculate FRM@Americas and

FRM@Europe, respectively. However, as mentioned in chapter 2.4, several macroeconomic

factors may be removed from our initially structured linear quantile Lasso regression model

3.1 so that they will not be included in the estimation of penalization parameter λj,t. Through

checking the selected variables in quantile Lasso regression models on at a daily frequency. On

average, we find that on each trading day, the VIX is removed from approximately 45 models

among 100 models for American financial institutions, and the VSTOXX is removed from

about 46 models among 100 models for European financial institutions. Furthermore, after

averaging the estimated coefficients of VIX and VSTOXX for all models among the entire

time frame, we obtained an estimated coefficient of VIX at -0.004 and an estimated coefficient

of VSTOXX at -0.006. In the context of equation 3.8, such slight coefficients cannot influence

the estimation of the penalization parameter significantly, not to mention the value of FRM

candidates. Therefore, VIX and VSTOXX are still reasonable to be considered as comparable

systemic risk measures. VIX and VSTOXX are considered as the standard systemic risk

measure in the Americas and Europe, respectively. So we will focus more on them in further

analysis. Since the measures mentioned above are separately defined and evaluated in their

way, they will be scaled or normalized for further comparison purpose as follows:

normalizedFRMp,t = (FRMp,t −min (FRMp,t)) / (max (FRMp,t)−min (FRMp,t)) (4.2)

The first two plots in Figure 4.1 visualize the comovement of FRM@Americas candidates

and other systemic risk measures in the Americas during the financial crisis of 2007. The first

finding is that all FRM@Americas candidates and systemic risk measures for Americas except

SRISK reached at peak right when the financial crisis became systemically essential. Standard

FRM captured the increased level of systemic risk much earlier than VIX, GT and FT.

Although SRISK increased earliest among all systemic risk measures before the crisis occurred,

it cannot indicate the peak of crisis exactly. Two summits of SRISK were either earlier or

later than the maximal values of other measures. SRISK showed a progressive growth in the

systemic risk while VIX, GT, FT and FRM@Americas candidates experienced a dramatic

enlargement of systemic risk level until the whole financial systemic was threatened. Not only
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Figure 4.1: Normalized systemic risk measures VIX, SRISK, GT, FT, and standard FRM ,

FRMq50, FRMq60, FRMq70, FRMq80, FRMq90, FRMIQR for Americas during the financial

crisis of 2007 and the COVID-19 pandemic.
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FRM@Americas, but also VIX, GT, and FT had a synchronized bounce of systemic risk

level at the beginning of 2009. However, in this period, FRM@Americas may overestimate

the undertaken distress since its value was higher than the value of the other three measures.

In other words, there was a longer delay for standard FRM@Americas to reflect the recovery

from the financial crisis 2007. This could be seen from the increased deviation of standard

FRM@Americas and other systemic risk measures in the mid of 2009. As for the comparison

of FRM@Americas candidates, we find that they generally have a synchronized fluctuation

pattern as the standard FRM@Americas. These normalized standard FRM@Americas,

FRMq50@Americas, FRMq60@Americas, FRMq70@Americas and FRMq80 are close to

each other is consistent with the Figure 3.4, in where estimated density distributions of

respective standard FRM@Americas are almost identical. It means the risk that the top

20 risky financial institutions suffered was almost the same as the risk for top 30, 40 or

50 risky financial institutions. In this sense, we may conclude that even for relatively safe

financial institutions that lie around the median among all the largest financial institutions,

the influence of the financial crisis was still considerable. If we look into the slight difference

among standard FRM@Americas candidates, we may observe that the smaller quantile

factor is used to calculate standard FRM@Americas the higher its respective normalized

FRMq50 is obtained. Considering the definition of normalization and the minimal value of all

FRM@Americas in Figure 3.4 being similar. The higher normalized FRM@Americas values

compared with values from other FRM types result from either a higher FRM@Americas

values at the same time or a smaller range of FRM@Americas series within the given

time frame. A striking finding is that the normalized standard FRM@Americas tends to

maintain a high level among all FRM@Americas candidates during the period under distress.

During the stable period, the normalized standard FRM@Americas lie in the middle among

all FRM@Americas candidates. The higher normalized standard FRM@Americas under

distress proves our assumption that several standard FRM@Americas during the crisis may

be influenced by large outliers of daily λj . In contrast, the normalized FRMIQR@Americas

tends to be the highest FRM candidates during a stable period and the lowest under distress.

We also find that normalized FRMq50@Americas, FRMq60@Americas, FRMq70@Americas

and FRMq80 series are closer to each other during the stable period, in comparison to the

series during the crisis. This reveals that several FRM@Americas candidates fluctuate more

strongly than others, which is consistent with the larger deviation of FRM@Americas series

in Figure 3.3. The broader range of FRMq90@Americas leads to a smaller normalized series,
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so even if its absolute value is higher than other candidates, its normalized series is lower than

other others. This implied that FRMq90@Americas cannot reflect the increased systemic risk

as quickly and precisely as others since it always undertake a relatively high level of systemic

risk. However, the lower normalized FRMq90@Americas does not imply a lower systemic risk

for top 10 risky financial institutions because the high range is due to the high maximum of

FRMq90@Americas during the crisis, which is the consequence of a high systemic risk of the

most risky financial institution.

The other two plot in Figure 4.1 is the comparison results of above mentioned measures for

the Americas during the COVID-19 pandemic. It is seen that FRM@Americas candidates

captured the high systemic risk later than other measures. The reason for this delay is that

this COVID-19 pandemic was not relevant to activities in the American stock market. Thus,

the reactions of the stock market to this spread of COVID-19 has postponed. Moreover, the

influences of the pandemic on the whole financial system or economics were not real-time.

FRM@Americas candidates remains at a high level despite the sharp decrease of VIX, GT

and FT from March 2020 to May 2020. After the dramatic decay in June, FRM candidates

reached a comparable level as VIX, GT, FT. Like what occurred in the first research period,

SRISK reacted earliest at the beginning of the pandemic and maintained the highest level

when other systemic risk measures decayed. Among FRM@Americas candidates, analogue

to the finding from the first period, normalized FRMq50@Americas, FRMq60@Americas

and FRMq80@Americas were very close to standard FRM@Americas. The normalized

FRMq80@Americas series was significantly higher during the pandemic than the normalized

FRMq90@Americas. We then conclude that the top eleven to 20 risky financial institutions

were suffered the largest during this pandemic. From FRMIQR@Americas time series, we

see that the deviation between risky and safe financial institutions during the period under

distress is smaller than that before the pandemic. Nevertheless, the fluctuation range of

FRMIQR@Americas is more extensive than the fluctuation range during the financial crisis

of 2007. Another finding from the comparison between the two distress periods is that the

systemic risk caused by the pandemic was not as considerable as that triggered by the financial

crisis of 2007.

Figure 4.2 validates that FRM@Europe candidates have also predicted the financial crisis

of 2007 earlier than VSTOXX and FT. Like the SRISK for Americas, CISS for Europe was high-

er than FRM@Europe and VSTOXX before and after the financial crisis. Similar to the per-

formance of FRM@Americas candidates, FRMq90@Europe and FRMIQR@Europe cannot
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Figure 4.2: Normalized systemic risk measures VSTOXX, CISS, FT, and standard FRM ,

FRMq50, FRMq60, FRMq70, FRMq80, FRMq90, FRMIQR for Europe during the financial

crisis of 2007 and the COVID-19 pandemic
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reach such a high normalized systemic risk level as standard FRM@Europe, FRMq50@Europe,

FRMq60@Europe, FRMq70@Europe and FRMq80@Europe. The overall characteristics of

normalized FRM@Europe candidates are similar to normalized FRM@Americas candidates.

However, during the financial crisis of 2007, levels of FRMq90@Europe and FRMIQR@Europe

were smaller than the respective FRM@Americas candidates. In contrast, normalized

FRMq90@Europe and FRMIQR@Europe during the COVID-19 pandemic were higher than

both during the financial crisis of 2007. FRMIQR@Europe had a dramatic increase at the

beginning of the COVID-19 pandemic. It proved that the top 10 financial institutions might

suffer more because they were already under high distress before this pandemic and were not

well prepared for this unexpected outbreak of virus. The FRMIQR@Europe series indicates

that the difference between the systemic risk levels of the top 25 risky and safe financial

institutions was large during the pandemic. This implies that risk top 25 safe financial

institutions were not suffered as much has during the financial crisis after taking the consider-

able FRMq70@Europe into account. In general, the impact of the COVID-19 pandemic in

European countries was the same as the impact of the financial crisis of 2007.

From the above visualizations of normalized FRM candidates in the Americas and Europe,

we have observed their similarity. However, it is impossible to compare FRM candidates

directly from the plot. Therefore, in the next chapters, several statistical tests will be

conducted to compare FRM candidates with these commonly used systemic risk measures

numerically.

4.2 Comovement of FRM candidates and other systemic risk measures

Firstly, to check the relationship of FRM candidates and above mentioned systemic risk

measures, we will perform a correlation test following Yu et al. (2017). Secondly, we extend

the Kolmogorov-Smirnov(KS) statistic to compare the goodness-of-fit between the empirical

series of one FRM candidate and the empirical series of one systemic risk measure.

According to Lee Rodgers and Nicewander (1988), the Pearson’s correlation coefficient is

still most commonly used to measure correlation. The correlation coefficient developed by

Pearson in 1895 is as follows:

r =

∑T
t=1

(
FRMp,t − FRMp,t

) (
Si,t − Si,t

)√∑T
t=1

(
FRMp,t − FRMp,t

)2∑T
t=1

(
Si,t − Si,t

)2 , (4.3)

where FRMp,t = 1
t

∑T
t=1 FRMp,t is the average of individual FRM candidates over two

periods and Si,t = 1
t

∑T
t=1 Si,t is the average of individual series of commonly used systemic
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VIX SRISK FT GT

FRMmean 0.81 0.67 0.37 0.32

FRMq50 0.81 0.67 0.39 0.34

FRMq60 0.81 0.67 0.38 0.34

FRMq70 0.81 0.67 0.39 0.33

FRMq80 0.81 0.67 0.38 0.33

FRMq90 0.80 0.66 0.37 0.32

FRMIQR 0.79 0.66 0.39 0.33

Table 4.1: Correlation of FRM@Americas candidates and other systemic risk measures in

Americas.

FRMQcorrelationAM

risk measures over the corresponding periods. The i in Si,t ranges from 1 to 4 for Americans

and varies from 1 to 3 for Europe, representing other systemic risk measures.

Tables 4.1 and 4.2 show that FRM candidates are strongly correlated with other systemic

risk measures. The standard FRM, FRMq50, FRMq60, FRMq70 and FRMq80 for Americas

and Europe are slightly more correlated with VIX and VSTOXX than FRMq90 and FRMIQR.

FRM@Americas and FRM@Europe are almost same correlated to VIX, VSTOXX and

CISS, and the correlation is positive and extremenly strong. Although in Figure 4.1, the SRISK

is largely different from VIX and FRM@Americas in terms of the general trend and the

performance under high distress. The correlations of SRISK and individual FRM@Americas

candidates are strong. In contrast, FT and GT fluctuated similarly to FRM candidates,

but the statistical correlations of FT and FRM candidates, as well as that of GT and FRM

candidates, are smaller due to the high volatility of FT and GT.

In summary, theses FRM candidates are not significantly distinct in terms of the correlation

test. After applying Pearson correlation testing, the null hypothesis that the correlation of

FRM candidates and one other systemic risk indicators are equal to 0 should be rejected.

For FRM@Americas candidates, it is difficult to distinguish their performance since the

correlation coefficients are almost the same. Among FRM@Europe candidates, except for

FRMIQR@Europe, the performance of other FRM@Europe candidates are similar.

Furthermore, the Kolmogorov-Smirnov (KS) test is used to test the goodness-of-fit between

the empirical distributions of one FRM candidate and one series of other systemic risk measures.
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VSTOXX CISS FT

FRMmean 0.81 0.75 0.39

FRMq50 0.81 0.76 0.28

FRMq60 0.81 0.75 0.29

FRMq70 0.81 0.73 0.31

FRMq80 0.81 0.72 0.33

FRMq90 0.80 0.70 0.34

FRMIQR 0.76 0.57 0.43

Table 4.2: Correlation of FRM@Europe candidates and systemic risk measures in Europe.

FRMQcorrelationEU

Following Simard et al. (2011), the KS two-sided test statistic is defined as

Dt = sup
FRMp,Si

|Ft (FRMp) , Gt (Si) |, (4.4)

where Ft and Gt are empirical cumulative distribution functions of FRM candidates and

other systemic risk measures. This KS statistic quantifies a distance between the empirical

distribution of one FRM candidate and the empirical distribution of one comparable systemic

risk measure. The KS statistics in Table 4.3 indicate that VIX fits FRM@Americas candidates

at most in comparison of other systemic risk measures. Moreover, FRMq90@Americas and

FRMIQR@Americas fit the empirical distribution of VIX, GT and FT better than other

FRM candidates. Unlike the results of correlation statistics, the lower KS statistics of GT

and FT show that their distributions are more close to the distributions of FRM@Americas

candidates than SRISK. However, for all FRM@Americas candidates, the KS test with the

null hypothesis that one FRM@Americas candidate fit one systemic risk measure should be

rejected, i.e. no FRM candidates could fit any above mentioned systemic risk measure well.

Figure 4.4 presents the KS statistics of FRM@Europe and systemic risk measures in

European countries. Analogue to the results of FRM@Americas, the standard systemic

risk measure in Europe VSTOXX is closest to FRM@Europe candidates. The KS test with

the null hypothesis that FRMIQR@Europe fit the series of VSTOXX cannot be rejected,

i.e. the distribution of FRMIQR@Europe fits the VSTOXX distribution well. Moreover,

FRMq50@Europe fits the empirical distribution of CISS best while FRMIQR@Europe fits

the empirical distribution of FT best. FRMIQR@Europe fits the worst in comparison to other

FRM@Europe candidates. This finding is consistent with the lowest correlation coefficients
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VIX SRISK GT FT

FRMmean 0.14 0.40 0.31 0.31

FRMq50 0.14 0.39 0.33 0.33

FRMq60 0.16 0.41 0.31 0.31

FRMq70 0.14 0.41 0.32 0.32

FRMq80 0.15 0.41 0.31 0.31

FRMq90 0.10 0.44 0.24 0.24

FRMIQR 0.10 0.42 0.25 0.25

Table 4.3: KS test statistics Dt of FRM@Americas candidates and other systemic risk

measures in Americas

FRMQcorrelationAM

of FRM@Europe candidates and CISS in Table 4.2.

Although most FRM candidates cannot pass the KS test, we can use KS test statis-

tics to compare their performance in terms of goodness-of-fit. As a result, we find that

FRMq90@Americas and FRMIQR@Americas fit the systemic risk measures in Americas

best, and FRMIQR@Europe fits the systemic risk measures in Europe optimally. However,

their advantages over other FRM candidates in the KS test are not significant. Moreover,

the FRMIQR is not as correlated as other candidates with VIX, VSTOXX and CISS. Hence,

we cannot conclude that the comovement of FRMIQR and other systemic risk measures is

stronger than the comovements of other FRM candidates and other systemic risk measures.

4.3 Causality of FRM candidates and other systemic risk measures

Yu et al. (2017) introduced a Granger causality test to further analyze the relationship between

standard FRM@Americas and other systemic risk measures. This methodology is extended

hereafter to check the Granger causality of all FRM candidates for Americas and Europe

and systemic risk measures.

The test procedure is presented in Figure 4.3. After testing the stationarity of data in

Americas using Augmented Dickey-Fuller (ADF) test, we find only for GT and FT series, we

cannot reject the null hypothesis that there is a unit root in the time series because its p-value

is smaller than 0.05. In other word, the GT and FT series are stationary while all FRM

candidates, VIX and SRISK series are non-stationary. Hence, we do not need to consider the
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VSTOXX CISS FT

FRMmean 0.18 0.19 0.25

FRMq50 0.19 0.18 0.26

FRMq60 0.17 0.19 0.23

FRMq70 0.15 0.21 0.22

FRMq80 0.18 0.19 0.25

FRMq90 0.11 0.24 0.18

FRMIQR 0.04 0.28 0.14

Table 4.4: KS test statistics Dt of FRM@Europe candidates and other systemic risk

measures in Europe.

FRMQcorrelationEU
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Figure 4.3: Granger causality test procedure.
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co-integration problem for the Granger causality test of FRM candidates and GT or FT. The

Vector Autoregression model (VAR) proposed by Lütkepohl (2005), see Equation 4.5, is fair

to test series that are not co-integrated.

SY St = υ +B1 × SY St−1 +B2 × SY St−2 + . . .+Bp × SY St−p + ζt (4.5)

SY St
def
= (FRMt, St) is split into two subvectors: FRMt represents one specific FRM

candidate and St indicats one of stationary systemic risk measures. Then the VAR(P)

model is rewritten as:

SY St =

FRMt

St

 =

υ1
υ1

+

B11,1 B12,1

B21,1 B22,1

y1,t−1
B2,t−1

+ . . . (4.6)

+

B11,P B12,P

B21,P B22,P

y1,t−P
B2,t−P

+

ζ1t
ζ2t

 . (4.7)

The null hypothesis of Granger causality test is that the subvector FRMt does not Granger-

cause the subvector St, i.e. B21,i = 0 for i = 1, 2, . . . , P .

Four criteria: the Akaike Information Criterion (AIC), the Prediction Error Criterion

(FPE), Hannan-Quinn information criterion (HQ) and Schwarz criterion (SC) are used

to propose the smallest possible VAR order so that Bp 6= 0 and Bi = 0 for i > p by

Lütkepohl (2005). Next, we check the autocorrelation of the residuals to determine the

optimal order P among these proposed orders using four tests: the asymptotic Portmanteau

test (PT(asymptotic)), the adjusted Portmanteau test (PT(adjusted)), the Breusch-Godfrey

LM test (BG) and the Edgerton-Shukur F test (ES). The null hypothesis of these four tests is

that there is no first-order autocorrelation among residuals. We check the proposed orders in

ascending order until the order having at least one p-value larger than 0.05 occurs. If all orders

proposed by four criteria lead to the rejection of all tests, we will try other orders subsequently.

If no tests are passed after trying all orders up to 20, the order whose p-value of autocorrelation

test is most close to the critical value 0.05 is selected. Table A.1 indicates that there is always

the first-order autocorrelation among residuals of FRM candidates and GT series based on

four tests. The VAR(P) model is further used to test the Granger causality with the order P

listed in Table A.2. Since the t ranges from 1 to T and the two subvector FRMt, St both

have a dimension (1× 1). The test statistic follows F(P, 2 · (T − P ) · 2(2P + 2)) distribution.

Two is the number of dimensions for SY St. (T-P) and 2(2P+2) are the sample size and the

total number of the parameters mentioned above. Taking 5% as the critical value, the Table

4.5 shows that standard FRM@Americas, FRMq80@Americas and FRMIQR@Americas
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Granger cause GT while GT Granger causes all FRM@Americas candidates. The p-value

of FRMq70@Americas Granger causes GT at is at 9% shows there is a Granger causality

between FRMq70@Americas and GT if the critical value is set as 10%.

FRM p-values p-values

(FRM Granger causes GT) (GT Granger causes FRM)

FRMmean 0.03 4.88× 10−08

FRMq50 0.80 2.48× 10−09

FRMq60 0.62 2.32× 10−08

FRMq70 0.09 4.14× 10−07

FRMq80 2.35× 10−03 1.91× 10−07

FRMq90 0.36 5.67× 10−09

FRMIQR 8.95× 10−03 2.51× 10−03

Table 4.5: p-values of Granger causality test of FRM@Americas candidates and GT.

FRMQcausalityAM

The above procedure is repeated to test the Granger causality between FRM@Americas

candidates and FT. Table A.2 shows the optimal order P that is selected by four autocorrelation

tests. The autocorrelation test shows that all model has the first order autocorrelated residuals.

The p-values of the Granger causality test in the context of VAR(P) model are available in

Table 4.6. FRMq50@Americas, FRMq60@Americas, FRMq70@Americas Granger cause FT,

while FT Granger cause all FRM@Americas candidates. The p-value of the hypothesis test

that standard FRM@Americas Granger causes FT is 0.07, i.e. standard FRM@Americas

can almost Granger cause FT.

From Granger (1988) we know that there must be at least one way Granger causality

caused by one series if two series are co-integrated. For co-integrated series, the aforementioned

VAR(P) testing cannot detect the underlying causality. Following Yu et al. (2017), we perform

the Engle Granger 2-step test for co-integrated FRM candidates and VIX, SRISK series. The

linear regression of one FRM candidate on VIX or SRISK is carried out in the first step.

Secondly, the stationary of residuals of the above linear regression is tested to check whether

this FRM candidate can Granger cause VIX or SRISK. For stationary residuals, there is

a co-integration between this FRM and VIX or SRISK. For two co-integrated series, there

is always at least one way Granger causality. If we regression VIX or SRISK on this FRM

candidate in the first step, we can test whether VIX or SRISK are co-integrated, i.e. we can
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FRM p-values p-values

(FRM Granger causes FT) (FT Granger causes FRM)

FRMmean 0.07 2.67× 10−15

FRMq50 5.78× 10−04 < 2.20× 10−16

FRMq60 2.76× 10−03 8.88× 10−16

FRMq70 5.33× 10−03 < 2.20× 10−16

FRMq80 0.44 1.34× 10−10

FRMq90 0.37 1.58× 10−05

FRMIQR 0.32 1.50× 10−11

Table 4.6: p-values of Granger causality test of FRM@Americas candidates and FT.

FRMQcausalityAM

test the existence of Granger causality in another direction in the second step. The Granger

causality test between two non-stationary series is conducted by checking the co-integration

in both directions.

After applying this method to all FRM@Americas candidates and VIX series, we obtain

summary table 4.7. Based on this table, we conclude that there are mutual causalities between

all FRM candidates and VIX since there are bilateral co-integration between FRM candidates

and VIX. The co-integration is found because the absolute values of test-statistics for all

FRM@Americas candidates and VIX are larger than the absolute value of critical value at

5%.

The Engle Granger 2-step test results for co-integration of FRM candidates and SRISK

are summarized in Table 4.8. We conclude that FRMq90@Americas and SRISK as well as

SRISK and FRMq90@Americas are co-integrated, i.e. they have a mutual Granger causality.

Analogously, FRMIQR@Americas and SRISK as well as SRISK and FRMIQR@Americas

are co-integrated, i.e. they have a mutual Granger causality. Other FRM candidates are not co-

integrated with SRISK. However, Ghosh (2002) argued that no co-integration does not imply

that the Granger causality does not exist. Then, we do the Granger causality test on trans-

formed data. The transformed ∆SRISK and ∆FRMp with p = {mean, q50, q60, q70, q80},

where the ∆ is the first difference order as well as the growth rate of the SRISK and FRM, is

denoted as DSRISK and DFRMp. They can be modelled as an unrestricted VAR(P) since

they are not co-integrated according to Ghosh (2002). Moreover, Yule and Granger argued

that the original non-stationary data might lead to untrusted estimation. Table A.3 lists the
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FRM Test-statistic Test-statistic Critical value at 5%

(FRM Granger causes VIX) (VIX Granger causes FRM)

FRMmean -5.16 -4.27 -1.95

FRMq50 -5.35 -4.54 -1.95

FRMq60 -5.49 -4.72 -1.95

FRMq70 -5.30 -4.50 -1.95

FRMq80 -5.22 -4.41 -1.95

FRMq90 -5.33 -4.68 -1.95

FRMIQR -6.04 -5.94 -1.95

Table 4.7: Results of Engle Granger 2-step test of FRM@Americas candidates and VIX.

FRMQcausalityAM

optimal order for transformed series, which are further applied to the VAR(P) model. The

p-values in the Table A.4 show that standard DFRM@Americas, DFRMq50@Americas,

DFRMq60@Americas, DFRMq70@Americas and DFRMq80@Americas do not Granger-

cause DSRISK, since the null hypothesis that these transformed FRM do not Granger-cause

the transformed SRISK cannot be rejected and the null hypothesis in the reverse direction

cannot be rejected. The finding that is inconsistent with the results in Yu et al. (2017) may

due to either the limited sample size in this analysis or the large deviation of FRM and SRISK

during the COVID-19 pandemic.

Analogously, the causality of individual FRM@Europe candidates and systemic risk

measures in Europe is checked following the the same process. Except for FT, all FRM

candidates and the systemic risk measures in Europe are non-stationary. The causality test

procedure for FRM@Europe candidates and FT for Europe is the same as the procedure for

each FRM@Americas candidates and FT for Americas. For each VAR(P) model composed

of one FRM@Europe candidate, the optimal VAR order in the Table A.5 is selected among

four orders proposed by four criteria since at least one autocorrelation test is passed. The

Table 4.9 shows mutual Granger causality between each FRM@Europe candidate and FT for

Europe. Since the p-values of FRM@Europe Granger causes FT for Europe and the p-values

of FT for Europe Granger causes FRM@Europe are smaller than the critical value 5%.

Furthermore, the Engle Granger 2-step tests are applied to FRM@Europe candidates and

VSTOXX as well as FRM@Europe candidates and CISS. The results of co-integration test are
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FRM Test-statistic Test-statistic Critical value

(FRM Granger causes SRISK) (SRISK Granger causes FRM) at 5%

FRMmean -1.70 -1.46 -1.95

FRMq50 -1.76 -1.67 -1.95

FRMq60 -1.82 -1.81 -1.95

FRMq70 -1.76 -2.71 -1.95

FRMq80 -1.77 -1.74 -1.95

FRMq90 -2.02 -2.29 -1.95

FRMIQR -2.75 -3.73 -1.95

Table 4.8: Results of Engle Granger 2-step test of FRM@Americas candidates and SRISK.

FRMQcausalityAM

available in Table 4.10 and 4.11. We conclude that all FRM candidates are co-integrated with

VSTOXX and CISS. Moreover, VSTOXX and CISS are co-integrated with all FRM candidates.

Thus, we conclude that there are mutual Granger causality between FRM candidates and

VSTOXX as well as CISS.

As a summary, the result of the Granger causality test of FRM candidates and systemic

risk measures is as follows:

1. All FRM@Americas candidates mutually Granger-cause VIX;

2. standard FRM@Americas, FRMq80@Americas and FRMIQR@Americas mutually

Granger-cause GT, and GT Granger-cause all FRM@Americas candidates;

3. FRMq50@Americas FRMq60@Americas FRMq70@Americas mutually Granger-cause

FT, and FT Granger-cause all FRM@Americas candidates;

4. FRMq90@Americas and FRMIQR@Americas mutually Granger-cause SRISK;

5. All FRM@Europe candidates mutually Granger-cause VSTOXX, CISS and FT.
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FRM p-values p-values

(FRM Granger causes FT) (FT Granger causes FRM)

FRMmean 2.54× 10−04 2.06× 10−12

FRMq50 3.31× 10−06 3, 64× 10−08

FRMq60 4.03× 10−06 4.75× 10−11

FRMq70 3.37× 10−07 2.99× 10−06

FRMq80 4.91× 10−05 3.92× 10−07

FRMq90 8.52× 10−03 5.54× 10−08

FRMIQR 1.01× 10−10 9.00× 10−07

Table 4.9: p-values of Granger causality test of FRM@Europe candidates and FT.

FRMQcausalityEU

FRM Test-statistic Test-statistic Critical value at 5%

(FRM Granger (VSTOXX Granger

causes VSTOXX) causes FRM)

FRMmean -6.02 -5.02 -1.95

FRMq50 -6.14 -5.18 -1.95

FRMq60 -6.03 -5.09 -1.95

FRMq70 -6.07 -5.15 -1.95

FRMq80 -5.96 -5.00 -1.95

FRMq90 -6.03 -5.25 -1.95

FRMIQR -2.82 -6.15 -1.95

Table 4.10: Results of Engle Granger 2-step co-intergration test of FRM@Europe candidates

and VSTOXX.

FRMQcausalityEU
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FRM Test-statistic Test-statistic Critical value at 5%

(FRM Granger causes CISS) (CISS Granger causes FRM)

FRMmean -2.81 -2.40 -1.95

FRMq50 -2.91 -2.63 -1.95

FRMq60 -2.69 -2.55 -1.95

FRMq70 -2.66 -2.59 -1.95

FRMq80 -2.46 -2.47 -1.95

FRMq90 -2.63 -2.92 -1.95

FRMIQR -2.82 -4.27 -1.95

Table 4.11: Results of Engle Granger 2-step test of FRM@Europe candidates and CISS.

FRMQcausalityEU

5 FRM as recession predictors

Comparing with other systemic risk measures in terms of comovement and causality cannot

distinguish FRM candidates. In this chapter, we would like to transform FRM candidates into

recession predictors. The major reason is that the occur of severe systemic risk commonly

coincident with a great economic recession. Secondly, forecasting economy activity or the

likelihood of recession based on indicators like the interest rate, stock price indices and

the term structure of yield curve has already gained success. More details see Estrella and

Hardouvelis (1991), Estrella and Mishkin (1996), Chauvet (1998) and Chauvet and Potter

(2005). Although the yield curve is defined specifically as the spread between the interest

rates on the ten-year treasury note and the three-month treasury bill by Estrella and Mishkin

(1996), several factors that may be included in the estimation of penalization parameters and

the calculation of FRM candidates are similar to the yield curve. As mentioned in Table 3.1,

the three months Treasury Constant Maturity Rate to ten years Treasury Constant Maturity

Rate Spread Differences and the Moodys Seasoned Baa Corp Bond Yield Spread to ten years

Treasury Constant Maturity Rate Spread Differences may be considered into the estimation of

FRM@Americas candidates. Analogously, the German Treasury Constant Maturity Rate one

to ten years Slope Spread Differences and the Barclays Bloomberg EuroAgg Corporate Yield

Spread to ten year German Treasury Constant Maturity Rate Spread Differences may be

taken as covariates to estimate FRM@Europe candidates. These above mentioned factors can
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be decomposed into expected real interest rate and expected inflation, each of which may be

associated with the expectation of future monetary police and future economic growth as stated

by Estrella and Mishkin (1996). Besides, stock prices of essential financial institutions are

determined by expectations of future dividend streams, which may also reflect future economic

and financial state development. FRM candidates for Americas and Europe may be taken as

a measure to reflect the expectation of future growth since the their calculation contains a

large proportion of market capitalization and the evolution of stock prices of these critical

financial institutions. Thirdly, by (Mihoci et al., 2020) applied standard FRM to predict

recession probability. They found that both standard FRM@Americas and FRM@Europe

are able to predict the recessions derived from the financial crisis of 2007 and the Euro Area

debt crisis of 2011. This outcome motivates us to compare predefined FRM candidates based

upon their forecast abilities. The optimal FRM candidate in one financial market is identified

as the one that could forecast the recession probability more precise than the standard FRM,

i.e. could capture the recession earlier than the standard FRM.

5.1 Recession prediction models

In this chapter, we will introduce several regression models to predict the recession probabilities.

All possible models will be elaborated and be empirically compared in terms of statistical

inference and prediction results in chapters 5.2 and 5.3.

The binary regression models are utilized to examine whether these FRM candidates

could be taken as predictors for recession. Because Estrella and Hardouvelis (1991), Estrella

and Mishkin (1996) and Chauvet and Potter (2005) argued that models predicting a binary

indicator of recession or expansion are more successful and stable over time than basic linear

regression. Here we propose recession models based on monthly FRM candidates and recession

indicators in the Americas and in Europe. The probability of observing recession at month t

πp,t is estimated based on FRM candidates obtained k months ago:

πp,t = P (Yt = 1) = h (ηp) = h

(
ω0 +

6∑
k=1

ωk · FRMp,u−k

)
, (5.1)

where the response function h is a strictly monotonically increasing cumulative distribution

function on the real line as claimed by Fahrmeir et al. (2007). h (ηp) is ensured being bounded

within [0, 1], and the Equation 5.1 can always be expressed as ηp = g (πp) with the link

function g = h−1. Mihoci et al. (2020) used logistic regression, while Estrella and Hardouvelis

(1991), Chauvet and Potter (2005) used probit model to predict the upcoming recession. In
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this analysis, both logit and probit models, which known as most widely used binary regression

models, will be applied. The logistic model is constructed with the logistic response function

h (ηp) =
exp(ηp)

1+exp(ηp)
, or equivalently, the logit link function g (πp) = log

(
πp

1−πp

)
= ηp. In other

words, logistic regression model yields a linear relationship between the logarithmic odds

and predictors lagged FRM indices. The response function for probit model is the standard

normal cumulative distribution function Φ, i.e. πp = Φ (ηp). In chapter 4.2, the visualization

of FRM candidates and the correlation coefficients indicate that FRM candidates are highly

correlated other each other. Considering the multicollinearity problem that may be resulted

from these high correlated FRM candidates, only one FRM candidate will be included in each

regression. FRM@Americas and FRM@Europe could not be used in mixed form because we

are interested in the analysis of separate regions.

In the USA, the peak and trough dates reported by the National Bureau of Economic

Research (NBER) are most widely utilized in the recession analysis. In European countries,

the recession indicator reported by Center for Economic and Policy Research (CEPR) is

commonly used. The series of NBER monthly recession indicators for the United States

are downloaded from FederalReserveBankofSt.Louis (2020) while CEPR monthly recession

indicators for the Europe are collected from EuroAreaBusinessCycleNetwork (2020). All

observations are binary, with a value at one standing for recession periods and a value at zero

representing the expansion periods for both datasets. All recession indicators are collected

and updated until January 15th 2021. In the Americas, from January 2008 to June 2009

and from March 2020 until December 2020 are recession periods. In Europe, the recession

periods contain the time intervals from April 2008 to June 2009 and from January 2020

to June 2020 since the CEPR has not reported indicators after the second quarter of 2020.

Figure 5.1 visualizes the distributions of standard FRM in both markets during recessions and

expansions. These plots support the idea that a high value of FRM or high systemic risk level

is associated with the recession, regardless of the individual characteristics of the systemic

risk and the regions. The standard FRM@Amercias and FRM@Europe during expansion

were concentrated lower than 0.05. However, during the recession periods, the standard

FRM@Americas and FRM@Europe had another peak around 0.08, and the proportion

of FRM, which was higher than 0.05, was significantly large. From the comparison of the

recession due to the financial crisis of 2007 and the recession due to the COVID-19 pandemic,

we conclude that the later one may not be as severe as the former one, but the later one may

last for a longer time and the recession is still on-going. From the comparison between the
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two regions, we find out that countries in the Americas suffered more from systemic risks or

recessions.

Figure 5.1: Standard FRM@Americas ( ) and FRM@Europe ( ) during recessions and

expansions

FRMQRecDensity

Regarding the FRM candidates data, we obtain FRMp,u with u indicating the index of the

month after averaging daily FRMs in a month. Lagged monthly FRM candidates FRMp,u−k

correspond to FRMp with p ∈ {mean, 50, 60, 70, 80, 90, IQR} at k = (1, . . . , 6) months ago.

For example, the predictor obtained one month ago is denoted as FRMp,u−1. Most research

has forecast the upcoming recession at the quarterly frequency rather than monthly. However,

Mihoci et al. (2020) argued that the capability of standard FRM to predict the upcoming

recession in two quarters is already low, so k quoted monthly will be more suitable for FRM

candidates. Hence, six lagged sequences are generated for each FRM candidate as possible

predictors to forecast the upcoming recession. In other words, historical FRM data in the last

months may be applied to predict the probability of observing the recession in the current

month. After joining FRM candidates with available recession indicators, we attain empirical

data for the Americas and Europe over 33 months around the financial crisis of 2007. Moreover,

data for the Americas of 24 months and Europe of 18 months are employed in the analysis of

the COVID-19 pandemic.

We have also tried to replace monthly average FRM candidates with daily FRM candidates
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to have a larger size of observations for each model. The FRM value at k months ago is

replaced with daily FRM obtained at 21× k trading days ago because, the average number

of trading days in each month is 21 days. Then FRMp,u−k will be denoted as FRMp,d−21×k

with d indicating the index of trading days. In this sense, each recession prediction model is

used to predict the recession for today. Thus the size of observations will be transformed from

the number of months to the number of trading days so that the effect of FRM candidates are

more precisely estimated. On the other hand, the confidence interval is getting narrower, and

it is more likely to reject the null hypothesis that the ωk = 0, so FRM candidates are more

likely to be statistically significant. However, the daily FRM data as predictors will reflect

the daily evolution of the recession indicator directly. Unlike the stock price, macroeconomic

factors and FRM candidates, the recession indicators are not so volatile and tend to remain

unchanged at least for several months. In this regard, using monthly data is helpful to smooth

the fluctuation and evolution of the time series of daily FRM data so that the underlying

relationship of FRM candidates and recession indicators will be extracted.

The Equation 5.1 including six FRM predictors from one to six months ago, is the saturated

model for each FRM candidate. On the basis of the saturated model, we will select the

most essential lagged FRM candidates to predict the upcoming recession. Besides AIC, BIC,

deviance, the pseudo coefficient of determination R2 are used to measure the goodness-of-fit

of possible models. In this analysis, Estrella pseudo R2 developed by Estrella and Mishkin

(1998) is applied, which is widely used to compare recession prediction models, see Bernard

and Gerlach (1998) and Nyberg (2010). This measure is calculated as 1−
(
logLu

logLc

)( 2
n) logLc

with logLu denoting the unrestricted maximum value of log-likelihood and logLc denoting

the maximum value under the constraint that all coefficients are zero except the intercept.

Similar to R2 in linear case, the pseudo R2 ensures that the values 0 and 1 correspond to

“not fit” and “perfect fit”. The intermediate values have similar interpretations, namely the

proportion of variance in the recession indicators that could be forecasted from one FRM

candidate. The procedure of model selections and the estimation results will be explained

and interpreted in the following two chapters 5.2 and 5.3. Based on the selected recession

prediction model for each FRM candidate, we check the in-sample results over the entire time

frame. The in-sample results are called implied recession probabilities in this paper, which

reports the probability of recession attributed to the quantified systemic risk measures at

5% level of each FRM candidate. These in-sample results should be plausible and robust in

general since empirical data applied in this paper consists of two recessions periods in two
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large markets. Out-of-sample validation is performed as an addition once the in-sample results

seem to be implausible or problematic.

5.2 Uniperiod recession Prediction Models

In this chapter, the most commonly used standard static recession prediction model proposed

by Estrella and Hardouvelis (1991) and Estrella and Mishkin (1996) is applied. It means that

only one predictor, the FRM candidate with the lag at k, is kept in Equation 5.2:

πp,t = P (Yt = 1) = h (ηp) = h
(
ω0 + ωFRMp,k

· FRMp,u−k
)
.

After comparing the AIC, BIC, deviances, pseudo R2 and the implied recession probabilities,

we find there is almost no difference between probit and logistic regression. The probit

regression results will be illustrated further since some predictors are statistically insignificant

in logistic regression but significant in probit regression.

For each FRM candidate, the forecast horizon k varies from one to six. Tables A.6 and A.8

are the summaries of six uniperiod models for seven FRM@Americas and FRM@Europe

candidates respectively. The first lines for each forecast horizon include the estimated

coefficients ω̂k. Each second lines contain the standard deviation of the corresponding

coefficient. Values in each third lines represent the pseudo R2. We could see that as the

forecast horizon increases, the effect of all FRM candidates on predicting the upcoming

recession decreases. At the same time, the statistical significance of all FRM candidates

decays along with the increase of forecast horizon. FRM candidates obtained five or six

months ago are not statistically significant to predict the recession. For both markets, the

prediction models with the shortest forecast horizon performed best in terms of statistical

significance and the coefficient of determination pseudo R2. Comparing recession probabilities

implied from individual FRM@Americas candidates with k = 1 in Figure 5.2 with recession

probabilities implied from corresponding individual candidates with k = 2, 3, 4 in Figure B.1,

we observe that the uniperiod model with a predictor lagged at higher-order has a longer

delay in predicting a recession. Figure B.3 shows the same conclusion for FRM@Europe

candidates. Hence, we conclude that the FRM candidates who lagged at one month perform

best in forecasting the probability of having a current recession. All FRM candidates lagged

at one month are statistically significant at 0.1% level. The pseudo R2 around 40% means

that the 40% variance of true recession indicators could be explained with one FRM obtained

one month ago. We find that FRMq70,u−1 is the best predictor to predict recession because of
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its highest pseudo R2 value. The values of pseudo R2 among all FRM candidates are directly

comparable since these seven models have the same size of predictors and degree of freedom.

FRM/FRMIQR*5 πmean πq50 πq60 πq70 πq80 πq90 πIQR

0.00 0.05 0.05 0.05 0.05 0.05 0.06 0.07

0.01 0.10 0.10 0.09 0.09 0.09 0.09 0.11

0.02 0.17 0.18 0.16 0.15 0.14 0.13 0.17

0.03 0.27 0.29 0.26 0.23 0.20 0.18 0.25

0.04 0.39 0.43 0.38 0.33 0.29 0.24 0.34

0.05 0.52 0.58 0.51 0.44 0.38 0.31 0.44

0.06 0.65 0.72 0.64 0.57 0.48 0.39 0.54

0.07 0.77 0.83 0.76 0.68 0.59 0.48 0.65

0.08 0.86 0.91 0.85 0.78 0.69 0.57 0.74

0.09 0.92 0.96 0.92 0.86 0.77 0.65 0.82

0.10 0.96 0.98 0.96 0.92 0.84 0.73 0.88

0.11 0.98 0.99 0.98 0.96 0.90 0.79 0.93

0.12 0.99 1.00 0.99 0.98 0.94 0.85 0.96

0.13 1.00 1.00 1.00 0.99 0.96 0.89 0.98

0.14 1.00 1.00 1.00 1.00 0.98 0.93 0.99

0.15 1.00 1.00 1.00 1.00 0.99 0.95 0.99

0.16 1.00 1.00 1.00 1.00 1.00 0.97 1.00

Table 5.1: Convert FRM@Americas to Recession probabilities

FRMQRecOne

Tables A.7 and A.9 compare the performances of FRM candidates with the lag at one

month FRMp,t−1 for Americas and Europe respectively. The results of criteria AIC, BIC,

Log-likelihood, deviance and Area under the ROC curve (AUC) show that the performances

of FRM candidates are similar. If we classify our data into two classes based on the implied

recession probabilities, receiver operating characteristics (ROC) is a technique to compare

the actual and predicted classification according to Fawcett (2006). Figure B.2 presents

the confusion matrix based on true and predicted class as well as the relevant metrics used

to construct ROC space, in which false positive rate is plotted on the x-axis, and the true

positive rate is plotted on the y-axis. The area under the curve in ROC space is called

AUC, which reduces ROC performance to a single scalar value representing the prediction
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FRM/FRMIQR*5 πmean πq50 πq60 πq70 πq80 πq90 πIQR

0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.01 0.05 0.05 0.05 0.04 0.04 0.03 0.05

0.02 0.11 0.12 0.11 0.09 0.08 0.06 0.12

0.03 0.21 0.24 0.20 0.17 0.14 0.11 0.22

0.04 0.35 0.40 0.34 0.29 0.24 0.18 0.36

0.05 0.51 0.58 0.51 0.44 0.36 0.27 0.53

0.06 0.68 0.74 0.67 0.59 0.49 0.37 0.69

0.07 0.81 0.87 0.81 0.73 0.63 0.49 0.82

0.08 0.91 0.94 0.90 0.84 0.75 0.61 0.91

0.09 0.96 0.98 0.96 0.92 0.85 0.72 0.96

0.10 0.98 0.99 0.98 0.96 0.92 0.81 0.99

0.11 1.00 1.00 0.99 0.99 0.96 0.88 1.00

0.12 1.00 1.00 1.00 0.99 0.98 0.93 1.00

0.13 1.00 1.00 1.00 1.00 0.99 0.96 1.00

0.14 1.00 1.00 1.00 1.00 1.00 0.98 1.00

0.15 1.00 1.00 1.00 1.00 1.00 0.99 1.00

0.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.2: Convert FRM@Europe to Recession probabilities

FRMQRecOne

performance. AUC will always range from zero to one. Normally, a model with a higher

AUC value corresponds to better average performance. Among seven FRM candidates for

Americas, we find that FRMq70@Americas performed best in terms of pseudo R2, AIC, BIC,

Log-likelihood, deviance, and standard FRM@Americas performed best in terms of AUC.

Among seven FRM candidates for Europe, the FRMq90@Europe performed best in terms of

R2, AIC, BIC, Log-likelihood, Deviance, and FRMq80@Europe performed best in terms of

AUC.

Based on the coefficients estimated from the uniperiod model with k = 1, the current

probability of observing the recession can be predicted with the values of historical FRM

candidates, respectively. Table 5.1 and 5.2 are conversion tables from the value of FRM

candidates to the probability of recession for the Americas and Europe, respectively. From

both tables, we conclude that the FRM candidate constructed with the higher quantile needs
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a higher value to imply the occurrence of recession. Moreover, for each FRM candidate, the

increment of the probability of recession resulted from the increase of FRM value at 0.01

are not equivalent. For example, if the FRMq50@Americas increases from 0.04 to 0.05, the

increment of the πq50 is 15%. However, if the FRMq50@Americas increases from 0.09 to 0.10,

the increment of the πq50 is 2%. The bold numbers in tables 5.1 and 5.2 are the first predicted

probability that could be classified as a recession for each FRM candidates if the threshold is

assumed to be 50%.

Furthermore, we will check the in-sample performance of the above mentioned uniperiod

recession prediction models. The left plots in Figures 5.2 prove that FRM candidates for the

Americas and Europe were able to predict the recession before it was announced officially, since

the implied recession probabilities were around or higher than 50%, and the trend of further

increase also clear. As the financial system recovers from the great recession, the value of

FRM candidates decreased dramatically. The implied recession probabilities for the Americas

and Europe during the COVID-19 pandemic and corresponding recession indicators were

visualized in the right plots in Figure 5.2. We observe that FRM candidates cannot predict

this recession that was not rooted in financial activities. The fluctuations of stock prices,

macroeconomic indices on the financial markets were delayed information of the COVID-19

outbreak. It is worth mentioning that FRM candidates adjusted themselves quickly to fit the

recession resulted from the coronavirus. All FRM candidates for the Americas and Europe

grew considerable within March, so that implied recession probability reached 100% in April.

NEPR announced that the recession came around March, then FRM@Americas candidates

had a delay at one month. However, since CEPR reported that European countries went into

recession in January 2020, the delay of FRM@Europe was longer. Regarding the comparison

of FRM candidates, the conclusion from visualization is consistent with that from chapter 4,

i.e. it is hard to distinguish the performance of candidates for both markets.

5.3 Multiperiod Recession Prediction Models

In this chapter, we will describe multiperiod regression models, which is differentiated from

uniperiod models by including more lags of each FRM candidate into one regression model.

Based on this saturated model, predictors have been backwards selected using AIC stepwise

method. Each model’s AIC value takes the goodness of fit, which is assessed by the likelihood

function, and a parameter to penalize the increased number of predictors into account. The

penalty aims to eliminate the overfitting effect so that the model is not only suitable for our
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Figure 5.2: Recession probabilities implied from uniperiod model with standard FRM ,

FRMq50, FRMq60, FRMq70, FRMq80, FRMq90, FRMIQR and recession indicators for Amer-

icas (top) and Europe (bottom)

FRMQRecOne
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Figure 5.3: Recession probabilities implied from multiperiod model with standard FRM ,

FRMq50, FRMq60, FRMq70, FRMq80, FRMq90, FRMIQR and recession indicators for Amer-

icas (top) and Europe (bottom)

FRMQRecMulti
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particular empirical data. For each FRM candidate, there is a model with the lowest AIC

value, in which the most efficient predictors are selected so that the complexity of multiperiod

recession models is decreased. Several predictors are removed once their corresponding

coefficients shrink to zero. Analogue to the results of uniperiod models, only the results

from probit regression models will be elaborated. Tables A.10 and A.11 report the optimal

multiperiod model with the lowest AIC value among all models for each FRM@Americas

and FRM@Europe candidate. Each column of both tables indicates the summary of the

optimal regression model for individual FRM candidates. Both tables list multiple selected

predictors used to construct the multiperiod regression models for individual FRM candidates.

For Americans, only the latest predictor is statistically significant among models of other

FRM candidates expect for FRMq80@Americas and FRMq90@AmericasṀultiperiod models

perform relatively better than uniperiod models considering statistical criteria for model

comparison such as AIC, BIC,and deviance. Including more predictors leads to a higher

level of pseudo R2 for each FRM candidate. The amount of pseudo R2 increases from about

40% to around 63%, even to 67%. However, according to the definition of pseudo R2, it is

not feasible to compare the performances between the uniperiod model and the multiperiod.

For FRMq50@Americas, the optimal selected model contains only the predictor with k = 1,

which is identical to the uniperiod model. However, the smaller observation number, which

is resulted from removing the first 6-months data, contributes to the rise of pseudo R2 by

approximately 18%. Therefore, the higher pseudo R2 cannot imply the better performance

of multiperiod models. Nevertheless, except for FRMq50@Europe, AUC values calculated

from multiperiod models are relatively lower than those calculated from uniperiod models.

It indicates that multiperiod models cannot predict the upcoming recession as accurate as

uniperiod models, although more historical information is taken into account. We observe

that each positive predictors tend to be followed by a negative predictor and vice versa.

Figure 5.3 represents that the overall trend of recession probabilities implied from dif-

ferent FRM candidates are identical. The tendencies of recession probabilities implied from

multiperiod models and uniperiod models are also synchronized. All FRM@Americas and

FRM@Europe candidates are capable of predicting the upcoming recession before the financial

crisis of 2007. Comparing with the results from uniperiod recession models, the implied

recession probabilities estimated from multiperiod models experienced a higher level and more

considerable increase before the financial crisis of 2007. When that recession was announced,

the implied recession probability for the Americas was more than 80% while that for Europe
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was about 70%, which was significantly larger than the values implied from uniperiod models.

Moreover, FRM@Europe candidates were able to capture the economic recovery before the

beginning of an expansion period was reported. FRM@Americas candidates predicted an

increased probability of observing recession from February 2020, which corresponds to the

recession caused by the COVID-19 pandemics and was not captured by uniperiod models.

The FRM@Europe implied recession probability also increased from February. However,

the CEPR recession indicator defines that there was already a recession in Europe in Jan-

uary 2020. Although the recession probabilities implied from multiperiod models based on

FRM@Americas candidates fit the true recession indicator well, the high level of implied

recession probability before and after the financial crisis of 2007 in the first plot of Figure

5.3 motivates us to check whether these multiperiod regression models may overestimate the

probability of observing a recession. Before and after the financial crisis of 2007 May, the high

level was due either to the high stress or to the model misspecification. Hence we need to

check the prediction results during stable periods to ensure that using too many predictors

does not deteriorate the out-of-sample performance of recession models. We conducted a

validation by applying the standard FRM series for Americas produced by Yu et al. (2017)

from 2010 until 2016 to multiperiod models listed in A.10. Figure 5.4 illustrates a generally

low and stable estimated probability of recession during an expansion period. This empirical

validation proved that these multiperiod probit regressions are plausible in both in-sample

and out-of-sample tests. Comparing individual FRM candidates based on their results of

multiperiod models, we conclude that FRMq80@Americas and FRMq50@Europe performed

best among all FRM candidates for the Americas and Europe. However, their advantages

over other candidates are also slight.

Figure 5.4: Recession probability implied from out-of-sample standard FRM.

FRMQRecMulti
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After empirically applying historical FRM candidates as predictors to predict the upcoming

or even current recession, we find that the choice regarding the type of binary regression

makes a slight difference on the prediction accuracy. Besides performance of probit regression

models that are interpreted above, logistic regression models convey similar results. Moreover,

we observe that implied recession probabilities of uniperiod and multiperiod regression models

prove the predictability of all FRM@Americas and FRM@Europe candidates. Nevertheless,

considering the statistical criteria and the prediction accuracy, FRM candidates within one

market are not significantly differentiated. Hence, we conclude that all FRM candidates,

regardless of the Americas or Europe, have similar prediction ability to forecast the recession.
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6 Conclusions

Following the linear quantile lasso regression model introduced by Yu et al. (2017), Yu

et al. (2019) and Mihoci et al. (2020), we have estimated penalization parameters at daily

frequency among 100 largest financial institutions of Americas and Europe, respectively.

Besides standard FRM, we have defined six novel FRM candidates based on various quantiles,

namely, probabilities at 50%, 60%, 70%, 80%, 90% and interquartile range(IQR). These

quantiles are selected based on the characteristic of series of penalization parameters. Six

FRM candidates reflect the systemic risk level of financial institutions in the middle, the

worst 40, 30, 20, 10 percent of financial institutions in Americans and European financial

markets, and dispersion of systemic risk of both markets. In order to prove their functionality

and feasibility as systemic risk measures, these FRM candidates are statistically checked by

taking other commonly used systemic risk measures as benchmarks. We have extended the

correlation test and Granger causality test proposed by Yu et al. (2017) to newly defined

FRM@Americas candidates and all FRM@Europe candidates. Each FRM candidates are

highly positively correlated with other systemic risk measures. The correlation coefficients for

different systemic risk measures are distinct, but the coefficients of various FRM candidates

and a given systemic risk measure have a slight difference. The Granger causality test result

indicates that several FRM candidates cannot mutually Granger cause several commonly used

systemic risk measures. However, if we focus on the most prevalent systemic risk measure in

the respective market, VIX in the Americas and VSTOXX in Europe, all FRM candidates

can pass the Granger causality test, i.e. they have mutual Granger causality with other

systemic risk measures. Kolmogorov-Smirnov test is introduced to compare the empirical

distributions of individual FRM candidates and the distribution of each other systemic risk

measures. Although only FRMIQR@Europe and VSTOXX can pass this test, the amount of

Kolmogorov-Smirnov test statistics convey that the goodness-of-fit between the distribution

of one specific systemic risk measure and individual FRM candidates is similar. Motivated by

Mihoci et al. (2020), historical FRM candidates are further applied to predict the upcoming

recession. Histories of FRM candidates at daily frequency are averaged into monthly time

series to predict the probability of observing recession at the current month. Uniperiod and

multiperiod recession models are used to explore the relationship between FRM candidates

and recession indicators. After comparing possible recession models based on statistical

criteria and implied recession probabilities, we found that the latest FRM data play essential

roles in predicting the upcoming recession. Although the predictability of individual FRM
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candidates cannot be improved significantly by considering FRM data obtained more than one

month ago, both uniperiod and multiperiod models can be used to predict the recession based

on individual historical FRM candidates. However, the predictability and implied recession

probabilities of each FRM candidate are similar.

From above empirical results, we conclude that all FRM candidates are feasible to be taken

as a systemic risk measure and applied as a predictor of recession. Moreover, it is implied that

penalization parameters in linear quantile Lasso regressions are robust since different portions

of penalization parameters contribute to stable various FRM candidates. This analysis also

offers the evidence that previous research based on standard FRM is reasonable, see Zbonakova

et al. (2016), Yu et al. (2017), Yu et al. (2019), Mihoci et al. (2020) and Ren et al. (2020).

Moreover, their analysis may further be applied to FRM candidates proposed in this paper.

We have observed that subsamples of crucial financial institutions offer also useful FRM

candidates. Hence, FRM candidates that are calculated based on quantiles could be used if

we are interested in a specific group of financial institutions such as top 10 risky financial

institutions.

There are several limitations to this study. Firstly, two time intervals with each at around

two years are employed in this paper. Such a short time frame of empirical date limits the

accuracy of comparison tests and recession models. For example, Granger causality tests

that are inconsistent with the results in Yu et al. (2017) may be revised with larger sample

size. Moreover, longer time intervals may include more recessions, which may result in more

accurate recession models. We have found that the performance of FRM candidates based on

two recession periods is better than that based solely on data collected from the COVID-19

pandemic. Secondly, simple recession prediction models employed in this paper could be

further improved, such as using dynamic prediction models.

Therefore, the first suggestion for future research to employ a more extended research

period if possible. Secondly, more applications in the context of FRM candidates, such as

those proposed by Mihoci et al. (2020), could be applied to compare the performance of

FRM candidates. Last but not least, the synchronized performance of FRM@Americas and

FRM@Europe induces that the estimation of a cross-country FRM might be meaningful.
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A Tables

Model Order PT(asymptotic) PT(adjusted) BG ES

FRMmean and GT 20 < 2.20× 10−16 < 2.20× 10−16 0.05 0.07

FRMq50 and GT 14 3.75× 10−03 3.15× 10−03 0.29 0.32

FRMq60 and GT 15 0.07 0.07 0.43 0.47

FRMq70 and GT 20 < 2.20× 10−16 < 2.20× 10−16 0.04 0.06

FRMq80 and GT 14 0.05 0.05 0.52 0.55

FRMq90 and GT 20 < 2.20× 10−16 < 2.20× 10−16 0.86 0.88

FRMIQR and GT 16 1.49× 10−03 1.24× 10−03 0.14 0.16

Table A.1: p-values of model selection test of FRM@Americas candidates and GT.

FRMQcausalityAM

Model Order PT(asymptotic) PT(adjusted) BG ES

FRMmean and FT 15 0.01 9.94× 10−03 0.53 0.56

FRMq50 and FT 15 0.05 0.05 0.04 0.05

FRMq60 and FT 11 2.43× 10−03 2.00× 10−03 0.15 0.17

FRMq70 and FT 17 1.14× 10−03 9.57× 10−04 0.26 0.30

FRMq80 and FT 12 0.22 0.21 0.75 0.77

FRMq90 and FT 10 0.03 0.03 0.27 0.29

FRMIQR and FT 17 8.24× 10−03 7.23× 10−03 0.30 0.34

Table A.2: p-values of model selection test of FRM@Americas candidates and FT.

FRMQcausalityAM
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Model Order PT(asymptotic) PT(adjusted) BG ES

DFRMmean 13 0.05 0.04 0.04 0.05

DFRMq50 14 0.12 0.11 0.17 0.19

DFRMq60 14 0.90 0.89 0.75 0.77

DFRMq70 14 0.05 0.04 0.11 0.13

DFRMq80 14 0.65 0.63 0.86 0.87

Table A.3: p-values of model selection test of DFRM@Americas candidates and DSRISK.

FRMQcausalityAM

DFRM p-values p-values

(DFRM Granger causes DSRISK) (DSRISK Granger causes DFRM)

DFRMmean 0.1 0.51

DFRMq50 0.99 0.68

DFRMq60 0.99 0.75

DFRMq70 0.99 0.77

DFRMq80 1 0.85

Table A.4: p-values of Granger causality test of DFRM@Americas candidates and

DSRISK

FRMQcausalityAM

Model Order PT(asymptotic) PT(adjusted) BG ES

FRMmean and FT 5 0.02 0.02 0.10 0.11

FRMq50 and FT 12 0.16 0.14 0.53 0.56

FRMq60 and FT 8 0.06 0.05 0.15 0.16

FRMq70 and FT 11 0.02 0.01 0.46 0.49

FRMq80 and FT 13 0.07 0.07 0.14 0.15

FRMq90 and FT 9 0.01 0.01 0.21 0.22

FRMIQR and FT 13 0.20 0.19 0.23 0.25

Table A.5: p-values of model selection test of FRM@Europe candidates and FT.
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ωFRMmean,k
ωFRMq50,k

ωFRMq60,k
ωFRMq70,k

ωFRMq80,k
ωFRMq90,k

ωFRMIQR,k

k=1 33.80*** 37.59*** 33.89*** 30.59*** 26.35*** 21.78*** 133.68***

(9.81) (10.91) (9.87) (8.90) (7.66) (6.36) (38.75)

[39.64] [39.85] [40.03] [40.55] [40.22] [39.86] [40.30]

k=2 22.73** 25.57** 22.98** 20.47** 17.54** 14.63** 89.93**

(7.33) (8.18) (7.35) (6.54) (5.64) (4.73) (28.79)

[32.32] [32.84] [32.99] [33.08] [32.55] [32.47] [32.96]

k=3 16.70* 18.90** 17.05** 15.27** 12.99** 10.67* 68.76**

(6.52) (7.25) (6.51) (5.81) (5.03) (4.18) (25.88)

[30.19] [30.71] [30.90] [31.08] [30.52] [30.21] [31.52]

k=4 12.43* 14.18* 12.81* 11.48* 9.81* 8.03* 54.06*

(6.14) (6.82) (6.12) (5.45) (4.74) (3.94) (24.51)

[31.47] [31.92] [32.07] [32.18] [31.89] [31.63] [33.16]

k=5 7.63 9.06 8.14 7.37 6.14 4.84 34.95

(5.83) (6.48) (5.80) (5.17) (4.50) (3.73) (23.09)

k=6 2.16 3.25 2.19 2.52 1.87 1.19 13.36

(5.65) (6.26) (5.60) (4.99) (4.34) (3.60) (22.14)

***:significant at the 0.1% level; **: significant at the 1% level; *: significant at the 5% level.

Table A.6: Estimated coefficients and deviance of the one period forecast models for

FRM@Americas candidates.

FRMQRecOne

FRMmean FRMq50 FRMq60 FRMq70 FRMq80 FRMq90 FRMIQR

AIC 59.59 59.46 59.34 59.00 59.22 59.45 59.16

BIC 63.61 63.47 63.35 63.02 63.23 63.46 63.18

LogLik −27.80 −27.73 −27.67 -27.50 −27.61 −27.72 −27.58

Deviance 55.59 55.46 55.34 55.00 55.22 55.45 55.16

AUC 84.52% 79.93% 84.26% 83.99% 83.99% 83.86% 83.07%

Table A.7: Comparing the prediction ability of FRM@Americas candidates with k=1.
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ωFRMmean,k
ωFRMq50,k ωFRMq60,k

ωFRMq70,k
ωFRMq80,k

ωFRMq90,k
ωFRMIQR,k

k=1 42.75*** 45.78*** 42.42*** 39.00*** 35.10*** 30.02*** 213.19***

(11.66) (12.53) (11.58) (10.64) (9.60) (8.23) (60.19)

[39.75] [38.66] [39.11] [39.83] [40.56] [41.10] [40.82]

k=2 31.19 ** 33.09 ** 30.94 ** 28.81 ** 26.15 ** 22.26 ** 171.76 **

(10.27) (11.11) (10.27) (9.41) (8.43) (7.16) (53.63)

[30.85] [29.84] [30.33] [31.15] [31.97] [32.28] [34.68]

k=3 20.09 * 21.42 * 20.28 * 18.97 * 17.51 * 14.60 * 125.23 *

(9.63) (10.45) (9.69) (8.86) (7.95) (6.71) (50.31)

[24.56] [24.17] [24.58] [25.05] [25.71] [25.47] [28.80]

k=4 11.08 11.69 11.14 10.52 9.82 8.23 75.45

(9.20) (9.98) (9.27) (8.48) (7.60) (6.45) (49.62)

k=5 5.53 5.65 5.57 5.47 5.24 4.45 49.03

(9.13) (9.90) (9.19) (8.41) (7.52) (6.39) (49.02)

k=6 -0.88 -1.20 -0.85 -0.53 -0.11 0.10 15.27

(9.20) (10.00) (9.28) (8.47) (7.57) (6.43) (49.16)

***:significant at the 0.1% level; **: significant at the 1% level; *: significant at the 5% level.

Table A.8: Estimated coefficients and deviance of the one period forecast models for

FRM@Europe candidates.

FRMQRecOne

FRMmean FRMq50 FRMq60 FRMq70 FRMq80 FRMq90 FRMIQR

AIC 52.25 52.86 52.61 52.20 51.79 51.48 51.64

BIC 56.03 56.64 56.39 55.99 55.57 55.26 55.42

Log Likelihood −24.12 −24.43 −24.31 −24.10 −23.89 -23.74 −23.82

Deviance 48.25 48.86 48.61 48.20 47.79 47.48 47.64

AUC 80.44% 79.93% 80.44% 80.44% 80.78% 80.61% 79.93%

Table A.9: Comparing prediction ability of FRM@Europe candidates k=1.
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θFRMmean,k
θFRMq50,k

θFRMq60,k
θFRMq70,k

θFRMq80,k
θFRMq90,k

θFRMIQR,k

intercept -1.43* -1.10** -1.54* -1.64* -1.49* -1.45* -1.36*

k=1 102.83* 28.83** 84.83* 84.14* 80.76* 68.92* 280.64*

(46.69) (10.24) (41.89) (39.47) (35.34) (30.14) (129.24)

k=2 -84.71 -85.27 -87.30 -66.82* -38.23* -281.21

(44.77) (53.04) (49.73) (33.69) (29.27) (169.54)

k=3 36.72 37.86 -140.04

(26.25) (24.36) (94.13)

k=4 35.75 28.93 26.90

(20.45) (15.64) (14.41)

k=5

k=6 -16.86 12.81 12.43

(11.49) (8.72) (7.75)

R2 66.21% 57.83% 62.97% 64.22% 67.11% 67.28% 63.01%

AIC 52.58 52.31 52.86 51.99 51.93 51.81 52.77

BIC 61.61 55.92 60.09 59.22 60.96 60.84 59.99

LogLik −21.29 −24.15 −22.43 −21.99 −20.97 −20.90 −22.38

Deviance 42.58 48.31 44.86 43.99 41.93 41.81 44.77

AUC 83.19% 78.15% 80.25% 80.88% 83.82% 83.19% 78.57%

***:significant at the 0.1% level; **: significant at the 1% level; *: significant at the 5% level.

Table A.10: Estimated coefficients and deviance of the stepwise selected multiperiod models

for each FRM@Americas candidates.
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θFRMmean,k
θFRMq50,k

θFRMq60,k
θFRMq70,k

θFRMq80,k
θFRMq90,k

θFRMIQR,k

k=1 59.14** 64.99** 58.22** 52.00** 45.08** 37.45** 174.14**

(21.56) (24.08) (21.59) (19.19) (16.53) (13.54) (60.47)

k=6 -30.18 -33.84 -29.54 -25.62 -21.26 -17.26

(16.15) (17.79) (16.04) (14.34) (12.42) (10.42)

R2 63.77% 63.25% 62.98% 63.04% 62.99% 63.12% 58.07%

AIC 44.97 45.28 45.44 45.40 45.43 45.36 46.31

BIC 49.96 50.27 50.43 50.39 50.42 50.35 49.64

LogLik −19.48 −19.64 −19.72 −19.70 −19.72 −19.68 −21.16

Deviance 38.97 39.28 39.44 39.40 39.43 39.36 42.31

AUC 79.89% 80.16% 80.16% 79.63% 79.37% 80.42% 75.66%

***:significant at the 0.1% level; **: significant at the 1% level; *: significant at the 5% level.

Table A.11: Estimated coefficients and deviance of the stepwise selected multiperiod models

for each FRM@Europe candidate.
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B Figures

Figure B.1: FRM@Americas candidates implied recession probability with forecast horizons

from two until four months from April 2007 until December 2009 and from January 2019 until

December 2020
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Figure B.2: Confusion matrix and corresponding performance metrics.

Figure B.3: FRM@Europe candidates implied recession probability with forecast horizons

from two until three months from April 2007 until December 2009 and from January 2019

until October 2020.
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