
1 
 

 

 

 

 

 

 

 

 

Studying normal and cancer stem cells in the kidney              

using 3D organoids and genetic mouse models 
 

 

 

Dissertation zur Erlangung des akademischen Grades 

 

Doctor rerum naturalium (Dr. rer. nat.) 

 

im Promotionsfach Biologie, Spezialisierung Biotechnologie 

 

eingereicht an der Lebenswissenschaftlichen Fakultät 

der Humboldt-Universität zu Berlin 

 

von Adam Myszczyszyn 

Master of Science (M.Sc.) Medizinische Biotechnologie 

 

Präsidentin der Humboldt-Universität zu Berlin 

Prof. Dr.-Ing. Dr. Sabine Kunst 

 

Dekan der Lebenswissenschaftlichen Fakultät 

Prof. Dr. Dr. Christian Ulrichs 

 

Gutachter: 

1. Prof. Dr. Walter Birchmeier 

2. Prof. Dr. Achim Leutz 

3. Prof. Dr. Michael Hummel 

 

Tag der mündlichen Prüfung: 15.06.2021 

  



2 
 

Table of contents 

 

Zusammenfassung ....................................................................................................................................................... 3 

Summary ............................................................................................................................................................................ 5 

Introduction ...................................................................................................................................................................... 8 

1. Kidney tumorigenesis ............................................................................................................................................. 8 

1.1. Kidney cancer ......................................................................................................................................................... 8 

1.1.1. Genetics and heterogeneity............................................................................................................................... 8 

1.1.2. Pseudo-hypoxia and dysregulated HIF-independent phenotypes upon VHL loss ............................................ 9 

1.1.3. Aggressiveness and treatment limitations ....................................................................................................... 11 

1.2. Cell of origin of kidney cancer ............................................................................................................................ 12 

1.2.1. Normal adult kidney stem cells ........................................................................................................................ 12 

1.2.2. Kidney cancer stem cells ................................................................................................................................. 13 

1.2.3. Stem cell-associated Wnt and Notch signaling in kidney cancer .................................................................... 14 

1.2.4. Genetic mouse models of kidney cancer ........................................................................................................ 20 

2. 3D organoids to study normal and cancer stem cells in the kidney ....................................................... 22 

2.1. Adult stem cell-derived organoids .......................................................................................................................... 22 

2.2. Organoids for cancer modeling .............................................................................................................................. 23 

2.3. Normal and kidney cancer organoids ..................................................................................................................... 25 

Aims of my study ......................................................................................................................................................... 27 

Results .............................................................................................................................................................................. 28 

1. A long-term 3D tubuloid model of the adult mouse kidney ....................................................................... 28 

1.1. Growth of long-term 3D kidney tubuloid cultures ................................................................................................... 28 

1.2. Kidney tubuloids resemble the adult mouse kidney epithelia, are stable over time and  

display enhanced proliferative capacity ......................................................................................................................... 28 

1.3. Kidney tubuloids contain differentiated, polarized and functional tubular epithelial cells ....................................... 29 

1.4. Signaling systems, which control self-renewal, growth and differentiation of kidney tubuloids .............................. 32 

2. Genetic mouse models with β-catenin-GOF, Notch-GOF and Vhl-LOF to study  

kidney tumorigenesis ................................................................................................................................................. 57 

2.1. Generation of the mutant mice ............................................................................................................................... 57 

2.2. Doxycycline-induced recombination ....................................................................................................................... 58 

2.3. Macroscopic phenotypes of the mutant mice ......................................................................................................... 59 

2.4. β-catenin, Notch and Vhl mutagenesis .................................................................................................................. 59 

2.5. No tumorigenesis was observed in the mutant kidneys ......................................................................................... 60 

2.6. The mutant mice displayed hallmarks of chronic kidney disease .......................................................................... 61 

Discussion ...................................................................................................................................................................... 80 

A long-term 3D tubuloid model of the adult mouse kidney................................................................................................ 80 

Genetic mouse models with β-catenin-GOF, Notch-GOF and Vhl-LOF to study kidney tumorigenesis ........................... 83 

Materials and methods ............................................................................................................................................. 86 

References ...................................................................................................................................................................... 98 

Acknowledgements .................................................................................................................................................. 112 

Selbstständigkeitserklärung ................................................................................................................................ 113  



3 
 

Zusammenfassung 

Organoide aus adulten Mäusen sind vielversprechende Modelle für die Nierenforschung. 

Ihre Charakterisierung wurde jedoch nicht auf ein zufriedenstellendes Niveau gebracht. 

Hier habe ich 3D-Mausorganoide (Tubuloide) etabliert, die aus einzelnen 

Nierenepithelzellen in Matrigel unter serumfreien Bedingungen gezüchtet wurden. Die 

Tubuloidbildung in passagierten Kulturen war im Vergleich zu frisch ausgesäten Kulturen 

deutlich verstärkt, was auf die Fähigkeit der Tubuloid bildenden Zellen zur 

Selbsterneuerung hinweist. In Übereinstimmung mit der Anreicherung in Stamm- oder 

Vorläuferzellen zeigten die Tubuloide auch eine erhöhte Proliferationskapazität und die 

Hochregulation der Wnt-, Notch- und Yap-Signalsysteme. Die Kulturen konnten für 

mindestens 3,5 Monate seriell passagiert werden. Wir haben Tubuloidkomponenten 

durch proteomische und phosphoproteomische Ansätze, durch konfokale Mikroskopie 

und Elektronenmikroskopie sowie durch Immunfluoreszenz und Real-Time qPCR 

bestimmt. Die Tubuloide waren über die Zeit stabil und bezüglich des Proteoms und des 

Phosphoproteoms stark mit den adulten Nierenepithelien verwandt. Die Tubuloide 

enthielten differenzierte Epithelzellen, welche Polarität, komplexe interzelluläre 

Übergänge und Marker für proximale und distale Nephronlinien aufwiesen, was auf das 

Vorhandensein multipotenter Stamm- oder Vorläuferzellen hinweist. Funktionell zeigten 

die Tubuloide Endozytose und Empfindlichkeit gegenüber dem nephrotoxischen 

Arzneimittel Cisplatin. Die Aktivierung der EGF-Rezeptor- und Wnt-Signalübertragung 

sowie die Hemmung der TGFβ-Signalübertragung trieben die Bildung und das 

Wachstum der Tubuloide an, während Wnt allein Differenzierung kontrollierte. Insgesamt 

habe ich ein langfristiges 3D-Maus-Tubuloid-Modell etabliert und charakterisiert, das die 

Erneuerung und die Reparatur sowie die Architektur und die Funktionalität der adulten 

tubulären Epithelien rekapituliert. In der Zukunft wird das Modell detaillierte 

Untersuchungen der Trajektorien selbsterneuernder Zellen sowohl zur teilweisen 

Wiederherstellung der Niere als auch zur malignen Transformation der Niere 

ermöglichen. 

 

Das klarzellige Nierenzellkarzinom (ccRCC) ist der häufigste und aggressivste 

Nierenkrebs. Die Inaktivierung des Tumorsuppressorgens Von Hippel-Lindau (VHL) ist 

der Haupttreiber des ccRCCs. Zuvor hatten wir die Hochregulation der Wnt- und Notch-

Signalübertragung in den CXCR4+MET+CD44+-Krebsstammzellen (CSC) aus primären 

humanen ccRCC-Tumoren identifiziert. Das Blockieren von Wnt und Notch in von 

Patienten stammenden Xenotransplantaten, Organoiden und nicht-anhaftenden Sphären 

unter Verwendung von niedermolekularen Inhibitoren beeinträchtigte die 
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Selbsterneuerung der CSC und das Tumorwachstum. Um CSC-gesteuertes humanes 

ccRCC in genetischen Mausmodellen nachzuahmen, begann ich mit der Erzeugung von 

zwei Doppelmausmutanten; β-Catenin-GOF; Notch-GOF und Vhl-LOF; β-Catenin-GOF. 

Die adulten tubulären Epithelien waren spezifische Ziele für die Rekombination unter 

Verwendung der induzierbaren LC1-Cre-Rekombinase, die abhängig vom Pax8-

reversen Tetracyclin-kontrollierten Transaktivator (rtTA) war. Die LacZ-Färbung zeigte, 

dass die Rekombination proximale tubuläre Zellen umfasste, die Zellen des ccRCC-

Ursprungs sind. Ich bestätigte die Mutagenese von β-Catenin-, Notch- und Vhl-loxP-

Allelen auf DNA-Ebene, mRNA-Zielgen-Ebene und Protein-Ebene. Sowohl die β-

Catenin-GOF; Notch-GOF Mausmutante als auch die Vhl-LOF; β-Catenin-GOF 

Mausmutante entwickelten innerhalb einiger Monate schwere Krankheitssymptome. 

Überraschenderweise beobachtete ich weder Tumore oder Tumorvorläuferläsionen noch 

höhere Zellproliferationsraten in den mutierten Nieren. Weitere Analysen ergaben, dass 

die Mausmutanten Merkmale chronischer Nierenerkrankung (CKD) aufwiesen. Somit 

entwickelten die β-Catenin-GOF; Notch-GOF und Vhl-LOF; β-Catenin-GOF 

Mausmutanten unter den gegebenen Versuchsbedingungen keine Nierentumore. 

  



5 
 

Summary 

Adult mouse organoids are promising models for kidney research. However, their 

characterization has not been pushed forward to a satisfying level. Here, I have 

established 3D mouse organoids (tubuloids) grown from single kidney epithelial cells in 

Matrigel under serum-free conditions. Tubuloid formation in passaged cultures was 

strongly enhanced in comparison to freshly seeded cultures, indicating the self-renewal 

ability of tubuloid-forming cells. In line with the enrichment in stem or progenitor cells, the 

tubuloids also displayed elevated proliferative capacity and the upregulation of the Wnt, 

Notch and Yap signaling systems. The cultures could be serially passaged for at least 

3.5 months. We determined tubuloid components by proteomic and phosphoproteomic 

approaches, by confocal and electron microscopy and by immunofluorescence and real-

time qPCR. The tubuloids were stable over time and greatly shared the proteome and 

phosphoproteome with the adult kidney epithelia. The tubuloids contained differentiated 

epithelial cells, which exhibited polarity, complex intercellular junctions and markers of 

proximal tubule and distal nephron lineages, suggesting the presence of multipotent 

stem or progenitor cells. Functionally, the tubuloids displayed endocytosis and sensitivity 

to nephrotoxic cisplatin. Activation of the EGF receptor and Wnt signaling and inhibition 

of TGFβ signaling drove tubuloid formation and growth, while Wnt alone controlled 

differentiation. Altogether, I generated and characterized a long-term 3D mouse tubuloid 

model, which recapitulates renewal and repair, and the architecture and functionality of 

the adult tubular epithelia. In the future, the model will allow detailed investigations of 

trajectories of self-renewing cells towards both the partial recreation and malignant 

transformation of the kidney. 

 

Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive kidney 

cancer. Inactivation of the Von Hippel-Lindau (VHL) tumor suppressor gene is the major 

driver of ccRCC. Earlier, we identified the upregulation of Wnt and Notch signaling in 

CXCR4+MET+CD44+ cancer stem cells (CSCs) from primary human ccRCCs. Blocking 

Wnt and Notch in patient-derived xenografts, organoids and non-adherent spheres using 

small-molecule inhibitors impaired self-renewal of CSCs and tumor growth. To mimic 

CSC-governed human ccRCC in genetic mouse models, I started from the generation of 

two double mouse mutants; β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF. 

The adult tubular epithelia were specific targets for recombination using the inducible 

Pax8-reverse tetracycline-controlled transactivator (rtTA)-dependent LC1-Cre 

recombinase. LacZ staining showed that recombination encompassed proximal tubular 

cells, which are the cells of ccRCC origin. I confirmed mutagenesis of β-catenin-, Notch- 
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and Vhl-loxP alleles on DNA, mRNA target gene and protein levels. Both β-catenin-GOF; 

Notch-GOF and Vhl-LOF; β-catenin-GOF mouse mutants developed severe symptoms 

of sickness within several months. Surprizingly, I observed neither tumors or tumor 

precursor lesions nor higher cell proliferation rates in the mutant kidneys. Further 

analyses revealed that the mutant mice displayed features of chronic kidney disease 

(CKD). Thus, β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mouse mutants 

did not develop kidney tumors under the given experimental conditions. 
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The present dissertation has been carried out under the supervision of Prof. Dr. Walter 
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Introduction 

1. Kidney tumorigenesis 

1.1. Kidney cancer 

1.1.1. Genetics and heterogeneity 

In the USA in 2021, kidney cancer is expected to represent the 6th most common 

malignancy in men (accounting for 5% of all male cancer cases) and the 9th in women 

(accounting for 3% of all female cancer cases) (Siegel et al, 2021). Renal cell carcinoma 

(RCC) constitutes more than 90% of kidney cancers. Clear cell renal cell carcinoma 

(ccRCC) is the most frequent subtype of RCC, which affects more than 80% of patients 

(Hsieh et al, 2017). High-throughput genome sequencing revealed that biallelic 

disruption of the Von Hippel-Lindau (VHL) tumor suppressor gene occurs in the majority 

of ccRCC cases. The loss of one copy of VHL in 91-95% of patients results from the loss 

of chromosome 3p, where VHL is located. The second copy is inactivated through either 

mutation in 52-82% of cases or promoter methylation in 7-16% of cases. 3p loss 

encloses three further tumor suppressor genes, PBRM1, SETD2 and BAP1, whose 

second copy is also often mutated. Further tumor suppressor genes such as KDM5C, 

PTEN, MTOR, P53 and PIK3CA are less frequently mutated. Other common genetic 

alterations are the gain of 5q chromosome, and 14q and 9p loss (Creighton et al, 2013; 

Sato et al, 2013; Turajlic et al, 2018b) (Figure 1). Subsequent genome sequencing of 

multiple tumor regions deciphered evolutionary trajectories of primary and metastatic 

ccRCCs. VHL inactivation is the ubiquitous earliest clonal event in tumorigenesis, and 

subclonal alterations of other genes and chromosomes occur in spatially separated 

tumor regions. This branched evolution contributes to intratumor heterogeneity of 

ccRCCs, which hinders the validation of molecular biomarkers in personalized treatment 

(Gerlinger et al, 2012, 2014; Mitchell et al, 2018; Turajlic et al, 2018a, 2018b). 
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Figure 1 

Genetic alterations in human ccRCC. Top histogram: number of mutations per sample. Histograms below: 

distribution and frequency of gene fusions, VHL methylation, gene mutations and chromosomal copy number 

losses and gains across 385 ccRCC samples from The Cancer Genome Atlas (TCGA) cohort (Creighton et 

al, 2013). 

 

1.1.2. Pseudo-hypoxia and dysregulated HIF-independent phenotypes upon VHL 

loss 

The product of the VHL gene plays a key role in cellular oxygen sensing. VHL is the 

substrate recognition subunit of an E3 ubiquitin ligase complex for the hypoxia-inducible 

factors-1α and -2α (HIF-1α/2α), which are constitutively expressed. This complex also 

contains CUL2, ELOB, ELOC and RBX1. In the presence of oxygen and 2OG, critical 

proline residues of HIF-1α/2α are hydroxylated by the EGLN family of evolutionarily 

conserved dioxygenases. This allows recognition of HIF-1α/2α by VHL, which results in 

their ubiquitination by the E3 ligase complex and proteasomal degradation. In hypoxic 

conditions, HIF-1α/2α are not hydroxylated, and thus escape recognition and 

ubiquitination by the VHL E3 ligase complex. This leads to accumulation of HIF-1α/2α 

and their heterodimerization with HIF-1β, which is constantly present in the cytoplasm. 

HIF-1α/2α-HIF-1β heterodimers translocate to the nucleus and bind to the hypoxia 

response elements (HRE) to regulate the expression of hundreds of HIF target genes 

involved in cellular adaptations to hypoxia such as anaerobic glycolysis, angiogenesis, 

proliferation, survival and motility (Bertout et al, 2008; Gossage et al, 2015; Lindgren et 

al, 2018) (Figure 2). For their seminal discoveries on how cells sense and respond to 
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oxygen availability via the VHL-HIF axis, Kaelin, Ratcliffe and Semenza jointly won the 

2019 Nobel Prize in Physiology or Medicine (Ledford & Callaway, 2019). 

 

VHL-deficient ccRCCs display lack of oxygen sensing. This results in the pseudo-

hypoxic state with stabilization of HIF-1α/2α, followed by the hyperactivation of HIF 

targets, which contribute to tumor initiation and progression (Bertout et al, 2008; 

Gossage et al, 2015; Lindgren et al, 2018) (Figure 2). However, accumulated evidence 

on the role of HIF-1α and -2α in ccRCC tumorigenesis is inconsistent. Genetic studies 

using ccRCC xenografts indicated the oncogenic role of HIF-2α (Schödel et al, 2016). In 

addition, treatment with a small-molecule antagonist of HIF-2α in two preclinical studies 

inhibited tumor growth in xenografts derived from ccRCC patients and cell lines. These 

studies validated previously undruggable HIF-2α as the target for anti-ccRCC therapy 

(Chen et al, 2016b; Cho et al, 2016). In a subsequent clinical trial of a close analogue of 

the HIF-2α antagonist, mostly stable disease, but also partial and complete responses 

were achieved in patients with heavily pretreated advanced or metastatic ccRCCs 

(Courtney et al, 2018). In turn, in studies using ccRCC xenografts, investigators argued 

that HIF-1α plays the tumor suppressive function (Schödel et al, 2016). In contrast, 

several studies using genetic mouse models suggested that HIF-1α is an oncogene, 

while HIF-2α was not essential for ccRCC formation (Hoefflin et al, 2020; Nanus & 

Gudas, 2016). Another study in mice indicated that both HIF-1α and -2α are necessary 

for ccRCC development (Schönenberger et al, 2016). These differing effects of HIF-1α 

and -2α in ccRCC xenografts, genetic mouse models and patients appear context-

dependent and are a matter of discussion in the field (Hoefflin et al, 2020; Nanus & 

Gudas, 2016; Schödel et al, 2016). VHL also exhibits numerous HIF-independent tumor 

suppressive functions such as direct or indirect β-catenin ubiquitination, extracellular 

matrix regulation, microtubule stabilization, intercellular junction formation, apoptosis 

induction by P53 activation and NF-κB inhibition, cell senescence control and 

transcriptional regulation. A complete understanding of VHL loss-driven ccRCC 

tumorigenesis will require the elucidation of the interplay between dysregulated HIF-

dependent and -independent processes (Calzada et al, 2006; Chitalia et al, 2008; 

Gossage et al, 2015; Peruzzi et al, 2006; Young et al, 2008; Zhang et al, 2018). 
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Figure 2 

VHL-HIF signaling in normoxia, hypoxia and pseudo-hypoxia of ccRCC (Lindgren et al, 2018). 

 

1.1.3. Aggressiveness and treatment limitations 

65% of ccRCC patients are diagnosed with localized tumors, 16% with lymph node 

involvement and 16% with metastases (Siegel et al, 2021). Despite radical or partial 

nephrectomy with curative intent, 30% of patients with localized ccRCCs finally develop 

metastases (Hsieh et al, 2017). Over the past two decades, targeted treatment based on 

small-molecule inhibitors of multiple tyrosine kinases such as the VEGF and PDGF 

receptor, on mTOR inhibitors, on an anti-VEGF monoclonal antibody and on immune-

checkpoint inhibitors significantly improved outcomes of patients with metastatic 

ccRCCs. However, durable complete responses are rare, and most patients with partial 

remission or stable disease experience tumor relapse due to acquired resistance 

(Kotecha et al, 2019; Posadas et al, 2017). Therefore, the 5-year survival rate for 

patients with metastatic ccRCCs lies at only 13% (Siegel et al, 2021). This makes 

ccRCC the most aggressive subtype of RCC (Hsieh et al, 2017). The reason for 

treatment failure and poor prognosis is incomplete understanding of ccRCC 

tumorigenesis, which results in therapies not sufficiently tailored to molecular driver 

mechanisms. Improving patient outcomes requires the development of new disease-

relevant preclinical models to further explore and inhibit clonal founder events of ccRCC 

and their functional downstream oncogenic mediators and to establish biomarkers of 

drug response for clinical trials. Besides patients with metastatic tumors, these driver-

targeted therapies should also be investigated in patients with localized tumors in the 

neo-adjuvant or adjuvant setting to prevent metastatic dissemination after nephrectomy. 
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1.2. Cell of origin of kidney cancer 

1.2.1. Normal adult kidney stem cells 

The kidney is made up of about one million nephrons. The nephron is a highly complex 

structural and functional unit of the kidney, which originates in the cortex and stretches 

out into the medulla (Figure 3). The cortical nephron consists of the Bowman’s capsule 

with the glomerulus, which produces the primary urine by filtering the blood, followed by 

the proximal convoluted tubule, Loop of Henle composed of three limbs, distal 

convoluted tubule, connecting tubule and collecting duct, which reabsorb important 

substances from the primary urine and concentrate it. The medullary collecting duct 

directs the urine to the pelvis and ureter. The nephron segments contain about 25 

different cell types with specialized functions (Lindgren et al, 2018). 

 

 

 

Figure 3 

The segmented architecture of the kidney and nephron (Lindgren et al, 2018). 

 

The kidney has a great capacity to regenerate following injury, but factors governing this 

response are largely unknown. Lineage tracing revealed the presence of multipotent 

Lgr5-positive stem cells in the developing mouse kidney. Unlike in other organs, Lgr5 

expression is permanently silenced in the adult kidney (Barker et al, 2012). A number of 

putative populations of multipotent stem or progenitor cells were described in the adult 

human kidney based on the expression of the CD133, CD24, CD106 and CD146 surface 

markers in different combinations, but the studies lack strong experimental proof of 
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functional stemness properties of these cells (Angelotti et al, 2012; Bruno & Camussi, 

2012; Bussolati et al, 2005; Sagrinati et al, 2006). In addition, lineage tracing of Cd133-

positive cells in the mouse kidney questioned their stem or progenitor cell characteristics, 

because these cells display limited generative capacity in the postnatal kidney and are 

quiescent in the adult kidney (Zhu et al, 2016). However, fast-cycling, multi-lineage 

Sox9-positive progenitors drive the repair of proximal tubule, Loop of Henle and distal 

tubule cells in the adult mouse kidney (Kang et al, 2016). Another mouse study revealed 

that Sox9-positive progenitors exclusively contribute to the proximal tubule lineage 

during repair (Kumar et al, 2015). Troy-positive unipotent progenitors, which reside in the 

developing mouse papilla, can regenerate adult collecting duct cells only to certain 

extent (Schutgens et al, 2017). In turn, a study in Rainbow mice demonstrated that adult 

unipotent progenitors specific for the proximal, distal or collecting duct segment exist, but 

no markers were defined. These progenitors drive both homeostatic maintenance and 

repair of the kidney (Rinkevich et al, 2014). As an alternative to resident stem or 

progenitor cells, a plastic process of injury-induced dedifferentiation, proliferation and 

redifferentiation of survived terminally specialized proximal tubular cells was proposed to 

contribute to repair of the adult mouse kidney (Kusaba et al, 2014). The unresolved 

questions regarding the biology of stem or progenitor cells in the adult kidney remain a 

matter of debate in the field. 

 

1.2.2. Kidney cancer stem cells 

Correlative studies on cancer patients revealed that during the life of individuals, the 

number of stem cell divisions in self-renewing tissues dictate the cancer risk by 

accumulated driver gene mutations, which randomly result from these divisions. 

Approximately three mutations occur during a division of a human stem cell (Tomasetti et 

al, 2017). Mouse models confirmed that the generative capacity of mutated stem cells 

determines the life-long tumor incidence in many organs (Zhu et al, 2016). It is believed 

that transformed stem cells are the source of intratumor heterogeneity and thus crucial 

units of Darwinian selection. These so-called cancer stem cells (CSCs), also called 

tumor-initiating cells or tumor-propagating cells, are non-genetic determinants of 

hierarchically organized cancer tissues, which can be integrated in the genetic clonal 

evolution paradigm and can contribute to tumor initiation and progression (Kreso & Dick, 

2014). According to the CSC concept, a small population of tumor cells exhibits an 

extraordinary capacity for initiation and long-term maintenance of primary tumors and 

metastases. This is due to unlimited potential for self-renewal and differentiation towards 

heterogeneous progeny, which form the tumor bulk. Because solid tumors display 

features of the organization of normal self-renewing tissues, the development of these 
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tumors is considered as the caricature of organogenesis. However, for most solid 

tumors, the cellular origin, plasticity and stemness-governing signaling systems of 

individual CSC populations have not yet been elucidated. Subcutaneous and orthotopic 

xenotransplantation at limiting dilutions into immunodeficient mice is a standard 

functional assay to examine the capacity of FAC-sorted human CSCs to recapitulate 

parental tumors over serial passages (Batlle & Clevers, 2017; Lytle et al, 2018; Nassar & 

Blanpain, 2016; Shibue & Weinberg, 2017; Visvader & Lindeman, 2012). 

 

Several studies on putative CSCs from human ccRCCs were performed (Hu et al, 2017; 

di Martino et al, 2018; see also my review: Myszczyszyn et al, 2015). These studies 

aimed at the enrichment of CSCs based on single markers such as CXCR4, CD105, 

ALDH or CTR2 and the combination of CD44, CD146 and EpCAM, but suffered from 

experimental limitations and inconsistency. In contrast, we identified 

CXCR4+MET+CD44+ CSCs from primary human ccRCCs. We confirmed the self-renewal 

and tumorigenic capacity of these CSCs in complementary patient-derived functional 

models, i.e. subcutaneous and orthotopic xenografts, and organoids and non-adherent 

spheres in culture (Fendler, Myszczyszyn et al, 2020). 

 

1.2.3. Stem cell-associated Wnt and Notch signaling in kidney cancer 

In the past 40 years, Wnt has emerged as a fundamental and ancient signal transduction 

system during development and adult life, which is involved in the regulation of cell fate 

(van Amerongen, 2020; Grigoryan et al, 2008; Klaus & Birchmeier, 2008; Nusse & 

Clevers, 2017; Wiese et al, 2018). The transcriptional coactivator β-catenin is the key 

mediator of canonical Wnt signaling, and our laboratory contributed to the discoveries of 

the mechanisms of the β-catenin signal cascade (Behrens et al, 1996, 1998). This 

protein moves from adherens junctions between the membranes of neighboring cells 

(Hülsken et al, 1994; Takeichi, 1991) to the cytoplasm and nucleus. In the Wnt-off state 

of resting cells, the cytoplasmic pool of β-catenin is phosphorylated by the so-called 

destruction complex composed of the tumor suppressor proteins Axin1/2 and Apc and of 

the kinases Ck1 and Gsk3β. Phosphorylated β-catenin is targeted by ubiquitination for 

proteasome-mediated degradation (Behrens et al, 1998). In the Wnt-on state, Wnt 

ligands, which are secreted glycoproteins palmitoylated by the membrane O-

acyltransferase Porcn, bind to Frizzled receptors and Lrp co-receptors at the cell surface 

(Nusse & Clevers, 2017; Wiese et al, 2018), which results in Dishevelled (Dvl)-mediated 

disassembly of the destruction complex (Schwarz-Romond et al, 2007). Non-

phosphorylated β-catenin accumulates in the cytoplasm and translocates into the 

nucleus, where it binds to the Tcf/Lef family of transcription factors, and this complex 
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drives the transcription of context-dependent Wnt target genes (Behrens et al, 1996; 

Molenaar et al, 1996). Active Wnt signaling is controlled by numerous negative feedback 

regulators, which include the secreted Wnt antagonists Dkk, Igfbp, Sfrp and Wif (Cruciat 

& Niehrs, 2013; Nusse & Clevers, 2017) as well as the membrane E3 ubiquitin ligases 

Rnf43 and Znr43, which promote the internalization of the Frizzled-Lrp complexes. The 

negative feedback by Rnf43 and Znr43 is blocked by the secreted R-spondin agonists, 

which bind to Lgr receptors. The Lgr-R-spondin complexes mediate the clearance of 

Rnf43 and Znr43 from the membrane (de Lau et al, 2014). 

 

Notch is an evolutionarily conserved multi-faceted signaling system, which is crucial for 

fetal and adult tissues (Kopan & Ilagan, 2009; Ntziachristos et al, 2014; Siebel & 

Lendahl, 2017). Canonical Notch signaling is activated by the interaction of Jag or Dll 

ligands at the surface of signal-sending cells with Notch receptors of signal-receiving 

cells, which are presented on the membrane after the S1 cleavage in the Golgi 

apparatus. This interaction induces the S2 cleavage by Adam metalloproteinases, 

followed by the S3 cleavage by the γ-secretase complex composed of Psen1/2, Pen2, 

Aph1 and Ncstn. The cleaved Notch intracellular domain (Nicd) is transported to the 

nucleus, where it forms a transcriptional complex with the coactivators Rbpj and Maml. 

This complex mediates the transcription of pleiotropic Notch downstream effectors. 

Notch signaling is regulated by various post-translational modifications of its receptors 

and ligands (Kopan & Ilagan, 2009; Ntziachristos et al, 2014; Siebel & Lendahl, 2017). 

 

Wnt and Notch signaling regulate maintenance, migration, differentiation and lineage 

commitment of stem cells in embryogenesis and in homeostasis and regeneration of 

adult organs (Grigoryan et al, 2008; Klaus & Birchmeier, 2008; Koch et al, 2013; Liu et 

al, 2010; Siebel & Lendahl, 2017; Wiese et al, 2018). Wnt and Notch signaling play 

critical roles in kidney development. Wnt induces mesenchymal-to-epithelial transition, 

i.e. differentiation of mesenchymal cells into epithelial cells, which initiates nephron 

formation. Notch acts later in nephron segmentation by patterning proximal tubules and 

glomerular cells (Edeling et al, 2016; Little & Kairath, 2017). While Wnt and Notch are 

silenced in the kidney once nephrogenesis is completed, it was proposed that kidney 

repair is regulated by the reactivation of developmental signaling systems (Little & 

Kairath, 2017). Indeed, Wnt and Notch are upregulated in Sox9-positive multipotent 

progenitor cells, which expand in response to kidney injury in mice (Kang et al, 2016). In 

addition, Wnt-responsive unipotent progenitor cells contribute to regeneration of proximal 

tubules and collecting ducts in the mouse kidney (Rinkevich et al, 2014). Consistent with 

these findings, deletion of the Wnt mediator β-catenin in kidney tubular cells (Zhou et al, 
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2012) or knockout of the Wnt ligand Wnt7b in inflammatory macrophages (Lin et al, 

2010) as well as blocking Notch with a γ-secretase inhibitor (Chen et al, 2013) delay 

kidney recovery upon injury in mice. 

 

According to Vogelstein and colleagues, Wnt and Notch are among cell fate-controlling 

oncogenic signaling systems, which are activated by mutations of known driver genes 

(Vogelstein et al, 2013). Driver genes encoding components and regulators of Wnt and 

Notch can not only be recurrently mutated, amplified or lost, but also epigenetically 

modified in a number of solid tumors, which results in the upregulation of these signaling 

systems, followed by the unbalance of self-renewal, motility, proliferation and 

differentiation of stem cells and tumorigenesis (Bugter et al, 2021; Jung & Park, 2020; 

Lytle et al, 2018; Meisel et al, 2020; Ntziachristos et al, 2014; Ranganathan et al, 2011; 

Siebel & Lendahl, 2017; Wiese et al, 2018). 

 

To study the causative role of Wnt signaling in the development of breast and salivary 

gland cancer, our laboratory generated genetic mouse models, which were driven by 

CSCs dependent on β-catenin hyperactivation (Holland et al, 2013; Wend et al, 2013). In 

addition, we showed that knockout of the epigenetic regulator Mll1 in the salivary gland 

cancer model (Zhu et al, 2019) and in a Wnt-high model of colorectal cancer (Grinat et 

al, 2020) as well as deletion of Yap in the breast cancer model (Quinn et al, 2021) 

resulted in the loss of self-renewal of CSCs and impaired tumor formation. Thus, our 

results indicate that Mll1 and Yap are essential mediators of Wnt-induced CSC-governed 

tumorigenesis. Furthermore, single cell RNA sequencing in our genetic mouse model of 

salivary gland cancer revealed that tumor development proceeds through heterogeneous 

subpopulations of CSCs, which display basal or luminal identity and different levels of 

Wnt signaling (Praktiknjo et al, 2020). Remarkably, γ-secretase inhibition of Notch 

signaling in mouse intestinal adenomas with genetic upregulation of Wnt signaling 

revealed that Notch cooperates with Wnt in the maintenance of an undifferentiated, 

proliferative premalignant phenotype (van Es et al, 2005). In another genetic mouse 

model of colorectal cancer, concomitant genetic hyperactivation of Nicd and knockout of 

p53 contributed to the formation of metastatic tumors (Chanrion et al, 2014). 

 

The results of our laboratory and of other groups support the importance of the Wnt and 

Notch signaling systems also in ccRCC tumorigenesis. Mutations of Wnt and Notch 

signaling components are rare in ccRCCs (Creighton et al, 2013; Kandoth et al, 2013; 

Kim et al, 2000; Sanchez-Vega et al, 2018; Sato et al, 2013). However, the 

overexpression of mediator molecules of Wnt (Hsu et al, 2012; Janssens et al, 2004; Kim 
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et al, 2000; Kruck et al, 2013; Lian et al, 2012) and Notch (Ai et al, 2012; Bhagat et al, 

2017; Johansson et al, 2016; Lee et al, 2016; Liu et al, 2013; Sjölund et al, 2008; Wang 

et al, 2014b; Wu et al, 2011) in primary ccRCCs and ccRCC cell lines was 

demonstrated. Widespread activation of Notch in The Cancer Genome Atlas (TCGA) 

RNA sequencing data sets from ccRCC samples was also observed (Bhagat et al, 2017; 

Johansson et al, 2016). In addition, our laboratory identified the upregulation of Wnt and 

Notch in CXCR4+MET+CD44+ CSCs from primary ccRCCs by gene expression profiling 

and single cell RNA sequencing (Fendler, Myszczyszyn et al, 2020). 

 

Several genetic and epigenetic mechanisms were described, which lead to the activation 

of Wnt and Notch signaling in ccRCCs. Based on the analysis of ccRCC samples from 

the TCGA cohort, a core signature of 16 frequently amplified genes involved in Wnt 

signaling was linked to transcriptional upregulation of Wnt (Chang & Lai, 2019). 

Moreover, the Wnt antagonists SFRP1/2/4/5 and WIF1 as well as the LRP5/6 

antagonists DKK1-3 and IGFBP1 are frequently downregulated in ccRCCs by promoter 

hypermethylation, which results in the loss of negative upstream regulation of Wnt 

signaling, followed by β-CATENIN liberation (Joosten et al, 2018; Morris & Latif, 2017; 

Saini et al, 2011). In addition, the promoter of the APC gene is hypermethylated in up to 

54% of ccRCCs, which blocks the formation of the β-CATENIN destruction complex 

(Joosten et al, 2018; Morris & Latif, 2017). Also, hypermethylation of SLIT‑2 and its 

receptor ROBO1 in a subset of ccRCCs inhibits GSK‑3β, preventing phosphorylation and 

ubiquitination of β-CATENIN (Joosten et al, 2018; Morris & Latif, 2017). Furthermore, we 

proposed that kidney CSCs use autocrine mechanisms to upregulate Wnt signaling, as 

shown by higher secretion of WNT10A (Fendler, Myszczyszyn et al, 2020). WNT10A 

was suggested as an oncogenic Wnt ligand in ccRCC (Hsu et al, 2012), but it has not 

been linked with kidney CSCs so far. Notch gene sets are altered in almost half of 

ccRCC patients from the TCGA cohort. Copy number variations of the Notch 

coactivators MAML1 and KAT2B are predominant alterations, which occur in 19% and 

13% of patients, respectively (Feng et al, 2016). In addition, the overexpression of the 

Notch ligands JAG1 and JAG2 is associated with gene amplification and 

hypomethylation of H3K4me1-associated enhancer regions in ccRCCs (Bhagat et al, 

2017). Moreover, the E3 ubiquitin ligase NEURL, which negatively regulates Notch 

ligands, is inactivated by promoter methylation in about 50% of ccRCCs (Schouten et al, 

2016; van Vlodrop et al, 2017). We showed that Notch signaling in kidney CSCs is 

promoted downstream of Wnt signaling, likely via JAG1 activation (Fendler, 

Myszczyszyn et al, 2020). 
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In context-dependent manners, both Wnt and Notch signaling can be enhanced upon 

VHL disruption, and vice versa, Wnt and Notch can potentiate hypoxia signaling. HIF-1α 

modulates Wnt signaling in hypoxic embryonic stem cells (ESCs) by enhancing β-

CATENIN activation and expression of the transcriptional Wnt coactivators TCF1 and 

LEF1 (Mazumdar et al, 2010). In a differentiated colorectal cancer cell line, the opposite 

effect was observed, i.e. β-CATENIN enhances HIF-1α-mediated transcription, while 

HIF-1α inhibits the formation of the β-CATENIN transcriptional complex (Kaidi et al, 

2007). VHL can also affect Wnt signaling independently of HIFs. As shown in normal 

kidney and ccRCC cell lines, the loss of VHL stabilizes β-CATENIN via the 

downregulation of the single-subunit E3 ubiquitin ligase JADE-1, which mediates β-

CATENIN ubiquitination in addition to β-TrCP. Both β-TrCP and JADE-1 mark 

phosphorylated β-CATENIN for degradation in the Wnt-off state. β-TrCP cannot 

completely compensate for JADE-1 silencing, indicating that the ligases are partly 

redundant (Behrens, 2008; Chitalia et al, 2008). In addition, β-CATENIN can also be 

directly targeted for degradation by the E3 ubiquitin ligase activity of VHL in normal 

kidney and ccRCC cell lines. The loss of VHL enables HGF-MET-driven Wnt signaling 

(Peruzzi et al, 2006). In myogenic and neural progenitors under hypoxic conditions, HIF-

1α was reported to promote Notch signaling by binding to NICD at the promoters of 

Notch target genes, inducing their expression (Gustafsson et al, 2005). A converse 

Notch-driven potentiation of hypoxic downstream response was noted in a myogenic cell 

line by NICD-mediated sequestering factor-inhibiting HIF-1 (FIH1) away from HIF-1α 

under normoxic conditions. Therefore, Notch signaling may allow HIF-1α downstream 

effects, when HIF-1α is stabilized by VHL loss in the presence of oxygen (Zheng et al, 

2008). Another study demonstrated constitutive activation of Notch signaling in a ccRCC 

cell line independently of VHL disruption (Sjölund et al, 2008). 

 

The upregulation of mediator molecules of Wnt and Notch signaling was associated with 

advanced, aggressive ccRCCs and poor patient survival (Ai et al, 2012; Hsu et al, 2012; 

Kruck et al, 2013; Lee et al, 2016; Lian et al, 2012; Ricketts et al, 2018; van Vlodrop et 

al, 2017; Wang et al, 2014b; Wu et al, 2011). In addition, a Wnt hyperactivation 

phenotype in ccRCCs from the TCGA cohort was associated with stem cell features, 

epithelial-to-mesenchymal transition (EMT) and hypoxic tumors, resulting in higher 

mortality rates (Chang & Lai, 2019). We observed that both Wnt and Notch, and stem 

cell signatures in the TCGA RNA sequencing data sets from ccRCC patients are 

correlated with decreased survival. Indeed, we found that high-Wnt and high-Notch 

kidney CSCs quantitatively correlate with advanced tumor stages and tumor 

aggressiveness and metastasis (Fendler, Myszczyszyn et al, 2020), similar to other solid 
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tumors (Saygin et al, 2019). However, two other analyses indicated that Notch 

signatures are associated with a favorable prognosis (Bhagat et al, 2017; Feng et al, 

2016). 

 

CSCs contribute to tumor resistance to standard therapies and consequently to relapse 

and metastasis. Therefore, targeting crucial signaling systems driving self-renewal, like 

Wnt and Notch, represents a promising strategy for eradicating CSCs and increasing the 

survival of patients. Over the past decade, small-molecule inhibitors and antibodies 

against various components of CSC-associated Wnt and Notch signaling in numerous 

solid tumors other than ccRCC have been successfully developed in preclinical models. 

However, the outcomes from clinical trials revealed substantial barriers in translating 

these investigational compounds into the clinic as single regimens or in combination with 

standard interventions. The major challenge is to avoid on-target toxicity in normal self-

renewing tissues, which share the dependence on Wnt and Notch. The identification of 

cancer-specific downstream effectors of Wnt and Notch signaling will overcome this 

limitation. In turn, patient stratification based on the discovery of predictive biomarkers of 

the response to Wnt and Notch inhibition will increase treatment efficacy. Developing 

improved assays to examine end points for Wnt and Notch downregulation and CSC 

depletion in tumor samples during clinical trials might also be beneficial (Jung & Park, 

2020; Meisel et al, 2020; Saygin et al, 2019; Takebe et al, 2015). 

 

Inhibition of Notch signaling with small-molecule inhibitors attenuated proliferation and 

growth of ccRCC cell lines and xenografts (Bhagat et al, 2017; Sjölund et al, 2008). In 

addition, proliferation and growth of ccRCC primary cells and cell lines was inhibited by 

NOTCH1 and HES1 downregulation using siRNA (Liu et al, 2013; Sjölund et al, 2008). 

We showed that single-agent and combination treatment with small-molecule inhibitors 

of Wnt and Notch blocked self-renewal of CSCs in organoid and non-adherent sphere 

cultures established from primary human ccRCCs and impaired cell proliferation and 

tumor growth in subcutaneous and orthotopic patient-derived xenografts (PDXs). In line 

with this, ablation of β-CATENIN and NOTCH1 by siRNA attenuated growth of the 

sphere cultures. Thus, we confirmed the relevance of CSC-associated Wnt and Notch 

signaling as druggable targets in a patient-specific setting. This strategy may be 

translatable in the future into promising personalized therapies for ccRCC patients 

(Fendler, Myszczyszyn et al, 2020). 
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1.2.4. Genetic mouse models of kidney cancer 

Genetically controlled mouse models enable reproducible de novo tumor initiation, 

progression and metastasis, also coupled with lineage tracing of mutated cell clones, in 

conditions of a defined genetic background, immunocompetence and natural tumor 

microenvironment, and without mechanical perturbation of cells. In addition, these 

models closely mimick histopathological and molecular features of human counterpart 

tumors. Therefore, genetic mouse systems are indispensable for preclinical oncology 

research, drug development and biomarker discovery and are powerful tools to study 

CSCs in their intact niches (Batlle & Clevers, 2017; Hou & Ji, 2018; Kersten et al, 2017; 

Nassar & Blanpain, 2016). 

 

Histopathological data (Lindgren et al, 2018) and correlative transcriptomic analyses 

(Büttner et al, 2015; Chen et al, 2016a; Lindgren et al, 2017; Young et al, 2018) indicate 

that ccRCC most likely originates from proximal tubular epithelial cells. In order to 

establish faithful genetic mouse models for sporadic human ccRCC over the past two 

decades, several groups inactivated in the mouse kidney Vhl in isolation or in 

combination with deletion of other tumor suppressor genes such as Pbrm1, Bap1, p53 

and Pten, which are mutated in human ccRCCs (Albers et al, 2013; Frew et al, 2008; Gu 

et al, 2017; Guinot et al, 2016; Nargund et al, 2017; Pritchett et al, 2015; Rankin et al, 

2006; Wang et al, 2014a). These attempts were unsuccessful, because the mutants 

displayed cystic lesions, which were associated with morbidity, and tumor precursor 

lesions with only few histopathological and molecular phenotypes of ccRCC. The major 

limitation was using non-inducible Cre under control of the promoters of genes 

constitutively active in nephrogenesis, including Pax8, Six2, Ksp, Hoxb7 and Pepck. 

 

By using inducible Cre systems that were activated in adult kidney epithelial cells, three 

groups succeeded to create relevant genetic mouse models, which reproduced 

hallmarks of sporadic human ccRCC. Genetic alterations encompassed Vhl inactivation 

in cooperation with either Pbrm1 deletion (Espana-Agusti et al, 2017), with p53 and Rb1 

knockout (Harlander et al, 2017) or with Cdkn2a (p16) loss and Myc overactivation 

(Bailey et al, 2017). In line with the prevalence of genetic alterations of VHL in human 

ccRCCs, these mouse models revealed the critical role of Vhl deficiency in ccRCC 

tumorigenesis, even though Vhl disruption alone is insufficient for transformation (Albers 

et al, 2013; Bailey et al, 2017; Bhagat et al, 2017; Espana-Agusti et al, 2015, 2016, 

2017; Frew et al, 2008; Gu et al, 2017; Johansson et al, 2016; Kimura et al, 2008; Mathia 

et al, 2013; Nargund et al, 2017; Pritchett et al, 2015; Rankin et al, 2006; Schönenberger 

et al, 2016; Wang et al, 2014a). The models also indicated that additional genetic 
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alterations are required for the progression of Vhl-deficient kidney epithelial cells to 

malignant tumors. The mutants produced large, high grade solid tumors with full or 

nearly full penetrance. These tumors exhibited clear or eosinophilic cytoplasms, high 

proliferative indexes, prominent vasculatures and necrotic and haemorrhagic regions. 

Tumor cells shared diagnostic histopathological markers such as Ca9, Cd10 and Pax8, 

mTOR hyperactivation, and mutational profiles and transcriptional signatures with human 

ccRCCs. Combined Vhl-Cdkn2a (p16)-Myc mutagenesis resulted in the most aggressive 

ccRCCs, which expressed EMT-related genes and developed liver metastases. This is 

consistent with a genomic study in metastatic human ccRCCs, which revealed specific 

loss of CDKN2A (P16) associated with poor survival (Turajlic et al, 2018a). Tumor cells 

in all three models resembled histological markers and transcriptional profiles of proximal 

tubular cells, which provided causative evidence that the latter ones are the cells of 

ccRCC origin. 

 

Inter- and intratumor heterogeneity in the three genetic mouse models implies that 

ccRCC can develop via different mechanisms, which mimics tumor heterogeneity in 

humans. Thus, the models represent different subsets of human ccRCC, which can 

serve in preclinical studies. For example, different mouse tumors produced by 

concomitant loss of Vhl, p53 and Rb1 displayed varying responses to standard treatment 

for metastatic human ccRCC, which mimicked the range of clinical behaviors in the 

human disease and can be useful for examining molecular determinants of tumor 

sensitivity and resistance to new therapeutic strategies. 

 

Similar to Vhl knockout alone, the overactivation of Wnt (Clark et al, 2011; Cole et al, 

2010; Qian et al, 2005; Saadi-Kheddouci et al, 2001; Sansom et al, 2005, 2006; Wong et 

al, 2018; Yi et al, 2015; Zhu et al, 2016) or Notch (Bielesz et al, 2010; Park et al, 2018; 

Zhu et al, 2016) signaling in mouse kidneys was insufficient for carcinogenesis. In turn, 

the hyperactivation of Wnt signaling together with genetic interferences at p53, p21 or K-

ras did not result in the development of aggressive tumors with ccRCC characteristics 

(Clark et al, 2011; Cole et al, 2010; Sansom et al, 2005, 2006; Yi et al, 2015). The 

upregulation of Notch signaling in combination with Vhl loss contributed to formation of 

premalignant lesions with some ccRCC hallmarks such as clear cytoplasm with lipid 

accumulation (Bhagat et al, 2017; Johansson et al, 2016). The cooperative function of 

Wnt and Notch in ccRCC tumorigenesis, also in the context of Vhl inactivation, has not 

been defined so far. 

 

 



22 
 

2. 3D organoids to study normal and cancer stem cells in the kidney 

2.1. Adult stem cell-derived organoids 

Organoids from adult tissues are 3D structures grown from specific stem or progenitor 

cells. During organoid formation, cells self-renew, differentiate and self-organize through 

cell sorting and spatially restricted lineage commitment in a manner similar to the in vivo 

situation (Figure 4). Apart from architectural characteristics, organoids recapitulate 

functional features of their natural organs (Clevers, 2016; Lancaster & Knoblich, 2014; 

Schutgens & Clevers, 2020). Long-term organoid cultures can be established in 

hydrogels, which mimick the extracellular matrix, often Matrigel, in the absence of feeder 

cells, and require supplementing medium with well-defined niche growth factors, which 

control self-renewal, differentiation and self-organization of stem or progenitor cells 

(Kretzschmar & Clevers, 2016). In the last decade, organoids were generated from 

various human and mouse organs using distinct culture conditions and represent model 

systems, which are superior over 2D cell lines and non-adherent spheres and are 

complementary to genetic mouse models and PDXs. Organoids are emerging as 

powerful tools for basic and translational research applications such as studying tissue 

homeostasis and physiology, genetics of hereditary diseases and cancer, and infectious 

diseases as well as biobanking for personalized drug development, drug toxicity testing 

and regenerative medicine (Clevers, 2016; Lancaster & Knoblich, 2014; Li & Izpisua 

Belmonte, 2019; Schutgens & Clevers, 2020; Tuveson & Clevers, 2019). For their 

exciting potential as platforms to examine human biology and disease, organoids were 

awarded by Nature as the method of the year 2017 (Method of the Year 2017: 

Organoids, 2018). Despite the advances, there are still major limitations of organoids 

such as robustness, heterogeneity, reproducibility and direct transferability to the clinic 

(Aqeilan, 2021). 
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Figure 4 

The development of adult stem cell (SC)-derived organoids mimicks renewal and self-organization of 

parental tissues (Lancaster & Knoblich, 2014). 

 

2.2. Organoids for cancer modeling  

Normal adult organoids can be used to explore the causative potential of driver 

mutations in cancer initiation and progression (Figure 5). For instance, two groups 

utilized CRISPR/Cas9 genome editing to introduce combinations of common driver 

mutations of colorectal cancer to human intestinal organoids to generate progression 

models of this tumor. Upon xenotransplantation into mice, mutant organoids grew as 

tumors with features of invasive colorectal cancers (Drost et al, 2015; Matano et al, 

2015). Moreover, establishing organoids from adult mice with specific transgenes 

enabled rapid examination of the functional effects of driver mutations in the context of a 

defined genetic background. For example, the overexpression of the oncogenic K-ras 

transgene in mouse pancreatic organoids was sufficient to induce preinvasive pancreatic 

cancer after orthotopic implantation into mice (Boj et al, 2015). Mutant mouse prostate 

organoids with alterations of known oncogenes and tumor suppressor genes of prostate 

cancer resembled phenotypes of corresponding mouse tumors (Karthaus et al, 2014). 

Orthotopic engraftment of transformed mouse intestinal organoids into 

immunocompetent mice recapitulated the progression of adenomas to malignant tumors 

and to metastasis of colorectal cancer in the context of the functional immune system 

(O’Rourke et al, 2017). Furthermore, CRISPR/Cas9-mediated screening studies using 

lentiviral libraries facilitated high-throughput functional identification of new tumor 
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suppressor genes of colorectal cancer in premalignant human and mouse intestinal 

organoids (Michels et al, 2020; Ringel et al, 2020; Takeda et al, 2019). 

 

Remarkably, transformed organoids can be utilized to further elucidate the biology of 

CSCs. Our laboratory showed that genetic knockout of the epigenetic regulator Mll1 in 

Wnt-high mouse colorectal cancer organoids results in depletion of Lgr5-positive CSCs, 

confirming that Mll1 is required for the maintenance of Wnt-dependent CSCs (Grinat et 

al, 2020). In line with this, the laboratory also demonstrated that CSC-driven organoids 

derived from Wnt-Bmpr mouse mutants of salivary gland cancer collapsed upon Mll1 

knockout (Zhu et al, 2019). In addition, selective ablation of Lgr5-positive CSCs in 

human and mouse colorectal cancer organoids using genetic engineering revealed the 

plasticity of CSCs and the crucial role of these cells in the progression of primary and 

metastatic tumors in PDXs and allografts (de Sousa e Melo et al, 2017; Shimokawa et al, 

2017). In another study, xenotransplantation of transformed human prostate organoids 

derived from luminal or basal stem cells resulted in tumors with different levels of 

aggressiveness, which identified two alternative types of cells of origin for prostate 

cancer (Park et al, 2016). As mutant organoids can be continously manipulated 

throughout the process of tumorigenesis, they can also be a tool to study CSC-driven 

intratumor clonal evolution and heterogeneity. For instance, the number of driver 

mutations in mouse colorectal cancer organoids governed by Lgr5-positive CSCs was 

proportional to the extent of chromosomal instability and organoid tumorigenicity in 

allografts (de Sousa e Melo et al, 2017). In line with this, sequential alterations of APC 

and P53 in human intestinal organoids were sufficient to induce chromosomal instability 

(Drost et al, 2015). In addition, induction of chromosomal instability in human colorectal 

cancer organoids with the upregulation of K-RAS and PIK3CA promoted metastasis in 

PDXs (Matano et al, 2015). 

 

A second strategy for cancer modeling in organoids is establishing tumor organoids 

directly from patient tumors (Figure 5). So-called living biobanks of tumor organoids were 

generated in the last years from patients with colorectal, gastroesophageal, breast, lung, 

pancreatic, liver, bladder, ovarian and gastric cancer (Broutier et al, 2017; Fujii et al, 

2016; Hill et al, 2018; Kim et al, 2019; Lee et al, 2018; Nanki et al, 2018; Sachs et al, 

2018; Seino et al, 2018; Tiriac et al, 2018; Vlachogiannis et al, 2018; van de Wetering et 

al, 2015). These organoid biobanks represent histological, genomic and transcriptomic 

heterogeneity of parental primary and metastatic tumors. Drug responses obtained in 

organoid biobanks are well translatable to individual patients, confirming that organoids 

will be applicable in preclinical development of personalized therapies. Organoid 



25 
 

biobanks can advance large-scale screenings of new drug candidates. These biobanks 

can also enable the identification of new genes with prognostic value and the discovery 

of predictive biomarkers of drug sensitivity and resistance to stratify individual patients to 

specific treatment. For example, colorectal cancer organoids harboring a specific 

mutation in the negative Wnt feedback regulator RNF43 were sensitive to PORCN 

inhibitors, which inhibit the secretion of Wnt ligands (van de Wetering et al, 2015). 

 

 

 

Figure 5 

Cancer modeling in organoids. Tumor organoids can be established either through mutagenesis of normal 

organoids using genetic engineering or directly from patient tumors (Tuveson & Clevers, 2019). 

 

2.3. Normal and kidney cancer organoids 

Kidney organoids and tubuloids were created from human induced pluripotent stem cells 

(iPSCs) (Morizane & Bonventre, 2017a; Morizane et al, 2015; Takasato et al, 2015, 

2016), and more recently from healthy human and mouse kidneys (Grassi et al, 2019; 

Rinkevich et al, 2014; Schutgens et al, 2019) as well as from human kidney cancers 

(Bolck et al, 2021; Calandrini et al, 2020; Grassi et al, 2019; di Martino et al, 2018; 

Schutgens et al, 2019) and from human urine (Schutgens et al, 2019). Organoid cultures 

are valuable additions in basic and translational kidney research (Morizane & Bonventre, 

2017b; Rookmaaker et al, 2015; Wang et al, 2017; Woolf, 2019; Yousef Yengej et al, 

2020). We showed earlier that organoids established from primary human ccRCCs 

originate from and are maintained by CSCs, which display the activation of stem cell-

associated Wnt and Notch signaling. In these organoids, we were able to test responses 

to inhibition of Wnt and Notch in a patient-tailored setting (Fendler, Myszczyszyn et al, 
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2020). Thus, ccRCC-derived organoids will advance the development of personalized 

therapies, similiarly to organoids derived from other tumors. Moreover, kidney organoid 

cultures generated from healthy adults, pediatric Wilms’ tumors and urine from patients 

with cystic fibrosis enabled to model BK virus infection and to examine drug responses of 

Wilms’ tumor and cystic fibrosis cells (Calandrini et al, 2020; Schutgens et al, 2019). In a 

very recent follow-up study, Clevers and collaborators integrated their human tubuloids 

into a perfused microfluidic kidney-on-a-chip system (Gijzen et al, 2021). Knockout of the 

PKD1 and PKD2 genes in human iPSC-derived renal organoids mimicked the 

development of polycystic kidney disease (Freedman et al, 2015). Kidney organoids 

established from human ESCs were used to investigate infection with the SARS-CoV-2 

coronavirus and blocking viral entry by recombinant soluble ACE2 (Monteil et al, 2020). 

So far, adult mouse kidney organoids have not been characterized to my satisfaction and 

their usefulness has not been shown. 
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Aims of my study 

Organoids are emerging as essential tools for kidney research. Adult mouse kidney 

organoids have not been well characterized and their usefulness has not been shown. 

These organoids may help to understand tubular renewal and repair by assisting in the 

identification of stem or progenitor cells. In addition to genetic mouse models of ccRCC, 

mouse organoids may be valuable to study tumorigenesis in the kidney in a defined 

genetic background by simultaneous or sequential mutagenesis at multiple loci of 

putative driver genes. Similar to our patient-derived ccRCC organoids, cancer organoids 

from mice may be utilized to identify further driver-specific druggable targets and to 

examine drug-induced nephrotoxicity in matched healthy, non-transformed cells. Hence, 

the first part of my dissertation focused on the generation as well as structural and 

functional examination of a long-term 3D organoid (tubuloid) model of the adult mouse 

kidney as the platform for translational studies on normal stem cells and CSCs in the 

kidney. 

 

Numerous efforts were made in the last 20 years to create genetic mouse models, which 

truly reflect cellular and molecular features of human ccRCC. However, few such 

disease-relevant systems exist so far. Wnt and Notch signaling are elevated in 

CXCR4+MET+CD44+ CSCs from primary human ccRCCs and maintain self-renewal and 

tumorigenicity of these CSCs in relevant patient-derived systems. Answers to 

fundamental questions remain elusive on whether and how the functional interplay of 

Wnt and Notch with or without Vhl inactivation drives tumorigenesis in the kidney. To 

mimick the development of Wnt-high and Notch-high human ccRCC, the second aim of 

my dissertation was to establish and characterize inducible genetic mouse models with 

the overactivation of Wnt and Notch in adult kidney epithelial cells, also in the context of 

Vhl deficiency. These models could be used to identify new druggable oncogenic 

downstream effectors of Wnt and Notch. Adding to our results on inhibiting Wnt and 

Notch in patient-derived CSC-governed xenografts, organoids and non-adherent 

spheres, the models could thus serve for further preclinical validation of both signaling 

systems as targets for anti-CSC therapy for ccRCC, also in combination with standard 

treatment based on blocking VHL loss-driven angiogenesis. 
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Results 

1. A long-term 3D tubuloid model of the adult mouse kidney 

1.1. Growth of long-term 3D kidney tubuloid cultures 

I isolated single epithelial cells from whole mouse kidneys and established 3D tubuloid 

cultures (n = 20) with high efficiency in Matrigel under defined, serum-free conditions. 

The protocol was adapted to specific needs of kidney epithelial cells (Table 1). Within 14 

days of culture, single cells grew continuously and formed tubuloids with sizes up to 1.5 

mm in diameter (Figure 6A). By haematoxylin-eosin (H&E) staining, I classified three 

tubuloid types: cystic tubuloids with one or more cell layers and a single big lumen (with 

few tubuloids containing one or two additional smaller lumina), solid filled tubuloids and 

alveolar tubuloids with multiple lumina, accounting for 65%, 25% and 10% (Figure 6B). 

 

The efficiency of tubuloid formation was 5 times higher from single cells in the first 

passage in comparison to freshly seeded cultures (Figure 6C and D), indicating the self-

renewal capacity of tubuloid-forming cells. For maintenance, the tubuloids were serially 

passaged starting from small cell clusters (Figure 6E), which allowed me to culture them 

for at least 3.5 months (passage 12) (Figure 7A). I expect that tubuloid culturing is 

possible for longer. For subsequent experiments, tubuloid cultures were established from 

mice with a mixed background, but they could also be generated from C57BL/6J mice 

with similar efficiencies (Figure 7B). Hence, I created long-term tubuloids from single 

adult mouse kidney epithelial cells, which predominantly exhibited cystic morphologies, 

consistent with organoid cultures derived from other adult organs (Schutgens & Clevers, 

2020). 

 

1.2. Kidney tubuloids resemble the adult mouse kidney epithelia, are stable over 

time and display enhanced proliferative capacity 

In order to study whether the tubuloids represent the adult mouse kidney epithelia, we 

performed mass spectrometry-based high-throughput and high-resolution bulk 

proteomics and phosphoproteomics. We compared three independent biological 

replicates of adult kidney epithelial cells (control), early passage tubuloids (passage 2, 1-

month culture) and long-term passage tubuloids (passage 12, 3.5-month culture). To 

prepare control samples, Epcam-positive kidney epithelial cells were MAC-sorted from 

freshly isolated single cell suspensions from whole mouse kidneys to ensure optimal 

normalization, similar to a protocol for single cell RNA sequencing of adult human kidney 

tubuloids (Schutgens et al, 2019). In all samples, we were able to detect around 9.000 

proteins, which is so far the maximal coverage of the coding genome (Mertins et al, 
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2018), and around 16.000 corresponding phosphorylation sites. Based on the expression 

and phosphorylation levels of the proteins, we calculated Pearson correlations between 

all samples. We found high correlations, at least 0.8, between adult kidney epithelial cells 

(CK) and both early passage tubuloids (TEP) and long-term passage tubuloids (TLP) for 

both the proteome (Figure 8A) and phosphoproteome (Figure 8B), indicating that the 

tubuloids greatly resembled the kidney epithelia. In addition, long-term passage tubuloids 

recapitulated early passage tubuloids for both the proteome (Figure 8A) and 

phosphoproteome (Figure 8B), as shown by correlations of around 1, confirming that 

tubuloid cultures were stable over time. 

 

I also examined the importance of differentially expressed proteins between the tubuloids 

and kidney epithelia. Using a bioinformatic tool for functional annotation clustering, 

DAVID, I discovered 10 biological processes, which were governed by the most 

upregulated proteins in the tubuloids in comparison to the kidney epithelia (Figure 8C). 

The top three enriched processes were cell cycle and ribosomal activity and DNA 

replication, which indicate the presence of proliferating cells. I confirmed this by BrdU 

incorporation in the nuclei (marked in magenta) (Figure 8D). In line with self-renewal, 

enhanced proliferative capacity suggests the enrichment in stem or progenitor cells in 

the tubuloids (Grassi et al, 2019; Kang et al, 2016; Schutgens et al, 2019; Uchimura et 

al, 2020), and thus the recapitulation of the potential for adult tissue turnover and repair, 

consistent with tubuloid cultures derived from other organs (Schutgens & Clevers, 2020). 

The DAVID analysis also revealed the enrichment in proteins of cell-cell adherens 

junctions and basement membranes, which characterize epithelial cell polarity. Thus, the 

tubuloids and adult mouse kidney epithelia greatly share the proteome and 

phosphoproteome, which remain unchanged over passages. Moreover, strong self-

renewal and proliferative capacities of the tubuloids are the signs for the enrichment in 

stem or progenitor cells. 

 

1.3. Kidney tubuloids contain differentiated, polarized and functional tubular 

epithelial cells 

I examined the proteomics results by manual curation and characterized the tubuloids by 

immunofluorescence and real-time qPCR. Ubiquitous staining of Pax8 in the nuclei 

(marked in brown) confirmed that tubuloid cells were of kidney origin (Schutgens et al, 

2019) (Figure 9A). The tubuloids contained differentiated kidney epithelial cells, as 

indicated by the presence of adherens junctions between the lateral membranes of 

neighboring cells, which were positive for E-cadherin (E-cad, marked in orange) (Figure 

9B), as well as by the upregulation of Keratin 8 (Krt8), Claudin 4 (Cldn4) and Keratin 18 
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(Krt18) (Grassi et al, 2019; Liao et al, 2020; Takasato et al, 2015; Yu, 2015) (Figure 9C). 

In line with the results of the DAVID analysis, the cells displayed pronounced epithelial 

polarity, as shown by the location of Laminin in the basal laminae (marked in green) and 

of ZO-1-positive tight junctions at the apical sides (marked in red) (Figure 9D). 

 

The cells were positive either for Lotus Tetragonolobus Lectin (LTL, marked in red), a 

marker of proximal tubular epithelial cells, or Peanut Agglutinin (PNA, marked in green), 

a marker of epithelial cells of the distal nephrons, i.e. distal tubules and collecting ducts 

(Kang et al, 2016; Rinkevich et al, 2014; Schumacher, 2003; Takasato et al, 2015), and 

both markers were usually detected within the same tubuloids (Figure 9E). The 

proteomic analysis revealed the enrichment in 48 membrane transporters in both early 

(TEP) and long-term (TLP) passage tubuloids (Figure 9F), including known transporters 

of proximal tubular cells such as the amino acid transporters Slc1a4 and Slc1a5 (Kanai 

et al, 2013), the glucose transporter Slc2a1 (Schutgens et al, 2019), the myo-inositol 

transporter Slc5a11 (Lahjouji et al, 2007), the ion transporters Slc12a6 (Mercado et al, 

2005) and Slc26a2 (Chapman & Karniski, 2010), the zinc transporters Slc30a6 (Brunskill 

et al, 2014) and Slc39a10 (Kaler & Prasad, 2007) and the efflux transporters Abcb1b 

(Mdr1/P-gp), Abcc3 (Mrp3) and Abcc4 (Mrp4) (Masereeuw & Russel, 2012). In addition, 

known transporters of the distal nephrons were upregulated, including the glycine 

transporter of distal and connecting tubules, Slc6a9 (Stow & Gumz, 2011), and the ion 

transporters of collecting ducts, Slc4a1ap (Chen et al, 1998), Slc4a7 (Praetorius et al, 

2004), Atp6ap2 (Trepiccione et al, 2016) and Trpv4 (Mamenko et al, 2017). The proton 

transporters Atp6v0a1 and Atp6v0a2, which are present in both proximal tubules and 

collecting ducts (Schulz et al, 2007), were also enriched. Apart from the overexpression 

of the transporters, the proteomic analysis of the tubuloids revealed the upregulation of 

the common cytoplasmic marker (a kinase) of distal and connecting tubules and of 

cortical collecting ducts, Wnk1 (Hoorn et al, 2011), and the nuclear marker (a 

transcription factor) of collecting ducts, Gata3 (Schutgens et al, 2019) (Figure 9G). In 

LTL/PNA-double-positive tubuloids, I confirmed at the apical side of a subset of LTL-

positive cells the expression of Abcb1b (marked in cyan), another marker of proximal 

tubular cells, which did not overlap with PNA-positive cells of the distal nephrons (Figure 

9H). In these tubuloids, I also detected on a subset of PNA-positive cells the expression 

of Aquaporin 3 (Aqp3, marked in magenta), a marker of principal cells of collecting ducts 

(Schutgens et al, 2019), which was mutually exclusive with LTL-positive cells (Figure 9I). 

I also observed the mutually exclusive expression of LTL and PNA in solid and alveolar 

tubuloids (Figure 10A). Whole mount confocal fluorescence microscopy confirmed the 
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expression patterns of LTL, PNA and E-cad in a 3D reconstructed cystic (Figure 10B and 

C) and solid (Figure 10D and E) tubuloid. 

 

Even though tubuloid cells were isolated from whole kidneys, I did not find the 

expression of the markers of podocytes, Nephrin (Nphs1), Podocalyxin (Podxl) and 

Podocin (Nphs2) (Schutgens et al, 2019) (Figure 11A), the markers of parietal 

glomerular epithelial cells, Cldn1 and Vcam1 (Liao et al, 2020; Yu, 2015) (Figure 11B), 

and the markers of the Loop of Henle, Slc14a2, Uromodulin (Umod) and Slc12a1 (Lee et 

al, 2015; Schutgens et al, 2019) (Figure 11C). The markers of stromal cells, Cald1, 

Pdgfrb and Meis1 (Schutgens et al, 2019) (Figure 11D), and the markers of endothelial 

cells, Pecam1, Cdh5 and Flt1 (Schutgens et al, 2019) (Figure 11E), were also not 

present. 

 

I rarely observed tubuloids, which were positive for only LTL or PNA (Figure 12A), 

indicating that the majority of the tubuloids grew from cells with differentiation potential 

into at least two lineages, i.e. multi-lineage differentiation. To test for the differentiation 

capacity of tubuloid-forming cells, I FAC-sorted single viable (SYTOX Orange-negative) 

cells (Figure 12B), seeded 500 sorted cells per well in Matrigel and tracked tubuloid 

growth for 11 days (Figure 12C). 87% of clonally grown tubuloids were double-positive 

for LTL and PNA, while tubuloids positive for only one marker were rare (Figure 12D). In 

the multi-lineage tubuloids, some LTL-positive proximal tubular cells at the apical side 

expressed Abcb1b (Figure 12E) and some PNA-positive cells of the distal nephrons 

expressed collecting duct-specific Aqp3 (Figure 12F). 

 

Transmission electron microscopy confirmed epithelial cell polarity and complexity of the 

tubuloids. Cystic tubuloids developed microvilli (MV) at the apical membranes towards 

the lumen (L), a typical feature of proximal tubular cells (Figure 13A). At the basal side, 

microvilli-free basal laminae (arrowhead) and filopodia (F) were seen (Figure 13A). 

Junctional complexes (JC) between neighboring cells, which are involved in barrier 

formation, were present at the lateral membranes at the luminal side. JC included from 

the apical to basal side: tight junctions (zonula occludens, black asterisk), adherens 

junctions (belt desmosomes, zonula adhaerens, white asterisk), spot desmosomes 

(macula adhaerens, red asterisks) and closely aligned or nearly fused lateral membranes 

(white and black arrowheads, respectively) (Figure 13B). At the basal side, we observed 

spot desmosomes (red asterisk) and closely aligned or nearly fused lateral membranes 

(white and black arrowheads, respectively) (Figure 13C). 
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Endocytic events, i.e. clathrin-coated pits with diameters of around 100 nm, were 

observed at the apical and lateral membranes (marked by the arrowheads) (Figure 13D). 

Endocytosis is a crucial feature of proximal tubular cells, which is required to reabsorb 

proteins and other substances from glomerular filtrates (Nielsen et al, 2016). Functional 

endocytosis was detected in 32% of the tubuloids by uptake of Alexa488-conjugated 

dextran (marked in green) (Figure 13E). 

 

Another functional assay for proximal tubular cells in kidney tubuloids is testing the 

response to cisplatin, a known nephrotoxic agent, which induces caspase-3-mediated 

apoptosis (Grassi et al, 2019; Takasato et al, 2015). Cisplatin treatment produced 

concentration-dependent inhibition of tubuloid growth (Figure 13F) and decreased cell 

viability (Figure 13G). I observed apoptosis induction in tubuloid cells by Cleaved 

Caspase-3 activation after 72 hrs at a 100 μM dose (Figure 13H). However, H&E 

staining of the tubuloids did not show changes in their morphologies upon treatment with 

cisplatin at the IC50 concentration (Figure 13I). Altogether, kidney tubuloids contain 

differentiated tubular epithelial cells with apical and basal polarity and complex 

intercellular junctions. I documented multi-lineage differentiation into proximal tubular 

cells and cells of the distal nephrons. The tubuloids display functional features of 

proximal tubular cells, including endocytosis and sensitivity to cisplatin. 

 

1.4. Signaling systems, which control self-renewal, growth and differentiation of 

kidney tubuloids 

Organoids require specific growth factor cocktails, which mimick their physiological 

microenvironment in the organ of origin (Sato & Clevers, 2015). To culture my tubuloids, 

I started with a basal serum-free medium containing DMEM/F12 with Glutamax, HEPES 

buffer, N-acetylcysteine, the growth supplements B27 and N2, nicotinamide, EGF, the 

TGFβ inhibitor A83-01 and the Wnt activator R-spondin-1 (Rinkevich et al, 2014; Sato et 

al, 2011) (Table 1). This resulted in low numbers of tubuloids per well (Figure 14A). To 

improve the efficiency, I combined the basal medium with additional growth factors, 

hydrocortisone (HC) (Huang et al, 2015), prostaglandin E2 (PGE2) (Drost et al, 2016) 

and fibroblast growth factor 10 (FGF10) (Sato & Clevers, 2015). HC and PGE2 have not 

been used before to establish kidney organoids. The combination of the basal medium 

with HC and PGE2 resulted in the highest average numbers of tubuloids per well 

(average 40, efficiency 0.04%), which was a read-out for the strongest self-renewal 

capacity of tubuloid-forming cells (Snippert et al, 2010) (Figure 14A). This combination 

also maintained the large tubuloid sizes, which I observed with the basal medium only 

(Figure 14B). Therefore, the mixture of the basal medium with HC and PGE2 was 
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chosen as culture medium for further experiments to characterize the tubuloids. The 

addition of Y-27632 dihydrochloride (Rho kinase/ROCK inhibitor) to prevent anoikis 

(Grassi et al, 2019; Schutgens et al, 2019) did not improve culture efficiency (Figure 15A 

and B). 

 

The chosen culture conditions suggest the dependence of my tubuloids on the EGF 

receptor and Wnt signaling and the inhibition of TGFβ signaling. I confirmed this 

dependence by removing or adding single growth factors and by blocking these signaling 

systems with small-molecule inhibitors. EGF is a crucial component for most adult 

organoids (Sato & Clevers, 2015), indicating that the mitogenic activation of the EGF 

receptor signaling is indispensable for mouse kidney tubuloid cultures. In line with this, 

EGF removal strongly reduced tubuloid numbers, i.e. self-renewal, and sizes (Figure 15A 

and B). Withdrawal of the TGFβ inhibitor A83-01 also impaired tubuloid numbers, i.e. 

self-renewal, and sizes, and this effect was enhanced by the addition of TGFβ, which 

blocked tubuloid formation (Figure 15A and B). Treatments with the EGF receptor 

inhibitor gefitinib, the Mek inhibitor U0126 and the Pi3k inhibitor BYL719 (Figure 15C) 

resulted in concentration-dependent inhibition of tubuloid growth (Figure 15D/F/H) and 

decreased cell viability (Figure 15E/G/I). H&E staining did not reveal significant changes 

in the predominant cystic morphologies of the tubuloids upon removal of EGF or A83-01 

or treatment with gefitinib at the IC50 concentration (Figure 15J). 

 

The proteomic analysis revealed in both early (TEP) and long-term (TLP) passage 

tubuloids the upregulation of components of Wnt signaling, including the ligands Wnt4, 

Wnt7b and Wnt10a, the co-receptors Lrp5 and Lrp6, the destruction complex 

disassembly-mediating protein Dvl2 and the targets Axin2, Birc5, Cd44 and Cyclin D1 

(Ccnd1) (Figure 16A). Withdrawal of the Wnt activator R-spondin-1 reduced tubuloid 

numbers, i.e. self-renewal, and sizes. The addition of the Wnt ligand Wnt3a (Sato et al, 

2011) did not improve tubuloid yield (Figure 16B and C), possibly due to autocrine supply 

of Wnt4, Wnt7b or Wnt10a. Treatments with ICG-001, an inhibitor that blocks β-catenin-

Tcf-mediated transcription, and with another β-catenin-Tcf inhibitor, LF3, developed in 

our laboratory (Fang et al, 2016) (Figure 16D), produced concentration-dependent 

inhibition of tubuloid growth (Figure 16E and G) and decreased cell viability (Figure 16F 

and H). By H&E staining, I observed upon R-spondin-1 removal a switch from 

predominant cystic to fully solid tubuloids, while treatment with ICG-001 at the IC50 

concentration did not result in significant morphological changes (Figure 16I). The 

transition to the solid morphologies induced by R-spondin-1 withdrawal prompted me to 

study the importance of Wnt signaling for the control of tubuloid differentiation. By real-
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time qPCR, I examined in the tubuloids upon R-spondin-1 removal or ICG-001 treatment 

the expression of selected genes, which are induced in differentiated kidney cells. I 

found increases in the abundance of Krt8, Krt18 and Cldn4 (Figure 16J). I also observed 

the upregulation of the proximal tubule genes Abcb1b, Slc3a1 and Slc40a1 (Figure 16K) 

as well as of the distal nephron genes Aqp3, Atp6ap2 and Wnk1 (Figure 16L). 

Immunofluorescence staining confirmed the upregulation of Aqp3 in these tubuloids on 

protein level (Figure 16M). 

 

Besides Wnt, the proteomic analysis also revealed in both early (TEP) and long-term 

(TLP) passage tubuloids the upregulation of two other stem cell-associated signaling 

systems, Notch (Figure 17A) and Yap (Figure 17B), which are involved in kidney repair. 

Upregulated Notch components included the ligand Jag2, the receptors Notch1, Notch2 

and Notch3, the S2 cleavage-mediating metalloproteinase Adam17, the S3 cleavage γ-

secretase complex-related Aph1a and Ncstn as well as the coactivators Rbpj, Maml1, 

Maml2 and Kat2b. Upregulated Yap components were direct Yap targets. Similar to 

other organs, where Yap signaling is important for driving stem cell behavior and 

regeneration in response to mechanical stimuli (Panciera et al, 2017), deletion of Yap in 

the mouse kidney impairs tissue recovery upon injury (Chen et al, 2018). Yap is also 

instrumental for the coordination of self-renewal, differentiation and self-organization of 

distinct organoid cultures (Panciera et al, 2017). The significance of Notch and Yap 

signaling for the control of self-renewal, growth and differentiation of mouse kidney 

tubuloids requires further research, but this goes beyond the scope of my dissertation. 

Altogether, my mouse kidney tubuloid cultures require a specific growth factor cocktail, 

which promotes their self-renewal and growth through the activation of the EGF receptor 

and Wnt signaling and the inhibition of TGFβ signaling. Moreover, Wnt signaling controls 

tubuloid differentiation into proximal and distal nephron lineages. I presented my results 

on the tubuloids at the Cell Symposium Engineering Organoids and Organs in San Diego 

(Myszczyszyn et al, 2019a) and at The Notch Meeting XI in Athens (Myszczyszyn et al, 

2019b).  
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Figure 6 

Growth of long-term 3D tubuloid cultures from adult mouse kidneys. (A) Brightfield images acquired on 

consecutive days of a representative tubuloid formed from a single freshly seeded cell. (B) Representative 

H&E staining showing freshly seeded tubuloids with cystic (left), solid (middle) and alveolar (right) 

morphology. (C) Representative brightfield images of a freshly seeded (left) and then once passaged (right) 

tubuloid culture grown from 10
5
 single cells. (D) Quantification of tubuloid numbers in a freshly seeded and 

passage 1 culture. (E) A representative brightfield image of a serially passaged tubuloid culture after 5 

passages. Data information: scale bars, 100 µm in A, 50 µm in B, 500 µm in C and E. 20 freshly seeded 

tubuloid cultures were established in total. In A, one independent biological replicate was examined. For 

quantification in B, 180 tubuloids were counted in total. One independent biological replicate was examined. 

For quantification in C and D, 10
5
 cells were seeded and the tubuloids with diameters ≥ 100 µm were 

counted after 14 (freshly seeded cells) or 7 (passaged cells) days of culturing (6 wells, technical replicates). 
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One independent biological replicate was examined. In D, the graph depicts means ± SD (error bars). Data 

passed the Shapiro-Wilk normality test (α = 0.05). The unpaired, two-tailed Student’s t-test was performed; 

P-value, < 0.0001, ****p < 0.0001. In E, 3 independent biological replicates were examined. 
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Figure 7 

Long-term culture of the tubuloids and establishing the tubuloids from different mouse 

backgrounds. (A) A representative brightfield image of a tubuloid culture, which was serially passaged for 

3.5 months. (B) A representative brightfield image of a freshly seeded tubuloid culture from mixed 

background (left) and B57BL/6J background (right) mice. Data information: scale bars, 500 µm. 3 

independent biological replicates were examined. 
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Figure 8 

The tubuloids resemble the adult mouse kidney epithelia, are stable over time and display enhanced 

proliferative capacity. (A) A heatmap for the Pearson correlation matrix (coefficient) of the expression 

levels of overall ~ 9.000 detected proteins between all samples of the mouse kidney epithelia (CK), early 

passage tubuloids (TEP) and long-term passage tubuloids (TLP). All experimental columns were correlated 

against each other. (B) A heatmap for the Pearson correlation matrix (coefficient) of the phosphorylation 

levels of overall ~ 16.000 detected corresponding phosphorylation sites between all samples of the mouse 

kidney epithelia (CK), early passage tubuloids (TEP) and long-term passage tubuloids (TLP). All 

experimental columns were correlated against each other. (C) A functional annotation clustering of the most 

upregulated proteins in the tubuloids using the DAVID bioinformatic tool. Shown are 10 most enriched 
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clusters, based on the overall enrichment scores, with their representative terms (biological processes), 

based on the adjusted P-values. (D) Representative 2D immunofluorescence for BrdU (magenta) of a 

tubuloid culture. Data information: scale bars in D, 50 µm. Nuclei are counterstained with DAPI. 3 

independent biological replicates were examined. 
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Figure 9 

The tubuloids exhibit markers of differentiated and polarized tubular epithelial cells. (A) 

Representative immunohistochemistry for Pax8 (brown) of a tubuloid culture. (B) Representative 2D 

immunofluorescence for E-cad (orange) of a tubuloid culture. (C) Proteomic heatmaps for Krt8 and Cldn4 in 

both early (TEP) and long-term (TLP) passage tubuloids in comparison to the mouse kidney epithelia (CK) 

(upper part), and a real-time qPCR analysis of gene expression of Krt18 in both early (TEP) and long-term 

(TLP) passage tubuloids in comparison to whole mouse kidney cells (CK) (lower part). (D) Representative 

2D immunofluorescence for Laminin (green) and ZO-1 (red) of a tubuloid culture. (E) Representative 2D 

immunofluorescence for LTL (red) and PNA (green) of a tubuloid culture. (F) A proteomic heatmap for 48 
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membrane transporters in both early (TEP) and long-term (TLP) passage tubuloids in comparison to the 

mouse kidney epithelia (CK). (G) Proteomic heatmaps for Wnk1 and Gata3 in both early (TEP) and long-

term (TLP) passage tubuloids in comparison to the mouse kidney epithelia (CK). (H) Representative 2D 

immunofluorescence for Abcb1b (cyan), LTL (red) and PNA (green) of a tubuloid culture. (I) Representative 

2D immunofluorescence for Aqp3 (magenta), LTL (red) and PNA (green) of a tubuloid culture. Data 

information: scale bars in A/B/D/E/H/I, 50 µm. In A, nuclei are counterstained with haematoxylin; in 

B/D/E/H/I, nuclei are counterstained with DAPI. In C, the graph depicts means ± SD (error bars). The 

ordinary one-way ANOVA followed by the Dunnett’s multiple comparison to CK were performed; both P-

values, 0.0001, ****p < 0.0001. In C/F/G, the heatmaps show normalized log2 intensity values for 3 

independent biological replicates of CK, TEP and TLP. A 5% FDR (adjusted P-value < 0.05) cutoff and a 

log2 fold change cutoff of > 0 were applied for both TEP over CK and TLP over CK. The values were scaled 

(z-score by row) with breaks from ≤ -2 to ≥ 2. In A/B/D/E/H/I, 3 independent biological replicates were 

examined. For the real-time qPCR analysis of Krt18 in C, 3 independent biological replicates in technical 

triplicates were examined. 
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Figure 10 

Markers of tubular epithelial cells are exhibited in 3D reconstructed tubuloids. (A) Representative 2D 

immunofluorescence of a solid (left) and an alveolar (right) tubuloid positive for both LTL (red) and PNA 

(green). (B-E) Whole mount 3D confocal microscopy of a representative cystic (B and C) and solid (D and E) 

tubuloid positive for LTL (red), PNA (green) and E-cad (orange). (B and D) 3D reconstructions of all z-stacks 

from a cystic (B) and solid (D) tubuloid. From the left to the right: a 3D reconstructed tubuloid seen from the 

top-side (coordinates given for orientation), a top-side view opened by a clipping plane, a top-side view with 
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a marked orthogonal slice (8 µm) and an extended orthogonal slice (8 µm) only. (C and E) Selected 2D 

images of z-stacks at different depths (top, middle, bottom) of a cystic (C) and solid (E) tubuloid. Data 

information: scale bars, 50 µm. Nuclei are counterstained with DAPI. In A, 3 independent biological 

replicates were examined; in B-E, one independent biological replicate was examined. 
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Figure 11 

Markers of podocytes, parietal glomerular epithelial cells, Loop of Henle cells, stromal cells and 

endothelial cells are not present in the tubuloids. (A) A proteomic heatmap for the markers of podocytes, 

Nephrin (Nphs1), Podocalyxin (Podxl) and Podocin (Nphs2), in both early (TEP) and long-term (TLP) 

passage tubuloids in comparison to the mouse kidney epithelia (CK). (B) A real-time qPCR analysis of gene 

expression of the markers of parietal glomerular epithelial cells, Cldn1 and Vcam1, in both early (TEP) and 

long-term (TLP) passage tubuloids in comparison to whole mouse kidney cells (CK). (C) A proteomic 

heatmap for the markers of the Loop of Henle, Slc14a2, Uromodulin (Umod) and Slc12a1, in both early 

(TEP) and long-term (TLP) passage tubuloids in comparison to the mouse kidney epithelia (CK). (D) A real-

time qPCR analysis of gene expression of the markers of stromal cells, Cald1, Pdgfrb and Meis1, in both 

early (TEP) and long-term (TLP) passage tubuloids in comparison to whole mouse kidney cells (CK). (E) A 

real-time qPCR analysis of gene expression of the markers of endothelial cells, Pecam1, Cdh5 and Flt1, in 

both early (TEP) and long-term (TLP) passage tubuloids in comparison to whole mouse kidney cells (CK). 

Data information: in A and C, the heatmaps show normalized log2 intensity values for 3 independent 

biological replicates of CK, TEP and TLP. A 5% FDR (adjusted P-value < 0.05) cutoff was applied for both 
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TEP over CK and TLP over CK. The values were scaled (z-score by row) with breaks from ≤ -2 to ≥ 2. In 

B/D/E, the graphs depict means ± SD (error bars). The ordinary one-way ANOVA followed by the Dunnett’s 

multiple comparison to CK were performed; all P-values, 0.0001, ****p < 0.0001. 3 independent biological 

replicates in technical triplicates were examined. 
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Figure 12 

Tubuloid growth is driven by multipotent stem or progenitor cells. (A) Representative 2D 

immunofluorescence of tubuloids, which were positive for either LTL (red, left) or PNA (green, right). (B) A 

FACS histogram showing gating single viable cells from dissociated tubuloids, which were negative for 

SYTOX Orange (YG-586/15 fluorochrome). Signal measurement of a V-450/50 fluorochrome was performed 

to exclude autofluorescence of the cells. (C) Brightfield images acquired on consecutive days of two 

representative tubuloids formed independently from FAC-sorted cells. (D) Representative 2D 

immunofluorescence of the tubuloids grown from FAC-sorted cells, which were positive for either both LTL 
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(red) and PNA (green) (left) or LTL (middle) or PNA (right) only. (E) Representative 2D immunofluorescence 

of the tubuloids grown from FAC-sorted cells, which were positive for Abcb1b (cyan), LTL (red) and PNA 

(green). (F) Representative 2D immunofluorescence of the tubuloids grown from FAC-sorted cells, which 

were positive for Aqp3 (magenta), LTL (red) and PNA (green). Data information: scale bars in A/C/D/E/F, 50 

µm. In A/D/E/F, nuclei are counterstained with DAPI. For quantification in D, 140 tubuloids were counted in 

total. In A, 3 independent biological replicates were examined; in B-F, one independent biological replicate 

was examined. 
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Figure 13 

The tubuloids display tubular epithelial polarity, complexity and functionality. (A) Transmission 

electron microscopy of a representative cystic tubuloid with visible microvilli (MV) at the luminal side (L), a 

basal lamina without MV at the opposite basal side (arrowhead), filopodia (F), cell-cell contacts (asterisks) 

and a surrounding agarose (A). (B) A detailed view showing an epithelial junctional complex (JC) between 

the lateral membranes of neighboring cells. Shown are a tight junction (zonula occludens, black asterisk), an 

adherens junction (belt desmosome, zonula adhaerens, white asterisk), spot desmosomes (macula 
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adhaerens, red asterisks) and closely aligned or nearly fused lateral membranes (white and black 

arrowhead, respectively). (C) A detailed view of a cell at the basal side. Shown are a spot desmosome (red 

asterisk) and closely aligned or nearly fused lateral membranes (white and black arrowhead, respectively). 

(D) A detailed view of endocytic events at the apical and lateral membranes with visible clathrin-coated pits 

(diameter of around 100 nm, arrowheads). (E) Fluorescence of endocytosed Alexa488-conjugated dextran 

(green) in a representative cystic tubuloid. (F) Representative brightfield images of a tubuloid culture at 

indicated cisplatin concentrations (μM) on day 6 of treatment. (G) A curve showing the dependence of 

tubuloid viability (fold change ATP luminescence) on log10 cisplatin concentration (μM) on day 6 of 

treatment. (H) Representative immunoblotting for Cleaved Caspase-3 from lysates from the tubuloids treated 

with 100 μM cisplatin for 72 hrs. (I) Representative H&E staining of a tubuloid culture upon treatment with 

cisplatin at the IC50 concentration. Data information: scale bars, 1 µm in A-D, 500 µm in E and F, 100 µm in 

I. Abbreviations in A-E; N, nucleus; M, mitochondrion; rER, rough endoplasmatic reticulum (dark ordered 

dots); CF, cytoskeleton filaments (actin, dark structures along the white line). In A and E, insets are enlarged 

on the right. For quantification in E, percentages of the tubuloids positive for Alexa488-conjugated dextran 

with diameters ≥ 100 µm were calculated per well and averaged. 32% of the tubuloids were positive. Ctrl in 

F-I, the tubuloids treated with DMSO at respective concentrations. In G, the curve depicts means ± SD (error 

bars). Cisplatin exhibited the IC50 of 57.07 μM. In A/B/C/D/H/I, 3 independent biological replicates were 

examined. In E-G, 3 independent biological replicates in technical triplicates (wells) were examined. 

  



50 
 

 

 

Figure 14 

Hydrocortisone (HC) and prostaglandin E2 (PGE2) increase plating efficiency of tubuloid cultures.  

(A) Tubuloid numbers per well with indicated growth factor combinations. (B) Diameters (µm) of the tubuloids 

(single dots) from all wells with 4 selected growth factor combinations. Data information: a basal culture 

medium containing DMEM/F12 with GlutaMax, HEPES, N-acetylcysteine, B27, N2, nicotinamide, EGF, R-

spondin-1 and the TGFβ inhibitor (TGFβi) A83-01 is common to all conditions. For quantification, 10
5
 cells 

were freshly seeded and the tubuloids with diameters ≥ 200 µm were counted after 14 days of culturing. The 

graphs depict means ± SD (error bars). In A, data passed the Shapiro-Wilk normality test (α = 0.05). The 



51 
 

ordinary one-way ANOVA followed by the Dunnett’s multiple comparison to the basal medium (first from the 

left) were performed; P-values from the left to the right, 0.9999, 0.9695, 0.8038, 0.0002, 0.0001, 0.0001, 

0.0001; ****p < 0.0001, ***p < 0.001, ns: non-significant. In B, data did not pass the Shapiro-Wilk normality 

test (α = 0.05). The alternative non-parametric Kruskal-Wallis test followed by the Dunn’s multiple 

comparison to the basal medium (first from the left) were performed; P-values from the left to the right, 

0.0068, 0.2547, 0.8558, > 0.9999; **p < 0.01, ns: non-significant. One independent biological replicate with 6 

technical replicates (wells) was examined. 

  



52 
 

 

 

Figure 15 

EGF receptor and TGFβ signaling drive tubuloid formation and growth. (A) Tubuloid numbers per well 

with indicated growth factor combinations (withdrawal and/or addition). (B) Diameters (µm) of the tubuloids 

(single dots) from all wells with indicated growth factor combinations (withdrawal and/or addition). (C) 

Scheme of the EGF receptor signaling with marked targets for the small-molecule inhibitors gefitinib, U0126 

and BYL719. (D/F/H) Representative brightfield images of tubuloid cultures at indicated gefitinib (D), U0126 

(F) and BYL719 (H) concentrations (μM) on day 6 of treatment. (E/G/I) Curves showing the dependence of 
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tubuloid viability (fold change ATP luminescence) on log10 gefitinib (E), U0126 (G) and BYL719 (I) 

concentration (μM) on day 6 of treatment. (J) Representative H&E staining of tubuloid cultures upon removal 

of EGF or A83-01 or treatment with gefitinib at the IC50 concentration. Data information: in A and B, a 

culture medium containing DMEM/F12 with GlutaMax, HEPES, N-acetylcysteine, B27, N2, nicotinamide, 

hydrocortisone (HC) and prostaglandin E2 (PGE2) is common to all conditions. Abbreviations; ROCKi, 

ROCK inhibitor; TGFβi, TGFβ inhibitor; EGFR, EGF receptor. For quantification, 10
5
 cells were freshly 

seeded and the tubuloids with diameters ≥ 200 µm were counted after 14 days of culturing. The graphs 

depict means ± SD (error bars). In A, data passed the Shapiro-Wilk normality test (α = 0.05). The ordinary 

one-way ANOVA followed by the Dunnett’s multiple comparison to the complete tubuloid medium (Ctrl, first 

from the left) were performed; P-values from the left to the right, 0.2974, 0.0001, 0.0234, 0.0001; ****p < 

0.0001, *p < 0.05, ns: non-significant. In B, data did not pass the Shapiro-Wilk normality test (α = 0.05). The 

alternative non-parametric Kruskal-Wallis test followed by the Dunn’s multiple comparison to the complete 

tubuloid medium (Ctrl, first from the left) were performed; P-values from the left to the right, > 0.9999, < 

0.0001, < 0.0001, < 0.0001; ****p < 0.0001, ns: non-significant. In A and B, 3 independent biological 

replicates with 6 technical replicates (wells) were examined and collectively shown. Ctrl in D-I, the tubuloids 

cultured in the complete medium and treated with DMSO at respective concentrations. Scale bars in D/F/H, 

500 μm. In E/G/I, the curves depict means ± SD (error bars). In E, gefitinib exhibited the IC50 of 0.43 μM; in 

G, U0126 exhibited the IC50 of 23.49 μM; in I, BYL719 exhibited the IC50 of 17.83 μM. In D-I, 3 independent 

biological replicates in technical triplicates (wells) were examined. Ctrl in J, the tubuloids cultured in the 

complete medium and treated or not with DMSO at a respective concentration. Scale bars, 100 μm. 3 

independent biological replicates were examined. 
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Figure 16 

Wnt signaling controls tubuloid formation, growth and differentiation. (A) A proteomic heatmap for 

components of Wnt signaling in both early (TEP) and long-term (TLP) passage tubuloids in comparison to 

the mouse kidney epithelia (CK). (B) Tubuloid numbers per well with indicated growth factor combinations 

(withdrawal or addition). (C) Diameters (µm) of the tubuloids (single dots) from all wells with indicated growth 
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factor combinations (withdrawal or addition). (D) Scheme of Wnt signaling with a marked common target for 

the small-molecule inhibitors ICG-001 and LF3. (E and G) Representative brightfield images of tubuloid 

cultures at indicated ICG-001 (E) and LF3 (G) concentrations (μM) on day 6 of treatment. (F and H) Curves 

showing the dependence of tubuloid viability (fold change ATP luminescence) on log10 ICG-001 (F) and LF3 

(H) concentration (μM) on day 6 of treatment. (I) Representative H&E staining of tubuloid cultures upon R-

spondin-1 removal or treatment with ICG-001 at the IC50 concentration. (J) A real-time qPCR analysis of 

gene expression of the differentiation markers Krt8, Krt18 and Cldn4 in the tubuloids upon R-spondin-1 

removal or treatment with ICG-001 at the IC50 concentration. (K) A real-time qPCR analysis of gene 

expression of the markers of proximal tubular cells, Abcb1b, Slc3a1 and Slc40a1, in the tubuloids upon R-

spondin-1 removal or treatment with ICG-001 at the IC50 concentration. (L) A real-time qPCR analysis of 

gene expression of the markers of the distal nephrons, Aqp3, Atp6ap2 and Wnk1, in the tubuloids upon R-

spondin-1 removal or treatment with ICG-001 at the IC50 concentration. (M) Representative 2D 

immunofluorescence for Aqp3 (magenta) in the tubuloids upon R-spondin-1 removal or treatment with ICG-

001 at the IC50 concentration. Data information: in A, the heatmap shows normalized log2 intensity values 

for 3 independent biological replicates of CK, TEP and TLP. A 5% FDR (adjusted P-value < 0.05) cutoff and 

a log2 fold change cutoff of > 0 were applied for both TEP over CK and TLP over CK. The values were 

scaled (z-score by row) with breaks from ≤ -2 to ≥ 2. In B and C, a culture medium containing DMEM/F12 

with GlutaMax, HEPES, N-acetylcysteine, B27, N2, nicotinamide, hydrocortisone (HC) and prostaglandin E2 

(PGE2) is common to all conditions. For quantification, 10
5
 cells were freshly seeded and the tubuloids with 

diameters ≥ 200 µm were counted after 14 days of culturing. The graphs depict means ± SD (error bars). In 

B, data passed the Shapiro-Wilk normality test (α = 0.05). The ordinary one-way ANOVA followed by the 

Dunnett’s multiple comparison to the complete tubuloid medium (Ctrl, first from the left) were performed; P-

values from the left to the right, 0.0001, 0.2132; ****p < 0.0001, ns: non-significant. In C, data did not pass 

the Shapiro-Wilk normality test (α = 0.05). The alternative non-parametric Kruskal-Wallis test followed by the 

Dunn’s multiple comparison to the complete tubuloid medium (Ctrl, first from the left) were performed; P-

values from the left to the right, 0.0090, 0.0129; **p < 0.01, *p < 0.05. In B and C, 3 independent biological 

replicates with 6 technical replicates (wells) were examined and collectively shown. Ctrl in E-H, the tubuloids 

cultured in the complete medium and treated with DMSO at respective concentrations. Scale bars in E and 

G, 500 μm. In F and H, the curves depict means ± SD (error bars). In F, ICG-001 exhibited the IC50 of 14.66 

μM; in H, LF3 exhibited the IC50 of 15.72 μM. In E-H, 3 independent biological replicates in in technical 

triplicates (wells) were examined. Ctrl in I-M, the tubuloids cultured in the complete medium and treated or 

not with DMSO at a respective concentration. Scale bars in I, 100 μm. 3 independent biological replicates 

were examined. In J-L, the graphs depict means ± SD (error bars). The ordinary one-way ANOVA followed 

by the Dunnett’s multiple comparison to Ctrl were performed; P-values from the left to the right in J; 0.0004, 

0.0001 for Krt8; 0.0153, 0.0002 for Krt18; 0.0002, 0.0003 for Cldn4; in K: 0.0001, 0.0001 for Abcb1b; 0.0005, 

0.0164 for Slc3a1; 0.0910, 0.0001 for Slc40a1; in L: 0.0001, 0.0001 for Aqp3; 0.0014, 0.0001 for Atp6ap2; 

0.001, 0.0001 for Wnk1; ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns: non-significant. 3 independent 

biological replicates in technical triplicates were examined. Scale bars in M, 50 μm. 3 independent biological 

replicates were examined. 
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Figure 17 

Notch and Yap signaling systems are upregulated in the tubuloids. (A) A proteomic heatmap for 

components of Notch signaling in both early (TEP) and long-term (TLP) passage tubuloids in comparison to 

the mouse kidney epithelia (CK). (B) A proteomic heatmap for direct Yap targets in both early (TEP) and 

long-term (TLP) passage tubuloids in comparison to the mouse kidney epithelia (CK). Data information: the 

heatmaps show normalized log2 intensity values for 3 independent biological replicates of CK, TEP and TLP. 

A 5% FDR (adjusted P-value < 0.05) cutoff and a log2 fold change cutoff of > 0 were applied for both TEP 

over CK and TLP over CK. The values were scaled (z-score by row) with breaks from ≤ -2 to ≥ 2.  
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2. Genetic mouse models with β-catenin-GOF, Notch-GOF and Vhl-LOF to 

study kidney tumorigenesis 

Our laboratory identified and characterized the CXCR4+MET+CD44+ CSCs from primary 

human ccRCCs, which exhibit the activation of Wnt and Notch signaling. Treatments with 

small-molecule inhibitors of Wnt and Notch revealed that both signaling systems are 

crucial for self-renewal of the CSCs in Matrigel-based 3D organoids and non-adherent 

spheres in culture and for subcutaneous and orthotopic tumor growth in PDXs. This work 

was published in Nature Communications with my co-authorship (Fendler, Myszczyszyn 

et al, 2020). 

 

2.1. Generation of the mutant mice 

To functionally test the importance of Wnt and Notch signaling for ccRCC development 

in vivo, also in the context of Vhl deficiency, I aimed at generating genetic mouse models 

with the overactivation of β-catenin and Notch1 intracellular domain (Notch1 icd, N1icd) 

with or without Vhl deletion in adult kidney epithelial cells based on Cre-loxP-mediated 

recombination. For this purpose, I took advantage of the doxycycline-inducible Tet-on 

Pax8-reverse tetracycline-controlled transactivator (rtTA)-LC1-Cre transgenic system, 

which consists of the Pax8-rtTA and LC1-Cre constructs (Figure 18). The Pax8-rtTA 

construct is integrated in an exogenous Pax8 locus (Traykova-Brauch et al, 2008), while 

the LC1-Cre transcription unit is located in the LC1 locus (Schönig et al, 2002). The 

Pax8-rtTA construct drives high expression of rtTA to proximal and distal tubular 

epithelial cells as well as to collecting duct cells of both embryonic and adult kidneys 

under control of the upstream regulatory region of the Pax8 promoter. Pax8-rtTA is not 

active in parietal and visceral glomerular epithelial cells and in podocytes. No extrarenal 

Pax8-rtTA activity occurs in any other major adult tissue, including heart, lung, brain, 

spleen, thyroid and colon, apart from only a small subset of hepatocytes (Traykova-

Brauch et al, 2008). The LC1-Cre construct, generated 20 years ago with a significant 

contribution of Klaus Rajewsky, currently group leader at the MDC, enables the 

expression of the Cre recombinase under control of the tetracycline-responsive Ptet 

promoter, which is activated through the binding of rtTA in the presence of doxycycline 

(Schönig et al, 2002). Therefore, the Pax8-rtTA-LC1-Cre system provides tight control 

over the location, i.e. tissue specificity, and timing of Cre-loxP recombination upon 

doxycycline induction (Schönig et al, 2002; Traykova-Brauch et al, 2008). 

 

I began with generating double mutant mice with constitutive heterozygous 

overactivation (gain of function, GOF) of β-catenin and N1icd; β-catenin-GOF; Notch-
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GOF; and with homozygous deletion (loss of function, LOF) of Vhl and heterozygous 

GOF of β-catenin; Vhl-LOF; β-catenin-GOF. Vhl-LOF; Notch-GOF mutant mice had 

already been established using different Cre systems (Bhagat et al, 2017; Johansson et 

al, 2016). To prepare the mutant mice, I crossed Pax8-rtTA; LC1-Cre mice with 

transgenic mice, in which exon 3 of β-catenin that carried phosphorylation sites for 

Gsk3β was flanked by loxP fragments in the endogenous locus (Harada et al, 1999). 

Then, I crossed the resulting mice either with transgenic mice, in which loxP sites flanked 

the Vhl promoter and the first exon in the endogenous locus (Haase et al, 2001), or with 

mice that contained a sequence encoding the C-terminally truncated form of N1icd 

(amino acids 1749-2293) under control of the ubiquitously expressed Rosa26 locus. The 

expression of N1icd was blocked by a loxP-flanked stop fragment placed between the 

Rosa26 promoter and the coding sequence (Murtaugh et al, 2003). As a result, I 

obtained Pax8-rtTA(+); LC1-Cre(+); β-catenin-loxP/wt; Notch-loxP/wt and Pax8-rtTA(+); 

LC1-Cre(+); Vhl-loxP/loxP; β-catenin-loxP/wt mice. Cre-loxP-mediated recombination 

upon doxycycline administration led to deletion of exon 3 of β-catenin, and thus to β-

catenin-GOF by its stabilization and cytoplasmic accumulation (Harada et al, 1999). 

Recombination in the Vhl construct resulted in Vhl-LOF by deletion of its promoter and 

exon 1 (Haase et al, 2001). Recombination in the N1icd construct led to excision of the 

stop cassette, followed by Notch-GOF (Murtaugh et al, 2003).  

 

2.2. Doxycycline-induced recombination 

According to the original studies of the Pax8-rtTA-LC1-Cre system (Schönig et al, 2002; 

Traykova-Brauch et al, 2008), preliminary doxycycline treatments using three 

concentrations (0.2, 1 or 2 mg/ml) and times (2, 5 or 10 days) were performed to 

determine the most appropriate parameters for recombination in the kidney (data not 

shown). For this purpose, I used the adult one-month-old Pax8-rtTA(+); LC1-Cre(+); 

LacZ(+) mice, which carried in the Rosa26 locus a loxP-flanked stop cassette upstream 

of the lacZ sequence encoding β-galactosidase. Removal of the cassette upon 

recombination resulted in β-galactosidase expression (Soriano, 1999). The active 

enzyme could be detected upon hydrolysis of the artificial chromogenic substrate X-gal, 

which led to the formation of a blue product. I analyzed cellular patterns of Cre activity 

and found that 0.2 mg/ml doxycycline administered for 5 days was the optimum to induce 

recombination efficiently and repetitively (Figure 19A). Immunohistochemistry 

demonstrated that Cre was present in the nuclei of the majority of kidney epithelial cells 

in both the cortex and medulla, including proximal tubular cells (marked by red lines), 

most likely the cells of ccRCC origin. Glomeruli (marked by black lines) remained 

negative. This pattern was covered by cytoplasmic LacZ staining (Figure 19B). I did not 
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observe Cre- and LacZ-positive cells in the doxycycline-treated Pax8-rtTA(-); LC1-

Cre(+); LacZ(+) control kidneys, confirming that the genetic system was not leaky. To 

induce recombination in the Pax8-rtTA(+); LC1-Cre(+); β-catenin-loxP/wt; Notch-loxP/wt 

and Pax8-rtTA(+); LC1-Cre(+); Vhl-loxP/loxP; β-catenin-loxP/wt mice (n = 20 per line), I 

treated them with doxycycline. In parallel, I treated control mice carrying β-catenin- and 

Notch- or β-catenin- and Vhl-loxP alleles, but no Pax8-rtTA or LC1-Cre (n = 20).  

 

2.3. Macroscopic phenotypes of the mutant mice 

All induced mice from both mutant lines developed severe illness symptoms between 1st 

and 8th month after doxycycline induction and were therefore withdrawn from the study 

according to the score sheet. In average, both mutant mice developed the symptoms 

after around 4 months from treatment. None of control mice appeared sick after 8 

months from induction. Average body weight of the mutant mice was reduced (Figure 

20A). The kidneys from the mutant mice were smaller, while the spleens were enlarged 

(splenomegaly), comparing to control mice. Both the kidneys and spleens from the 

mutant mice were pale, suggesting disorder of erythrocytes. I did not observe tumors in 

the mutant kidneys (Figure 20B). The mutant mice displayed the decrease in average 

weight of the kidneys (Figure 20C) and the increase in average weight of the spleens 

(Figure 20D), consistent with the macroscopic observation of their sizes.  

 

2.4. β-catenin, Notch and Vhl mutagenesis 

I analyzed recombination of the β-catenin-, Notch- and Vhl-loxP alleles in the mutant 

kidneys on genomic DNA, protein and mRNA target gene levels. To quantitatively 

assess the abundance of the recombined β-catenin allele in relation to the wild-type (wt) 

allele on DNA level, I performed two-primer-based PCR amplification of a fragment of the 

β-catenin gene, which carried loxP-flanked exon 3. However, simultaneous amplification 

of the unrecombined loxP allele in one reaction was impossible due to its size. Bands of 

the amplified recombined (700 bp) and wt (900 bp) β-catenin allele from both kidney 

mutants were visible on agarose gel, as compared to respective control kidneys with only 

the wt allele (Figure 21A). For quantitative analysis of the recombined Vhl allele in 

relation to the loxP allele, I conducted three-primer-based PCR amplification of a 

fragment of the Vhl gene, which carried the loxP-flanked promoter and exon 1. I detected 

bands of the amplified recombined (260 bp) and unrecombined loxP (460 bp) Vhl allele 

from the Vhl-LOF; β-catenin-GOF kidney mutant, as opposed to respective control 

kidneys with only the loxP allele (Figure 21B). I did not manage to amplify the 

recombined N1icd allele. Using immunoblotting, I evaluated recombination by the 

presence of the mutant β-catenin protein without the fragment encoded by exon 3. The 
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recombined β-catenin protein accumulated in both kidney mutants, which was visualized 

as 72-kDa band, as compared to control kidneys with only the wt protein observed as 95-

kDa band (Figure 21C). Then, I tested for quantitative expression of selected classical β-

catenin, Notch and HIF-1α/2α (stabilized upon Vhl loss) target genes by real-time qPCR. 

The expression of the β-catenin target genes Dkk1, Axin2, Cyclin D1 and Myc in the β-

catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF kidney mutants was strongly 

upregulated, as opposed to control mice (Figure 21D and E). The expression of the 

Notch target genes Hey1, Hes1 and Hey3 (Heyl) in the β-catenin-GOF; Notch-GOF 

kidney mutant (Figure 21F) and the expression of the HIF-1α/2α target genes Ca9, Hk2, 

Pdk1, Myc, Ldha, Cyclin D1, Glut1 and Vegfa in the Vhl-LOF; β-catenin-GOF kidney 

mutant (Figure 21G) also significantly increased, as compared to control mice. 

Altogether, my data show that targeted mutagenesis in the mouse kidneys was 

successful and mutant cells were not cleared with time. 

 

2.5. No tumorigenesis was observed in the mutant kidneys 

For histological examination of the mutant kidneys, I performed PAS staining, which 

detected kidney tissue structures containing high proportions of sugar macromolecules 

such as tubular and glomerular basement membranes and the brush border of proximal 

tubules. Microscopical examination by a pathologist from the Charité did not reveal any 

signs of tumors or precancerous lesions in any of the mutant mice, even after 8 months 

upon doxycycline induction. Any typical non-neoplastic pathological changes of the 

kidney tissue, like cysts, hypertrophy, necrosis, dilation and atrophy (degeneration) of the 

tubules as well as tubulointerstitial fibrosis, were also not present (Figure 22A). The 

pathologist observed a so-called nuclear crowding in some tubules in the outer part of 

the cortex in all β-catenin-GOF; Notch-GOF, but not in the Vhl-LOF; β-catenin-GOF 

mutant kidneys (Figure 22B). However, the significance of this phenomenon in the β-

catenin-GOF; Notch-GOF mutant kidneys is unknown. 

 

To analyze carcinogenesis in the mutant kidneys on cellular level, I conducted Ki67 

staining to test for the increase in proliferating cells at the G1, S, G2 and M phases. 

None of the mutant kidneys, even after 8 months upon doxycycline treatment, displayed 

higher cell proliferation rates, as shown by similar numbers of Ki67-positive nuclei to 

control kidneys (Figure 23A and B), despite the upregulation of Cyclin D1 and Myc 

involved in cell cycle progression (Figure 21D and E). 

 

In the kidney, Vhl loss or Wnt signaling overactivation alone are known to cause DNA 

damage and/or p21-dependent growth arrest or senescence, which constrain cell 
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transformation (Cole et al, 2010; Espana-Agusti et al, 2017). To test for these 

phenomena in the mutant kidneys, I analyzed the upregulation of the DNA damage 

marker phospho-γH2AX and of the growth arrest or senescence marker p21 and its 

transcriptional activator p53. However, immunohistochemistry neither demonstrated 

accumulation of phospho-γH2AX (Figure 24, left panel) nor p53 stabilization (Figure 24, 

middle panel) and p21 activation (Figure 24, right panel) in the nuclei of the mutant 

kidney cells. To exclude the alternative way of growth arrest or senescence stimulation 

via p16 in the mutant kidneys, I measured mRNA levels of p16 using real-time qPCR, but 

it was undetectable (data not shown). I also tested for induction of apoptosis in the 

mutant kidneys. For this, I performed TUNEL assay, which enables to detect blunt ends 

of double-stranded DNA breaks in late-apoptotic cells that undergo extensive DNA 

degradation. I did not observe the increase in the numbers of apoptotic cells in the 

mutant kidneys (Figure 25). Altogether, I found no signs of cell transformation in the 

mutant kidneys. Moreover, mutant cells did not undergo DNA damage, growth arrest, 

senescence or apoptosis. 

 

2.6. The mutant mice displayed hallmarks of chronic kidney disease  

The macroscopic view of the organs of the mutant mice suggested disorder of 

erythrocytes (Figure 20B). I performed blood test to measure the volume percentages of 

erythrocytes, the hematocrit. I found that erythrocyte percentages in the mutant mice 

decreased (Figure 26A), indicating anemia. Anemia is a clinical hallmark of chronic 

kidney disease (CKD) (Koury & Haase, 2015; Romagnani et al, 2017). CKD is a multi-

stage syndrome defined as sustained alterations in kidney structure and function, which 

affect the health of individuals (Edeling et al, 2016; Ferenbach & Bonventre, 2015; Liu, 

2011; Romagnani et al, 2017). In CKD, anemia can be a result of disturbed production of 

erythropoietin (EPO) in kidney interstitial cells (Koury & Haase, 2015). To test for this, I 

measured the concentration of EPO in the mouse blood plasma. Unexpectedly, the 

concentration of plasma EPO rose dramatically in the mutant mice, 314 times in the β-

catenin-GOF; Notch-GOF mice and 930 times in the Vhl-LOF; β-catenin-GOF mice 

(Figure 26B). This suggests both a different mechanism of anemia downstream of EPO 

supply and a strong compensative positive feedback on EPO production in the mutant 

mice. 

 

CKD development starts from sustained tubular injury, followed by prolonged 

tubulointerstitial inflammation. Inflammatory cells that infiltrate injured sites, mostly 

monocytes and/or macrophages, further enhance tubular damage, leading to kidney 

dysfunction (Edeling et al, 2016; Ferenbach & Bonventre, 2015; Liu, 2011). I analyzed 
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selected markers of kidney injury, failure and inflammation in the mutant mice. Gene 

expression analysis by real-time qPCR in whole kidneys revealed the upregulation of the 

tubular injury markers Ngal, Kim-1 and Gsta1 in the β-catenin-GOF; Notch-GOF (Figure 

27A) and Vhl-LOF; β-catenin-GOF (Figure 27B) mutants, with strongly increased 

expression of the Ngal gene in both mutants. In the mouse blood, I measured the 

concentration of blood urea nitrogen (BUN), a typical marker of kidney failure. In the 

mutant mice, BUN concentration went up (Figure 27C). I evaluated kidney inflammation 

by gene expression analysis by real-time qPCR of the inflammatory cytokine Il1b and of 

the panel of the myeloid lineage immune cell markers, Cd11b, Ly6c, Ccr2 (Cd192) and 

Cd68, as well as of Icam1 (Cd54), the ligand for Cd11b. Cd11b is expressed on all 

myeloid immune cells, i.e. monocytes, macrophages, granulocytes: basophils, 

neutrophils, eosinophils, and mast cells. Ly6c and Ccr2 are enriched on monocytes and 

Cd68 is present on all macrophages. The expression of Il1b and Cd11b was strongly 

upregulated in both mutant kidneys, while the expression of Ly6c, Ccr2 (Cd192), Cd68 

and Icam1 (Cd54) was pronouncedly increased in the Vhl-LOF; β-catenin-GOF mutant, 

but not in the β-catenin-GOF; Notch-GOF mutant (Figure 28A and B). Inflammation can 

be another driver of anemia in CKD, either directly through inhibition of erythropoiesis or 

indirectly via disrupted iron regulation, which limits hemoglobin synthesis in erythroid 

cells in the bone marrow (Koury & Haase, 2015). 

 

Splenomegaly in the mutant mice (Figure 20B) prompted me to analyze their spleens on 

the microscopical level. PAS staining demonstrated a disorganized cellular mass in the 

spleens from all mutant mice, instead of white pulp islands (marked by a white line) 

clearly separated from surrounding red pulp islands in control spleens (Mebius & Kraal, 

2005) (Figure 29, upper panel). Detailed examination by a pathologist from the Charité 

revealed the presence of megakaryocytes (marked by the arrowheads) in the spleens 

from the mutant mice (Figure 29, middle and lower panel), which are characteristic for 

extramedullary hematopoiesis (EMH). EMH is a process in which erythroid, myeloid and 

platelet precursors expand and differentiate into effector cells outside the bone marrow in 

response to hematopoietic emergencies, including anemia. The spleen is a major site for 

EMH, with splenomegaly as a typical clinical manifestation (Chiu et al, 2015).  

 

The most common pathological manifestation of end-stage CKD is tubulointerstitial 

fibrosis (Edeling et al, 2016; Ferenbach & Bonventre, 2015; Liu, 2011; Romagnani et al, 

2017), which is the result of impaired tubular repair. Despite lack of fibrotic lesions in the 

mutant kidneys (Figure 22A), I tested in whole kidneys for the upregulation of classical 

fibrotic markers on mRNA target gene level by real-time qPCR. The expression of the 
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markers of activated myofibroblasts, a-sma and Vim, and of the markers of the 

accumulated extracellular matrix, Fn1, Col1a1 and Col3a1, was not enhanced in the 

mutant kidneys (Figure 30A and B). Altogether, I conclude that the mutant mice exhibited 

features of CKD such as anemia as well as kidney injury, failure and inflammation, but 

no fibrosis. These pathologies underlay the moribund state of the mutant mice. I decided 

not to generate Vhl-LOF; β-catenin-GOF; Notch-GOF triple mutant mice. I presented my 

results on the double mutant mice at The Notch Meeting XI in Athens (Myszczyszyn et 

al, 2019c). 
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Figure 18 

A scheme of the genetic approach to study ccRCC tumorigenesis in mice. Generation of β-catenin-

GOF; Notch-GOF; Vhl-LOF; β-catenin-GOF and Vhl-LOF; β-catenin-GOF; Notch-GOF genetic mouse 

mutants based on the loxP-mediated recombination using the transgenic doxycycline-inducible Tet-on kidney 

epithelial cell-specific Pax8-rtTA-LC1-Cre system. Figure information: dox, doxycycline. 
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Figure 19 

A pattern of recombination in the Pax8-rtTA(+); LC1-Cre(+); LacZ(+) mice. (A) A methodological scheme 

of doxycycline-mediated recombination. (B) Representative nuclear Cre (upper panel) and cytoplasmic LacZ 

(lower panel) expression in the kidney cortex and medulla upon doxycycline induction. Data information: 

scale bars, 100 μm. In B in the upper panel, nuclei are counterstained with haematoxylin; in the lower panel, 

nuclei are counterstained with nuclear fast red. Proximal tubules and glomeruli are marked by red and black 

lines, respectively. 2 independent biological replicates (mice) of the Pax8-rtTA(+); LC1-Cre(+); LacZ(+) line 

and one Pax8-rtTA(-); LC1-Cre(+); LacZ(+) control mouse were examined. 
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Figure 20 

Macroscopic phenotypes of the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant 

mice. (A) Body weight of the mutant mice versus control mice. (B) Representative kidneys and spleens from 

the mutant mice versus control mice. (C) The weight of the kidneys from the mutant mice versus control 

mice. (D) The weight of the spleens from the mutant mice versus control mice. Data information: scale bar in 

B, 1 cm. In A, 5 independent biological replicates (mice, dots) per line were examined; in B, 20 independent 

biological replicates (mice) per line were examined; in C, 5 independent biological replicates (mice, dots) in 

technical duplicates (kidneys) per line were examined; in D, 5 independent biological replicates (mice, dots) 

per line were examined. In A/C/D, graphs depict means ± SD (error bars). Data passed the Shapiro-Wilk 

normality test (α = 0.05). The ordinary one-way ANOVA followed by the Dunnett’s multiple comparison to 

control mice was performed; P-values from the left to the right in A; 0.0001, 0.0002; ****p < 0.0001, 

***p < 0.001; in C, 0.0001, 0.0119; ****p < 0.0001, *p < 0.05; in D, 0.0012, 0.0495; *p < 0.01, *p < 0.05. 
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Figure 21 

β-catenin, Notch and Vhl mutagenesis in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF 

kidneys. (A) PCR-amplified fragment of the β-catenin gene with loxP-flanked exon 3. Two products were 

visible in the representative mutant kidneys: the recombined (700 bp) and wild-type (wt) (900 bp) allele. 

Amplification of the unrecombined loxP allele in one reaction was impossible. (B) PCR-amplified fragment of 

the Vhl gene with the loxP-flanked promoter-exon 1 sequence. Two products were visible in the 

representative mutant kidney: the recombined (260 bp) and unrecombined loxP (460 bp) allele. (C) 

Immunoblotting for the recombined (72 kDa) and wt (95 kDa) β-catenin protein in the representative mutant 

kidneys. (D) Fold change in normalized relative expression of selected classical β-catenin target genes in the 
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β-catenin-GOF; Notch-GOF mutant kidneys versus control kidneys. (E) Fold change in normalized relative 

expression of selected classical β-catenin target genes in the Vhl-LOF; β-catenin-GOF mutant kidneys 

versus control kidneys. (F) Fold change in normalized relative expression of selected classical Notch target 

genes in the β-catenin-GOF; Notch-GOF mutant kidneys versus control kidneys. (G) Fold change in 

normalized relative expression of selected classical HIF-1α/2α target genes in the Vhl-LOF; β-catenin-GOF 

mutant kidneys versus control kidneys. Data information: abbreviations in A-C; wt, wild-type; ex3 del, exon 3 

deletion; prom-ex1 loxP/del, promoter-exon 1 loxP/deletion. The positive control used in C, a protein lysate 

from mouse mammary gland tumors with the mutant ex3 del β-catenin. In A-C, 3 independent biological 

replicates (mice) per line were examined; in D-G, 3 independent biological replicates (mice, dots) in technical 

triplicates were examined. In D-G, graphs depict means + SD (error bars). No statistical test was performed 

because of the high inter-mouse variance. However, clear increase trends were seen. 
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Figure 22 

No tumorigenesis in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant kidneys.  

(A) Representative PAS staining in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant 

kidneys (cortex and medulla) versus control kidneys (cortex and medulla). (B) Representative PAS-stained 

outer part of the cortex in the mutant and control kidneys with a nuclear crowding (arrowheads) in some 

tubules in the β-catenin-GOF; Notch-GOF, but not in the Vhl-LOF; β-catenin-GOF mutants. Data information: 
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mutant kidneys after 8 months from doxycycline induction are shown. Scale bars, 100 μm. Nuclei are 

counterstained with haematoxylin. In A, insets are enlarged on the right. 20 independent biological replicates 

(all mice induced) per line were examined.  
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Figure 23 

No higher cell proliferation rates in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF 

mutant kidneys. (A) Representative immunohistochemistry for nuclear Ki67 in the β-catenin-GOF; Notch-

GOF and Vhl-LOF; β-catenin-GOF mutant cortical kidneys versus control cortical kidneys. (B) Quantification 

of Ki67-positive nuclei in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant cortical 

kidneys versus control cortical kidneys. Data information: in A, mutant kidneys after 8 months from 

doxycycline induction are shown. Scale bars, 100 μm. Nuclei are counterstained with haematoxylin. Insets 

are enlarged on the right. In A, 20 independent biological replicates (all mice induced) per line were 

examined; in B, 3 independent biological replicates (mice, dots) with 10 technical replicates (fields per 

kidney) each per line were examined. In B, graphs depict means + SD (error bars). Data passed the 

Shapiro-Wilk normality test (α = 0.05). The ordinary one-way ANOVA followed by the Dunnett’s multiple 

comparison to control mice was performed; P-values from the left to the right, 0.6019, 0.9871; ns: non-

significant.  
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Figure 24 

No DNA damage and p53- or p21-dependent growth arrest or senescence in the β-catenin-GOF; 

Notch-GOF and Vhl-LOF; β-catenin-GOF mutant kidneys. Representative immunohistochemistry for 

nuclear phospho-γH2AX (left panel), p53 (middle panel) and p21 (right panel) in the β-catenin-GOF; Notch-

GOF and Vhl-LOF; β-catenin-GOF mutant cortical kidneys versus control cortical kidneys. Data information: 

the positive controls used; in the left panel, non-adherent spheres derived from the human colorectal 

carcinoma cell line LS174T with doxycycline-induced shRNA-mediated knockdown of MLL1; in the middle 

and right panel, mouse Pi3k-GOF; β-catenin-GOF; p53-GOF mammary gland tumors. Scale bars, 100 μm. 

Nuclei are counterstained with haematoxylin. 3 independent biological replicates (mice) per line were 

examined. 
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Figure 25 

No increased apoptosis in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant 

kidneys. Representative immunohistochemistry for the blunt ends of double-stranded DNA breaks in 

apoptotic cells (TUNEL assay) in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant 

cortical kidneys versus control cortical kidneys. Positive nuclei are marked by the arrowheads. Data 

information: the positive control used (included in the kit), a normal rat mammary gland 3-5 days after 

weaning of pups. Scale bars, 100 μm. Nuclei are counterstained with haematoxylin. 3 independent biological 

replicates (mice) per line were examined. 
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Figure 26 

Anemia in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant mice not associated 

with impaired erythropoietin (EPO) production. (A) Blood volume percentages of erythrocytes 

(hematocrit) in the mutant mice versus control mice. (B) Concentrations of plasma EPO in the mutant mice 

versus control mice. Data information: in A, 5 independent biological replicates (mice, dots) with one 

technical replicate each per line were examined; in B, 5 independent biological replicates (mice, dots) in 

technical triplicates per line were examined. In A and B, graphs depict means ± SD (error bars). In A, data 

passed the Shapiro-Wilk normality test (α = 0.05). The ordinary one-way ANOVA followed by the Dunnett’s 

multiple comparison to control mice was performed; P-values from the left to the right, 0.0001, 0.0001; 

****p < 0.0001. In B, no statistical test was performed because of the high inter-mouse variance. However, 

dramatic increase trends were seen. 
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Figure 27 

Kidney injury and failure in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant mice. 

(A) Fold change in normalized relative gene expression of selected kidney injury markers in the β-catenin-

GOF; Notch-GOF mutant kidneys versus control kidneys. (B) Fold change in normalized relative gene 

expression of selected kidney injury markers in the Vhl-LOF; β-catenin-GOF mutant kidneys versus control 

kidneys. (C) Concentrations of blood urea nitrogen (BUN) in the mutant mice versus control mice. Data 

information: in A and B, 3 independent biological replicates (mice, dots) in technical triplicates were 

examined; in C, 5 independent biological replicates (mice, dots) with one technical replicate each per line 

were examined. In A and B, graphs depict means + SD (error bars); in C, graphs depict means ± SD (error 

bars). In A and B, no statistical test was performed because of the high inter-mouse variance. However, 
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clear increase trends were seen. In C, data passed the Shapiro-Wilk normality test (α = 0.05). The ordinary 

one-way ANOVA followed by the Dunnett’s multiple comparison to control mice was performed; P-values 

from the left to the right, 0.0109, 0.0888; *p < 0.05, ns: non-significant. Although the difference in average 

concentration of BUN between the Vhl-LOF; β-catenin-GOF mutant mice and control mice was non-

significant (p < 0.05), a clear increase trend was seen. The increase in n might be an option to increase 

statistical significance. 
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Figure 28 

Kidney inflammation in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant mice.  

(A) Fold change in normalized relative gene expression of selected inflammation markers in the β-catenin-

GOF; Notch-GOF mutant kidneys versus control kidneys. (B) Fold change in normalized relative gene 

expression of selected inflammation markers in the Vhl-LOF; β-catenin-GOF mutant kidneys versus control 

kidneys. Data information: 3 independent biological replicates (mice, dots) in technical triplicates were 

examined. Graphs depict means + SD (error bars). No statistical test was performed because of the high 

inter-mouse variance. However, clear increase trends were seen for all genes in B and for Il1b and Cd11b in 

A. 
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Figure 29 

Extramedullary hematopoiesis in the spleens from the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-

catenin-GOF mutant mice. Representative PAS staining showing extramedullary hematopoiesis in the 

spleens from the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant mice versus control mice. 

Megakaryocytes are marked by the arrowheads. Data information: scale bars, 100 μm. Nuclei are 

counterstained with haematoxylin. An undisrupted follicular B-cell compartment in the white pulp in control 

mice is marked by white lines. Insets are enlarged on the right. 3 independent biological replicates (mice) per 

line were examined. 
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Figure 30 

No fibrosis in the β-catenin-GOF; Notch-GOF and Vhl-LOF; β-catenin-GOF mutant kidneys. (A) Fold 

change in normalized relative gene expression of selected fibrotic markers of myofibroblasts and 

extracellular matrix in the β-catenin-GOF; Notch-GOF mutant kidneys versus control kidneys. (B) Fold 

change in normalized relative gene expression of selected fibrotic markers of myofibroblasts and 

extracellular matrix in the Vhl-LOF; β-catenin-GOF mutant kidneys versus control kidneys. Data information: 

3 independent biological replicates (mice, dots) in technical triplicates were examined. Graphs depict means 

+ SD (error bars). No statistical test was performed because of the high inter-mouse variance. However, no 

increase trends were seen. 
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Discussion 

During my Ph.D. research phase, I completed two projects, which aimed to study  

i) properties of normal stem or progenitor cells in renewal and repair of the adult tubular 

epithelia and ii) malignant stem cells that produce kidney tumors. In the first project, I 

have generated and characterized a long-term 3D tubuloid model from adult mouse 

kidney cells. In the second project, I have established genetic mouse models to 

investigate the role of CSC-associated Wnt and Notch signaling in ccRCC development.  

 

A long-term 3D tubuloid model of the adult mouse kidney 

Adequate characterizations of adult mouse kidney tubuloids have not been achieved to 

my satisfaction. To study components and signaling systems of the tubuloids, I therefore 

performed bulk proteomic and phosphoproteomic analyses in collaboration with experts, 

Philipp Mertins, group leader at the MDC and Berlin Institute of Health (BIH), and his 

colleagues. For the first time in kidney organoid research, we examined the tubuloids in 

comparison to the adult kidney epithelia by global gene expression at the functional 

levels, as opposed to RNA sequencing. In line with the discovery that the tubuloids 

contain self-renewing cells and can be expanded in long-terms, the phospho-proteome 

revealed the coexistence of stem or progenitor cells and of differentiated cells of several 

nephron segments. As the protein and phosphorylation levels could be maintained over 

long-term passages, I conclude that my protocol produces stable tubuloids, which are 

driven by the balance of stem or progenitor cells and of differentiated cells. However, 

despite a high coverage of the coding genome, we were not able to detect important 

proteins such as collecting duct-specific Aquaporin 3, which are present in the tubuloids. 

To characterize the tubuloids more thoroughly, single cell RNA sequencing should be 

performed, which so far was carried out only on human adult tubuloids (Schutgens et al, 

2019) and iPSC-derived organoids (Uchimura et al, 2020; Wu et al, 2018). In the future, 

single cell proteomics will improve the global analyses of the protein levels in individual 

tubuloid cells (Marx, 2019). 

 

My findings address important questions on the presence and nature of cells with 

stemness characteristics in the adult kidney. The data suggest the existence in clonally 

grown tubuloids of stem or progenitor cells with the capacity for multi-lineage 

differentiation into proximal tubule and distal nephron cells. One previous study identified 

a population of multipotent progenitor cells in the adult mouse kidney (Kang et al, 2016), 

while others argued for the functional importance of unipotent progenitors (Kumar et al, 

2015; Rinkevich et al, 2014; Schutgens et al, 2017) or for the concept of plastic 
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dedifferentiation upon injury (Kusaba et al, 2014). Studies in adult human kidney 

organoids and tubuloids were not conclusive regarding these issues (Grassi et al, 2019; 

Schutgens et al, 2019). The upregulation of stem cell-associated Wnt, Notch and Yap 

signaling further indicates the recapitulation of kidney repair response in the tubuloids, 

similar to mice upon kidney injury (Chen et al, 2013, 2018; Kang et al, 2016; Lin et al, 

2010; Rinkevich et al, 2014; Zhou et al, 2012). However, the controversial presence of 

resident stem or progenitor cell populations involved in homeostatic maintenance and 

repair of the adult kidney and the complex architecture of the organ complicate further 

development and characterization of my tubuloids. Lack of defined markers of kidney 

stem or progenitor cells limits the efficiency of tubuloid formation from single cells, as 

seen by relatively low numbers of the tubuloids in comparison to the numbers of seeded 

cells. 

 

I established the tubuloids from single epithelial cells from whole adult mouse kidneys. 

Other groups also used single cells isolated from whole human and mouse kidneys to 

generate organoid and tubuloid cultures (Grassi et al, 2019; Rinkevich et al, 2014). 

Studying self-renewal, differentiation and self-organization of stem or progenitor cells on 

the 3D level appears reasonable, when it starts from single cells (Lancaster & Knoblich, 

2014; Sato et al, 2009). In addition, it is crucial to use whole kidney cells for the unbiased 

representation of the renal epithelia in organoid cultures, because clear distinction of 

organoids derived from either cortical or medullary parts of the human kidney was seen 

by bulk RNA sequencing (Grassi et al, 2019). In contrast, another group took whole 

kidney fragments for preparing mouse tubuloids and cortical kidney fragments for 

preparing human tubuloids (Schutgens et al, 2019).  

 

In the tubuloids, I detected differentiated proximal tubular cells and cells of the distal 

nephrons, while podocytes, parietal glomerular cells and Loop of Henle cells were 

missing. Other mouse tubuloids exhibited markers of the same nephron segments 

(Rinkevich et al, 2014). Human tubuloid cultures contained proximal tubule and collecting 

duct cells. Upon growth factor withdrawal, small proportions of distal tubule and Loop of 

Henle cells were generated (Schutgens et al, 2019). The occurrence of podocytes, 

proximal tubule cells and collecting duct cells was reported in other human organoids 

using different culturing conditions (Grassi et al, 2019). My tubuloids displayed the 

exclusive presence of epithelial cells, similar to other mouse and human tubuloids 

(Rinkevich et al, 2014; Schutgens et al, 2019) and consistent with organoids derived 

from various adult organs (Schutgens & Clevers, 2020). 
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I used the tubuloids to study crucial signaling systems, which are involved in self-renewal 

and differentiation of the adult tubular epithelia. In future studies, my tubuloids will assist 

in the identification and enrichment of kidney stem or progenitor cells and in the 

functional analysis of their maintenance and differentiation, and thus will serve as models 

to investigate mechanisms of homeostasis and regeneration of the adult tubular 

epithelia. This knowledge will enable to develop improved protocols for creating tubuloid 

cultures, which represent the full cellular diversity of the adult tubular epithelia. In 

addition, co-cultures with endothelial, stromal and immune cells will further advance the 

quality of tubuloid cultures (Schutgens & Clevers, 2020).  

 

My mouse-derived tubuloids also exhibit substantial advantages for translational kidney 

cancer research. The tubuloids are enriched in proximal tubular cells, which are the cells 

of ccRCC origin. Therefore, these systems may be used to model ccRCC tumorigenesis. 

Establishing genetic mouse models allows to introduce a limited number of mutational 

events at once. The tubuloids may enable to study simultaneous or sequential genetic 

interferences at multiple loci and their functional effects on in vitro dynamics and 

malignant transformation of proximal tubular epithelial cells in a defined genetic 

background using the CRISPR/Cas9-based knockout and knockin techniques (Hendriks 

et al, 2021). Therefore, mutant mouse tubuloid systems may become a valuable in vitro 

complement to genetic mouse models of ccRCC (Bailey et al, 2017; Espana-Agusti et al, 

2017; Harlander et al, 2017) and to patient-derived tumor organoids (Bolck et al, 2021; 

Calandrini et al, 2020; Fendler, Myszczyszyn et al, 2020; Grassi et al, 2019; Schutgens 

et al, 2019). Genetic cancer systems of the tubuloids may be utilized to identify further 

driver-specific druggable targets. Nephrotoxicity is the main dose-limiting side effect of 

cisplatin and other chemotherapeutics in cancer patients (Malyszko et al, 2020). Thus, 

predicting nephrotoxicity during preclinical development of further drugs is essential, and 

the data support the usefulness of my tubuloids as a platform for nephrotoxicity testing. 

Generating genetic cancer models from normal mouse tubuloids provides the opportunity 

to develop less nephrotoxic drugs by screening for compounds, which selectively remove 

transformed cells, while sparing matched healthy cells. 
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Genetic mouse models with β-catenin-GOF, Notch-GOF and Vhl-LOF to 

study kidney tumorigenesis 

Using genetic mouse models, I aimed to mimick kidney tumorigenesis by the interplay of 

the upregulation of Wnt and Notch signaling or by the interaction of Wnt hyperactivation 

and Vhl deficiency. Despite the rational hypothesis on the involvement of Wnt-high and 

Notch-high CSCs in ccRCC development as well as targeting adult tubular epithelial cells 

using a well-designed genetic system, the mouse mutants did not produce kidney 

tumors. Unexpectedly, the mice displayed fatal phenotypes, which partly resembled 

CKD.  

 

To establish genetic mouse models of ccRCC, I took advantage of an inducible stringent 

Cre system, which enabled targeted mutagenesis only in adult kidney epithelial cells, 

and thus circumvented the occurrence of cysts and other embryonic or postnatal defects. 

Several groups utilized the same approach (Bailey et al, 2017; Espana-Agusti et al, 

2016, 2017; Harlander et al, 2017; Mathia et al, 2013). The Pax8-rtTA-based system 

drives Cre-mediated recombination specifically and efficiently in Pax8-expressing adult 

kidney epithelial cells, including proximal tubular cells. These cells are the presumable 

cells of ccRCC origin, according to histopathological (Lindgren et al, 2018) and 

transcriptomic data (Büttner et al, 2015; Chen et al, 2016a; Lindgren et al, 2017; Young 

et al, 2018) and to results on mice (Harlander et al, 2017). However, one study provided 

several lines of controversial evidence, which suggest that Pax8-positive parietal 

glomerular epithelial cells are the cells of ccRCC origin. In this study, Cre was expressed 

under direct control of the Pax8 promoter also in parietal glomerular epithelial cells (Gu 

et al, 2017; Leung & Kim, 2017), which was not the case in my Pax8-rtTA-driven model 

and in another model using the Pax8-CreERT2 system (Espana-Agusti et al, 2016, 

2017). Though, the latter group succeeded in establishing kidney tumors from Pax8-

expressing cells outside of the Bowman’s capsule (Espana-Agusti et al, 2017). 

Moreover, even if kidney tumors that share the same driver mutations develop under 

different Cre systems, they may not exhibit the same penetrance and molecular features 

due to non-overlapping cells of origin. For instance, combined inactivation of Vhl and 

Pbrm1 resulted in low-penetrant tumors with hyperactive mTOR in one study (Nargund 

et al, 2017) and in tumors with higher penetrance and lower mTOR levels in another one 

(Gu et al, 2017). It should be noted that transcriptional context of a self-renewing cell of 

origin, i.e. a precursor of a CSC, is a strong determinant of tumorigenesis (Lindgren et al, 

2018; Lytle et al, 2018). Human kidney CSCs display the activation of Wnt and Notch, 

similar to normal tubular progenitor cells in mice (Kang et al, 2016; Rinkevich et al, 2014) 
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and to the mouse-derived tubuloids described here. This suggests that Wnt-high and 

Notch-high cells with stemness characteristics in the proximal tubular segment might be 

susceptible to tumorigenesis upon the dysregulation of both signaling systems. I 

detected neither p53-, p21- or p16-positive senescent cells nor apoptotic cells in the 

mutant kidneys. Senescence is a potent tumor-suppressive mechanism, which prevents 

transformation and expansion of cells with oncogene activation or tumor suppressor 

gene loss and must be overcome in a given tissue context by a proper combination of 

driver genomic hits to induce tumorigenesis (Sturmlechner et al, 2017). For example, 

Apc inactivation in mouse kidneys led to spontaneous non-apoptotic deletion of the 

majority of mutant cells and senescence of surviving Apc-deficient cells in a p53- or p21-

dependent manner, despite high efficiency of recombination. Deletion of Apc together 

with p53 or p21 bypassed senescence and initiated tumor development (Cole et al, 

2010; Sansom et al, 2005). In line with this, oncogenic K-ras accelerated tumor growth 

primed by Apc deficiency in mouse kidneys (Sansom et al, 2006). Furthermore, 

concomitant inactivation of Pbrm1 was sufficient to escape from Vhl loss-driven p21-

mediated senescence in mouse kidneys (Espana-Agusti et al, 2017). Two other models 

of cooperative Vhl-Pbrm1 deletion were also established (Gu et al, 2017; Nargund et al, 

2017). In addition, transformation of Vhl-defective cells in three other systems was 

boosted by either the inactivation of Bap1 (Gu et al, 2017), combined loss of p53 and 

Rb1 (Harlander et al, 2017) or cooperative alterations of Cdkn2a (p16) and Myc (Bailey 

et al, 2017). Alternatively, p53-independent p27/Rb-driven senescence upon p400 

reduction might be the mechanism behind inhibition of kidney oncogenesis in my models 

(Young et al, 2008). 

 

The mutant mice exhibited hallmarks of CKD. The functional role of Notch signaling in 

the development of CKD in the adult kidney was revealed in a mouse model. For this 

purpose, the authors utilized a different Pax-rtTA system, which directly overactivates 

N1icd without Cre induction. Mutant kidneys displayed pronounced tubular degeneration 

and dilation as well as tubulointerstitial inflammation and fibrosis (Bielesz et al, 2010). 

Lack of fibrosis in my models might suggest that the mutant mice have not yet 

progressed to end-stage CKD, but this issue remains unresolved. However, adult mice 

with combined upregulation of Notch signaling and Vhl inactivation in two other studies 

developed tumor precursor lesions without the signs of CKD (Bhagat et al, 2017; 

Johansson et al, 2016). In concordance with my study, exon 3 deletion-mediated β-

catenin-GOF in the tubules of adult mouse kidneys using a different Cre system in 

another model contributed to renal failure, tubular and glomerular damage and 

tubulointerstitial inflammation, but not to fibrosis (Wong et al, 2018). 
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Doxycycline induction resulted in high levels of recombination in the mutant kidneys. In 

one study, genetic upregulation of Yap signaling in proximal tubular cells in adult mice 

using high doses of tamoxifen led to death of animals by kidney dysfunction and 

tubulointerstitial inflammation and fibrosis. Remarkably, low mosaic injection of tamoxifen 

prevented the CKD phenotypes and enabled tumor development (McNeill et al, 2019, 

unpublished data, AACR Conference The Hippo Pathway: Signaling, Cancer, and 

Beyond, San Diego). These findings suggest that focal, instead of broad, recombination 

in adult kidney epithelial cells through decreased doses of doxycycline might support 

tumor development in my models by overcoming severe non-neoplastic phenotypes. 
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Materials and methods 

Mice 

The Landesamt für Gesundheit und Soziales (LaGeSo) in Berlin approved my mouse 

studies (G0342/13). Mice were housed and bred in the IVC cages type II at 21°C 

ambient temperature, at 50-60% humidity, in a 12-h dark/light cycle and in pathogen-free 

conditions. LC1-Cre mice (Schönig et al, 2002) were a kind gift from Klaus Rajewsky 

(MDC). β-catenin-loxP (Harada et al, 1999), Notch-loxP (Murtaugh et al, 2003) and 

LacZ-loxP (Soriano, 1999) mice came from our in-house colonies. Pax8-rtTA B6.Cg-

Tg(Pax8-rtTA2S*M2)1Koes/J (Traykova-Brauch et al, 2008) and Vhl-loxP B6.129S4(C)-

Vhltm1Jae/J (Haase et al, 2001) mice were purchased from the Jackson Laboratory. The 

studies in the tubuloids and genetic mouse models were performed using both male and 

female mice of a mixed C57BL/6J and FVB/NJ background, unless otherwise stated. To 

establish the genetic mouse models, adult one-month-old Pax8-rtTA-LC1-Cre-loxP mice 

and control mice carrying loxP alleles, but no Pax8-rtTA or LC1-Cre (both males and 

females) were exposed for 5 days to doxycycline (Sigma-Aldrich) at the concentration of 

0.2 mg/ml in drinking water supplemented with 5% sucrose. According to the score 

sheet, mice were checked at least twice per week until illness symptoms were observed. 

Sick mice were immediately sacrificed and biological material was collected. In the 

subsequent experiments, material from mice withdrawn after 4 months from doxycycline 

induction was used, unless otherwise stated. 

 

Preparation of kidney cell suspensions 

Kidneys were harvested and transferred to MEM with Earle’s Salts (with 2.2 g/l NaHCO3, 

without L-Glutamine) medium (Biochrom) supplemented with 10% FCS (Life 

Technologies), 1x Non-Essential Amino Acids (NEAA) (Thermo Fisher Scientific), 2 mM 

L-Glutamine (Biochrom), 1x Penicillin-Streptomycin (Life Technologies) and 125 µg/ml 

Amphotericin B (Biomol). Whole kidneys were minced into pieces smaller than 1 mm3, 

digested in 2 mg/ml Collagenase P (Roche) for 45 min and filtered through sieves with 

70 and 40 µm pore size. Erythrocytes were lysed in RBC lysis buffer and lymphocytes 

were depleted by MACS using CD45 microbeads (Miltenyi Biotec) according to the 

manufacturer’s instructions. 

 

Tubuloid cultures 

Freshly isolated cell suspensions were seeded at 105 cells per well in 25 µl Matrigel 

(75%, Corning) lenses in 48-well plates. Matrigel drops were overlayed with 250 µl 

tubuloid medium (Table 1). Medium was changed every other day. The tubuloids were 
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passaged for the first time after 14 days and subsequently once per week. Matrigel 

lenses were mechanically broken and the tubuloids were collected and dissociated to 

small cell clusters using TrypLE Select (Life Technologies) for 10 min. In the first two 

passages, collected tubuloids were additionally filtered through a sieve with 40 µm pore 

size. Cultures were passaged in 1:3 ratios. If single cell suspensions were needed, the 

tubuloids were dissociated in TrypLE for 1 hr. Cell clusters from the tubuloids were 

cryopreserved at an early passage in 1 ml Recovery Cell Culture Freezing Medium 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. For experiments, 

100 ng/ml human FGF10 (Peprotech), 10 µM Y-27632 dihydrochloride (Rho 

kinase/ROCK inhibitor) (Selleckchem), 100 ng/ml human Wnt3a (R&D Systems) or 10 

ng/ml human TGFβ (Peprotech) were added. Brightfield and fluorescence images were 

acquired with a Leica DMI 6000 B microscope using the Leica LAS X software. 

 

Table 1 

Medium components for tubuloid culture. 

Component Function Concentration Supplier 

Advanced 

DMEM/F12  

with GlutaMax 

Basal medium 

 

– Life 

Technologies 

Penicillin-

Streptomycin 

Antibiotics 

 

1x Life 

Technologies 

Amphotericin B Antifungal 

 

125 µg/ml Biomol 

HEPES Buffer 

 

10 mM Life 

Technologies 

N-acetylcysteine Antioxidant 

 

1.25 mM Sigma-Aldrich 

B27 Serum-free growth supplement 

 

1x Life 

Technologies 

N2 Serum-free growth supplement 

 

1x Life 

Technologies 

Nicotinamide Increasing tubuloid formation and lifespan via 

inhibiting sirtuin activity involved in apoptosis and 

differentiation (Holmberg et al, 2017; Sato et al, 

2011) 

 

10 mM Sigma-Aldrich 

Human EGF Stimulating proliferation, inhibiting apoptosis 

(Holmberg et al, 2017; Sato et al, 2011) 

50 ng/ml Peprotech 
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A83-01 Blocking differentiation and promoting long-term 

culture of stem cells via inhibiting TGFβ signaling 

(Holmberg et al, 2017; Sato et al, 2011) 

 

500 nM Sigma-Aldrich  

Human 

R-spondin-1 

 

Maintaining stem cells via agonizing Wnt signaling 

(Holmberg et al, 2017; Sato et al, 2011) 

 

500 ng/ml Peprotech 

 

Hydrocortisone 

(HC) 

Acting anti-inflammatory via repressing activity of 

NF-κB and AP-1 (Cato et al, 2002), inducing Yap 

signaling (Sorrentino et al, 2017) 

 

0.5 µg/ml Sigma-Aldrich 

Prostaglandin E2 

(PGE2) 

Preventing anoikis and promoting stem cell survival 

via enhancing Wnt signaling (Holmberg et al, 2017) 

 

1 µM Sigma-Aldrich 

 

Functional tests 

BrdU (Thermo Fisher Scientific) treatment (10 µM) was performed for 4 hrs prior to 

tubuloid collection for staining. Endocytosis was tested by uptake of 10 µg/ml Alexa488-

conjugated dextran (Thermo Fisher Scientific) for 48 hrs. Cisplatin (Cayman Chemical) 

treatment (100 µM) was conducted for 72 hrs prior to protein collection for 

immunoblotting. For FAC-sorting, dissociated tubuloid cells were stained with SYTOX 

Orange (1:1000, Thermo Fisher Scientific) in FACS buffer with DNase (1:100) for 20 min 

to label dead cells. A BD FACSAria Ilu sorter and the FACSDiva 8.0.1 software (BD 

Biosciences) were used. A yellow-green laser (561 nm) was used for SYTOX Orange 

excitation. Emission was measured using a 586/15 BP filter. A UV laser (355 nm) and a 

450/50 BP filter were used to exclude autofluorescence of the cells. To better visualize 

the cells, a bidirectional X/Y-axis scale was used. 500 sorted viable single cells (negative 

for SYTOX Orange) were seeded per well in 9 µl Matrigel (75%, Corning) lenses in 96-

well plates and overlayed with 100 µl tubuloid medium. Medium was changed once. After 

11 days, the tubuloids were collected and processed for staining. For the examination of 

structural changes of the tubuloids upon growth factor withdrawal or inhibitor or cisplatin 

treatment, single cells were seeded at 45000 cells in 48-well plates and cultured 7 days 

in tubuloid medium without EGF, A83-01 or R-spondin-1 or cultured 24h in normal 

medium and 6 days in medium containing gefitinib (Selleckchem), ICG-001 

(Biochempartner) or cisplatin (Cayman Chemical) at the IC50 concentration. 
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Proteomics and phosphoproteomics 

Three independent biological replicates of early (TEP) and long-term (TLP) passage 

tubuloids were released from Matrigel by mechanical disruption, collected in a conical 

tube and incubated with the non-enzymatic Cell Recovery Solution (Corning) according 

to the manufacturer’s instructions to remove Matrigel residues. Three independent 

biological replicates of Epcam-positive kidney epithelial cells (CK) were MAC-sorted from 

freshly isolated single cell suspensions from whole mouse kidneys. Global proteomic and 

phosphoproteomic characterization of the samples was achieved by the tandem mass 

tag (TMT)-based quantitation using the TMT 10-plex reagents (Thermo Fisher Scientific), 

as previously described (Mertins et al, 2018). Briefly, samples were lysed in urea lysis 

buffer containing protease and phosphatase inhibitors, subjected to tryptic in-solution 

digest and labeled with the TMT 10-plex reagents. After pooling, samples were 

separated into 24 fractions for the proteomic and 12 fractions for the phosphoproteomic 

analysis using basic reversed-phase HPLC. Phosphopeptides were enriched from each 

fraction using robot-assisted iron-based IMAC on an AssayMap Bravo system (Agilent). 

Proteomic and phosphoproteomic samples were measured on a Q Exactive HF-X 

orbitrap mass spectrometer (Thermo Fisher Scientific) connected to an EASY-nLC 

system (Thermo Fisher Scientific) applying a 110-min online HPLC gradient. MS 

acquisition was performed at a resolution of 60000 in a scan range from 350 to 1500 Th. 

Data-dependent MS2 scans were carried out at a resolution of 45000 with an isolation 

window of 0.7 Th and a maximum injection time of 86 ms using the top 20 peaks from 

each precursor scan for HCD fragmentation. For the data analysis, the MaxQuant 

software package version 1.6.10.43 (Cox & Mann, 2008) was used. A FDR cutoff of 0.01 

was applied for peptides and proteins and database search was performed using the 

mouse Uniprot database (July 2018), including isoforms. Variable modifications included 

phosphorylation on serine, threonine and tyrosine, methionine-oxidation, acetylated N-

termini and deamidation of asparagine and glutamine, while the TMT10-plex reporter ion 

quantitation was turned on using a PIF setting of 0.5. Log2-transformed and median-

MAD centered corrected reporter ion intensities were used for quantitation. Protein 

groups were filtered for proteins, which were identified by at least one unique peptide 

and at least two peptides in total and had valid values across all samples. 

Phosphorylation site tables were filtered for valid values across all samples. For 

significance calling, a two-sample moderated t-testing (limma R package) (Ritchie et al, 

2015) was applied. A multiple comparison correction was done using the Benjamini-

Hochberg method (adjusted P-values). The KEGG PATHWAY (mmu04310) and a 

previously published list (Herbst et al, 2014) served as a combined reference protein list 

for the Wnt signaling heatmap. The KEGG PATHWAY (mmu04330) served as a 



90 
 

reference protein list for the Notch signaling heatmap. A previously published list 

(Zanconato et al, 2015) served as a reference protein list for the Yap signaling heatmap. 

 

Section staining 

The tubuloids were released from Matrigel by mechanical disruption, collected in a 

conical tube and fixed in 10% (v/v) Neutral-buffered Formalin overnight. The tubuloids 

were transferred to a 2 ml tube and overlayed with 1.5% agarose. The resulting agarose 

beads were dehydrated and embedded in paraffin. All stainings were performed on 5 µm 

sections. For haematoxylin-eosin (H&E) staining, sections were rehydrated and stained 

with haematoxylin (Fluka) for 4 min and with eosin (Merck) for 2 min. For 

immunofluorescence, sections were rehydrated, and antigen retrieval in TRIS-EDTA and 

blocking with 10% donkey serum (Bio-Rad) were performed. Sections were incubated 

overnight with the primary antibodies: rat anti-BrdU (1:100, Abcam, ab6326), mouse anti-

E-CAD (1:300, BD Biosciences, 610181), rabbit anti-Laminin (1:500, Abcam, ab11575), 

rat anti-ZO-1 (1:200, Santa Cruz, sc-33725), mouse anti-MDR1 (1:50, Santa Cruz, sc-

55510) and mouse anti-AQP3 (1:50, Santa Cruz, sc-518001) or with the lectins: 

Biotinylated LTL (1:300, Vector Laboratories, B-1325) and Rhodamine-conjugated PNA 

(1:300, Vector Laboratories, RL-1072), followed by incubation with the donkey 

fluorescent dye-conjugated secondary antibodies: Alexa488 anti-mouse, Alexa488 anti-

rabbit, Alexa488 anti-rat and Cy3 anti-rat (1:250, Jackson) or with Alexa647-conjugated 

Streptavidin (1:200, Thermo Fisher Scientific), and by counterstaining with DAPI (0.2 

µg/ml, Thermo Fisher Scientific) for 1 hr. For immunohistochemistry, sections were 

rehydrated, antigen retrieval in TRIS-EDTA was performed, endogenous peroxidase 

activity was blocked in 3.5% (v/v) hydrogen peroxide and blocking with 10% donkey 

serum (Bio-Rad) was performed. Sections were incubated overnight with the primary 

rabbit anti-Pax8 antibody (1:2000, Proteintech, 10336-1-AP), followed by incubation with 

the peroxidase-conjugated donkey anti-rabbit secondary antibody from a kit (Dako) for 1 

hr. Sections were developed using the substrate-chromogen system (Dako) and 

counterstained with haematoxylin (Fluka) for 2 min. Kidneys and spleens were fixed in 

10% (v/v) Neutral-buffered Formalin overnight, dehydrated and embedded in paraffin. All 

stainings were performed on 5 µm sections. For immunohistochemistry, sections were 

rehydrated, antigen retrieval in TRIS-EDTA was performed, endogenous peroxidase 

activity was blocked in 3.5% (v/v) hydrogen peroxide and blocking with 10% donkey 

serum (Bio-Rad) was performed. Sections were incubated overnight with the primary 

antibodies: rabbit anti-Ki67 (1:200, Thermo Fisher Scientific, RM-9106-S), mouse anti-

phospho-γH2AX (1:500, Merck Millipore, 05-636), mouse anti-p53 (1:100, Santa Cruz, 

sc-126) and mouse anti-p21 (1:100, Santa Cruz, sc-6246), followed by incubation with 
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the peroxidase-conjugated donkey anti-rabbit and anti-mouse secondary antibodies from 

a kit (Dako) for 1 hr. Sections were developed using the substrate-chromogen system 

(Dako) and counterstained with haematoxylin (Fluka) for 2 min. For PAS staining, 

sections were rehydrated, stained using the Periodic Acid-Schiff (PAS) Kit (Sigma-

Aldrich) according to the manufacturer’s instructions and counterstained with 

haematoxylin (Fluka) for 2 min. For LacZ staining, cryosections were prepared. Kidneys 

were placed in 30% sucrose in PBS overnight and embedded in OCT compound (Sakura 

Finetek). 10 µm sections were fixed in 0.2% (v/v) glutaraldehyde for 10 min, washed 

three times in washing solution (PBS, 2 mM MgCl2, 0.01% sodium deoxycholate and 

0.02% NP-40), incubated overnight in staining solution (PBS, 2 mM MgCl2, 0.01% 

sodium deoxycholate, 0.02% NP-40, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6 and 1 mg/ml X-

gal (Roth)) and counterstained with nuclear fast red (Merck) for 5 min. Images were 

taken with an AxioImager Z1 microscope (for immunofluorescence) or an Axio Scope.A1 

microscope (for H&E staining, PAS staining, LacZ staining and immunohistochemistry) 

using the Zen software (all Zeiss). Selected immunofluorescence images were 

processed with Fiji ImageJ. 

 

Whole mount staining 

The tubuloids were released from Matrigel by mechanical disruption, collected, 

transferred to a 2 ml tube, fixed in 10% (v/v) Neutral-buffered Formalin for 1.5 hrs and 

blocked in 10% donkey serum (Bio-Rad) for 2 hrs. The tubuloids were incubated 

overnight with the mouse anti-E-CAD antibody (1:300, BD Biosciences, 610181), the 

Biotinylated LTL lectin (1:300, Vector Laboratories, B-1325) and the Rhodamine-

conjugated PNA lectin (1:300, Vector Laboratories, RL-1072), and then were incubated 

overnight with the donkey Alexa488 anti-mouse antibody (1:250, Jackson), Alexa647-

conjugated Streptavidin (1:200, Thermo Fisher Scientific) and DAPI (0.2 µg/ml, Thermo 

Fisher Scientific). The tubuloids were taken up in 1.5% low-melting agarose and 

transferred to chamber slides. Confocal z-stacks were acquired with a LSM700 or 

LSM710 microscope (Zeiss) using a long working distance C-Achroplan 32x/0.85 water 

immersion objective and Immersol W (Zeiss). DAPI, Alexa488, Cy3 and Alexa647 

fluorophores were excited with a 405 nm, 488 nm, 561 nm and 633 nm laser, 

respectively, and detected by sequential scanning using BP filters 410-460 nm, 500-540 

nm, 565-620 nm and 640-720 nm, respectively. Images were acquired with a pixel size 

of 0.116 or 0.142 µm (lateral) and 1.11 or 1.16 µm (axial) with 12-bit and line average 2. 

If necessary, detector gain and laser power were slightly adjusted with z-depth to keep a 

constant signal. Restoration of confocal z-stacks was performed with the Huygens 

Deconvolution software (SVI) running on a dedicated data processing workstation 
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(Acquifer) using a CMLE algorithm with 60 iterations and a SNR of 12. After 

deconvolution, confocal z-stacks were 3D reconstructed using the Imaris 9.1 software 

(Bitplane/Oxford Instruments) and either the volume reconstruction and clipping planes 

or orthogonal sections were used to visualize and explore the 3D structure of the 

tubuloids. 

 

Transmission electron microscopy 

The tubuloids were released from Matrigel by mechanical disruption, collected in a 

conical tube and fixed in 2% (w/v) formaldehyde and 2.5% (v/v) glutaraldehyde in 0.1 M 

phosphate buffer for 2 hrs. After embedding in 10% agarose in a 2 ml tube, samples 

were post-fixed with 1% (v/v) osmium tetroxide (Sigma-Aldrich), dehydrated in a graded 

series of EtOH and embedded in PolyBed® 812 resin (Polysciences). Ultrathin sections 

(60-80 nm) were stained with uranyl acetate (Polysciences) and lead citrate (Sigma-

Aldrich) and examined at 80 kV with an EM 910 electron microscope (Zeiss). Acquisition 

was performed with a Quemesa CCD camera and the iTEM software (Emsis). 

 

TUNEL assay 

Kidneys were fixed in 10% (v/v) Neutral-buffered Formalin overnight, dehydrated and 

embedded in paraffin. 5 µm sections were rehydrated, stained using the ApopTag Plus 

Peroxidase In Situ Apoptosis Detection Kit (Merck Millipore) according to the 

manufacturer’s instructions and counterstained with haematoxylin (Fluka) for 2 min. 

Images were taken with an Axio Scope.A1 microscope using the Zen software (Zeiss). 

 

Immunoblotting  

Tubuloid pellets were lysed in RIPA buffer supplemented with protease inhibitors 

(Roche) for 10 min. 10 µg of protein was separated by SDS-PAGE using a 15% 

separating and a 4.5% stacking gel and transferred to a PVDF membrane with 0.2 µm 

pore size (Roth) via a semidry transfer. The membrane was blocked with 5% skim milk in 

TBS-T, cut in half and probed with the rabbit anti-Cleaved Caspase-3 (1:1000, Cell 

Signaling, 9661) or mouse anti-α-Tubulin (1:10000, Sigma-Aldrich, T9026) antibody 

overnight and with the peroxidase-conjugated donkey anti-rabbit (1:10000) or anti-mouse 

(1:5000) antibody (Jackson) for 1 hr. The antibodies were diluted in 5% BSA in TBS-T. 

Bands were visualized using the Western Lightning Plus-ECL substrate (PerkinElmer) for 

5 min and a Fusion SL imaging system (Vilber). Whole kidneys were homogenized and 

protein was extracted from 20 mg of tissue in 1 ml RIPA buffer supplemented with 

protease inhibitors (Roche) for 2 hrs. 10 µg of protein was separated by SDS-PAGE 

using a 10% separating and a 4.5% stacking gel and transferred to a PVDF membrane 
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with 0.2 µm pore size (Roth) via a semidry transfer. The membrane was blocked with 5% 

skim milk in TBS-T, cut in half and probed with the mouse anti-β-catenin (1:1000, BD 

Transduction Laboratories, 610153) or mouse anti-α-Tubulin (1:10000, Sigma-Aldrich, 

T9026) antibody overnight and with the peroxidase-conjugated donkey anti-mouse 

antibody (1:5000, Jackson) for 1 hr. The antibodies were diluted in 5% BSA in TBS-T. 

Bands were visualized using the Western Lightning Plus-ECL substrate (PerkinElmer) for 

5 min and a Fusion SL imaging system (Vilber). 

 

Real-time qPCR 

Total RNA from the tubuloids and whole mouse kidneys was isolated using TRIzol 

(Invitrogen) and 1 µg/20 µl of RNA was reversely transcribed to cDNA using MMLV 

reverse transcriptase (Promega) according to the manufacturer’s instructions. Real-time 

qPCR reactions were performed in a CFX96-C1000 thermal cycler (Bio-Rad) with the 

PowerUp SYBR Green Master Mix (Applied Biosystems) and 10 µM exon-exon junction-

spanning primers, using a standard protocol with 44 cycles according to the 

manufacturer’s instructions. Primer sequences are listed in the Table 2. Primer specificity 

was tested by melting curve analyses and running reactions with a negative control 

(without cDNA). Relative mRNA expression values were normalized to the endogenous 

control Gapdh using the 2-ΔΔCt method. 

 

Table 2 

Primer sequences for real-time qPCR. 

Gene Forward primer 5'-3' Reverse primer 5'-3' 

Krt8 

 

CTCAAAGGCCAGAGGGCATC TTAATGGCCATCTCCCCACG 

Krt18 ACTGGTCTCAGCAGATTGAGG 

 

CCGAGGCTGTTCTCCAAGTT 

Cldn4 CTTCATCGGCAGCAACATCG 

 

GATGACCATAAGGGCTCGGG 

Abcb1b AGTGGCTCTTGAAGCCGTAA 

 

AAACTCCATCACCACCTCACG 

Slc3a1 AAAATGCCTTGACTGGTGGCA 

 

CCTCAACAGCGTATCTGAAGTCT 

Slc40a1 GAGCCAGTGTCCCCAACTAC 

 

CTTGCAGCAACTGTGTCACC 

Aqp3 ATCGTTGTGGGGAGATGCTT 

 

ACCAAGATGCCAAGGGTGAC 

Atp6ap2 GGCAAAACAAGAGAACACCCA 

 

CCAAGGCCAAGCCGATCATA 
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Wnk1 CCTCAAGTATGGCACAGGGG 

 

GCTGTATTCCCTGCTGCTGA 

 

Cldn1 TGGGGCTGATCGCAATCTTT 

 

CACTAATGTCGCCAGACCTGA 

Vcam1 CTTTATGTCAACGTTGCCCCC 

 

GAGGCTGCAGTTCCCCATTA 

Cald1 GTTGCTGCCCTAGAGATAGTCA 

 

CCTGAGTTCTCTGCGACGTT 

Pdgfrb ACTATGTCCCATCTGCCCCT 

 

ATCTTGACCAGCTTGCCCTC 

Meis1 ATTCACACTGCTGGAGACGC 

 

TAGGTCGTCGTACCTTTGCG 

Pecam1 GAGCCTCACCAAGAGAACGG 

 

ATTGGATGGCTTGGCCTGAA 

Cdh5 GCTCACGGACAAGATCAGCTC 

 

GGGGGTGTCTATCTGGGGAA 

Flt1 CACCCCTGTCACCACAATCA 

 

CACCAATGTGCTAACCGTCTTA 

 

 

Dkk1 

 

 

CGGGGGATGGATATCCCAGA 

 

ACGGAGCCTTCTTGTCCTTTG 

Axin2 GCGCTTTGATAAGGTCCTGG 

 

TCATGTGAGCCTCCTCTCTTTT 

Cyclin D1 CTGGATGCTGGAGGTCTGTGA 

 

AGGGGGTCCTTGTTTAGCCAG 

Myc TTGGAAACCCCGCAGACAG 

 

GCTGTACGGAGTCGTAGTCG 

Hey1 GAGCGTGAGTGGGATCAGTG 

 

GCTTAGCAGATCCCTGCTTCT 

Hes1 CTGGTGCTGATAACAGCGGA 

 

GGAATGCCGGGAGCTATCTT 

Hey3 (Heyl) GTCTTGCAGATGACCGTGGA 

 

CGGGCATCAAAGAACCCTGT 

Ca9 GTCATTGGAGCTATGGAGG 

 

CTCATAACCCAGAAGTTCCAG 

Hk2 GTGACAGACAATGGTCTCCAGAG GCCAGGCATTCGGCAATG 

 

Pdk1 GCAGTTCCTGGACTTCG 

 

CAATCTAACAGGCAACTCTTG 

Ldha GATGGATCTCCAGCATGGCAG 

 

GTGATAATGACCAGCTTGGAGTTCG 

Glut1 GCTATAACACTGGTGTCATCAACG 

 

CGTGGTGAGTGTGGTGGATG 

Vegfa CAGGCTGCTGTAACGATGAA TTTCTTGCGCTTTCGTTTTT 
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Ngal ACAACCAGTTCGCCATGGTA 

 

AAGCGGGTGAAACGTTCCTT 

Kim-1 CAGGGTCTCCTTCACAGCAG 

 

CCACCACCCCCTTTACTTCC 

Gsta1 AGCCCGTGCTTCACTACTTC 

 

CAATCTCCACCATGGGCACT 

Il1b TTCAGGCAGGCAGTATCA 

 

CCAGCAGGTTATCATCATCA 

 

Cd11b CCACACTAGCATCAAGGGCA 

 

GCTTCACACTGCCACCGT 

Ly6c GCAGTGCTACGAGTGCTATGG 

 

ACTGACGGGTCTTTAGTTTCCTT 

 

Icam1 (Cd54) GTCCGCTGTGCTTTGAGAAC 

 

GAGGTCCTTGCCTACTTGCT 

Cd68 ACTTCGGGCCATGTTTCTCT 

 

GCTGGTAGGTTGATTGTCGT 

Ccr2 (Cd192) GCCATCATAAAGGAGCCATACC 

 

ATGCCGTGGATGAACTGAGG 

Vim TGGATCAGCTCACCAACGAC 

 

AAGGTCAAGACGTGCCAGAG 

Fn1 ATGAGAAGCCTGGATCCCCT 

 

GGAAGGGTAACCAGTTGGGG 

a-sma ACATCAAGGAGAAGCTGTGCT 

 

TTTCGTGGATGCCCGCTG 

Col1a1 CATGAGCCGAAGCTAACCCC 

 

GGGTTTCCACGTCTCACCAT 

Col3a1 AGTGGGCATCCAGGTCCTAT 

 

GGGTGAAAAGCCACCAGACT 

 

 

Genomic DNA PCR 

Genomic DNA was isolated from whole kidneys using the GeneJET Genomic DNA 

Purification Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. β-

catenin and Vhl alleles were amplified using 100 ng of DNA, 10 µM primers and a 

standard protocol with 50 and 40 cycles and annealing temperature of 65°C and 56°C, 

respectively. A forward primer 5'-3': GGTACCTGAAGCTCAGCGCACAGCTG and a 

reverse primer 5'-3': ACGTGTGGCAAGTTCCGCGTCATCC were used to amplify the β-

catenin allele (Harada et al, 1999). A forward primer 1 5'-3': 

CTGGTACCCACGAAACTGTC, a forward primer 2 5'-3': 

CTAGGCACCGAGCTTAGAGGTTTGCG and a reverse primer 5'-3': 

CTGACTTCCACTGATGCTTGTCACAG were used to amplify the Vhl allele (Rankin et 

al, 2006). 
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Drug response assay 

Single cells were seeded at 15000 cells per well in 9 µl Matrigel (75%, Corning) lenses in 

96-well plates and overlayed with 100 µl tubuloid medium. After 24 hrs, medium was 

replaced with fresh medium containing gefitinib (Selleckchem), U0126 (Selleckchem), 

BYL719 (Selleckchem), ICG-001 (Biochempartner), LF3 (Selleckchem) or cisplatin 

(Cayman Chemical). Medium was changed every other day. CellTiterGlo assay 

(Promega) was performed after 6 days according to the manufacturer’s instructions. 

 

Blood assays 

Blood was collected from hearts of freshly sacrificed mice to tubes coated with 0.5 M 

EDTA pH 8 (Invitrogen) to prevent clotting. BUN concentrations were measured using 

the i-STAT 1 System with the CHEM8+ cartridges for patient testing (Abbott) according 

to the manufacturer’s instructions. For plasma collection, cells and platelets were 

pelleted from the blood by centrifugation for 15 min at 2000 g. EPO concentrations in 

supernatants (plasma) were measured using the Quantikine Mouse Erythropoietin 

Immunoassay (R&D Systems) according to the manufacturer’s instructions. 

 

Descriptive statistics and significance testing 

The Pearson correlation matrix (coefficient) was calculated by the cor function of the 

base R package between all samples of the mouse kidney epithelia (CK), early passage 

tubuloids (TEP) and long-term passage tubuloids (TLP) based on normalized log2 

intensity values for all ~ 9000 proteins and ~ 16000 phosphorylation sites detected in the 

mass spectrometry analysis. The matrix was plotted using the pheatmap R package. For 

the functional annotation clustering of the most upregulated proteins using the DAVID 

bioinformatic tool (DAVID Bioinformatics Resources 6.8, NIAID/NIH), all ~ 9000 proteins 

detected in the proteomic analysis were subjected to both the 0.1% FDR cutoff (adjusted 

P-value < 0.001) and log2 fold change cutoff of > 0.5 for both TEP over CK and TLP over 

CK. 722 proteins were selected. Using the entire mouse (Mus musculus) proteome as a 

background for the UNIPROT_ACCESSION identifier, 671 proteins (DAVID IDs) were 

identified and analyzed. Defined DAVID defaults were used and the Enrichment 

Thresholds (EASE Scores, modified Fisher-exact P-values) and adjusted P-values 

(Benjamini-Hochberg correction) for all terms in each cluster were subjected to the cutoff 

of < 0.001. 10 clusters were determined. The overall enrichment score for each cluster 

was calculated based on the Enrichment Thresholds for all terms. The most enriched 

term was selected to represent each cluster based on the lowest adjusted P-value. All 

other statistical analyses were performed in GraphPad Prism (GraphPad). All data are 

presented as means ± SD (error bars), unless otherwise stated. To assess the normal 
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distribution of the data, the Shapiro-Wilk test (α = 0.05) was performed. The unpaired, 

two-tailed Student’s t-test and the ordinary one-way ANOVA followed by the Dunnett’s 

multiple comparison were used to analyze data, which passed the normality test. To 

compare groups, which did not pass the normality test, the alternative non-parametric 

Kruskal-Wallis test followed by the Dunn’s multiple comparison were performed. The 

ordinary one-way ANOVA followed by the Dunnett’s multiple comparison were used to 

analyze the real-time qPCR data on the tubuloids. A P-value < 0.05 was considered 

statistically significant. IC50 values were calculated by a non-linear regression analysis 

of the response and log10 of the inhibitor concentration fitting a curve with a variable 

slope (4 parameters). Statistical details of the experiments can be found in the figure 

captions. 
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