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ABSTRACT. A basic problem for constant dimension codes is to determine the maximum possible size
Aq(n, d; k) of a set of k-dimensional subspaces in Fn

q , called codewords, such that the subspace distance
satisfies dS(U,W ) := 2k − 2 dim(U ∩ W ) ≥ d for all pairs of different codewords U , W . Constant
dimension codes have applications in e.g. random linear network coding, cryptography, and distributed stor-
age. Bounds for Aq(n, d; k) are the topic of many recent research papers. Providing a general framework
we survey many of the latest constructions and show up the potential for further improvements. As examples
we give improved constructions for the cases Aq(10, 4; 5), Aq(11, 4; 4), Aq(12, 6; 6), and Aq(15, 4; 4).
We also derive general upper bounds for subcodes arising in those constructions.

1. INTRODUCTION

Let Fq be the finite field with q elements, i.e., q is a prime power. For two integers 0 ≤ k ≤ n
we denote by Gq(n, k) the set of all k-dimensional subspaces in Fnq . The so-called subspace distance
dS(U,W ) := dim(U)+dim(W )−2 dim(U∩W ) = 2k−2 dim(U∩W ) defines a metric on Gq(n, k). A
subset C ⊆ Gq(n, k) is called a constant dimension code (CDC) and its elements are called codewords. The
minimum (subspace) distance of a CDC C is defined as dS(C) = min{dS(U,W ) : U,W ∈ C, U 6= W}.
We call C an (n,M, d, k)q CDC if C has cardinalityM and dS(C) ≥ d. The maximum possible cardinality
of an (n,M, d, k)q CDC is denoted byAq(n, d; k). We refer to the recurrently updated survey [18] and the
associated webpage http://subspacecodes.uni-bayreuth.de for some of the latest bounds.
For 2k ≤ n and d ≥ 4 the general bounds

q(n−k)·(k−d/2+1) ≤ Aq(n, d; k) ≤ 1.7314 · q(n−k)·(k−d/2+1) (1)

are known, see [20, Proposition 8] for the details and further improvements depending on q, k, and d. For
some applications the factor of at most 1.7314 between the lower and upper bounds is sufficiently good.
As applications are manifold, including e.g. random linear network coding, cryptography, and distributed
storage, see e.g. [13], we are interested in exact values or relatively tight bounds for Aq(n, d; k) for
specific, mostly small, parameters.

With respect to recent improved constructions we mention e.g. [3; 4; 9; 14; 15; 16; 28; 30; 31; 33; 34].
Most of the contained improvements fit into a general framework of a combination of subcodes of a
specific shape that we will present here. All constructions are based on an interplay between the subspace,
the Hamming, and the rank metric distance.

Besides structuring and classifying the recent progress we show up further potential for improvements.
As examples we give improved constructions for the cases Aq(10, 4; 5), Aq(11, 4; 4), Aq(12, 6; 6), and
Aq(15, 4; 4). Note that the dimensions of the ambient spaces are rather small. We also give general upper
bounds for the mentioned subcodes with special shapes.

The remaining part of this paper is structured as follows. In Section 2 we introduce the necessary
preliminaries and review constructions from the literature. The impact of codes in the Hamming metric is
discussed in Subsection 2.1. Here we generalize the notion of skeleton codes from the Echelon–Ferrers
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construction. These codes are mainly used to describe and control the combination of different subcodes
to a constant dimension code. For the contained subcodes the rank metric plays an important role for
the construction, see Subsection 2.2. Based on the underlying general construction strategy sufficient
conditions for additing further codewords are described in Subsection 2.3. In Subsection 2.4 we mention
a few constructions outside this scheme, which can nevertheless be used as subcodes. We summarize our
four exemplary, in the field size q parametric, improvements in Section 3. We have chosen examples with
rather small parameters and focus on the underlying techniques to show up the potential for further and
similar improvements for larger parameters. Upper bounds for the occurring subcodes are the topic of
Section 4. Here, and also in Section 3, we mention open problems for further research.

2. PRELIMINARIES AND REVIEW OF CONSTRUCTIONS FROM THE LITERATURE

Let C be a CDC consisting of k-dimensional subspaces U ∈ Gq(n, k). Given a non-degenerate bilinear
form, we denote by U⊥ the orthogonal subspace of a subspace U , which then has dimension n−dim(U).
With this, we have dS(U,W ) = dS(U⊥,W⊥), so that Aq(n, d; k) = Aq(n, d;n−k). Using this relation
we will mostly assume 2k ≤ n in the following, so that the maximum possible subspace distance is 2k.

As a representation for a codeword U ∈ C we use generator matrices M ∈ Fk×nq whose k rows form
a basis of U and write U = 〈M〉. Applying the Gaussian elimination algorithm to M gives a unique
generator matrix E(M) in reduced row echelon form. We will also directly write E(U) for E(M) where
M is an arbitrary generator matrix for U . By v(M) ∈ Fn2 or v(U) ∈ Fn2 we denote the characteristic
vector of the pivot columns in E(M) or E(U), respectively. These vectors are also called identifying
or pivot vectors. In the following we will mostly use the notations E(U) and v(U) for k-dimensional
subspaces of Fnq . The Ferrers tableaux T (U) of U arises from E(U) by removing the zeroes from each
row ofE(U) left to the pivots and afterwards removing all pivot columns. If we then replace all remaining
entries by dots we obtain the Ferrers diagram F(U) of U which only depends on the identifying vector
v(U). As an example we consider

U =

〈
1 0 1 1 1 0 1 0 1
1 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1


〉
∈ G2(9, 4),

where we have

E(U) =


1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 1

 ,

v(U) = 101101000 ∈ F9
2,

T (U) =


0 1 0 0 0

0 1 1 1
0 0 1 0

1 0 1

 ,

and

F(U) =

• • • • •
• • • •
• • • •
• • •

.

The partially filled matrix T (U) contains all essential information to describe the codeword U , where
each entry is arbitrary in Fq and every different choice gives a different k-dimensional subspace in Fnq .
The pivot vector v(U) and the Ferrers diagram F(U) of U both partition Gq(n, k) into specific classes.
Note that this classification is not preserved by the isometries of Fnq with respect to dS . However the
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description with pivot vectors will be rather useful for constructions as we will see later on. If n is given,
v(U) and F(U) can be converted into each other.1 So, we also write p(F) for a given Ferrers diagram

2.1. Skeleton codes, the Hamming metric, and the Echelon–Ferrers construction. The Hamming
distance

dH(u,w) = # {1 ≤ i ≤ n : ui 6= wi} ,
for u,w ∈ Fnq , can be used to lower bound the subspace distance between two codewords U,W ∈
Gq(n, k):

Lemma 2.1. ([7, Lemma 2])
For U,W ∈ Gq(n, k) we have dS(U,W ) ≥ dH(v(U), v(W )).

The Hamming weight wt(v) of a vector v ∈ Fnq is its Hamming distance to the zero vector dH(v,0)
or, in other words, the number of non-zero entries. If S is a subset of Fn2 of cardinality at least 2, then we
define dH(S) := min{dH(v, v′) : v, v′ ∈ S, v 6= v′}. If #S < 2, then we formally set dH(S) := ∞.
We call dH(S) the minimum Hamming distance of S. In applications for constant dimension codes
we will assume that the elements of S all have the same Hamming weight k. The vectors in Fn2 with
Hamming weight k are in one-to-one correspondence with the k-element subsets of an n-element set. So,
slightly abusing notation, we define G1(n, k) := {v ∈ Fn2 : wt(v) = k}. An (n,M, d, k)q CDC C such
that all codewords have the same pivot vector v is called (n,M, d, k, v)q CDC. Directly from Lemma 2.1
we can conclude:

Theorem 2.2. ([7, Theorem 3])
Let S ⊆ G1(n, k) with dH(S) ≥ d. If Cv ⊆ Gq(n, k) is an (n, ?, d, k, v)q CDC for each v ∈ S , then
C = ∪v∈SCv is an (n, ?, d, k)q CDC with cardinality

∑
v∈S #Cv .

Suitable choices for the Cv are also discussed in [7] and we will do so in Subsection 2.2. The underly-
ing construction is called multilevel construction in [7] and Echelon-Ferrers construction in some other
papers. Actually, the set S is a binary code with minimum Hamming distance d and sometimes called
skeleton code. By Aq(n, d; k; v) we denote the maximum possible cardinality M of an (n,M, d, k, v)q
CDC, so that Theorem 2.2 gives the lower bound

Aq(n, d; k) ≥
∑
v∈S

Aq(n, d; k; v), (2)

where dH(S) ≥ d.
We can slightly generalize our notion to sets V of binary vectors in Fn2 with Hamming weight k each.

If all all pivot vectors of the codewords of an (n,M, d, k)q CDC C are contained in V , then we speak of an
(n,M, d, k,V)q CDC and denote the corresponding maximal possible cardinality by Aq(n, d; k,V). For
two subsets V,V ′ of Fn2 we define their minimum Hamming distance as dH(V,V ′) := min{dH(v, v′), :
v ∈ V, v′ ∈ V ′}. With this, we can directly generalize Theorem 2.2 to:

Theorem 2.3. Let V1, . . . ,Vs be subsets of G1(n, k) with dH(Vi,Vj) ≥ d for all 1 ≤ i < j ≤ s. If
CVi ⊆ Gq(n, k) is an (n, ?, d, k,Vi)q CDC for each 1 ≤ i ≤ s, then C = ∪1≤i≤s∈SCVi is an (n, ?, d, k)q
CDC with cardinality

∑
1≤i≤s #CVi .

We call S = {V1, . . . ,Vs} a generalized skeleton code and call

dH(S) := min {dH(Vi,Vj) : 1 ≤ i < j ≤ s}
the minimum (Hamming) distance of S. With this, we have the lower bound

Aq(n, d; k) ≥
∑
V∈S

Aq(n, d; k;V), (3)

1The only issue occurs for pivot vectors v(U) starting with a sequence of zeroes corresponding to the same number of leading
empty columns in the Ferrers diagram. The latter, or their number, may not be directly visible.
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where dH(S) ≥ d.
In several constructions in the literature, Inequality (3) is, indirectly, applied. To this end we introduce

more notation to describe specially structured subsets of G1(n, k), i.e., by(
n1

k1

)
, . . . ,

(
nl
kl

)
we denote the set of binary vectors which contain exactly ki ones in positions 1 +

∑i−1
j=1 nj to

∑i
j=1 nj

for all 1 ≤ i ≤ l. The cases of at least ki ones are denoted by
(
ni

≥ki

)
and the cases of at most ki ones

are denoted by
(
ni

≤ki

)
. Also in this generalized setting we assume that the described set is a subset of

G1(n, k), where n =
∑l
i=1 ni and k =

∑l
i=1 ki, e.g.(

n1

≤ k1

)
,

(
n− n1

≥ k − k1

)
⊆ G1(n, k).

In our notation, the linkage construction from [12, Theorem 2.3], [37, Corollary 39] can be written as

Aq(n, d; k) ≥ Aq
(
n, d; k;

(
n−∆

k

)
,

(
∆

0

))
+Aq

(
n, d; k;

(
n−∆

0

)
,

(
∆

k

))
, (4)

which was improved to

Aq(n, d; k) ≥ Aq

(
n, d; k;

(
n−∆

k

)
,

(
∆

0

))
+Aq

(
n, d; k;

(
n−∆− k + d/2

0

)
,

(
∆ + k + d/2

k

))
(5)

in [20, Theorem 18, Corollary 4], where 0 ≤ ∆ ≤ n is a free parameter. With respect to Inequality (4)
we remark Aq

(
n, d; k;

(
n−∆

0

)
,
(

∆
k

))
= Aq(∆, d; k) and that one key observation in [12] was

Aq

(
n, d; k;

(
n−∆

k

)
,

(
∆

0

))
≥ q∆(k−d/2+1)Aq(n−∆, d; k), (6)

so that the two summands can be expressed in terms ofAq(n′, d; k) values. We will deduce Inequality (6)
in Subsection 2.2. Clearly, the Hamming distance between

(
n−∆
k

)
,
(

∆
0

)
and

(
n−∆

0

)
,
(

∆
k

)
is 2k, so that

Inequality (4) is a direct implication of Theorem 2.3 since the minimum subspace distance between two
k-dimensional subspaces is at most 2k, assuming 2k ≤ n. Observing that the minimum Hamming
distance between

(
n−∆
k

)
,
(

∆
0

)
and

(
n−∆−k+d/2

0

)
,
(

∆+k+d/2
k

)
is at least d yields Inequality (5).

From the computational point of view Theorem 2.3 translates to a weighted maximum clique problem,
where the vertices are the candidates for V ⊆ G1(n, k) and two vertices V,V ′ are joined by an edge iff
dH(V,V ′) ≥ d. For constructive lower bounds for Aq(n, d; k) we choose any constructive lower bound
Aq(n, d; k;V) ≤ Aq(n, d; k;V) as vertex weights. Known upper bounds Aq(n, d; k;V) ≥ Aq(n, d; k;V)
can also be used as vertex weights. However, then the exact solution of the weighted maximum clique
problem does not give an upper bound for Aq(n, d; k) but only an upper bound on the code sizes that
can be obtained by Theorem 2.3 using a specific generalized skeleton code S. Note that in principle we
can choose all non-empty subsets of G1(n, k) as vertices. However, this set is really huge, so that one
usually considers only suitably selected subsets thereof. For the case of 1-element subsets of G1(n, k), i.e.,
the Echelon–Ferrers construction, c.f. Theorem 2.2, exhaustive searches where performed in [9]. There
also upper bounds for the code sizes that can be achieved by the Echelon–Ferrers construction, based
on Theorem 2.7 as vertex weights, were computed. While lower and upper bounds for the Echelon–
Ferrers construction can be computed parametric in the field size q, see [9] for the details, the parametric
determination of the “optimal” (generalized) skeleton code is a hard problem. So far it is only solved for
the case of so-called partial spreads corresponding to Aq(n, 2k; k), where n ≥ 2k, see [9, Theorem 5.2].
In our subsequent results on lower bounds for Aq(n, d; k) we will always state the underlying skeleton
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codes. Note that the corresponding distance analysis in the Hamming metric, c.f. Inequality (5), can
be parametric. To sum up, Theorem 2.3 is just a general framework for constructions and the selection
of good generalized skeleton codes is a non-trivial problem. The decomposition of a given CDC C into
subcodes CV such that C is given by Theorem 2.3 is also non-trivial, if the generalized skeleton code S
has size at least two, but useful indeed.

2.2. Vertex weights, rank-metric codes, and corresponding constructions. If the pivot vectors of
two codewords coincide, then we can utilize the rank distance dR(A,B) := rank(A − B) for matrices
A,B ∈ Fm×lq to express the corresponding subspace distance.

Lemma 2.4. ([36, Corollary 3])
For U,W ∈ Gq(n, k) with v(U) = v(W ) we have dS(U,W ) = 2dR(E(U), E(W )).

Since dR is a metric, we call a subset C ⊆ Fm×lq of matrices a rank-metric code. If C is a linear
subspace of Fm×lq we call the code linear. Given a Ferrers diagram F with m dots in the rightmost
column and l dots in the top row, we call a rank-metric code CF a Ferrers diagram rank-metric (FDRM)
code if for any codeword M ∈ Fm×lq of CF all entries not in F are zero. By dR(CF ) we denote the
minimum rank distance, i.e., the minimum of the rank distance between pairs of different codewords.

Definition 2.5. ([37])
Let F be a Ferrers diagram and CF ⊆ Fk×(n−k)

q be an FDRM code. The corresponding lifted FDRM code
CF is given by

CF = {U ∈ Gq(n, k) : F(U) = F , T (U) ∈ CF} .

Directly from Lemma 2.4 and Definition 2.5 we can conclude:

Lemma 2.6. ([7, Lemma 4])
Let CF ⊆ Fk×(n−k)

q be an FDRM code with minimum rank distance δ, then the lifted FDRM code CF ⊆
Gq(n, k) is an (n,#CF , 2δ, k)q CDC.

Lifted FDRM codes CF are exactly the subcodes Cv needed in the Echelon-Ferrers construction in
Theorem 2.2. In [7, Theorem 1] a general upper bound for (linear) FDRM codes was given. Since the
bound is also true for non-linear FDRM codes, as observed by several authors, denoting the pivot vector
corresponding to a given Ferrers diagram F by v(F) and using Lemma 2.6, we can rewrite the upper
bound to:

Theorem 2.7.
Aq(n, d; k; v(F)) ≤ qmin{νi : 0≤i≤d/2−1},

where νi is the number of dots in F , which are neither contained in the first i rows nor contained in the
last d2 − 1− i columns.

If we choose a minimum subspace distance of d = 6, then we obtain

A2(9, 6; 4; 101101000) ≤ 27

due to
• • • • •
• • • •
• • • •
• • •

• • • • •
• • • •
• • • •
• • •

• • • • •
• • • •
• • • •
• • •

.

where the blue dots are those that are neither contained in the first i rows nor contained in the last d2−1−i
columns for 1 ≤ i ≤ 3.

While it is conjectured that the upper bound from Theorem 2.7 (and the corresponding bound for
FDRM codes) can always be attained, this problem is currently solved for specific instances like e.g.
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rank-distances δ = 2 only. For more results see e.g. [1; 32] and the references mentioned therein.
Another important solved case are rectangular Ferrers diagrams. If 2 ≤ 2k ≤ n and F is the rectangular
Ferrers diagrams with k dots in each column and n− k dots in each row, then a rank-metric code CF ⊆
Fk×(n−k)
q attaining the maximum possible cardinality q(n−k)(k−d/2+1) for a given minimum subspace

distance d ≤ 2k is called maximum rank distance (MRD) code. More generally, the maximum size of
an (m × n, dr)q-rank metric code is given by m(q,m, n, dr) := qmax{m,n}·(min{m,n}−dr+1). A rank
metric codeM⊆ Fm×nq attaining this bound is said to be an MRD code with parameters (m× n, dr)q or
(m×n, dr)q MRD code, see e.g. the survey [35]. Linear MRD codes exist for all parameters. Moreover, for
dr < d′r we can assume the existence of a linear (m×n, dr)q MRD code that contains an (m×n, d′r)q MRD
code as a subcode. The rank distribution of an additive (m× n, dr)q MRD code is completely determined
by its parameters, i.e., the number of codewords of rank r is given by

a(q,m, n, dr, r) :=
[

min{n,m}
r

]
q

r−dr∑
s=0

(−1)sq(
s
2) · [ rs ]q ·

(
qmax{n,m}·(r−dr−s+1) − 1

)
(7)

for all dr ≤ r ≤ min{n,m}, see e.g. [6, Theorem 5.6] or [35, Theorem 5], where

[ nk ]q =

k−1∏
i=0

qn−i − 1

qk−i − 1
(8)

is the Gaussian binomial coefficient counting the number of k-dimensional subspaces in Fnq . Clearly,
there is a unique codeword of rank strictly smaller than dr – the zero matrix.

Since even linear MRD codes exist for all parameters, lifting gives the well-known lower bound

Aq(n, d; k) ≥ q(n−k)(k−d/2+1) (9)

(assuming 2k ≤ n), which is at least half the optimal value for d ≥ 4, see e.g. [20, Proposition 8] and
Inequality (1). In general, a subset M ⊆ Fk×nq with minimum rank distance δ is called (k × n, δ)q-rank
metric code.

Instead of starting with an FDRM code CF and lifting it to a CDC CF one can also start from an
(m,N, d, k)q CDC C and an MRD codeM ⊆ Fk×(n−m)

q with minimum rank distance d/2. With this we
can construct a CDC

C′ = {〈E(U)|M〉 : U ∈ C,M ∈M} ⊆ Gq(n, k) (10)

with dS(C′) = d and #C′ = #C ·#M, where A|B denotes the concatenation of two matrices A and B
with the same number of rows. This lifting variant was called Construction D in [37, Theorem 37], cf.
[11, Theorem 5.1]. By construction, the identifying vectors of the codewords of C′ contain their k ones
in the first m positions. Thus, we end up with Inequality (6).

Lower bounds for

Aq

(
n, d; k;

(
n′

k′

)
,

(
n− n′

n− k′

))
where obtained in [21] where the underlying construction was named coset construction. In [40] the
inequality

Aq(n, d; k) ≥ Aq

(
n, d; k;

(
n−∆

k

)
,

(
∆

0

))
+Aq

(
n, d; k;

(
n−∆

≤ k − d/2

)
,

(
∆

≥ d/2

))
, (11)

which holds for all 0 ≤ ∆ < n due to Theorem 2.3, was used in the special case ∆ = k to construct
many CDCs with larger sizes than previously known. In [26] the quantity Aq

(
n, d; k;

(
n−∆
≤k−d/2

)
,
(

∆
≥d/2

))
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was introduced as Bq(n,∆, d; k). A lower bound for Aq
(
n, d; k;

(
n−k
≤k−d/2

)
,
(

k
≥d/2

))
was constructed in

[40] via
{〈M |Ik〉 : M ∈M, rank(M) ≤ k − d/2} ,

where Ik denotes the k × k unit matrix andM ⊆ Fk×(n−k)
q is a rank metric code with dR(M) ≥ d/2.

Note that the generator matrices (M |Ik) are not in reduced row echelon form in general. By replacing Ik
by E(U) for all codewords of a (∆, ?, d, k)q CDC we obtain yet another variant of the lifting idea. One
of the most general versions can be found in [4, Lemma 4.1]:

Lemma 2.8. For a subspace distance d, let n̄ = (n1, . . . , nl) ∈ Nl, where l ≥ 2, be such that
∑l
i=1 ni =

n and ni ≥ k for all 1 ≤ i ≤ l. Let Ci be an (ni, ?, d, k)q CDC andMi be a (k × ni, d2 )q-rank metric
code for 1 ≤ i ≤ l. Then C =

⋃l
i=1 Ci, where

Ci =
{
〈M1| . . . |Mi−1|E(Ui)|Mi+1| . . . |Ml〉 : Ui ∈ Ci,Mj ∈Mj , ∀1 ≤ j ≤ l, i 6= j,

and rk(Mj) ≤ k − d
2 , ∀1 ≤ j < i

}
,

is an (n, ?, d, k)q CDC of cardinality

#C =
l∑
i=1

i−1∏
j=1

#
{
M ∈Mj : rk(M) ≤ k − d

2

} ·#Ci ·
 l∏
j=i+1

#Mj

 .

So, if we assume that theMj are additive MRD codes, then using Equation (7) directly gives:

Corollary 2.9. ([4, Corollary 4.2]) Let d be a subspace distance, n̄ = (n1, . . . , nl) ∈ Nl, and l ≥ 2, be
such that

∑l
i=1 ni = n and ni ≥ k for all 1 ≤ i ≤ l. Then, we have Aq(n, d; k) ≥

l∑
i=1

i−1∏
j=1

1 +

k−d2∑
r=

d
2

a(q, k, nj ,
d
2 , r)


 ·Aq(ni, d; k) ·

 l∏
j=i+1

m(q, k, nj ,
d
2 )

 .

Of course, Lemma 2.8 can also be applied ifMj is not additive or not an MRD code. As an example
we consider the (3 × 4, 3)2 MRD codes classified in [24]. Up to isomorphism there are 7 linear and 30
non-linear such codes. Considering a coset, i.e. adding an arbitrary matrix in F3×4

2 to all codewords,
does not change the minimum rank distance but eventually the rank distribution. Here the occurring rank
distributions are given by 01315, 2739, and 1124311. Rank-metric codes of constant rank with a lower
bound on the minimum rank-distance have been studied in [10] and generalized in [17; 33]. As rank
metric codes with a given minimum rank distance and an upper bound on the occurring ranks pop up
here, we propose the study of their sizes as an interesting open research problem. Improvements for these
rank metric codes can directly result in improved constructions for CDCs.

2.3. Adding additional codewords to CDCs constructed via a skeleton code. In Subsection 2.1 we
have considered the construction of a CDC C as a union of subcodes CVi via a generalized skeleton code
S = {V1, . . . ,Vs}, see Theorem 2.3 for the details. Constructions for the subcodes CVi were the topic of
Subsection 2.2. For special choices of the (generalized) skeleton code S there is additional structure that
allows the addition of further codewords. For an ordinary skeleton code, with nodes corresponding to a
single pivot vector as occurring in the Echelon–Ferrers construction, one can observe that the removal of
some specific dots from a given Ferrers diagram does not decrease the upper bound on the code size from
Theorem 2.7. Those dots are called pending dots and their positions can be used to construct additional
codewords [38]. Ferrers diagrams can also contain several pending dots, which may be pooled to a
so-called pending block allowing more sophisticated additions of codewords, see [37] for the details.
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Here we want to focus on CDCs C = ∪li=1Ci according to Lemma 2.8, where we have the following
structural result.

Lemma 2.10. ([4, Lemma 4.3]) With the same notation used in Lemma 2.8, set σi =
∑i
j=1 nj , 1 ≤ i ≤ l

and σ0 = 0. Let Ei denote the (n − ni)-subspace of Fnq consisting of all vectors in Fnq that have zeroes
for the coordinates between σi−1 + 1 and σi for all 1 ≤ i ≤ l. Then, the elements of Ci are disjoint from
Ei for all 1 ≤ i ≤ l.

Similar as for the Hamming metric we write dS(C, C′) := min{dS(U,U ′) : U ∈ C, U ′ ∈ C′}.

Lemma 2.11. ([4, Lemma 4.4]) Let C be a subspace code as in Lemma 2.8 with corresponding n̄ ∈ Nl,
ā = (a1, . . . , al) ∈ Nl and b̄ = (b1, . . . , bl) ∈ Nl with

∑l
i=1 ai = k,

∑l
i=1 bi = k− d

2 , and d
2 ≤ ai, bi <

ai ≤ ni, for all 1 ≤ i ≤ l. For an integer r, let Dji be (ni, ?, d, ai)q CDCs, for all 1 ≤ i ≤ l and all
1 ≤ j ≤ r, such that dS(Dj1i ,D

j2
i ) ≥ 2ai − 2bi, for all 1 ≤ i ≤ l and all 1 ≤ j1 < j2 ≤ r. Then, there

exists an (n, ?, d, k)q CDC, say D, with cardinality

#D =

r∑
j=1

l∏
i=1

#Dji ,

such that C ∩ D = ∅ and C ∪ D is also an (n, ?, d, k)q CDC.

We remark that we can also take different subcodes as in Lemma 2.11 and combine these codes ex-
ploiting the underlying pivot structure . To this end let D be the code for ā = (a1, . . . , al) and D′ be
the code for ā′ = (a′1, . . . , a

′
l) according to Lemma 2.11. (The corresponding vectors b̄ and b̄′ are not

relevant for the subsequent analysis.) From Lemma 2.1 we conclude

dS(D,D′) ≥
l∑
i=1

|ai − a′i| (12)

and refer to [4] for an example. So, in general we will consider a CDC given by

C = ∪si=1Ci ∪ ∪tj=1Dj , (13)

where s = 2 (and t is rather small) in most applications. The compatibility of the subcodes Ci and Dj
is described in terms of the Hamming distance. For the (known) construction of the subcodes Ci and
Dj itself, rank metric codes play a major role. With respect to constructions for the Dj according to
Lemma 2.11 we remark that for each 1 ≤ i ≤ l, the CDC

⋃r
j=1D

j
i is an (ni, ?, 2ai − 2bi, ai)q CDC.

Partitioning it into subcodes with subspace distance d > 2ai − 2bi is a hard problem in general and was
e.g. considered in the context of the coset construction for CDCs, see [21]. We have a closer look at this
problem in Subsection 3.2. Restricting to lifted MRD codes an analytic construction, using rank metric
codes, was given in [4, Corollary 4.5]:

Corollary 2.12. In Lemma 2.11 one can achieve

#D ≥ min{αi : 1 ≤ i ≤ l} ·
l∏
i=1

m
(
q, ai, ni − ai, d2

)
,

where αi = m(q, ai, ni − ai, ai − bi) /m
(
q, ai, ni − ai, d2

)
.

The work in [4, Section 4] initiated many improved constructions for CDCs. Several of them started
from Lemma 2.10 and improved Lemma 2.11 and Corollary 2.12, see e.g. [14; 16; 30; 33; 34]. We will
briefly discuss this possibility in Subsection 3.3.
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2.4. Special constructions for CDCs. For a few parameters special constructions for CDCs have been
presented in the literature. Since we use some of them in improved constructions for other parameters as
subcodes, we here summarize the necessary details.

Proposition 2.13. ([18; 19; 22]) A2(7, 4; 3) ≥ 333, A3(7, 4; 3) ≥ 6978, and Aq(7, 4; 3) ≥ q8 + q5 +
q4 + q2 − q for q ≥ 2.

Proposition 2.14. ([2; 4; 5; 21])A2(8, 4; 4) ≥ 4801 andAq(8, 4; 4) ≥ q12 +q2(q2 +1)2(q2 +q+1)+1
for q ≥ 2.

Other examples with small parameters, that are not used in in our examples of improved constructions
but are very likely to be contained in similar constructions are:

Proposition 2.15. ([23]) A2((6, 4; 3) = 77 and Aq(6, 4; 3) ≥ q6 + 2q2 + 2q + 1 for q ≥ 2.

Proposition 2.16. ([2]) A2(8, 4; 3) ≥ 1326, A2(9, 4; 3) ≥ 5986, A2(10, 4; 3) ≥ 23870, A2(11, 4; 3) ≥
97526.

In [4, Section 5] another general construction strategy for constant dimension codes, outside of the
here presented scheme, is considered. As an example we mention:

Proposition 2.17. ([29]) Aq(9, 4; 3) ≥ q12 + 2q8 + 2q7 + q6 + 2q5 + 2q4 − 2q2 − 2q + 1 for q ≥ 2.

3. IMPROVED CONSTRUCTIONS

The aim of this section is to highlight the general potential for improved constructions for constant
dimension codes based on general construction strategies presented in the literature. We structure the
different lines of attack into several subsections. In this context we would like to point to the discussion
on rank metric codes with restricted ranks at the end of Subsection 2.2.

3.1. New generalized skeleton codes. Computing good skeleton codes is a hard combinatorial problem.
For recent improvements for the Echelon-Ferrers construction we e.g. refer to [9]. In the context of the
linkage construction similar improvements can be e.g. found in [15; 28]. Taking codes from Subsec-
tion 2.4 as subcodes, only knowing their attained pivot vectors or a superset thereof, as subcodes, can
also lead to (tiny) improvements.

Proposition 3.1. A2(11, 4; 4) ≥ 2383085,A3(11, 4; 4) ≥ 10639658703, andAq(11, 4; 4) ≥ q21 +q17 +
2q15 + 3q14 + 4q13 + q12 + q11 + q9 + q8 + 2q7 + 2q6 + 2q5 + q4 + q2 − q for q ≥ 2.

Proof. We choose a generalized skeleton code S with vertices
((

4
0

)
,
(
7
4

))
, 00010000111, 00010100011, 00011000011,

00011000110, 00100001011, 00100001101, 00100001110, 00100100101, 00100100110, 00100101001, 00101000101, 00110000110, 00110101000,

01100010001, 10000101100, 10001001001, 10011100000 10100000011, and 10100110000, so that

Aq(11, 4; 4) ≥ q21 + q17 + 2q15 + 3q14 + 4q13 + q12 + q11 + q9 + 2q7 + 2q6 + q5 +Aq(7, 4; 4).

Using Aq(7, 4; 4) = Aq(7, 4; 3) and Proposition 2.13 gives the stated results. �

We remark that the previously best known lower bound was given by the Echelon-Ferrers construction
yielding e.g. A2(11, 4; 4) ≥ 2383041 for q = 2.

While listing 19 explicit pivot vectors as elements of a generalized skeleton S is still manageable,
we need a more more compact representation for larger instances. To this end we replace each vector
v ∈ Fn2 by the integer

∑n
i=1 vi · 2n−i. As an example, the integer 24672 corresponds to the vector

110000001100000 ∈ F15
2 . Starting from an integer, the value of n needs to be clear from the context. In

our next example we show that generalized skeleton codes with two vertices corresponding to more than
one pivot vector can also lead to improved constructions.
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Proposition 3.2. A2(15, 4; 4) ≥ 10073483885 and Aq(15, 4; 4) ≥ q33 + q29 + q28 + 3q27 + 2q26 +
3q25 + q24 + q23 + 2q21 + 2q19 + 3q18 + 5q17 + q16 + 4q15 + 6q14 + 11q13 + 10q12 + 13q11 + 11q10 +
8q9 + 4q8 + 3q7 + 2q6 + 2q5 + q4 + q2 − q for q ≥ 2.

Proof. We choose a generalized skeleton code S with vertices
((

8
4

)
,
(
7
0

))
,
((

8
0

)
,
(
7
4

))
, 24672, 6240, 12368, 18512,

20528, 20552, 1632, 10288, 10312, 12328, 24600, 18472, 480, 848, 3140, 6168, 1232, 1328, 1352, 4676, 5156, 5186, 688, 712, 808, 1560, 2596,

2626, 3106, 8516, 9236, 9281, 24582, 1192, 4642, 16580, 16676, 16706, 16916, 16961, 17420, 17426, 17441, 408, 2324, 2369, 3089, 6150,

8356, 8386, 8482, 8716, 8722, 8737, 9226, 12293, 4244, 4289, 4364, 4370, 4385, 4625, 5129, 16546, 16906, 18437, 20483, 1542, 2188, 2194,

2209, 2314, 2569, 8465, 10243, 4234, 16529, 16649, 390, 773, 8329, 1157, 1283, and 643, , so that Inequality (3) and (6) give
Aq(15, 4; 4) ≥ 18727097 +Aq(8, 4; 4) · q21 + q21 + 2q19 + 3q18 + 5q17 + q16 + 4q15 + 6q14 + 11q13 +
10q12 + 13q11 + 11q10 + 8q9 + 3q8 + 3q7 + 2q6 + q5 + Aq(7, 4; 4). Using Aq(7, 4; 4) = Aq(7, 4; 3),
Proposition 2.13, and Proposition 2.14 gives the stated result. �

We remark that the previously best known lower bound was given in [28] with e.g. A2(15, 4; 4) ≥
10073483841 for q = 2.

3.2. Improved packings. Our next starting point for improved constructions is Lemma 2.11. As an
example we consider the parameters l = 2, n1 = 5, n2 = 5, a1 = 2, a2 = 3, b1 = 1, and b2 = 2, i.e.,
we are aiming at a lower bound for Aq(10, 4; 5). Lemma 2.8 and Corollary 2.9 give a (10, ?, 4, 5)q CDC
C with

#C = q20 + [ 5
2 ]q ·

(
q10 − q7 − q6 + q2 + q − 1

)
+ 1, (14)

i.e., #C = 1178312 for q = 2. For our specific choice n̄ = (n1, n2) = (5, 5), ā = (a1, a2) = (2, 3), and
b̄ = (b1, b2) = (1, 2) Corollary 2.12 gives a (10, ?, 4, 5)q CDCD such that C∩D = ∅ and dS(C∪D) ≥ 4,
where #D ≥ q9, i.e., #D ≥ 512 for q = 2. Going back to Lemma 2.11 the actual conditions are that
the Dj1 are (5, ?, 4, 2)q CDCs for all 1 ≤ j ≤ r with dS(Dj1,D

j′

1 ) ≥ 2 for all 1 ≤ j < j′ ≤ r and
that the Dj2 are (5, ?, 4, 3)q CDCs for all 1 ≤ j ≤ r with dS(Dj2,D

j′

2 ) ≥ 2 for all 1 ≤ j < j′ ≤ r.

Setting Dj2 =
(
Dj1
)⊥

it suffices to give a construction for the Dj1. The condition dS(Dj1,D
j′

1 ) ≥ 2 for

all 1 ≤ j < j′ ≤ r just says that we can pack each of the [ 5
2 ]q = q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

2-dimensional subspaces of F5
q into at most one Dj1. So, let L be the set of all [ 5

2 ]q 2-dimensional
subspaces of F5

q and j = 1. Now we iteratively and greedily select some large (5, ?, 4; 2)q-subcode
Dj1 from L, remove the codewords from Dj1 from L, and increase j by 1 until L is empty. As a result
we obtain 14 codes with #Dj1 = 9 and one code Dj1 for each cardinality in {1, 2, 5, 6, 7, 8}. Note
that 14 · 9 + 8 + 7 + 6 + 5 + 2 + 1 = 155 and 14 · 92 + 82 + 72 + 62 + 52 + 22 + 12 = 1313,
so that A2(10, 4; 5) ≥ 1178312 + 1313 = 1179625. Since A2(5, 4; 2) = 9 we have #Dj1 ≤ 9 and⌊
[ 5
2 ]2 /9

⌋
= 17 implies that at most 17 Dj1 can have the maximum cardinality 9. From 155− 17 · 9 = 2

we conclude
∑r
j=1

(
#Dj1

)2

≤ 17 · 92 + 22 = 1381.

Definition 3.3. Let l ≥ 2, d ≥ 2 with d ≡ 0 (mod 2), n̄ = (n1, . . . , nl) ∈ Nl, n :=
∑l
i=1 ni,

ā = (a1, . . . , al) with ai ≥ d/2 for all 1 ≤ i ≤ l, and k =
∑l
i=1 ai. Let Fi denote the subspace spanned

by the unit vectors eh for
∑i−1
j=1 nj < h ≤

∑i
j=1 nj , where 1 ≤ i ≤ l. By Eq(n̄, ā, d) we denote

denote the maximum cardinality M of an (n,M, d, k)q CDC D such that every codeword U ∈ D satisfies
dim(U ∩ Fi) = ai for 1 ≤ i ≤ l.

So, we e.g. have Eq
(
(5, 5), (2, 3), 4

)
≥ q9 and E2

(
(5, 5), (2, 3), 4

)
≥ 1313. The general construction

strategy in our situation can be described as

Aq(10, 4; 5) ≥ Aq

(
10, 4; 5;

(
5

5

)
,

(
5

0

))
+Aq

(
10, 4; 5;

(
5

≤ 2

)
,

(
5

≥ 3

))
+Eq

(
(5, 5), (2, 3), 4

)
. (15)
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The advantage of such a description is that the three parts can be considered separately.
In order to improve upon Corollary 2.12 in general we have to introduce a bit more notation and state

the key observation of its proof.

Lemma 3.4. (C.f. [30, Lemma 2.5] and the proof of [4, Corollary 4.5]) Let F be a Ferrers diagram and
M be a corresponding linear FDRM code with minimum rank distance δ. IfM is a subcode of a linear
FDRM codeM′ with minimum rank distance δ′ < δ and Ferrers diagram F , then there exist FDRM codes
Mi with Ferrers diagram F for 1 ≤ i ≤ r := #M′/#M satisfying

(1) dR(Mi) ≥ δ for all 1 ≤ i ≤ r;
(2) dR(Mi,Mj) ≥ δ′ for all 1 ≤ i < j ≤ s; and
(3) M1, . . . ,Mr is a partition ofM′.

Proof. For each M ′ ∈ M′ the codeM+M ′ := {M +M ′ : M ∈ M} is FDRM with Ferrers diagram
F and minimum rank distance δ. For M ′,M ′′ ∈M′ we have M ′ +M = M ′′ +M iff M ′ −M ′′ ∈M
and M ′ +M∩M ′′ +M = ∅ otherwise. Now letM1, . . . ,Ms be the s = #M′/#M different codes
M +M, which are cosets ofM inM′ and partitionM′. Since all elements ofMi andMj are different
elements ofM′ we have dR(Mi,Mj) ≥ δ′ for all 1 ≤ i < j ≤ r. �

Choosing F as a× b rectangular Ferrers diagram, we end up with [30, Lemma 2.5]. In the proof of [4,
Corollary 4.5] this lemma is indirectly applied with a = ai and b = ni − ai. By m(q,F , dR) we denote
the maximum cardinality of an FDRM code with Ferrers diagram F and minimum rank distance dR. This
generalizes the notion ofm(q,m, n, dR) for the cardinality of MRD codes choosingF asm×n rectangular
Ferrers diagram. Note that for minimum rank distance δ = 2 the upper bound from [7, Theorem 1], c.f.
Theorem 2.7, can always be attained by linear rank metric codes. Moreover, the only choice for δ′ then
is δ′ = 1 andM′ consists of all matrices with Ferrers diagram F . Thus,M′ is automatically linear and
containsM as a subcode.

Now we are ready to describe the link to Lemma 2.11. We write F ∈ G1(ni, ai) for a Ferrers diagram
whose pivot vector is contained in G1(ni, ai). Let F be such a Ferrers diagram. We apply Lemma 3.4 for
δ = 2 and δ′ = 1. With the correspondingMj for 1 ≤ j ≤ r := m(q,F , 1)/m(q,F , 2) we can set

Dji = {〈Iai |M〉 : M ∈Mj} (16)

for 1 ≤ j ≤ r. For the sake of simplicity, let us restrict to the parameters l = 2, n1 = n2, and a1 = a2.
By choosing

D = ∪rj=1

{
U × U ′ : U ∈ Dj1, U ′ ∈ D

j
2

}
(17)

we obtain a codeD of cardinalitym(q,F , 1)·m(q,F , 2) that goes in line with the conditions of Lemma 2.11.
Choosing F as a rectangular Ferrers diagram of maximum shape gives Corollary 2.12. However, for min-
imum subspace distance d = 4 we can choose the union of these codes for all possible Ferrers diagrams:

Proposition 3.5.
Eq((n

′, n′), (a′, a′), 4) ≥
∑

F∈G1(n′,a′)

m(q,F , 1) ·m(q,F , 2)

For n′ = 5 and a′ = 2 we obtain, see Table 1 for the details,

Eq((5, 5), (2, 2), 4) ≥ q9 + q7 + q6 + q5 + q4 + q3 + 2q2 + q + 1, (18)

so that e.g. E2((5, 5), (2, 2), 4) ≥ 771.

If we choose Dj2 =
(
Dj1
)⊥

, as done at the beginning of this subsection, we obtain:

Proposition 3.6.

Eq((n
′, n′), (a′, n′ − a′), 4) ≥

∑
F∈G1(n′,a′)

m(q,F , 1) ·m(q,F , 2)
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pivot vector size m(q,F , 2) # of cosets m(q,F , 1)/m(q,F , 2)
11000 q3 q3

10100 q2 q3

10010 q q3

10001 1 q3

01100 q2 q2

01010 q q2

01001 1 q2

00110 1 q2

00101 1 q
00011 1 1

TABLE 1. Data for Lemma 3.4 with F ∈ G1(5, 2).

For our specific parameters we obtain

Eq((5, 5), (2, 3), 4) ≥ q9 + q7 + q6 + q5 + q4 + q3 + 2q2 + q + 1, (19)

so that e.g. E2((5, 5), (2, 3), 4) ≥ 771.
Let us consider the initial packing or partitioning problem again, i.e., pack or partition the [ 5

2 ]q 2-
dimensional subspaces of F5

q into CDCs Dj1 with dS(Dj1) ≥ 4. In Proposition 3.5 and Table 1 the Dj1 all
have the same pivot vector. Combining codewords with pivot vector 11000 with those with pivot vector
00110 allows us to choose #Dj1 = q3 + 1. However, we can choose only min

{
q3, q2

}
= q2 translates,

i.e., different corresponding indices j. This leaves q3 − q2 translates for the pivot vector 11000. Using
the packing scheme from Table 2 we obtain:

Proposition 3.7.
Eq((5, 5), (2, 2), 4), Eq((5, 5), (2, 3), 4) ≥ q9 + q7 + q6 + 7q5 + 5q4 + 3q3 + 2q2 + q + 1

For q = 2 we obtain E2((5, 5), (2, 2), 4), E2((5, 5), (2, 3), 4) ≥ 1043. Since 1043 is much smaller
than 1313, there still seems to be a lot of space for improvements for general field sizes q.

skeleton code size # of used cosets
{11000, 00110} q3 + 1 q2

{11000, 00101} q3 + 1 q
{11000, 00011} q3 + 1 1
{11000} q3 q3 − q2 − q − 1
{10100, 01010} q2 + q q2

{10100, 01001} q2 + 1 q2

{10100} q2 q3 − 2q2

{01100, 10010} q2 + q q2

{10010} q q3 − q2

{10001} 1 q3

TABLE 2. Packing scheme for Proposition 3.7.

Combining Inequality (15) with Proposition 3.7 gives:

Corollary 3.8.
Aq(10, 4; 5) ≥ q20 + [ 5

2 ]q ·
(
q10 − q7 − q6 + q2 + q − 1

)
+ 1

+q9 + q7 + q6 + 7q5 + 5q4 + 3q3 + 2q2 + q + 1
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Let us consider an improved construction for Aq(12, 6; 6) as a second example. Here the desired
minimum subspace distance is strictly larger than 4, so that we cannot apply Proposition 3.5. However,
we again end up with some kind of packing problem where we can state a slightly improved construction
being parametric in the field size q. We choose l = 2, n̄ = (6, 6) in Lemma 2.8 and Corollary 2.9. Taking
Lemma 2.10 and Lemma 2.11 into account we have

Aq(12, 6; 6) ≥ Aq

(
12, 6; 6;

(
6

6

)
,

(
6

0

))
+Aq

(
12, 6; 6;

(
6

≤ 3

)
,

(
6

≥ 3

))
+Eq

(
(6, 6), (3, 3), 6

)
. (20)

We remark that the previously best known lower bound for Aq(12, 6; 6), described in [4], indirectly gives
Eq((6, 6), (3, 3), 6) ≥ q9 + 2q3. The corresponding packing problem is the following. Let B be an
(6, ?, 4, 3) CDC that is partitioned into (6, ?, 6, 3) CDCs Bj for 1 ≤ j ≤ r, where r ≥ 1 is a suitable
integer. Then, by choosing Dj1 = Bj and Dj2 = Bj Lemma 2.11 gives

Eq((6, 6), (3, 3), 6) ≥
r∑
j=1

(
#Bj

)2
.

The pivot vector 111000 gives codes of size q3 in q3 different cosets and the pivot vector 000111 gives a
code of size 1 in exactly 1 coset. So, choosing B1 with skeleton code {111000, 000111} gives #B1 =
q3 + 1 and the other q3 − 1 cosets for 111000 give codes with #Bj = q3 for 2 ≤ j ≤ q3. Thus, we have

Eq((6, 6), (3, 3), 6) ≥ q9 + 2q3 + 1

and combining Inequality (20) with Corollary 2.9 gives:

Proposition 3.9.

Aq(12, 6; 6) ≥ q24 + q15 + q14 + 2q13 + 3q12 + 3q11 + 3q10 + 3q9 + q8

−q7 − 2q6 − 3q5 − 3q4 − q3 − 2q2 − q

Note that B = ∪j = 1q
3

Bj has size q6+1, which is not too large compared to the known lower bounds
for Aq(6, 4; 3), see Proposition 2.15

From the general point of view we propose the following challenging research problem. For given
parameters n, d, d′, k, and q construct a (n, ?, d, k) CDC B and a partition of B into (n, ?, d′, k) CDCs Bj ,
where 1 ≤ j ≤ r for some integer r, such that

r∑
j=1

(
#Bj

)2
(21)

is as large as possible. Provide lower and upper bounds for (21).
For n = 6, d = 4, d′ = 6, k = 3, and q = 2 we have A2(6, 4; 3) = 77 and A2(6, 6; 3) ≤ 9 so that the

sum in (21) is upper bounded by 8·92+52 ≤ 673 while our best lower bound is just 1·92+7·82 = 529. It
is indeed possible to have several subcodes Bj of maximum possible cardinality 9. However, it is unclear
if this comes at the cost of many subcodes Bj with small cardinalities.

3.3. Exploiting Lemma 2.10 for small subspace distances. While Lemma 2.11 has the advantage that
it allows computations in ambient spaces much smaller than the original ambient space, it has the big
drawback that it is too wasteful if the desired minimum subspace distance is rather small. If we e.g.
consider lower bounds for Aq(12, 4; 6) and apply Lemma 2.8 and Corollary 2.9 and with n̄ = (6, 6), then
suitable choices for ā in Lemma 2.11 are (2, 4), (3, 3), and (4, 2). While we can combine ā = (2, 4) with
ā = (4, 2) due to Inequality (12), it turns out, see Section 4, thatEq((6, 6), (2, 4), 6), Eq((6, 6), (4, 2), 6),
and Eq((6, 6), (3, 3), 6) all are rather small.

Given the notation from Lemma 2.10 the codewords U of the additional subcodeD only have to satisfy
dim(U ∩ Ei) ≥ d/2 for all 1 ≤ l ≤ 2. For our chosen parameters it is sufficient if dim(U ∩ E1) =
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dim(U ∩E2) = 2, so that (U ∩E1)× (U ∩E2) is only a rather small part of U , which allows additional
freedom. Here we generalize Definition 3.3 to:

Definition 3.10. Let l ≥ 2, k ≥ 1, d ≥ 2 with d ≡ 0 (mod 2), n̄ = (n1, . . . , nl) ∈ Nl, and n :=∑l
i=1 ni. Set σi =

∑i
j=1 nj for 1 ≤ i ≤ l and σ0 = 0. With this, let Ei denote the (n − ni)-subspace

of Fnq consisting of all vectors in Fnq that have zeroes for the coordinates between σi−1 + 1 and σi for all
1 ≤ i ≤ l. By Eq(n̄, d; k) we denote denote the maximum cardinality M of an (n,M, d, k)q CDCD such
that every codeword U ∈ D satisfies dim(U ∩ Ei) ≥ d/2 for 1 ≤ i ≤ l.

With this we can state

Aq(12, 4; 6) ≥ Aq

(
12, 4; 6;

(
6

6

)
,

(
6

0

))
+Aq

(
12, 4; 6;

(
6

≤ 4

)
,

(
6

≥ 2

))
+Eq

(
(6, 6), 4; 6

)
. (22)

We remark that e.g. [30, Theorem 2.6] gives

E2((6, 6), 4; 6) ≥ 2154496.

Further improvements can e.g. be found in [34].

4. UPPER BOUNDS

In an (n, ?, d, k) CDC C no two codewords can contain the same (k − d/2 + 1)-dimensional subspace
F , so that

Aq(n, d; k) ≤

[ n
k−d/2+1

]
q[

k
k−d/2+1

]
q

, (23)

since there are only
[ n
k−d/2+1

]
q

such subspaces F and each codeword uses
[

k
k−d/2+1

]
q

of them. In-

equality (23) is also known as the anticode bound, see e.g. [8].
We can refine the argument by counting subspaces per pivot vector. So for v ∈ G1(n, k) let F de-

note the corresponding Ferrers diagram. By m(q,F , 1) we have denoted the number of k-dimensional
subspaces U of Fnq with pivot vector v. Instead of m(q,F , 1) we also directly write m(q, v, 1). If T is
a t-dimensional subspace of U , then the pivot vector of T satisfies p(T ) ∈ G1n, t and supp(v(T )) ⊆
supp(v), where supp(v) := {1 ≤ i ≤ n : vi 6= 0} denotes the support of v = (v1, . . . , vn) ∈
Fn2 . The [ kt ]q subspaces T of U split differently on the different pivot vectors v′ ∈ G1(n, t) with
supp(v′) ⊆ supp(v). Nevertheless the corresponding numbers only depend on v and v′ so that we
denote by m(q, v, v′, 1) the number of subspaces T of an arbitrary but fixed subspace U of Fnq with
p(T ) = v′ and p(U) = v. If supp(v′) 6⊆ supp(v), then m(q, v, v′, 1) = 0 by definition. Otherwise we
have

m(q, v, v′, 1) = m(q, ṽ, 1), (24)

where ṽ denotes the restriction of v′ to supp(v). As an example we consider a subspace U with pivot
vector v = (1101100). Here we have

m(q, v, 1100000) = q4, ṽ = 1100,

m(q, v, 1001000) = q3, ṽ = 1010,

m(q, v, 1000100) = q2, ṽ = 1001,

m(q, v, 0101000) = q2, ṽ = 0110,

m(q, v, 0100100) = q, ṽ = 0101, and
m(q, v, 0001100) = 1, ṽ = 0011.
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Proposition 4.1. For V ⊆ G1(n, k) we have that Aq(n, d; k;V) is upper bounded by the maximum target
value of the integer linear program (ILP) maximizing∑

v∈V
av (25)

subject to the constraints ∑
v∈V

av ·m(q, v, v′, 1) ≤ m(q, v′, 1) (26)

for all v′ ∈ G1(n, k − d/2 + 1), where av ∈ N .

Proof. Let C be a CDC attaining Aq(n, d; k;V). By av we denote the number of codewords of C with
pivot vector v, so that the target function

∑
v∈V av equals the cardinality #C. Since each codeword with

pivot vector v contains exactlym(q, v, v′, 1) (k−d/2+1)-dimensional subspaces T with pivot vector v′,
no two codewords can contain the same such subspace T , and there are exactlym(q, v′, 1) such subspaces
in Fnq , all inequalities for v′ ∈ G1(n, k − d/2 + 1) are satisfied. �

Of course we can relax the integrality conditions av ∈ N to av ∈ R≥0, in order to obtain a linear
program (LP), or add additional inequalities

∑
v∈V′ av ≤ Aq(n, d; k;V ′) for subsets V ′ ⊆ V and known

upper bounds Aq(n, d; k;V ′) for Aq(n, d; k;V ′).

We remark that the special case V =
((

m
≤k−d/2

)
,
(
n−m
≥d/2

))
of Proposition 4.1 was also treated in [27],

where m ≥ k is an additional parameter.
Similar ideas can also be applied to our other descriptions of subcodes. So, let parameters l, n̄, ā, d,

and k =
∑l
i=1 ai as in Definition 3.3 be given.

Proposition 4.2. Let c̄ = (c1, . . . , cl) ∈ Nl with ci ≤ ai for 1 ≤ i ≤ l and
∑l
i=1 ci = k − d/2 + 1.

Then, we have

Eq(n̄, ā, d) ≤
∏l
i=1 [ ni

ci ]q∏l
i=1 [ aici ]q

(27)

Proof. Let the Fi, where 1 ≤ i ≤ l, as in Definition 3.3 and F be an (k−d/2 + 1)-dimensional subspace
of Fnq with dim(F ∩ Fi) = ci for 1 ≤ i ≤ l. As observed for the anticode bound, no two codewords can
contain the same subspace F . Since the total number of such subspaces is given by

∏l
i=1 [ ni

ci ]q and each

codeword contains
∏l
i=1 [ aici ]q such subspaces, the upper bound follows. �

For l = 1 the statement is equivalent to Inequality (23). As an example we consider n̄ = (6, 6),
ā = (2, 4), d = 4, and q = 2. For c̄ = (1, 4) we obtain

E2((6, 6), (2, 4), 4) ≤
[ 6
1 ]2 · [ 6

4 ]2
[ 2
1 ]2 · [ 4

4 ]2
= 13671.

Similarly, we obtain
E2((6, 6), (4, 2), 4) ≤ 13671

and
E2((6, 6), (3, 3), 4) ≤ 129735

for c̄ = (2, 3). Note thatE2((6, 6), (2, 4), 4)+E2((6, 6), (4, 2), 4)+E2((6, 6), (3, 3), 4) ≤ 157077 while
E2((6, 6), 4; 6) ≥ 2154496.

For l = 2 we can also deal with the situation of Definition 3.10. Note that the k-dimensional codewords
U have to intersect the disjoint spaces E1 and E2 in dimensions at least d/2 each. Thus for each (k −
d/2 + 1)-dimensional subspace T of U we have dim(T ∩ E1) + dim(T ∩ E2) ≥ d/2 + 1, so that:
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Proposition 4.3. For parameters as in Definition 3.10 with l = 2 we have Eq(n̄, d; k) ≤

#
{
T ≤ Fnq : dim(U) = k − d/2 + 1,dim(T ∩ E1) + dim(T ∩ E2) ≥ d/2 + 1

}[
k

k−d/2+1

]
q

.

We propose it as an open problem to formulate an upper bound for Eq(n̄, d; k) similar to the one in
Proposition 4.1, i.e., to take the different possibilities of the dimensions of the intersections dim(U ∩Ei)
and dim(T ∩ Ei) into account.

As a further line of research we would like to remark that the anticode bound from Inequality (23) can
be sharpened to the so-called Johnson bound

Aq(n, d; k) ≤
⌊

(qn − 1) ·Aq(n,−1, d; k − 1)

qk − 1

⌋
(28)

if k ≥ 2, see e.g. [8; 39]. If Inequality (28) is applied iteratively without rounding down, then we
end up with Inequality (23), see e.g. [20; 39]. Using the theory of qr-divisible linear codes over Fq
with respect to the Hamming distance, Inequality (28) was further tightened in [25, Theorem 12]. Ap-
plied iteratively, it constitutes the tightest known upper bound for Aq(n, d; k) when k < d/2 and
(q, n, d, k) 6= (2, 6, 4, 3), (2, 8, 6, 4). So, the question arises if the underlying ideas of Inequality (28)
and its tightening in [25, Theorem 12] can also be applied to conclude improved upper bounds for
Aq(n, d; k;V), Eq(n̄, ā, d), and Eq(n̄, d; k).
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