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This thesis focuses on new approaches to customer relationship management (CRM) in online fash-

ion retail. For this purpose, this thesis turns to two essential and current CRMs and further develops 

existing methodical approaches.  

The first part of this thesis presents two papers examining the customer-company interface. How 

the penalty reward contrast analysis (PRCA) behaved with skewed response distributions was in-

vestigated. This circumstance partially led to misinterpretation of the results, and a cubic regression 

was applied to avoid. Another paper examining new approaches in returns management from the 

customer perspective is presented. For the first time in the literature, this paper presents the exami-

nation of the entire customer journey to derive valuable insights. It is shown, among other things, 

that the expectations of current mail-order customers continue to be ineffective, different dynamics 

exist, and future differentiation potentials can be identified. 

The second part turns to the optimization of direct marketing campaigns. For the third paper pre-

sented, previously established uplift modeling applications are discussed, and shortcomings pointed 

out. These shortcomings were transferred to a profit perspective by applying three statistical meth-

ods (Heckman sample selection model, zero-inflated negative binomial regression model, and ran-

dom forest-based regression) and adapting the previous procedure. This third paper makes an es-

sential contribution, as its research applied the modeling of continuous values to a real-world da-

taset, and the paper calls for a stronger focus on continuous variables, profit, and return on invest-

ment (ROI). The fourth paper considered the influence of different marketing campaign costs on 

uplift modeling's validity, respectively, to estimate the causal effect. Current research has exces-

sively focused on cost per contact, which has led to a failure of the method in the presence of, for 

example, respond-variable costs. The optimal approach based on typical cost constellations was 
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examined. These insights led to far-reaching adjustments of the established method and a generali-

zation of currently applied performance measurements. 

This thesis addresses current and essential CRM methods by presenting four research papers, dis-

cussing their weaknesses, and presenting improvements for the methods used. It thus makes an 

essential contribution to research and further provides practitioners with essential insights and im-

provements. 
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1. Motivation 

The consistent orientation of a company towards its customers is nowadays an established part of 

corporate management due to the advent of relationship marketing in the 1990s, which led to cus-

tomer relationship management (CRM) in the 2000s (e.g., Payne and Frow 2005; Bruhn 2016). 

Despite this lengthy time, CRM continues to be dynamically developed; therefore, particularly in 

recent years, there has been much movement in this area. However, what are the most relevant 

topics in CRM today, particularly for fashion retail online? A recent study has shown that “80% of 

customers say the experience a company provides is as important as its products and services”, and 

“fifty-seven percent of customers have stopped buying from a company because a competitor pro-

vided a better experience” (Salesforce 2018, p. 8). Furthermore, in another study, Forrester (2020) 

has stated that “customer experience (CX) is still king in 2020”, and CRM is the core technology 

for customer engagement. Although customer orientation and CRM have been established concepts 

for years, they are increasingly important. Particularly in a buyer’s market with a high purchase 

frequency and comparatively low switching costs, such as with online retail fashion, customers are 

no longer willing to accept inadequate or ordinary service. In addition to the general need to ensure 

customer satisfaction, the management of returns is of paramount importance. Particularly in the 

online retail fashion sector, a 50% return rate is common. This high rate means that half of the 

ordered clothing is returned to the distributor. This circumstance is a great challenge for the cus-

tomer, the retailer, and the environment. Enhancement in this field, therefore, would lead to an 

improvement for all three involved parties. 

Significant challenges can be further identified in another field of CRM. Two real-world data sets 

from a fashion retailer in Germany have shown that the marketing efficiency of direct marketing 
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measures such as discount mailings is only approximately 70%. In other words, nearly one-third of 

marketing campaign costs have no measurable effect on sales. A look at the data shows that about 

one-third of mailing customers' sales are additionally made in the control group. This baseline sale 

is not caused by the marketing campaign itself but results from other preceding measures. A more 

ideal prediction of customer behavior, more precisely whether a customer is likely to buy, including 

without a campaign, represents the second part of this thesis. Based on the available literature, it 

can be assumed that this problem has been found with other retailers and industries as well. 

Following from these priorities, in this thesis, four full research papers are presented that have ad-

dressed two essential domains of CRM; therefore, this thesis is divided into two parts: 

Part A focuses on the optimal allocation of resources regarding their impact on customer satisfac-

tion. The first paper has dealt with the multi-factor theory in customer satisfaction measurement. It 

can be seen how the established penalty reward contrast analysis (PRCA) method fails when a ma-

jority of customers are satisfied or delighted with a service. This first paper developed an alternative 

method and proved the robustness regarding skewed distributions in a direct method comparison. 

The second paper has focused on return management as an integral part of the customer experience 

in online retail fashion. This second paper has extended current theory through a comprehensive 

view of return management, the presentation of new technological approaches for return averting 

and avoidance, and showing the measures’ diffusion, with the so-called segmented Kano perspec-

tive (Baier et al. 2018). This paper included current technological possibilities and explored how 

much differentiation potential existed in different measures. 

Part B of this thesis is dedicated to the optimal selection of direct marketing campaigns. The two 

papers have critically examined a particular method known as uplift modeling or causal effect mod-

eling. This discipline enhances response-modeling approaches by predicting the response to treat-

ment and the reaction to the absence of treatment. In recent decades, this problem has been nearly 

exclusively labeled as a classification problem. Examining the two papers, it can be seen that this 

restricted view is insufficient and has, further, led to the method’s failure. These papers have 
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emphasized the prediction of discrete values, and for the first time in the literature, this method has 

been embedded in cost and activity accounting. This holistic assessment has resulted in far-reaching 

adjustments to the previous approach, starting with new measurement methods and ending with 

different modeling strategies. 

The postulation and embedding of the four research questions into the context of the various CRM 

fields follow in Section 3. 

2. Theoretical Background 

The role of marketing has been subject to different perspectives in prior decades (Meffert et al. 

2008; Bruhn 2009): In the 1950s and 1960s, marketing concentrated on products, and, in the 1970s 

and 1980s, marketing concentrated on markets and competitors, respectively. From the 1990s on-

wards, the reference point changed from a company or market view to a customer view (e.g., Bruhn 

2016). The customer and its needs have increasingly become the starting point for business deci-

sions. During this time, customers learned to emancipate themselves and make entirely different 

demands towards companies and their products and services. Customers can no longer be catego-

rized into homogeneous groups, referred to as hybrid consumption (e.g., Ehrnrooth and Gronroos 

2013). Customers increasingly have different expectations for different products. For example, it is 

not unusual for a customer to set the highest value on quality and taste in food but choose low-cost 

clothing. This heterogeneity has become a significant challenge for companies. 

A preliminary stage of CRM is relationship marketing (approximately 1990). In the early days, this 

involved establishing and maintaining a customer relationship with the company (Morgan and Hunt 

1994; Webster Jr 1992). With a new institutional approach, economic theory was introduced to 

explain the development and break-up of customer relationships, for example, transaction cost the-

ory (Rindfleisch and Heide 1997). The basic assumption of relationship marketing is that managing 

the customer relationship is beneficial for the firm (Reichheld et al. 1996; Reichheld et al. 2000). 

However, it was later discovered that the customer relationship (loyalty) does not necessarily lead 
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to more profit (Reinartz and Kumar 2000; Reinartz and Kumar 2002). This insight led to CRM’s 

development in the 2000s and included further success criteria for a customer relationship. Recent 

approaches have focused on the customer lifetime value (CLV), that is, all the value of a customer 

throughout the customer relationship, alternatively called the customer equity (value of the entire 

customer base) (e.g., Gupta et al. 2006). Successful companies have increasingly distinguished 

themselves by identifying customer-related insights more quickly and deriving and implementing 

appropriate actions.  

The term “CRM” is defined differently by many sides; software providers, in particular, tend only 

to consider the application. For this thesis, however, CRM is defined in the broader sense, namely, 

as the company’s task of gaining an advantage from customer understanding. Kumar and Reinartz 

(2018, p. 5) summarize the task of CRM (similar to Zeithaml et al. 2001) as follows: 

“CRM is the strategic process of selecting customers that a firm can most 

profitably serve and shaping interactions between a company and these 

 customers. The ultimate goal is to optimize the current and future value of 

customers for the company.“ 

CRM’s task is to identify different customer needs and customer segments then develop concepts 

tailored to these needs. All these considerations are based on an essential concept: the customer’s 

value to the company. In addition to campaign effectiveness and efficiency, customer value pro-

vides a key indicator for customer segmentation. In this context, customer value is primarily con-

sidered from a monetary perspective. 
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3. Research Agenda 

In order to outline the broad field of CRM, Reinartz et al. (2004; Kumar and Reinartz 2018) suggest 

the covering of three primary areas of application: 

Customer-facing level or frontstage 

The customer-facing level describes the collection and processing of customer information 

to make appropriate deductions regarding tactics or strategies. The concept of the cus-

tomer’s single view is the focus here. Only from this holistic perspective can customers be 

systematically managed. The data is collected at the boundary between the company and 

the customers, and the derived measures can be re-experienced at this boundary. This field 

additionally encompasses measuring customer satisfaction and the subsequent derivation of 

the optimal deployment of resources. Due to its close association with service marketing, 

this level can be described as the “frontstage.” 

Functional level or backstage 

The functional level includes all the processes that have customer-related tasks. This level 

has a clear focus on processing the customer relationship. These are applications within the 

company that are intended to support sales personnel or marketing managers in their work. 

These tasks can be electronic forms for capturing leads from exhibitions or technologically 

sophisticated algorithms for selecting marketing campaigns. Providers of CRM software 

frequently only focus on these applications; consequently, CRM is generally used synony-

mously with the functional level at this point. Here, no direct interaction with the customer 

occurs, but the gathering, processing, and providing information related to the customer 

occurs. Therefore, this area can additionally be called the “backstage.” 

Strategic level 

The strategic level considers the implementation and use of customer knowledge throughout 

the organization and establishes customer-centricity. It addresses business management is-

sues that are consistently free of technological dependencies. Alternatively, Stauffer (2001) 
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describes this level as follows: “[…]. It’s letting customers determine how you organize” 

(Galbraith 2005, p. 6). 

This thesis deals with practical questions from the frontstage (customer-facing) and backstage 

(functional) levels and develops the existing methods that had been applied in the literature thus far. 

The strategic level is not examined for this thesis. 

Following the insights of Salesforce (2018) and Forrester (2020), these research questions were 

addressed: 

Part A—Frontstage 

RQ1—“How do skewed distributions in the response behavior of service satisfaction surveys 

influence the validity of the penalty reward contrast analysis (PRCA), and how can this be 

avoided?”. This has been assessed by Research Paper #1. 

RQ2—“Which measures in return management currently show the highest potential in terms 

of increasing customer satisfaction and differentiation, and what further insights can be 

gained when the return process is viewed holistically?”. This has been assessed by Research 

Paper #2. 

Part B—Backstage 

RQ3—“Which statistical method is best suited to optimize profit in direct marketing cam-

paigns using uplift modeling regarding the prediction of continuous values?”. This has been 

assessed by Research Paper #3. 

RQ4—“How can direct marketing campaigns be optimized in terms of return on investment 

(ROI), taking into account different marketing campaign cost structures?”. This has been as-

sessed by Research Paper #4. 
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This thesis includes four full research papers that were published or are under review in renowned 

international journals. Each paper has investigated one specific research question and has contrib-

uted to the research mentioned above (Fig. 1). 

Fig.  1  CRM area of  app l ica t ion along the customer journey  and posi t ion ing of  the research 

papers  

As shown in Figure 1, the first research paper has covered the entire customer journey, as an im-

provement in the method of measuring customer satisfaction can be applied to all touchpoints. Re-

search Paper #2 has further extended across the entire purchasing process since a significant con-

tribution of this paper is that it has dealt with the emergence of returns in the presales phase through 

to the actual return at the end of the purchase process, thus enabling the direct comparability of the 

measures. Research Papers #3 and #4 have focused on the presales phase. The optimization of cus-

tomer selection for marketing campaigns is carried out without the customers’ direct involvement 

and is designed to initiate a purchase efficiently. 

Frontstage 

Backstage 

Presales Ordering Fulfilment Returning 

Research Paper 3:  

Maximizing Profit from 

Direct Marketing Cam-

paigns: Profit Uplift 

Modeling Approaches for 

Online Shops 

Research Paper 1: Penalty Reward Contrast Analysis (PRCA) for 

Categorizing Service Components: A New Approach 

Touchpoints 

Research Paper 4:  

A Better Understanding 

of Cost-related Depend-

encies in the Estimation 

of the Causal Effects in 

Direct Marketing Cam-

paigns 

Research Paper 2: New Insights in Online Fashion Retail Returns 

from a Customers’ Perspective and Their Dynamics 
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3.1 Part A—Frontstage 

The task of a CRM, here, is to obtain a holistic or singular view of the customer (single point of 

truth) to consistently control marketing channels and messages, leading to the appropriate deploy-

ment of resources. The emphasis here is on the holistic customer experience. In the final step, the 

marketing intelligence thus gained must be distributed to all customer-facing functions for the feed-

back loop to restart once more. New measures result in new data and new insights. 

In order to conceptualize CRM in terms of the frontstage or customer-facing level, several refer-

ences can be found in the literature. The primary task is to establish and maintain a customer rela-

tionship (Morgan and Hunt 1994; Webster Jr 1992); the company and the customer enter into a 

conscious association. The next assumption is that those customer relationships are not static inde-

pendent events but develop dynamically (Dwyer et al. 1987). Therefore, CRM further contains a 

time series in which events build upon and influence each other, and companies should proactively 

manage customer interactions at each stage of the lifecycle in a different customer-individual way 

(Srivastava et al. 1998). Fourthly, the value arising for a company from the customer relationship 

is not equally distributed throughout the entire customer base (Mulhern 1999; Niraj et al. 2001). 

There must be a product-related dimension and a customer-related dimension (customer value) in 

cost and activity accounting. 

In this environment, Paper #1 has investigated the relationship between satisfaction with a service 

or touchpoint and a company’s overall satisfaction, which is frequently non-linear. Kano (1984) has 

illustrated this relationship and pointed to the effects on the strategy to be adopted. Based on this 

understanding, the measurement of customer satisfaction has shifted to the determination of this 

non-linearity. At this point, services or touchpoints are no longer in the concept stage. Mikulić and 

Prebežac (2011) have described that, in this context, the PRCA (Brandt 1987) is suitable. The ap-

plication of the PRCA is non-standardized; consequently, Tahir Albayrak and Meltem Caber (2013) 

have listed three different calculation methods. 



Chapter 1  9 

 

 

Following this, the question of whether the central implicit assumption that satisfaction with the 

service and overall satisfaction scatters around the mean value is commonly fulfilled could be 

raised. In surveys on service quality, loyal customers participate; thus, answer patterns are primarily 

skewed. Based on this point, Paper #2 has proposed a new method: the application of a cubic re-

gression. By comparing the different calculation methods of PRCA and the cubic regression, one 

can see that the calculation method and the skewed response patterns can occasionally turn state-

ments into the opposite. There have been two standardized service surveys of a German mail-order 

company (Study 1 in 2011 with n = 480 and Study 2 in 2013 with n = 500). Paper #2 has classified 

the service components in four ways: three variations of the PRCA and once with cubic regression. 

In Paper #2, it can be seen that the new application of cubic regression is less sensitive to skewed 

data and should be superior to PRCA. Furthermore, an interpretation of the beta coefficients con-

cerning Kano’s categories could be provided. 

Paper #2 has further addressed customer satisfaction with a broader focus on the design phase. One 

of the most critical service processes in the mail-order business, which is at once distinctive and 

unique to it—return management—is examined. Due to the information gap online, many returns 

are not intentionally caused but are affected due to the system. However, returns are annoying for 

the company or the customer and constitute a significant environmental burden due to the return 

transport and the possible necessary reconditioning. Paper #2’s objective was to determine the most 

promising strategies for averting and avoiding returns. 

In the literature, only isolated purchase process steps have been examined. For the first time, as 

presented in this paper, the entire purchase process was examined to make measures directly com-

parable to the different phases. In the measures examined, current technological developments, sev-

eral of which had not yet been widely used (e.g., self-measurement via webcam), were examined. 

To investigate the conception phase of which measures should be followed up in particular, Kano’s 

model and method were used. More than 8,000 customers of a mail-order company responded via 

an online survey. Utilizing the unique Kano questioning technique, all measures could be described 
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in terms of their effect on customer satisfaction. However, many measures were only classified as 

indifferent or attractive, which, according to Kano (2001), indicates an early phase in the product 

life cycle. One of the significant findings was that monetary incentives currently show the strongest 

influences in the entire process, followed by improved presentations. 

From other studies such as that of Nilsson‐Witell and Fundin (2005), it was previously known that 

it was possible to identify sub-segments with a more mature life cycle stage in these categories. For 

this purpose, the segmented Kano perspective (Baier and Rese 2018; Rese et al. 2019) was applied 

as a second method. In this perspective, explicit dynamics could be identified and named. 

3.2 Part B—Backstage 

Through the skillful combination of data and technology, an improved understanding of customers, 

products, and markets is expressed in improved management decisions (Kelly 2000). This process 

generally follows three steps (Barton and Court 2012): capturing customer information, transferring 

it, and discovering the knowledge. Companies have increasingly begun to segment their customers 

according to customer behavior and value contribution during this time. In this environment, the 

actual modeling and selection of customers for marketing campaigns is located as well. Themati-

cally, this task is closely linked to database marketing, and there is considerable overlap with the 

frontstage as well. Database marketing additionally refers to obtaining knowledge from data and 

transferring this knowledge in strategies to maintain a long-lasting (profitable) customer relation-

ship (Hughes 1996; Blattberg et al. 2001). The research papers presented in this thesis focused on 

eCommerce retailing, which overlaps considerably with direct marketing. The prerequisites for 

maintaining one-to-one contact with the customer (Blattberg and Deighton 1991) are excessively 

provided in eCommerce retailing, for example, via newsletter, mailings, app-push, retargeting, and 

others. As presented in the following, the methodical approaches of database marketing were fo-

cused on for the papers presented in this part. 
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In database marketing, insights are gained from the analysis of previously completed or ongoing 

marketing campaigns. Typical questions include the following: “Was the campaign successful?”, 

“How many customers participated in the campaign?”, or “What return on investment (ROI) was 

achieved?”. However, there is another strength of database marketing: predicting a customer’s de-

velopment or so-called predictive modeling. Nevertheless, this modeling is not about a perfect pre-

diction of the future. Instead, imperfect targetability describes that profit and sustainable competi-

tive advantages can be created by applying more effective models than using chance alone (Chen 

et al. 2001; Chen and Iyer 2002). 

A fundamental requirement in database marketing is statistically utilizable trials with a test and 

control group. From the customer characteristics with statistic methods, the drivers for a different 

development can be isolated and used as a predictive model for future similar marketing campaigns. 

Neslin et al. (2006) have described the procedure as follows: define the problem, prepare the data, 

estimate the model, and select the targets. Various statistical methods can be used for modeling at 

this point (Blattberg et al. 2008): linear regression, logistic regression, the Tobit-model, decision 

trees, neural networks, and machine learning algorithms, to name a few. Nevertheless, here as well, 

the development is just at the initial stage. Thus, the application of artificial intelligence (AI) has 

become increasingly crucial for CRM (Salesforce 2018). The growing role of AI is reflected in 

personalized offers as well as automation. AI-powered CRM systems now guide sellers through 

decision-making processes to continuously improve their products or campaigns. Furthermore, ro-

botic process automation is no longer only a pipe dream but has already achieved a clear ROI in 

individual companies. Additionally, the use of AI in personalization has continuously advanced, 

known as hyper-personalization. Here, as well, AI can set new impulses, for example, by adding 

unstructured interaction data to purchasing histories and similar strategies (Salesforce 2018). There-

fore, to tackle this field, the papers presented in this part chose methods based on AI as well. 

This part of the thesis contributes to the understanding of a particular form of predictive models and 

the determining of the causal effect (Holland 1986) or uplift (Radcliffe 2007). The causal effect 
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describes the marketing campaign’s effectiveness and is the difference between the treatment and 

the otherwise expected baseline. A customer who buys because of a campaign might have made a 

purchase without the campaign. The causal effect estimation hints to customers who can be ex-

cluded from marketing campaigns to improve the ROI. 

Papers #3 and #4 have dealt with the selection of customers for specific promotional offers. The 

optimal allocation of the advertising budget results in an investment in customer satisfaction and 

sales promotions. While response predictions and the recency-frequency-monetary value approach 

have been long-established methods for optimizing (direct) marketing campaigns, a new approach 

has emerged since the beginning of the 1990s: modeling causal effects. While response models can 

only predict the behavioral change in the case of a sales promotion, the causal effect (or uplift or 

net lift (Devriendt et al. 2018)) considers the behavioral change that can be traced back to a treat-

ment. In concrete terms, a customer would react favorably to a treatment, but, simultaneously, there 

would be a high probability of buying if the treatment was not applied. This surplus reflects the 

treatment’s actual effectiveness and can determine the efficiency concerning the costs incurred. The 

marketing campaigns’ optimization consists of identifying the customers with the highest causal 

effect in order to prioritize contacting them. In contrast, customers with a pessimistic prediction 

should more ideally not be addressed. Work previously existing to the research papers presented in 

these papers have primarily focused on the case of a dichotomous response, such as a purchase. 

Additionally, no research has considered different campaign cost structures. 

Research Paper #3 has focused on predicting and optimizing continuous values, such as sales or 

profit. It is not untypical that the response rate to marketing campaigns is in the single-digit per-

centage range in practice; thus, dealing with an excess of zeros has been necessary. For this purpose, 

the Heckman sample selection model, the zero-inflated negative binomial regression model, and 

random forest-based regression were compared. Paper #3 used the freely available Hillstrom dataset 

(Hillstrom 2008) with 64,000 records (conversion rate 0.9%) and a new dataset from a large German 

eCommerce retailer with 155,388 datasets (conversion rate 9.25%), each with an equally distributed 
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test and control group. With a predetermined transformation from observed sales to profit, the ef-

fectiveness of the method was proven. In a direct model comparison, all three methods applied were 

convincing with nearly equally strong results. 

Research Paper #4 inherited the work on the excesses of zeros and the prediction of profit from 

Paper #3. At this point, the literature has only dealt with the effectiveness of causal effect estimation 

in terms of cost per contact. Paper #4 has examined the cost side for the first time. Based on the 

results from Paper #3, the results could be examined from an ROI perspective. Three ideal cost 

structures were simulated on a new dataset with 295,040 records with an equally distributed test 

and control group from a large German eCommerce retailer: fixed costs per contact (e.g., an adver-

tising brochure), response-fixed (e.g., a voucher for purchase), and response-variable (e.g., a dis-

count for a purchase). Theoretically, it could be deduced that there was a significant difference 

between discounts and other cost structures. Instead of showing the causal effect as a difference, a 

quotient yielded a significant performance improvement. 

Additionally, how the causal effect manifested, either by more purchases or by higher shopping 

baskets, led to a hardly noticed shortcoming: In the latter case, no uplift was predicted in the previ-

ously widespread approach, which had only focused on purchases. This form of causal effect only 

became visible when the shopping basket value was predicted. The role of redemption behavior in 

response-dependent marketing costs was examined as well. Existing model evaluation methods 

were still overly specific for this new approach; thus, the previously used metrics in the literature 

had to be generalized. The results were validated in a Monte Carlo setting, with 100 randomly 

selected training and validation splits. These clearly showed that the cost structure had a massive 

impact on the results.  

The findings confirmed the conventional approach’s former results as long as only costs per contact 

were incurred. However, particularly in the case of the other cost structures that had not yet been 

considered, these failed. Thus, it could be practically proven that a representation of the causal effect 

as a quotient for response-variable costs such as discounts or rebates was the more ideal choice. 
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Table 1 summarizes all the research papers included in Chapters 2–5. Chapter 6 provides the con-

clusion of this thesis. 
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Björn Stöcker and Aydin Nasseri 

Abstract 

Ever since Noriaki Kano’s research, we have known that the relationship between performance and 

customer satisfaction is not just linear. Depending on the performance, different customer require-

ments exist, which are visualized in the Kano Model with three curves. In this article, we would 

like to present a new method that uses Kano’s model to characterize different service components 

using a cubic term. We then compare the results of the Penalty Reward Contrast Analysis (PRCA) 

and the cubic terms and recommend how the cubic terms can be interpreted, based on two surveys 

of an online retailer collected via CATI (study 1 in 2011 with n=480 and study 2 in 2013 with 

n=500). This paper makes three contributions: 1) we compare three different and popular applica-

tions of the PRCA on real customer data, then 2) contrast the results with our new approach of using 

cubic terms and 3) give hints towards causal relations of different service components to the overall 

customer satisfaction in the fashion online business. 

  

Chapter 2  

 

Penalty Reward Contrast Analysis (PRCA) for Catego-

rizing Service Components: A New Approach 

This chapter has been published in: 

Stöcker, Björn; Nasseri, Aydin (2020): Penalty Reward Contrast Analysis (PRCA) for Categorizing 

Service Components: A New Approach. In Archives of Data Science, Series A (Online First) 6 (2). 
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1. Introduction 

Predatory competition in the retail sector has been taking place for years. The market environment 

is characterized by an overcapacity of goods and services. In this highly competitive environment 

(buyer’s market), it is existential to know where investments can be used most profitably. There are 

many studies concerning the effect of investments in service quality on repeat purchase (Szymanski 

and Henard 2001), retention (Bolton 1998), loyalty (Anderson and Sullivan 1993), retail sales per-

formance (Gomez et al. 2004), and profitability (Anderson et al. 1994; Bernhardt et al. 2000). A lot 

of research has been done in recent decades. The original assumption that the relationship between 

experienced (service) quality and overall satisfaction is simply linear is outdated. 

The studies show how important it is to understand the impact relationship on each individual ser-

vice component. Kano’s example: A Must-be factor must maintain a certain performance level in 

order not to have a negative effect on satisfaction; an investment beyond this level has no economic 

benefit. One dimensional factors, on the other hand, are always perceived by the customer; poor or 

good performance influence customer satisfaction and thus indirectly the success of the company. 

On the other hand, if Attractive factors are not expected, and if they are not present, they do not 

lead to dissatisfaction, but these can lead to a differentiation in the market. 

PRCA is often used to determine the current service performance of a company and the effect of 

the individual components on overall satisfaction. However, this method is associated with many 

limitations. 

In this paper, we would like to show that in this environment, Kano’s model can also be determined 

using cubic terms and that this sometimes leads to diametrically different findings than PRCA. We 

start by laying the theoretical foundations for the emergence and correlations of service quality, the 

different applications of PRCA, and why it is so difficult to get answers from dissatisfied customers 

in section 2. In section 3, we introduce the survey data, apply different PRCA strategies, and the 
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new approach with cubic terms, and compare the results. In section 4, we draw our conclusions, 

talk about the limitations of the new approach, and give a short outlook. 

2. Theoretical Background 

The initial assumption of a linear correlation between (service) performance and (service) satisfac-

tion has been challenged (Mittal et al. 1998; Anderson and Mittal 2000). Non-linear relationships 

can be found in the prospect theory (Daniel Kahneman and Amos Tversky 1979), in regression 

analysis and cross-sectional survey data in health care and automobile settings (Mittal et al. 1998), 

in hypermarkets (Ting and Chen 2002), the automotive industry (Matzler et al. 2004), educational 

program e-portal (Cheung and Lee 2005, 2009) and e-services (Finn 2011). Kano (1984) described 

two different non-linear response functions and classified them as Attractive or Must-be. Oliver et 

al. (1997) later described the same response functions as monovalent satisfier and monovalent dis-

satisfier. Herzberg et al. (1959) also described this asymmetry: Hygiene factors which, if positive, 

prevent the development of dissatisfaction but do not contribute to satisfaction and Motivators, thus 

change satisfaction, but their absence does not necessarily lead to dissatisfaction. Brandt (1987), in 

the PRCA, identifies two characters called penalty and reward factors. The PRCA also gives hints 

towards the best service design by calculating the driver's strength. 

2.1 Service Component Categories 

Kano was the first person to describe two non-linear relations. In his work, he supplemented the 

linear relationship, which was the initial assumption towards the drivers for customer satisfaction 

in the early days (Fig. 1(a)) and argued that the degree to which customer requirements are met 

depending on the importance of the product or service component has different effects on customer 

satisfaction. Quality components whose poor fulfillment leads to great dissatisfaction, but when 

done well, not to satisfaction are classified as Basic factor. Secondly, the Attractive factors describe 

those components which contribute to a high degree of customer satisfaction when done well but 

have no negative effect when poorly fulfilled. The One-dimensional factors show a proportional 



24 

 

correlation between the degree of fulfillment and satisfaction (Kano 1984, 1968, 1987, 1995; Berger 

1993; Sauerwein 2000; Löfgren and Witell 2005; Mark C. Lee and John F. Newcomb 1997; Hög-

ström 2011). In addition to its use to categorize services, the Kano model is also represented in other 

areas, such as conversational user interfaces (Baier et al. 2018) or digitalization cases for e-com-

merce retailers (Baier et al. 2019). 

Kano (2001, p.°1) and Fundin (2005, p.°18) found that the classification of the components is not 

static but changes over time to follow an attribute lifecycle. 

Non-linear response functions are claimed in different shapes. Components showing an asymmetry 

towards satisfaction are linked to customer delight (Oliver et al. 1997). Furthermore, customer de-

light mostly arises from unexpected positive customer experience (Rust and Oliver 2000). An ex-

planation for the asymmetry towards dissatisfaction can be found in the prospect theory (Daniel 

Kahneman and Amos Tversky 1979). Customer satisfaction or dissatisfaction arises from the dif-

ference between expected and experienced individual’s performance standards. People tend to 

weigh losses greater than gains (loss aversion), shown in a steeper slope. Mittal found in his work 

regarding services and products that: “overall satisfaction displays diminishing sensitivity to attrib-

ute level performance” (Mittal et al. 1998, p.°33), later also called “satisfaction maintaining attrib-

utes” (Anderson and Mittal 2000, Fig. 2, Panel 2). The graph seems to represent a cube root (Fig. 

1(c)). And Woodruff proposed to modify the confirmation/disconfirmation paradigm by, amongst 

other things adding a “zone of indifference” (Fig. 1(d)). “For all practical purposes, perceived per-

formance within some interval around a performance norm is likely to be considered equivalent to 

the norm.” (Woodruff et al. 1983, p.°299). Here the graph represents a monotonically increasing 

cubic. 

In addition to his model, Kano has also developed a method to classify the components. He proposes 

using two questions on a 5 point Likert scale to categorize a specific component. The one question 

asked is functional (“What would you say if the product has . . .”), and the other is dysfunctional 

(“What would you say if the product has not …”). The two answers are used to categorize the 
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component via the two-dimensional evaluation chart (Kano 1984, p.°173). For example, high values 

in the functional question (“I like it if [component] is fulfilled”) and mean values in the dysfunc-

tional question (“I’m indifferent when [component] is not fulfilled”) means that the component is 

categorized as "Attractive"). 

Another way of determining the character of a component was formulated by Brandt (1987) in his 

work on the PRCA. Here he combines two linear functions to determine non-linear relations (Fig. 

1(b)). Penalty factors have a steeper slope on the left side, where the poor performance is located, 

and a slighter slope on the right; in the case of reward factors, the situation is vice versa. This 

method is more suitable if a service performance should be levied. 

 

Fig.  1  Asymmetr ic  re lat ionsh ips be tween ful f i l lment and  sat is fac t ion  
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2.2 Categorizing Service Components Using PRCA 

As already mentioned, the PRCA is widely used in practical work to determine Kano’s character 

(Tahir Albayrak and Meltem Caber 2013). The answers to the service fulfillment are usually queried 

based on a 5 point Likert scale, which has one middle option. Then for each (service) component, 

the PRCA fits a multiple linear regression using dummy variables to estimate the beta coefficients 

for penalty and reward. The dummy variable for penalty xp is true for all answers “worse” or “much 

worse than expected,” the dummy variable xr representing reward is true for all answers “better” or 

“much better than expected.” The middle option is not considered. The regression equation is 

(1) 0
ˆ

p p r ry b x b x b= + +   

where 𝑦̂ is the dependent variable for the overall satisfaction, b0 y-intercept (constant term), and 

bp and br are the beta coefficients for penalty and reward, synonymous with the slope. 

To classify the components, Brandt (1987) proposed using the beta coefficients. A reward factor is 

given when the beta coefficient br is high, and bp is low, for a penalty factor vice versa. Fuchs and 

Weiermair (2004) and Lin et al. (2010) suggest using the significance to classify the components. 

They call a significant bp and an insignificant br Basic factor, an insignificant bp, and a significant 

br Excitement factor, and add a third classification Performance factor for components where both 

beta coefficients are significant. Gierl and Bartikowski (2003) differentiate Brandt’s classification 

into four classes. They use the strength of both beta coefficients combined to classify Satisfiers 

(high reward, low penalty), Criticals (high reward, high penalty), Neutrals (low reward, low pen-

alty), and Dissatisfiers (low reward, high penalty). 

Despite the different ways of defining the characters, the definition of which answers are considered 

to be recoded as high or low performance is also handled differently as shown in Table 1. 
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Table  1  Overview of  the  different  recodings used in  PRCA  

Low High Authors Area of Research 

1, 2  4, 5  Lin et al. (2010) Customer satisfaction with the online tax decla-

ration services 

1, 2  5  Matzler and Sauerwein (2002) Customer satisfaction with the internal computer 

services of a hospital IT department 

 
 

Fuchs and Weiermair (2004)  Tourists’ satisfaction with destination quality 

  Alegre and Garau (2011) Tourist satisfaction at sun and sand destinations 

1  5  Mikulić and Prebežac (2008) Passenger satisfaction with services at a major 

Croatian airport 

 
 

Mikulić and Prebežac (2011) Passenger satisfaction with an international air-

port 

  Back (2012) Key drivers of customer satisfaction in Korean 

restaurants 
  

Coghlan (2012) Tourists’ satisfaction with destination attributes 

Tahir Albayrak and Meltem Caber (2013), Table 1 modified 

2.3 Categorizing Service Components: A New Approach 

It is difficult for companies to get a complete picture of their customers' satisfaction. In order to be 

able to record the cause-effect relationships according to Kano and measure them, e.g., using PRCA, 

data from disappointed customers is also necessary in order to be able to make valid statements for 

penalty factors. In practice, the answers are not equally distributed; usually satisfied customers are 

overrepresented. On the one hand, this is because successful enterprises need content customers for 

their economic survival and, on the other hand, because dissatisfied customers hardly react and also 

for market research purposes are no longer accessible (Goodman et al. 1987, p.°169). In the TARP 

study of 1979 (Grainer et al. 1979) one proceeded from up to 50% Non-Complainers, so it was 

recognized in a more recent study 50-80% in the USA (Goodman et al. 2000) and Richins (1987) 

that especially in the case of not minor errors a supplier change is preferable to a complaint. For the 

service sector, Stauss (1989) also expects a higher proportion of Non Complainers due to the special 

characteristics. 
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3. Empirical Comparison 

3.1 Data Collection 

Two samples (study 1 with n = 480 and study 2 with n = 500) were analyzed. The qualitative data 

sets were collected via computer-assisted telephone interviews (CATI), each by using the same 

standardized cascaded (the respondents had to have used the service, self-assessed) questionnaire. 

To obtain the performance for a service component listed in Table 2: “You said you have the goods 

from the assortments… ordered by phone. How do you rate the telephone ordering process?”. Re-

sponse option: (1) “Much worse than expected,” (2) “Worse than expected,” (3) “Neither good or 

bad,” (4) “Better than expected” or (5) “Much better than expected.” To receive the overall service 

satisfaction: “When you think of all the services we have discussed so far, how satisfied are you 

with them overall?”. Response option on a scale from (1) “very dissatisfied” to (5) “very satisfied.” 

3.2 Categorizing Service Components Using PRCA 

To show the differing results, we calculated the multiple linear regression for all three popular 

PRCA classification approaches for the question “[…] How do you rate the telephone ordering 

process?” (independent variable) and “[…] how satisfied are you with them overall?” (dependent 

variable) for all people, who used this service (n = 319, Table 3). All results can be found in Table 

5 and Table 6. When both ends of the response scale are taken into account (12-45) (for penalty (1) 

“Much worse than expected” and (2) “Worse than expected”) and for reward ((4) “Better than ex-

pected” and (5) “Much better than expected”) we find that both beta coefficients are significant and 

have the same strength; therefore they are classified as One-dimensional. If we omit in addition the 

response option (4) by recoding (12-5), we see that two beta coefficients are significant and have 

the same strength, again One-dimensional. For the last approach, where just the ends of the rating 

scales enter into the dummy regression (1-5), we get a different picture: Only the reward beta coef-

ficient is significant, then classified as Attractive—the poor adj. R2 is also caused by the distinctive 

left-skewed distribution in both variables (dependent and independent). 
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Table  2  Service components quer ied in  the two surveys  

Phase Component 

Presales Info Delivery Options Online Shop 

Info Delivery Options Catalogue 

Info Payment Methods Online Shop 

Info Payment Methods Catalogue 

Service Information at the Article in the Online Shop 

Service Information at the Article in the Catalogue 

Accuracy of Delivery Time Online Shop 

Accuracy of Delivery Time Catalogue 

Info Returns in the Online Shop 

Info Returns in the Catalogue 

Ordering Telephone Order Process 

Order Process Online Shop 

Fulfillment Delivery Time 

Reliability of Delivery Information 

Delivery to your Home 

Delivery to Another Address 

24-hour Delivery 

Delivery at the Desired Date 

Order Tracking and Tracing 

Delivery to the Parcel-Shop 

Delivery 2-man Team 

Simplicity of Bank Transfer 

Processing of the Instalment Purchase 

Satisfaction with the Telephone Complaint 

Satisfaction with the E-mail Complaint 

Returning Processing of the Return Shipment 

Return in the Parcel Shop 

Speed of the Credit Memo 
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Table  3  Results  of  the Different  Three PRCA Approaches  w. r . t .  the Service Component 

“Telephone Order  Process” in  Study 1  

Abbr. Low High R² Adj. R² Beta 

Pen-

alty 

Sig. Beta 

Re-

ward 

Sig. Class 

12-45  1, 2 4, 5 0.058 0.052 -0.685 0.044 0.333 0.000 O 

12-5 1,2 5 0.056 0.050 -0.776 0.022 0.328 0.001 O 

1-5 1 5 0.047 0.041 -1.260 0.124 0.344 0.000 A 

Referring to Table 1: 12-45 = recoding answers 1-2 as dummy variable for penalty and 4-5 for reward, 12-5 = recoding just 1-

2 and 5, 1-5 recoding only 1 and 5; O = One-dimensional, A = Attractive 

3.3 Categorizing Service Components Using the New Approach 

In order to find an equation other than in the PRCA that can reproduce the curves described in 

section 2.1, there are basically only two possibilities: using a piecewise function or a 3rd-degree 

polynomial. For piecewise functions, a positive or negative quadratic term is added to a linear term. 

In order to use this procedure correctly, the exact position of the joint of the functions must first be 

determined for each component. In our practical work, we have found out that the point at which 

the non-linear changes into the linear context (inflection point) is not always to be found in the 

middle of the scale (Fig. 2). We, therefore, propose the use of a 3rd degree polynomial, aka cubic 

term (CT), which can take on all three forms (Must-be, One-dimensional, and Attractive) for the 

domain and is not limited to a fixed inflection point at the same time. In our opinion, a characteri-

zation using a matrix analogous to Kano’s evaluation chart is out of the question, as this would first 

require scaling in the data, especially in the case of skewed distributions; these would first have to 

be centered. The curve can be determined much more easily by the slope of the individual data 

points relatively in space. A high gradient indicates a high significance for the overall satisfaction; 

a gradient close to zero, on the other hand, indicates a low influence, also referred to as indifferent. 

In this context, it is not possible to determine the quality of fit using R², for example. Using the 

example of a Must-be component, a positive correlation can be determined for the left-hand side, 

but not for the right-hand side, since here, no correlation can be found. This is at the expense of the 

R², which represents the goodness of fit for all values.  
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Therefore, the highest R² would be found at a One-dimensional component, the lowest at an indif-

ferent component. The interpretation of the cubic terms can be done graphically as well as via a 

table of values. In a direct comparison to PRCA, there is no need to recode the data into dummy 

variables or define high and low (Table 1). 

A 3rd-degree polynomial regression fits a non-linear relation between the independent variables 

(service performance) denoted as x and the dependent variable (overall customer satisfaction) de-

noted as y using the method of least squares. The beta values (b3, b2, b1, b0) increase or decrease the 

conditional expectation of y. 

(2) 
3 2

3 2 1 0ŷ b x b x b x b= + + +   

As in the PRCA, we calculate the cubic regression for each service component, only including 

answers by people who have used the service. Using the example above, we arrive at this equation: 

(3) 
3 2ˆ 0.03 0.384 1.807 1.399y x x x= − + +   

with adj. R²: .068. 

If you compare the graph (Fig. 2(a)) with Kano‘s chart, you would categorize it as a Must-Be and 

not as One-dimensional or even Attractive, as the PRCA has shown in Table 3. We recommend 

going through these steps to apply CT properly: 

1)  Define the range for which values the cubic equation applies (domain). In some cases, you 

won’t find values for your independent variable on the lower or upper end of the rating scale. 

In this instance, the cubic regression can only speak for the given values  

2)  Calculate the derivate function of the cubic term to get the slope: 
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2ˆ ' 0.09 0.768 1.807y x x= − +  

3)  Calculate a table of values 

x 1 2 3 4 5 

𝑦̂′ 1.13 0.63 0.31 0.18 0.22 

 

A good example of Must-be can be seen in the component: “Accuracy of delivery time online shop” 

(n=96, study 1). Due to the non-linear change in the slope on the left-hand side (Table 4, Fig. 2(b)) 

Table  4  Table of  values  showing the slopes for  the three idea l- typ ica l  examples  

x 1 2 3 4 5 

Must-be 3.4 1.3 0.2 0.0 0.6 

One-dimensional 0.2 0.2 0.2 0.2 0.1 

Attractive N/A -0.1 0.0 0.3 0.8 

 

(4) 
3 2ˆ 0.148 1.683 6.279 3.282y x x x= − + −   

For One-dimensional, the component “Delivery to your home” (n=511, study 1) is a good object of 

study. The slope remains constant through the whole domain shown in the graph and table of values 

(Table 4, Fig. 2(c)). 

(5) 
3 2ˆ 0.009 0.071 0.052 3.569y x x x= − + + +   
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And finally, the component “Order process online shop” (n=275, study 2) represents an Attractive 

factor. The slope changes non-linear on the right-hand side (Table 4, Fig. 2(d)). Another indicator 

for Attractive is that you find no values for “much worse than expected” (here: 1), which strengthens 

the findings of Rust and Oliver (2000). 

(6) 
3 2ˆ 0.025 0.110 0 4.399y x x x= − + +   

3.4 Comparison 

As can be seen in Tables 5 and 6, the results within the different applications of the PRCA are very 

different (e.g., Table 5: “Speed of Credit Memo”) or congruent (Table 5: “Processing of the Return 

Shipment”). The categorization, according to CT, is similar in some cases to the PRCA (12-45), 

probably also because CT includes all response options in the regression. Depending on the recod-

ing approaches, the variance is more or less lost so that only the ends of the scale are used in the 

PRCA approach (1-5). This leads to problems, especially when only a few answers fall into this 

range anyway (skewed distribution due to Non-Complainers, among other things). In addition, the 

PRCA tacitly assumes that inflection points are always to be found in the middle of the scale. Fig. 

2 shows that this assumption is not always true. In the evaluation of all answers, we have often 

encountered inflection points outside the center of the scale, which is not sufficiently recognized by 

the PRCA. All in all, we are of the opinion that a determination of Kano’s model should preferably 

be done with CT because no dummy variables are formed, all responses are included in the regres-

sion, and any inflection points that may occur can lie outside the center of the scale. CT can be 

evaluated graphically or with a table of values. 

In addition, we were also able to determine a lifecycle in the component categorization (Kano 2001; 

Fundin 2005). For example, the character of the “Telephone Order Process” changed from One-

dimensional (study 1) to Must-be (study 2) or “Simplicity of Bank Transfer” from Attractive to 

Must-be. But also opposite effects were observed in “Order Process Online Shop” from Must-be 
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(study 1) to Attractive (study 2), “Delivery Time” Must-be to One-dimensional or “Speed of the 

Credit Memo” Must-be to Attractive, which indicate that the company has actively worked on ser-

vice quality or that customer expectations have changed. 

Table  5  Resul ts  of  the d ifferen t  PR CA approaches and cubic term, s tudy  1  

Component N 12-

45 

12-5 1-5 CT 

Info Delivery Options Online Shop  113 M O O M 

Info Delivery Options Catalogue  12  I A O M 

Info Payment Methods Online Shop  92 I I M M 

Info Payment Methods Catalogue  120 A A O I 

Service Information at the Article in the Online 

Shop  

80 I A O I 

Service Information at the Article in the Catalogue  102 I A O I 

Accuracy of Delivery Time Online Shop  96 M M M M 

Accuracy of Delivery Time Catalogue  84 O M M M 

Info Returns in the Online Shop  62 I I M I 

Info Returns in the Catalogue  85 I I M A 

Telephone Order Process  323 O O A O 

Order Process Online Shop  219 A A O M 

Delivery Time  521 O O O M 

Reliability of Delivery information  503 O O O M 

Delivery to your Home  510 O O A O 

Delivery to Another Address  31 I I I I 

24-hour Delivery 40 M M M M 

Delivery at the Desired Date 35 I I M I 

Simplicity of Bank Transfer  388 A A O A 

Processing of the Instalment Purchase  103 A A A O 

Processing of the Return Shipment  283 A A A A 

Speed of the Credit Memo  81 A I M M 

M = Must-be, O = One-dimensional, A = Attractive, I = Indifferent 
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Table  6  Resul ts  of  the d ifferen t  PRCA approaches and cubic term, s tudy  2  

Component N 12-

45 

12-5 1-5 CT 

Info Delivery Options Online Shop  128 I A O A 

Info Delivery Options Catalogue  118 A I I I 

Info Payment Methods Online Shop  109 I I M M 

Info Payment Methods Catalogue  107 A I M M 

Service Information at the Article in the Online 

Shop  

103 M O O O 

Service Information at the Article in the Catalogue  76 A I M O 

Accuracy of Delivery Time Online Shop  131 A O A M 

Accuracy of Delivery Time Catalogue  69 I I I M 

Info Returns in the Online Shop  78 I A A O 

Info Returns in the Catalogue  57 I I M M 

Telephone Order Process  319 O O A M 

Order Process Online Shop  274 A A O A 

Delivery Time  570 O O O O 

Reliability of Delivery information  557 O O O M 

Delivery to your Home  545 O O A M 

Delivery to Another Address  19 I I I O 

24-hour Delivery 35     

Delivery at the Desired Date 14     

Simplicity of Bank Transfer  425 O O O M 

Processing of the Instalment Purchase  118 I I M O 

Processing of the Return Shipment  283 A A O A 

Speed of the Credit Memo  124 A A O A 

M = Must-be, O = One-dimensional, A = Attractive, I = Indifferent 

4. Conclusions and Outlook 

The study confirms a non-linear relationship between service performance and satisfaction. To clas-

sify the non-linear relations, according to Kano’s Model, CT should be considered rather than any 

variation of the PRCA. CT does not share the same limitations of the PRCA, outperforming the 

PRCA approach, and sometimes delivering diametrically different interpretations. Choosing the 
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PRCA results instead of the CT ones can lead to wrong business decisions with far-reaching con-

sequences. If a Must-be component is misinterpreted as Attractive, a completely different strategy 

is applied. Also, validation on other data is desirable. 

The two surveys needed to perform a PRCA and CT are based on respondents who had used one or 

more specific services. Customer journeys usually have many different touchpoints and are unique, 

so it is impossible to fit a regression that includes all or even some important service components 

to overall customer satisfaction. In addition, every touchpoint can have a different influence on 

satisfaction, and critical incidents are recognized more often than, for example, a good performance 

in a Must-be setting. As a result, there are no data points for poor service performance because the 

company is managing these services very well. In this case, PRCA and CT can only speak for the 

given values in the surveys. Referring to point 2.3, respondents who are willing to take part in a 

survey are more likely to be loyal customers. To obtain more variance and get a more valid result, 

you need answers from Non-Complainers and lost customers as well. 
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Abstract 

Returns are an inconvenient problem in the mail-order business, not only for the merchant but also 

for the customer. However, we do not consider returns to be generally bad, but rather an integral 

part of the business model. Therefore, we investigate potentially suitable measures to avert or avoid 

returns in the pre-purchase, purchase and post-purchase phases. We look at current and technolog-

ical developments in return management and the most critical drivers for fashion assortment returns 

on a holistic view of the issue and target all three purchase phases.  

The resulting measures were assessed via an online questionnaire with 8,393 participants (custom-

ers of a German fashion online retailer) to impact customer satisfaction using Kano’s method. There 

are clear measures that promise high customer satisfaction (such as 360° view) and a clear hierarchy 

regarding monetary and non-monetary measures. By applying the segmented Kano perspective, we 

found customer segments, which are different in their expectations towards returns. That allowed 

us to conclude dynamics regarding return management. This assessment is followed by discussing 

the results, conclusions, and indications for further research fields. 

Chapter 3 

 

New Insights in Online Fashion Retail Returns from a 

Customers’ Perspective and Their Dynamics 

This chapter is under review in:  
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1. Introduction 

While serving consumers online provides multiple benefits for online retailers (e.g., reaching con-

sumers worldwide), it is also tied to some disadvantages inherent to distance trading. Especially 

product (fit) uncertainty (Hong and Pavlou 2014) and the missing touch and feel of products (Shul-

man et al. 2011) result in large amounts of product returns. These product returns are not only 

causing enormous costs for online shop operators (Samorani et al. 2019; Yan and Pei 2019) but 

additionally negatively affect the environment (Dutta et al. 2020; Pålsson et al. 2017). The number 

of returns shows to be very high in the online fashion business in particular, due to its less stand-

ardized products (Difrancesco et al. 2018; Saarijärvi et al. 2017), the need for clothing to fit cor-

rectly (Gallino and Moreno 2018; Gelbrich et al. 2017) and the importance of apparel’s texture 

(Ofek et al. 2011). Since handling the return policy more or less lenient in this business will trigger 

higher purchase frequencies or prevent consumers from buying products (Hjort and Lantz 2016; 

Janakiraman et al. 2016), it is crucial to ascertain the golden mean for managerial implications.   

Previous studies focused on finding optimal countermeasures for keeping return rates low without 

scaring off potential customers, whereas we contribute to the literature by examining the problem 

of returns holistically. Therefore, we extend the two-step decision perspective from Wood (2001), 

according to which online purchase decisions are divided into the (first) decision for or against a 

purchase, and the (second) decision for against keeping the product, by analyzing measures to pre-

vent product returns in three stages. These measures comprise supporting consumers searching for 

fashion products (pre-purchase stage), assistance in the ordering process (purchase stage), as well 

as strategies inducing consumers to keep the product (post-purchase stage). While the vast majority 

of literature focuses on preventing returns either before or after the purchase, we enable a direct 

comparison of measures for reducing returns by investigating all three stages with the same meth-

odological approach. We use Kano's „Theory of Attractive Quality“  (Kano et al. 1984) as a basis, 

from which we have the respondents categorize the measures. Besides, to the best of the authors’ 
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knowledge, we are the first to apply (segmented) Kano’s method in product returns, thus revealing 

those return measures that increase customers’ satisfaction the most. 

Furthermore, we address potential solutions for product returns by implementing the most recent 

technological advances, such as virtual fitting of articles or 360° views of the products. Hence, we 

want to shed light on how consumers evaluate measures for preventing product returns in the con-

text of online fashion shops at each of the three stages and to what extent they affect consumers’ 

satisfaction. By answering this question, we cover recently postulated research gaps (Janakiraman 

et al. 2016; Samorani et al. 2019) and indicate how managers could efficiently allocate financial 

budgets regarding their return policy.   

Therefore, this study is structured as follows: first, we illustrate return management, its most recent 

developments, and technological improvements, as well as drivers of returns. We then describe our 

methodical approach leading to the results yielded. After discussing these, we end with a conclusion 

and directions for future research.   

2. Theoretical Background 

With ever-increasing numbers of online shopping orders, the issue of product returns also becomes 

more critical. Even if the current return ratio remains constant, the consequence will negatively 

affect the environment heavily (Dutta et al. 2020; Pålsson et al. 2017). Furthermore, product returns 

constitute a cumbersome, unpleasant task for companies and consumers likewise. As the e-com-

merce industry still struggles to provide sufficient and appropriate product information for custom-

ers to prevent (or at least reduce) returns (Gelbrich et al. 2017), and thus might not be able to offer 

suitable solutions soon, it is essential to explore product returns in comprehensive depth and based 

on recent technological advancements. Following the theoretical framework of the Confirmation-

Disconfirmation paradigm in the context of products bought online (Hong and Pavlou 2014), the 

satisfaction with the delivered product (post-purchase) might be (1) lower than expected, resulting 
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in a negative confirmation, (2) as expected resulting in zero (dis)confirmation, or (3) higher than 

expected resulting in positive confirmation. 

2.1 Return Management and Recent Developments 

The emergence of a return is to be understood due to a comparison of expectations (while shopping 

online) and reality (when receiving the product), as illustrated in Figure 1. In the context of fashion, 

the expectations regarding the nature of the article (correct article) and the fit (correct fit) should be 

understood as a logical consequence, whereby the comparison of the expectations to the actual 

product can be moderated by curating the offer, e.g., through personal or personalized outfit rec-

ommendations. Resolving the information gap then leads to satisfaction or dissatisfaction with the 

ordered article. Nevertheless, it can be assumed that satisfaction alone does not directly affect the 

return behavior. A customer can be satisfied with a delivered article but still return it (selection 

order of several sizes or budget reached). It is also conceivable that an unsatisfied customer does 

not make a return but avoids buying a product from the supplier/manufacturer as a result. The in-

fluence of perceived service quality and its influence on the return behavior (e.g., delivery time) 

was not considered in this study. 

Fig.1  Pre-  and post-purchase  s tages wi th  corresponding re turn prevent ion star t ing poin ts  

To categorize product returns properly, we refer to product returns before the purchase decision as 

„return avoidance,” whereas those return measures after the purchase decision will be named „re-

turn averting.” In the second case, the aim is no longer to influence an article’s expectations but to 
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negotiate with the customer about the intended return. This negotiation can be done with, for exam-

ple, money or an appeal. We assume that it is easier to negotiate with a customer satisfied with the 

article than with dissatisfied customers. In the latter case, the company must also consider whether 

suppressing the return is beneficial for the customer relationship or conceptualizing the offer should 

avoid lasting customer annoyance. In general, these measures should be applied with caution be-

cause once customers have understood this mechanism, they could actively use it to their advantage 

and change their ordering and purchasing behavior in this direction (Gelbrich et al. 2017). 

The return literature dealing with these issues could be segmented into different groups based on 

their approach (Table 1). While some studies model different scenarios based on researchers’ as-

sumptions (Difrancesco et al. 2018; Letizia et al. 2018; Li et al. 2019; Dutta et al. 2020; Ülkü and 

Gürler 2018) or founded on observable online shopping data (Samorani et al. 2019; Gallino and 

Moreno 2018; Sahoo et al. 2018; Rao et al. 2018; Lohse et al. 2017; Walsh et al. 2016; Hjort and 

Lantz 2016; Petersen and Kumar 2015; Minnema et al. 2016), we analyze measures of return avoid-

ance and averting. By focusing on the customer’s voice, as finally, customers’ evaluation contrib-

utes to a more or less successful implementation of these measures. Thus, we conducted a literature 

review about recent articles (published between 2015-2020) that either include „product return“, 

„return prevention“, „reverse logistics“, or „return policy“ in common scientific databases. After 

screening them by abstracts, we highlight those incorporating customers’ viewpoints derived from 

survey-based investigations. 

It becomes evident that most studies investigating return measures from a customer’s viewpoint 

explore either the purchase or the post-purchase  (returning) stage, and thereby not allowing a direct 

comparison of the effectiveness of the measures analyzed. In the same vein, the meta-analytic re-

view by Janakiraman et al. (2016, p. 234) concludes that „[p]rior research has largely examined 

these effects separately.” In contrast, studies interviewing the same respondents on product return 

prevention measures for both purchase and post-purchase are very scant. To the best of our 
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knowledge, we are the first to analyze return prevention measures for all three stages by applying 

the Kano method. 

Table  1  Recent  s tudies invest iga ting  retu rns f rom a consumers’  viewpoint  

Author(s) (Year) Method(s) of Investigation Stages Analyzed 

Shulman et al. (2015) ANCOVA (n=420) Purchase and  

Post-Purchase 

Singh and Pandey (2015) EFA (n=347) Purchase 

Seo et al. (2016) ANOVA (n=100; n=113; n=250) Purchase 

Gelbrich et al. (2017) ANOVA and ANCOVA (n=217; 

n=138) 

Post-Purchase 

Lee and Yi (2017) ANOVA (n=78; n=82; n=107) Post-Purchase 

Saarijärvi et al. (2017) Semi-structured interviews (n=21) Post-Purchase 

Oghazi et al. (2018) SEM (n=730) Purchase 

Pei and Paswan (2018) SEM (n=400) Post-Purchase 

Zhou et al. (2018) ANOVA and SEM (n=320; n=108) Post-Purchase 

Note: ANCOVA= Analysis of Covariance; EFA=Exploratory Factor Analysis; ANOVA= Analysis of Variance; SEM=Struc-

tural Equation Modelling 

2.2 Drivers of Returns and Potential Solutions 

Whether to buy online instead of in a store also depends on the disadvantages of the mail-order 

business (Hong and Pavlou 2014; Shulman et al. 2011), which are common knowledge. If someone 

orders online, they have already familiarized/acquainted with it in advance (Ülkü and Gürler 2018) 

and might even take advantage of vendors’ lenient return policy (Pei and Paswan 2018). 

Reasons for product returns are multi-faceted and very individualistic in the field of fashion in par-

ticular, but not all cases of product returns can be prevented. Based on a recent investigation with 

n=1,024 respondents (ibi research 2017), the drivers of product returns reveal to be product did not 

fit (62%), consumers did not like the product (39%), the product was defective or delivered in dam-

aged conditions (30%), the product was not as described (30%). Followed by multiple variants were 
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ordered (20%), wrong delivery (7%), delivery took too long (5%), the product was found cheaper 

in another shop (2%) or other reasons (2%), which is comparable to prior investigations (Lee 2015; 

Gelbrich et al. 2017). These drivers identified (Table 2) could be condensed into an information gap 

related return reasons and those caused by online shopping operators' service. However, in some 

cases, customers return articles due to consumer behavior related causes, such as impulsive pur-

chases (Ülkü and Gürler 2018), so-called „showrooming“ behavior (Bell et al. 2018), or not fulfilled 

returns, which might result in dissatisfaction. Besides this categorization, ordered products were 

intended to be worn as a set and cannot be delivered or combined fall in-between consumer behavior 

and fulfillment/service reasons. 

Table  2  Three main categories for  product  return reasons  

Information Gap Fulfillment/Service Consumer Behavior 

Insufficient visualization  

(Gallino and Moreno 2018) 

Delayed delivery Impulsive purchases 

Misleading product description Wrong delivery Planned product return 

(showrooming) 

Price-performance ratio/quality  Defective/damaged 

product 

Not fulfilled returns result in 

dissatisfaction 

Multiple variants in different sizes  Products ordered to wear it as a set cannot be de-

livered/combined 
Uncertainty about outfit combinations 

(Shulman et al. 2015) 

Note: Reasons that can be influenced by companies 

Based on these reasons, we collected potential measures for the three stages (Fig. 1) in Table 3. 

These are substantiated based on literature and illustrated by practical examples, representing the 

measures used in our investigation. (As we intend to explore customers’ viewpoint for technologi-

cal-advanced and state-of-the-art measures, some of the items applied have not yet been investi-

gated in established journals. Apart from that, we focused on rewarding rather than sanctioning 

measures. Most online retailers try to avoid the adverse effects of a less lenient return policy, such 

as ordering elsewhere (Gelbrich et al. 2017). This avoidance is in line with the operant conditioning 
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theory (Skinner 1965), where the intended customer behavior (from a retailer’s perspective) is as-

sumed to occur more frequently when this behavior is linked to a pleasant consequence („positive 

reinforcement“). This theory has been applied in many areas of consumer behavior research (Wells 

2014), such as online product selections (Perotti et al. 2003), corporate behavior (Vella and Foxall 

2013), the effectiveness of TV commercials (Nathan and Wallace 1971), and even in the context of 

product returns (Gelbrich et al. 2017). 

Hence, we also incorporate recent measures yet only discussed in blogs and contained in market 

research reports.) Additionally, we assume an influence on the categorization by the market stand-

ard (MS) and the degree of user integration (DoIU). 

Unfortunately, there are no relevant publications on the market standard or the diffusion of the 

measures. We have decided to rate the market standard in three dimensions: 1=very common, 

2=partly common, 3=very rare/not (yet) existing. For this purpose, we went among others through 

the top 20 German fashion online stores in 2018 to be consistent with the customers surveyed, who 

also live in Germany. In our assessment, only three measures can be considered very common 

(MS=1): „360° view“, whereby we have also included an all-around photo series. Personalized 

newsletters were also offered by all providers, although not every newsletter contained a personal-

ized element. We categorized measures as partially common (MS=2) if they were not shown con-

sistently or only for selected articles in the top 10 providers, which was the case with „catwalk 

videos“ or „information model size.“ For measures that were hardly shown (MS=3), we had to 

search outside the top 20. In general, it can be said that measures from the post-purchase phase are 

hardly widespread (and challenging to investigate from an outside position), probably also because 

the return behavior after the purchase should no longer be a topic of discussion. Bonus points for 

retained goods are an exception.  

For the Degree of User Interaction (DoUI), we have also decided on three categories: (○=no user 

interaction needed, ◑=user interaction needed, but can still be used without, ●=can only be accom-

plished by integrating the user. Many of the measures do not rely on active user participation. We 
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have assigned „No user interaction needed“ if, on the one hand, no direct interaction is required, 

and the result does not change with even partial user interaction (e.g., „Size advice - figure types“). 

This category is followed by measures that deliver results even without user input, but user interac-

tion leads to improved results (e.g., „Favorite article for comparison“). The highest requirements 

are measures that can only be achieved together with the user. These include virtual try-on or self-

measure. 

With our study, we would like to give for the first time a holistic view of the returns management 

in fashion online retail. In this context, we examine measures already established on the market and 

innovative approaches that have only become possible with the last few years’ technological devel-

opments. We aim to identify particularly desirable measures and obtain general conclusions about 

returns management through generalization. In the literature, only partial aspects of returns man-

agement are examined. Our contribution consists of comparing measures from all three purchase 

phases and incorporating currently available technological measures. 
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Table  3  Invest iga ted measures der ived from practical  appl icat ions and current  l i tera ture  

 Measures applied Practical  

example(s) 

Literature MS DoUI 

P
re

-P
u

rc
h
as

e 

Personalized newsletter 

Personalized newsletter only showing items which are cho-

sen from a vendor’s algorithm to fit best 

Stitch Fix, Breun-

inger 

Deges 2017; Gehrckens 

and Boersma 2013; Kreut-

zer 2018 

1 ○ 

Online shop as social platform 

Online shop as a social platform: shop with a friend, who 

can help to choose the right items 

Geox, Nike Haug and Küper 2010 3 ◑ 

360° view 

Display items with a virtual 360º view of the article 

New Balance Deges 2017; Heinemann 

2019; 

Melchior 2018a 

1 ○ 

Outfit recommendations from influencers 

Revealing a detailed outfit recommendation from influenc-

ers 

About You, 

Zalando, Otto, Or-

say 

Heinemann 2019; Mel-

chior 2018b 
3 ○ 

Photos from social networks 

Integration of photos taken by customers or followers from 

social networks 

Target, Adidas, 

Nike, George 

(Asda) 

Haug 2013; Heinemann 

2019; Melchior 2018b 
3 ○ 

Presentation via (catwalk) video 

Presentation of the article using a video/catwalk video 

Asos, Zalando Heinemann 2019; Mel-

chior 2018a 
2 ○ 

P
re

- 
o

r 
P

u
rc

h
as

e 

Commenting on reviews 

Commenting on existing customer reviews to get better im-
pressions 

Walmart, Otto, 

Zalando, Marks 
and Spencer 

Deges 2017; Heinemann 

2019 

2 ◑ 

Curated Shopping 

A styling expert picks the items based on preferences or 
shopping history 

Stitch Fix, Outfit-

tery, Kisura, 
Zalando 

Holland and Bolz 2017 3 ◑ 

Reward of article ratings 

Get rewarded for writing reviews on purchased items 

Amazon, Shopify Burton and Khammash 

2010 

3 ● 

P
u

rc
h
as

e 

Virtual fitting of articles 
Using virtual reality to see how the item could look on one-

self 

Mister Spex, Otto Deges 2017; Walsh and 
Möhring 2015 

3 ● 

One model wears all sizes 
The same model wears all sizes for comparison 

C’est normal  Deges 2017; Heinemann 
2019 

3 ○ 

Find out individual size 

Find out one’s size via self-measurement using an interac-
tive online tool 

Kohl’s, Mytheresa, 

Quiz 

Deges 2017; Heinemann 

2019 

2 ● 

Favorite article for comparison 

Compare the size of a new item with the size of a favorite 
item 

Next (Bra Size), 

Thirdlove, Quiz 

Deges 2017; Heinemann 

2019 

3 ◑ 

Size recommendation - previous purchases 

Size recommendation from the vendor based on previous 
purchases and returns 

Zalando Deges 2017; Heinemann 

2019 

3 ○ 

Size advice - figure types 

Size advice based on which figure type is most similar to 
oneself 

About You, Sizea-

ble, The Yes 

Deges 2017; Heinemann 

2019 

2 ○ 

Information model size 

Information on the size of the model who wears the item 

Asos, Nelly, Tar-

get, Pretty Little 
Thing, River Island  

Deges 2017; Heinemann 

2019 

2 ○ 

Self-measurement via webcam 

Via webcam: using a special suit or object for comparison 
while standing in front of a camera 

Upcload Walsh and Möhring 2015 3 ● 

Assisted shopping 

Real-time guidance from the vendor to help to choose sizes 
or colors 

John Lewis, 

BAUR 

Heinemann 2019 3 ◑ 

P
o

st
-P

u
rc

h
as

e 

Discount on current order 

Keep the item and receive a discount on the current order 

Amazon Prime 

Wardrobe 

IFH Köln and AZ Direct 

2016 

3 ○ 

Discount on next order 

Keep the item and receive a discount on the next order 

Bonprix Deges 2017; IFH Köln 

and AZ Direct 2016 

3 ○ 

Return impact information 
For the considered or taken return 

Mirapodo, Zalando Deges 2017 3 ○ 

Bonus points for purchases 

Receive bonus points for kept purchases 

Adidas IFH Köln and AZ Direct 

2016 

2 ○ 

Bonus points for non-return orders 
Receive bonus points for intended, but not returned, orders 

No common exam-
ple known 

IFH Köln and AZ Direct 
2016 

3 ○ 

Support for social projects 

The vendors support social projects in exchange for a not 
carried out return 

BAUR Buxel and Weidlich 2010 3 ○ 

Display of the return behavior 

Displaying the own return behavior to customers 

Zalando Lounge Decker 2018; 

Deges 2017 

3 ○ 

Waiver of shipping costs 
For no return 

Amazon IFH Köln and AZ Direct 
2016 

3 ○ 

Note: MS=Market Standard (1=very common, 2=partly common, 3=very rare/not (yet) existing); DoUI=Degree of User Interaction (○=no user 

interaction needed, ◑=user interaction needed, but can still be used without, ●=can only be accomplished by integrating the user) 
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2.3 The relationship between expectation fulfillment and satisfaction 

The effect of the individual (service) attributes on customer satisfaction is not always linear (Kano 

et al. 1984; Shahrestani et al. 2020; Shahin et al. 2017) and changes over time (Kano 2001). We 

would like to provide an informative insight into the different measures’ expected effects with our 

work from a customers’ perspective. For this purpose, various approaches are available (Mikulić 

and Prebežac 2011). Kano’s model (Kano et al. 1984) is a proper way to capture effects in the design 

stage of a product or service and later to derive managerial strategies. Therefore, we will use Kano’s 

method for our investigations. 

In the literature, Kano’s model is not precisely distinguished. Therefore, the following shall apply 

to this work: Kano’s model (Matzler 2003, p. 341) is the term used to describe the work of Kano 

(1968, 1987, 1995, 2001); Kano et al. (1984), which is often referred to as „Theory of Attractive 

Quality.“ Kano describes that the relationship between expectation fulfillment and customer satis-

faction is not always linear. It should serve us as a theoretical concept for the multi-factor structure 

in customer satisfaction. Kano’s model is in contrast to the Kano method. It describes a procedure 

that can be used for categorization. We will come to this in the next chapter. 

According to Kano et al. (1984) and Kano (2001), there are four primary patterns for cause-effect 

relationships: Must-be, One-dimensional, Attractive, and Indifferent (Fig. 2) supplemented by two 

relatively rare and theoretical cases (Matzler et al. 1996; Mikulić and Prebežac 2011; Nilsson‐Witell 

and Fundin 2005) from which strategies for companies are derived. 

• Must-be (M) items are items for which poor performance has the strongest effect on cus-

tomer satisfaction in its entirety; meeting or even exceeding expectations cannot increase 

overall customer satisfaction. Strategy: Securing primary performance via, e.g., service 

level agreements, following no further investment. 

• One-dimensional (O) items are items with a direct influence on overall satisfaction for good 

and bad fulfillment. Strategy: Ensure primary performance and increase it further. 
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• Attractive (A) items are usually not expected by the customer and, if present, lead to an 

improvement in satisfaction. Absence or poor performance does not affect overall satisfac-

tion. Strategy: If the necessary services (M and O) are acceptable, they can differentiate in 

the market. 

• Indifferent (I) items have no neither positive nor negative influence on customer satisfac-

tion. Strategy: Avoid Investments. 

• Reverse (R) items lead to a decline in satisfaction when present, but their absence leads to 

an improvement.  Strategy: Not only should any investment be avoided, but consideration 

should also consider whether a consciously externally communicated demarcation can be 

perceived as Attractive. 

• Questionable (Q) items are forfeited if none of the five correlations listed could be deter-

mined; subsequently, no general strategy applies. 

Fig.  2  Kano’s model (Kano et  al .  1984)  with  the  i l lus tra t ion of  i ts  l i fe  cycle (Kano 2001)  
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Kano (2001) also addresses a dynamic change over time. In his view, a successful quality element 

of a product or service passes through this sequence or lifecycle: Indifferent -> Attractive -> One-

dimensional -> Must-be. Nevertheless, also, other sequences can be found. Nilsson‐Witell and 

Fundin (2005) have shown that when an adoption level is taken into account, the answers can be 

categorized differently. For example, one service studied was during introduction I and later A. 

Respondents referred to as early adopters already categorized this service as O or even M instead 

of A. Further studies have also shown in time series comparisons that the attributes change dynam-

ically over time. Hölzing (2008) examined services for people with diabetes at an interval of 6 

months (2005, 2006), Raharjo et al. (2010) for characteristics of notebooks with ten data points at 

a 2-month rhythm, Löfgren et al. (2011) quality attributes of commodity packaging (2003, 2009) 

and Stöcker and Nasseri (2020) touchpoint satisfaction of customers of an eCommerce retailer 

(2011, 2013). 

2.4 Hypothetical Framework 

We will now derive our hypotheses about the measures presented in Table 3. These can be divided 

into two main groups: Characteristics that concern the measure itself (time effects, type of incentive, 

and user interaction) and variations in customer attributes (age and order frequency). 

Measure-related Hypotheses 

As illustrated in Figure 2, new service features will first be evaluated as Attractive and perceived 

as One-dimensional with a linear increase regarding satisfaction and, finally, Must-be dimension 

(Kano 2001). However, online shopping operators need to consider the features’ adoption rates in 

terms of time and incorporate the potential competitive advantage by being the first to offer specific 

measures. According to the law of differentiation dynamics, the prospective competitive advantage 

will diminish if competitors are already providing such features (Rudolph and Becker 2003). While 

some measures for (those with high levels of the market standard, see Table 3) are already widely 
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implemented in online shops, others are still in an evolving stage with only a few practical examples 

existing. Therefore, we assume: 

H1: Measures with a low level of market standard are more frequently categorized as I and A 

instead of O and M than those representing a high level of market standard. 

Within the post-purchase stage measures, those related to compensation or rewards might be per-

ceived as positive, as they will trigger reinforcement according to the operant conditioning theory 

(Skinner 1965). Hence, they result in higher consumer satisfaction than other sanctioning consum-

ers (such as displaying return behavior or return impact information). So, measures that reward 

consumers seem to pay off more than sanctioning them (IFH Köln and AZ Direct 2016; Gelbrich 

et al. 2017). Although we have excluded re-purchase behavior from this study, it should be evident 

that, especially in a buyer's market with many suppliers, respectively, a negative sanction leads to 

customers' churn. Therefore the implementation of these measures must follow with great sensitiv-

ity. Accordingly, we hypothesize that monetary measures („Discount on next order“, „Discount on 

current order“, „Bonus points“, and „Waiver of shipping costs“) will result in a higher increase in 

customer satisfaction, especially in contrast to measures sanctioning customers (display of the re-

turn behavior; return impact information). 

H2a: Monetary measures have the strongest positive influence on customer satisfaction (CS+) 

H2b: Monetary measures have the strongest positive influence on customer satisfaction (CS+) 

compared to all measures sanctioning customers. 

In the measures described for the avoidance of returns, some can only succeed with the user’s active 

collaboration (see Table 3, column DoUI). Here, such measures’ success depends on customers’ 

willingness to engage in these measures (Lai et al. 2014). Since the fashion market is a buyer’s 

market, we assume that these are less appealing. 
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H3: Measures that require the direct engagement of users are less frequently categorized as A, 

O, and M compared to other measures.  

Customer-related Hypotheses 

Technical innovations undergo the life cycle, according to Kano (2001). We assume that newer 

measures, which cannot be considered the market standard, are preferred more by younger than 

older customers. In this study, the measures “virtual fitting of articles,” “self-measurement via 

webcam,“ „curated shopping,“ „assisted shopping,“ and „online shop as a social platform.“ This 

effect is exceptionally actual for the millennial generation, who possess excellent technological 

skills (Ladhari et al. 2019).  

H4: Innovative measures positively influence customer satisfaction (CS+) by younger custom-

ers. 

As purchase frequency can be a moderator concerning the categorization of the measures (Gelbrich 

et al. 2017), we assume purchase frequency also moderates return averting measures. Meanwhile, 

customers with high shopping frequency are used to handle product returns as part of the shopping 

online (Ülkü and Gürler 2018). Hence, they easily hazard the related consequences and sometimes 

even take advantage of a merchant’s lenient return policy (Pei and Paswan 2018). Therefore, we 

expect: 

H5: Customers with a high purchase frequency tend to categorize the queried measures in the 

three purchase stages as A and O. 

This study aims to describe the return process as a holistic problem, gain insights into current and 

innovative measures in return management, and map their effect on customer satisfaction. With the 

hypotheses that have been formulated, we try to determine structures within the individual 

measures, which can later be generalized. Using the segmented Kano perspective, we also investi-

gate whether the answers already show signs of a life cycle for the measures. For this purpose, we 
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use a structured questionnaire, which also includes questions on buying and return behavior. Thus 

we hope to isolate additional descriptive characteristics that can profile our findings even more 

precisely. 

3. Research Design 

To collect the customers’ voice, we decided to use an online questionnaire sent to all customers. In 

this questionnaire, we asked one functional and one dysfunctional question for each measure; these 

questions were combined in the evaluation. 

3.1 Survey and Descriptive Statistics 

While many studies in return management literature applying self-report surveys suffer from ac-

quiring an adequate sample and use student samples instead (Pei and Paswan 2018; Oghazi et al. 

2018; Gelbrich et al. 2017), we want to overcome this issue by enquiring about actual customers 

from a leading online shop in Germany. This approach provides multiple advantages. First, in con-

trast to students, actual customers exhibit higher income levels and, therefore, higher purchase 

power (Iyer and Eastman 2006), leading to more realistic responses regarding price issues. Second, 

even though elderly consumers represent a fast-growing segment in e-commerce, literature on con-

sumers’ online shopping behavior older than 50 years is still very scant (Lian and Yen 2014) and 

should be examined. Third, while students’ answers for hypothetical scenarios might not reveal 

their actual shopping and return behavior, we expose our questions within the determined online 

shop's framework addressing this specific online shop's customers, which results in more realistic 

findings. For our research, we had the opportunity to contact customers of BAUR Versand 

(baur.de), a top 10 online retailer for fashion in Germany (EHI Retail Institute 2019). BAUR's prod-

uct range focuses on fashion, shoes, and home, including furniture, and concentrates primarily on 

female customers between 40 and 55. BAUR relies primarily on well-known brands, and around 

90% of the business volume is handled via the online shop. 
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The invitation to participate in the survey was sent by e-mail on December 14, 2018, to all BAUR 

customers providing the opportunity to answer the questionnaire until January 18, 2019. A raffle of 

15 shopping vouchers worth EUR 20 for the BAUR online shop was announced among all partici-

pants in the invitation. To not overstrain respondents with the very time-consuming questionnaire, 

three surveys with different clusters of measures were used, randomly assigned to the e-mail ad-

dresses. All questionnaires had the same structure and differed only in the return measures exposed 

using the Kano methodology (survey 1: 10 measures, survey 2: 11, and survey 3: 9, see Table 4). 

In the beginning, the aim and purpose of the study were explained. It was pointing out that this was 

a joint research project of BAUR and students of a near-by University. The initial questions on the 

current ordering and returns behavior were subsequently asked (no further validation via the cus-

tomer database). The self-assessment of the respondents serves, on the one hand, as an icebreaker 

question; on the other hand, the respondent should reflect his or her return behavior at this point 

and thus form the basis for further answers. They were following these questions by the evaluation 

of one of the three clusters of measures. The Kano questioning technique, unusual for many re-

spondents, was first introduced using an example. Finally, presenting the questions on socio-de-

mographics and space for comments and the opportunity to participate in the raffle. Pretests helped 

to test the comprehensibility of the questions and the structure during the questionnaire develop-

ment. 

For describing the respondents in more detail in the following analysis, other characteristics were 

queried: a) On the one hand, the current ordering behavior, whereby the ordering frequency, the 

average expenditure on fashion, for who is mainly purchased, where individual product ranges are 

purchased preferentially (online or offline), whether these purchases are mainly spontaneous or 

planned and how fashion buying online is generally perceived. Afterward, b) the current return 

behavior: how often a return took place, the reasons for it, how complex a return is perceived, and 

whether the return behavior differs between orders from different shops. Finally, in addition to age 

and gender, c) the residence place’s size was also surveyed to detect any differences in an assumed 

imbalance of supply. 
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A total of 8,393 complete questionnaires were evaluated (survey 1: n=2,789 completion rate 68%, 

survey 2 n=2,855 completion rate 70%; survey 3 n=2,749 completion rate 64%). The three samples 

are structured as follows about their purchasing behavior and socio-demographic characteristics 

(for full detail, see appendix 1).  

The majority of customers order fashion online between once a month (30.6%) and once a quarter 

(32.6%). At the same time, 85.8% of those surveyed stated that they spend up to 150 EUR. Regard-

ing their shopping behavior, 22.8% describe themselves as planning, 36.0% as partly/partially plan-

ning, and 41.1% as browsing and discovering. Only very few of the respondents (8.0%) answer that 

they avoid online shopping when possible. Besides, the vast majority (62.0%) answered that they 

love buying fashion online. Concerning the number of returns, customers state that they have also 

returned in 32.6% of (all) orders transacted. 

Regarding the reasons for a fashion return, 87.1% of the respondents answered with „Item does not 

fit,” 45.9% with „I do not like this item,” 41.6% ordered several sizes to choose from, 21.0% „not 

as described” and 4.2% bought more to choose from at home due to a promotional measure. In the 

upper third of the scale, 55.4% rate a fashion return’s effort as “not elaborate.” Here too, bias is to 

be assumed from the survey of active online shoppers. When asked whether the return behavior 

differs among different providers, 52.4% explicitly answered “no,” while 77.7% of the answers 

tended to be “no” in the first half of the 6-point Likert scale. 

Among the respondents, 79.8% are female, 29.1% are between 29 and 44 years old, 32.9% are 

between 45 and 54 years old, and 38.1% are older than 55, slightly above average in small and 

medium-sized cities (5 to 100 thousand inhabitants) and firmly below average in cities with millions 

of inhabitants. 

3.2 Categorization of the Measures 

In order to determine the cause-effect relationships for each item in Table 3, two questions were 

asked: the functional (“imagine that ... has [item] ...”) (Kano et al. 1984; Matzler et al. 1996; Mikulić 
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and Prebežac 2011) and dysfunctional (“imagine that ... has not [item] ...”) questions (Berger et al. 

1993; Matzler et al. 1996; Nilsson‐Witell and Fundin 2005). The answer is given on an ordinal scale 

with a middle option (“(1) I like it that way”, “(2) It must be that way”, “(3) I am neutral”, “(4) I 

can live with it that way”, „(5) I dislike it that way”). Nature can be determined via the Kano table 

from combining the two answers to the two questions (Table 4). 

Table  4  Kano table:  Categor ies der ived from answers to  the (dys-)functional  quest ions  

(Kano e t  a l .  1984)  

  Dysfunctional Question 

  (1) Like (2) Must be (3) Neutral (4) Live with (5) Dislike 

Func-

tional 

Question 

(1) Like Q A A A O 

(2) Must be R I I I M 

(3) Neutral R I I I M 

(4) Live with R I I I M 

(5) Dislike R R R R Q 

Note: A=Attractive; I=Indifferent; M=Must-Be; O=One-Dimensional; Q=Questionable; R=Reverse. 

The characteristic is now derived from the Kano table. If all survey results of one question are 

plotted as value pairs in a coordinate system, the characteristic Kano curves are obtained (see Fig. 

2). 

In the literature, however, another approach is also common. In this case, no curves are shown; the 

character is reflected here in the position of the individual measures in the respective quadrants. 

This approach presents the positive and negative impact on customer satisfaction as two coefficients 

(Berger et al. 1993; Shahin et al. 2013; Shahin and Zairi 2009). Assuming a positive factor on the 

customer satisfaction (CS+) for answers falling into classes A and O, a negative factor (CS-) for O 

and M. Answer combinations from classes Q and R are not considered. The results are then dis-

played graphically in a coordinate system representing the two axes CS+ and CS- orthogonally. The 

two coefficients tell us how often an item has been categorized into the mentioned groups. For CS+, 
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the mentions are counted positively influencing satisfaction when the expectation is fulfilled posi-

tively (A and O) and for CS- those where a negative fulfillment negatively influences satisfaction 

(O and M). A high value consequently shows a high correlation with customer satisfaction. Since 

Kano’s categorization can only be interpreted by translating the terms into one of the corresponding 

curves, the coefficients dispense with this step. The positive as well as the negative effect can be 

read off directly. 

# #0

# # # #

A
CS

A O M I

+ +
=

+ +
 

# #

# # # #

O M
CS

A O M I

− +
=

+ +
 

#A, #I, #M and #O represent the response frequencies of the categories or the number of responses 

categorized as A, I, M, or O. The indices are between 0 and 1 and -1, respectively, and reflect the 

impact on satisfaction. From the location of the points, their categorization is again apparent. The 

coordinate system is, therefore, divided into four quadrants: 
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0.5 1
,

0.5 1

andCS
One - dimensional if

CS

+

−

 


− − 
 

If points are close to the origin, no influence can be proven at all. If a point lies precisely in the 

middle, a positive and, at the same time, the negative influence is detectable in 50% of the respond-

ents. The coordinate system position can now be determined (see values in Table 5) using the for-

mulas described in Chapter 3 or read directly from Table 5. For example, the item „Discount on 

next order“ has a CS+ of 0.8 and a CS- of -0.23. It can therefore be found in quadrant „A“ in the 

upper left corner. 

Also, the Total Strength (TS) represents the number of mentions categorized as A, M, or O com-

pared to all mentions. Items with a high TS also have a strong influence (positive or negative) on 

total customer satisfaction. The TS serves to prioritize the individual items concerning their effect 

on customer satisfaction. Improvements to items with a high TS should have a high impact on the 

change in customer satisfaction.  

# # #

# # # # # #

A M O
Total Strength

A O M I Q R

+ +
 =

+ + + + +
 

Recently, other papers apply an additional variant to the method described above. The Segmented 

Kano perspective descends one level deeper by searching for clusters within the answers. The new 

approach makes it possible to identify different customer segments with different expectations, oth-

erwise not visible in the aggregated form. For this purpose, the answers enter the functional and 

dysfunctional question as a metric feature into the cluster analysis (Baier and Rese 2018) or using 

one-mode non-metric cluster analysis concerning the derived categories (Rese et al. 2019). The 

number of clusters is then determined iteratively under the observation of the Bayesian Information 

Criteria (BIC) concerning the likeness functions. 
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4. Findings 

Table 5 displays the overall assessment of the measures based on Kano’s model, indicating category 

frequencies, the total strength (TS), the customer satisfaction index CS+, and the customer dissatis-

faction index CS-. 

The surveyed measures’ results are evaluated solely as A (not expected, but if there is a positive 

influence on overall satisfaction) or I (no evident influence on overall satisfaction). Regarding the 

category Attractive, the measures “360° view“, „Discount on current order,“ „Discount on next 

order,“ „Bonus points for purchases,“ and „Waiver of shipping costs“ stand out. More than 50% of 

the respondents rated these measures as Attractive, suggesting that these measures could substan-

tially contribute to customer satisfaction. In contrast, the measures’ Curated shopping“, „Assisted 

shopping,“ „Commenting on reviews,“ „Online shop as a social platform,“ „Photos from social 

networks,“ „Outfit recommendations from influencers“ and „Return impact information“ are also 

Indifferent to more than 50% of the mentions. Here, no influence on customer satisfaction is ex-

pected when implementing the measures. None of the measures can be described as M. The only 

measure that could be considered One-dimensional is „Waiver of shipping costs.“ Here, the closest 

mentions are for A 1,373 and O 900. Measures are categorized as Reverse if their interrelationship 

towards satisfaction is precisely the opposite. An exemplary implementation has a negative effect 

and a bad one, a positive effect on satisfaction. Here the measure webcam size is particularly strik-

ing. Categorized as Indifferent, with 1,125 mentions, but with 996 mentions, it is also very close to 

Reverse.  
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Table  5  Overa ll  assessment of  possib le measures  

 Measure Overall Category Frequencies (n=2,792) TS CS+ CS- 

#A #I #M #O #Q #R 

S
u

rv
ey

 1
 

360° view 1,481 605 91 532 67 16 56% 0.74 -0.23 

Presentation via catwalk 

video 

1,134 1,221 14 222 44 157 42% 0.52 -0.09 

Virtual fitting of articles 1,030 1,183 15 212 48 304 38% 0.51 -0.09 

Curated shopping 645 1,516 29 151 42 409 25% 0.34 -0.08 

Assisted shopping 579 1,486 41 131 47 508 23% 0.32 -0.08 

Commenting on reviews 605 1,633 61 196 32 265 25% 0.32 -0.10 

Online shop as social plat-

form 

296 1,605 23 69 53 746 12% 0.18 -0.05 

Personalized newsletter 659 1,388 54 170 53 468 26% 0.37 -0.10 

Photos from social net-

works 

699 1,334 33 122 58 546 26% 0.38 -0.07 

Outfit recommendations 

from influencers 

424 1,452 41 113 61 701 18% 0.26 -0.08 

  Overall Category Frequencies (n=2,855)    

S
u

rv
ey

 2
 

Presentation via video 1,351 992 34 353 58 67 49% 0.62 -0.14 

360° view 1,473 462 165 676 60 19 60% 0.77 -0.30 

Find out individual size 1,330 701 122 576 61 65 52% 0.70 -0.26 

Information model size 1,147 852 181 541 66 68 48% 0.62 -0.27 

One model wears all sizes   1,026 930 50 403 81 365 38% 0.59 -0.19 

Favorite article for compar-

ison 

1,134 1,143 58 340 63 117 42% 0.55 -0.15 

Size advice - figure types 1,258 722 128 614 61 72 50% 0.69 -0.27 

Photos from social net-

works 

562 1,392 31 111 71 688 21% 0.32 -0.07 

Virtual fitting of articles 881 1,203 32 263 57 419 32% 0.48 -0.12 

Size recommendation - 

previous purchases 

1,290 869 70 336 77 213 48% 0.63 -0.16 

Self-measurement via 

webcam 

494 1,125 14 114 112 996 18% 0.35 -0.07 

  Overall Category Frequencies (n=2,749)    

S
u

rv
ey

 3
 

Discount on current order 1,459 522 65 550 60 93 58% 0.77 -0.24 

Discount on next order 1,540 477 38 568 50 76 59% 0.80 -0.23 

Return impact information 364 1,517 147 235 60 426 22% 0.26 -0.17 

Bonus points for purchases 1,484 542 43 584 47 49 56% 0.78 -0.24 

Bonus points for non-re-

turn orders 

1,299 771 50 474 52 103 51% 0.68 -0.20 

Reward of article ratings 1,222 805 48 537 44 93 47% 0.67 -0.22 

Support for social projects 1,096 802 59 643 52 97 43% 0.67 -0.27 

Display of the return be-

havior 

809 1,336 27 260 39 278 31% 0.44 -0.12 

Waiver of shipping costs 1,373 265 110 900 62 39 56% 0.86 -0.38 

Note: The Most Frequent Category is Marked in Bold. A=Attractive; I=Indifferent; M=Must-Be; O=One-Dimensional; 

Q=Questionable; R=Reverse; TS=Total Strength; CS+=Customer Satisfaction Index; CS-= Customer Dissatisfaction Index. 

Considering the categorization of the measures and the market standard’s degree (MS) that we have 

assumed (H1), no consistent picture emerges (Table 6).  The measures investigated are distributed 
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equally between I and A, depending on the market standard’s level. Interestingly, even measures 

that have been in the market for a long time and established are only categorized as A. 

Table  6  Categoriza t ion of  measures concern ing the assumed market  standard  

 Very common Partly common Very rare/not (yet) existing  

I Personalized newsletter 

 

Presentation via cat-

walk/item video, comment-

ing on reviews, photos from 

social networks 

Virtual fitting of articles, 

photos from social net-

works, curated shopping, as-

sisted shopping, online shop 

as a social platform, outfit 

recommendations from in-

fluencers, favorite article for 

comparison, self-measure-

ment via webcam, return im-

pact information, display of 

the return behavior 

 1 item 4 items 10 items 

A 360° view, size advice – fig-

ure types, 

 

 

find out individual size, In-

formation model size, bonus 

points for purchase 

 

One model wears all sizes, 

size recommendation – pre-

vious purchases, reward for 

article ratings, discount on 

current order, discount on 

next order, bonus points for 

purchases, support for so-

cial projects, Waiver of ship-

ping costs 

 2 items 3 items 8 items 

O    

M    

R    

Sum 3 items 7 items 18 items 

Note: measures in italics refer to return averting. 

Nor can a uniform picture be formed for the degree of required user interaction (H3, Table 7). Sup-

pose we additionally exclude return averting measures, which do not prevent returns in the narrower 

sense but negotiate the conditions under which the customer would refrain from returning. In that 

case, a similar distribution between I and A can be observed here as well. Consequently, this hy-

pothesis must also be rejected. 
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Table  7  Categoriza t ion of  measures concern ing the assumed degree of  user  interac tion  

 No user interaction needed User interaction needed, but 

can still be used without 

Can only be accomplished 

by integrating the user 

I Presentation via cat-

walk/item video, personal-

ized newsletter, photos from 

social networks, outfit rec-

ommendations from influ-

encers, return impact infor-

mation, display of the return 

behavior 

Curated shopping, assisted 

shopping, commenting on 

reviews, online shop as a so-

cial platform, favorite article 

for comparison 

 

Virtual fitting of articles, 

self-measurement via 

webcam 

 

 7 items 5 items 2 items 

A 360° view, information 

model size, one model wears 

all sizes, size advice - figure 

type, photos from social net-

works, size recommendation 

– previous purchases, dis-

count on current order, dis-

count on next order, bonus 

points for purchase, bonus 

points for non-return orders, 

support for social projects, 

waiver of shipping costs 

 Find out individual size, re-

ward of article ratings 

 

 

 12 items  2 items 

O    

M    

R    

Sum 19 items 5 items 4 items 

Note: measures in italics refer to return averting. 
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Fig.  3  Depict ion of  the overal l  assessment of  possib le measures (n= 8,396)  

Figure 3 shows all measures based on their impact coefficients CS+ and CS-. Here, too, the same 

picture emerges. All measures presented are located in the two quadrants I and A. Furthermore, an 

exciting pattern becomes visible: most measures with a monetary reward show the most considera-

ble positive impact („Waiver of shipping costs,“ „Discount on next order,“ „Discount on current 

order,“ „Bonus points for purchases“). As we stated in H2a, monetary measures have an above-av-

erage positive influence on customer satisfaction than the other examined measures and measures 

sanctioning the customer (H2b). These are followed by measures that primarily result in an improve-

ment of the presentation by the vendor („360° view “, „Find out individual size,“ „Size advice - 

figure types,“ „Size recommendation - previous purchases,“ „Presentation via video,“ „One model 

wears all sizes,“ „Size recommendation - previous purchases,“). A third block can be seen in the 

Indifferent quadrant. This cluster contains measures that either include external content in the shop 

(„Online shop as a social platform,“ „Outfit recommendations from influencers,“ „Commenting on 

reviews,“ „Photos from social networks“), require the customer to be involved („Assisted 
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shopping,“ „Self-measurement via webcam,“ „Photos from social networks“) or reflect their return 

behavior. Since our study examines all stages of the purchasing process, we can clearly show this 

hierarchy of measures at this point.  

We then have examined all the proposed measures regarding dependencies (linear or segmental) in 

the answering behavior to their age (H4) and shopping frequencies (H5) with no significant differ-

ences found.  

We apply the before-mentioned segmented Kano perspective to reveal more meaningful insights 

based on the overall results and derive more clear implications. We have used the well-known two-

step clustering approach, according to Chiu et al. (2001). In each record, each measure is catego-

rized according to Kano’s evaluation table. For the resulting nominal data matrix, independent mul-

tinomial distribution of the categories over the clusters’ attributes is assumed. The optimal number 

of clusters is now determined iteratively, taking into account the BIC. In this case, three clusters 

have proven to be ideal.  

From the results in Table 8 and Figs. 4 to 6, initial findings can already be deduced. A closer look 

reveals that the three surveys' segments follow similar patterns: each segment can be assigned to a 

quadrant. We named segments primarily in I „Indifferents“, those in A „Enthusiastics“ and in O 

„Demanders.“ A segment in M we would call „Taken-for-granteds“. Nilsson‐Witell and Fundin 

(2005) have found a similar starting position in their study for „e-service. “ When introduced per-

ceived as Indifferent, it became later Attractive. They investigated the Attractive with a technology 

adoption level. They found segments in O and M, which they refer to as „early adopters, “a term 

also used to the diffusion of innovations theory Rogers (1962). 
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Table  8  Segment-spec if ic  ca tegory frequencies for  each of  the  three surveys  
 

Measure Segment-Specific Category Frequencies 

(„Indifferents“: n=1,498 / „Enthusiastics“: n=1,005 / „Demanders“: n=289) 

#A #I #M #O #Q #R 

S
u

rv
ey

 1
 

360° view*** 29 / 241 / 

25 

871 / 634 / 

108 

5 / 5 / 19 3 / 3 / 71 9 / 5 / 35 581 / 117 / 

31 

Presentation via cat-

walk video*** 

53 / 346 / 

26 

860 / 484 / 

100 

12 / 10 / 

13 

8 / 34 / 63 22 / 4 / 39 543 / 127 / 

48 

Virtual fitting of arti-

cles*** 

106 / 410 / 

25 

1,012 / 475 

/ 77 

5 / 29 / 21 11 / 58 / 

80 

10 / 1 / 38 354 / 32 / 

48 

Curated shop-

ping*** 

101 / 450 / 

28 

953 / 451 / 

82 

16 / 7 / 18 17 / 28 / 

86 

11 / 3 / 33 400 / 66 / 

42 

Assisted shop-

ping*** 

150 / 472 / 

25 

896 / 389 / 

90 

9 / 23 / 20 7 / 27 / 

105 

10 / 8 / 28 426 / 86 / 

21 

Commenting on re-

views*** 

160 / 514 / 

35 

1,064 / 414 

/ 94 

20 / 4 / 12 39 / 35 / 

99 

5 / 4 / 26 210 / 34 / 

23 

Online shop as social 

platform*** 

169 / 524 / 

18 

921 / 361 / 

78 

18 / 3 / 13 28 / 35 / 

115 

5 / 10 / 40 357 / 72 / 

25 

Personalized news-

letter*** 

328 / 651 / 

51 

859 / 251 / 

73 

4 / 2 / 9 40 / 57 / 

115 

16 / 5 / 27 251 / 39 / 

14 

Photos from social 

networks*** 

398 / 690 / 

46 

903 / 247 / 

71 

4 / 3 / 7 54 / 49 / 

119 

10 / 0 / 34 129 / 16 / 

12 

Outfit recommenda-

tions from influenc-

ers*** 

692 / 767 / 

22 

529 / 55 / 

21 

44 / 29 / 

18 

214 / 139 / 

179 

8 / 11 / 48 11 / 4 / 1 

 Measure Segment-Specific Category Frequencies 

(„Indifferents“: n=802 / „Enthusiastics“: n=1,427 / „Demanders“: n=626) 

S
u

rv
ey

 2
 

Presentation via 

video*** 

162 / 1,008 

/ 181 

504 / 362 / 

126 

5 / 2 / 27 37 / 35 / 

281  

52 / 2 / 4 42/ 18 / 7 

360° view*** 291 / 1,053 

/ 129 

291 / 121 / 

50 

39 / 64 / 

62 

110 / 185 / 

381 

56 / 1 / 3 15 / 3 / 1 

Find out individual 

size*** 

130 / 1,093 

/ 107 

488 / 171 / 

42 

32 / 31 / 

59 

53 / 118 / 

405 

52 / 5 / 4 47 / 9 / 9 

Information model 

size*** 

136 / 913 / 

98 

473 / 302 / 

77 

40 / 46 / 

95 

52 / 147 / 

342 

51 / 9 / 6 50 / 10 / 8 

One model wears all 

sizes*** 

144 / 777 / 

105 

432 / 378 / 

120 

9 / 9 / 32 35 / 71 / 

297 

65 / 6 / 10 117 / 186 / 

62 

Favorite article for 

comparison*** 

82 / 891 / 

161 

553 / 464 / 

126 

14 / 8 / 36 20 / 32 / 

288 

57 / 2 / 4 76 / 30 / 

11 

Size advice - figure 

types*** 

154 / 982 / 

122 

449 / 222 / 

51 

25 / 41 / 

62 

71 / 166 / 

377 

53 / 4 / 4 50 / 12 / 

10 

Photos from social 

networks*** 

38 / 395 / 

129 

438 / 708 / 

246 

9 / 5 / 17 6 / 10 / 95 58 / 3 / 10 253 / 306 / 

129 

Virtual fitting of arti-

cles*** 

59 / 679 / 

143 

495 / 549 / 

159 

8 / 2 / 22 12/ 21 / 

230 

51 / 0 / 6 177 / 176 / 

66 

Size recommenda-

tion – previous pur-

chases*** 

131 / 985 / 

174 

449 / 318 / 

102 

11 / 12 / 

47 

22 / 32 / 

282 

62 / 11 / 4 127 / 69 / 

17 

Self-measurement 

via webcam*** 

33 / 343 / 

118 

287 / 629 / 

209 

7 / 1 / 6 5 / 9 / 100 86 / 14 / 

12 

384 / 431 / 

181 
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 Measure Segment-Specific Category Frequencies 

(„Indifferents“: n=757 / „Enthusiastics“: n=1,119 / „Demanders“: n=873) 
S

u
rv

ey
 3

 

Discount on current 

order*** 

286 / 1,026 

/ 147 

415 / 49 / 

58 

5 / 3 / 57 13 / 27 / 

510 

3 / 11 / 46 35 / 3 / 55 

Discount on next or-

der*** 

340 / 1,045 

/ 155 

377 / 29 / 

71 

3 / 4 / 31 13 / 34 / 

521 

2 / 0 / 48 22 / 7 / 47 

Return impact infor-

mation*** 

49 / 237 / 

78 

527 / 643 / 

347 

20 / 35 / 

92 

14 / 62 / 

159 

1 / 6 / 53 146 / 136 / 

144 

Bonus points for 

purchases*** 

311 / 979 / 

194 

382 / 56 / 

104 

16 / 5 / 22 29 / 75 / 

480 

5 / 1 / 41 14 / 3 / 32 

Bonus points for 

non-return orders*** 

156 / 1,010 

/ 133 

553 / 72 / 

146 

5 / 3 / 42 8 / 30 / 

436 

1 / 2 / 49 34 / 2 / 67 

Reward of article 

ratings*** 

198 / 835 / 

189 

466 / 192 / 

147 

13 / 3 / 32 31 / 73 / 

433 

6 / 1 / 37 43 / 15 / 

35 

Support for social 

projects*** 

260 / 692 / 

144 

391 / 201 / 

210 

11 / 10 / 

38 

69 / 197 / 

377 

6 / 4 / 42 20 / 15 / 

62 

Display of the return 

behavior*** 

90 / 506 / 

213 

542 / 501 / 

293 

5 / 0 / 22 10 / 40 / 

210 

2 / 3 / 34 108 / 69 / 

101 

Waiver of shipping 

costs*** 

387 / 833 / 

153 

202 / 33 / 

30 

33 / 26 / 

51 

107 / 219 / 

574 

14 / 3 / 45 14 / 5 / 20 

Note: The Most Frequent Category per Segment Marked in Bold. A=Attractive; I=Indifferent; M=Must-Be; O=One-Dimen-

sional; Q=Questionable; R=Reverse; Differences Across Segments are Analyzed Using the Chi-squared Test of Independence 

with ***: p<0.01; **: p<0.05, *: p<0.1. 

These segments can again be depicted graphically, where each graph represents one of the three 

surveys. In the graphs, there are three data points (segments) for each measure. Different symbols 

indicate the affiliation to the respective segment. For the sake of clarity, we have refrained from 

displaying all 84 data points in one graph. Therefore, we have staggered the graphs according to the 

surveys. We see the more excellent information value directly comparing the clusters’ positions to 

each other for each item, and also, the clusters were calculated independently for each survey. 
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Fig.  4  Depict ion of  the assessment of  possib le measures survey 1 (n=2,792)  
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Fig.  5  Depict ion of  the assessment of  possib le measures survey 2 (n=2,855)  

Fig.  6  Depict ion of  the assessment of  possib le measures survey 3 (n=2,749)  
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Analogous to Kano’s Life Cycle Theory, there are already segments with statistically significant 

differences in the lifecycle. In the segmented Kano perspective, not the measures differ among 

themselves, but the persons confronted with the measures. It is possible to see in Figures 4 to 6 that 

a general market standard apparently has no influence or otherwise cannot be determined in the first 

place. Instead, it seems that customers have individual expectations regarding the measures, refer-

ring again to H1, 

Naturally, measures that show the highest and lowest influences aggregated (Table 5) also show the 

strongest or lowest influences in relative terms for the individual segments. To have a strong influ-

ence overall, many respondents have to answer in the same way, which is also the case after dividing 

into the three segments. Therefore, measures with a very high or meager impact on customer satis-

faction are found in similar (relative) positions after splitting into segments. 

To provide a more detailed characterization of the segments, we also investigated them regarding 

their buying and return behavior and socio-demographic. Unfortunately, no significant differences 

were found here either. 

5. Discussion 

5.1 Theoretical Contribution 

While the majority of previous studies analyzed return behavior either before/during, or after the 

purchase decision (Janakiraman et al. 2016), we contribute to the literature by expanding the view 

on return management to a 3-stage approach, which is investigated in the pre-purchase, post-pur-

chase, and purchase stage based on a large data pool of actual customers (n=8,396). This holistic 

approach reveals that return measures in the post-purchase and actual purchase stage are more ap-

plicable to increase consumers’ satisfaction than those related to the pre-purchase stage. For this 

purpose, we have extended the already existing approaches in Fig. 1. Besides, to the best of our 

knowledge, this study represents the first to analyze consumer return behavior by applying the Kano 

method. Hence, we enable an overview of product return avoidance and averting measures to satisfy 
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consumers the most. This juxtaposition shows for the first time how strongly monetary approaches 

differ from the remaining measures. Without a combination of the three stages, this finding would 

not have been possible. 

5.2 Managerial Implications 

Returns in the mail-order business, especially fashion, are a great nuisance for the customer, the 

company, and the environment. However, not all of the proposed measures can be effectively im-

plemented by a company. It is, therefore, essential to focus on a few but effective measures. Our 

paper offers new insights in this respect. As one might expect, measures that positively sanction 

customers are prevalent. Since these, in turn, actively influence pricing policy, such measures must 

be weighed up carefully. The next exciting group includes measures that aim at improving the 

presentation of merchandise without requiring further effort from the customer. The „360° view“ 

stands out in particular. This measure has even prevailed over more elaborate presentations such as 

„model type photos,“ „presentation via catwalk videos,“ „virtual fitting of articles,” presentation 

via video,“ or „information model size.“ 

The second important finding is that the measures were categorized as exclusively Indifferent or 

Attractive on the overall level. A lack of or poor performance in these measures still has little effect 

on satisfaction. Two conclusions can be drawn from this: either returns are hardly an issue for the 

respondents. More than half of the respondents answered that they do not consider returns to be 

costly (the bias is that only active mail-order customers participated in the survey). The other con-

clusion may be the real market standard in terms of avoiding and averting returns is still deficient, 

and so are the expectations. 

However, a more precise segmentation into clusters already reveals the first One-directional 

measures. Thus, there are already customers whose expectations are significantly higher and whose 

absence or poor performance leads to dissatisfaction. In the sense of early strategic detection, this 

customer group should be observed more closely. If this group grows significantly over time, 
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investment in return management is no longer just nice to have but essential for customer satisfac-

tion. Ultimately, it can be assumed that measures will migrate to the Must-be quadrant in some 

time, which means that investments in this area will not even increase satisfaction but will only 

prevent dissatisfaction. Unfortunately, we were not able to describe these clusters more precisely 

with the customer characteristics queried. Further research in this area would, therefore, be highly 

desirable. 

In brief, this means that customer expectations in return management are generally still in a very 

early life cycle stage. However, this does by no means mean that this is unimportant. On the con-

trary, vendors can set themselves ahead of the competition and gain a competitive advantage by, 

for example, improving the presentation of their products. Our categorization of the market standard 

for Germany clearly shows how few measures can already be considered established. A similar 

situation would be observed in the European region. The online market, which is still growing dy-

namically, will also be joined by different groups of consumers who can no longer be described as 

early movers. Here the demands will change even more significantly, also concerning returns man-

agement. The current social discussion in Western countries is also bringing the environmental im-

pact of human activity more into focus. Here, too, vendors can already differentiate themselves 

from the competition today and use the first-mover advantage for themselves.  

Although monetary incentives such as vouchers or discounts promise a high impact, these mecha-

nisms are usually easy to comprehend. On the other hand, we are firmly convinced that a focus on 

monetary incentives alone does not represent a differentiating feature and can also be easily copied 

by the competition. 

Finally, it should be noted that some measures, albeit unintentionally, can have a negative impact 

on repeat purchase behavior. A test and learning approach is, therefore, advisable here. 
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5.3 Limitations and Future Research 

This paper is limited in some respects. First of all, the respondents are active, mail-order customers 

acquired via newsletters. Potential customers who, for example, do not buy by mail order at all due 

to the problem of returns are not present. Neither the age nor gender structure is representative of 

Germany. It is also conceivable that BAUR customers differ from other mail order customers in 

their attitude to, among other things, new technologies, precisely because in the survey, mainly 

women with an aging focus over 45 years answered (Appendix 1). They differ significantly from 

the millennial generation regarding their technological skills (Ladhari et al. 2019). 

Secondly, the survey was conducted in the German market. Thus, no assertions about possible cul-

tural influences are possible, nor can the industry structure be transferred to other markets without 

adjustments. Competition may be more intense or extensive, which also affects expectations. For 

instance, based on the cultural dimension (Hofstede 1980), Germans are assumed to be more likely 

to avoid uncertain outcomes (rating: 65), compared to, e.g., Americans (rating: 46) or Chinese (rat-

ing: 30; Hofstede Insights 2020). Hence, return avoidance and return averting measures can be ex-

pected to be of higher interest among Germans to avoid such potentially wrong decisions.  

The formed segments strongly indicate a dynamic over time, but unfortunately, could not be de-

scribed in more detail using the other characteristics that were queried. Therefore, no further con-

tribution could be made here about the presumed adoption behavior, leaving space for further in-

vestigations. 

There is also strong evidence in the literature that a very restrictive or inconvenient can also affect 

purchase and re-purchase behavior, especially in a competitive environment like fashion retail. In 

our view, this field also still receives little attention in research. 

Finally, Kano’s method has its limits. Especially in innovation research, many measures are cate-

gorized as Indifferent or Attractive. On the other hand, the method can only indicate the current 

status without providing direct trends for individual attributes’ future progression. A lifecycle is 
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only determined retrospectively. Especially in very dynamic markets such as (fashion) eCommerce, 

new features are often simply trialed without the need to go through a classic life cycle. Therefore, 

the context of the featured solutions must always be considered. Also, the special questioning is 

quite time-consuming and requires a high level of concentration in answering it, diminishing long 

surveys. 

6. Conclusion 

We wanted to investigate the most effective strategies to counteract returns from a customers’ stand-

point in our work. Based on a newly developed three stages process purchase model, a view of 

several measures have been investigated towards their potential impact on customer satisfaction. 

Using the Kano method and its subsequent segmented Kano perspective, exciting results were ob-

tained. Among other things, we were able to show that an improvement in the presentation of the 

products on offer is generally an excellent choice for counteracting returns and that different expec-

tations regarding return management can already be observed today. We thus confirm prior find-

ings, revealing that enhanced product presentation features, such as zooming (De et al. 2013), or in 

our case a 360° perspective, paves the way for fewer returns or higher customer satisfaction, re-

spectively. 

Similarly, photos from social networks or, more generally, alternative product photos are perceived 

indifferently or might even result in more returns (De et al. 2013). Moreover, we validated that 

offering virtual fit information enables declined returns (Gallino and Moreno 2018), as virtual real-

ity tools lead to increased customer satisfaction. Generally, our insights emphasize monetary grati-

fications to represent the measures increasing customer satisfaction the most, which contradicts 

elder findings derived from online shop return rates below the usual average in the fashion industry  

(Walsh and Möhring 2015). Besides the nature of gratification and contrast to previous literature, 

our holistic perspective demonstrated that measures from the post-purchase stage are most likely to 

increase customer satisfaction, as five measures are among the eight most practical measures 
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(highest CS+). With this work, we hope to have provided valuable insights into the avoidance and 

prevention of returns, leading to a reduction of returns in practice.  
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Appendix 1 

 Aspect Specification Survey 1 Survey 2 Survey 3 

S
h

o
p

p
in

g
 b

eh
av

io
r 

Order frequency Several times a month 508 511 498 

monthly 877 862 829 

About once every three 

months 

901 946 887 

About once every six 

months 

306 310 316 

Less frequently 200 226 219 

average spend-

ing on fashion 

< 49 EUR 585 659 638 

50 - 99 EUR 998 1,052 1,038 

100 - 149 EUR 641 627 562 

150 - 199 EUR 244 221 190 

200 - 249 EUR 100 71 92 

>= 250 EUR  64 74 74 

I will not tell 160 151 155 

who is shopped 

for (multiple re-

sponses) 

For me 2,552 2,605 2,314 

My partner 1,326 1,334 965 

My children 942 963 692 

My grandchildren 289 283 222 

My Parents 175 189 147 

Friends 134 103 78 

other relatives (e.g., 

sister, aunt) 

192 163 148 

where to buy 

what (online/of-

fline/indifferent) 

Tops (sweaters, T-

shirts, blouses) 

1,615/233/944 1,616/252/987 1,597/215/937 

Trousers 1,319/719/754 1,345/735/775 1,288/728/733 

Lingerie 1,377/532/883 1,383/581/891 1,310/561/878 

Swimwear 1,374/522/896 1,404/539/912 1,306/557/886 

Jackets and coats 1,184/677/931 1,119/729/1007 1,117/709/923 

Dresses 1,110/520/1162 1,085/546/1224 1,031/492/1,226 

Shoes 1,068/719/1005 1,044/767/1,044 1,009/722/1,018 

Skirts 921/551/1320 892/578/1385 842/555/1,352 

Jewelry and accesso-

ries (e.g., scarves, 

caps, bags) 

822/668/1,302   771/694/1,284 

Blazers and suits 803/832/1,157 737/918/1,200 701/857/1,191 

Self-assessment 

of buying be-

havior (impul-

sive/disciplined) 

< 33.3% 711 561 632 

33.3% - 66.6% 955 1,109 942 

>66.6% 1,126 1,128 1,175 

Perception shop-

ping fashion 

online (avoid-

ance - love) 

< 33.3% 244 199 227 

33.3% - 66.6% 830 889 784 

>66.6% 1,718 1,767 1,697 
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R
et

u
rn

 b
eh

av
io

r 
Return rate of 

fashion orders 

 
32.9% (2,792) 32.0% (2,855) 33.0% (2,666) 

Reasons for re-

turns (multiple) 

Item does not fit 2,396 2,556 2,365 

I don’t like this item 1,301 1,293 1,262 

Several sizes ordered 

for choice 

1,209 1,273 1,012 

Items do not corre-

spond to the descrip-

tion 

529 593 641 

I have bought more 

due to a voucher and 

selected at home 

119 148 89 

Elaboration of a 

return 

< 33.3% 420 626 674 

33.3% - 66.6% 656 777 593 

> 66.6% 1,716 1,452 1,482 

Vendor-specific 

differences in 

returns 

1 doesn’t differ at all 1,200 1,784 1,414 

2 314 285 257 

3 533 320 412 

4 343 205 312 

5 159 112 121 

6 differs very much 243 139 233 

S
o

ci
o

-d
em

o
g

ra
p

h
y
 

Sex Female 2,253 2,283 2,160 

Male 522 545 547 

I will not tell 17 27 42 

Age < 20 years 9 3 10 

20 - 24 years 62 51 41 

25 - 29 years 101 96 94 

30 - 34 years 167 164 151 

35 - 39 years 234 223 212 

40 - 44 years 267 280 275 

45 - 49 years 383 367 369 

50 - 54 years 559 575 506 

55 - 59 years 412 484 464 

>= 60 years 598 612 627 

Size Residence 

in thousands 

< 2 inhabitants 491 505 468 

2 - 5 inhabitants 383 399 419 

5 - 20 inhabitants 600 700 577 

20 - 100 inhabitants 644 600 595 

100 - 1,000 inhabitants 506 471 513 

> 1,000 inhabitants 168 180 177 
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Daniel Baier and Björn Stöcker 

Abstract 

Nowadays, uplift modeling approaches are widespread in direct marketing. They predict the incre-

mental response of a customer to a campaign. So, they allow for scoring the customers in advance 

and, e.g., to better focus on customers that will only purchase due to a contact. However, up to now, 

only approaches with binary response model outcomes (e.g., visit of a website or conversion) and 

with continuous revenue outcomes (e.g., money spend) have been proposed in the literature. In this 

paper, we discuss their shortcomings and how they can be adapted to model profit uplift. We apply 

the Heckman sample selection model, the zero-inflated negative binomial regression model, and 

random forest-based regression for this purpose. Two datasets demonstrate the usefulness of these 

approaches. One dataset describes recent discount offers of a large German online fashion retailer. 

Another is the well-known Hillstrom dataset that reflects two Email campaigns for men's and wom-

en's merchandising. The results are promising. 
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Maximizing Profit from Direct Marketing Campaigns: 

Profit Uplift Modeling Approaches for Online Shops 
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1. Introduction 

Before launching a direct marketing campaign, often, a (small) sample of customers is contacted, 

and their response (e.g., purchased or not) and available customer data (e.g., past information and 

buying behavior) is used to build a predictive response model. Then, this model is used to select 

likely responders to a campaign. 

However, this classical response modeling approach has two shortcomings: First, the response 

model selects customers who respond, maybe regardless of the campaign. This would be waste of 

money in case, e.g., a discount is offered. Second, most response models only predict binary out-

comes (purchase or not), not the more informative continuous outcome (revenue or profit gener-

ated). Both shortcomings restrict the usefulness of this approach when maximizing profit. 

In this paper, we propose new approaches that overcome these problems. They connect findings 

from the field of uplift modeling (e.g., Radcliffe and Surry 1999, Radcliffe and Surry 2011, Kane 

et al. 2014, Rudaś and Jaroszewicz 2018, Gubela et al. 2020) with findings from the field of sample 

selection (see, e.g., Heckman 1979) and zero-inflated regression (see, e.g., Lambert 1992, Ridout 

et al. 2001). Uplift models focus – in contrast to response models – on the incremental response to 

a treatment. For each customer, they predict the effect of being treated. The Heckman sample se-

lection and the zero-inflated regression models are designed to overcome the problem that a con-

tinuous outcome (revenue or profit) only is available in the few cases when a customer responds to 

a campaign. We discuss the new approaches in the paper. The well-known Hillstrom direct market-

ing campaign dataset (with data from n=64,000 customers) and a new direct marketing campaign 

dataset from a major German online retailer (with data from n=155,388 customers) demonstrate 

their usefulness. We show that the new approaches are well suited to select "best" customers as 

targets and to improve profit from direct marketing campaigns.  

The paper is organized as follows: In section 2, we discuss related approaches and their shortcom-

ings. In section 3, we introduce the new profit uplift modeling approaches. Then, in section 4, we 
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discuss the application of the new approach to the new dataset and in section 5 to the well-known 

Hillstrom dataset. The paper closes with conclusions and outlook.  

2. Background and Related Work 

Testing and predictive modeling are assumed to be the analytical cornerstones of today's direct 

marketing (Blattberg et al. 2008). The modeling process usually consists of the following five steps: 

(1) Define the managerial problem in terms of a campaign and its intended effects, (2) translate this 

description to a predictive model with treatment, responses, and potential predictors, (3) sample 

customers for collecting responses, (4) calibrate and validate the predictive model, (5) apply the 

model to all customers and select "best" customers according to the predictive model. Typical man-

agerial problems are the selection of targets for an acquisition campaign at hand, the deciding on 

customers to receive a catalog or inlay or the identification of promising customers to be invited to 

a customer tier program. Outcomes are the response to the treatment, predictors customer charac-

teristics, and variables that describe past information and buying behavior in the customer database 

(see, e.g., Blattberg et al. 2008 for an overview).  

Let be 𝑌𝑖 the binary (𝑌𝑖 ∈ {0,1}) or continuous (𝑌𝑖 ∈ ℝ) outcome for customer 𝑖 (𝑖 = 1, … , 𝑛) in the 

customer sample, 𝒙𝑖 (𝒙𝑖, ∈ ℝ𝑚)  customer i's values for the m predictors, and 𝜏𝑖  the indicator 

whether the customer I received the treatment (=1) or not (=0). Then, the main goal for a traditional 

response model would be to predict the following score for selecting targets  

(1) ( )E | , 1i i i iResponse Y = =x   

Depending on the scale of the outcome (e.g., binary or continuous), the above response model can 

be easily estimated (e.g., using logistic regression or linear regression models), using the data of all 

treated customers for model calibration and the whole customer database for prediction. The cus-

tomers with the highest (response) scores are targets for the campaign. However, this response 
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modeling approach has one major shortcoming: It favors customers who respond most likely, but it 

doesn't take into account that some of them would also respond if not treated. When the treatment 

is a discount, a voucher, a catalog, an inlay, or one has to deal with postage, this could result in a 

waste of money for the company. 

Therefore, recently, uplift models have been proposed: Responses are again collected from a sample 

of treated customers (the treatment group), but also from a sample of not treated customers (the 

control group). An uplift model now predicts the difference in the response of a customer if treated 

(𝜏1 = 1) and if not treated (𝜏1 = 0), the so-called uplift score 

(2) ( ) ( )E | , 1 E | , 0i i i i i i iUplift Y Y = = − =x x   

Terms like differential response (e.g., Radcliffe and Surry 1999), true lift (Lo 2002), or uplift (Rad-

cliffe and Surry 2011) are used for the same idea. Formula (2) allows to estimate the effect of the 

treatment and enables the company to select customers where the treatment has an impact.  

However, when trying to estimate the parameters of this model, a problem arises from the fact that 

per customer, only one of these two responses are observable: A customer is part of the treatment 

group (𝜏𝑖 = 1) or part of the control group (𝜏𝑖 = 0), not in both groups. Consequently, an uplift 

model cannot be estimated directly when using formula (2). Instead, one straightforward idea is to 

develop two separate models (the so-called two model approach): A first model is derived similar 

to formula (1), basing the treatment group. This model predicts the outcome if treated in terms of 

𝒙𝑖 for all customers. A second model is derived using the control group. This model predicts the 

outcome if not treated in terms of 𝒙𝑖 for all customers (see Radcliffe and Surry 1999), the difference 

between the predictions of the two models is the uplift. An alternative solution is the so-called 

interaction model proposed by Lo (2002): An interaction (response) model uses the treatment (𝜏𝑖) 

and interactions between the predictors and the treatment as additional predictors. The interaction 

model can be calibrated on the treatment and the control group simultaneously. Then, for all 
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customers, predictions for all customers are derived via formula (2) by setting the treatment for all 

customers to 1 in the first summand and 0 in the second.  

Table  1  Upl if t  modeling  approaches (on ly new approaches are ref lected,  CART=classif ica-

t ion & regress ion tree,  DT=decision tree,  MLP=mult i layer  percep tron,  RF=random forest ,  

SVM=support  vec tor  machine)  

Approach Outcome Algorithm Reference 

Differential response 

analysis: Modeling true 

response 

Binary DT Radcliffe and Surry 1999 

Incremental value mod-

eling 

Binary DT Hansotia and Rukstales 

2002 

The true lift model  Binary Logistic regression Lo 2002 

Influential marketing: A 

new direct marketing 

strategy 

Binary (trans-

formed) 

Association rules, 

DT, Logistic regres-

sion 

Lai 2006 

Using control groups to 

target on predicted lift 

Continuous CART Radcliffe 2007 

Uplift modelling with 

significance-based uplift 

trees 

Continuous CART Radcliffe and Surry 2011 

DTs for uplift modeling  

with multiple treatments 

Multiple binary DT Rzepakowski and 

Jaroszewicz 2012 

Support vector machines 

for uplift modeling 

Binary (trans-

formed) 

SVM Zaniewicz and Jarosze-

wicz 2013 

Uplift random forests Binary (trans-

formed) 

Causal conditional in-

ference tree / RF 

Guelman et al. 2015 

Mining for truly respon-

sive customers 

Binary (trans-

formed) 

Logistic regression Kane et al. 2014 

Ensemble methods for 

uplift modeling 

Binary (trans-

formed) 

Ensemble methods Sołtys et al. 2015 

Lp-support vector ma-

chines for uplift model-

ing 

Binary (trans-

formed) 

SVM Zaniewicz and Jarosze-

wicz 2017 

Revenue uplift modeling Continuous 

(transformed) 

Linear regression Rudaś and Jaroszewicz 

2018 

Revenue uplift modeling Continuous 

(transformed) 

Lasso, Ridge, and 

Theilsen regression, 

MLP, RF 

Gubela et al. 2020 

Profit uplift modeling Continuous 

(transformed) 

Heckman sample se-

lection, Zero-inflated 

NB, RF 

This paper 
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Over the years, a large number of uplift modeling approaches and algorithms to estimate their pa-

rameters have been proposed. Table 1 gives an overview. As one can easily see, most of them aim 

at predicting uplifts for binary outcomes, e.g., indicators for visit, conversion, or purchase. Here, 

logistic regression or decision trees can be easily applied to estimate model parameters. However, 

more recently, also revenue uplift modeling approaches have become popular (Gubela et al. 2020; 

Rudaś and Jaroszewicz 2018). The main idea behind this popularity is that the revenue uplift more 

closely relates to economic goals than the visit or purchase uplift. However, in the next section, we 

will see that even with a revenue uplift modeling approach, suboptimal sortings of the customers 

could be generated. 

Another interesting aspect in Table 1 is that the most recent uplift modeling approaches rely on 

transformed outcomes for parameter estimation. This transformation was introduced for binary out-

comes in a seminal paper (Lai 2006) and later extended to continuous outcomes (Gubela et al. 2020; 

Rudaś and Jaroszewicz 2018). The main idea behind is to transfer as much information as possible 

from the observed responses in the two groups into the dependent variable and so being able to 

directly estimate the uplift model parameters. So, e.g., Rudaś and Jaroszewicz (2018) – following 

the proposal of Lai (2006) for binary outcomes – proposed to estimate their revenue uplift model  

(3) ( )E |i i iUplift Z= x   

directly using transformed continuous revenue outcomes  

(4) 
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𝑞𝑇 and 𝑞𝐶are the fractions of the treatment group and the control group in the customer sample. 

Rudaś and Jaroszewicz (2018) discuss in their paper that this weighting facilitates unbiased estima-

tion of the model parameters when relying on linear models. The main idea behind the positive 

weighting of the observed revenues in the treatment sample and the negative weighting of the ob-

served revenues in the control sample is that so the best possible information is forwarded to pa-

rameter estimation. It is assumed that the purchasers in the treatment group generate probably a 

(low to high) positive revenue uplift. Likewise, it is assumed that the purchasers in the control group 

generate probably a (low to high) negative revenue uplift. 

Another major problem with uplift modeling approaches is to validate their predictions at the cus-

tomer level since for these predictions – as mentioned above – no observations exist. The wide-

spread solution for this problem is to develop so-called Qini curves and calculate the so-called Qini 

coefficient Q (Radcliffe 2007; Radcliffe and Surry 2011): The customers are sorted according to a 

descending uplift score and partitioned into deciles (or other partitions) with similar scores. Then, 

within the deciles, averaged responses of the customers from the treatment group and the averaged 

responses from the control group are calculated, and so "observed" average uplifts are available via 

their difference. Figure 1 shows the typical results for such a validation of an uplift model applied 

to a sample dataset. In both diagrams, the customers are sorted according to descending uplift pre-

dictions from left to right, and deciles are formed. In the right diagram, one can see the calculated 

average uplift per decile, as discussed above. In the left diagram, from decile to decile, the average 

uplift is plotted cumulatively, which means that for the first decile, the values in the left and right 

diagram are identical, but from then, aggregated values for deciles are plotted in the left diagram. 

The last value in the left diagram (with value 0.045) of this so-called Qini curve reflects the uplift 

across all deciles (the target population). For comparisons, also the Qini curve for a random uplift 

model is plotted in the left diagram. Its incremental uplift curve connects the zero point with the 

average uplift across the target population (0.045). The quality of an uplift model is judged by its 

ability to sort customer deciles according to decreasing "observed" uplifts in the right diagram but 

also by calculating the related area between the Qini curve for this model and the line for the random 
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model that reflects this perfect sorting. In Figure 1, this value – the so-called Qini coefficient Q – 

is 0.0296 and could serve for comparisons with other uplift models (the random model has Q=0, 

the maximum is data-dependent). It should be noted that these two diagrams can be generated for 

uplift models with binary response outcomes but also for uplift models with continuous outcomes 

(as in our new profit uplift modeling approach discussed in the following section). 

  

Fig.  1  Qini  curve ( lef t)  and mean up lif ts  ( r ight)  for  a  sample da tase t .  The area between  the 

Qin i  curves of  an up li f t  model and a random model i s  the Qini  coeff ic ien t  Q (here :  

Q=0.0296) ,  which can be used for  model se lec t ion  

3. A new Profit Modeling Approach for Online Shops 

As already discussed, most uplift modeling approaches model binary outcomes. Only recently, con-

tinuous outcomes have received more interest, e.g., in the papers by Rudaś and Jaroszewicz (2018)  

and Gubela et al. (2020). This is surprising since from the beginning of the development of the 

uplift modeling approaches; also datasets with continuous outcomes have been made available. So, 

e.g., the famous Hillstrom dataset (Radcliffe 2008) – that is often seen as the standard dataset in 

uplift modeling and has been used in many papers when models were compared or introduced – 

contains as binary outcomes the visit of the website (=1: yes, =0: no) and the purchase information 

(=1: yes, =0: no) but also the revenue generated by this purchase (spend in $). However, maybe 

since the share of purchasers in this dataset was very low (0.9%), the revenue uplift being very low, 
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and revenues concentrate on few purchasers, this continuous outcome didn't stimulate the commu-

nity to develop continuous outcome uplift models. Even in the newer and methodologically ad-

vanced paper by Rudaś and Jaroszewicz (2018) this dataset is only used as a basis for a simulation 

at the end of the paper. The main methodological progress in revenue uplift modeling in their paper 

was demonstrated by using synthetic data. However, recently, Gubela et al. (2020) have demon-

strated in their paper with large real-world datasets (nearly 3 million sessions from visits at 25 

European online shops) that revenue uplift modeling provides further insights. 

This superiority of a continuous outcome uplift modeling can also been seen when reflecting the 

assumed behavior of a small sample of customers, as shown in Table 2. Here, for 12 customers, 

their (assumed) purchases as well as (assumed) revenues and profits generated by them are given 

in case of a direct marketing campaign with a discount offer of d=20% and a profit margin of 

m=30%. Profits were calculated for the customers in the treatment group as 10% (=(m-d)) of the 

revenue and for the control group as 30% (=m) of the revenue.  

One can easily see that the 12 customers reflect a typical behavior: They show – on average – a 

purchase outcome uplift (8%) when offered a discount, they generate a higher revenue when a dis-

count is offered (+69 €), but it is not useful to offer the discount to all customers since the profit 

uplift – on average – is negative (-9 €). Only five customers (1, 2, 3, 4, and 5) show a profit uplift, 

which means that only these four customers should be offered the discount. The customer sorting 

according to the purchase outcome and the revenue outcome is different: The three customers with 

the highest revenue uplift show a purchase uplift of 0. However, as also can be seen in Table 2, both 

sortings considerably differ from the sorting according to the profit uplift: If the customers were 

targeted according to their revenue uplift, customers with a positive profit uplift but also with neg-

ative profit uplift would receive a discount offer. It should be noted that this difference in sorting 

heavily relies on the ability of discounts to generate additional revenues but also on the fact that in 

online shops, high discounts are widespread but would lead to losses if granted to all customers. 

Moreover, it should be mentioned that Table 2 reflects an ideal situation in-so-far that from each 



100 

 

customer, two observations are available – the purchase and revenue outcome with and without 

treatment – which in reality would not be possible. 

Table  2  Sample of  cus tomers  with  purchase,  revenue,  up li f t  i f  t rea ted or  not  (with  margin  

m=0.3,  d iscount d=0.2)  

Cus- 

tomer 

Purchase Revenue Profit 

if 

treated 

if not 

tr. 

up-

lift 

if 

treated 

if not 

tr. 

uplift if treated if not 

tr. 

uplift 

1 1 0 1 160 € 0 € 160 € 16 € 0 € 16 € 

2 1 1 0 300 € 60 € 240 € 30 € 18 € 12 € 

3 1 0 1 40 € 0 € 40 € 4 € 0 € 4 € 

4 1 0 1 30 € 0 € 30 € 3 € 0 € 3 € 

5 1 0 1 20 € 0 € 20 € 2 € 0 € 2 € 

6 1 1 0 70 € 40 € 30 € 7 € 12 € -5 € 

7 0 1 -1 0 € 20 € -20 € 0 € 6 € -6 € 

8 0 1 -1 0 € 40 € -40 € 0 € 12 € -12 € 

9 0 1 -1 0 € 60 € -60 € 0 € 18 € -18 € 

10 1 1 0 400 € 200 € 200 € 40 € 60 € -20 € 

11 1 1 0 500 € 250 € 250 € 50 € 75 € -25 € 

12 1 1 0 270 € 290 € -20 € 27 € 87 € -60 € 

Mean 75% 67% 8% 149 € 80 € 69 € 15 € 24 € -9 € 

 

After demonstrating the potential usefulness of profit uplift modeling approaches, now, they are 

discussed in detail. The main idea is to use formulae (2) or (3) and (4) for modeling continuous 

outcomes but to replace the observed revenue by derived profits and the revenue uplift predictions 

by profit uplift predictions. We follow Blattberg et al. (2008) as in section 2 and discuss the five 

steps of the predictive modeling process now in detail: 
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(1) Define the managerial problem: Online shops have a huge variety of potential offerings that 

could motivate their customers to purchase and/or to spend more. So, e.g., discount offerings 

are widespread. Gubela et al. 2020 mention in their eCommerce datasets discounts of 10% to 

stimulate a purchase during a website visit. Depending on the branch or the product group, the 

discounts offered to customers per mail, inlays, or newsletter could even be higher. So, e.g., in 

online fashion shops, discount offerings of 20% are quite common. Moreover, in online furni-

ture shops, even discounts up to 50% and more are frequent. Alternative purchase stimuli are, 

e.g., vouchers, attached gifts, bonus programs, tombolas, and raffles. However, since profit 

margins for online shops are typically low (e.g., between 5% and 15%, sometimes up to 40%), 

these discounts, vouchers, and gifts are double-edged swords: They could generate more reve-

nue but at the same time reduce profit at the customer level dramatically. Consequently, a scor-

ing system is needed that relates offerings, (past) information, and shopping behavior to profit 

uplift. 

(2) Translate the managerial problem to a predictive model: As Blattberg et al. (2008, p.°250) 

discuss in their overview, widespread and useful predictors for binary and continuous response 

outcomes (e.g., visit, purchase, revenue, profit) in database marketing response are  

• customer characteristics (demographics, lifestyle, psychographics), 

• previous behavior (purchases and responses to previous marketing efforts, typically de-

scribed using recency, frequency, and monetary value (RFM) variables), and 

• previous marketing (efforts targeted at the customer, including catalogs, Emails, dis-

counts).  

Similar variables have been used in the uplift modeling literature. So, e.g., the Hillstrom dataset 

embodies as customer characteristics the living environment (rural, suburban, urban), as previous 

behavior recency (time since last purchase), history (money spend in the last year), men's and wom-

en's (indicators for product categories bought in the last year), and newbie (indicates a first purchase 
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in the last year), and as previous marketing the used shopping channels. Additionally, nowadays, 

for online shops, variables that describe the online information behavior are tracked and used, e.g., 

the duration and recency of shop visits or the number of page views (see, e.g., Gubela et al. 2020). 

These predictors should also be used in our profit uplift modeling approaches, if available. As out-

come of our predictive model – in contrast to the already published revenue uplift modeling ap-

proaches – we define the profit outcome (in case of an indirect estimation and prediction similar as 

in formula 2) or the profit uplift outcome (in case of a direct estimation and prediction similar as in 

formulae 3 and 4 with transformed response outcomes) at the customer level. The calculation of the 

profit outcomes from the revenue outcomes depends in the treatment group from the offering to the 

customer (discount, bonus, vouchers, attached gifts, bonus programs, tombolas or raffles) and the 

margin; in the control group, it only depends from the margin. Especially the calculation of the 

latter is a critical point since, in online shopping, the clear allocation of item-related costs to pur-

chase is difficult since besides the supply costs also return, damage, loss, and other aspects would 

have to be taken into account. Nevertheless, we follow the argumentation by Blattberg et al. 2008 

and Gubela et al. 2020 in their determination of cut-off points for customers where average values 

across product categories or shops were used (and are available in online shops).  

(3) Sample customers for collecting responses: As usual in uplift modeling, the dependency of 

outside-effects can be reduced if the treatment and the control groups are random samples of 

the customer base, ideally balanced with respect to selected predictors (e.g., recency, frequency, 

monetary value). Moreover, since revenue- or profit-generating responses to direct marketing 

campaigns typically are rather low (e.g., 0.9% purchasers in the Hillstrom dataset), the drawing 

of large samples is necessary to develop stable models.    

(4) Calibrate and validate the predictive model: The small percentage of purchasers in the treat-

ment group and the control group reduces the number of applicable models and parameter esti-

mation algorithms considerably. In fact, the revenue- or profit-generating response can be seen 

– simplified – as a two-stage process that has to be modeled: In a first stage (few) customers 
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decide to purchase items (independent of being treated or not): We have a traditional response 

model with binary outcome. In the second stage, only the revenue or profit-generating behavior 

of the purchasers is modeled: Here, we have a revenue or profit uplift model. The predictors in 

both model stages could be the same or different ones. If we use formulae (3) and (4) for this 

purpose (the direct uplift modeling approach), we observed negative and positive revenue or 

profit outcomes that can be transformed in "normal shape" by a Box-Cox-transformation. If we 

use formula (2) for this purpose (the indirect modeling approach with an interaction uplift 

model) and transform the revenue or profit data to counts (e.g., rounded cents to preserve vari-

ability), we observe non-negative count data with "negative binomial shape." For both two-

stage modeling cases, well-known parameter estimation procedure exist:  

• In the first case with revenue or profit outcomes of the purchasers in "normal shape," 

Heckman's sample selection model (Heckman 1979) – also called Tobit-2 model – can 

be applied (Toomet and Henningsen 2008). This model can be described by two equa-

tions:  

(5) 
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where 𝑌𝑖
𝑆∗

represents the selection tendency (here: purchasing tendency) for individual 

i and 𝑌𝑖
𝑂∗

 The latent (revenue or profit) outcome. We observe the binary outcome 𝑌𝑖
𝑆 

and – for the selected cases (the purchasers) – the continuous outcome 𝑌𝑖
𝑂 as follows  
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The conditional regression estimation proposed by Heckman (1979) applies the so-

called Heckman correction (inverse of Mill's ratio) to eliminate the sample selection 

effect. 

• For the second case – revenue or profit outcomes converted to count data, count models 

can be applied. Here, again, the (few) purchasers induce many zeros in the count out-

comes, which can be reflected again by a two-equation model, the so-called Zero-in-

flated Poisson regression model by Lambert 1992 or – as used in our paper – the more 

flexible Zero-inflated negative binomial regression model by Ridout et al. 2001. In both 

models, the standard Poisson or Negative binomial model regression model is used as 

a second stage model and again combined with a selection model for non-negative 

counts. 

As a third alternative, a random forest regression model can be applied (e.g., CART by Breiman 

2001) according to formula (3) and (4) since random forests are known in machine learning for 

being very robust against skewed distributed data with few purchasers and consequently few 

positive (revenue or profit) outcomes. As usual in predictive modeling, a partitioning of the 

data in train and (hold out) test data is needed to control the predictive validity in the test data 

(here: with respect to Qini coefficients). Also, a partitioning of the train data in calibration and 

validation data to tune hyperparameters of the algorithms within the train is widespread. Ac-

cording to many authors in the uplift modeling literature (e.g., Devriendt et al. 2018, Gubela et 



Chapter 4  105 

 

 

al. 2020), here, especially the preprocessing of the predictors and a selection of not too much 

(say 5 to 15 according to Devriendt et al. 2018) predictors are important for calibration and 

validation. 

(5) Apply the model to all customers and select "best" customers: The calibrated, validated, 

and tested profit uplift model is then used to score the customers and to select profitable ones 

for the direct marketing campaign. Since the predicted score, the profit uplift per customer is 

informative; usually, a concentration on customers with scores larger than 0 could be a standard 

strategy. 

In the following two sections, the discussed three new profit uplift modeling approaches (based on 

Heckman's sample selection model, zero-inflated negative binomial regression, and random forest) 

are applied to demonstrate their usefulness.  

4. Application to Direct Marketing Campaigns of a German 

Online Shop 

4.1 Company, Campaigns, Descriptive Uplift Statistics, and Prepro-

cessing of the Data 

The data for the first application was provided by one of the pioneers in the mail order business in 

Germany, the BAUR group. Today, website www.baur.de is one of the ten largest online shops in 

Germany. Clear customer and service orientation, high-quality standards, and a constantly up-to-

date range of items in the fashion, shoes, and furniture product range are assumed to be key success 

factors (see Baier et al. 2019). The company mainly focuses on customers aged 40 to 55 and offers 

well-known brands as well as exclusive fashion branded by BAUR. The online market presence – 

which represents around 90% of the business volume – is supported by catalogs that focus on sea-

sonal or special fashion topics. Like many other online shops, scoring systems are used to select 

customers for direct marketing campaigns. The development of an effective scoring system is an 

ongoing central challenge for the company. Therefore, on a regular basis, tests are performed: Ran-

dom samples of customers are divided into treatment and control groups according to balanced 

http://www.baur.de/
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designs. Then, the customers of the treatment groups are offered discounts (e.g., by mails), and the 

purchases of the customers of both groups are tracked in the follow-up weeks and used to refine the 

scoring system.  

The provided data reflects two recent tests. Altogether 155,388 selected different customers were 

divided up into treatment and control groups. The customers in the treatment groups received a 20% 

discount offer for the next order; the purchases of both groups were tracked in the follow-up weeks. 

Table 3 reflects the descriptive uplift statistics of these two tests. As one can easily see, the sampling 

resulted in equally large treatment and control groups. It should be mentioned that for both tests, 

the samples were selected randomly out of the company's customer base (without overlap) and that 

the dividing up of the two samples into treatment and control groups was performed in a balanced 

manner with respect to pre-defined variables that describe the customers' past information and buy-

ing behavior, e.g., their purchase volume in the last two years, their usage of the website, as well as 

the recency of their visits and purchases.  

Table  3  Descrip t ive  up li f t  s tat i st ics of  the BAUR dataset  (with  margin  m=0.3 and d iscount  

d=0.2)  

Group Share  

(%) 

Custo-

mers 

Pur-

chasers 

Purch.  

rate (%) 

Purch. 

upl. (%) 

Rev./ 

purch. 

(€) 

Rev./ 

cust. (€) 

Rev./ 

purch. 

upl.(€) 

Profit/ 

purch. 

(€) 

Profit/ 

cust.(€) 

Profit/ 

purch. 

upl.(€) 

Treat. 49.97 77,648 9,133 11.76 5.02 183.04 21.53  

10.98 

18.30 2.15  

-1.01 Control 50.03 77,740 5,244 6.75 156.32 10.55 46.90 3.17 

Total   155,388 14,377 9.25  173.92 16.04  28.73 2.66  

 

A closer look into Table 3 shows that the two tested campaigns were very successful with respect 

to purchase rates as well as revenue per purchase and revenue per customer: Whereas only 6.75% 

of the customers in the control groups purchased in the two weeks after the campaign, 11.76% in 

the treatment groups did so. The purchasers in the treatment groups bought on average items worth 

183.04 €, whereas in the control groups, the bought items per purchaser were only worth 156.32 € 
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on average. This difference is even more striking when taking all customers in the two samples into 

account (21.53 € per customer in the treatment groups vs. 10.55 € in the control groups).  

However, Table 3 also shows a major problem with discount offers. Assuming a (disguised) margin 

of m=0.3 (30%) and a discount of d=0.2 (20%), the profit per purchaser and the profit per customer 

in the treatment group (10% of the averaged revenue) is clearly lower than the ones in the control 

group (30% of the averaged revenue). This results in an overall profit per purchase uplift of the tests 

of -1.01 €: Offering the discount to all customers in the company's customer base seems to increase 

the overall revenue, but it would decrease the overall profit. So, a concentration on customers with 

positive uplift predictions and the development of a predictive scoring system is necessary.   

The provided data from the two tests were randomly partitioned into a train set (~70% or 77,617 

customers) and a hold-out test set (~30% or 77,771 customers). Additionally, for parameter tuning, 

the train set was randomly partitioned into a calibration set (~40% or 44,353 customers) and a val-

idation set (~30%, 33,264). For all customers, besides the above-discussed variables that describe 

the belonging to the treatment and to the control groups, the purchase information, and the generated 

revenue, altogether 472 metric variables with a non-zero variance that describe their past infor-

mation and buying behavior were available. Table 4 gives a short description of the 472 variables. 

Based on the train set, the 472 variables were preprocessed by setting means to zero, setting standard 

deviations to 1, and applying a Box-Cox-transformation to transform skewed distributed variables 

into "normal shape." Moreover, since the variables were highly correlated and – according to 

Devriendt et al. 2018 – the "best" number of predictors for uplift models has proven to be low (say 

5 to 15), the variables were transferred to principal components. Here, the first 88 principal compo-

nents accounted for 95%, the first 55 for 90%, and the first 20 for 75% of the variance in the trans-

formed training data. The same preprocessing (including the transformation into principal compo-

nents) was applied to the test set, using the transformation parameters and coefficients derived from 

the train set. 
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Table 4  472 Variables o f  the BAUR datase t  that  descr ibe pas t  information and buying be-

havior  

Variable  

category 

Number of 

variables 

Description 

Recency 23 Variables that count days since last order (w.r.t. discount types, 

item categories, and time slots)     

Frequency 193 Variables that count past orders (w.r.t. discount types, item cate-

gories, and time slots)   

Monetary 

value 

191 Variables that reflect past revenues (w.r.t. discount types, item cat-

egories, and time slots)   

Shop visit 14 Variables that describe the online information behavior (w.r.t. 

number of visits, visit duration, basket size, and value across time 

slots and item categories) 

Sensitivity to 

recommenda-

tions  

3 Variables that describe the number of orders and their value due to 

recommendations (w.r.t. time slots) 

Sensitivity to 

discounts 

26 Variables that describe the share of orders with discounts to all or-

ders in the past (w.r.t. discount types, item categories, and time 

slots)   

Return behav-

ior 

22 Variables that describe the number of returns and their value 

(w.r.t. time slots) 

 

4.2 Applying the Profit Uplift Modeling Approaches 

As described in section 3, three profit uplift modeling approaches were used for training and testing 

a scoring system:  

• Heckman: The Heckman selection model (Heckman 1979) is estimated based on the bi-

nary outcome (purchase) and – in case of a predicted purchase – on the profit uplift. For 

parameter estimation, first, the profit for all purchasers is derived from the observed reve-

nues multiplying by the margin (m=0.3) for the purchasers in the control group and by the 

margin-discount (m-d=0.1) for the purchasers in the treatment group. Then, the profit out-

come is transformed to "observed" profit uplift outcomes according to formula (4), and the 
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Heckman selection model is estimated. Finally, profit uplift predictions can be directly de-

rived for all customers using formula (3) via formulae (5) and (6). The R package sample-

Selection is applied.   

• RF: The random forest model is widespread in uplift modeling. We use the ranger imple-

menttation in R (Wright and Ziegler 2017) of the classical approach for modeling continu-

ous outcomes by regression (Breiman 2001). The same continuous outcome, as with the 

Heckman selection model, is used for parameter estimation. Again, predictions for the 

profit uplift outcome can be derived for all customers directly from the predictors according 

to formula (3). 

• Zeroinfl: The zero-inflated Poisson regression model (Lambert 1992) and its zero-inflated 

negative binomial regression model alternative (Ridout et al. 2001) assume non-negative 

count data as input. Therefore, first, the observed profit has to be converted to cents (to 

preserve variability) and to be rounded. Also, as discussed in section 3, an interaction model 

is needed that includes the treatment indicator (1 for customers in the treatment group, 0 

for the others) and its interactions with the other predictors. The estimated interaction 

model is then used for predicting the profit uplift as the difference between the profit uplift 

when the treatment indicator is set to 1 and the profit uplift when it is set to 0 according to 

formula (2). In our applications, we use the zero-inflated negative binomial regression 

model due to overdispersion in the training dataset. The R package pscl is applied. 

Before estimating the models based on the train data and comparing the results on the test data – as 

usual in machine learning – reflections on performance evaluation and parameter tuning are neces-

sary. As already discussed in section 3, the incremental profit uplift curve and the derived profit 

Qini coefficient are suitable measures for this purpose. Since only one observation per customer is 

available in the data (profit if treated or profit if not treated due to the belonging to the treatment or 

the control group), for calculating uplifts a grouping of customers and comparing average profits of 

treated and not treated customers in each group is needed. This grouping is based on sorting the 
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customers according to the developed scoring system (starting with the customers where we assume 

the highest profit uplift) and forming quantiles (usually deciles) of the sorted customers. Basing on 

these groupings, now, the incremental profit uplift across the quantiles can be plotted (the incre-

mental profit uplift curve), and the area between this curve and a curve derived by random sorting 

(the profit Qini coefficient Q) can be calculated and used for selecting "best" scoring systems. 

Figure 2 shows the profit Qini coefficients for the three discussed models when estimated with 

varying numbers of predictors on the basis of the calibration subsample of the train data and used 

for predictions on the basis of the validation sample. It can be easily seen that the profit Qini coef-

ficients are low with small numbers of predictors as well as with high numbers of predictors. These 

findings are consistent with the findings of Devriendt et al. 2018, who found in their comparison of 

binary uplift models that 5 to 15 predictors typically provide the best results. Against this back-

ground, we decided to use 20 predictors in the following for training and testing the three final profit 

uplift models.   

Fig.  2  Prof i t  Qin i  coeff icients for  the  val ida tion set  (30% of  the BAUR dataset)  based  on  

train ing the prof i t  up lif t  modeling  approaches on the  ca l ibrat ion se t  (40% of  the  BAUR 

datase t)  
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Table  5  Resul ts  of  the applicat ion of  prof i t  up lif t  modeling approaches  to  the BAUR datase t  

(20 pr inc ipal  components)  for  the train  set  (70% of  the da ta,  used for  model t rain ing)  and  

for  the test  set  (30% of  the data)  

Profit uplift modeling 

approach 

Profit Qini coefficient 

for the train set 

Profit Qini coefficient 

for the test set 

Heckman 0.4922 0.4298 

RF 0.5538 0.3436 

Zeroinfl 0.4614 0.4062 

 

In Table 5 and Figure 3, the results of this modeling are illustrated. The results reflect, to some 

extent, the results of parameter tuning: The Heckman model performs best with respect to the hold-

out test set, followed by the Zeroinfl model and RF. However, as Figure 3 demonstrates, all three 

models provide quite similar results, which is – to some extent – surprising since the modeling 

assumptions (count data vs. "normal shape," direct model vs. difference of two predictions based 

on the interaction model) and the estimation algorithms (one-step vs. two-step models) are very 

different. The application shows that it seems to be possible that – besides already existing binary 

uplift and revenue uplift models, it is also possible to estimate profit uplift models which show 

clear, practical advantages because they model for sorting a score which reflects the – for companies 

– most important criteria, the profit uplift. 

  



112 

 

  

  

Fig.  3  Resul t s  of  the applicat ion of  prof i t  up li f t  modeling  approaches to  the  BAUR dataset  

(20 pr inc ipal  components)  for  the train  set  (70% of  the da ta,  used for  model t rain ing)  and  

for  the test  set  (30% of  the data)  

5. Application to the Hillstrom Dataset 

In order to demonstrate that the proposed profit uplift modeling approaches are applicable, also a 

standard dataset from the uplift modeling literature is analyzed, the Hillstrom dataset (Radcliffe 

2008). The dataset was made available by Kevin Hillstrom through his MineThatData blog and 

described a sample of 64,000 customers which had been divided up into three nearly equally sized 

subsamples, two of them contacted via two direct marketing campaigns and one not contacted, 

serving as a control group (see the similar usage of this dataset in Rudaś and Jaroszewicz 2018). 

Table 6 summarizes the descriptive uplift statistics of this dataset, where the two treated subsamples 
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are merged. As can easily be seen, the conversion rate is much lower as in the BAUR dataset (on 

average 1.07% in the treatment group) but nevertheless shows a conversion rate uplift compared to 

the control group (on average, an uplift of 0.50%). The revenue uplift per customer is 0.60$, but 

this uplift seems to be solely from the conversion rate uplift since the average revenue spends by a 

purchaser in the treatment group (117.00$) is only slightly higher than in the control group 

(114.00$). Again, as in the BAUR dataset, we assume that the campaign offers a 20% discount and 

that the margin for the retailer is 30%. With these assumptions (not part of the original communi-

cation of the dataset, just an assumption to be able to analyze the dataset with our profit uplift 

modeling approaches), the overall profit uplift per customer is negative (-0.07$). So, again we have 

to develop a scoring system that helps to restrict the direct marketing campaign to customers with 

a positive profit uplift prediction. 

Table  6  Descr ipt ive up l if t  s tat i st ics of  the  Hil ls t rom datase t  (wi th  marg in m=0.3  and d is-

count d=0 .2)  

Group Share  

(%) 

Custo-

mers 

Pur-

chas-

ers 

Conv.  

rate 

(%) 

Conv. 

upl. 

(%) 

Rev./ 

conv. 

($) 

Rev./ 

cust. 

($) 

Rev./ 

cust. 

upl.($) 

Profit/ 

conv. 

($) 

Profit/ 

cust. 

($) 

Profit/ 

cust. 

upl.($) 

Treat. 66.71 42,694 456 1.07 0.50 117.00 1.25  

0.60 

11.70 0.12  

-0.07 Control 33.30 21,306 122 0.57 114.00 0.65 34.20 0.20 

Total   64,000 578 0.90  116.36 1.05  16.45 0.15  

 

The original dataset also contains potential predictors for this scoring system, as given in Table 7. 

The original eight potential predictors (in Table 7 described as variable categories) were scaled 

nominally (e.g., history_segment with 7 values or channel with three values) or metrically (e.g., 

recency or history). For our further analysis with the three models, we dummy-coded the nominally 

scaled potential predictors and so received in total 25 metrically scaled variables (see Table 7). 
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Table 7  Var iab les of  the  Hi l l strom dataset  tha t  descr ibe pas t  buying behavior  ( -1  indicates 

that  one ind icator  i s  dependent on the o thers and  therefore ,  is  omi tted fo r  es t imat ion)  

Variable cat-

egory  

Number of 

variables 

Description 

Recency 12 (-1) Indicators for months since last purchase (1,…,12)      

History_ 

segment 

7 (-1) Indicators for revenue categories last year ([0,100$), [100$,200$), 

[200$,350), [350$,500$), [500,750$), [750$,1000$), [1000$,) 

History 1 Revenue generated last year (in $)   

Men's 1 Indicator whether customer bought men's merchandise last year  

Women's  1 Indicator whether customer bought women's merchandise last year  

Zipcode 3 (-1) Indicator whether the customer's zip code is rural, suburban, urban   

Newbie 1 Indicator whether customer bought last year the first time 

Channel 3 (-1) Indicator whether customer bought last year via phone, web, both 

 

As in section 4, the data were randomly partitioned into a train set (~70% or 44,800 customers) and 

a holdout test set (~30% or 19,200 customers), and the train set was preprocessed by setting means 

to zero, setting standard deviations to 1, and applying a Box-Cox-transformation to transform 

skewed distributed variables into "normal shape." The same preprocessing was applied to the test 

set, using the transformation parameters derived from the train set. Then the three models, as in 

section 4, were applied, which resulted in the profit Qini coefficients of Table 8 and the incremental 

profit uplift curves and profit uplifts across deciles of customers in Figure 4. 
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Table  8  Results  of  the applicat ion of  prof i t  up lif t  modeling  approaches to  the Hi l l st rom 

datase t  (25  var iables)  for  the  train  se t  (70% of  the  data,  used  for  model t ra ining)  and for  

the test  se t  (30% of  the data)  

Profit uplift modeling 

approach 

Profit Qini coefficient 

for the train set 

Profit Qini coefficient 

for the test set 

Heckman 0.0392 0.0120 

RF 0.0848 0.0139 

Zeroinfl 0.0430 0.0123 

 

  

  

Fig.  4  Resu lt s  of  the applicat ion of  prof i t  upl if t  modeling  approaches to  the  Hil l strom da-

taset  
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One can easily see that three models, again, show similar results with random forest providing the 

best performance but also that due to the few purchasers in the dataset with a high concentration of 

revenues on a few purchasers leads to a worse performance compared to the application of the 

BAUR dataset. The problem of the Hillstrom dataset when it comes to modeling metric outcomes 

has also been discussed by other authors; here, we refer to the analysis in the paper by Rudaś and 

Jaroszewicz (2018). 

6. Conclusions and Outlook 

In this paper, we introduced a new approach to uplift modeling, the so-called profit uplift modeling 

approach. In contrast to former revenue uplift modeling, these approaches directly model the indi-

vidual profit uplift, sort the customers according to the important profit criteria, and don't need an 

unrelated second step to transform modeled revenues to aggregate profits. Three different ap-

proaches were applied to two available datasets: One based on the Heckman sample selection 

model, where the observed binary outcome (purchase or not) and the observed continuous outcome 

(positive profits for the treatment group, negative profits for the control group) is modeled, one 

based on the zero-inflated negative binomial model, where an interaction model is used to model 

the observed count data, and one using traditional random forest regression to predict individual 

profit uplifts. The three approaches are based on very different assumptions but nevertheless pro-

vide quite similar prediction results with a clear ordering of the customers according to their pre-

dicted profit uplift. These results support the meaningfulness of the approaches via cross-validation. 

Of course, further research is needed. So, e.g., the three approaches have to demonstrate their use-

fulness also with other datasets. 
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Björn Stöcker and Daniel Baier 

Abstract: 

The economically optimal customer selection for a direct marketing campaign, such as a discount 

offer via a newsletter, is challenging. On the one hand, one experiences classically low responses 

to these campaigns (~2%). On the other hand, in A/B test scenarios, one repeatedly finds out that 

the control group also makes not inconsiderable sales, negatively influencing the campaign's prof-

itability. The causal effect modeling tries to counteract this by only contacting customers who buy 

because of the treatment. The recent literature almost reduces this to a classification problem. In 

this article, we give a holistic view for the first time by looking at different cost structures, deriving 

new selection strategies, and validating them with new metrics on a real data set of an e-commerce 

retailer from Germany. We can show that the modeling's economic success depends significantly 

on the cost structure and the selection strategy. 
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1. Introduction 

The management of direct marketing campaigns involves an interesting question: Which customers 

should be addressed? Marketing campaigns have the goal of changing customers' behavior. This 

goal is usually relatively simple: the company wants the campaign to generate additional revenue 

with the best possible return on investment (ROI). Which customer is particularly suitable for the 

measure and whether there may also be customers that it is better not to address is the subject of 

this optimization. The scientific question is: can the behavior change be attributed to a specific 

measure, or would the customers' development not have occurred even without the campaign? In 

other words: is the marketing campaign causal for the behavior change? Consequently, only cus-

tomers whose behavior changes positively as a result of the campaign should be addressed. Some 

important works have already been published on this topic - see chapter 2.3.  

Our work focuses on a specific application at a large German e-commerce retailer for fashion. Cus-

tomers regularly receive purchase incentives in the form of catalogs, coupons, and discounts. Again, 

it was observed that in randomized experiments with control groups, a considerable proportion of 

customers had ordered even without the campaign. However, the application of the previously 

known and published methodology had not led to a significant improvement in ROI compared to 

the previous application of a response score. However, there is extensive evidence in the literature 

that a response score performs worse than calculating the causal effect in the context of ROI. 

Our analysis found a noteworthy part not been considered in the literature yet: how costs are in-

curred in a marketing campaign. Chapter 2.2 shows that the previous way of calculating the causal 

effect estimation for some cost types needs to be adjusted to ensure an ROI-optimal sorting of cus-

tomers. Furthermore, we also deal with the target figure to be optimized. In our opinion, this is also 

insufficiently covered in the literature. What is the expression of the changed customer behavior, 

and what effects does this have on the ROI? Concretely: A widespread application of the method 

determines the difference based on the purchase probability. However, if a customer buys more due 

to the marketing campaign, he will fall through this grid. 
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To prove our theoretical considerations in practice, we introduce a new data set in chapter 3.1. It 

consists of real data from two marketing campaigns collected in a randomized trial, including a 

control group (~300k). The data includes past ordering behavior and target figures for the sales 

achieved during the campaign period and its costs. To consider the relationship between ROI and 

the different cost types, we add simulated costs to the data set. In the data set presented, the mar-

keting campaign increases total purchases. To get an impression of how the results change in case 

of increased turnover per customer, we transformed the data set. 

Based on these data sets, we develop two models that predict the behavior in case of a marketing 

campaign and without. Measuring the model quality also presented us with challenges. In our opin-

ion, the methods used so far are not suitable to provide reliable results for different cost types. 

Therefore, in chapter 2.4, we generalize the widely used metrics, introduce new measures, and com-

pare them with previous ones. 

In chapter 3.5, we now perform the calculations on 100 randomly selected data splits to test our 

assumptions. A discussion of the results follows this.  

2. Theoretical Framework and Literature Review 

To approach the dependencies of the cost types' causal effect, we combine two frameworks: First, 

we focus on the decision rule when a customer should be contacted. For this purpose, we use the 

approach from cost and activity accounting, which classifies costs according to their characteristics. 

The second framework includes the statistical calculation of the causal effect as such. After com-

bining both concepts, we look at the work published so far and point out the research gap. 

2.1 Definition of the Decision Rule, the Emergence of Cost in Market-

ing Campaigns, and Their Influence on ROI 

To select the right customers for a marketing campaign, we must first ask ourselves the question of 

the decision-making rule: on what basis do we decide whether to include a customer in a marketing 

campaign or not. The objectives of marketing campaigns, in general, can be extremely diverse. 
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Since we want to examine the effect of different cost types, we will consider the contribution margin 

for this work. The underlying decision rule is then: A customer i is to be selected for a campaign, 

e.g., treatment (τi ∈ {0,1})  if the expected contribution margin (cmi) is higher than the expected 

cmi if he is not contacted, given the vector of predictor variables Xi. 

(1) ( ) ( )E | , 1 E | , 0i i i i i icm X cm X =  =   

It is now possible for modeling purposes to either set the absolute contribution margin as a target 

figure or predict the turnover and reconcile it to the contribution margin through a fixed factor. 

There are different methods to include the marketing costs in the prediction. One could train the 

model on the contribution margin previously calculated in the training data, where the campaign 

costs have already been subtracted. Alternatively, one could represent this in the decision rule equa-

tion. 

Every consideration has its advantages and disadvantages. The calculation of contribution margins 

is, by far, not standardized and highly individual depending on the company, market, and customer 

structure. For example, to determine an order's contribution margin in an online shop, one could 

take the selling price minus the goods' costs per item and add it up. Charges for storage, picking, 

packaging, and shipping could be subtracted from this margin. If several items from the same order 

are stored and therefore shipped from different locations, these costs could appear several times. 

Also, the costs for a possible return, the depreciation of the stock could have an influence, and so 

on. Moreover, this list can be continued at will. Strictly speaking, these internal company variables 

would have to be available for modeling to correctly predict the contribution margin.  

For didactic reasons, we have decided in this paper to present the absolute contribution margin as 

the product of the predicted turnover and a constant relative margin (m), diminished by the market-

ing costs incurred. This definition will help us to understand better how campaign costs and relative 

margins are related. 
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To do so, we now add different cost types to Formula 1. Campaign costs are incurred in different 

ways and therefore depend on different calculation bases. Cost and activity accounting divides costs 

into two general groups: Costs that change with variable, so-called variable costs, and costs that do 

not depend on this, so-called fixed costs. We transfer this logic to campaign costs (Table 1). The 

optimization of campaigns needs to comprehend these different types of correlations because, from 

this understanding, different optimization strategies emerge. 

Table  1  Different  cos t  e lements in  d irect  market ing campaigns  

Cost Type Example 

Fixed Costs / Cost per Con-

tact 

Catalogs, call charges cold calling, postage, and production for 

print-mailings 

Response-fixed Costs Vouchers (15€ for the purchase), free shipping, Add-ons or gifts 

to the purchase, follow up costs for the offer preparation per 

lead 

Response-variable Costs discounts (15% on the purchase), buy-one-get-one-free, quantity 

discount 

 

Based on the different costs (Table 1), different approaches to optimizing the profitability of the 

campaign emerge: 

▪ Fixed costs or costs per contact implies that contacting a customer costs a fixed rate. The 

optimization is to avoid probably unsuccessful contacts. Likewise, contacts with a high sus-

pected probability of purchase would buy even without contact. Especially for campaigns 

with low response rates, the added value from calculating the causal effect appears very 

small. Let us assume a response rate of 3%: The most prominent effect on ROI is the exact 

prediction of the 97% futile costs by customers who do not buy. Even with 50% deadweight 

in the campaign, only 1.5% of the marketing costs are fine-tuned or sorted out in this case. 

Therefore, it can be expected that a response model will also deliver good results at low 

response rates. 
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▪ Cost per response (order or turnover), on the contrary, only becomes relevant if a purchase 

has taken place. Unlike costs per contact, it is not essential here, but the order, respectively, 

the turnover. As it is free to contact all persons, we singularly should contact those custom-

ers first, who would indicate the highest expected difference in spending behavior regarding 

the possible contact or differently expressed, the most positive causal effect in turnover. 

2.1.1 Cost per contact and cost per order 

If the marketing campaign runs on a fixed cost structure for each customer, the expected return in 

turnover (ri) in the case of τi=1 multiplied with the relative margin (m) minus the variable costs (ci) 

should be equal or higher than the turnover multiplied with the margin in τi=0. 

(2) ( ) ( )E | , 1 * E | , 0 *i i i i i i ir X m c r X m = −  =   

The break-even is reached when the difference between the expected turnover equals the quotient 

of variable costs and relative margin. 

(3) ( ) ( )E | , 1 E | , 0 i
i i i i i i

c
r X r X

m
 = − = =   

Suppose the return is only a binary response. In that case, the equation can be simplified to the 

differences in the purchase probabilities, ascribed by Radcliffe and Surry (1999), and used in most 

papers. 

(4) ( ) ( )Pr | , 1 Pr | , 0i i i i i ir X r X =  =   

In this case, only, e.g., the submission of newsletter permission is known and nothing else. There-

fore, no ROI can be determined here. Still, we would like to encourage every reader to think about 
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how much, e. g. newsletter permission in general or even how much it could be worth for different 

customer qualities. So again, an ROI can be assumed. 

2.1.2 Cost per turnover 

Discounts differ from costs per contact or order in that their value is directly dependent on the 

turnover made. Here too, the discount (d) granted is subtracted in full of the absolute margin. As 

we do not consider multiple treatments in our paper, d is a constant. 

(5) ( ) ( ) ( )E | , 1 * E | , 1 * E | , 0 *i i i i i i i i ir X m r X d r X m  = − =  =   

The profit zone is reached when the quotient between sales exceeds a constant value. 

(6) 

( )

( )

E | , 1 1

E | , 0
1

i i i

i i i

r X

dr X

m





=
=

=  
− 

 

 
 

If we imagine an example with a 50% margin and a 20% discount, turnover within a marketing 

campaign must be at least 66.6% higher than without treatment. Thus, if a discount is applied, it is 

not the difference, but the quotient appears the correct measure. 

2.1.3 The influence of the redemption behavior 

Regarding response-depending costs like vouchers and rebates, we can consider another specialty 

(Figure 1). Being assigned to the treatment group does not necessarily entail costs. Even further, 

whether costs arise is no longer in the campaign manager's control but in the customers' redeem 

behavior. Why is this distinction so important? One could easily say that a non-redeemer is equal 

to a customer not treated. However, this is only valid for the costs. The contact, even if it is for free, 

can alter the purchase behavior favorably. Consequently, the individual redemption behavior di-

rectly influences the costs incurred and, thus, on the ROI. 
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Fig.1  Occurrence  of  response -rela ted campaign costs  

Bawa and Shoemaker (1989) addressed this field at a general campaign level. They investigated 

how the redemption behavior of coupons affects incremental sales. Among other findings, they 

proved that customers who had received a coupon promotion but did not redeem it also showed 

incremental sales growth. We could not find an application to individual customers in the literature. 

To achieve ideal sorting, not only the estimated causal effect but also the redemption behavior is 

critical. If, again, only response-dependent costs are present, a look at the redemption behavior can 

be useful. Once a customer is assigned to a campaign but does not redeem the coupon, no costs 

occur. In deriving the causal relationships between the return and the different cost structures, we 

implicitly assumed a 100% redemption rate, representing the extreme case. Suppose a customer 

does not redeem a coupon with a sale. In that case, a notable effect arises: Customers who respond 

positively to a campaign, but do not redeem a coupon, add to the contribution margin with their 

entire turnover. Therefore, all non-redeeming customers with a positive estimated causal effect 

should receive the highest score and be selected first. 
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The considerations are valid from the classification view, too; see Figure 2. First of all, the custom-

ers with the highest difference in the estimated causal effect in return and the lowest probability of 

redemption should be selected—lastly, the customers with the lowest causal effect and the highest 

redemption probability. 

Fig.  2  Idea l  scoring order  consider ing the redemption probabil i ty  if  on ly binary re turns are  

avai lable  

2.2 Estimating the Causal Effect Under Consideration of the Different 

Cost Types 

Determining the causal effect is a challenge for us. The methods widely used in statistics, such as 

classification and regressions, are best suited to predict a customer's behavior. Response modeling 

predicts which value can be expected under given conditions. For example, when considering the 

customer lifetime value, also called CLV, predictions are made about how a customer will develop 

in the future. This prediction provides ceteris paribus, an approximation of future customer devel-

opment. To determine the causal effect, we do not want to make a prediction ceteris paribus, but 

rather "what if." A customer cannot be given treatment at the same time and not in order to develop 

a model afterward.  
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At this place, Rubins’ causal model (Holland 1986) comes in. Rubin describes that by finding sta-

tistical twins, a transfer of the prediction becomes possible. In the best case, a customer base is 

divided into two equal parts by a randomized experiment. One group, we call it the test group, 

receives a marketing campaign; the other control group receives nothing. The pending variable is 

now observed in both groups (Table 2). 

Table  2  Data  sets ob tained from a randomized test  

ID Xi yi | τi=0 yi | τi=1 Estimated causal effect 

1 1,2,3,4 3 ? ? –3 

2 4,6,7,8,9 7 ? ? –7 

3 1,2,3,4 ? 3 3–? 

4 4,6,7,8,9 ? 10 10–? 

 

We now get a data set with different customers, their characteristics (also called predictor vector), 

and the measured reaction. In our very simplified model, customers 1 and 3 and 2 and 4 show the 

same characteristic values. Rubin now argues that the gaps (marked with "?") can be filled with the 

other statistical twin (Table 3). 

Table  3  Imputat ion of  the missing values and calcu lat ion of  the causa l  effec t  

ID Xi yi | τi=0 yi | τi=1 Estimated causal effect 

1 1,2,3,4 3 3* 0 

2 4,6,7,8,9 7 10* 3 

3 1,2,3,4 3* 3 0 

4 4,6,7,8,9 7* 10 3 

* statistical estimation 

Two statistical models are developed, one prediction for τi=1 and one for τi=0 with two statistically 

equally distributed samples (Rubin 1974, 1977; Holland 1986). The two samples are observed in 
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their behavior at the same time. Thus, a statistical prediction model is developed for both samples, 

the treatment (τi=1), and the control group (τi=0).  

Let the individual estimated causal effect (ui) be the conditional propensity to respond ri, given the 

predictors Xi. 

(7) ( ) ( )Pr | , 1 Pr | , 0dichotomous

i i i i i i iu r X r X = = − =   

And in the case of a continuous outcome: 

(8) ( ) ( )E | , 1 E | , 0continuous

i i i i i i iu r X r X = = − =   

As in this case, two models, one for τi=1 and one for τi=0, are developed; this approach is also called 

the two-model approach.  

In his work, Rubin describes the causal effect as a difference. In our example, no causal effect can 

be determined for customers 1 and 3, and a causal effect for customers 2 and 4. By considering the 

different relationships in the campaign costs, we supplement Rubins’ determination of the causal 

effect with a quotient. 

2.3 Related Work 

As already described in our theoretical framework, Rubin and other authors (for the historical ori-

gins see Rubin 1990, 2005 or Imbens and Rubin 2006 for economics) have already provided the 

first approaches to modeling the causal effect. A marketing-specific application followed later.  

The literature uses various terms to describe the causal effect in the field of marketing: “uplift mod-

eling” (Devriendt et al. 2018): “differential response analysis” (Radcliffe and Surry 1999), “true-

lift modeling” (Lo 2002; Kane 2014), “true response modeling” (Radcliffe and Surry 1999), “net 

lift modeling” (Larsen 2010), “differential marketing” (Radcliffe and Surry 1999), “incremental 
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value modeling” (Hansotia and Rukstales 2002), “incremental impact modeling” (Hansotia and 

Rukstales 2002) and “personalized treatment selection” (Zhao et al. 2017a).  

For this study, we consider papers related to marketing, modeling strategies of continuous out-

comes, and the possible considerations of ROI. Also, we focus on approaches that indirectly calcu-

late the causal effect (Guelman 2014), i.e., calculate two predictions in order to be able to show the 

different cause-effect relationships in the costs. Direct methods either show the membership in a 

class (Jaskowski and Jaroszewicz 2012; Lai et al. 2006; Kane 2014; Su et al. 2012; Tian et al. 2014) 

or the expected continuous causal effect (Tian et al. 2014; Su et al. 2012) and, therefore, cannot be 

applied here. 

The literature on causal effects in marketing is rare, especially in the early years. One reason may 

be that only a few data sets are available for research, containing data from an A/B test scenario. 

Therefore, many papers rely on the marketing data set from the so-called Hillstrom Challenge 

(Hillstrom 2008) or data from medical trials (UCI Repository, Dua, Dheeru, and Graff, Casey 2017). 

The first application goes back to Radcliffe and Surry (1999). They use the causal effect estimation 

as the difference between two purchase probabilities (Pr) or continuous response (E) for the pres-

ence of treatment and not. Therefore, the estimated causal effect expresses how much the purchase 

probability or continuous response increases or decreases in absolute terms through a marketing 

campaign. Therefore, the goal is to increase efficiency in winning additional responses, conver-

sions, or orders at a given cost per contact. Radcliffe (2007a) classifies customers into four groups 

based on how likely they are to buy in the event τi=1 and τi=0 and proposes to contact customers 

who change their behavior because of the treatment of the so-called „persuadables“ (Figure 3). 
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Fig.  3  Which customers should ideal ly  be addressed?  (Radclif fe  2007a)  

Lo (2002) later suggests using an interaction term instead of the two-model approach. Instead of 

two models, one model is developed in which a treatment indicator (τi) occurs as an interaction term 

for all independent variables. 

(9) ( )E | ( , , * )i i i i i ir X f X X =   

The causal effect is estimated by calculating the function twice, with τi=1 and with τi=0. The causal 

effect is again the difference between the two outcomes. 

Another noticeable fact is that many researchers in the context of the marketing application ap-

proach the estimation of the causal effect with classification methods, but only a few papers focus 

on continuous outcomes (Baier, Stöcker 11/14/2019; Gubela et al. 2020; Radcliffe and Surry 2011). 

Another difficulty in direct marketing campaigns is usually the excess of zeros. Gubela et al. (2020) 

tackle this with a two-stage model and Baier, Stöcker (11/14/2019) with Random Forest, Heckman 

selection model, and zero-inflated negative binomial regression model. 
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Although economic reasons are used in many marketing-related papers to justify the causal effect 

method's employment, the interaction between the emergence of the causal effect (additional buyers 

vs. more sales) and different cost structures in marketing campaigns is not sufficiently investigated. 

A discussion on return on investment can be found at Hansotia and Rukstales 2002; Sołtys et al. 

2015; Gubela et al. 2020. Chickering and Heckerman (2000), Hansotia and Rukstales (2002), and 

Baier, Stöcker (11/14/2019) approach the ROI decision by introducing the expected lift in profit, 

respectively, the incremental break-even decision rule. A customer should be contacted if the ex-

pected causal effect on profit is higher than the cost per contact. The term profit is not defined more 

precisely at this point. Gubela et al. (2020) generalize the consideration of marketing costs of 

Lessmann et al. (2019), whereas profit is only used to evaluate the models. Again, there is no dis-

cussion about the appropriate modeling strategy depending on different cost structures. 

Beyond this, some work addresses multiple treatments (Zhao et al. 2017a, 2017b; Lo and 

Pachamanova 2015; Rzepakowski and Jaroszewicz 2012), which is not the focus of this paper. 

The detailed understanding of the estimated causal effect provides valuable information on the op-

timization approaches. An effect can arise from additional purchases (Lai et al. 2006) and more 

significant turnovers (Rubin and Waterman 2006). Even if, e.g., the sales do not increase, the aver-

age turnover by a customer can also increase through cross and up-sell. This specialty is a critical 

point to the standard approach because the gain in average turnover and not in additional sales 

would lead to no causal effect in conversion. If a customer buys for 50 € in τi=0 but exceeds it to 

100 € when treated, we assume a causal effect (Rubin 2005).  

A suitable campaign for activating additional buyers, respectively, responses must be optimized 

differently than one that hardly activates any new responses but influences their average turnover.  

In the case of „only additional buyers,“ an algorithm that predicts the purchase probability may 

have a better chance. So if the turnover fades into the background, the customers who will only 

order based on the measure should be addressed. In the case of „only higher value per buyer,“ where 
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it is crucial to predict the turnover as accurately as possible, the purchase probability hardly differs. 

It becomes essential to find customers who show the most considerable increase in turnover. De-

pending on the marketing campaign, either the optimization of the purchase probability or the turn-

over may be the right choice.  

2.4 Performance Measuring 

A widely used valuation method for customer scorings is the Lift Chart (Ling and Li 1998) Figure 

4. Lift Charts visualize the prediction quality of a model. For this purpose, the records are sorted by 

their score. The x-axis shows the population targeted, and the y-axis shows the percentage of pre-

dicted events; the reference line illustrates the ratio of the events in a random sorting. An ideal 

model sorts all, e.g., buyers to the front, so with a response rate of 30%, the curve would rise to 

30% response within the first 30% of customers and remain constant after that. 

Fig.4  L if t  char t  (L ing and Li 1998)  

Radcliffe (2007b; Radcliffe and Surry 2011) proposes a new metric: the Qini coefficient combined 

with the Qini curve Figure 5. The Qini curve plots the customers in τi=1 on the x-axis. However, 

on the y-axis this time, the incremental purchases, i.e., the additional purchases or the total 
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incremental value compared to the control group. To stay with the above example: 30% of the 

addressed customers buy, but 10% also buy when not addressed (causal effect of 20%). In an ideal 

model, 10% of customers appear to the very end. The curve would then drop from 30% to 20%. 

Fig.  5  Qin i  char t  (Radcl if fe  2007a)  

The Qini bar-chart (Figure 6) shows the causal effect for each quantile. To follow the example 

above, each of the first three quantiles has the same causal effect, and the last shows the down lift.  
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Fig.  6  Qin i  bar -char t  

Table  4  Qini  tab le  

Decile Customers 

τi=1 and 

τi=0  

Orders Turnover 

τi=1 τi=0 Causal 

Effect 

τi=1 τi=0 Causal 

Effect 

1 10,000 10,000 0 10,000 360,000 0 360,000 

2 10,000 10,000 0 10,000 240,000 0 240,000 

3 10,000 10,000 0 10,000 120,000 0 120,000 

4 10,000 0 0 0 0 0 0 

5 10,000 0 0 0 0 0 0 

6 10,000 0 0 0 0 0 0 

7 10,000 0 0 0 0 0 0 

8 10,000 0 0 0 0 0 0 

9 10,000 0 0 0 0 0 0 

10 10,000 0 10,000 -10,000 0 120,000 -120,000 

Total 100,000 30,000 10,000 20,000 720,000 120,000 600,000 
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Figures 5 and 6 are based on an evaluation table, the so-called Qini table (Table 4). According to 

the commonly used Qini metrics, a Qini area of 1.25 (15,000 absolute) is obtained to measure pur-

chases and 1.05 (330,000 absolute) for the turnover, where 0.5 corresponds to a random draw. 

We are still in the environment of cost per contact, as described above. Let us now transfer the Qini 

curve to the cost per response (Table 5). With a conversion rate of 30%, the optimization will also 

only affect 30% of the customers, 70% of customers do not buy anything and generate neither turn-

over nor costs. This inequality can be seen quite well in the comparison of the individual cost struc-

tures in Table 5. To better compare the structures, the marketing costs in all three cases add up to 

30,000 €, each only related to the group τi=1. With the fixed costs, the meaningfulness of the Qini 

metrics does not change. Each decile is just as significant to the marketing costs used. A fixed 

amount is incurred for each completed order in response-fixed costs, in the example 1 €. Although 

the first three deciles are equally important from a cost perspective, the remaining 70% do not affect 

costs. Regarding response-variable costs, the importance shifts even further into the first deciles 

(we have also assumed different order values). Here the marketing costs correspond to 4.2% of 

turnover. 

Alternatively, in other real-world examples: in the data set we have at our hand, only 8% of cus-

tomers buy; in e-commerce, even lower conversion rates are real (~3% conversion rate of online 

shoppers in the U.S., statista (2020)). In these cases, the educational value of the Qini curve dimin-

ishes. Firstly, in the context of 8% conversion, 4% estimated causal effect, and voucher, an ideal 

model, would have 4% of customers in the front and 4% in the end. The groups would have to be 

plotted even more finely than in the usual 10% steps to visualize the edges' optimization. The large 

area, formed between >4% and <96% of the customers, significantly influences the area under the 

curve and does not affect ROI. Because as already mentioned, these non-buyers do not generate any 

turnover or costs either. 
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Table  5  Qini  tab le supplemented with  the three differen t  cos t  struc tures  

Decile Customers 

τi=1 and 

τi=0  

Orders 

Causal 

Effect 

Turnover 

Causal 

Effect 

Fixed 

Costs 

Response-

fixed 

Costs 

Response-

variable 

Costs 

1 10,000 10,000 360,000 3,000 10,000 15,000 

2 10,000 10,000 240,000 3,000 10,000 10,000 

3 10,000 10,000 120,000 3,000 10,000 5,000 

4 10,000 0 0 3,000 0 0 

5 10,000 0 0 3,000 0 0 

6 10,000 0 0 3,000 0 0 

7 10,000 0 0 3,000 0 0 

8 10,000 0 0 3,000 0 0 

9 10,000 0 0 3,000 0 0 

10 10,000 -10,000 -120,000 3,000 0 0 

Total 100,000 20,000 600,000 30,000 30,000 30,000 

 

At this point, we suggest a new metric. As the basis for the scoring valuation, the independent 

variable should now show the costs instead of customers. The customers are again sorted based on 

the score, but the grouping bases on cost quantiles of equal size. This new approach has the ad-

vantage that each quantile is now equally important in its costs and ROI. Also, this procedure is 

very variable regarding the cost structures that can arise. The dependent variable is then the causal 

effect in return in terms of, e.g., sales. Therefore, a good model sorts the customers with the highest 

estimated causal effect in return to the front. Since the grouping centers on equal size cost groups, 

the model performance shows the incremental causal effect in return. In reference to Qini and ROI, 

we call the new metric Rini. The Qini is, therefore, a particular case of Rini if just costs per contact 

occur.  
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A given point g(Φ) is defined as the estimated causal effect in return of the best-scored customers 

Φ∈ {0,1} in τi=1. 

(10) ( ) ( )1 0i i

i ii N
g r r



  = =


= −   

The Rini area represents the model quality using the area under the curve. A random selection leads 

to a Rini area of 0.5. Since the Rini chart quantiles are derived from individual customers' campaign 

costs, and since these rarely lead to equal-size groups, the Rini chart's return is weighted with the 

average costs. 

The three different cost structures also show patterns related to the Rini curve unique for each cost 

type (Figure 7). In the case of fixed costs (Panel A of Figure 7), the curve shows a linear increase 

at the beginning. On the x-axis, groups of costs of the same size are mapped. Since each contact is 

equally expensive, the Rini curve ideally (100% of contacts buy because of the measure) also shows 

the same return. For the first 10% of the costs, a maximum of 100 contracts can be generated, for 

example. All contract conclusions in τi=0 are ideally sorted into the last group. Therefore the ideal 

Rini curve shows the characteristic downward trend for the last group, unlike the Qini curve. Thus, 

if it is possible, for example, to consider the conclusion of contracts or purchases not only in binary 

but also in metric terms, the Rini curve will also change. We may assume that the shopping baskets 

differ in height. The ideal model now sorts the customers with the highest estimated causal effect 

per contact to the front. The effect in the groups is now non-linear. The bar chart shows a significant 

gap without returns, larger or smaller, depending on the conversion rate. Hence, if fixed costs per 

order are present (Panel B of Figure 7), this gap no longer exists because a return can be determined 

whenever costs occur. Since the costs are constant, but the basket height fluctuates, a non-linear 

increase is expected here. In the last case of variable costs per order (Panel C of Figure 7), we make 

the following assumption: The discount offered refers, for example, to the entire order and not only 

to particular items. Thus the Rini curve rises linearly again. With an assumed discount of 20%, the 
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ideal model's profit corresponds to a 100% turnover. The bar-chart shows idyllically a constant 

causal effect in spending for all but the least groups. 

   

A: Rini bar-chart and Rini chart for fixed costs 

  

B: Rini bar-chart and Rini chart for response-fixed costs 

  

C: Rini bar-chart and Rini chart for response-variable costs 

Fig.  7  Rini  d iagrams of  the di fferen t  cos t  struc tures  
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3. Empirical Investigation 

After we could already show in our theoretical framework and literature review that different cost 

types have a considerable influence on customers' optimal sorting, we would like to test this in 

practice. For this purpose, we are introducing a new data set from an e-commerce retailer in Ger-

many. In this data set, we simulate different cost types based on the shown ordering behavior and 

apply the different sorting options. To measure the models' performance, we discuss the method 

used so far and generalize it to cope with different cost structures. Finally, in a Monte Carlo setting, 

we calculate the results on one hundred randomly selected data splits and discuss the results. 

3.1 Description of the Data Set and Data Preparation 

The data set consists of 295,040 unique customer data from two print mailing campaigns. The cus-

tomers were statistically equally assigned to τi=1 (147,520) and τi=0 (147,520). For each data set, 

purchase (1.045 variables, last 24 months) are available. The data includes ordering behavior in 

terms of recency frequency, monetary value, and coupon usage (Table 6). The outcomes include 

orders, turnover, and discount costs in the two following weeks.  

We randomly split the dataset into training (70%) and validation (30%) samples to validate our 

models. This dataset's causal effect arises mostly from driving orders (+109%) rather than the turn-

over (+16%). To assess our assumptions on a dataset with opposite drivers, we copied the dataset 

and upsampled the τi=0 group by doubling the records containing a purchase. After that, we divided 

the spending on τi=0 by two. So the constraints between purchases in τi=1 and the redemption stay 

untouched (thru orders +4%, thru turnover +131%). 
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Table  6  Struc ture o f  the  predic tors  
 

Domain Example 

 
Customer (16) Customer since, lifetime value, age, sex, place 

of residence, status newsletter permission 

For each 

period* 

(147) 

Order value and quantity whole 

period (16) 

Turnover, returns, install payments, mailings 

received 

 
Value and quantity for 30 as-

sortment-clusters (60) 

Clothing, garden, shoes, kids, furniture, linge-

rie 

 
Price brackets for fashion (low, 

medium, high) (36) 

Women's clothing, men's clothing, kids cloth-

ing  

 
Usage of coupons (15) For rebate, voucher, assortment+rebate, as-

sortment+voucher 

 
Order value and quantity for 

each device (10) 

App, desktop, mobile, tablet 

 
Order value and quantity for 

online marketing (4) 

Brand, performance 

 
Order value and quantity for or-

der channel (6) 

Telephone, web 

* four periods in sum, one period lasts 6 months, and combinations, e.g., last 12, 18, or 24 months 

The preprocessing of the predictors can determine whether a good statistical model can be found at 

all. Also, clever preprocessing has a direct influence on the performance of the models. In the con-

text of ROI, the dependent variable is the turnover depending on the treatment. As described, we 

do not directly model the causal effect, but the expected value of turnover as a function of the 

coefficients and the treatment. Usually, many variables show little variance and have a high corre-

lation. Procedures such as linear regression have special requirements for the predictor variables. 

The input variables should/must have the same dispersion within the data (homoscedasticity). Es-

pecially in econometrics, this requirement is usually challenging to meet. The data available here is 

highly skewed and does not show a normal distribution around zero (just one example: the number 

of sales can never be negative). To improve the model's quality, we filtered the predictor variables 

for low variance and high correlation, then transformed using Box-Cox to mitigate the distributions' 
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skewness, centered and scaled. To reduce the remaining variables to more meaningful linear com-

binations, we used the Principal Component Analysis for the predictors without considering the 

dependent variable (unsupervised learning method). 

3.2 Different Approaches to the Calculation of the Causal Effect 

To bring the customers in the right order for campaign selections, an order, the so-called score, is 

necessary. We now combine our findings regarding return and costs to describe ideal strategies 

(Table 7). Of course, in practice, marketing campaigns can entail varied forms. The existing litera-

ture well covers the ideal strategies in a cost per contact setting, the traditional approach for the case 

of additional orders (Devriendt et al. 2018; Gubela et al. 2019; Pierre Gutierrez and Jean-Yves 

Gérardy 2017), and the revenue (Gubela et al. 2020) for an increase of the response value.  

The prediction of the turnover can be understood as an extension of the classification problem (buy 

or not buy), wherein the case of purchase additional information is available. This additional infor-

mation can then be used to fine-tune the customers in the scoring and, consequently, the ROI. Thus, 

this dimension's classic approach can be extended by assuming a continuous variable for the return. 

Table  7  Idealized cost  and causal  effect  conste l lat ions to  der ive a  reasonable a pproach  

 Contact Response* 

 Fix Fix Variable 

Additional sales I II III 

More response value 

per customer 

IV V VI 

* can be between 0 and 100% for the population respectively ∈ {0,1} for each customer 

When considering the costs per contact, it is essential to weigh whether it makes sense to contact 

the customer. In case I), a difference in purchase probability can be determined for τi=0 and τi=1. 

Therefore, it makes sense to address customers with the highest positive causal effect on conversion 

(ideally already finely sorted with their expected shopping basket). This consideration also applies 

to cases II) and III). Here too, the additional buyers must be identified. In contrast to I), however, 
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no costs are incurred if the customer does not respond. Therefore, we assume that estimating the 

causal effect as a difference (probability of purchase or shopping basket value) is best suited here. 

In case IV), however, we imagine the estimated causal effect towards conversion is always zero 

because no additional buyers appear. Instead, the causal effect appearing in the turnover becomes 

more critical. Now customers with the highest distinction in turnover are to be addressed, and cus-

tomers whose turnover has hardly changed are sorted out. The considerations regarding the origin 

of the causal effect and campaign costs structures now apply to V) and VI). For response-fixed costs 

such as vouchers, the difference should be decisive, and for response-variable costs such as dis-

counts, the quotient should be decisive. 

For response-related costs (II, III, V, VI), another thought is worth considering. We assume that the 

purchase probability is also influenced by other, unobserved variables, such as a purchase already 

made by a competitor. Since a retailer can only train our models on their data, these missed oppor-

tunities are not captured. With response-dependent costs, it is theoretically possible to contact all 

customers at no cost. We now take the prediction from the count model of the zero-inflated model 

(which can also be 0 in contrast to the hurdle regression) and apply it to all customers, regardless 

of how high their response probability is. This approach could lead to better results, mostly if the 

unobserved variables play a significant role in the purchase probability. 

3.3 Modeling  

A glance at the histogram for turnover shows a significant problem for modeling continuous out-

comes in marketing campaigns with low response rates: The zero is by far the most common value. 

A transformation of the distribution through, e.g., the logarithm does not help, so that we speak here 

of an excess of zeros. A solution can be mixed models such as hurdle regression or zero-inflated 

regression models. They model a probability for the occurrence of zero and a second model for the 

prediction of the count data.   
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Lambert (1992) first described zero-inflated models. The original model referred to the Poisson 

distribution and described a mixed model consisting of a count data model with Poisson distribution 

and an additional model that describes the occurrence of zero, later extended to include the negative-

binomial distribution (Ridout et al. 2001). The zero-inflated count-data model determines the prob-

ability of belonging to one of the two latent classes. Secondly, a zero can stem from both the zero 

and the count model. 

In the first part of the equation, we calculate the probability of belonging to one of the two latent 

classes. The two classes refer to turnover (j) equals zero and are greater than zero and can thus be 

estimated with a binary logistic regression. Theoretically and practically, the influencing variables 

for this regression can differ from those of the count model. It may feel slightly unusual that we are 

modeling the probability of the occurrence of zero (i.e., the non-purchase) here and not the purchase 

probability. 

(11) ( )
( ) ( )

( ) ( )

1 0 0
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1 0

i i i
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Where πi is the logistic regression with probit link function for the occurrence of zero with the 

predictors Zi and the corresponding ß factors from the logistic regression, all parameters are esti-

mated by maximum likelihood. We chose the probit link over the logit because of the slightly better 

results in the validation. In the probit model, the binary outcome depends on a hidden Gaussian 

variable. 

(12) ( )'

i iZ =    

The negative-binomial distribution is given by g with the shape parameter θ and the mean μi. 
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3.4 Application of the Current Approach 

Using a selected real data example, we would like to show how to calculate the Qini metrics. After 

the data set has been sorted according to the score, we summarize the data on cost-deciles and form 

different sums (Table 8). This example table is based on fixed costs, so the cost deciles are equally 

distributed. 

Table  8  Exemplary  Qini  table  

Decile  Costs per group  Turnover per group 

 τi=0 τi=1  τi=0 τi=1 Est. causal 

effect tar-

geted 

Est. causal 

effect ran-

dom selec-

tion 

0.1  0 16,460  17,683,354 52,716,349 35,032,995 7,821,170 

0.2  0 16,460  7,429,908 20,191,487 12,761,579 7,821,170 

0.3  0 16,460  5,648,185 12,968,962 7,320,777 7,821,170 

0.4  0 16,460  3,274,953 10,683,175 7,408,222 7,821,170 

0.5  0 16,460  4,003,650 8,877,335 4,873,685 7,821,170 

0.6  0 16,460  3,750,799 6,774,247 3,023,448 7,821,170 

0.7  0 16,460  2,595,724 4,759,497 2,163,773 7,821,170 

0.8  0 16,460  2,171,362 4,899,204 2,727,842 7,821,170 

0.9  0 16,460  1,849,125 3,700,226 1,851,101 7,821,170 

1.0  0 16,460  7,386,810 8,435,091 1,048,281 7,821,170 
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The Qini charts (Fig. 8) show a well-performing model. In the Qini bar-chart, we can see that the 

first two deciles perform above average and the latter below. We can also tell that each decile is 

ranked in descending order from high positive to low negative, which means no discontinuities 

within the ranking. The model can reproduce a good sorting. The Qini chart shows how much the 

increase in profit changes entirely if someone adds the next best 10% to the best 20% of customers. 

In this example, however, the typical bend to the last decile is missing. The Qini area is 0.770, and 

since these are fixed costs, this is equivalent to the Rini area. 

 

Fig.  8  Exemplary Qin i  bar-char t  and Qin i  char t  

In the next section, we will compare the current approaches with our new approaches. The current 

approaches are denoted by “pr_d” and “e_d.” The nomenclature is explained in the following. 

3.5 Application of the new Approach and Discussion 

As described, there are different ways of calculating the causal effect. Only the Two-model and the 

Interaction-model can calculate a continuous outcome such as turnover. From the considerations 

regarding different natures of the causal effect and cost settings, six different approaches for the 

evaluation seem promising: the consideration of the purchase probability (pr), the turnover consid-

ering the purchase probability (e), and the turnover in case of purchase (ep), each calculated as 

difference or quotient (denoted by the addendum “d” respectively “q”). We have modeled the 

voucher and the rebate with a 100% redemption rate to see more evident differences for the different 

cost types. We now combine all six possible scorings with the three cost types on two datasets. 
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We now form two zero-inflated models on each of the preprocessed training data sets since we have 

chosen the indirect method. The first model includes only data from the treatment group, the second 

model only from the control group; the treatment information itself is not an input variable. The 

dependent variable is the amount of the shopping basket, i.e., the turnover made during the cam-

paign, which is available as an integer in euro cents. The respective initial models with all input 

variables were then gradually reduced. Therefore only input variables were included, whose p-value 

was smaller than 0.2, to calculate the model again with these reduced input variables. We also cal-

culated models for validation with stricter p-values; this did not significantly affect the Rini area. 

Based on the zero-inflated model, three predictions are now calculated, in which, in addition to the 

entire model (e), the two components probability of occurrence of zero (pr) and the amount of the 

shopping basket, if a purchase was present (ep), are also calculated separately. The scoring variable 

now results either from the difference or the quotient of the prediction pairs. Also, we extract the 

estimate from the model τi=1, which represents a response model, and can thus conclude the benefit 

of using the causal model (denoted by the addendum "r"). 

In this case, the highest values represent the most worthwhile customers, so we sort in descending 

order here. For validation, we apply the models to the new validation data set, and the Rini area is 

determined individually on the different cost structures. 

The computations were performed on 100 randomly generated data-splits into training and valida-

tion data sets. The preprocessing was also carried out again in each case. Since there is no optimi-

zation procedure for zero-inflated models, we calculated the analysis on different maximum thresh-

olds for input variables' significance.  

3.5.1 Cost per Contact 

In Panel A of Figure 9, we see the classic model with a difference (pr_d) as having an advantage in 

the sales-driven and value-driven causal effect. A fine-tuning by predicting the turnover (e_d) 

brings about a significant improvement, especially in the value-driven causal effect. A prediction 

that does not consider the probability of purchase (ep_d, ep_q) cannot keep up with when costs per 
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contact are present. As assumed, in our data set, which shows a low response rate, even a response 

score can provide excellent results. 

3.5.2 Cost per Order 

Although theoretically, the calculation of the difference should be in advantage here, it shows that 

the quotient seems to be slightly superior (Panel B of Figure 9). Here, too, fine-tuning could be 

demonstrated by predicting the turnover. Our model can also show decent results for response-

variable costs without considering the purchase probability when calculating the difference (ep_d). 

3.5.3 Cost per Turnover 

As expected, the quotient determination leads to the best results with this cost structure (Panel C of 

Figure 9). However, it is also surprising that the difference in the probability of purchase (pr_d) can 

also achieve good results, at least for value-driven causal effects. Models that do not take the 

purchase probability into account perform significantly worse here. Here the response score is even 

worse than a random sort. 
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A: Results in the context of fixed costs 

 

B: Results in the context of response fixed costs 

 

C: Results in the context of response variable costs 

Fig.  9  Box-plo ts of  the  Rin i  areas  of  the  diffe rent  approaches  f rom 100  randomly  selected 

data sp li ts  
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4. Conclusion and Limitations 

We wanted to investigate whether and how different marketing costs influence determining the 

causal effect and, thus, on the ROI. We succeeded in proving this effect theoretically and practically 

and in making a recommendation. 

The effects of the different cost types on the ROI are evident. It is essential to closely examine the 

costs before modeling to choose the optimal solution for calculating the score. For example, if one 

chooses the wrong approach, initial results could be so devastating that the vital issue is not pursued 

further within the company. It is not beneficial for the scientific discussion that the different cost 

types are not mentioned so far and that fixed costs per contact are implicitly assumed. This short-

coming leads to the point that the Qini metrics used so far also need to be revised. 

Also, how the causal effect occurs, i.e., through more purchases or higher turnover, receives too 

little attention. Again, at least theoretically, we could show a significant difference in approaching 

the given dataset. 

Our research has confirmed the previously published work seen in the context of cost per contact. 

Furthermore, we have extended the application of causal effect in marketing to other cost types that 

are also important and frequently used in marketing. We found another way to describe the causal 

effect, which leads to significantly better results in other cost types not yet considered in research. 

In this context, we also have generalized the measurement of model quality to be used flexibly. 

We have discussed the implications of redemption behavior in the theory section. Costs that only 

arise when actively initiated by the customer, e.g., activating a voucher before placing the order, 

represent a considerable challenge. Two independent statistical models have already been devel-

oped to calculate the causal effect. In order to now also still consider redemption behavior, a third 

one is needed. We could not find any improvement in the practical application by adding the third 

model. We assume that the errors resulting from the combination of three models become too large 
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so that a valid prediction is no longer possible. We would like to encourage researchers to investi-

gate this problem more closely since the impact on ROI is evident. 

For calculating the different cost and causal effect simulations, the same data set was used, created 

by a discount campaign. The simulation could be problematic because experience shows that dif-

ferent marketing campaigns with either cost per contact, vouchers, or discounts lead to different 

responses and turnover results. In the simulations, we also assumed a 100% redemption rate of 

vouchers and discounts, which is not always the case in reality.  

The application and computation of the causal effect bring some problems to read up in the exten-

sive literature, e.g., Holland (1986) discusses this in detail. A statistical model is an approximation 

of observed behavior at a given time. We have found that it is useful to develop and optimize the 

two models independently. The test and control groups should differ in their behavior. Thus, differ-

ent input variables enter the models, which leads to different predictions. 
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This thesis should open new approaches to CRM for fashion online retailers. Two broad research 

topics were addressed based on current and relevant problems from practice, and two research pa-

pers were methodically developed for each of these two topics. 

For Part A, attention was given to the frontstage, the area where customers and company interact:  

RQ 1 addressed how skewed response behavior in customer satisfaction studies affects the validity 

of PRCA and how this can be avoided. Our two studies have shown that the PRCA works incor-

rectly with skewed distributions, which can possibly lead to diametrically different conclusions. A 

new method developed by us, using cubic regression, can meet this challenge. In direct comparison, 

it became clear how much the categorizations occasionally varied depending on which of the three 

different calculation logics of the PRCA was followed. With cubic regression, this choice was omit-

ted, and the results were simpler to understand. The consequences of an incorrect categorization 

should not be underestimated if this leads to incorrect strategies for managing touchpoints. There-

fore, the application of cubic regression represents an essential new method for categorizing the 

different cause-effect relationships in the measurement of customer satisfaction. 

RQ 2 dealt with the question of which measures in return management would have the most sub-

stantial influence on customer satisfaction from the customer's point of view. Further insights can 

be gained by examining the returns management process holistically, that is, from presales to re-

turning. It could be determined for all examined measures that they are still at the beginning of their 

life cycles. For many respondents, these measures are appealing but are not expected to be univer-

sally implemented. The highest effect on customer satisfaction was measured in monetary incen-

tives in the avoidance of returns, a second cluster that was important as well and related to the 
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improved presentation. This hierarchy was interesting because we suspected that returns would ad-

ditionally represent a significant customer burden, which the consumer would have liked to avoid. 

However, since measures in the last purchase phase have been clearly successful, it can be assumed 

that customers who are willing to shop in the mail-order business have at least not excluded returns 

in advance of purchase and are therefore not deterred from making a purchase. The future trends 

will be interesting to observe when other customers have to switch to the mail-order business due 

to retail stores being affected by the structural change. Here, avoiding returns in the presales phase 

could have a further positive impact. 

Part B addressed the backstage and examined customers' optimal selection for a direct marketing 

campaign: 

RQ 3 focused on comparing methods for the optimal selection of customers in direct marketing 

campaigns, with a particular focus on the prediction of continuous values, namely profit and the 

treatment of the excesses of zeros in prediction models. We extended well-known procedures in 

uplift modeling with a new perspective, namely profit. Direct marketing campaigns in the mail-

order business generally have a low response rate, leading to the "no buy" result being the most 

common one of the effort. Therefore, three statistical methods were chosen to cope with these spe-

cial conditions: the Heckman sample selection model, the zero-inflated negative binomial regres-

sion model, and random forest-based regression. The research in Paper #3 shows that all three ap-

proaches are well suited to handling uplift modeling concerning profit. Additionally, the handling 

of continuous values in uplift modeling continues to be minimally studied; thus, our results are an 

essential contribution to further theoretical development. 

RQ 4 examined the implications for the ROI-optimal selections of direct marketing campaigns, 

which result from different campaign cost structures. Uplift modeling or causal effect modeling has 

continued to be mainly based on a cost per contact approach. However, we were able to show on a 

real data set how strongly the cost structure affected the successful application and thus the ROI. 

Each cost structure must be optimized differently in order to exploit the full potential of this method. 
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For this purpose, we additionally generalized the common validation methods, known as Qini met-

rics, which could then be applied to all cost types. We further pointed out other important influenc-

ing factors that were hardly or not considered in the literature, such as what the expression of the 

additional sales in a test group is, and what influence the redemption behavior of coupons and dis-

counts have. Through this extensive work, for the first time in the literature, the application of causal 

effects has been integrated into a holistic campaign cost framework and draws attention to signifi-

cant shortcomings in the current approach. We hope that this will provide new impulses for further, 

more in-depth research. 

The answers to the four research questions represent significant methodological advancements in 

CRM and thus make a significant contribution to current research. I hope that these impulses will 

be well received by researchers and practitioners and lead to further research questions and practical 

improvements. 
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cessing of the data as well as the discussion of the results. Furthermore, I contributed to the paper 

by reviewing it. 

Research Paper #4, which is presented in Chapter 5, was written by two researchers. I served as the 

corresponding author. I conceived of the presented idea, developed the theory, performed the com-
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