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On holomorphic matrices on bordered Riemann surfaces

Jürgen Leiterer

Abstract

Let D be the unit disk. Kutzschebauch and Studer (Bull. Lond. Math. Soc. 51 (2019) 995–

1004) recently proved that, for each continuous map A : D → SL(2,C), which is holomorphic

in D, there exist continuous maps E,F : D → sl(2,C), which are holomorphic in D, such that
A = eEeF . Also they asked if this extends to arbitrary compact bordered Riemann surfaces. We
prove that this is possible.

1. Introduction

Let X be a compact bordered Riemann surface†, and let X be the interior of X. Denote by
SL(2,C) the group of complex 2 × 2 matrices with determinant 1, and by sl(2,C) its Lie algebra
of complex 2 × 2 matrices with trace zero. We prove the following.

Theorem 1.1. Let A : X → SL(2,C) be a continuous map, which is holomorphic in X.
Then there exist continuous maps E,F : X → sl(2,C), which are holomorphic in X, such that
A = eEeF on X.

Let D be the closed unit disk in C. For X = D, Theorem 1.1 was recently proved by
Kutzschebauch and Studer [11, Theorem 2]. In [11] also, the question is asked if Theorem 1.1
is true in general, and it is noted that there is some problem to adapt in a straightforward way
the proof of [11] to the general case. The problem is that X need not be simply connected.
Our proof of Theorem 1.1 is nevertheless some adaption of the proof given in [11] for the case
X = D.

Let A(X) be the algebra of complex-valued functions which are continuous on X and
holomorphic in X. The first step in our proof of Theorem 1.1 is the following.

Lemma 1.2. Let a, b ∈ A(X) with {a = 0} ∩ {b = 0} = ∅ and, moreover, {a = 0} �= X. Then
there exist g, h ∈ A(X) such that b + ga = eh.

Recall that (by definition) the Bass stable rank of a commutative unital ring R is equal to 1,
if, for all a, b ∈ R with aR + bR = R, there exists g ∈ R such that b + ga is invertible. Although
not used in the present paper, let us note the following immediate corollary of Lemma 1.2.
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Corollary 1.3. The Bass stable rank of A(X) is equal to 1.†

That the Bass stable rank of A(D) is one is an important ingredient of the proof of
Theorem 1.1 given in [11] for X = D. As pointed out there, this makes it possible to limit
to matrices of the form ( a b

c d ) with {a = 0} = ∅. In the same way, Lemma 1.2 makes it possible

to limit to matrices of the form ( eh b
c d ), and, for matrices of this form, it is possible to adapt

the proof from [11] to the case of non-simply connected X.
Let M(2,C) be the algebra of all complex 2 × 2 matrices, and GL(2,C) the group of its

invertible elements. Then, in the same way as in [11, Corollary 1], the following corollary can
be deduced from Theorem 1.1.

Corollary 1.4. Let A : X → GL(2,C) be continuous on X, holomorphic in X, and null-
homotopic. Then there exist continuous maps E,F : X → M(2,C), which are holomorphic in
X, such that A = eEeF on X.

The study of the question ‘how many exponentials factors are necessary to represent
a given holomorphic matrix’ was started by Mortini and Rupp [14]. In the case of an
invertible 2 × 2 matrix with entries from A(D), they proved that four exponentials are sufficient
[14, Theorem 7.1]. Then Doubtsov and Kutzschebauch [6, Proposition 3] improved this to
three exponentials. Eventually Kutzschebauch and Studer obtained that two exponentials
are sufficient, which cannot be further improved, by an example Mortini and Rupp [14,
Example 6.4]. This example shows that, under the hypotheses of Theorem 1.1 or Corollary 1.4,
in general there does not exist a continuous B : X → M(2,C) with A = eB . As noted in [6], to
find such B with values in sl(2,C) is impossible already by the fact that not every matrix in
SL(2,C) has a logarithm in sl(2,C).

NOTE: After this paper was written and the preprint was posted in the arXiv [12], I got to
know the preprint [2, Theorem 1.3] with a substantial generalization of Theorem 1.1. This
generalization, in particular, contains Theorem 1.1 with SL(n,C) in place of SL(2,C), for
arbitrary n � 2 (see [2, Example 1.4 (1)]).

2. A sufficient criterion for the existence of a logarithm

A matrix Φ ∈ M(2,C) will be often considered as the linear operator in C
2 defined by

multiplication from the left by Φ (considering the vectors in C
2 as column vectors). The

kernel and the image of this operator will be denoted by Ker Φ and Im Φ, respectively. For
Φ ∈ M(2,C) and λ ∈ C, we often write λ− Φ instead of λI − Φ. A matrix Φ ∈ M(2,C) will be
called a projection, if it is a linear projection as an operator, that is, if Φ2 = Φ.

Lemma 2.1. Let X be a topological space and let B : X → SL(2,C) be continuous. Suppose
there exists a continuous complex-valued function λ on X such that, for all ζ ∈ X:

(a) eλ(ζ) is an eigenvalue of B(ζ);
(b) eλ(ζ) �= e−λ(ζ).

†If X is the closure of a bounded smooth domain in C, this was proved by Corach and Suaréz [5, Theorem 2.3].
Actually they proved the stronger result that, if K is an arbitrary compact subset of C, then the Bass stable
rank of the algebra of functions which are continuous on K and holomorphic in the inner points of K is equal
to 1. That the Bass stable rank of A(D) is equal to 1 was obtained before in [4, 10]. I do not know if there
already exists a published proof of Corollary 1.3 for arbitrary compact bordered Riemann surfaces.
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Then there exists a uniquely determined map F : X → sl(2,C) such that B = eF on X and,
for all ζ ∈ X, λ(ζ) is an eigenvalue of F (ζ). This map is continuous. If X is a complex space†

and B, λ are holomorphic, then F is even holomorphic.

Proof. Existence: Since eλ(ζ) is an eigenvalue of B(ζ) and detB(ζ) = 1, e−λ(ζ) is the other
eigenvalue of B(ζ), which is distinct from eλ(ζ), by condition (b). Therefore

C
2 = Ker

(
eλ(ζ) −B(ζ)

)
⊕ Ker

(
e−λ(ζ) −B(ζ)

)
for all ζ ∈ X,

where ‘⊕’ means ‘direct sum’ (not necessarily orthogonal). Let P : X → M(2,C) be the map
which assigns to each ζ ∈ X the linear projection from C

2 onto Ker(eλ(ζ) −B(ζ)) along
Ker(e−λ(ζ) −B(ζ)). Then

B = eλP + e−λ(I − P ), (2.1)

which implies

P =
1

eλ − e−λ
B − e−λ

eλ − e−λ
I. (2.2)

This shows that P is continuous on X and, if X is a complex space and B, λ are holomorphic,
then P is even holomorphic on X. Now

F := λP − λ(I − P ) (2.3)

has the desired properties.
Uniqueness: Let ζ ∈ X and Θ ∈ sl(2,C) such that eΘ = B(ζ), and λ(ζ) is an eigenvalue of

Θ. Then Θ and B(ζ) commute. By (2.2), also Θ and P (ζ) commute. Therefore Θ = αP (ζ) +
β(I − P (ζ)) for some numbers α, β ∈ C, which then are the eigenvalues of Θ, that is, either
α = λ(ζ) and β = −λ(ζ), or α = −λ(ζ) and β = λ(ζ). α = −λ(ζ) and β = λ(ζ) is not possible,
since otherwise, by condition (b) and by (2.1), we would have

eΘ = e−λ(ζ)P + eλ(ζ)(I − P (ζ)) �= eλ(ζ)P (ζ) + e−λ(ζ)(I − P (ζ)) = B(ζ).

Therefore α = λ(ζ) and β = −λ(ζ). Hence, by (2.3),

Θ = λ(ζ)P (ζ) − λζ(I − P (ζ)) = F (ζ). �

3. Proof of Lemma 1.2 and Theorem 1.1

In this section, X is a compact bordered Riemann surface, where we assume (as always
possible‡) that X is a bounded smooth domain in some larger open Riemann surface X̃,
and X is the closure of X in X̃. The boundary of X will be denoted by ∂X. If we speak about
an open subset U of X, then we always mean that U is a subset of X which is open in the
topology of X (and in general not open in X̃). For K ⊆ X, let K be the closure of K (in X or
in X̃).

If U is an open subset of X, then we denote by A(U) the algebra of continuous complex
valued functions on U which are holomorphic in U ∩X.

To prove Theorem 1.1, we begin with the observation that

ΘeΦΘ−1 = eΘΦΘ−1
for all Θ,Φ ∈ GL(2,C). (3.1)

†By a complex space we mean a reduced complex space in the terminology of [8], which is the same as an
analytic space in the terminology of [3, 13]. For example, each Riemann surface is a complex space.

‡One can take for ˜X a non-compact open neighborhood of X in the double of X (for the definition of the

double of X, see, for example, [1, II. 3E]).
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This shows that conjugation does not change the number of exponential factors needed to
represent a given matrix. As in [11], we will use this observation several times.

Next we recall some known facts (Lemma 3.1, its Corollary 3.2 and Lemma 3.3), for
completeness with proofs.

Lemma 3.1. Let α be a continuous (0,1)-form on X (that is, a continuous section over X of

the holomorphic cotangential bundle of X̃) which is C∞ in X. Then there exists a continuous
function u : X → C which is C∞ in X such that ∂u = α in X.

Proof. As observed by Forstneric, Fornæss and Wold in [7, Section 2, formula (8)] (together
with corresponding references), to solve the ∂-equation on Riemann surfaces, one can use the
following know fact: There exists a 1-form, ω, defined and holomorphic on (X̃ × X̃) \ Δ, where
Δ is the diagonal in X̃ × X̃, such that, if h : U → C is a holomorphic coordinate on some open
set U ⊆ X̃, then, on (U × U) \ Δ, ω is of the form

ω(ζ, η) =
(

1
h(ζ) − h(η)

+ θh(ζ, η)
)
dh(ζ), (ζ, η) ∈ (U × U) \ Δ, (3.2)

where θh is a holomorphic function on U × U . Since X is compact, and α is continuous on X,
then it is clear that the function u : X̃ → C defined by

u(η) =
1

2πi

∫
ζ∈X

ω(ζ, η) ∧ α(ζ), η ∈ X̃,

is continuous on X̃. To prove that, in X, u is C∞ and solves the equation ∂u = α, we consider a
point ξ ∈ X and take an open neighborhoods V and U of ξ such that V ⊆ U , U ⊆ X and there
exists a holomorphic coordinate h : U → C of X̃. Further choose a C∞-function χ : X̃ → [0, 1]
such that χ = 1 in a neighborhood V . Then u = u1 + u2 + u3, where

u1(η) =
1

2πi

∫
ζ∈V

ω(ζ, η) ∧ α(ζ),

u2(η) =
1

2πi

∫
ζ∈X\V

χ(ζ)ω(ζ, η) ∧ α(ζ),

u3(η) =
1

2πi

∫
ζ∈X\V

(1 − χ(ζ))ω(ζ, η) ∧ α(ζ).

Then u2 and u3 are holomorphic in V . Therefore it remains to prove that u1 is C∞ and ∂u1 = α,
in V . By (3.2), u1 = u′

1 + u′′
1 , where

u′
1(η) =

1
2πi

∫
ζ∈V

dh(ζ) ∧ α(ζ)
h(ζ) − h(η)

and u′′
1(η) =

∫
ζ∈V

θh(ζ, η)dh(ζ) ∧ α(ζ).

Since θh is holomorphic, u′′
1 is holomorphic. Further

(u′
1 ◦ h−1)(w) =

1
2πi

∫
z∈h(V )

dz ∧ (
(h−1)∗α

)
(z)

w − z
for w ∈ h(V ).

Therefore, as is well known (see, for example, [9, Theorem 1.2.2]), u′
1 ◦ h−1 is C∞ and ∂(u′

1 ◦
h−1) = (h−1)∗α, in h(V ), which implies that u′

1 is C∞ and ∂u′
1 = α, in V . �

Corollary 3.2. Let U1, U2 be non-empty open subsets of X with U1 ∪ U2 = X, and let
f ∈ A(U1 ∩ U2). Then there exist f1 ∈ A(U1) and f2 ∈ A(U2) with f = f1 − f2 on U1 ∩ U2.
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Proof. For K ⊆ X, we denote by ∂XK the boundary of K with respect to the topology of
X (which is, in general, smaller than the boundary in X̃). Since U1 and U2 are open subsets
of X and U1 ∪ U2 = X, we have

U1 \ U2 ∩ U2 \ U1 = ∅.
Therefore we can find a C∞ function χ : X̃ → [0, 1] with χ = 1 in an X̃-neighborhood of U1 \ U2,
and χ = 0 in an X̃-neighborhood of U2 \ U1. Then we have well-defined continuous functions
c1 : U1 → C and c2 : U2 → C which are C∞ in X ∩ U1 and X ∩ U2, respectively, such that

c1 =

{
(1 − χ)f on U1 ∩ U2,

0 on U1 \ U2,
and c2 =

{
−χf on U1 ∩ U2,

0 on U2 \ U1.

Then

f = c1 − c2 on U1 ∩ U2, (3.3)

∂c1 = −∂χf = ∂c2 on X ∩ U1 ∩ U2. (3.4)

Relation (3.4) shows that there is a well-defined continuous (0,1)-form on X, α, which is C∞

in X, such that

α = ∂cj on X ∩ Uj , for j = 1, 2. (3.5)

By the preceding lemma, we can find a continuous function u : X → C which is C∞ in X
such that ∂u = α in X. Set fj = cj − u, j = 1, 2. Then, by (3.5), fj ∈ A(Uj) and, by (3.3),
f = f1 − f2 on U1 ∩ U2. �

Lemma 3.3. For each a ∈ A(X), either {a = 0} = X or ∂X ∩ {a = 0} is nowhere dense in
∂X.

Proof. Assume ∂X ∩ {a = 0} is not nowhere dense in ∂X. Then there exist ξ ∈ ∂X and
an open subset U of X with ξ ∈ U and a ≡ 0 on U ∩ ∂X. Then (by definition of a bordered
Riemann surface), we have an open subset V of X with ξ ∈ V , and a homeomorphism ϕ : V →
{z ∈ C | |z| < 1, Im z � 0}, which is biholomorphic from V \ ∂X onto {z ∈ C | |z| < 1, Im z >
0} and such that ϕ(V ∩ ∂X) =] − 1, 1[. Then the continuous function a ◦ ϕ−1 is holomorphic
in {z ∈ C | |z| < 1, Im z > 0} and has the real value 0 on ] − 1, 1[. Therefore, by the Schwarz
reflection principle, there is a holomorhic function ã on {z ∈ C | |z| < 1} with

ã = a ◦ ϕ−1 on
{
z ∈ C

∣∣ |z| < 1, Im z � 0
}
. (3.6)

Since a = 0 on ϕ−1(] − 1, 1[) = V ∩ ∂X, from (3.6) we get ã = 0 on ] − 1, 1[. Therefore ã = 0
on {z ∈ C | |z| < 1}. Again by (3.6) this implies that a = 0 on V \ ∂X. Hence (X is connected)
{a = 0} = X. �

The first step in the proof of Lemma 1.2 is the following lemma.

Lemma 3.4. Let a, b ∈ A(X) such that {a = 0} ∩ {b = 0} = ∅. Then there exist finitely
many closed subsets K1, . . . ,K� of X such that

Kj ∩Kk = ∅ for all 1 � j, k � � with j �= k, (3.7)

{a = 0} ⊆ K1 ∪ . . . ∪K�, (3.8)

and, for some open disks D1, . . . ,D� contained in C \ {0},
b(Kj) ⊆ Dj for j = 1, . . . , �. (3.9)
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Proof. If {a = 0} = ∅, the claim of the lemma is trivial. Therefore we may assume that
{a = 0} �= ∅.

First let ∂X ∩ {a = 0} = ∅. Since X is compact and {a = 0} has no accumulation points in
X, and since {a = 0} �= ∅, then {a = 0} consists of a finite number of points ξ1, . . . , ξ� ∈ X.
Then b(ξ1) �= 0, . . ., b(ξ�) �= 0, and K1 := {ξ1}, . . ., K� := {ξ�} have the desired properties.

Now let ∂X ∩ {a = 0} �= ∅. Fix a metric ρ(·, ·) on X̃. For a subset K of X̃ we denote by
diamK the diameter of K with respect to this metric. Since X is compact, a, b are continuous
and {a = 0} ∩ {b = 0} = ∅, we have

θ := min
ζ∈X

(|a(ζ)| + |b(ζ)|) > 0,

and we can find ε > 0 such that∣∣b(ζ) − b(η)
∣∣ < θ for all ζ, η ∈ X with ρ(ζ, η) < ε. (3.10)

We call a set Λ ⊆ ∂X a closed Interval in ∂X if there is a homeomorphic map ψ from [0,1]
onto Λ.

Since X is compact, ∂X is the union of a finite number of pairwise disjoint Jordan curves.
Statement 1. Let Γ be one of these Jordan curves. Then there exists a finite number of

closed intervals Λ1, . . . ,Λq in Γ such that

Λj ∩ Λk = ∅ for 1 � j, k � q with j �= k, (3.11)

Γ ∩ {a = 0} ⊆ Λ1 ∪ . . . ∪ Λq, (3.12)

Λj ∩ {a = 0} �= ∅ for j = 1, . . . , q, (3.13)

diam(Λj) < ε for 1 � j � q, (3.14)

Proof of Statement 1. If Γ ∩ {a = 0} = ∅, the claim of the statement is trivial. Therefore we
may assume that Γ ∩ {a = 0} �= ∅.

Since Γ is a Jordan curve, we have a homeomorphism φ from T := {z ∈ C | |z| = 1} onto Γ.
Since {a = 0} �= X, {a = 0} ∩ Γ is nowhere dense in Γ (Lemma 3.3). Therefore we can find
0 < t1 < t2 < . . . < tp < 2π such that

a
(
φ(eitκ)

) �= 0 for κ = 1, . . . , p, (3.15)

and

diamφ
(
ei[tκ,tκ+1]

)
< ε for κ = 1, . . . , p− 1, and

diam
(
φ
(
ei[tp,2π]

)
∪ φ

(
ei[0,t1]

))
< ε. (3.16)

By (3.15), we can find σ > 0 such that tκ + σ < tκ+1 for κ = 1, . . . , p− 1, tp + σ < 2π, and

a
(
φ(eit)

) �= 0 for tj � t � tj + σ and κ = 1, . . . , p. (3.17)

Define closed intervals in Γ, Δ1, . . . ,Δp, by

Δκ = φ
(
ei[tκ+σ,tκ+1]

)
for κ = 1, . . . , p− 1, and Δp = φ

(
ei[tp+σ,2π]

)
∪ φ

(
ei[0,t1]

)
.

Then it is clear that

Δκ ∩ Δλ = ∅ for all κ, λ ∈ {1, . . . , p} with κ �= λ, (3.18)

from (3.16) it follows that

diam Δκ < ε for κ = 1, . . . , p, (3.19)
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and from (3.17) it follows that

Γ ∩ {a = 0} ⊆ Δ1 ∪ . . . ∪ Δp. (3.20)

Let {κ1, . . . , κq} be the set of all κ ∈ {1, . . . , p} with Δκ ∩ {a = 0} �= ∅ (such κ exist, as
Γ ∩ {a = 0} �= ∅}), and define Λj = Δκj

for j = 1, . . . , q. Then (3.11) is clear by (3.18). (3.12)
and (3.13) hold by (3.20) and the definition of the set {κ1, . . . , κq}. (3.14) is clear by (3.19).
Statement 1 is proved.

From Statement 1, we obtain a finite number of closed intervals Λ1, . . . ,Λr in ∂X such that

Λj ∩ Λk = ∅ for 1 � j, k � r with j �= k, (3.21)

∂X ∩ {a = 0} ⊆ Λ1 ∪ . . . ∪ Λr, (3.22)

Λj ∩ {a = 0} �= ∅ for j = 1, . . . , r, (3.23)

diam(Λj) < ε for j = 1, . . . , r. (3.24)

By (3.21) and (3.24), we can find open subsets Uj of X, j = 1, . . . , r, with

Λj ⊆ Uj for 1 � j � r, (3.25)

U j ∩ Uk = ∅ for all 1 � j, k � r with j �= k, (3.26)

diam
(
U j

)
< ε for j = 1, . . . , r. (3.27)

Note that then, by (3.23),

Uj ∩ {a = 0} �= ∅ for j = 1, . . . , r. (3.28)

Set Kj = U j for j = 1, . . . , r. Then, by (3.22) and (3.25),{
a = 0

} ∩ (∂X ∪K1 ∪ . . . ∪Kr) =
{
a = 0

} ∩ (K1 ∪ . . . ∪Kr). (3.29)

Statement 2. N := {a = 0} ∩ (X \ (∂X ∪K1 ∪ . . . ∪Kr)) is finite.
Proof of Statement 2. Assume N is infinite. Since X is compact, then N has an accumulation

point ξ ∈ X. Since {a = 0} is closed, ξ ∈ {a = 0}. As {a = 0} ∩X is discrete in X, this implies
that ξ ∈ ∂X ∩ {a = 0} and further, by (3.22) and (3.25), that ξ ∈ U1 ∪ . . . ∪ Ur. In particular,
with respect to the topology of X, ξ is an inner point of ∂X ∪K1 ∪ . . . ∪Kr, which is not
possible, for ξ is an accumulation point of N and therefore, in particular, an accumulation
point of X \ (∂X ∪K1 ∪ . . . ∪Kr). Statement 2 is proved.

Let ξr+1, . . . , ξ� the distinct points of N , and define Kj = {ξj} for j = r + 1, . . . , �. We claim
that K1, . . . ,K� have the desired properties (3.7)–(3.9).

Indeed, (3.7) follows from (3.26) and the fact that ξr+1, . . . , ξ� are pairwise distinct and lie
in N and, hence, outside K1 ∪ . . . ∪Kr. By (3.29),

{a = 0} ∩ (∂X ∪K1 ∪ . . . ∪Kr) ⊆ K1 ∪ . . . ∪Kr,

and, by definition of Kr+1, . . . ,K�,

{a = 0} ∩ (
X \ (∂X ∪K1 ∪ . . . ∪Kr)

)
= N = Kr+1 ∪ . . . ∪K�.

Together implies (3.8). To prove (3.9), we first note that by (3.28) and the definition
of Kr+1, . . . ,K�, for each j ∈ {1, . . . , �}, we have a point ξj ∈ Kj with a(ξj) = 0. Since,
by definition of θ, |b(ξj)| � θ, setting Dj = {z ∈ C | |z − b(ξj)| < θ}, we obtain open disks
D1, . . . ,D� ⊆ C \ {0}. Since diamKj < ε for j = 1 . . . , � (for 1 � j � r this holds by (3.27),
and for r + 1 � j � �, we have diamKj = 0), now (3.9) follows from (3.10). �
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Proof of Lemma 1.2. If {a = 0} = ∅, we set g = (1 − b)/a. Then b + ga = 1 = e0 on X, and
the claim of the lemma is proved.

Now let {a = 0} �= ∅. By Lemma 3.4, we can find finitely many closed subsets K1, . . . ,K� of
X and open disks D1, . . . ,D� in C \ {0} satisfying (3.7)–(3.9). Choose open subsets W1, . . . ,W�

of X such that

Kj ⊆ Wj for 1 � j � �, (3.30)

Wj ∩Wk = ∅ for all 1 � j, k � � with j �= k, (3.31)

b(Wj) ⊆ Dj for j = 1, . . . , �. (3.32)

Since Dj ⊆ C \ {0}, we can find holomorphic functions logj : Dj → C with elogj z = z for z ∈
Dj . Set W = W1 ∪ . . . ∪W� and V = X \ {a = 0}. Then, by (3.30) and (3.8), V ∪W = X, and,
by (3.31) and (3.32), we can define f ∈ A(W ) setting f = logj ◦b on Wj . Then

b = ef on W. (3.33)

Since a �= 0 on V and f ∈ A(W ), we have f/a ∈ A(V ∩W ). Therefore, by Corollary 3.2, we
can find v ∈ A(V ) and w ∈ A(W ) with f/a = v − w, that is,

f + aw = av on V ∩W.

Therefore, we have a function h ∈ A(X) with

h = f + aw on W. (3.34)

The series
∑∞

μ=0
aμwμ

μ!
bw
μ+1 converges uniformly on the compact subsets of W to some s ∈ A(W ),

and, by (3.34) and (3.33), we have

eh − b = ef+aw − b = beaw − b = b(eaw − 1) on W.

Together this implies that, on V ∩W = W \ {a = 0},
eh − b

a
=

b

a

∞∑
μ=1

aμwμ

μ!
=

b

a

∞∑
μ=0

aμ+1wμ+1

(μ + 1)!
=

∞∑
μ=0

aμwμ

μ!
bw

μ + 1
= s.

Therefore, we have a function g ∈ A(X) with g = eh−b
a on V and g = s on W . Then, on

V = X \ {a = 0}, it is clear that

b + ga = b +
eh − b

a
a = eh.

Since {a = 0} is nowhere dense in X, it follows by continuity that b + ga = eh on all of X. �
Proof of Theorem 1.1. For f ∈ A(X), we denote by Re f and |f | the functions X 
 ζ →

Re f(ζ), and X 
 ζ → |f(ζ)|, respectively. By ASL(2,C)(X) and Asl(2,C)(X), we denote the sets
of continuous maps from X to SL(2,C) and sl(2,C), respectively, which are holomorphic in X.

Now let A ∈ ASL(2,C)(X) be given.
If A ≡ I or A ≡ −I, the claim of Theorem 1.1 is trivial. Therefore it is sufficient to consider

the following three cases.

(I) A is of the form ( a b
c d ) with {c = 0} �= X.

(II) A is of the form ( a b
0 d ) with {b = 0} �= X.

(III) A is of the form ( a 0
0 d ) where neither {a = 1} = {d = 1} = X nor {a = −1} = {d =

−1} = X.
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By observation (3.1), Case (II) can be reduced to Case (I), since(
0 1
1 0

)(
a b
0 d

)(
0 1
1 0

)−1

=
(
d 0
b a

)
.

Consider Case (III). Since detA ≡ 1, then a �= 0 and d = a−1 on X. Moreover, then {a− a−1 =
0} �= X, for otherwise we would have {a2 = 1} = X, that is, either {a = 1} = {d = 1} = X or
{a = −1} = {d = −1} = X. As(

1 0
1 1

)(
a 0
0 a−1

)(
1 0
1 1

)−1

=
(

a 0
a− a−1 a−1

)
,

this shows, again by (3.1), that also Case (III) can be reduced to Case (I).

So, we may assume that A = (
a b
c d

) where {c = 0} �= X. Since also {c = 0} ∩ {a = 0} = ∅
(the values of A are invertible), then we can apply Lemma 1.2, which gives g, h ∈ A(X) with
a + gc = eh on X. Then (

1 g
0 1

)
A

(
1 g
0 1

)−1

=
(
eh ∗
∗ ∗

)
.

Therefore, again by observation (3.1), finally we see that A = ( eh b
c d ) with h, b, c, d ∈ A(X) can

be assumed.
The remaining part of the proof is an adaption of the proof given in [11] for X = D. Chose

δ > 0 so large that, on X,

Re
(
eδ + eh−δd

)
> 0, (3.35)∣∣∣(1 + eh−2δd)2 − 4e−2δ − 1

∣∣∣ < 1
2
, (3.36)

and define

E =
(
h− δ 0

0 δ − h

)
and B =

(
eδ eδ−hb

eh−δc eh−δd

)
.

Then

E ∈ Asl(2,C)(X), B ∈ ASL(2,C)(X), and A = eEB on X. (3.37)

It follows from (3.36) that log((1 + eh−2δd)2 − 4e−2δ) is well defined, where, since | log z| < 1
if |z − 1| < 1/2, ∣∣ log

(
(1 + eh−2δd)2 − 4e−2δ

)∣∣ < 1 on X. (3.38)

Since

(trB)2

4
− 1 =

e2δ

4

((
1 + eh−2δd

)2 − 4e−2δ
)
,

this implies that also log( (trB)2

4 − 1) is well defined, where

log
(

(trB)2

4
− 1

)
= 2δ − log 4 + log

((
1 + eh−2δd

)2 − 4e−2δ
)

on X. (3.39)

Set

ϕ = exp
(

1
2

log
(

(trB)2

4
− 1

))
on X.
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Then, by (3.39),

ϕ = exp
(
δ − log 4

2

)
exp

(
1
2

log
((

1 + eh−2δd
)2 − 4e−2δ

))
.

Since |ez − 1| < 1 if |z| < 1/2 and therefore, by (3.38),∣∣∣∣ exp
(

1
2

log
((

1 + eh−2δd
)2 − 4e−2δ

))
− 1

∣∣∣∣ < 1,

this shows that

Reϕ > 0 on X. (3.40)

Since ϕ2 = (trB)2

4 − 1, we see that, for each ζ ∈ X,

θ+(ζ) :=
trB(ζ)

2
+ ϕ(ζ) and θ−(ζ) :=

trB(ζ)
2

− ϕ(ζ)

are the eigenvalues of B(ζ), where θ+(ζ) �= θ−(ζ) (as ϕ(ζ) �= 0). Since detB(ζ) = 1 and
therefore θ−(ζ) = θ+(ζ)−1, it follows that θ+(ζ) �= θ+(ζ)−1 for all ζ ∈ X. Since, by (3.35),
also Re(trB) > 0, it follows from (3.40) that Re θ+ > 0 on X. Therefore λ = log θ+ is well
defined. So, we have found a function λ ∈ A(X) with the property that, for all ζ ∈ X, eλ(ζ)

(= θ+(ζ)) is an eigenvalue of B(ζ) and λ(ζ) �= −λ(ζ) (as θ+(ζ) �= θ+(ζ)−1). This implies by
Lemma 2.1 that there exists F ∈ Asl(2,C)(X) with B = eF . By (3.37) this completes the proof
of Theorem 1.1.
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the closure of a bounded smooth domain in C (see footnote 2).
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14. R. Mortini and R. Rupp, ‘Logarithms and exponentials in the matrix algebra M2(A)’, Comput. Methods

Funct. Theory 18 (2018) 53–87.

Jürgen Leiterer
Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
Berlin D-12489
Germany

leiterer@mathematik.hu-berlin.de

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

mailto:leiterer@mathematik.hu-berlin.de

	1. Introduction
	2. A sufficient criterion for the existence of a logarithm
	3. Proof of Lemma 1.2 and Theorem 1.1
	References



