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Abstract

In this thesis, we consider the Wasserstein barycenter problem of discrete probability
measures as well as the population Wasserstein barycenter problem given by a
Fréchet mean from computational and statistical sides.

The statistical focus is estimating the sample size of measures needed to calculate
an approximation of a Fréchet mean (barycenter) of probability distributions with
a given precision. For empirical risk minimization approaches, the question of
the regularization is also studied along with proposing a new regularization which
contributes to the better complexity bounds in comparison with the quadratic
regularization.

The computational focus is developing decentralized algorithms for calculat-
ing Wasserstein barycenters: dual algorithms and saddle point algorithms. The
motivation for dual approaches is closed-forms for the dual formulation of entropy-
regularized Wasserstein distances and their derivatives, whereas the primal formula-
tion has a closed-form expression only in some cases, e.g., for Gaussian measures.
Moreover, the dual oracle returning the gradient of the dual representation for
entropy-regularized Wasserstein distance can be computed for a cheaper price in
comparison with the primal oracle returning the gradient of the (entropy-regularized)
Wasserstein distance. The number of dual oracle calls in this case will be also less,
i.e., the square root of the number of primal oracle calls. Furthermore, in contrast
to the primal objective, the dual objective has Lipschitz continuous gradient due
to the strong convexity of regularized Wasserstein distances. Moreover, we study
saddle-point formulation of the non-regularized Wasserstein barycenter problem
which leads to the bilinear saddle-point problem. This approach also allows us to
get optimal complexity bounds and it can be easily presented in a decentralized setup.

Keywords: optimal transport, Wasserstein barycenter, stochastic optimization,
decentralized optimization, distributed optimization, primal-dual methods, first-
order oracle.
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Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit dem Wasserstein Baryzentrumproblem
diskreter Wahrscheinlichkeitsmaße sowie mit dem population Wasserstein Baryzen-
trumproblem gegeben von a Fréchet Mittelwerts von der rechnerischen und statis-
tischen Seiten.

Der statistische Fokus liegt auf der Schätzung der Stichprobengröße von Maßen
zur Berechnung einer Annäherung des Fréchet Mittelwerts (Baryzentrum) der
Wahrscheinlichkeitsmaße mit einer bestimmten Genauigkeit. Für empirische Risiko-
minimierung (ERM) wird auch die Frage der Regularisierung untersucht zusammen
mit dem Vorschlag einer neuen Regularisierung, die zu den besseren Komplexitäts-
grenzen im Vergleich zur quadratischen Regularisierung beiträgt.

Der Rechenfokus liegt auf der Entwicklung von dezentralen Algorithmen zur
Berechnung von Wasserstein Baryzentrum: duale Algorithmen und Sattelpunk-
talgorithmen. Die Motivation für duale Optimierungsmethoden ist geschlossene
Formen für die duale Formulierung von entropie-regulierten Wasserstein Distanz
und ihren Derivaten, während, die primale Formulierung nur in einigen Fällen einen
Ausdruck in geschlossener Form hat, z.B. für Gauß-Maße. Außerdem kann das
duale Orakel, das den Gradienten der dualen Darstellung für die entropie-regulierte
Wasserstein Distanz zurückgibt, zu einem günstigeren Preis berechnet werden als das
primale Orakel, das den Gradienten der (entropie-regulierten) Wasserstein Distanz
zurückgibt. Die Anzahl der dualen Orakelrufe ist in diesem Fall ebenfalls weniger,
nämlich die Quadratwurzel der Anzahl der primalen Orakelrufe. Im Gegensatz zum
primalen Zielfunktion, hat das duale Zielfunktion Lipschitz-stetig Gradient aufgrund
der starken Konvexität regulierter Wasserstein Distanz. Außerdem untersuchen
wir die Sattelpunktformulierung des (nicht regulierten) Wasserstein Baryzentrum,
die zum Bilinearsattelpunktproblem führt. Dieser Ansatz ermöglicht es uns auch,
optimale Komplexitätsgrenzen zu erhalten, und kann einfach in einer dezentralen
Weise präsentiert werden.

Stichwörter: optimaler Transport, Wasserstein Baryzentrum, stochastische
Optimierung, dezentrale Optimierung, primal-duale Optimierungsmethoden erster
Ordnung, Orakel erster Ordnung.
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Notations

• ∆n = {a ∈ Rn
+ |
∑n

l=1 al = 1} is the probability simplex.

• In×n is the identity matrix of size n× n.

• 0n×n is zeros matrix of size n× n.

• 1n is the vector of ones of size n.

• [n] is the sequence of integer number from 1 to n.

• Capital symbols, e.g., A,B, are used for matrices.

• Bold capital symbols, e.g., A,B, are used for block-matrices.

• Bold small symbol, e.g., x = (x>1 , · · · , x>m)> ∈ Rmn is the column vector of
vectors x1, ..., xm ∈ Rn.

• We refer to the i-th component of vector x as xi ∈ Rn.

• [x]j is j-th component of vector x.

• 〈· , ·〉 is the usual Euclidean dot-product between vectors. For two matrices of
the same size A and B, 〈A,B〉 = tr(AB) is the Frobenius dot-product.

• ‖s‖∗ = maxx∈X{〈x, s〉 : ‖x‖ ≤ 1} is the dual norm for some norm ‖x‖, x ∈ X.
In particular, for the `p-norm, its dual norm is `q-norm, where 1

p
+ 1

q
= 1.

• For two vectors x, y (or matrices A,B ) of the same size, x/y (A/B) and
x� y (A� B) stand for the element-wise product and element-wise division
respectively. When used on vectors, functions such as log or exp are always
applied element-wise.

• For prox-function d(x), the corresponding Bregman divergence is B(x, y) =
d(x)− d(y)− 〈∇d(y), x− y〉.

• λmax(W ) is the maximum eigenvalue of a symmetric matrix W

• λ+
min(W ) is the minimal non-zero eigenvalue of a symmetric matrix W

• χ(W ) = λmax(W )

λ+
min(W )

is the condition number of matrix W
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List of Tables

• O(·) is the notation for an upper bound on the growth rate hiding constants.

• Õ(·) is the notation for an upper bound on the growth rate hiding logarithms.
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Mathematical Preliminaries

Definition 0.0.1 (M -Lipschitz). A function f : X × Ξ → R is M-Lipschitz
continious with respect to x ∈ X in norm ‖ · ‖ if it satisfies

|f(x, ξ)− f(y, ξ)| ≤M‖x− y‖, ∀x, y ∈ X, ∀ξ ∈ Ξ. (1)

From Eq. (1) it follows that

‖∇xf(x, ξ)‖∗ ≤M, ∀x ∈ X, ∀ξ ∈ Ξ,

where ∇xf(x, ξ) is a subgradient of f(x, ξ) with respect to x (Shapiro et al., 2009).

Definition 0.0.2 (L-smoothness). A function f : X × Ξ → R is L-Lipschitz
smooth, or has L-Lipschitz continuous gradient, with respect to norm ‖ · ‖X if f(x, ξ)
is continuously differentiable with respect to x and its gradient satisfies Lipschitz
condition

‖∇xf(x, ξ)−∇yf(y, ξ)‖∗ ≤ L‖x− y‖, ∀x, y ∈ X, ∀ξ ∈ Ξ. (2)

From Eq. (2) it follows that

f(y, ξ) ≤ f(x, ξ) + 〈∇xf(x, ξ), y − x〉+
L

2
‖x− y‖2, ∀x, y ∈ X, ∀ξ ∈ Ξ. (3)

Definition 0.0.3 (γ-strong convexity). A function f : X × Ξ → R is γ-strongly
convex with respect to x in norm ‖·‖X if it is continuously differential and it satisfies

f(x, ξ)− f(y, ξ)− 〈∇f(y, ξ), x− y〉 ≥ γ

2
‖x− y‖2, ∀x, y ∈ X, ∀ξ ∈ Ξ.

Definition 0.0.4 (Dual Function). The Fenchel–Legendre conjugate for a function
f : (X,Ξ)→ R is

f ∗(u, ξ) , max
x∈X
{〈x, u〉 − f(x, ξ)}, ∀ξ ∈ Ξ.

Theorem 0.0.5. (Kakade et al., 2009, Theorem 6 (Strong/Smooth Duality)) As-
sume that f is a closed and convex function on X = Rn. Then f is γ-strongly
convex w.r.t. a norm ‖ · ‖X if and only if f ∗ is 1

γ
–Lipschitz smooth w.r.t. the dual

norm ‖ · ‖X∗.
Theorem 0.0.6. (Nesterov, 2005, Theorem 1) Assume that function f(x) is contin-
uous and γ-strongly convex w.r.t. a norm ‖ · ‖. Then ϕ(u) = max

x∈X
{〈Ax, u〉 − f(x)}

is λmax(A>A)
γ

–Lipschitz smooth w.r.t. the dual norm ‖ · ‖∗.
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Chapter 1

Introduction

1.1 Background on Optimal Transport

Optimal transport problem is closely related to the notion of linear programming.
Linear programming (LP) is the science of theoretical and numerical analysis and
solving extremal (e.g., maximization or maximization) problems defined by systems
of linear equations and inequalities. A lot of mathematicians made contributions
to the development of linear programming, including T. Koopmans, G.B. Danzig
(a founder of the simplex method, 1949) and I.I. Dikin (a founder of the interior
points method, 1967), but the priority belongs to the Soviet mathematician and
economist L. V. Kantorovich (Kantorovich, 1960), who was the first who discovered
that a wide class of the most important production problems can be described
mathematically and solved numerically (1939).

Particular and important cases of linear programming problems are network
flow problem, multicommodity flow problem, and optimal transport (OT) problem.
The history of optimal transport begins with the French mathematician G. Monge
(Monge, 1781), who proposed a complicated theory of describing an optimal mass
transportation in a geometric way. Inspired by the problem of resource allocation,
L.V. Kantorovich introduced relaxations which allowed him to formulate the trans-
port problem as linear programming problem, and as a consequence, to apply linear
programming methods to solve it. The main relaxation was based on the refusing
of deterministic nature of transportation (a mass from the source point could only
be transferred to one target point) and introducing a probabilistic transport. To do
so, a coupling matrix was introduced instead of Monge maps. Admissible couplings
(also known as transportation polytope) of all coupling matrices with marginals
discrete source µ and discrete target ν can be written as follows

U(µ, ν) , {π ∈ Rn2×n1
+ : π1n1 = µ, πT1n2 = ν}.

Here π is a coupling (transport plan) (πij describes the amount of mass moving
from source bin i towards target bin j) Thus, the problem of optimal transport
between µ and ν under a symmetric transportation cost matrix C ∈ Rn×n

+ , called

13



Chapter 1. Introduction

also as the Monge–Kantorovich problem, is formulated as follows

min
π∈U(µ,ν)

〈C, π〉. (1.1)

Moreover, Kantorovich formulated an infinite-dimension analog of optimal
transport problem (1.1) between probability measures µ ∈ P(X) and ν ∈ P(Y )
under transportation cost function c(x, y)

min
π∈U(µ,ν)

∫
X×Y

c(x, y)dπ(x, y),

where
U(µ, ν) , {π ∈ P(X × Y) : TX# = µ, TY# = ν}.

Here TX# and TY# are the push-forwards. Furthermore, the replacement of Monge’s
maps by couplings and infinite-dimension formulation of optimal transport allowed
Kantorovich and G. S. Rubinstein to introduce Kantorovich–Rubinstein distance in
the space of probability measures. Nowadays, it is often referred to as Wasserstein
distance. Namely, ρ-Wasserstein distance (ρ ≥ 1) between probability measures
µ, ν ∈ P(X) is defined as follows

Wρ(µ, ν) ,

(
min

π∈U(µ,ν)

∫
X×X

d(x, y)ρdπ(x, y)

)1/ρ

, (1.2)

where it was assumed that X = Y and c(x, y) = d(x, y)ρ is a distance on X .
For multivariate Gaussian measures, the 2-Wasserstein distance has a closed-

form solution and is expressed through Bures metric (Bures, 1969) which is used to
compare quantum states in quantum physics.

Nowadays, optimal transport metric provides a successful framework to compare
objects that can be modeled as probability measures (images, videos, texts and etc.).
Transport based distances, especially 1-Wasserstein distance (EMD), have gained
popularity in various fields such as statistics (Ebert et al., 2017; Bigot et al., 2012),
unsupervised learning (Arjovsky et al., 2017), signal and image analysis (Thorpe
et al., 2017), computer vision (Rubner et al., 1998), text classification (Kusner et al.,
2015), economics and finance (Rachev et al., 2011) and medical imaging (Wang
et al., 2010; Gramfort et al., 2015). A lot of statistical results are known about
optimal transport (Wasserstein) distances (Sommerfeld and Munk, 2018; Weed
et al., 2019; Klatt et al., 2020).

1.2 Background on Wasserstein Barycenters

The success of optimal transport led to an increasing interest in Wasserstein
barycenters. In (Agueh and Carlier, 2011), the notion of a Wasserstein barycenter
was introduced in the Wasserstein space (space P2(X ) of probability measures with
finite second moment supported on a convex domain X ) similarly to the barycenter

14



1.3. Background on Population Wasserstein barycenter

of points in the Euclidean space by replacing the squared Euclidean distance with
the squared 2-Wasserstein distance. Namely, a Wasserstein barycenter of a set of
probability measures ν1, ν2, ..., νm is defined as follows

min
µ∈P2(X )

m∑
i=1

λiW2
2 (µ, νi), (1.3)

where the λi’s are positive weights summing to 1.
Wasserstein barycenters are used in Bayesian computations (Srivastava et al.,

2015), texture mixing (Rabin et al., 2011), clustering (k-means for probability
measures) (Del Barrio et al., 2019), shape interpolation and color transferring
(Solomon et al., 2015), statistical estimation of template models (Boissard et al.,
2015) and neuroimaging (Gramfort et al., 2015).

1.3 Background on Population Wasserstein
barycenter

For random probability measures with distribution P supported on P2(X ), popu-
lation Wasserstein barycenter is introduced through a notion of a Fréchet mean
(Fréchet, 1948)

min
p∈P2(X )

Eq∼PW (p, q) = min
p∈P2(X )

∫
P2(X )

W (p, q)dP(q). (1.4)

For identically distributed measures, problem (1.3) can be interpreted as an empirical
counterpart of problem (1.4). If a solution of (1.4) exists and is unique, then it is
referred to as the population barycenter of distribution P.

1.4 Overview of the Thesis

In this thesis, we consider the Wasserstein barycenter problem of discrete probability
measures as well as the population Wasserstein barycenter problem given by a
Fréchet mean. The main focus of this thesis is computational aspect of the Wasser-
stein barycenter problem: deriving first-order methods to compute Wasserstein
barycenters. Dual first-order methods rely on the fact that regularized optimal
transport by negative entropy with γ > 0, that is

Wγ(p, q) = min
π∈U(p,q)

{〈C, π〉+ γ〈π, log π〉} ,

has a dual closed-form representation defined by the Fenchel–Legendre transform
w.r.t. p ∈ ∆n (Agueh and Carlier, 2011; Cuturi and Peyré, 2016):

W ∗
γ,q(u) = max

p∈∆n

{〈u, p〉 −Wγ(p, q)}

= γ

(
−〈q, log q〉+

n∑
j=1

[q]j log

(
n∑
i=1

exp (([u]i − Cji)/γ)

))
, (1.5)

15



Chapter 1. Introduction

where [q]j and [u]i are the j-th and i-th components of q and u respectively, and
Cji is the entry of matrix C. The gradient of dual function W ∗

γ,q(u) is Lipschitz
continuous and has also a closed-form solution

[∇W ∗
γ,q(u)]l =

n∑
j=1

[q]j
exp (([u]l − Clj)/γ)∑n
`=1 exp (([u]` − C`j)/γ)

, (1.6)

for all l = 1, ..., n.
A saddle point approach for Wasserstein barycenter problem relies on the fact

that non-regularized optimal transport (1.1) has a bilinear saddle-point representa-
tion (Jambulapati et al., 2019):

W (p, q) = min
x∈∆n2

max
y∈[−1,1]2n

{
〈d, x〉+ 2‖d‖∞

(
y>Ax−

〈(
p
q

)
, y

〉)}
.

Here d is the vectorized cost matrix C, x ∈ ∆n2 is the vectorized transport plan π,
and

A ,

(
In×n ⊗ 1>n
1>n ⊗ In×n

)
= {0, 1}2n×n2

is the incidence matrix.
Decentralized formulations of the Wasserstein barycenter problem both for the

saddle-point and dual representations are based on introducing artificial constraint
p1 = p2 = ... = pm ∈ Rn which is further replaced with affine constraint Wp = 0
(in the saddle-point approach) and

√
Wp = 0 (in the dual approach), where

p = (p>1 , ..., p
>
m)> is column vector and W is referred as the communication matrix

for a decentralized system. From the definition of matrix W it follows that
√
Wp = 0⇐⇒Wp = 0⇐⇒ p1 = p2 = ... = pm.

The affine constraint Wp = 0 (or
√
Wp = 0) is brought to the objective via the

Fenchel–Legendre transform. Thus, for the primal Wasserstein barycenter problem
defined w.r.t. entropy-regularized optimal transport

min
p∈∆n

1

m

m∑
i=1

Wγ(p, qi) = min
p1=...=pm,
p1,...,pm∈∆n

1

m

m∑
i=1

Wγ(pi, qi) = min√
Wp=0,

p1,...,pm∈∆n

1

m

m∑
i=1

Wγ(pi, qi),

we can construct the corresponding dual Wasserstein barycenter problem:

min
y∈Rnm

W ∗
γ,q(
√
Wy) ,

1

m

m∑
i=1

W ∗
γ,qi

(m[
√
Wy]i), (1.7)

where q = (q>1 , · · · , q>m)>, and y = (y>1 , · · · , y>m)> ∈ Rnm is the Lagrangian dual
multiplier. As the primal function is strongly convex, then the dual function is
L-Lipschitz smooth, or has Lipschitz continuous gradient. The constant L for
W ∗
γ,q(
√
Wy) is defined via communication matrix W and regularization parameter

γ. Hence, accelerated gradient descent-based method can be used, which is optimal
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1.4. Overview of the Thesis

in terms of the number of iterations and oracle calls. For simplicity, the decentralized
procedure solving dual problem (1.7) can be demonstrated on the gradient descent
as follows

yk+1 = yk − 1

L
∇W ∗

γ,q(
√
Wyk) = yk − 1

L

√
Wp(

√
Wyk).

Without change of variable, it is unclear how to execute this procedure in a
distributed fashion. Let u :=

√
Wy, then the gradient step multiplied by

√
W can

be rewritten as
uk+1 = uk − 1

L
Wp(uk),

where [p(u)]i = pi(ui) = ∇W ∗
γ,qi

(ui) from (1.6), i = 1, ...,m. This procedure can be
performed in a decentralized manner on a distributed network. The vector Wp(u)
naturally defines communications with neighboring nodes due to the structure of
communication matrix W as the elements of communication matrix are zero for
non-neighboring nodes. Moreover, in the dual approach which is based on gradient
method, the randomization of ∇W ∗

γ,qi
(ui) can be used to reduce the complexity of

calculating the true gradient, that is O(n2) arithmetic operations, by calculating its
stochastic approximation of O(n) arithmetic operations. The randomization for the
true gradient (1.6) is achieved by taking the j-th term in the sum with probability
[q]j

[∇W ∗
γ,q(u, ξ)]l =

exp (([u]l − Clξ)/γ)∑n
`=1 exp (([u]` − C`ξ)/γ)

, ∀l = 1, ..., n.

where we replaced index j by ξ to underline its randomness. This is the motivation
for considering the first-order methods with stochastic oracle.

For greater generality, we derive the methods for a general convex minimization
problem where the objective is given by the sum of functions, and for a general
stochastic convex minimization problem where the objective is given by its expec-
tation. These two problems are generalizations of problems (1.3) and (1.4). The
reason for this generality is obtaining the results of other interests than Wasserstein
barycenter problem.

Thus, we consider a general stochastic convex optimization problem whose
objective is given by its expectation (problem (1.4) is a particular case of this
problem)

min
x∈X⊆Rn

F (x) , Ef(x, ξ), (1.8)

where Ef(x, ξ) is the expectation with respect to random variable ξ from set Ξ,
f(x, ξ) is convex in x on convex set X. Such kind of problems arise in many machine
learning applications (Shalev-Shwartz and Ben-David, 2014) (e.g., empirical risk
minimization) and statistical applications (Spokoiny et al., 2012) (e.g., maximum
likelihood estimation). We will say that an output xN of an algorithm is an ε-solution
of problem (1.8) if the following holds with probability at least 1− β

F (xN)−min
x∈X

F (x) ≤ ε.
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Chapter 1. Introduction

The complexity of an algorithm is measured by the number of iterations and
the number of oracle calls. We consider the (stochastic) first-order oracle, i.e., the
oracle which for a given realization ξ ∈ Ξ, returns the gradient (subgradient) of
f(x, ξ) calculated with respect to x ∈ X. For the dual first-order methods, we use
the dual (stochastic) first-order oracle returning the gradient of the dual to f(x, ξ)
function given by the Fenchel–Legendre transform of f(x, ξ).

We also consider a general convex optimization problem whose objective is given
by the sum of convex functions (problem (1.3) is a particular case of this problem)

min
x∈X⊆Rn

f(x) ,
1

m

m∑
i=1

fi(x). (1.9)

Problems of type (1.9) can be effectively solved in a distributed manner on
a computational network. In the last decade, distributed optimization became
especially popular with the release of the book (Bertsekas and Tsitsiklis, 1997) and
due to the emergence of big data and rapid growth of problem sizes. The idea of
distributed calculations is simple: every node (computational unit of some connected
undirected graph (network)), assigned by its private function fi, calculates the
gradient of the private function and simultaneously communicates with its neighbors
by exchanging messages at each communication round.

For primal approaches, the lower and upper bounds on communications rounds
and (stochastic) primal oracle calls of ∇fi per node i are known, as well as the
methods matching these lower bounds. We refer to works (Scaman et al., 2017;
Li et al., 2018; Uribe et al., 2017) describing these bounds for Lipschitz smooth
deterministic objective. For non-smooth (deterministic and stochastic) objective,
we appeal to (Lan et al., 2017; Scaman et al., 2018). In the stochastic Lipschitz
smooth case, the optimal bound on the number of communication rounds was
obtained in (Dvinskikh and Gasnikov, 2021), the optimal bound on the number of
stochastic oracle calls was gained in (Rogozin et al., 2021a). Tables 1.1 and 1.2
summarize the results for deterministic and stochastic primal oracles respectively.
In these tables, factor Õ(

√
χ) is responsible for the consensus time, i.e., the number

of communication rounds required to reach the consensus in the considered network;
σ2 and σ2

ψ are the sub-Gaussian variance for ∇fi(xi, ξi) and ∇ψi(λi, ξi) respectively,
where ∇ψi(λi, ξi) is the dual function to ∇fi(xi, ξi) with respect to xi.

For deterministic dual oracle, the bounds are also known: Scaman et al. (2017)
provided the results for strongly convex and smooth primal objective, the bounds
for non-smooth but strongly convex primal objective were obtained in (Uribe et al.,
2018, 2020). Stochastic dual oracle was not actively studied and optimal bounds
on the number of stochastic dual oracle calls were not obtained. We leverage this
gap and derive primal-dual decentralized algorithms which are optimal in terms
of the number of dual (stochastic) oracle calls and the number of communication
rounds. Table 1.3 summarizes the results for deterministic dual oracle. Table 1.4
demonstrates one of the contributions of this thesis: optimal bounds for stochastic
dual oracle. The case of non-smooth but strongly convex primal objective in Table
1.4 corresponds to the Wasserstein barycenter problem defined with respect to

18



1.4. Overview of the Thesis

Table 1.1: Optimal bounds on the number of communication rounds and determin-
istic oracle calls of ∇fi(xi) per node

Property of fi
µ-strongly convex,

L-smooth L-smooth µ-strongly convex,
M -Lipschitz M -Lipschitz

Number of
communication
rounds

Õ
(√

L
µ
χ
)

Õ

(√
LR2

ε
χ

)
O
(√

M2

µε
χ
)

O

(√
M2R2

ε2
χ

)
Number of
oracle calls of
∇fi(xi) per node i

Õ
(√

L
µ

)
O

(√
LR2

ε

)
O
(
M2

µε

)
O
(
M2R2

ε2

)

Table 1.2: Optimal bounds on the number of communication rounds and stochastic
oracle calls of ∇fi(xi, ξi) per node

Property of fi
µ-strongly convex,

L-smooth L-smooth µ-strongly convex,
E‖∇fi(xi, ξi)‖2

2 ≤M2 E‖∇fi(xi, ξi)‖2
2 ≤M2

Number of
communication
rounds

Õ
(√

L
µ
χ
)

Õ

(√
LR2

ε
χ

)
O
(√

M2

µε
χ
)

O

(√
M2R2

ε2
χ

)
Number of
oracle calls of
∇fi(xi, ξi)
per node i

Õ
(

max
{

σ2

mµε
,
√

L
µ

})
O

(
max

{
σ2R2

mε2
,
√

LR2

ε

})
O
(
M2

µε

)
O
(
M2R2

ε2

)

entropy-regularized optimal transport. This is one of the motivation to consider
the dual oracle since the dual representation (the Fenchel–Legendre transformation)
of the entropy-regularized optimal transport and its derivatives can be presented in
closed-forms.

Table 1.3: The optimal bounds for dual deterministic oracle

Property of fi
µ-strongly convex,
L-smooth

µ-strongly convex,
‖∇fi(x∗)‖2 ≤M

The number of
communication
rounds

Õ
(√

L
µ
χ(W )

)
O
(√

M2

µε
χ(W )

)
The number of
oracle calls of
∇ψi(λi) per node i

Õ
(√

L
µ
χ(W )

)
O
(√

M2

µε
χ(W )

)
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Chapter 1. Introduction

Table 1.4: The optimal bounds for dual stochastic (unbiased) oracle

Property of fi
µ-strongly convex,
L-smooth

µ-strongly convex,
‖∇fi(x∗)‖2 ≤M

The number of
communication
rounds

Õ
(√

L
µ
χ(W )

)
O
(√

M2

µε
χ(W )

)
The number of
oracle calls of
∇ψi(λi, ξi)
per node i

Õ
(

max
{
M2σ2

ψ

ε2
χ(W ),

√
L
µ
χ(W )

})
O
(

max
{
M2σ2

ψ

ε2
χ(W ),

√
M2

µε
χ(W )

})

1.4.1 Thesis Structure

The dissertation consists of 5 Chapters:
In Chapter 2, we study the two main approaches in machine learning and opti-

mization community for convex risk minimization problem, namely, the Stochastic
Approximation (SA) and the Sample Average Approximation (SAA) also known
as the Monte Carlo approach. In terms of the oracle complexity (required number
of stochastic gradient evaluations), both approaches are considered equivalent on
average (up to a logarithmic factor). The total complexity depends on the specific
problem, however, starting from work (Nemirovski et al., 2009) it was generally
accepted that the SA is better than the SAA. We show that for the Wasserstein
barycenter problem, this superiority can be swapped. We provide the detailed
comparison with stating the complexity bounds for the SA and the SAA imple-
mentations calculating Fréchet mean defined with respect to optimal transport
distances and Fréchet mean defined with respect to entropy-regularized optimal
transport distances. As a byproduct, we also construct confidence intervals for
population barycenter defined with respect to entropy-regularized optimal transport
distances in the `2-norm. Here we propose a new regularization for the the SAA
approach which contributs to a better convergence rate in comparison with the
quadratic regularization. The preliminary results were derived for a general convex
optimization problem given by the expectation so that they can be applied to a
wider range of problems other than the Wasserstein barycenter problem.

In Chapter 3, we introduce a decentralized dual algorithm to minimize the sum
of strongly convex functions on a network of agents (nodes). This algorithm is
based on accelerated gradient descent and it allows to obtain optimal bounds on
the number of communication rounds and oracle calls of dual objective per node.
The results can be naturally applied for the Wasserstein barycenter problem as the
dual formulation of entropy-regularized Wasserstein distances and their derivatives
have closed-form representations.

In Chapter 4, we provide saddle point approach to compute unregularized
Wasserstein barycenters with no limitations in contrast to the regularized-based
methods, which are numerically unstable under a small value of the regularization
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1.5. Main Contributions

parameter. The approach is based on the saddle-point problem reformulation
and the application of mirror prox algorithm with a specific norm. We also show
how the algorithm can be executed in a decentralized manner. The complexity
of the proposed methods meets the best known results in the decentralized and
non-decentralized setting.

Chapter 5 has interests other than Wasserstein barycenters. The purpose of this
Chapter is obtaining the optimal bounds on the number of communication rounds
and oracle calls for the gradient of the dual objective per node in the problem of
minimizing the sum of strongly convex functions with Lipschitz continuous gradients.
Thus, this Chapter complements Chapter 3 for the case of additionally Lipschitz
smooth (stochastic) objectives.

1.5 Main Contributions

• Statistical issue: statistical study of the Wasserstein barycenter problem

(a) Estimating the sample size of measures needed to calculate an approx-
imation for a Fréchet mean (barycenter) of a probability distribution
with a given precision

(b) Proposing a new regularization for risk minimization approach (also
known as the SAA approach) which contributes to better convergence
rate in comparison with quadratic regularization

• Computational issue: proposing decentralized (stochastic) algorithms with
optimal convergence rates

(a) Obtaining optimal bounds on the number of communication rounds and
dual oracle calls for the gradient of the dual (stochastic) objective per
node in decentralized optimization for minimizing the sum of strongly
convex functions, possibly with Lipschitz continuous gradients

(b) Developing decentralized algorithms with the best known bounds for
the problem of calculating Wasserstein barycenters of a set of discrete
measures

1.6 Bibliographic Notes

The contribution of this thesis is based on the following papers.

• Chapter 2 is based on the work (Dvinskikh, 2020) accepted to the journal
‘Optimization Methods and Software’

• Chapter 3 is partially based on the results of joint paper with Eduard Gor-
bunov, Alexander Gasnikov, Pavel Dvurechensky and César A. Uribe (Dvin-
skikh et al., 2019) published in the proceedings of the 58th Conference on

21



Chapter 1. Introduction

Decision and Control (CDC, 2019 IEEE), on a part of the results of joint paper
with Pavel Dvurechensky, Alexander Gasnikov, Angelia Nedić and César A.
Uribe (Dvurechensky et al., 2018a) published in the proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018), and
on a part of the results of joint paper with Alexey Kroshnin, Nazarii Tupitsa,
Pavel Dvurechensky, Alexander Gasnikov and César A. Uribe (Kroshnin et al.,
2019) published in the proceedings of the 36th International Conference on
Machine Learning

• Chapter 4 partially uses the results from joint paper with Daniil Tiapkin
(Dvinskikh and Tiapkin, 2021) published in the proceedings of the 24th
International Conference on Artificial Intelligence and Statistics (AISTATS,
2021). Besides, this Chapter contains a part of the results from arXiv preprint
(Rogozin et al., 2021b) with Alexander Rogozin, Alexander Beznosikov, Dmitry
Kovalev, Pavel Dvurechensky and Alexander Gasnikov

• The results of Chapter 5 are from joint paper with Alexander Gasnikov
(Dvinskikh and Gasnikov, 2021) published in the Journal of Inverse and
Ill-posed Problems, 2021
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Chapter 2

Two Approaches: Stochastic
Approximation (SA) and Sample
Average Approximation (SAA).

This Chapter is inspired by the work (Nemirovski et al., 2009) stated that the
SA approach outperforms the SAA approach for certain class of convex stochastic
problems. We show that for the Wasserstein barycenter problem, this superiority
can be inverted. We provide detailed comparison with stating the complexity bounds
for the SA and the SAA implementations calculating Fréchet mean defined with
respect to optimal transport distances and entropy-regularized optimal transport
distances. The preliminary results are derived for a general convex optimization
problem given by the expectation for interest other than the Wasserstein barycenter
problem.

Background on the SA and the SAA and Convergence Rates. We consider
the stochastic convex minimization problem

min
x∈X⊆Rn

F (x) , Ef(x, ξ), (2.1)

where function f is convex in x (x ∈ X, X is a convex set), and Ef(x, ξ) is the
expectation of f with respect to ξ ∈ Ξ. Such kind of problems arise in many
applications of data science (Shalev-Shwartz and Ben-David, 2014; Shapiro et al.,
2009) (e.g., risk minimization) and mathematical statistics (Spokoiny et al., 2012)
(e.g., maximum likelihood estimation). There are two competing approaches based
on Monte Carlo sampling techniques to solve (2.1): the Stochastic Approximation
(SA) (Robbins and Monro, 1951) and the Sample Average Approximation (SAA).
The SAA approach replaces the objective in problem (2.1) with its sample average
approximation (SAA) problem

min
x∈X

F̂ (x) ,
1

m

m∑
i=1

f(x, ξi), (2.2)
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Chapter 2. The SA and the SAA Approaches

where ξ1, ξ2, ..., ξm are the realizations of a random variable ξ. The number of
realizations m is adjusted by the desired precision. The total working time of both
approaches to solve problem (2.1) with the average precision ε in the non-optimality
gap in term of the objective function (i.e., to find xN such that EF (xN )−min

x∈X
F (x) ≤

ε), depends on the specific problem. However, it was generally accepted (Nemirovski
et al., 2009) that the SA approach is better than the SAA approach. Stochastic
gradient (mirror) descent, an implementation of the SA approach (Juditsky and
Nemirovski, 2012), gives the following estimation for the number of iterations (that
is equivalent to the sample size of ξ1, ξ2, ξ3, ..., ξm)

m = O

(
M2R2

ε2

)
. (2.3)

Here we considered the minimal assumptions (non-smoothness) for the objective
f(x, ξ)

‖∇f(x, ξ)‖2
2 ≤M2, ∀x ∈ X, ξ ∈ Ξ. (2.4)

Whereas, the application of the SAA approach requires the following sample size
(Shapiro and Nemirovski, 2005)

m = Õ

(
nM2R2

ε2

)
,

that is n times more (n is the problem’s dimension) than the sample size in the SA
approach. This estimate was obtained under the assumptions that problem (2.2) is
solved exactly. This is one of the main drawback of the SAA approach. However,
if the objective f(x, ξ) is λ-strongly convex in x, the sample sizes are equal up to
logarithmic terms

m = O

(
M2

λε

)
.

Moreover, in this case, for the SAA approach, it suffices to solve problem (2.2) with
accuracy (Shalev-Shwartz et al., 2009)

ε′ = O

(
ε2λ

M2

)
. (2.5)

Therefore, to eliminate the linear dependence on n in the SAA approach for a non-
strongly convex objective, regularization λ = ε

R2 should be used (Shalev-Shwartz
et al., 2009).

Let us suppose that f(x, ξ) in (2.1) is convex but non-strongly convex in x
(possibly, λ-strongly convex but with very small λ � ε

R2 ). Here R = ‖x1 − x∗‖2

is the Euclidean distance between starting point x1 and the solution x∗ of (2.1)
which corresponds to the minimum of this norm (if the solution is not the only one).
Then, the problem (2.1) can be replaced by

min
x∈X

Ef(x, ξ) +
ε

2R2
‖x− x1‖2

2. (2.6)
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The empirical counterpart of (2.6) is

min
x∈X

1

m

m∑
i=1

f(x, ξi) +
ε

2R2
‖x− x1‖2

2, (2.7)

where the sample size m is defined in (2.3). Thus, in the case of non-strongly convex
objective, a regularization equates the sample size of both approaches.

2.1 Strongly Convex Optimization Problem

We start with preliminary results stated for a general stochastic strongly convex
optimization problem of form

min
x∈X⊆Rn

F (x) , Ef(x, ξ), (2.8)

where f(x, ξ) is γ-strongly convex with respect to x. Let us define x∗ = arg min
x∈X

F (x).

2.1.1 The SA Approach: Stochastic Gradient Descent

The classical SA algorithm for problem (2.8) is presented by stochastic gradient
descent (SGD) method. We consider the SGD with inexect oracle given by gδ(x, ξ)
such that

∀x ∈ X, ξ ∈ Ξ, ‖∇f(x, ξ)− gδ(x, ξ)‖2 ≤ δ. (2.9)

Then the iterative formula of SGD can be written as (k = 1, 2, ..., N.)

xk+1 = ΠX

(
xk − ηkgδ(xk, ξk)

)
. (2.10)

Here x1 ∈ X is starting point, ΠX is the projection onto X, ηk is a stepsize. For
a γ-strongly convex f(x, ξ) in x, stepsize ηk can be taken as 1

γk
to obtain optimal

rate O( 1
γN

).
A good indicator of the success of an algorithm is the regret

RegN ,
N∑
k=1

(
f(xk, ξk)− f(x∗, ξk)

)
.

It measures the value of the difference between a made decision and the optimal
decision on all the rounds. The work (Kakade and Tewari, 2009) gives a bound on
the excess risk of the output of an online algorithm in terms of the average regret.

Theorem 2.1.1. (Kakade and Tewari, 2009, Theorem 2) Let f : X × Ξ→ [0, B]
be γ-strongly convex and M -Lipschitz w.r.t. x. Let x̃N , 1

N

∑N
k=1 x

k be the average
of online vectors x1, x2, ..., xN . Then with probability at least 1− 4β logN

F (x̃N)− F (x∗) ≤ RegN
N

+ 4

√
M2 log(1/β)

γ

√
RegN
N

+ max

{
16M2

γ
, 6B

}
log(1/β)

N
.
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For the update rule (2.10) with ηk = 1
γk
, this theorem can be specify as follows.

Theorem 2.1.2. Let f : X × Ξ → [0, B] be γ-strongly convex and M-Lipschitz
w.r.t. x. Let x̃N , 1

N

∑N
k=1 x

k be the average of outputs generated by iterative
formula (2.10) with ηk = 1

γk
. Then, with probability at least 1 − β the following

holds

F (x̃N)− F (x∗) ≤ 3δD

2
+

3(M2 + δ2)

Nγ
(1 + logN)

+ max

{
18M2

γ
, 6B +

2M2

γ

}
log(4 logN/β)

N
.

where D = max
x′,x′′∈X

‖x′ − x′′‖2 and δ is defined by (2.9).

Proof. The proof mainly relies on Theorem 2.1.1 and estimating the regret for
iterative formula (2.10) with ηk = 1

γk
.

From γ-strongly convexity in x of f(x, ξ), it follows for xk, x∗ ∈ X

f(x∗, ξk) ≥ f(xk, ξk) + 〈∇f(xk, ξk), x∗ − xk〉+
γ

2
‖x∗ − xk‖2.

Adding and subtracting the term 〈gδ(xk, ξk), x∗− xk〉 we get using Cauchy–Schwarz
inequality and (2.9)

f(x∗, ξk) ≥ f(xk, ξk) + 〈gδ(xk, ξk), x∗ − xk〉+
γ

2
‖x∗ − xk‖2

+ 〈∇f(xk, ξk)− gδ(xk, ξk), x∗ − xk〉

≥ f(xk, ξk) + 〈gδ(xk, ξk), x∗ − xk〉+
γ

2
‖x∗ − xk‖2 + δ‖x∗ − xk‖2. (2.11)

From the update rule (2.10) for xk+1 we have

‖xk+1 − x∗‖2 = ‖ΠX(xk − ηkgδ(xk, ξk))− x∗‖2

≤ ‖xk − ηkgδ(xk, ξk)− x∗‖2

≤ ‖xk − x∗‖2
2 + η2

k‖gδ(xk, ξk)‖2
2 − 2ηk〈gδ(xk, ξk), xk − x∗〉.

From this it follows

〈gδ(xk, ξk), xk − x∗〉 ≤
1

2ηk
(‖xk − x∗‖2

2 − ‖xk+1 − x∗‖2
2) +

ηk
2
‖gδ(xk, ξk)‖2

2.

Together with (2.11) we get

f(xk, ξk)− f(x∗, ξk) ≤ 1

2ηk
(‖xk − x∗‖2

2 − ‖xk+1 − x∗‖2
2)

−
(γ

2
+ δ
)
‖x∗ − xk‖2 +

η2
k

2
‖gδ(xk, ξk)‖2

2.
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Summing this from 1 to N , we get using ηk = 1
γk

N∑
k=1

f(xk, ξk)− f(x∗, ξk) ≤ 1

2

N∑
k=1

(
1

ηk
− 1

ηk−1

+ γ + δ

)
‖x∗ − xk‖2

+
1

2

N∑
k=1

ηk‖gδ(xk, ξk)‖2
2

≤ δ

2

N∑
k=1

‖x∗ − xk‖2 +
1

2

N∑
k=1

ηk‖gδ(xk, ξk)‖2
2. (2.12)

From Lipschitz continuity of f(x, ξ) w.r.t. to x it follows that ‖∇f(x, ξ)‖2 ≤M for
all x ∈ X, ξ ∈ Ξ. Thus, using that for all a, b, (a+ b)2 ≤ 2a2 + 2b2 it follows

‖gδ(x, ξ)‖2
2 ≤ 2‖∇f(x, ξ)‖2

2 + 2δ2 = 2M2 + 2δ2

From this and (2.12) we bound the regret as follows

RegN ,
N∑
k=1

f(xk, ξk)− f(x∗, ξk) ≤ δ

2

N∑
k=1

‖p∗ − pk‖2 + (M2 + δ2)
N∑
k=1

1

γk

≤ 1

2
δDN +

M2 + δ2

γ
(1 + logN). (2.13)

Here the last bound takes place due to the sum of harmonic series. Then for (2.13)
we can use Theorem 2.1.1. Firstly, we simplify it rearranging the terms using that√
ab ≤ a+b

2

F (x̃N)− F (x∗) ≤ RegN
N

+ 4

√
M2 log(1/β)

Nγ

√
RegN
N

+ max

{
16M2

γ
, 6B

}
log(1/β)

N

≤ 3RegN
N

+
2M2 log(1/β)

Nγ
+ max

{
16M2

γ
, 6B

}
log(1/β)

N

=
3RegN
N

+ max

{
18M2

γ
, 6B +

2M2

γ

}
log(1/β)

N
.

Then we substitute (2.13) in this inequality and making change β = 4β logN and
get with probability at least 1− β

F (x̃N)− F (x∗) ≤ 3δD

2
+

3(M2 + δ2)

Nγ
(1 + logN)

+ max

{
18M2

γ
, 6B +

2M2

γ

}
log(4 logN/β)

N
.
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2.1.2 Preliminaries on the SAA Approach

The SAA approach replaces the objective in (2.8) with its sample average

min
x∈X

F̂ (x) ,
1

m

m∑
i=1

f(x, ξi), (2.14)

where each f(x, ξi) is γ-strongly convex in x. Let us define the empirical minimizer
of (2.14) x̂∗ = arg min

x∈X
F̂ (x), and x̂ε′ such that

F̂ (x̂ε′)− F̂ (x̂∗) ≤ ε′. (2.15)

The next theorem gives a bound on the excess risk for problem (2.14) in the SAA
approach.

Theorem 2.1.3. Let f : X×Ξ→ [0, B] be γ-strongly convex and M -Lipschitz w.r.t.
x in the `2-norm. Let x̂ε′ satisfies (2.15) with precision ε′. Then, with probability
at least 1− β we have

F (x̂ε′)− F (x∗) ≤

√
2M2

γ
ε′ +

4M2

βγm
.

Let ε′ = O
(
γε2

M2

)
and m = O

(
M2

βγε

)
. Then, with probability at least 1 − β the

following holds

F (x̂ε′)− F (x∗) ≤ ε and ‖x̂ε′ − x∗‖2 ≤
√

2ε/γ.

The proof of this theorem mainly relies on the following theorem.

Theorem 2.1.4. (Shalev-Shwartz et al., 2009, Theorem 6) Let f(x, ξ) be γ-strongly
convex and M-Lipschitz w.r.t. x in the `2-norm. Then, with probability at least
1− β the following holds

F (x̂∗)− F (x∗) ≤ 4M2

βγm
,

where m is the sample size.

Proof of Theorem 2.1.3. For any x ∈ X, the following holds

F (x)− F (x∗) = F (x)− F (x̂∗) + F (x̂∗)− F (x∗). (2.16)

From Theorem 2.1.4 with probability at least 1− β the following holds

F (x̂∗)− F (x∗) ≤ 4M2

βγm
.
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2.2. Non-Strongly Convex Optimization Problem

Then from this and (2.16) we have with probability at least 1− β

F (x)− F (x∗) ≤ F (x)− F (x̂∗) +
4M2

βγm
. (2.17)

From Lipschitz continuity of f(x, ξ) it follows, that for any x ∈ X, ξ ∈ Ξ the
following holds

|f(x, ξ)− f(x̂∗, ξ)| ≤M‖x− x̂∗‖2.

Taking the expectation of this inequality w.r.t. ξ we get

E|f(x, ξ)− f(x̂∗, ξ)| ≤M‖x− x̂∗‖2.

Then we use Jensen’s inequality (g (E(Y )) ≤ Eg(Y )) for the expectation, convex
function g and a random variable Y . Since the module is a convex function we get

|Ef(x, ξ)− Ef(x̂∗, ξ)| = |F (x)− F (x̂∗)| ≤ E|f(x, ξ)− f(x̂∗, ξ)| ≤M‖x− x̂∗‖2.

Thus, we have
|F (x)− F (x̂∗)| ≤M‖x− x̂∗‖2. (2.18)

From strong convexity of f(x, ξ) in x, it follows that the average of f(x, ξi)’s, that
is F̂ (x), is also γ-strongly convex in x. Thus we get for any x ∈ X, ξ ∈ Ξ

‖x− x̂∗‖2 ≤
√

2

γ
(F̂ (x)− F̂ (x̂∗)). (2.19)

By using (2.18) and (2.19) and taking x = x̂ε′ in (2.17), we get the first statement
of the theorem

F (x̂ε′)− F (x∗) ≤

√
2M2

γ
(F̂ (x̂ε′)− F̂ (x̂∗)) +

4M2

βγm
≤

√
2M2

γ
ε′ +

4M2

βγm
. (2.20)

Then from the strong convexity we have

‖x̂ε′ − x∗‖2 ≤

√√√√2

γ

(√
2M2

γ
ε′ +

4M2

βγm

)
. (2.21)

Equating (2.20) to ε, we get the expressions for the sample size m and auxiliary
precision ε′. Substituting both of these expressions in (2.21) we finish the proof.

2.2 Non-Strongly Convex Optimization Problem

Now we consider non-strongly convex optimization problem

min
x∈X⊆Rn

F (x) , Ef(x, ξ), (2.22)

where f(x, ξ) is Lipschitz continuous in x. Let us define x∗ = arg min
x∈X

F (x).
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2.2.1 The SA Approach: Stochastic Mirror Descent

We consider stochastic mirror descent (MD) with inexact oracle (Nemirovski et al.,
2009; Juditsky and Nemirovski, 2012; Gasnikov et al., 2016).1 For a prox-function
d(x) and the corresponding Bregman divergence Bd(x, x

1), the proximal mirror
descent step is

xk+1 = arg min
x∈X

(
η
〈
gδ(x

k, ξk), x
〉

+Bd(x, x
k)
)
. (2.23)

We consider the simplex setup: prox-function d(x) = 〈x, log x〉. Here and below,
functions such as log or exp are always applied element-wise. The corresponding
Bregman divergence is given by the Kullback–Leibler divergence

KL(x, x1) = 〈x, log(x/x1)〉 − 1>(x− x1).

Then the starting point is taken as x1 = arg min
x∈∆n

d(x) = (1/n, ..., 1/n).

Theorem 2.2.1. Let R2 , KL(x∗, x1) ≤ log n and D = max
x′,x′′∈∆n

‖x′ − x′′‖1 = 2.

Let f : X ×Ξ→ Rn be M∞-Lipschitz w.r.t. x in the `1-norm. Let x̆N , 1
N

∑N
k=1 x

k

be the average of outputs generated by iterative formula (2.23) with η =
√

2R
M∞
√
N
.

Then, with probability at least 1− β we have

F (x̆N)− F (x∗) ≤
M∞(3R + 2D

√
log(β−1))√

2N
+ δD = O

(
M∞

√
log(n/β)√
N

+ 2δ

)
.

Proof. For MD with prox-function function d(x) = 〈x log x〉 the following holds for
any x ∈ ∆n (Juditsky and Nemirovski, 2012, Eq. 5.13)

η〈gδ(xk, ξk), xk − x〉 ≤ KL(x, xk)−KL(x, xk+1) +
η2

2
‖gδ(xk, ξk)‖2

∞

≤ KL(x, xk)−KL(x, xk+1) + η2M2
∞.

Then by adding and subtracting the terms 〈F (x), x− xk〉 and 〈∇f(x, ξk), x− xk〉
in this inequality, we get using Cauchy–Schwarz inequality the following

η〈∇F (xk), xk − x〉 ≤ η〈∇f(xk, ξk)− gδ(xk, ξk), xk − x〉
+ η〈∇F (xk)−∇f(xk, ξk), xk − x〉
+ KL(x, xk)−KL(x, xk+1) + η2M2

∞

≤ ηδ max
k=1,...,N

‖xk − x‖1 + η〈∇F (xk)−∇f(xk, ξk), xk − x〉

+ KL(x, xk)−KL(x, xk+1) + η2M2
∞. (2.24)

1By using dual averaging scheme (Nesterov, 2009) we can rewrite Alg. 4 in online regime
(Hazan et al., 2016; Orabona, 2019) without including N in the stepsize policy. Note, that mirror
descent and dual averaging scheme are very close to each other (Juditsky et al., 2019).
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2.2. Non-Strongly Convex Optimization Problem

Then using convexity of F (xk) we have

F (xk)− F (x) ≤ η〈∇F (xk), xk − x〉

Then we use this for (2.24) and sum for k = 1, ..., N at x = x∗

η

N∑
k=1

F (xk)− F (x∗)

≤ ηδN max
k=1,...,N

‖xk − x∗‖1 + η
N∑
k=1

〈∇F (xk)−∇f(xk, ξk), xk − x∗〉

+ KL(x∗, x1)−KL(x∗, xN+1) + η2M2
∞N

≤ ηδND + η

N∑
k=1

〈∇F (xk)−∇f(xk, ξk), xk − x∗〉+R2 + η2M2
∞N. (2.25)

Where we used KL(x∗, x1) ≤ R2 and max
k=1,...,N

‖pk − p∗‖1 ≤ D. Then using convexity

of F (xk) and the definition of output x̆N in (2.25) we have

F (x̆N)− F (x∗) ≤ δD +
1

N

N∑
k=1

〈∇F (xk)−∇f(xk, ξk), xk − x∗〉+
R2

ηN
+ ηM2

∞.

(2.26)

Next we use the Azuma–Hoeffding’s (Juditsky et al., 2008) inequality and get for
all β ≥ 0

P

(
N+1∑
k=1

〈∇F (xk)−∇f(xk, ξk), xk − x∗〉 ≤ β

)
≥ 1− exp

(
− 2β2

N(2M∞D)2

)
= 1−β.

(2.27)
Here we used that 〈∇F (pk)−∇f(xk, ξk), x∗ − xk〉 is a martingale-difference and∣∣〈∇F (xk)−∇f(xk, ξk), x∗ − xk〉

∣∣ ≤ ‖∇F (xk)−∇W (pk, qk)‖∞‖x∗ − xk‖1

≤ 2M∞ max
k=1,...,N

‖xk − x∗‖1 ≤ 2M∞D.

Thus, using (2.27) for (2.26) we have that with probability at least 1− β

F (x̆N)− F (x∗) ≤ δD +
β

N
+
R2

ηN
+ ηM2

∞. (2.28)

Then, expressing β through β and substituting η = R
M∞

√
2
N

to (2.28) ( such η

minimize the r.h.s. of (2.28)), we get

F (x̆N)− F (x∗) ≤ δD +
M∞D

√
2 log(1/β)√
N

+
M∞R√

2N
+
M∞R

√
2√

N

≤ δD +
M∞(3R + 2D

√
log(1/β))√

2N
.

31



Chapter 2. The SA and the SAA Approaches

Using R =
√

log n and D = 2 in this inequality, we obtain

F (x̆N)− F (x∗) ≤
M∞(3

√
log n+ 4

√
log(1/β))√

2N
+ 2δ. (2.29)

We raise this to the second power, use that for all a, b ≥ 0, 2
√
ab ≤ a+ b and then

extract the square root. We obtain the following√(
3
√

log n+ 4
√

log(1/β)
)2

=

√
9 log n+ 16 log(1/β) + 24

√
log n

√
log(1/β)

≤
√

18 log n+ 32 log(1/β).

Using this for (2.29), we get the statement of the theorem

F (x̆N)− F (x∗) ≤
M∞

√
18 log n+ 32 log(1/β)√

2N
+ 2δ = O

(
M∞

√
log(n/β)√
N

+ 2δ

)
.

2.2.2 Penalization in the SAA Approach

In this section, we study the SAA approach for non-strongly convex problem (2.22).
We regularize this problem by 1-strongly convex w.r.t. x penalty function r(x, x1)
in the `2-norm

min
x∈X⊆Rn

Fλ(x) , Ef(x, ξ) + λr(x, x1) (2.30)

and we prove that the sample sizes in the SA and the SAA approaches will be equal
up to logarithmic terms. The empirical counterpart of problem (2.30) is

min
x∈X

F̂λ(x) ,
1

m

m∑
i=1

f(x, ξi) + λr(x, x1). (2.31)

Let us define x̂λ = arg min
x∈X

F̂λ(x). The next lemma proves the statement from

(Shalev-Shwartz et al., 2009) on boundness of the population sub-optimality in
terms of the square root of empirical sub-optimality.

Lemma 2.2.2. Let f(x, ξ) be convex and M-Lipschitz continuous w.r.t. x in the
`2-norm. Let r(x, x1) be 1-strongly convex and Mr-Lipschitz continuous w.r.t. x in
the `2-norm. Then for any x ∈ X with probability at least 1− β the following holds

Fλ(x)− Fλ(x∗λ) ≤
√

2M2
λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
+

4M2
λ

βλm
,

where x∗λ = arg min
x∈X

Fλ(x), Mλ ,M + λMr.
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2.2. Non-Strongly Convex Optimization Problem

Proof. Let us define fλ(x, ξ) , f(x, ξ) + λr(x, x1). As f(x, ξ) is M -Lipschitz
continuous, fλ(x, ξ) is also Lipschitz continuous with Mλ , M + λMr. From
Jensen’s inequality for the expectation, and the module as a convex function, we
get that Fλ(x) is also Mλ-Lipschitz continuous

|Fλ(x)− Fλ(x̂λ)| ≤Mλ‖x− x̂λ‖2, ∀x ∈ X. (2.32)

From λ-strong convexity of f(x, ξ), we obtain that F̂λ(x) is also λ-strongly convex

‖x− x̂λ‖2
2 ≤

2

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
, ∀x ∈ X.

From this and (2.32) it follows

Fλ(x)− Fλ(x̂λ) ≤
√

2M2
λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
. (2.33)

For any x ∈ X and x∗λ = arg min
x∈X

Fλ(x) we consider

Fλ(x)− Fλ(x∗λ) = Fλ(x)− Fλ(x̂λ) + Fλ(x̂λ)− Fλ(x∗λ). (2.34)

From (Shalev-Shwartz et al., 2009, Theorem 6) we have with probability at least
1− β

Fλ(x̂λ)− Fλ(x∗λ) ≤
4M2

λ

βλm
.

Using this and (2.33) for (2.34) we obtain with probability at least 1− β

Fλ(x)− Fλ(x∗λ) ≤
√

2M2
λ

λ

(
F̂λ(x)− F̂λ(x̂λ)

)
+

4M2
λ

βλm
.

The next theorem proves the eliminating the linear dependence on n in the
sample size of the regularized SAA approach for a non-strongly convex objective
(see estimate (2.3)), and estimates the auxiliary precision for the regularized SAA
problem (2.5).

Theorem 2.2.3. Let f(x, ξ) be convex and M -Lipschitz continuous w.r.t. x in the
`2-norm and let r(x, x1) be 1-strongly convex and Mr-Lipschitz continuous w.r.t. x
in the `2-norm. Let x̂ε′ be such that

1

m

m∑
i=1

f(x̂ε′ , ξi) + λr(x̂ε′ , x
1)− arg min

x∈X

{
1

m

m∑
i=1

f(x, ξi) + λr(x, x1)

}
≤ ε′.

To satisfy
F (x̂ε′)− F (x∗) ≤ ε
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with probability at least 1− β, we need to take λ = ε/(2R2) and

m =
32M2R2

βε2
,

where R2 = r(x∗, x1). The precision ε′ is defined as

ε′ =
ε3

64M2R2
.

Proof. From Lemma 2.2.2 we get for x = x̂ε′ ,

Fλ(x̂ε′)− Fλ(x∗λ) ≤
√

2M2
λ

λ

(
F̂λ(x̂ε′)− F̂λ(x̂λ)

)
+

4M2
λ

βλm
=

√
2M2

λ

λ
ε′ +

4M2
λ

βλm
,

(2.35)

where we used the definition of x̂ε′ from the statement of the this theorem and
Mλ ,M + λMr. Then we subtract F (x∗) in both sides of (2.35) and get

Fλ(x̂ε′)− F (x∗) ≤
√

2M2
λε
′

λ
+

4M2
λ

βλm
+ Fλ(x

∗
λ)− F (x∗). (2.36)

Then we use

Fλ(x
∗
λ) , min

x∈X

{
F (x) + λr(x, x1)

}
≤ F (x∗) + λr(x∗, x1) The inequality holds for any x ∈ X,
, F (x∗) + λR2

where R2 , r(x∗, x1). Then from this and (2.36) and the definition of Fλ(x̂ε′) in
(2.30) we get

F (x̂ε′)− F (x∗) ≤
√

2M2
λ

λ
ε′ +

4M2
λ

βλm
− λr(x̂ε′ , x1) + λR2

≤
√

2M2
λε
′

λ
+

4M2
λ

βλm
+ λR2. (2.37)

Let us remind that Mλ , M + λMr. Then assuming M � λMr and choosing
λ = ε/(2R2) in (2.37), we get the following

F (x̂ε′)− F (x∗) ≤
√

4M2R2ε′

ε
+

8M2R2

βmε
+ ε/2. (2.38)

Equating the first and the second terms in the r.h.s. of (2.38) to ε/4 respectively,
we obtain the the rest statements of the theorem including F (x̂ε′)− F (x∗) ≤ ε.
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2.3 Fréchet Mean with respect to
Entropy-Regularized Optimal Transport

In this section, we consider the problem of finding population barycenter of indepen-
dent identically distributed random discrete measures. We define the population
barycenter of distribution P with respect to entropy-regularized transport distances

min
p∈∆n

Wγ(p) , EqWγ(p, q), q ∼ P. (2.39)

2.3.1 Properties of Entropy-Regularized Optimal Transport

Entropic regularization of transport distances (Cuturi, 2013) improves their statisti-
cal properties (Klatt et al., 2020; Bigot et al., 2019a) and reduces their computational
complexity. Entropic regularization has shown good results in generative models
(Genevay et al., 2017), multi-label learning (Frogner et al., 2015), dictionary learning
(Rolet et al., 2016), image processing (Cuturi and Peyré, 2016; Rabin and Papadakis,
2015), neural imaging (Gramfort et al., 2015).

Let us firstly remind optimal transport problem (introduced in Eq. (1.1))
between histograms p, q ∈ ∆n with cost matrix C ∈ Rn×n

+

W (p, q) , min
π∈U(p,q)

〈C, π〉, (2.40)

where
U(p, q) , {π ∈ Rn×n

+ : π1 = p, πT1 = q}.

Remark 1 (Connection with the ρ-Wasserstein distance). When for ρ ≥ 1, Cij =
d(xi, xj)

ρ in (2.40), where d(xi, xj) is a distance on support points xi, xj, then
W (p, q)1/ρ is known as the ρ-Wasserstein distance.

Nevertheless, all the results of this thesis are based only on the assumptions
that the matrix C ∈ Rn×n

+ is symmetric and non-negative. Thus, optimal transport
problem defined in (2.40) is a more general than the Wasserstein distances.

Following (Cuturi, 2013), we introduce entropy-regularized optimal transport
problem

Wγ(p, q) , min
π∈U(p,q)

{〈C, π〉 − γE(π)} , (2.41)

where γ > 0 and E(π) , −〈π, log π〉 is the entropy. Since E(π) is 1-strongly concave
on ∆n2 in the `1-norm, the objective in (2.41) is γ-strongly convex with respect to
π in the `1-norm on ∆n2 , and hence problem (2.41) has a unique optimal solution.
Moreover, Wγ(p, q) is γ-strongly convex with respect to p in the `2-norm on ∆n

(Bigot et al., 2019b, Theorem 3.4).
One particular advantage of the entropy-regularized optimal transport is a closed-

form representation for its dual function (Agueh and Carlier, 2011; Cuturi and
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Peyré, 2016) defined by the Fenchel–Legendre transform of Wγ(p, q) as a function
of p

W ∗
γ,q(u) = max

p∈∆n

{〈u, p〉 −Wγ(p, q)} = γ (E(q) + 〈q, log(Kβ)〉)

= γ

(
−〈q, log q〉+

n∑
j=1

[q]j log

(
n∑
i=1

exp (([u]i − Cji)/γ)

))
(2.42)

where β = exp(u/γ), K = exp(−C/γ) and [q]j is j-th component of vector q.
Functions such as log or exp are always applied element-wise for vectors. Hence,
the gradient of dual function W ∗

γ,q(u) is also represented in a closed-form (Cuturi
and Peyré, 2016)

∇W ∗
γ,q(u) = β � (K · q/(Kβ)) ∈ ∆n,

where symbols � and / stand for the element-wise product and element-wise division
respectively. This can be also written as

∀l = 1, ..., n [∇W ∗
γ,q(u)]l =

n∑
j=1

[q]j
exp (([u]l − Clj)/γ)∑n
i=1 exp (([u]i − Cji)/γ)

. (2.43)

The dual representation of Wγ(p, q) is

Wγ(p, q) = min
π∈U(p,q)

n∑
i,j=1

(Cijπi,j + γπi,j log πi,j)

= max
u,ν∈Rn

{
〈u, p〉+ 〈ν, q〉 − γ

n∑
i,j=1

exp (([u]i + [ν]j − Cij)/γ − 1)

}
(2.44)

= max
u∈Rn

{
〈u, p〉 − γ

n∑
j=1

[q]j log

(
1

[q]j

n∑
i=1

exp (([u]i − Cij)/γ)

)}
.

Any solution
(
u∗

ν∗

)
of (2.44) is a subgradient of Wγ(p, q) (Peyré et al., 2019,

Proposition 4.6)

∇Wγ(p, q) =

(
u∗

ν∗

)
. (2.45)

We consider u∗ and ν∗ such that 〈u∗,1〉 = 0 and 〈ν∗,1〉 = 0 (u∗ and ν∗ are
determined up to an additive constant).

The next theorem (Bigot et al., 2019b) describes the Lipschitz continuity of
Wγ(p, q) in p on probability simplex ∆n restricted to

∆ρ
n =

{
p ∈ ∆n : min

i∈[n]
pi ≥ ρ

}
,

where 0 < ρ < 1 is an arbitrary small constant.
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Theorem 2.3.1. (Bigot et al., 2019b, Theorem 3.4, Lemma 3.5)

• For any q ∈ ∆n, Wγ(p, q) is γ-strongly convex w.r.t. p in the `2-norm

• For any q ∈ ∆n, p ∈ ∆ρ
n and 0 < ρ < 1, ‖∇pWγ(p, q)‖2 ≤M , where

M =

√√√√ n∑
j=1

(
2γ log n+ inf

i∈[n]
sup
l∈[n]

|Cjl − Cil| − γ log ρ

)2

.

We roughly take M = O(
√
n‖C‖∞) since for all i, j ∈ [n], Cij > 0, we get

M
(Bigot et al., 2019b)

= O


√√√√ n∑

j=1

(
inf
i∈[n]

sup
l∈[n]

|Cjl − Cil|

)2


= O

√√√√ n∑
j=1

sup
l∈[n]

C2
jl

 = O

(
√
n sup
j,l∈[n]

Cjl

)

= O

√n sup
j∈[n]

∑
l∈[n]

Cjl

 = O
(√

n‖C‖∞
)
.

Thus, we suppose that Wγ(p, q) and W (p, q) are Lipschitz continuous with almost
the same Lipschitz constant M in the `2-norm on ∆ρ

n. Moreover, by the same
arguments, for the Lipschitz continuity in the `1-norm: ‖∇pWγ(p, q)‖∞ ≤M∞, we
can roughly estimate M∞ = O(‖C‖∞) by taking maximum instead of the square
root of the sum.

In what follows, we use Lipshitz continuity of Wγ(p, q) and W (p, q) for measures
from ∆n keeping in mind that adding some noise and normalizing the measures
makes them belong to ∆ρ

n. We also notice that if the measures are from the interior
of ∆n then their barycenter will be also from the interior of ∆n.

2.3.2 The SA Approach: Stochastic Gradient Descent

For problem (2.39), as a particular case of problem (2.1), stochastic gradient descent
method can be used. From Eq. (2.45), it follows that an approximation for the
gradient of Wγ(p, q) with respect to p can be calculated by Sinkhorn algorithm
(Altschuler et al., 2017; Peyré et al., 2019; Dvurechensky et al., 2018b) through the
computing dual variable u with δ-precision

‖∇pWγ(p, q)−∇δ
pWγ(p, q)‖2 ≤ δ, ∀q ∈ ∆n. (2.46)

Here denotation ∇δ
pWγ(p, q) means an inexact stochastic subgradient of Wγ(p, q)

with respect to p. Algorithm 3 combines stochastic gradient descent given by
iterative formula (2.10) for ηk = 1

γk
with Sinkhorn algorithm (Algorithm 1) and

Algorithm 2 making the projection onto the simplex ∆n.
For Algorithm 3 and problem (2.39), Theorem 2.1.2 can be specified as follows
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Algorithm 1 Sinkhorn’s algorithm (Peyré et al., 2019) for calculating ∇δ
pWγ(p

k, qk)

1: procedure Sinkhorn(p, q, C, γ)
2: a1 ← (1/n, ..., 1/n), b1 ← (1/n, ..., 1/n)
3: K ← exp(−C/γ)
4: while not converged do
5: a← p/(Kb)
6: b← q/(K>a)
7: end while
8: return γ log(a) . Sinkhorn scaling a = eu/γ

9: end procedure

Algorithm 2 Euclidean Projection Π∆n(p) = arg min
v∈∆n

‖p− v‖2 onto Simplex ∆n

(Duchi et al., 2008)
1: procedure Projection(w ∈ Rn)
2: Sort components of w in decreasing manner: r1 ≥ r2 ≥ ... ≥ rn.
3: Find ρ = max

{
j ∈ [n] : rj − 1

j

(∑j
i=1 ri − 1

)}
4: Define θ = 1

ρ
(
∑ρ

i=1 ri − 1)

5: For all i ∈ [n], define pi = max{wi − θ, 0}.
6: return p ∈ ∆n

7: end procedure

Algorithm 3 Projected Online Stochastic Gradient Descent for WB (PSGDWB)

Input: starting point p1 ∈ ∆n, realization q1, δ, γ.
1: for k = 1, 2, 3, . . . do
2: ηk = 1

γk

3: ∇δ
pWγ(p

k, qk)← Sinkhorn(pk, qk, C, γ) or the accelerated Sinkhorn (Gumi-
nov et al., 2019)

4: p(k+1)/2 ← pk − ηk∇δ
pWγ(p

k, qk)

5: pk+1 ← Projection(p(k+1)/2)
6: Sample qk+1

7: end for
Output: p1, p2, p3...

Theorem 2.3.2. Let p̃N , 1
N

∑N
k=1 p

k be the average of N online outputs of
Algorithm 3 run with δ. Then, with probability at least 1− β the following holds

Wγ(p̃
N)−Wγ(p

∗
γ) = O

(
M2 log(N/β)

γN
+ δ

)
,

where p∗γ , arg min
p∈∆n

Wγ(p).

Let Algorithm 3 run with δ = O (ε) and N = Õ
(
M2

γε

)
= Õ

(
n‖C‖2∞
γε

)
. Then, with
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probability at least 1− β

Wγ(p̃
N)−Wγ(p

∗
γ) ≤ ε and ‖p̃N − p∗γ‖2 ≤

√
2ε/γ.

The total complexity of Algorithm 3 is

Õ

(
n3‖C‖2

∞
γε

min

{
exp

(
‖C‖∞
γ

)(
‖C‖∞
γ

+ log

(
‖C‖∞
κε2

))
,

√
n‖C‖2

∞
κγε2

})
,

where κ , λ+
min

(
∇2W ∗

γ,q(u
∗)
)
.

Proof. We estimate the co-domain (image) of Wγ(p, q)

max
p,q∈∆n

Wγ(p, q) = max
p,q∈∆n

min
π∈Rn×n+ ,
π1=p,
πT 1=q

n∑
i,j=1

(Cijπij + γπij log πij)

≤ max
π∈Rn×n+ ,∑n
i,j=1 πij=1

n∑
i,j=1

(Cijπij + γπij log πij) ≤ ‖C‖∞.

Therefore, Wγ(p, q) : ∆n ×∆n → [−2γ log n, ‖C‖∞]. Then we apply Theorem 2.1.2
with B = ‖C‖∞ and D = max

p′,p′′∈∆n

‖p′ − p′′‖2 =
√

2, and we sharply get

Wγ(p̃
N)−Wγ(p

∗
γ) = O

(
M2 log(N/β)

γN
+ δ

)
,

Equating each terms in the r.h.s. of this equality to ε/2 and usingM = O(
√
n‖C‖∞),

we get the expressions for N and δ. The statement ‖p̃N − p∗γ‖2 ≤
√

2ε/γ follows
directly from strong convexity of Wγ(p, q) and Wγ(p).

The proof of algorithm complexity follows from the complexity of the Sinkhorn’s
algorithm. To state the complexity of the Sinkhorn’s algorithm we firstly define δ̃ as
the accuracy in function value of the inexact solution u of maximization problem in
(2.44). Using this we formulate the number of iteration of the Sinkhorn’s (Franklin
and Lorenz, 1989; Carlier, 2021; Kroshnin et al., 2019; Stonyakin et al., 2019)

Õ

(
exp

(
‖C‖∞
γ

)(
‖C‖∞
γ

+ log

(
‖C‖∞
δ̃

)))
. (2.47)

The number of iteration for the accelerated Sinkhorn’s can be improved (Guminov
et al., 2019)

Õ

(√
n‖C‖2

∞
γε′

)
. (2.48)

Here ε′ is the accuracy in the function value, which is the expression 〈u, p〉+ 〈ν, q〉−
γ
∑n

i,j=1 exp ((−Cji + ui + νj)/γ − 1) under the maximum in (2.44). From strong
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convexity of this objective on the space orthogonal to eigenvector 1n corresponds
to the eigenvalue 0 for this function, it follows that

ε′ ≥ γ

2
‖u− u∗‖2

2 =
κ

2
δ, (2.49)

where κ , λ+
min

(
∇2W ∗

γ,q(u
∗)
)
. From (Bigot et al., 2019b, Proposition A.2.), for the

eigenvalue of ∇2W ∗
γ,q(u

∗) it holds that 0 = λn
(
∇2W ∗

γ,q(u
∗)
)
< λk

(
∇2W ∗

γ,q(u
∗)
)
for

all k = 1, ..., n− 1. Inequality (2.49) holds due to ∇δ
pWγ(p, q) := u in Algorithm 3

and ∇pWγ(p, q) , u∗ in (2.45). Multiplying both of estimates (2.47) and (2.48) by
the complexity of each iteration of the (accelerated) Sinkhorn’s algorithm O(n2)

and the number of iterations N = Õ
(
M2

γε

)
(measures) of Algorithm 3, and taking

the minimum, we get the last statement of the theorem.

Next, we study the practical convergence of projected stochastic gradient de-
scent (Algorithm 3). Using the fact that the true Wasserstein barycenter of one-
dimensional Gaussian measures has closed form expression for the mean and the vari-
ance (Delon and Desolneux, 2020), we study the convergence to the true barycenter
of the generated truncated Gaussian measures. Figure 2.1 illustrates the convergence
in the 2-Wasserstein distance within 40 seconds.

Figure 2.1: Convergence of projected stochastic gradient descent to the true barycen-
ter of 2× 104 Gaussian measures in the 2-Wasserstein distance.

2.3.3 The SAA Approach

The empirical counterpart of problem (2.39) is the (empirical) Wasserstein barycenter
problem

min
p∈∆n

1

m

m∑
i=1

Wγ(p, qi), (2.50)

where q1, q2, ..., qm are some realizations of random variable with distribution P.
Let us define p̂mγ , arg min

p∈∆n

1
m

∑m
i=1 Wγ(p, qi) and its ε′-approximation p̂ε′ such

that
1

m

m∑
i=1

Wγ(p̂ε′ , qi)−
1

m

m∑
i=1

Wγ(p̂
m
γ , qi) ≤ ε′. (2.51)
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For instance, p̂ε′ can be calculated by the IBP algorithm (Benamou et al., 2015) or
the accelerated IBP algorithm (Guminov et al., 2019). The next theorem specifies
Theorem 2.1.3 for the Wassertein barycenter problem (2.50).

Theorem 2.3.3. Let p̂ε′ satisfies (2.51). Then, with probability at least 1− β

Wγ(p̂ε′)−Wγ(p
∗
γ) ≤

√
2M2

γ
ε′ +

4M2

βγm
,

where p∗γ , arg min
p∈∆n

Wγ(p). Let ε′ = O
(

ε2γ
n‖C‖2∞

)
and m = O

(
M2

βγε

)
= O

(
n‖C‖2∞
βγε

)
.

Then, with probability at least 1− β

Wγ(p̂ε′)−Wγ(p
∗
γ) ≤ ε and ‖p̂ε′ − p∗γ‖2 ≤

√
2ε/γ.

The total complexity of the accelerated IBP computing p̂ε′ is

Õ

(
n4‖C‖4

∞
βγ2ε2

)
.

Proof. From Theorem 2.1.3 we get the first statement of the theorem

Wγ(p̂ε′)−Wγ(p
∗
γ) ≤

√
2M2

γ
ε′ +

4M2

βγm
.

From (Guminov et al., 2019) we have that complexity of the accelerated IBP is

Õ

(
mn2
√
n‖C‖∞√
γε′

)
.

Substituting the expression for m and the expression for ε′ from Theorem 2.1.3

ε′ = O

(
ε2γ

M2

)
, m = O

(
M2

βγε

)
to this equation we get the final statement of the theorem and finish the proof.

Next, we study the practical convergence of the Iterative Bregman Projections
on truncated Gaussian measures. Figure 2.1 illustrates the convergence of the
barycenter calculated by the IBP algorithm to the true barycenter of Gaussian
measures in the 2-Wasserstein distance within 10 seconds. For the convergence to
the true barycenter w.r.t. the 2-Wasserstein distance in the SAA approach, we
refer to (Boissard et al., 2015), however, considering the convergence in the `2-norm
(Theorem 2.3.3) allows to obtain better convergence rate in comparison with the
bounds for the 2-Wasserstein distance.
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Chapter 2. Fréchet Mean

Figure 2.2: Convergence of the Iterative Bregman Projections to the true barycenter
of 2× 104 Gaussian measures in the 2-Wasserstein distance.

2.3.4 Comparison of the SA and the SAA for the WB
Problem

Now we compare the complexity bounds for the SA and the SAA implementations
solving problem (2.39). For the brevity, we skip the high probability details since we
can fixed β (say β = 0.05) in the all bounds. Moreover, based on (Shalev-Shwartz
et al., 2009), we assume that in fact all bounds of this paper have logarithmic
dependence on β which is hidden in Õ(·) (Feldman and Vondrák, 2019; Klochkov
and Zhivotovskiy, 2021).

Table 2.1: Total complexity of the SA and the SAA implementations for the problem
min
p∈∆n

EqWγ(p, q).

Algorithm Complexity

Projected SGD (SA) Õ
(
n3‖C‖2∞

γε
min

{
exp

(
‖C‖∞
γ

)(
‖C‖∞
γ

+ log
(
‖C‖∞
κε2

))
,
√

n‖C‖2∞
κγε2

})
Accelerated IBP (SAA) Õ

(
n4‖C‖4∞
γ2ε2

)
Table 2.1 presents the total complexity of the numerical algorithms implementing

the SA and the SAA approaches. When γ is not too large, the complexity in the
first row of the table is achieved by the second term under the minimum, namely

Õ

(
n3
√
n‖C‖3

∞
γ
√
γκε2

)
,

where κ , λ+
min

(
∇2W ∗

γ,q(u
∗)
)
. This is typically bigger than the SAA complexity

when κ � γ/n. Hereby, the SAA approach may outperform the SA approach
provided that the regularization parameter γ is not too large.

From the practical point of view, the SAA implementation converges much faster
than the SA implementation. Executing the SAA algorithm in a distributed manner
only enhances this superiority since for the case when the objective is not Lipschitz
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smooth, the distributed implementation of the SA approach is not possible. This is
the case of the Wasserstein barycenter problem, indeed, the objective is Lipschitz
continuous but not Lipschitz smooth.

2.4 Fréchet Mean with respect to Optimal
Transport

Now we are interested in finding a Fréchet mean with respect to optimal transport

min
p∈∆n

W (p) , EqW (p, q). (2.52)

2.4.1 The SA Approach with Regularization: Stochastic
Gradient Descent

The next theorem explains how the solution of strongly convex problem (2.39)
approximates a solution of convex problem (2.52) under the proper choice of the
regularization parameter γ.

Theorem 2.4.1. Let p̃N , 1
N

∑N
k=1 p

k be the average of N online outputs of

Algorithm 3 run with δ = O (ε) and N = Õ
(
n‖C‖2∞
γε

)
. Let γ = ε/(2R2) with

R2 = 2 log n. Then, with probability at least 1− β the following holds

W (p̃N)−W (p∗) ≤ ε,

where p∗ is a solution of (2.52).
The total complexity of Algorithm 3 with the accelerated Sinkhorn is

Õ

(
n3
√
n‖C‖3

∞
γ
√
γκε2

)
= Õ

(
n3
√
n‖C‖3

∞
ε3
√
εκ

)
.

where κ , λ+
min

(
∇2W ∗

γ,q(u
∗)
)
.

Proof. The proof of this theorem follows from Theorem 2.3.2 and the following
(Gasnikov et al., 2015; Kroshnin et al., 2019; Peyré et al., 2019)

W (p)−W (p∗) ≤ Wγ(p)−Wγ(p
∗) + 2γ log n ≤ Wγ(p)−Wγ(p

∗
γ) + 2γ log n,

where p ∈ ∆n, p∗ = arg min
p∈∆n

W (p). The choice γ = ε
4 logn

ensures the following

W (p)−W (p∗) ≤ Wγ(p)−Wγ(p
∗
γ) + ε/2, ∀p ∈ ∆n.

This means that solving problem (2.39) with ε/2 precision, we get a solution of
problem (2.52) with ε precision.

When γ is not too large, Algorithm 3 uses the accelerated Sinkhorn’s algorithm
(instead of Sinkhorn’s algorithm). Thus, using γ = ε

4 logn
and meaning that ε is

small, we get the complexity according to the statement of the theorem.
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2.4.2 The SA Approach: Stochastic Mirror Descent

Now we propose an approach to solve problem (2.52) without additional regulariza-
tion. The approach is based on mirror descent given by the iterative formula (2.23).
We use simplex setup which provides a closed form solution for (2.23). Algorithm 4
presents the application of mirror descent to problem (2.52), where the gradient of
W (pk, qk) can be calculated using dual representation of OT (Peyré et al., 2019) by
any LP solver exactly

W (p, q) = max
(u,ν)∈Rn×Rn,

ui+νj≤Cij ,∀i,j∈[n]

{〈u, p〉+ 〈ν, q〉} . (2.53)

Then
∇pW (p, q) = u∗,

where u∗ is a solution of (2.53) such that 〈u∗,1〉 = 0.

Algorithm 4 Stochastic Mirror Descent for the Wasserstein Barycenter Problem
Input: starting point p1 = (1/n, ..., 1/n)T , number of measures N , q1, ..., qN , accu-

racy of gradient calculation δ
1: η =

√
2 logn

‖C‖∞
√
N

2: for k = 1, . . . , N do
3: Calculate ∇pkW (pk, qk) solving dual LP by any LP solver
4:

pk+1 =
pk � exp

(
−η∇pkW (pk, qk)

)∑n
j=1[pk]j exp

(
−η
[
∇pkW (pk, qk)

]
j

)
5: end for
Output: p̆N = 1

N

∑N
k=1 p

k

The next theorem estimates the complexity of Algorithm 4

Theorem 2.4.2. Let p̆N be the output of Algorithm 4 processing N measures. Then,
with probability at least 1− β we have

W (p̆N)−W (p∗) = O

(
‖C‖∞

√
log(n/β)√
N

)
,

Let Algorithm 4 run with N = Õ
(
M2
∞R

2

ε2

)
= Õ

(
‖C‖2∞
ε2

)
, R2 , KL(p1, p∗) ≤ log n.

Then, with probability at least 1− β

W (p̆N)−W (p∗) ≤ ε.

The total complexity of Algorithm 4 is

Õ

(
n3‖C‖2

∞
ε2

)
.
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Proof. From Theorem 2.2.1 and using M∞ = O (‖C‖∞), we have

W (p̆N)−W (p∗) = O

(
‖C‖∞

√
log(n/β)√
N

+ 2δ

)
. (2.54)

Notice, that ∇pkW (pk, qk) can be calculated exactly by any LP solver. Thus, we
take δ = 0 in (2.54) and get the first statement of the theorem.

The second statement of the theorem directly follows from this and the condition
W (p̆N)−W (p∗) ≤ ε.

To get the complexity bounds we notice that the complexity for calculating
∇pW (pk, qk) is Õ(n3) (Ahuja et al., 1993; Dadush and Huiberts, 2018; Dong et al.,
2020; Gabow and Tarjan, 1991), multiplying this by N = O (‖C‖2

∞R
2/ε2) with

R2 , KL(p∗, p1) ≤ log n, we get the last statement of the theorem.

Õ(n3N) = Õ

(
n3

(
‖C‖∞R

ε

)2
)

=Õ

(
n3

(
‖C‖∞
ε

)2
)
.

Next we compare the SA approaches with and without regularization of optimal
transport in problem (2.52). Entropic regularization of optimal transport leads
to strong convexity of regularized optimal transport in the `2-norm, hence, the
Euclidean setup should be used. Regularization parameter γ = ε

4 logn
ensures

ε-approximation for the unregularized solution. In this case, we use stochastic
gradient descent with Euclidean projection onto simplex since it converges faster
for strongly convex objective. For non-regularized problem we can significantly use
the simplex prox structure, indeed, we can apply stochastic mirror descent with
simplex setup (the Kullback-Leibler divergence as the Bregman divergence) with
Lipschitz constant M∞ = O(‖C‖∞) that is

√
n better than Lipschitz constant in

the Euclidean norm M = O(
√
n‖C‖∞).

We studied the convergence of stochastic mirror descent (Algorithm 4) and
stochastic gradient descent (Algorithm 3) in the 2-Wasserstein distance within
104 iterations (processing of 104 probability measures). Figure 2.3 confirms better
convergence of stochastic mirror descent than projected stochastic gradient descent
as stated in their theoretical complexity (Theorems 2.4.1 and 2.4.2).

2.4.3 The SAA Approach

Similarly for the SA approach, we provide the proper choice of the regularization
parameter γ in the SAA approach so that the solution of strongly convex problem
(2.39) approximates a solution of convex problem (2.52).

Theorem 2.4.3. Let p̂ε′ satisfy

1

m

m∑
i=1

Wγ(p̂ε′ , q
i)− 1

m

m∑
k=1

Wγ(p̂
∗
γ, q

i) ≤ ε′,
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Figure 2.3: Convergence of projected stochastic gradient descent, and stochastic
mirror descent to the true barycenter of 2 × 104 Gaussian measures in the 2-
Wasserstein distance.

where p̂∗γ = arg min
p∈∆n

1
m

m∑
i=1

Wγ(p, q
i), ε′ = O

(
ε2γ

n‖C‖2∞

)
, m = O

(
n‖C‖2∞
βγε

)
, and γ =

ε/(2R2) with R2 = 2 log n. Then, with probability at least 1− β the following holds

W (p̂ε′)−W (p∗) ≤ ε.

The total complexity of the accelerated IBP computing p̂ε′ is

Õ

(
n4‖C‖4

∞
βε4

)
.

Proof. The proof follows from Theorem 2.3.3 and the proof of Theorem 2.4.1 with
γ = ε/(4 log n).

2.4.4 Penalization of the WB problem

For the population Wasserstein barycenter problem, we construct 1-strongly convex
penalty function in the `1-norm based on Bregman divergence. We consider the
following prox-function (Ben-Tal and Nemirovski, 2001)

d(p) =
1

2(a− 1)
‖p‖2

a, a = 1 +
1

2 log n
, p ∈ ∆n

that is 1-strongly convex in the `1-norm. Then Bregman divergence Bd(p, p
1)

associated with d(p) is

Bd(p, p
1) = d(p)− d(p1)− 〈∇d(p1), p− p1〉.

Bd(p, p
1) is 1-strongly convex w.r.t. p in the `1-norm and Õ(1)-Lipschitz continuous

in the `1-norm on ∆n. One of the advantages of this penalization compared to the
negative entropy penalization proposed in (Ballu et al., 2020; Bigot et al., 2019c),
is that we get the upper bound on the Lipschitz constant, the properties of strong
convexity in the `1-norm on ∆n remain the same. Moreover, this penalization
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contributes to the better wall-clock time complexity than quadratic penalization
(Bigot et al., 2019c) since the constants of Lipschitz continuity for W (p, q) with
respect to the `1-norm is

√
n better than with respect to the `2-norm but R2 =

‖p∗ − p1‖2
2 ≤ ‖p∗ − p1‖2

1 ≤ 2 and R2
d = Bd(p

∗, p1) = O(log n) are equal up to a
logarithmic factor.

The regularized SAA problem is following

min
p∈∆n

{
1

m

m∑
k=1

W (p, qk) + λBd(p, p
1)

}
. (2.55)

The next theorem is particular case of Theorem (2.2.3) for the population WB
problem (2.52) with r(p, p1) = Bd(p, p

1).

Theorem 2.4.4. Let p̂ε′ be such that

1

m

m∑
k=1

W (p̂ε′ , q
k)+λBd(p̂ε′ , p

1)−min
p∈∆n

{
1

m

m∑
k=1

W (p, qk) + λBd(p, p
1)

}
≤ ε′. (2.56)

To satisfy
W (p̂ε′)−W (p∗) ≤ ε

with probability at least 1− β, we need to take λ = ε/(2R2
d) and

m = Õ

(
‖C‖2

∞
βε2

)
,

where R2
d = Bd(p

∗, p1) = O(log n). The precision ε′ is defined as

ε′ = Õ

(
ε3

‖C‖2
∞

)
.

The total complexity of Mirror Prox computing p̂ε′ is

Õ

(
n2
√
n‖C‖5

∞
ε5

)
.

Proof. The proof is based on saddle-point reformulation of the WB problem. Further,
we provide the explanation how to do this (for more details see Chapter 4). Firstly
we rewrite the OT as (Jambulapati et al., 2019)

W (p, q) = min
x∈∆n2

max
y∈[−1,1]2n

{d>x+ 2‖d‖∞( y>Ax− b>y)}, (2.57)

where b = (p>, q>)>, d is vectorized cost matrix of C, x be vectorized transport
plan of X, and A = {0, 1}2n×n2 is an incidence matrix. Then we reformulate the
WB problem as a saddle-point problem (Dvinskikh and Tiapkin, 2021)

min
p∈∆n,

x∈X,∆n2 × . . .×∆n2︸ ︷︷ ︸
m

max
y∈[−1,1]2mn

1

m

{
d>x + 2‖d‖∞

(
y>Ax− b>y

)}
, (2.58)
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where x = (x>1 , . . . , x
>
m)>, y = (y>1 , . . . , y

>
m)>, b = (p>, q>1 , ..., p

>, q>m)>, d =
(d>, . . . , d>)>, and A = diag{A, ..., A} ∈ {0, 1}2mn×mn2 is block-diagonal matrix.
Similarly to (2.58) we reformulate (2.55) as a saddle-point problem

min
p∈∆n,
x∈X

max
y∈[−1,1]2mn

fλ(x, p,y) ,
1

m

{
d>x + 2‖d‖∞

(
y>Ax− b>y

)}
+ λBd(p, p

1).

The gradient operator for f(x, p,y) is defined by

G(x, p,y) =

 ∇xf
∇pf
−∇yf

 =
1

m

 d+ 2‖d‖∞A>y
−2‖d‖∞{[yi]1...n}mi=1 + λ(∇d(p)−∇d(p1))

2‖d‖∞(Ax− b)

 ,

(2.59)

where [d(p)]i = 1
a−1
‖p‖2−a

a [p]a−1
i .

To get the complexity of MP we use the same reasons as in (Dvinskikh and
Tiapkin, 2021) with (2.59). The total complexity is

Õ

(
mn2
√
n‖C‖∞
ε′

)

Then we use Theorem 2.2.3 and get the exspressions for m, ε′ with λ = ε/(2Rd
2),

where Rd
2 = Bd(p

∗, p1). The number of measures is

m =
32M2

∞R
2
d

βε2
= Õ

(
‖C‖2

∞
βε2

)
.

The precision ε′ is defined as

ε′ =
ε3

64M2
∞Rd

2 = Õ

(
ε3

‖C‖2
∞

)
.

2.4.5 Comparison of the SA and the SAA for the WB
Problem.

Now we compare the complexity bounds for the SA and the SAA implementations
solving problem (2.52). Table 2.2 presents the total complexity for the numerical
algorithms.
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Table 2.2: Total complexity of the SA and the SAA implementations for the problem
min
p∈∆n

EqW (p, q).

Algorithm Theorem Complexity

Projected SGD (SA)
with γ = ε

4 logn

2.4.1 Õ
(
n3√n‖C‖3∞
ε3
√
εκ

)
Stochastic MD (SA) 2.4.2 Õ

(
n3‖C‖2∞

ε2

)
Accelerated IBP (SAA)
with γ = ε

4 logn

2.4.3 Õ
(
n4‖C‖4∞

ε4

)
Mirror Prox with Bd(p

∗, p1)
penalization (SAA) 2.4.4 Õ

(
n2√n‖C‖5∞

ε5

)

For the SA algorithms, which are Stochastic MD and Projected SGD, we can
conclude the following: non-regularized approach (Stochastic MD) uses simplex
prox structure and gets better complexity bounds, indeed Lipschitz constant in the
`1-norm is M∞ = O(‖C‖∞), whereas Lipschitz constant in the Euclidean norm is
M = O(

√
n‖C‖∞). The practical comparison of Stochastic MD (Algorithm 4) and

Projected SGD (Algorithm 3) can be found in Figure 2.3.
For the SAA approaches (Accelerated IBP and Mirror Prox with specific penal-

ization) we enclose the following: entropy-regularized approach (Accelerated IBP)
has better dependence on ε than penalized approach (Mirror Prox with specific
penalization), however, worse dependence on n. Using Dual Extrapolation method
for the WP problem from paper (Dvinskikh and Tiapkin, 2021) instead of Mirror
Prox allows to omit

√
n in the penalized approach.

One of the main advantages of the SAA approach is the possibility to perform it
in a decentralized manner in contrast to the SA approach, which cannot be executed
in a decentralized manner or even in distributed or parallel fashion for non-smooth
objective (Gorbunov et al., 2019). This is the case of the Wasserstein barycenter
problem, indeed, the objective is Lipschitz continuous but not Lipschitz smooth.
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Chapter 3

Dual Methods for Strongly Convex
Optimization

In this Chapter, we firstly present a stochastic dual algorithm for an optimization
problem with affine constraints whose objective is strongly convex. Then, for
the objective given by the sum of strongly convex functions, we show how to
perform this algorithm in a decentralized manner over a network of agents. This
algorithm allows us to obtain optimal bounds on the number of communication
rounds and oracle calls of dual objective per node. Finally, we show that the results
can be naturally applied to the Wasserstein barycenter problem since the dual
formulation of entropy-regularized Wasserstein distances and their derivatives have
closed-form representations and can be computed for a cheaper price than the
primal representations.

3.1 Dual Problem Formulation

We consider a convex optimization problem with affine constraint

min
Ax=b, x∈Rn

F (x), (3.1)

where F (x) is γF -strongly convex and possibly presented by the expectation F (x) =
EF (x, ξ) w.r.t. ξ ∈ Ξ.

The dual problem for problem (3.1), written as a maximization problem, is given
by the following problem with the Lagrangian dual variable y ∈ Rn

min
y∈Rn

Ψ(y) , max
x∈Rn
{〈y, Ax− b〉 − F (x)} . (3.2)

By the Theorem 0.0.6, if F (x) is γF -strongly convex, then function Ψ(y) is LΨ-
Lipschitz smooth with LΨ = λmax(A>A)/γF , where λmax(B) is the maximum
eigenvalue of symmetric matrix B.

When primal function F (x) = EF (x, ξ), the dual function is also presented
by its expectation Ψ(y) = EΨ(y, ξ) as well as its gradient. In this case we refer
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3.1. Dual Problem Formulation

to stochastic dual oracle. For a deterministic function F (x), we can also refer to
stochastic dual oracle when deterministic dual oracle, which returns the gradient of
Ψ, is unavailable or very expensive.

3.1.1 Preliminaries on Stochastic Oracle

We make the following assumptions on the stochastic dual oracle which returns the
gradient of the dual objective Ψ for all y ∈ Rn

E∇Ψ(y, ξ) = ∇Ψ(y)

E exp
(
‖∇Ψ(y, ξ)−∇Ψ(y)‖2

2/σ
2
Ψ

)
≤ exp(1). (3.3)

We construct a stochastic approximation for ∇Ψ(y) by using batches of size r

∇rΨ(y, {ξi}ri=1) ,
1

r

r∑
i=1

∇Ψ(y, ξi). (3.4)

To estimate the variance of minibatch stochastic gradient (3.4), we refer to (Juditsky
and Nemirovski, 2008, Theorem 2.1) and (Lan et al., 2012, Lemma 2) on large-
deviations theory.

Lemma 3.1.1. (Juditsky and Nemirovski, 2008, Theorem 2.1) Let {Dk}Nk=1 be
a sequence of random vectors (martingale-difference sequence) such that for all
k = 1, ..., N, E[Dk|D1, D2, ..., Dk−1] = 0. Let the sequence {Dk}Nk=1 satisfies ‘light-
tail’ assumption

E
[
exp

(
‖Dk‖2

2

σ2
k

) ∣∣η1, . . . , ηk−1

]
≤ exp(1) (a.s.), k = 1, ..., N.

Then for all Ω ≥ 0

P

∥∥∥∥∥
N∑
k=1

ckDk

∥∥∥∥∥
2

≥ (
√

2 +
√

2Ω)

√√√√ N∑
k=1

c2
kσ

2
k

 ≤ exp

(
−Ω2

3

)
,

where c1, . . . , cN are positive numbers.

Lemma 3.1.2. (Lan et al., 2012, Lemma 2) Let for all k = 1, . . . N , Dk =
Dk({ηl}kl=1) be a deterministic function of i.i.d. realizations {ηl}kl=1 such that

E
[
exp

(
D2
k

σ2
k

) ∣∣η1, . . . , ηk−1

]
≤ exp(1) (a.s.), k = 1, ..., N.

Then for all Ω ≥ 0

P

(
N∑
k=1

ckD
2
k ≥ (1 + Ω)

N∑
k=1

ckσ
2
k

)
≤ exp (−Ω) ,

where c1, . . . , cN are positive numbers.
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Chapter 3. Dual Methods for Strongly Convex Optimization

Now we use these two lemmas to estimate the variance of the mini-batch
stochastic gradient (3.4). The next lemma gives exact constant for the reduced
sub-Gaussian variance of the mini-batch gradient.

Lemma 3.1.3 (Sub-Gaussian variance reduction). Let stochastic gradient ∇Ψ(y, ξ)
satisfies the following conditions

E∇Ψ(y, ξ) = ∇Ψ(y)

E exp
(
‖∇Ψ(y, ξ)−∇Ψ(y)‖2

2/σ
2
Ψ

)
≤ exp(1).

Then, for the minibatch gradient ∇rΨ(y, {ξi}ri=1) = 1
r

∑r
i=1∇Ψ(y, ξi) with batch size

r, the following holds with σ̂2
Ψ = 50σ2

Ψ/r

E∇rΨ(y, {ξi}ri=1) = ∇Ψ(y)

E exp
(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
≤ exp(1),

Proof. Lemma 3.1.1 allows us to write for any Ω ≥ 0 the following

P

(∥∥∥∥∥
r∑
i=1

1

r
∇Ψ(y, ξi)−∇Ψ(y)

∥∥∥∥∥
2

≥ (
√

2 +
√

2Ω)
σΨ√
r

)
≤ exp

(
−Ω2

3

)
.

Here we used Di = ∇Ψ(y, ξi) − ∇Ψ(y) as a martingale difference, ci = 1
r
, and

σ2
i = σ2

Ψ for all i = 1, ..., r.
For Ω ≥ 1

3
let us rewrite the previous bound as follows

P

(∥∥∥∥∥
r∑
i=1

1

r
∇Ψ(y, ξi)−∇Ψ(y)

∥∥∥∥∥
2

≥ 4
√

2Ω
σΨ√
r

)
≤ exp

(
−Ω2

3

)
. (3.5)

Next we estimate σ̂2
Ψ

E exp
(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
,
∫ ∞

0

P
(
exp

(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
≥ x

)
dx

≤
∫ exp

(
32σ2

Ψ
9rσ̂2

Ψ

)
0

P
(
exp

(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
≥ x

)
dx

+

∫ ∞
4
√

2σΨ
3
√
r

P
(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2 ≥ z

) 2z

σ̂2
Ψ

exp

(
z2

σ̂2
Ψ

)
dz

≤ exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
+

∫ ∞
4
√

2σΨ
3
√
r

P
(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2 ≥ z

) 2z

σ̂2
Ψ

exp

(
z2

σ̂2
Ψ

)
dz, (3.6)
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3.1. Dual Problem Formulation

where we used P(·) ≤ 1 and the change of variable z2 = σ̂2
Ψ lnx for

x ∈
[
exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
,∞
)
. Making the following change of variable z = 4

√
2ΩσΨ√

r
in

(3.6) from (3.5) we have for any Ω ≥ 1
3

E exp
(
‖∇rΨ(y, {ξi}ri=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
≤ exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
+

∫ ∞
1
3

exp

(
−Ω2

3

)
8
√

2Ω
σ2

Ψ

rσ̂2
Ψ

exp

(
32Ω2σ2

Ψ

rσ̂2
Ψ

)
dΩ

= exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
+

σ2
Ψ

rσ̂2
Ψ

∫ ∞
1
3

8
√

2Ω exp

(
32Ω2σ2

Ψ − Ω2rσ̂2
Ψ

3rσ̂2
Ψ

)
dΩ

= exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
+

4
√

2σ2
Ψ

rσ̂2
Ψ

∫ ∞
1
9

exp

(
−Ω2 rσ̂

2
Ψ − 32σ2

Ψ

3rσ̂2
Ψ

)
d(Ω2)

= exp

(
32σ2

Ψ

9rσ̂2
Ψ

)
+

12
√

2σ2
Ψ

rσ̂2
Ψ − 32σ2

Ψ

exp

(
−rσ̂

2
Ψ − 32σ2

Ψ

27rσ̂2
Ψ

)
,

where we used
∫∞

1/9
e−axdx = 1

a
e−a/9 for any a > 0. If we take σ̂2

Ψ = 50σ2
Ψ/r in the

last inequality we get the statement of the theorem

E exp
(
‖∇rΨ(y, {ξi}rki=1)−∇Ψ(y)‖2

2/σ̂
2
Ψ

)
≤ exp(16/(9 ∗ 25)) +

6
√

2

9
exp(−18/27) ∼ 1.6 ≤ exp(1).

3.1.2 Algorithm and Convergence Rate

Now we propose an algorithm (Algorithm 5) to solve the pair of problems (3.1) and
(3.2). The algorithm is an accelerated version of the gradient descent method. The
next theorem studies its convergence.

Theorem 3.1.4. Let F (x) be γF -strongly convex. Let Rλ be such that ‖λ∗‖2 ≤ Rλ,

where λ∗ is an exact solution of dual problem (3.2). Then, after N = O

(√
LΨR

2
λ

ε

)
iterations, the output xN of Algorithm 5 satisfies the following with probability at
least 1− α

F (xN)− F (x∗) ≤ ε, ‖AxN − b‖2 ≤ ε/Rλ, (3.12)

where LΨ = λmax(A>A)/γF . The number of dual oracle calls of ∇Ψ(λ, ξ) is

Õ

(
max

{√
LΨRλ

2

ε
,
σ2

ΨRλ
2

ε2

})
,

where σ2
Ψ is sub-Gaussian variance of ∇Ψ(λ, ξ).
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Chapter 3. Dual Methods for Strongly Convex Optimization

Algorithm 5 Dual Stochastic Accelerated Gradient Algorithm
Input: Starting point λ0 = η0 = ζ0 = 0, number of iterations N , A0 = α0 = 0,

LΨ = λmax(A>A)/γF .
1: for k = 0, . . . , N − 1 do
2:

Ak+1 = Ak + αk+1 = 2LΨα
2
k+1. (3.7)

3:
λk+1 = (αk+1ζ

k + Akη
k)/Ak+1. (3.8)

4: Calculate ∇rk+1Ψ(λk+1, {ξi}rk+1

i=1 ) according to (3.4) with batch size

rk+1 = max
{

1, 50σ2
Ψαk+1 log(N/α)/ε

}
. (3.9)

5:
ζk+1 = ζk − αk+1∇rk+1Ψ(λk+1, {ξ`}rk+1

`=1 ). (3.10)

6:
ηk+1 = (αk+1ζ

k+1 + Akη
k)/Ak+1. (3.11)

7: end for
Output: xN , 1

AN

∑N
k=0 αkx(λk, {ξ`}rk`=1), where

x(λk, {ξ`}rk`=1) ,
1

rk

rk∑
`=1

x(λk, ξ`) = ∇rkΨ(λk, {ξ`}rk`=1)

Sketch of the Proof. Let us define the set B2Rλ(0) = {λ : ‖λ‖2 ≤ 2Rλ}. From
(Dvurechensky et al., 2018a, Theorem 1) it follows that Algorithm 5 generates the
sequences {λN , ζN , yN , αN , AN} satisfying

ANΨ(ηN) ≤ min
λ∈B2Rλ

(0)

{
N∑
k=0

αk
(
Ψ(λk) + 〈∇rkΨ(λk, {ξi}rki=1), λ− λk〉

)}
+ 2R2

λ

+
N−1∑
k=0

Ak+1〈∇rk+1Ψ(λk+1, {ξi}rk+1

i=1 )−∇Ψ(λk+1), ηk − λk+1〉

+
N∑
k=0

Ak
2LΨ

‖∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk)‖2
2. (3.13)

We denote the stochastic terms in (3.13) as follows

1. H1 = min
λ∈B2Rλ

(0)

{∑N
k=0 αk

(
Ψ(λk) + 〈∇rkΨ(λk, {ξi}rki=1), λ− λk〉

)}
,

2. H2 =
∑N−1

k=0 Ak+1〈∇rkΨ(λk+1, {ξi}rki=1)−∇Ψ(λk+1), ηk − λk+1〉,

3. H3 =
∑N

k=0
Ak

2LΨ
‖∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk)‖2

2.
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By adding and subtracting
∑N−1

k=0 αk+1〈∇Ψ(λk+1), λ∗ − λk+1〉 under the minimum
in H1 we get

H1 = min
λ∈B2Rλ

(0)

{
N∑
k=0

αk
(
Ψ(λk) + 〈∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk), λ− λk〉

+〈∇Ψ(λk), λ− λk〉
)}

≤ min
λ∈B2Rλ

(0)

{
N∑
k=0

αk
(
Ψ(λk) + 〈∇Ψ(λk), λ− λk〉

)}

+ max
λ∈B2Rλ

(0)

{
N∑
k=0

αk〈∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk), λ〉

}

+
N∑
k=0

αk〈∇Ψ(λk)−∇rkΨ(λk, {ξi}rki=1), λk〉

≤ min
λ∈B2Rλ

(0)

{
N∑
k=0

αk(Ψ(λk) + 〈∇Ψ(λk), λ− λk〉)

}

+ 2Rλ‖
N∑
k=0

αk(∇rΨ(λk, {ξi}ri=1)−∇Ψ(λk))‖2

+
N∑
k=0

αk〈∇Ψ(λk)−∇rkΨ(λk, {ξi}rki=1), λk〉. (3.14)

We denote the terms in (3.14) as follows

1. H4 = 2Rλ‖
∑N

k=0 αk(∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk))‖2,

2. H5 =
∑N

k=0 αk〈∇Ψ(λk)−∇rkΨ(λk, {ξi}rki=1), λk〉.

By Cauchy–Schwarz inequality for H6 = H2 +H5 we have

H6 ≤
N−1∑
k=0

‖∇rk+1Ψ(λk+1, {ξi}rki=1)−∇Ψ(λk+1)‖2‖Ak+1η
k − Ak+1λ

k+1 − αk+1λ
k+1‖2

(3.15)

(3.8),(3.7)
=

N−1∑
k=0

αk+1‖∇rk+1Ψ(λk+1, {ξi}rki=1)−∇Ψ(λk+1)‖2‖ηk − ζk − λk+1‖2

≤ 3R
N−1∑
k=0

αk+1‖∇rk+1Ψ(λk+1, {ξi}rki=1)−∇Ψ(λk+1)‖2, (3.16)

where R ≥ max{‖ηk‖2, ‖λk+1‖2, ‖ζk‖2, 2Rλ} for all k = 1, . . . , N .

For H4, H6 we will use Lemma 3.1.1, and for H3 we will refer to Lemma 3.1.2.
We also will use Lemma 3.1.3 to estimate σ̂2

Ψ = 50σ2
Ψ/r.
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Chapter 3. Dual Methods for Strongly Convex Optimization

Now we use Lemma 3.1.1 for H6. We take Dk = ∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk),
ck = 3Rαk and σ2

k = σ̂2
Ψ = 50σ2

Ψ/rk. Therefore, we get

P

H6 ≥ 3R(
√

2 +
√

2Ω)

√√√√ N∑
k=1

50α2
kσ

2
Ψ/rk


= P

H6 ≥ 30RσΨ(1 + Ω)

√√√√ N∑
k=1

α2
k/rk

 ≤ exp

(
−Ω2

3

)
, (3.17)

For H4 we also use Lemma 3.1.1. We take Dk = ∇rkΨ(λk, {ξi}rki=1) − ∇Ψ(λk),
ck = 2Rλαk and σ2

k = σ̂2
Ψ = 50σ2

Ψ/rk.

P

H4 ≥ 2Rλ(
√

2 +
√

2Ω)

√√√√ N∑
k=1

50α2
kσ

2
Ψ/rk


= P

H4 ≥ 20RλσΨ(1 + Ω)

√√√√ N∑
k=1

α2
k/rk

 ≤ exp

(
−Ω2

3

)
, (3.18)

Now we use Lemma 3.1.2 for H3. We take Dk = ‖∇rkΨ(λk, {ξi}rki=1)−∇Ψ(λk)‖2,
ck = Ak

2LΨ
, and σ2

k = σ̂2
Ψ = 50σ2

Ψ/rk for all k = 1, ..., N and get the following

P

(
H3 ≥ 25(1 + Ω)σ2

Ψ

N∑
k=1

Ak
LΨrk

)
= P

(
H3 ≥ 50σ2

Ψ(1 + Ω)
N∑
k=1

α2
k

rk

)
≤ exp (−Ω) .

We can equivalently rewrite it as follows

P

(
H3 ≥ 50σ2

Ψ(1 + Ω2/3)
N∑
k=1

α2
k

)
≤ exp

(
−Ω2

3

)
. (3.19)

Next we again consider (3.13)

ANΨ(ηN) ≤ H1 + 2R2
λ +H2 +H3

≤ min
λ∈B2Rλ

(0)

{
N∑
k=0

αk(Ψ(λk) + 〈∇Ψ(λk), λ− λk〉)

}
+ 2R2

λ

+H2 +H3 +H4 +H5. (3.20)

Next we estimate the r.h.s of (3.20). We consider

1

AN
min

λ∈B2Rλ
(0)

{
N∑
k=0

αk(Ψ(λk) + 〈∇Ψ(λk), λ− λk〉)

}
. (3.21)
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By the definition of the dual function and by the Demyanov–Danskin theorem we
have

Ψ(λ) = 〈λ, Ax(λ)− b〉 − F (x(λ)) and ∇Ψ(λ) = Ax(λ)− b,

where x(λ) = arg max
x∈Rn
{〈λ, Ax− b〉 − F (x)}. Using this in (3.21) we get

1

AN
min

λ∈B2Rλ
(0)

{
N∑
k=0

αk
(
〈λk, Ax(λk)− b〉 − F (x(λk)) + 〈Ax(λk)− b, λ− λk〉

)}

= − 1

AN

N∑
k=0

αkF (x(λk)) + min
λ∈B2Rλ

(0)

{
1

AN

N∑
k=0

αk〈Ax(λk)− b, λ〉

}
≤ −F (x̂N)− max

λ∈B2Rλ
(0)

{
〈Ax̂N − b, λ〉

}
= −F (x̂N)− 2Rλ‖Ax̂N − b‖2. (3.22)

where we used x̂N , 1
AN

∑N
k=0 αkx(λk).

Then we estimate the rest terms of the r.h.s. of (3.20). From the union bound
applied for (3.19), and (3.18), (3.17) and making the change α = exp

(
−Ω2

3

)
we

have with probability ≥ 1− 3α

H3 +H4 +H6 ≤

50σ2
Ψ(1 + ln(1/α))

N∑
k=1

α2
k/rk + 20RλσΨ(1 +

√
3 ln(1/α))

√√√√ N∑
k=1

α2
k/rk

+ 30RσΨ(1 +
√

3 ln(1/α))

√√√√ N∑
k=1

α2
k/rk.

By the definition of R ≥ 2Rλ we have

H3 +H4 +H6 ≤

50σ2
Ψ(1 + ln(1/α))

N∑
k=1

α2
k/rk + 40RσΨ(1 +

√
3 ln(1/α))

√√√√ N∑
k=1

α2
k/rk.

By the definition of r (3.9) we get

H3 +H4 +H6

≤ 50σ2
Ψ(1 + ln(1/α))

N∑
k=1

εαk
σ2

Ψ ln(N/δ)
+ 40RσΨ(1 +

√
3 ln(1/α))

√√√√ N∑
k=1

εαk
σ2

Ψ ln(N/δ)

= 50(1 + ln(1/α))
εAN

ln(N/δ)
+ 40R(1 +

√
3 ln(1/α))

√
εAN

ln(N/δ)
, (3.23)
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where we used AN =
∑N

k=1 αk from (3.7) in the last equality. We sum up (3.22)
and (3.23) we rewrite (3.20) and divide it by AN . We get with probability ≥ 1− 3α
the following

Ψ(ηN) + F (x̂N) + 2Rλ‖Ax̂N − b‖2 ≤
2R2

λ

AN

+50(1 + ln(1/α))
ε

ln(N/δ)
+ 40R(1 +

√
3 ln(1/α))

√
ε

AN ln(N/δ)
(3.24)

The next steps are to prove R = O (Rλ) and transfer from the x̂N to the output of
the Algorithm 5, that is xN , by using large deviation bounds. This can be found in
the paper (Gorbunov et al., 2019),

3.2 Decentralized Optimization

Background on Distributed Optimization. A distributed system is a system
of computing nodes (agents, machines, processing units), whose interactions are
constrained by the system structure. In distributed computing, a problem is divided
into many tasks, assigned to different agents. The agents cooperatively solve the
global task by solving their local problems and transferring information (usually, a
vector) to other nodes.

Distributed optimization has recently gained increased interest due to large-
scale problems encountered in machine learning. Usually these problems aggregate
enormous data and they need to be solved in a reasonable time with no prohibitive
expenses. It can also occur that the data itself is stored or collected in a distributed
manner (e.g., sensors in a sensor network obtained the state of the environment from
different geographical parts, or micro-satellites collecting local information). In both
these settings, distributed systems can be used. They process faster and more data
than one computer since the work is divided between many computing nodes. The
application of distributed systems includes formation control of unmanned vehicle
(Ren, 2006), power system control (Ram et al., 2009), information processing and
decision making in sensor networks, distributed averaging, statistical inference and
learning (Nedić et al., 2017).

There are two scenarios of distributed optimization: centralized and decentralized.
In centralized optimization, there is a central node (master) which coordinates
the work of other nodes (slaves). Parallel architecture is a special case of the
centralized architecture as it always contains master node. Unfortunately, centralized
architecture has a synchronization drawback and a high requirement for the master
node (Scaman et al., 2017). To address these disadvantages to some extent, a
decentralized distributed architecture should be used (Bertsekas and Tsitsiklis, 1997;
Kibardin, 1979). In decentralized scenario, there is no particular node, all agents are
equivalent and their communications are constrained only by a network arhcitecture:
each agent can communicate only with its immediate neighbors. This decentralized
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3.2. Decentralized Optimization

setting is more robust since decentralized algorithm does not crash when one of
computing node fails. Moreover, decentralized computing can be preformed on
time-varying (wireless) communication networks.

A large number of distributed algorithms have been developed to minimize an
objective given in the form of the average of functions fi’s accessible by different
nodes (agents, computers) in a network Thus, we consider the following convex
optimization problem

min
x∈Rn

f(x) ,
1

m

m∑
i=1

fi(x), (3.25)

where fi(x)’s are γ-strongly convex and possibly presented by the expectation
fi(x) = Efi(x, ξ) w.r.t. ξ ∈ Ξ.

3.2.1 Decentralized Dual Problem Formulation

To solve (3.25) on a network of agents, a transition to its dual problem is used. For
this, we introduce artificial constraint x1 = x2 = · · · = xm to (3.25) and rewrite it
as follows

min
x1=...=xm,
x1,...,xm∈Rn,

F (x) ,
1

m

m∑
i=1

fi(xi), (3.26)

where x = (x>1 , x
>
2 , ..., x

>
n )> is the stack column vector. Further, we will replace the

constraint x1 = · · · = xm with affine constraints representing the network structure.

Network system. Let a network of m nodes (agents, computing units) be pre-
sented by a fixed connected undirected graph G = (V,E), where V is a set of m
nodes, and E = {(i, j) : i, j ∈ V } is a set of edges. The network structure imposes
communication constraints: agent i can communicate (exchange information) only
with its immediate neighbors (i.e., with agent j ∈ V such that (i, j) ∈ E.

Let us also define a symmetric and positive semi-definite matrix W ∈ Rm×m,
which will represent a network structure. We define this matrix by the Laplacian
matrix of the graph G. The elements of W are presented as

[W ]ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of vertex i (i.e., the number of neighboring nodes).
Let us further define matrix

W , W ⊗ In, (3.27)

where ⊗ is the Kronecker product and In is the identity matrix. Matrix W
inherits the properties of W , including the symmetry and positive semi-definiteness.
Furthermore, the vector 1 is the unique (up to a scaling factor) eigenvector of W
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associated with the eigenvalue λ = 0. Thus, the equality constraint x1 = · · · = xm
is equivalent to affine constraint Wx = 0. Moreover, the following identity holds
(Scaman et al., 2017)

x1 = · · · = xm ⇐⇒ Wx = 0⇐⇒
√
Wx = 0.

Thus, the problem (3.26) can be rewritten as optimization problem with affine
constraints

min√
Wx,

x1,...,xm∈Rn

F (x) ,
1

m

m∑
i=1

fi(xi). (3.28)

The dual problem for problem (3.26) (written as a maximization problem) is given
by the following problem with the Lagrangian dual variable y ∈ Rmn

min
y∈Rmn

Ψ(
√
Wy) , max

x∈Rmn

{
〈y,
√
Wx〉 − F (x)

}
= max

x∈Rmn

{
〈y,
√
Wx〉 − 1

m

m∑
i=1

fi(xi)

}

=
1

m
max
x∈Rmn

m∑
i=1

{
m〈yi, [

√
Wx]i〉 − fi(xi)

}
=

1

m

m∑
i=1

ψi

(
m[
√
Wy]i

)
, (3.29)

where each ψi(λi) = max
xi∈Rn

{〈λi, xi〉 − fi(xi)} is the Fenchel–Legendre transform of

fi(xi) and the vector [
√
Wx]i represents the i-th n-dimensional block of

√
Wx.

By Theorem 0.0.6, if F (x) is γF -strongly convex, then Ψ(
√
Wy) is LΨ-Lipschitz

smooth with LΨ = λmax(W )/γF , where γF = γ/m.
By Demyanov–Danskin theorem (Demyanov and Malozemov, 1990; Danskin,

2012) we have

∇Ψ(
√
Wy) =

√
Wx(

√
Wy), (3.30)

where x(
√
Wy) = arg max

x∈Rmn

{
〈x,
√
Wy〉 − F (x)

}
.

We construct a stochastic approximation for ∇Ψ(y) by using batches of size r

∇rΨ(y, {ξ`}r`=1) ,
1

r

r∑
`=1

∇Ψ(y, ξ`). (3.31)

With the change of variable ȳ :=
√
Wy, this can be rewritten as

∇rΨ(
√
Wy, {ξ`}r`=1) =

√
W∇rΨ(ȳ, {ξ`}r`=1) =

1

r

r∑
`=1

√
W∇Ψ(ȳ, ξ`). (3.32)
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If each ∇ψi(ȳi, ξi) has sub-Gaussian variance

E exp
(
‖∇ψi(ȳi, ξi)−∇ψi(ȳi)‖2

2/σ
2
ψ

)
≤ exp(1).

Then∇Ψ(
√
Wy, ξ) has sub-Gaussian variance with σ2

Ψ = O
(
λmax(W )mσ2

ψ

)
(Lemma

3.2.1).

Lemma 3.2.1. Let each ∇ψi(ȳi, ξi) (i = 1, ...,m) has σ2
ψ sub-Gaussian variance

E∇ψi(ȳi, ξi) = ∇ψi(ȳi),
E exp

(
‖∇ψi(ȳi, ξi)−∇ψi(ȳi)‖2

2/σ
2
ψ

)
≤ exp(1).

Then ∇Ψ(
√
Wy, ξ) has σ2

Ψ = O
(
λmax(W )mσ2

ψ

)
sub-Gaussian variance, where

Ψ(
√
Wy) =

1

m

m∑
i=1

ψi

(
m[
√
Wy]i

)
.

Sketch of the Proof. We provide the proof of this lemma for variance σ2
Ψ (non-sub-

Gaussian). Let

E‖∇Ψ(
√
Wy, ξ)− E∇Ψ(

√
Wy, ξ)‖2 ≤ σ2

Ψ.

Then we estimate ∇Ψ(
√
Wy, ξ)

∇Ψ(
√
Wy, ξ) =

√
W∇Ψ(ȳ, ξ) =

√
W · 1

m
·m

 ∇ψ1 (ȳ1, ξ1)
...

∇ψm (ȳm, ξm) ,


where ȳ =

√
Wy. Then

‖∇Ψ(
√
Wy, ξ)− E∇Ψ(

√
Wy, ξ)‖2

2 = ‖
√
W∇Ψ(ȳ, ξ)−

√
WE∇Ψ(ȳ, ξ)‖2

2

=

〈 ∇ψ1 (ȳ1, ξ1)− E∇ψ1 (ȳ1, ξ1)
...

∇ψm (ȳm, ξm)− E∇ψm (ȳm, ξm)

 ,W

 ∇ψ1 (ȳ1, ξ1)− E∇ψ1 (ȳ1, ξ1)
...

∇ψm (ȳm, ξm)− E∇ψm (ȳm, ξm)

〉

≤ λmax(W )

∥∥∥∥∥∥∥
 ∇ψ1 (ȳ1, ξ1)− E∇ψ1 (ȳ1, ξ1)

...
∇ψm (ȳm, ξm)− E∇ψm (ȳm, ξm)


∥∥∥∥∥∥∥

2

2

.

Taking the expectation we obtain

σ2
Ψ ≤ E‖∇Ψ(

√
Wy, ξ)− E∇Ψ(

√
Wy, ξ)‖2

2

≤ λmax(W )E

∥∥∥∥∥∥∥
 ∇ψ1 (ȳ1, ξ1)− E∇ψ1 (ȳ1, ξ1)

...
∇ψm (ȳm, ξm)− E∇ψm (ȳm, ξm)


∥∥∥∥∥∥∥

2

2

≤ λmax(W )mσ2
ψ.
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More precise proof with sub-Gaussian variance can be performed similarly to the
proof of Lemma 3.1.3. �

The optimization problem (3.29) is convex unconstrained optimization problem
and can be solved by gradient-type algorithms. If the gradient of Ψ is LΨ-Lipschitz
continuous, then the gradient descent method does not provide optimal estimates
in contradistinction to its accelerated version (Nesterov, 2004). However, for the
clarity we explain how problem (3.29) can be solved in a decentralized manner using
the gradient descent method in the following example.

Example 3.2.2. The iterative procedure of the gradient descent algorithm for
problem (3.29) is presented as follows (k = 0, 1, 2, ..., N)

yk+1 = yk − 1

LΨ

∇Ψ(
√
Wyk)

(3.30)
= yk − 1

LΨ

√
Wx(

√
Wyk). (3.33)

Without change of variable, it is unclear how to perform this procedure in a distributed
manner. Let ȳ :=

√
Wy, then the gradient step (3.33) multiplied by

√
W can be

rewritten as
ȳk+1 = ȳk − 1

LΨ

Wx(ȳk).

This procedure can be performed in a decentralized manner on a network of agents.
Namely each agent i = 1, ...,m calculates

ȳk+1
i = ȳki −

1

LΨ

[Wx(ȳk)]i = ȳki −
1

LΨ

n∑
j=1

Wijxj(ȳ
k
j ).

Multiplication Wx naturally defines communications in the network because the
elements of matrix Wij

Wij =


−In×n, if (i, j) ∈ E,
deg(i)In×n, if i = j,

0n×n, otherwise,

are non-zero only for neighboring nodes i, j, and

[x(ȳk)]j = arg max
x∈Rmn

{
〈xj, ȳkj 〉 − f(xj)

}
= xj(ȳ

k
j ).

Similarly, to the gradient descent method, we can apply its accelerated version
(Algorithm 5) in a decentralized manner. The decentralized version of Algorithm 5
with change of variables

η̄ =
√
Wη, λ̄ =

√
Wλ, ζ̄ =

√
Wζ

is presented in Algorithm 6
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Algorithm 6 Decentralized Dual Stochastic Accelerated Gradient Algorithm

Input: Starting point λ̄0 = η̄0 = ζ̄0 = 0, number of iterations N , A0 = α0 = 0,
1: For each agent i ∈ V (i = 1, ...,m)
2: for k = 0, . . . , N − 1 do
3: Ak+1 = Ak + αk+1 = 2LΨα

2
k+1.

4: λ̄k+1
i = (αk+1ζ̄

k
i + Akη̄

k
i )/Ak+1.

5: Calculate ∇rk+1ψi(λ̄
k+1
i , {ξ`i}

rk+1

`=1 ) from (3.29) according to (3.31) with mini-
batch size

rk+1 = max
{

1, 50σ2
Ψαk+1 ln(N/α)/ε

}
,

where σ2
Ψ = O

(
λmax(W )mσ2

ψ

)
6: ζ̄k+1

i = ζ̄ki − αk+1

∑m
j=1 Wij∇rk+1ψj(λ̄

k+1
j , {ξ`j}

rk+1

`=1 ).

7: η̄k+1
i = (αk+1ζ̄

k+1
i + Akη̄

k
i )/Ak+1.

8: end for
Output: xN = (x̃>1 , . . . , x̃

>
m)>, where x̃i , 1

AN

∑N
k=0 αkxi(λ̄

k
i , {ξ`i}

rk
`=1) for all i =

1, . . . ,m with

xi(λ̄
k
i , {ξ`i}

rk
`=1) ,

1

rk

rk∑
`=1

xi(λ̄
k
i , ξ

`
i ) = ∇rkψi(λ̄

k
i , {ξ`i}

rk
`=1).

3.2.2 Algorithm and Convergence Rate

The next theorem is a decentralized variant of Theorem 3.1.4 for particular case
of matrix A =

√
W and b = 0 together with the fact R = O (Rλ) from (Gorbunov

et al., 2019). Let χ(W ) = λmax(W )

λ+
min(W )

be the condition number of matrix W .

Theorem 3.2.3. Let fi(x)’s be γ-strongly convex functions. Let Rλ be such that
‖λ∗‖2 ≤ Rλ, where λ∗ is an exact solution of dual problem (3.29). Let for all
i = 1, ...,m, ‖∇fi(x∗)‖2 ≤ M , where x∗ is the solution of (3.28). Then, after
N = O

(√
M2

γε
χ(W )

)
iterations, the output xN of Algorithm 6 satisfies the following

with probability at least 1− 3α

F (xN)− F (x∗) ≤ ε, ‖
√
WxN‖2 ≤ ε/Rλ.

The number of dual oracle calls of ∇ψi(λi, ξi) is

Õ

(
max

{√
M2

γε
χ(W ),

M2σ2
ψ

ε2
χ(W )

})
,

where σ2
ψ is sub-Gaussian variance of ∇ψi(λi, ξi).

Proof. Using the fact R = O (Rλ) proved in (Gorbunov et al., 2019), we improve
the number of iterations from Theorem 3.1.4 as follows

N = O

(√
LΨR2

λ

ε

)
, (3.34)
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where LΨ = λmax(W )/γF is the constant of Lipschitz smoothness for Ψ(
√
Wy),

and γF = γ/m. Then we use (Lan et al., 2017) to estimate the radius of the dual
solution λ∗ (corresponding to the minimal Euclidean distance if there are more than
one solution)

‖λ∗‖2
2 ≤ R2

λ =
‖∇F (x∗)‖2

2

λ+
min(W )

≤

∥∥∥∥∥∥∥ 1
m

 ∇f1(x∗)
...

∇fm(x∗)


∥∥∥∥∥∥∥

2

2

λ+
min(W )

=

∑m
i=1 ‖∇fi(x∗)‖2

2

m2λ+
min(W )

≤ M2

mλ+
min(W )

, (3.35)

where λ+
min(W ) is the minimal non-zero eigenvalue of matrix W . Then using

LΨ = λmax(W )/γF , γF = γ/m and (3.35) in (3.34) we get

N = O

(√
M2

γε
χ(W )

)
.

The number of dual oracle calls of ∇ψi(λi, ξi) is (Theorem 3.1.4)

Õ

(
max

{
N,

σ2
ΨR

2
λ

ε2

})
(3.35)
= Õ

max


√
M2

F

γε
χ(W ),

λmax(W )mσ2
ψ

ε2
· M2

mλ+
min(W )




= Õ

(
max

{√
M2

γε
χ(W ),

M2σ2
ψ

ε2
χ(W )

})
,

where we used σ2
Ψ = O(λmax(W )mσ2

ψ) (Lemma 3.2.1) and χ(W ) = λmax(W )

λ+
min(W )

is the
condition number of matrix W .

3.3 Wasserstein Barycenter Problem

In this section, we apply the results stated above in a broad sense to the Wasserstein
barycenter problem defined with respect to entropy-regularized optimal transport

min
p∈∆n

1

m

m∑
i=1

Wγ(p, qi), (3.36)

where Wγ(p, qi) is γ-strongly convex w.r.t p in the `2-norm.
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3.3.1 Decentralized Dual Formulation

To state the Wasserstein barycenter problem (3.36) in a decentralized manner, we
rewrite it as follows

min
p1=...=pm,
p1,...,pm∈∆n

1

m

m∑
i=1

Wγ(pi, qi) = min√
Wp=0,

p1,...,pm∈∆n

1

m

m∑
i=1

Wγ(pi, qi), (3.37)

where p = (p>1 , ..., p
>
m)> is the column vector and W is defined in (3.27). The dual

problem to (3.37) is

min
y∈Rnm

W ∗
γ,q(
√
Wy) ,

1

m

m∑
i=1

W ∗
γ,qi

(m[
√
Wy]i), (3.38)

where y = (y>1 , ..., y
>
m)> ∈ Rnm is the Lagrangian dual multiplier, q = (q>1 , ..., q

>
m)> ∈

Rnm and

W ∗
γ,q(
√
Wy) , max

p1,...pm∈∆n

{〈√
Wy,p

〉
− 1

m

m∑
i=1

Wγ(pi, qi)

}
(3.39)

=
1

m

m∑
i=1

max
pi∈∆n

{〈
m[
√
Wy]i, pi

〉
−Wγ(pi, qi)

}
(3.40)

=
1

m

m∑
i=1

W ∗
γ,qi

(m[
√
Wy]i), (3.41)

Recovery of the Primal Solution. By Demyanov–Danskin theorem (Demyanov
and Malozemov, 1990; Danskin, 2012) and from the definition of dual funtion for
Wasserstein distances (2.42), we have

∇W ∗
γ,q(λ) = p(λ), (3.42)

where (2.43)

∀l = 1, ..., n [p(λ)]l =
n∑
j=1

[q]j
exp (([λ]l − Clj)/γ)∑n
i=1 exp (([λ]i − Cji)/γ)

. (3.43)

In papers (Uribe et al., 2018; Dvinskikh et al., 2019) a dual distributed algo-
rithm for the Wasserstein barycenter problem was proposed. This algorithm is a
deterministic version of Algorithm 6. The next theorem states its convergence.

Theorem 3.3.1. (Dvinskikh et al., 2019, Corollary 6) After N = Õ
(√

n‖C‖2∞
γε

χ(W )
)

iterations, the output of p̃ = (p̃T1 , · · · , p̃Tm)T of distributed accelerated gradient method
with the primal solution recovery (3.43) satisfies

1

m

m∑
i=1

Wγ(p̃i, qi)−
1

m

m∑
i=1

Wγ(p
∗, qi) ≤ ε, ‖

√
Wp̃‖2 ≤ ε/Ry.
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The total per node complexity is

Õ

(
n2

√
n‖C‖2

∞
γε

χ(W )

)
.

3.3.2 Decentralized Dual Stochastic Algorithm

The complexity of dual oracle call for the gradient of the dual function for entropy-
regularized optimal transport (3.42) is O(n2). Using randomize technique, we can
reduce it to O(n). To do so, we randomize the true gradient (3.43) by taking
component j with probability [q]j

[∇W ∗
γ,q(λ, ξ)]l =

exp (([λ]l − Clξ)/γ)∑n
`=1 exp (([λ]` − C`ξ)/γ)

, ∀l = 1, ..., n.

Recovery of the Primal Solution. We construct a stochastic approximation
for ∇W ∗

γ,q(
√
Wy) by using batches of size r and the change of variable ȳ :=

√
Wy

∇rW ∗
γ,q(
√
Wy, {ξj}rj=1) =

√
W∇rW ∗

γ,q(ȳ, {ξj}rj=1) =
1

r

r∑
j=1

√
W∇W ∗

γ,q(ȳ, ξj)

=
1

r

r∑
j=1

√
Wp(ȳ, ξj), (3.45)

where [p(ȳ, ξ)]i = pi(ȳi, ξi) is

∀l = 1, ..., n [pi(ȳi, ξi)]l =
exp (([ȳi]l − Clξi)/γ)∑n
`=1 exp (([ȳi]` − C`ξi)/γ)

. (3.46)

The next theorem presents an application of Theorem 3.2.3 (with changing the
constant for the weighted problem) to the Wasserstein barycenter problem.

Theorem 3.3.2. Let Rλ be such that ‖λ∗‖ ≤ Rλ, where λ∗ be an exact solution
of dual problem (3.38). Let the batch size rk = max

{
1, 50

ε
λmax(W )mαk+1 ln(N

α
)
}
.

Then after N = O
(√

n‖C‖2∞
γε

χ(W )
)
iterations for the output p̃ = (p̃>1 , ..., p̃

>
m)> of

Algorithm 7 the following holds with probability at least 1− 3α

1

m

m∑
i=1

Wγ(p̃i, qi)−
1

m

m∑
i=1

Wγ(p
∗, qi) ≤ ε, ‖

√
Wp̃‖2 ≤ ε/Rλ.

Moreover, the per node complexity of Algorithm 7 is

Õ

(
n ·max

{√
n‖C‖2

∞
γε

χ(W ),
n‖C‖2

∞
ε2

χ(W )

})
.
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Algorithm 7 Decentralized Dual Stochastic Accelerated Gradient Algorithm for
WB’s
Input: Starting point λ̄0 = η̄0 = ζ̄0 = x0 = 0, number of iterations N , A0 = α0 =

0,
1: For each agent i ∈ V (i = 1, ...,m)
2: for k = 0, . . . , N − 1 do
3: Ak+1 = Ak + αk+1 = 2LΨα

2
k+1.

4: λ̄k+1
i = (αk+1ζ̄

k
i + Akη̄

k
i )/Ak+1.

5: For each i = 1, ...,m, calculate ∇rk+1W ∗
γ,qi

(λ̄k+1
i , {ξ`i}

rk+1

`=1 )

[∇rk+1W ∗
γ,qi

(λ̄k+1
i , {ξ`i}

rk+1

`=1 )]l =
1

rk+1

rk+1∑
`=1

[∇W ∗
γ,qi

(λ̄k+1
i , ξ`i )]l

=
1

rk+1

rk+1∑
`=1

exp
(

([λ̄k+1
i ]l − Clξ`i )/γ

)
∑n

t=1 exp
(

([λ̄k+1
i ]t − Ctξ`i )/γ

) , (3.44)

for all l = 1, ..., n with batch size

rk+1 = max {1, 50λmax(W )mαk+1 ln(N/α)/ε} .

6: ζ̄k+1
i = ζ̄ki − αk+1

∑m
j=1 Wij∇rk+1W ∗

γ,qj
(λ̄k+1

j , {ξ`i}
rk+1

`=1 ).

7: η̄k+1
i = (αk+1ζ̄

k+1
i + Akη̄

k
i )/Ak+1.

8: end for
Output: p̃ = (p̃>1 , ..., p̃

>
m)>, where p̃i = 1

AN

∑N
k=0 αkpi(λ̄

k
i , {ξ`i}

rk
`=1) for all i =

1, . . . ,m with

pi(λ̄
k
i , {ξ`i}

rk
`=1) ,

1

rk

rk∑
`=1

pi(λ̄
k
i , ξ

`
i ) = ∇rkW ∗

γ,qi
(λ̄ki , {ξ`i}

rk
`=1).

Proof. The proof of the theorem follows from the Theorem 3.2.3. Thus, we have
the following number of iterations

N = O

(√
M2

γε
χ(W )

)
Th.2.3.1

= O

(√
n‖C‖2

∞
γε

χ(W )

)
.

The number of oracle calls of ∇W ∗
γ,qi

(ȳi, ξi) is (Theorem 3.2.3)

Õ

(
max

{√
M2

γε
χ(W ),

M2σ2
ψ

ε2
χ(W )

})
, (3.47)

where σ2
ψ is sub-Gaussian variance of ∇W ∗

γ,qi
(ȳi, ξi). Now we estimate variance σ2

ψ
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of ∇W ∗
γ,qi

(ȳi, ξi) (3.46)

σ2
ψ = max

ȳi

{
E‖pi(ȳi, ξi)‖2

2 − (E‖pi(ȳi, ξi)‖2)2}
≤ max

ȳi

{
E‖pi(ȳi, ξi)‖2

2

}
≤ max

ȳi

{
E‖pi(ȳi, ξi)‖2

1

}
= 1.

Thus, we have σ2
ψ ≤ 1. Using this and M ≤

√
n‖C‖∞ (Theorem 2.3.1) in (3.47) we

get

Õ

(
max

{√
n‖C‖2

∞
γε

χ(W ),
n‖C‖2

∞
ε2

χ(W )

})
.

Multiplying this by the cost for calculating ∇W ∗
γ,qi

(ȳi, ξi), which is O(n), we get the
per node complexity

Õ

(
n ·max

{√
n‖C‖2

∞
γε

χ(W ),
n‖C‖2

∞
ε2

χ(W )

})
.
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Chapter 4

Saddle Point Approach for the
Wasserstein Barycenter Problem

In this Chapter, we provide a primal algorithm to compute unregularized Wasserstein
barycenters with no limitations in contrast to the regularized-based methods, which
are numerically unstable under a small value of the regularization parameter. The
algorithm is based on the saddle point problem reformulation and the application
of mirror prox algorithm with a specific norm. We also show how the algorithm can
be executed in a decentralized manner. The complexity of the proposed algorithms
meets the best known results in decentralized and non-decentralized setting.

Previous Works. Optimal transport problem (OT) (1.1) is not an easy task.
Indeed, to solve this problem between two discrete histograms of size n, one needs
to make Õ(n3) arithmetic calculations (Tarjan, 1997; Peyré et al., 2019), e.g., by
using simplex method or interior-point method. To overcome the computational
issue, entropic regularization of the OT was proposed by Cuturi (2013). It enables
an application of the Sinkhorn’s algorithm, which is based on alternating minimiza-
tion procedures and has Õ(n2‖C‖2

∞/ε
2) convergence rate (Altschuler et al., 2017;

Dvurechensky et al., 2018b) to approximate a solution of OT with ε-precision. Here
C ∈ Rn×n

+ is a ground cost matrix of transporting a unit of mass between probability
measures, and the regularization parameter before negative entropy is of order ε.
The Sinkhorn’s algorithm can be accelerated to Õ (n2

√
n‖C‖∞/ε) convergence rate

(Guminov et al., 2019). In practice, the accelerated Sinkhorn’s algorithm converges
faster than the Sinkhorn’s algorithm, and in theory, it has better dependence on ε
but not on n. Also a faster practice convergence is achieved also by modifications
of the Sinkhorn’s algorithm, e.g., the Greenkhorn algorithm (Altschuler et al., 2017)
of the same convergence rate as the Sinkhorn’s algorithm.

However, all entropy-regularized based approaches are numerically unstable
when the regularizer parameter γ before negative entropy is small (this also means
that precision ε is high as γ must be selected proportional to ε (Peyré et al., 2019;
Kroshnin et al., 2019)). The recent work of Jambulapati et al. (2019) provides an
optimal method for solving the OT problem, based on dual extrapolation (Nesterov,
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Chapter 4. Saddle Point Approach for the WB Problem

2007) and area-convexity (Sherman, 2017), with convergence rate Õ(n2‖C‖∞/ε).
This method works without additional penalization and, moreover, it eliminates
the term

√
n in the bound for the accelerated Sinkhorn’s algorithm. The rate

Õ(n2‖C‖∞/ε) was also obtained in a number of works of Blanchet et al. (2018);
Allen-Zhu et al. (2017); Cohen et al. (2017). Table 4.1, incorporates the most
popular algorithms solving OT problem.

Table 4.1: Algorithms for OT problem and their rates of convergence

Paper Approach Complexity

(Dvurechensky et al., 2018b) Sinkhorn Õ
(
n2‖C‖2∞

ε2

)
(Guminov et al., 2019) Accelerated Sinkhorn Õ

(
n2√n‖C‖∞

ε

)
(Jambulapati et al., 2019)

Optimal algorithm based on
dual extrapolation
with area-convexity

Õ
(
n2‖C‖∞

ε

)

Wasserstein barycenter (WB) problem (1.3) ofmmeasures consists in minimizing
the sum ofm squared 2-Wasserstein distances (generated by OT metric) to all objects
in the set. Regularizing each OT distance in the sum by negative entropy leads to
presenting the WB problem as Kullback–Leibler projection that can be performed by
the iterative Bregman projections (IBP) algorithm (Benamou et al., 2015). The IBP
is an extension of the Sinkhorn’s algorithm for m measures, and hence, its complexity
is m times more than the Sinkhorn complexity, namely Õ (mn2‖C‖2

∞/ε
2) (Kroshnin

et al., 2019). An analog of the accelerated Sinkhorn’s algorithm for the WB problem
of m measures is the accelerated IBP algorithm with complexity Õ (mn2

√
n‖C‖∞/ε)

(Guminov et al., 2019), that is also m times more than the accelerated Sinkhorn
complexity. Another fast version of the IBP algorithm was recently proposed by
Lin et al. (2020), named FastIBP with complexity Õ

(
mn2 3
√
n‖C‖4/3

∞ /ε4/3
)
.

Contribution. We propose a new algorithm, based on mirror prox with specific
prox-function, for the WB problem which does not suffer from a small value of the
regularization parameter and, at the same time, has complexity not worse than
the celebrated (accelerated) IBP. Moreover, this algorithm can be performed in a
decentralized manner.

Table 4.2 illustrates the contribution by comparing our new algorithm, called
‘Mirror prox with specific norm’, with the most popular algorithms for the WB
problem. Algorithm ‘Dual extrapolation with area-convexity’ was proposed in
joint paper (Dvinskikh and Tiapkin, 2021) together with ‘Mirror prox with specific
norm’ as an improved version of ‘Mirror prox with specific norm’ under the weaker
convergence requirements of area-convexity. ‘Dual extrapolation with area-convexity’

70



has the best theoretical rate of convergence for the Wasserstein barycenter problem,
which is probably optimal. However, it does not have so obvious decentralized
interpretation which ‘Mirror prox with specific norm’ has.

Table 4.2: Algorithms for the WB problem and their rates of convergence

Approach Paper Complexity

IBP (Kroshnin et al., 2019) Õ
(
mn2‖C‖2∞

ε2

)
Accelerated IBP (Guminov et al., 2019) Õ

(
mn2√n‖C‖∞

ε

)
FastIBP (Lin et al., 2020) Õ

(
mn2 3√n‖C‖4/3∞

ε 3√ε

)
Mirror prox
with specific norm

(Dvinskikh and Tiapkin, 2021) Õ
(
mn2√n‖C‖∞

ε

)
Dual extrapolation
with area-convexity

(Dvinskikh and Tiapkin, 2021) Õ
(
mn2‖C‖∞

ε

)

Figure 4.1 illustrates numerically instability of the IBP with regularizing param-
eter γ algorithm when a high-precision ε of calculating Wasserstein barycenters is
desired since γ must be selected proportional to ε (Peyré et al., 2019; Kroshnin
et al., 2019). ‘Dual extrapolation with area-convexity’ and ‘Mirror prox with specific
norm’ (Dvinskikh and Tiapkin, 2021) produce good results.

Mirror Prox
for WB

Dual Extra-
polation

IBP,
γ = 10−3

IBP,
γ = 10−5

Figure 4.1: Wasserstein barycenters of hand-written digits ‘5’ from the MNIST
dataset (first row) and Wasserstein barycenters of letters ‘A’ from the notMNIST
dataset (second row).

Figure 4.2 demonstrates better approximations of the true Gaussian barycenter
by ‘Dual extrapolation with area-convexity’ and ‘Mirror prox with specific norm’
compared to the γ-regularized IBP barycenter. The regularization parameter for
the IBP algorithm (from the POT python library) is taken as smallest as possible
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Chapter 4. Saddle Point Approach for the WB Problem

under which the IBP still works since the smaller γ, the closer regularized IBP
barycenter is to the true barycenter.

Figure 4.2: Convergence of the barycenters to the true barycenter of Gaussian
measures.

The algorithm ‘Mirror prox with specific norm’ can be also preformed in a
decentralized manner and has the same per node complexity as Decentralized FGD
(Dvinskikh et al., 2019) up to the dependence on communication matrix. For the
star network, we can compare the complexity of decentralized mirror-prox with the
complexity of the IBP running in Õ (n2/ε2) time per node (Kroshnin et al., 2019).
Decentralized mirror-prox has better dependence on ε, namely 1/ε, as well as the
accelerated IBP with Õ (n2

√
n/ε) complexity per node of (Guminov et al., 2019).

The details of the comparison can be found in Table 4.3

Table 4.3: Distributed algorithms for the WB problem and their per node complexity

Approach Paper Architecture Complexity per node

IBP (Kroshnin et al., 2019) star Õ
(
n2‖C‖2∞

ε2

)
Accelerated IBP (Guminov et al., 2019) star Õ

(
n2√n‖C‖∞

ε

)
FastIBP (Lin et al., 2020) star Õ

(
n2 3√n‖C‖4/3∞

ε 3√ε

)
Decentralized FGD (Dvinskikh et al., 2019) any Õ

(
n2
√
nχ(W )‖C‖∞

ε

)
Decentralized
mirror prox
with specific norm

(Rogozin et al., 2021b) any Õ

(
n2
√
nχ(W )‖C‖3/2∞

ε

)

4.1 Mirror Prox for Wasserstein Barycenters

Our new approach is based on mirror prox algorithm with specific prox-function
for the Wasserstein barycenter problem formulated as a saddle-point problem. To
present the Wasserstein barycenter problem as a saddle-point problem, we refer
to the work (Jambulapati et al., 2019), where the authors obtain saddle-point
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4.1. Mirror Prox for Wasserstein Barycenters

representation for optimal transport problem. To so, they vectorize the cost matrix
and transport plan.

4.1.1 Saddle Point Formulation

We consider optimal transport problem (1.1) between two discrete measures p =∑n
i=1 piδzi and q =

∑n
i=1 piδyi of support size n. The histograms p and q are

from the probability simplex ∆n. Let d be vectorized cost matrix C, and let x be
vectorized transport plan π ∈ U(p, q) , {π ∈ Rn×n

+ : π1n = p, πT1n = q}. Due to
the marginals p, q of transport plan π are from probability simplex ∆n, it holds that∑n

i,j=1 πij = 1. We also introduce b =

(
p
q

)
and incidence matrix A = {0, 1}2n×n2 .

Then the optimal transport problem (1.1) can be rewrutten as

min
Ax=b, x∈∆n2

d>x.

And then based on the definition of the `1-norm, this problem can be presented as
a saddle-point problem (Jambulapati et al., 2019)

min
x∈∆n2

max
y∈[−1,1]2n

{d>x+ 2‖d‖∞( y>Ax− b>y)}.

Using this representation for optimal transport problem we present the Wasserstein
barycenter problem of histograms q1, q2, ..., qm ∈ ∆n as follows

min
p∈∆n

1

m

m∑
i=1

min
xi∈∆n2

max
yi∈[−1,1]2n

{d>xi + 2‖d‖∞
(
y>i Axi − b>i yi

)
}, (4.1)

where bi =

(
p
qi

)
. Next, we define spaces X ,

∏m ∆n2 ×∆n and Y , [−1, 1]2mn,

where
∏m ∆n2 ×∆n is a short form of ∆n2 × . . .×∆n2︸ ︷︷ ︸

m

×∆n, and present (4.1) for

column vectors x = (x>1 , . . . , x
>
m, p

>)> ∈ X and y = (y>1 , . . . , y
>
m)> ∈ Y as follows

min
x∈X

max
y∈Y

F (x,y) ,
1

m

{
d>x + 2‖d‖∞

(
y>Ax− c>y

)}
, (4.2)

where d = (d>, . . . , d>,0>n )>, c = (0>n , q
>
1 , . . . ,0

>
n , q

>
m)> and A =

(
Â E

)
∈

{−1, 0, 1}2mn×(mn2+n) with block-diagonal matrix Â = diag{A, ..., A} of m blocks,
and matrix

E> =
((
−In 0n×n

) (
−In 0n×n

)
· · ·
(
−In 0n×n

))
.

Since objective F (x,y) in (4.2) is convex in x and concave in y, problem (4.2) is a
saddle-point representation of the Wasserstein barycenter problem. We will evaluate
the quality of an algorithm, that outputs a pair of solutions (x̃, ỹ) ∈ (X ,Y), through
the so-called duality gap

max
y∈Y

F (x̃,y)−min
x∈X

F (x, ỹ) ≤ ε. (4.3)
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4.1.2 Algorithm and Convergence Rate

Setups.

• We endow space Y , [−1, 1]2nm with the standard Euclidean setup: the
Euclidean norm ‖ · ‖2, prox-function dY(y) = 1

2
‖y‖2

2 and the corresponding
Bregman divergence

BY(y, y̆) = 1
2
‖y − y̆‖2

2. We define R2
Y = sup

y∈Y
dY(y)−min

y∈Y
dY(y).

• We endow space X ,
∏m ∆n2×∆n with norm ‖x‖X =

√∑m
i=1 ‖xi‖2

1 +m‖p‖2
1

for x = (x1, . . . , xm, p)
T , where ‖ · ‖1 is the `1-norm. We endow X with prox-

function dX (x) =
∑m

i=1〈xi, log xi〉+m〈p, log p〉 and corresponding Bregman
divergence

BX (x, x̆) =
m∑
i=1

〈xi, log(xi/x̆i)〉 −
m∑
i=1

1>(xi − x̆i)

+m〈p, log(p/p̆)〉 −m1>(p− p̆).

We define R2
X = sup

x∈X
dX (x)−min

x∈X
dX (x).

The next definition clarifies the notion of smoothness for the objective in convex-
concave problems.

Definition 4.1.1. F (x,y) is (Lxx, Lxy, Lyx, Lyy)-smooth if for any x,x′ ∈ X and
y,y′ ∈ Y,

‖∇xf(x,y)−∇xf(x′,y)‖X ∗ ≤ Lxx‖x− x′‖X ,
‖∇xf(x,y)−∇xf(x,y′)‖X ∗ ≤ Lxy‖y − y′‖Y ,
‖∇yf(x,y)−∇yf(x,y′)‖Y∗ ≤ Lyy‖y − y′‖Y ,
‖∇yf(x,y)−∇yf(x′,y)‖Y∗ ≤ Lyx‖x− x′‖X .

We consider mirror prox (MP) (Nemirovski, 2004) on space Z , X × Y with
prox-function dZ(z) = a1dX (x) + a2dY(y) and corresponding Bregman divergence
BZ(z, z̆) = a1BX (x, x̆) + a2BY(y, y̆), where a1 = 1

R2
X
, a2 = 1

R2
Y(

uk+1

vk+1

)
= arg min

z∈Z
{ηG(xk,yk)>z +BZ(z, zk)},

zk+1 = arg min
z∈Z
{ηG(uk+1,vk+1)>z +BZ(z, zk)},

where η is learning rate, z1 = arg min
z∈Z

dZ(z) and G(x,y) is the gradient operator
defined as follows

G(x,y) =

(
∇xF (x,y)
−∇yF (x,y)

)
=

1

m

(
d+ 2‖d‖∞A>y
2‖d‖∞(c−Ax)

)
.
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If F (x,y) is (Lxx, Lxy, Lyx, Lyy)-smooth, then to satisfy (4.3) with x̃ = 1
N

∑N
k=1 u

k,
ỹ = 1

N

∑N
k=1 v

k, one needs to perform

N =
4

ε
max{LxxR

2
X , LxyRXRY , LyxRYRX , LyyR

2
Y}) (4.4)

iterations of the MP (Nemirovski, 2004; Bubeck, 2014) with

η = 1/(2 max{LxxR
2
X , LxyRXRY , LyxRYRX , LyyR

2
Y}). (4.5)

Lemma 4.1.2. Objective F (x,y) in (4.2) is (Lxx, Lxy, Lyx, Lyy)-smooth with Lxx =
Lyy = 0 and Lxy = Lyx = 2

√
2‖d‖∞/m.

Proof. Let us consider bilinear function

f(x,y) , y>Ax

that is equivalent to F (x,y) from (4.2) up to multiplicative constant 2‖d‖∞/m and
linear terms. As f(x,y) is bilinear, Lxx = Lyy = 0 in Definition 4.1.1. Next we
estimate Lxy and Lyx. By the definition of Lxy and the spaces X ,Y defined in the
Setup we have

‖∇xf(x,y)−∇xf(x,y′)‖X ∗ ≤ Lxy‖y − y′‖2.

Since ∇xf(x,y) = A>y we get

‖A>(y − y′)‖X ∗ ≤ Lxy‖y − y′‖2. (4.6)

By the definition of dual norm we have

‖A>(y − y′)‖X ∗ = max
‖x‖X≤1

〈x,A>(y − y′)〉. (4.7)

As 〈x,A>(y − y′)〉 is a linear function, (4.6) can be rewritten using (4.7) as

Lxy = max
‖y−y′‖2≤1

max
‖x‖X≤1

〈x,A>(y − y′)〉.

Making the change of variable ỹ = y−y′ and using the equality 〈x,A>ỹ〉 = 〈Ax, ỹ〉
we get

Lxy = max
‖ỹ‖2≤1

max
‖x‖X≤1

〈Ax, ỹ〉. (4.8)

By the same arguments we can get the same expression for Lyx up to rearrangement
of maximums. Then since the `2-norm is the conjugate norm for the `2-norm , we
rewrite (4.8) as follows

Lxy = max
‖x‖X≤1

‖Ax‖2. (4.9)

By the definition of matrix A we get

‖Ax‖2
2 =

m∑
i=1

∥∥∥∥Axi − (p0
)∥∥∥∥2

2

≤
m∑
i=1

‖Axi‖2
2 +m‖p‖2

2. (4.10)
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Algorithm 8 Mirror Prox for the Wasserstein Barycenter Problem
Input: measures q1, ..., qm, linearized cost matrix d, incidence matrix A, step η, p0 = 1

n1n,
x0

1 = ... = x0
m = 1

n21n2 , y0
1 = ... = y0

m = 02n

1: α = 2‖d‖∞ηn, β = 6‖d‖∞η log n/m, γ = 3η log n.
2: for k = 0, 1, 2, · · · , N − 1 do
3: for i = 1, 2, · · · ,m do
4:

vk+1
i = yki + α

(
Axki −

(
pk

qi

))
,

Project vk+1
i onto [−1, 1]2n

5:

uk+1
i =

xki � exp
{
−γ
(
d+ 2‖d‖∞A>yki

)}
n2∑
l=1

[xki ]l exp
{
−γ
(
[d]l + 2‖d‖∞[A>yki ]l

)}
6: end for
7:

sk+1 =
pk � exp

{
β
∑m

i=1[yki ]1...n
}∑n

l=1[pk]l exp
{
β
∑m

i=1[yki ]l
}

8: for i = 1, 2, · · · ,m do
9:

yk+1
i = yki + α

(
Auk+1

i −
(
sk+1

qi

))
Project yk+1

i onto [−1, 1]2n

10:

xk+1
i =

xki � exp
{
−γ
(
d+ 2‖d‖∞A>vk+1

i

)}
n2∑
l=1

[xki ]l exp
{
−γ
(

[d]l + 2‖d‖∞[A>vk+1
i ]l

)}
11: end for
12:

pk+1 =
pk � exp

{
β
∑m

i=1[vk+1
i ]1...n

}
∑n

l=1[pk]l exp
{
β
∑m

i=1[vk+1
i ]l

}
13: end for

Output: ũ =
N∑
k=1


uk1
...
ukm
sk

, ṽ =
N∑
k=1

v
k
1
...
vkm



The last bound holds due to 〈Axi, (p>, 0>n )>〉 ≥ 0 since the entries of A, x, p are

76



4.1. Mirror Prox for Wasserstein Barycenters

non-zero. By the definition of vector x we have

max
‖x‖X≤1

‖Ax‖2
2 = max

‖x‖2X≤1
‖Ax‖2

2 = max∑m
i=1 ‖xi‖21+m‖p‖21≤1

‖Ax‖2
2

(4.22)
= max

α∈∆m+1

(
m∑
i=1

max
‖xi‖1≤

√
αi
‖Axi‖2

2 + max
‖p‖1≤
√

αm+1
m

m‖p‖2
2

)

= max
α∈∆m+1

(
m∑
i=1

αi max
‖xi‖1≤1

‖Axi‖2
2 + max

‖p‖1≤1
αm+1‖p‖2

2

)
. (4.11)

By the definition of incidence matrix A we get that Axi = (h>1 , h
>
2 )>,where h1 and

h2 such that 1>h1 = 1>h2 =
∑n2

j=1[xi]j = 1 since xi ∈ ∆n2 ∀i = 1, ...,m. Thus,

‖Axi‖2
2 = ‖h1‖2

2 + ‖h2‖2
2 ≤ ‖h1‖2

1 + ‖h2‖2
1 = 2. (4.12)

For the second term in the r.h.s. of (4.11) we have

max
‖p‖1≤1

αm+1‖p‖2
2 ≤ max

‖p‖1≤1
αm+1‖p‖2

1 = αm+1. (4.13)

Using (4.12) and (4.13) in (4.11) we get

max
‖x‖X≤1

‖Ax‖2
2 ≤ max

α∈∆m+1

(
2

m∑
i=1

αi + αm+1

)
≤ max

α∈∆m+1

2
m+1∑
i=1

αi = 2.

Using this for (4.9) we have that Lxy = Lyx =
√

2. To get the constant of
smoothness for function F (x,y) we multiply these constants by 2‖d‖∞/m and finish
the proof.

�
The next theorem gives the complexity bound of the MP algorithm for the

Wasserstein barycenter problem with prox-function dZ(z). For this particular
problem, formulated as a saddle-point problem (4.2), the MP algorithm has closed-
form solutions presented in Algorithm 8.

Theorem 4.1.3. Assume that F (x,y) in (4.2) is (0, 2
√

2‖d‖∞/m, 2
√

2‖d‖∞/m, 0)-
smooth and RX =

√
3m log n, RY =

√
mn. Then after N = 8‖d‖∞

√
6n log n/ε

iterations, Algorithm 8 with η = 1
4‖d‖∞

√
6n logn

outputs a pair (ũ, ṽ) ∈ (X ,Y) such
that

max
y∈Y

F (ũ,y)−min
x∈X

F (x, ṽ) ≤ ε.

The total complexity of Algorithm 8 is

O
(
mn2

√
n log n‖d‖∞ε−1

)
.
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Proof. By Lemma 4.1.2, F (x,y) is (0, 2
√

2‖d‖∞/m, 2
√

2‖d‖∞/m, 0)-smooth. Then
the bound on duality gap follows from the direct substitution of the expressions for
RX , RY and Lxx, Lxy, Lyx, Lyy in (4.4) and (4.5).

The complexity of one iteration of Algorithm 8 is O (mn2) as the number of
non-zero elements in matrix A is 2n2, and m is the number of vector-components in
y and x. Multiplying this by the number of iterations N , we get the last statement
of the theorem.

�
As d is the vectorized cost matrix of C, we may reformulate the complexity

results of Theorem 4.1.3 with respect to C as O
(
mn2
√
n log n‖C‖∞ε−1

)
.

Moreover, the complexity results may be improved by
√
n term (Dvinskikh and

Tiapkin, 2021).

Theorem 4.1.4. (Dvinskikh and Tiapkin, 2021) Dual Extrapolation algorithm with
area-convexity after

N = 8‖d‖∞(60 log n+ 9‖d‖∞)/ε

iterations outputs a pair (ũ, ṽ) ∈ (X ,Y) such that

max
y∈Y

F (ũ,y)−min
x∈X

F (x, ṽ) ≤ ε.

It can be done in wall-clock time Õ(mn2‖d‖∞ε−1).

4.2 Decentralized Mirror Prox for Wasserstein
Berycenters

4.2.1 Decentralized Saddle-Point Formulation

To present the Mirror Prox algorithm for the Wasserstein Barycenter problem in a
decentralized manner, we rewrite problem (4.1) by introducing artificial constraints
p1 = p2 = ... = pm as follows

1

m

m∑
i=1

min
p∈∆n,

p1=...=pm

min
xi∈∆n2

max
yi∈[−1,1]2n

{d>xi + 2‖d‖∞
(
y>i Axi − b>i yi

)
}. (4.14)

Next we rewrite this problem for the stacked column vectors p = (p>1 ∈ ∆n, · · · , p>m ∈
∆n)> ∈ P ,

∏m ∆n, x = (x>1 ∈ ∆n2 , . . . , x>m ∈ ∆n2)> ∈ X ,
∏m ∆n2 (where∏m ∆n2 is the Cartesian product of m simplices), and y = (y>1 , . . . , y

>
m)> ∈ Y ,

[−1, 1]2mn. Then we rewrite the objective in (4.14) without normalizing factor 1/m.
We intend to minimize this objective with accuracy mε.

min
x∈X ,
p∈P,

p1=...=pm

max
y∈Y

f(x,p,y) , d>x + 2‖d‖∞
(
y>Ax− b>y

)
, (4.15)
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where b = (p>1 , q
>
1 , ..., p

>
m, q

>
m)>, d = (d>, . . . , d>)> and A = diag{A, ..., A} ∈

{0, 1}2mn×mn2 is block-diagonal matrix. To enable distributed computation of this
problem, the constraint p1 = · · · = pm is replaced byWp = 0 (matrixW is defined in
(3.27)). Finally, we introduce Lagrangian dual variable z = (z>1 , ..., z

>
m) ∈ Z , Rnm,

scaled by γ, to constraint Wp = 0 for the problem (4.15) and rewrite it as follows

min
x∈X ,
p∈P

max
y∈Y,
z∈Rnm

F (x,p,y, z) , d>x + 2‖d‖∞
(
y>Ax− b>y

)
+ γ〈z,Wp〉. (4.16)

4.2.2 Algorithm and Convergence Rate

Setup.

• We endow space V , Y × Z , [−1, 1]2nm × Rnm with the standard Eu-
clidean setup: the Euclidean norm ‖ · ‖2, prox-function dv(v) = 1

2
‖v‖2

2,
and the corresponding Bregman divergence Bv = 1

2
‖v − v̆‖2

2. We define
R2

v = max
v∈V∩BR(0)

dv(v) − min
v∈V∩BR(0)

dv(v). Here BR(0) is a ball of radius R

centered in 0.

• We endow space U , X × P ,
∏m ∆n2 ×

∏m ∆n with the folllowing norm
‖u‖u =

√∑m
i=1 ‖xi‖2

1 +
∑m

i=1 ‖pi‖2
1, where ‖ · ‖1 is the `1-norm, prox-function

du(u) =
∑m

i=1〈xi, log xi〉+
∑m

i=1〈pi, log pi〉, and the corresponding Bregman
divergence

Bu(u, ŭ) =
m∑
i=1

〈xi, log(xi/x̆i)〉 −
m∑
i=1

1>n2(xi − x̆i)

+
m∑
i=1

〈pi, log(pi/p̆i)〉 −
m∑
i=1

1>n (pi − p̆i).

We define R2
u = max

u∈U
du(u)−min

u∈U
du(u),

We consider mirror prox algorithm on space U × V with the prox-function adu(u) +
bdv(v) and the corresponding Bregman divergence aBu(u, ŭ) + bBv(v, v̆), where
a = 1

R2
u
, b = 1

R2
v
.

The gradient operator for F (x,p,y, z) is defined by

G(x,p,y, z) =


∇xF (x,p,y, z)
∇pF (x,p,y, z)
−∇yF (x,p,y, z)
−∇zF (x,p,y, z)

 =


d+ 2‖d‖∞A>y

γW>z− 2‖d‖∞{[yi]1...n}mi=1

−2‖d‖∞(Ax− b)
−γWp

 .

Here [yi]1...n is the first n component of vector yi ∈ [−1, 1]2n, and {[yi]1...n}mi=1 is a
short form of ([y1]1...n, [y2]1...n, ..., [ym]1...n).

Lemma 4.2.1. Objective F (u,v) in (4.16) is (Luu, Luv, Lvu, Lvv)-smooth with
Luu = Lvv = 0 and Luv = Lvu =

√
8‖d‖2

∞ + γλmax(W )2.
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Proof of Lemma (4.2.1). As F (u,v) is bilinear, Luu = Lvv = 0. Next, we estimate
Luv and Lvu. By the definition of Luv and the spaces U ,V we have

‖∇uF (u,v)−∇uF (u,v′)‖U∗ ≤ Luv‖v − v′‖2. (4.17)

From the definition of dual norm, it follows

‖∇uF (u,v)−∇uF (u,v′)‖U∗ = max
‖u‖U≤1

〈u,∇uF (u,v)−∇uF (u,v′)〉.

From this and (4.17) we get

max
‖u‖U≤1

〈u,∇uF (u,v)−∇uF (u,v′)〉 ≤ Luv‖v − v′‖2. (4.18)

By the definition of F (·) and U = X × P we have

∇uF =

(
∇xF
∇pF

)
=

(
d+ 2‖d‖∞A>y

γW>z− 2‖d‖∞{[yi]1...n}mi=1

)
.

From this and V , Y × Z,

∇uF (u,v)−∇uF (u,v′) =

(
2‖d‖∞A>(y − y′)

γW>(z− z′)− 2‖d‖∞({[yi − y′i]1...n}mi=1)

)
=

(
2‖d‖∞A −2‖d‖∞E
0mn×mn2 γW

)>(
y − y′

z− z′

)
,

where E ∈ {1, 0}2mn×mn is block-diagonal matrix

E =



(
In

0n×n

)
· · · 02n×n

... . . . ...

02n×n · · ·
(
In

0n×n

)
 .

From this it follows that ∇uF (·) is linear function in v − v′, then (4.18) can be
rewritten as

Luv = max
‖v−v′‖2≤1

max
‖u‖U≤1

〈
u,

(
2‖d‖∞A −2‖d‖∞E
0mn×mn2 γW

)> (
v − v′

)〉
. (4.19)

By the same arguments we can get the same expression for Lvu up to rearrangement
of maximums. Next, we use the fact that the `2-norm is the conjugate norm for the
`2-norm. From this and (4.19) it follows

Luv = max
‖u‖U≤1

∥∥∥∥(2‖d‖∞A −2‖d‖∞E
0mn×mn2 γW

)
u

∥∥∥∥
2

. (4.20)
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After that, we write

max
‖u‖U≤1

∥∥∥∥(2‖d‖∞A −2‖d‖∞E
0mn×mn2 γW

)(
x
p

)∥∥∥∥2

2

(4.21)

= max
‖u‖2U≤1

∥∥∥∥(2‖d‖∞(Ax− Ep)
γWp

)∥∥∥∥2

2

= max
‖x‖2X+‖p‖2P≤1

(
4‖d‖2

∞‖Ax− Ep‖2
2 + γ2‖Wp‖2

2

)
≤ 4‖d‖2

∞ max
‖x‖2X+‖p‖2P≤1

‖Ax− Ep‖2
2 + γ2 max

‖p‖2P≤1
‖Wp‖2

2.

We consider the first term of the r.h.s. of (4.21) under the minimum

‖Ax− Ep‖2
2 =

m∑
i=1

∥∥∥∥Axi − (pi0n

)∥∥∥∥2

2

≤
m∑
i=1

‖Axi‖2
2 +

m∑
i=1

‖pi‖2
2. (4.22)

The last bound holds due to 〈Axi, (p>i , 0>n )〉 ≥ 0 as the entries of A,x,p are non-
negative. Next we take the minimum in (4.22)

max
‖x‖2X+‖p‖2P≤1

‖Ax− Ep‖2
2 = max∑m

i=1(‖xi‖21+‖pi‖21)≤1

‖Ax− Ep‖2
2

(4.22)
≤ max

α∈∆2m

(
m∑
i=1

max
‖xi‖1≤

√
αi
‖Axi‖2

2 +
m∑
i=1

max
‖pi‖1≤

√
αi+m
‖pi‖2

2

)

= max
α∈∆2m

(
m∑
i=1

αi max
‖xi‖1≤1

‖Axi‖2
2 +

m∑
i=1

αi+m max
‖pi‖1≤1

‖pi‖2
2

)
.

(4.23)

By the definition of incidence matrix A we get Axi = (h>1 , h
>
2 ), where h1 and h2

such that 1>h1 = 1>h2 =
∑n2

j=1[xi]j = 1 as xi ∈ ∆n2 ∀i = 1, ...,m. Thus,

‖Axi‖2
2 = ‖h1‖2

2 + ‖h2‖2
2 ≤ ‖h1‖2

1 + ‖h2‖2
1 = 2. (4.24)

As pi ∈ ∆n, ∀i = 1, ...,m we have

max
‖pi‖1≤1

‖pi‖2
2 ≤ max

‖pi‖1≤1
‖pi‖2

1 = 1. (4.25)

Using (4.24) and (4.25) in (4.23) we get

max
‖x‖2X+‖p‖2P≤1

‖Ax− Ep‖2
2 ≤ max

α∈∆2m

(
2

m∑
i=1

αi +
2m∑

i=m+1

αi

)
≤ max

α∈∆2m

2
2m∑
i=1

αi = 2.

(4.26)

Now we consider the second term of the r.h.s. of (4.21).

max
‖p‖2P≤1

‖Wp‖2
2 = max∑m

i=1 ‖pi‖21≤1
‖Wp‖2

2 . (4.27)
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The set
∑m

i=1 ‖pi‖2
1 ≤ 1 is contained in the set

∑n
j=1

∑m
i=1[pi]

2
j ≤ 1 as cros-product

terms of ‖pi‖2
1 are non-negative. Thus, we can change the constraint in the minimum

in (4.27) as follows

max∑m
i=1 ‖pi‖21≤1

‖Wp‖2
2 ≤ max∑n

j=1

∑m
i=1[pi]2j≤1

‖Wp‖2
2 = max

‖p‖22≤1
‖Wp‖2

2 (4.28)

= max
‖p‖2≤1

‖Wp‖2
2 , λmax(W)2 = λmax(W )2. (4.29)

The last inequality holds due to W , W ⊗ In and the properties of the Kronecker
product for eigenvalues. Using(4.26) and (4.28) in (4.21) for the estimation of Luv

from (4.20), we get

Luv = Lvu =
√

8‖d‖2
∞ + γ2λmax(W )2.

This lemma allows us to obtain the following convergence result

Theorem 4.2.2. Let ‖z‖2
2 ≤ R2, then Ru =

√
3m log n and Rv =

√
mn+R2/2

with

R2 =
‖∇pf(x,p∗,y)‖2

2

γλ+
min (W )

≤ 4mn‖d‖2
∞

γλ+
min(W )

,

where λ+
min(W ) is the minimal positive eigenvalue of W . Then after N = 4LuvRuRv

mε

iterations, Algorithm 9 with η = 1
2LuvRuRu

outputs a pair (ũ, ṽ) such that

max
y∈Y,
‖z‖2≤R

F (ũ,y, z)− min
x∈X ,
p∈P

F (x,p, ṽ) ≤ ε.

The total complexity of Algorithm 9 per node is

O

(
n2

ε

√
n log n

√
χ‖d‖3/2

∞

)
.

Proof of Theorem 4.2.2. The constants of smoothness for F (u,v) follows from
Lemma 4.2.1. The bound on duality gap follows from the theory of Mirror-Prox
with proper RU , RV and Luv, Luv, Lvu, Lvv.

To estimate R, we calculate the `2-norm of the objective in (4.15)

‖∇pf(x,p∗,y)‖2
2 = ‖2‖d‖∞{[yi]1...n}mi=1‖

2
2 =

m∑
i=1

4‖d‖2
∞‖[yi]1...n‖2

2 ≤ 4mn‖d‖2
∞.

Thus, we get

R2 =
‖∇pf(x,p∗,y)‖2

2

γλ+
min (W )

≤ 4mn‖d‖2
∞

γλ+
min(W )

.
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To simplify the expression for Ru, Rv and Luv we use that for any a, b, a + b ≤
2 max{a, b} and

√
a2 + b2 ≤

√
2 max{a, b}:

Rv = mn+R2/2 ≤
√

2mnmax

{
1,

2‖d‖∞√
γλ+

min(W )

}
Luv ≤

√
2 max{

√
8‖d‖∞, γλmax(W )}

The complexity of one iteration of Alg. 9 per node is O (n2) as the number of
non-zero elements in matrix A is 2n2. Multiplying this by the number of iterations
N we get

O(n2N) = O
(
n2LuvRuRv/(mε)

)
= O

(
n2

mε

√
m log n

√
mnmax

{
1,

2‖d‖∞√
γλ+

min(W )

}
max{

√
8‖d‖∞, γλmax(W )}

)

= O

(
n2

ε

√
n log nmax

{
1,

2‖d‖∞√
γλ+

min(W )

}
max{

√
8‖d‖∞, γλmax(W )}

)
.

We can minimize this expression over γ to get the minimal total complexity. We
take γ =

√
8‖d‖∞

λmax(W )
and we get the final statement

O

(
n2

ε

√
n log n

√
χ‖d‖3/2

∞

)
, (4.30)

where we used the notation of the condition number for matrix W : χ = λmax(W )

λ+
min(W )

.

4.2.3 Experiments

Next, we illustrate the work of Algorithm 9. We randomly generated 10 Gaussian
measures with equally spaced support of 100 points in [−10,−10], mean from [−5, 5]
and variance from [0.8, 1.8]. We studied the convergence of calculated barycenters
to the theoretical true barycenter (Delon and Desolneux, 2020) on the Erdős-Rényi
random graph with probability of edge creation p = 0.5. Figure 4.3 shows the
the convergence of Algorithm 9 with respect to the function optimality gap and
consensus gap. The slope ration −1 on logarithmic scale fits theoretical dependence
of the desired accuracy ε on number of iterations (N ∼ ε−1, Theorem 4.2.2).
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Figure 4.3: Convergence of Decentralized Mirror-Prox for Wasserstein Barycenters
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Algorithm 9 Decentralized Mirror-Prox for Wasserstein Barycenters
Input: measures q1, ..., qm, linearized cost matrix d, incidence matrix A, step η, starting

points p1 = 1
n1n, x

1
1 = ... = x1

m = 1
n21n2 , y1

1 = ... = y1
m = 02n

1: α = 2‖d‖∞η(mn+R2/2)/m, β = 6‖d‖∞η log n, κ = 3η log n, θ = η(mn+R2/2)/m
2: for k = 1, 2, · · · , N − 1 do
3: for i = 1, 2, · · · ,m do
4:

uk+1
i =

xki � exp
{
−κ
(
d+ 2‖d‖∞A>yki

)}
n2∑
l=1

[xki ]l exp
{
−κ
(
[d]l + 2‖d‖∞[A>yki ]l

)}
5:

sk+1
i =

pki � exp
{
β[yki ]1...n − 3η log n

∑m
j=1 γWijz

k
j

}
∑n

l=1[pki ]l exp
{
β[yki ]l − 3η log n

[∑m
j=1 γWijzkj

]
l

}
6:

vk+1
i = yki + α

(
Axki −

(
pki
qi

))
, project vk+1

i onto [−1, 1]2n.

7:

λk+1
i = zki + θ

m∑
j=1

γWijp
k
j

8:

xk+1
i =

xki � exp
{
−κ
(
d+ 2‖d‖∞A>vk+1

i

)}
n2∑
l=1

[xki ]l exp
{
−κ
(

[d]l + 2‖d‖∞[A>vk+1
i ]l

)}
9:

pk+1
i =

pki � exp
{
β[vk+1

i ]1...n − 3η log n
∑m

j=1 γWijλ
k+1
j

}
∑n

l=1[pki ]l exp
{
β[vk+1

i ]l − 3η log n
[∑m

j=1 γWijλ
k+1
j

]
l

}
10:

yk+1
i = yki + α

(
Auk+1

i −
(
sk+1
i

qi

))
, project yk+1

i onto [−1, 1]2n.

11:

zk+1
i = zki + θ

m∑
j=1

γWijs
k+1
j

12: end for
13: end for

Output: ũ = 1
N

N∑
k=1


uk1
...
ukm
sk1
..., skm

, ṽ = 1
N

N∑
k=1



vk1
...
vkm
λk1
...
λkm


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Chapter 5

Decentralized Algorithms for
Stochastic Optimization

This Chapter has interests other than Wasserstein barycenters, it presents the
optimal bounds on the number of communication rounds and dual oracle calls of
the gradient of the dual objective per node in the problem of minimizing the sum of
strongly convex and Lipschitz smooth functions. This chapter complements Chapter
3 for the case of additionally Lipschitz smooth (stochastic) objectives.

We consider minimizing the average of functions in a distributed manner

min
x∈Rn

1

m

m∑
i=1

fi(x), (5.1)

where fi(x)’s are γ-strongly convex and L-Lipschitz smooth. We assume that each
fi(x) has the Fenchel–Legendre representation

fi(x) = max
y∈Rn
{〈x, y〉 − ψi(y)}

with convex ψi(y). The case when fi’s are dual-friendly (have the Fenchel–Legendre
representation) is the case of the Wasserstein barycenter problem (see Chapter 3).

5.1 Dual Approach for Optimization Problem
with Affine Constraints

Similarly to Chapter 3, we firstly derive (stochastic) dual algorithms for a general
minimization problem with affine constrains where the objective is strongly convex
and Lipschitz smooth, and then we show how to execute these algorithms in a
decentralized setting for problem (5.1).

We consider a general minimization problem with affine constrains

min
Ax=b, x∈Rn

F (x), (5.2)
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where F (x) has LF -Lipschitz continuous gradient and γF -strongly convex in the
`2-norm, KerA 6= ∅. Let x∗ = arg min

Ax=b,
x∈Rn

F (x).

Remark 2. We notice that turning to the dual problems does not oblige us using
the dual oracle. Instead, we can use the primal oracle and the Moreau theorem
(Rockafellar, 2015) with the Fenchel–Legendre representation. The corresponding
maximization problem can be solved using the first-order oracle for the primal
objective. However, such approach will not contribute to obtaining the optimal
bounds on the number of primal first-order oracle calls.

The dual problem (up to a sign) to (5.2) is the following

min
y∈Rn

Ψ(y) , max
x∈Rn
{〈y, Ax− b〉 − F (x)} , (5.3)

where Ψ is LΨ–Lipschitz smooth with LΨ = λmax(ATA)
γF

and γΨ–strongly convex with

γΨ =
λ+

min(ATA)

LF
in the `2-norm in y0 + (KerAT )⊥.1 The Lipschitz smoothness of dual

objective Ψ follows from strong convexity of the primal objective F (x) (Theorem
0.0.6), the strong convexity of Ψ follows from Lipschitz smoothness of f(x) (Kakade
et al., 2009; Rockafellar, 2015).

By Demyanov–Danskin theorem we have

∇Ψ(y) = Ax(A>y)− b, (5.4)

where
x(ATy) = arg max

x∈Rn
{〈y, Ax− b〉 − F (x)} . (5.5)

Let us define y∗ = arg min
y∈Rn

Ψ(y).

For strongly convex objective, fast gradient method (see Chapter 3 for its
stochastic version) is not a primal-dual method (Nesterov, 2009; Nemirovski et al.,
2010), hence, it cannot be used to solve the primal-dual pair of problems (5.2) and
(5.3). The restart technique (Juditsky and Nesterov, 2014; Nemirovskij and Yudin,
1983; Gasnikov, 2017) cannot be also used because the radius of a solution is not a
distance from a starting point: Ry , ‖y0‖2 + ‖y0 − y∗‖2 (usually we take y0 = 0).
The next theorem provides a method to solve the primal-dual pair of problems (5.2)
and (5.3).

Theorem 5.1.1. Let the objective F (x) in (5.2) be LF -Lipschitz smooth and γF -
strongly convex in the `2-norm. Let yN be an output of the OGM-G algorithm (Kim
and Fessler, 2021). Let Ry be such that ‖y∗‖2 ≤ Ry, where y∗ is the solution of
(5.3). Then after

Õ

(√
LF
γF

χ(A>A)

)
(5.6)

1Since ImA = (KerAT )⊥ we will have that all the points ỹk, zk, yk, generated by fast gradient
method and methods based on fast gradient method, belong to y0 + (KerAT )⊥. That is, from the
point of view of estimates this means, that we can consider Ψ to be γΨ-strongly convex everywhere.
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iterations (number of oracle calls of ∇Ψ(y)), the following holds for xN = x(ATyN )

F (xN)− F (x∗) ≤ ε, ‖AxN − b‖2 ≤ ε/Ry. (5.7)

Proof. Let Ψ(y) be dual function for F (x) defined in (5.3). Ψ is LΨ–Lipschitz
smooth with LΨ = λmax(ATA)

γF
and γΨ–strongly convex with γΨ =

λ+
min(ATA)

LF
in the

`2-norm in y0 + (KerAT )⊥. Then we have (Allen-Zhu, 2018; Anikin et al., 2017;
Nesterov, 2012)

F (x(ATy))− F (x∗) ≤ 〈∇Ψ(y), y〉 = 〈Ax(A>y)− b, y〉. (5.8)

Let xN and yN be outputs of an algorithm solving the pair of primal-dual problems
(5.2) and (5.3) and let Ry be such that ‖y∗‖2 ≤ Ry. Since the dual objective is
strongly convex, the following relation for xN and yN holds

xN = x(ATyN). (5.9)

We have

F (xN)− F (x∗) = F (x(ATyN))− F (x∗)
(5.8)
≤ 〈∇Ψ(yN), yN〉 ≤ ‖∇Ψ(yN)‖2‖yN‖2

≤ 2Ry‖∇Ψ(yN)‖2,

where we used the Cauchy—Schwarz inequality and (‖yN‖2 ≤ 2Ry). Hence, to get
F (xN)− F (x∗) ≤ ε from (5.7) we need to prove

‖∇Ψ(yN)‖2 ≤ ε/(2Ry). (5.10)

Moreover, from (5.4) and (5.9) it follows that ∇Ψ(yN) = AxN − b. Thus if we get
(5.10), we prove (5.7).

In order to prove this, we refer to a method which converges in term of the norm
of the gradient, for instance, OGM-G (Kim and Fessler, 2021). It has the following
convergence rate

‖∇Ψ(yN)‖2 = O

(
LΨ‖y0 − y∗‖2

N2

)
= O

(
LΨ‖∇Ψ(y0)‖2

γΨN2

)
,

where we used

γ

2
‖y0 − y∗‖2

2 ≤ Ψ(y0)−Ψ(y∗) ≤ 1

2γΨ

‖∇Ψ(y0)‖2
2.

Thus, after N̄ = Õ
(√

LΨ

γΨ

)
iterations of OGM-G we will have

‖∇Ψ(yN̄)‖2 ≤
1

2
‖∇Ψ(y0)‖2.
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So after l = log2

(
‖∇Ψ(y0)‖2

Ry
ε

)
restarts (y0 := yN̄) we will obtain (5.10). This

approach requires

O

(√
LΨ

γΨ

log

(
‖∇Ψ(y0)‖2

Ry

ε

))

number of oracle calls of ∇Ψ(y) (that is Ax(ATy)− b ). Using LΨ = λmax(ATA)
L

and

γΨ =
λ+

min(ATA)

L
, we obtain

Õ

(√
LΨ

γΨ

)
= Õ

(√
λmax(A>A)/γ

λmin(A>A)/L

)
= Õ

(√
LF
γF

χ(A>A)

)
.

The same result with the replacement√
LΨ

γΨ

log

(
‖∇Ψ(y0)‖2

Ry

ε

)
→

√
LΨ

γΨ

log

(
2L2

Ψ

R4
y

ε2

)
can be obtained by using fast gradient method for Lipschitz smooth dual objective
(but not strongly convex) with bound

√
LΨ

γΨ
log
(
LΨR

2
y

ε′

)
(Nesterov, 2010) and desired

accuracy ε′ = ε2

2LΨR2
y
. This follows from

1

2LΨ

‖∇Ψ(yN)‖2
2 ≤ Ψ(yN)−Ψ(y∗)≤ ε′.

5.2 Stochastic Dual Approach for Optimization
Problem with Affine Constraints

Now we assume that we are given stochastic oracle ∇Ψ(y, ξ) with sub-Gaussian
variance σ2

Ψ (Jin et al., 2019).

E∇Ψ(y, ξ) = ∇Ψ(y)

E exp
(
‖∇Ψ(y, ξ)−∇Ψ(y)‖2

2/σ
2
Ψ

)
≤ exp(1).

Now we consider a method form (Foster et al., 2019) called RRMA+AC-SA2

(see also (Allen-Zhu, 2018) in the non-accelerated but composite case). This
algorithm converges as follows (for simplicity we skip polylogarithmic factors and
high probability terminology)

‖∇Ψ(yN)‖2
2 = Õ

(
L2

Ψ‖y0 − y∗‖2
2

N4
+
σ2

Ψ

N

)
= Õ

(
L2

Ψ‖∇Ψ(y0)‖2
2

γ2
ΨN

4
+
σ2

Ψ

N

)
.
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If we use restart technique of size N̄ = Õ
(√

LΨ

γΨ

)
and batched gradient with batch

size
rk+1 = Õ

(
σ2

Ψ

N̄‖∇Ψ(ȳk+1)‖2
2

)
,

where ȳk is the output from the previous restart, then after
l = O

(
log2

(
‖∇Ψ(y0)‖2

Ry
ε

))
restarts we will get

‖∇Ψ(ȳl)‖2 ≤ ε/Ry.

Therefore, the total number of stochastic dual oracle calls will be

Õ

(
σ2

ΨR
2
y

ε2

)
. (5.11)

Note that the same bound takes place in the non-strongly convex case (γΨ = 0).
From (Allen-Zhu, 2018; Jin et al., 2019) it is known that this bound cannot be
improved.

5.3 Decentralized Optimization

Next we apply the results for minimizing the average of the functions in a distributed
setting

min
x∈Rn

F (x) ,
1

m

m∑
i=1

fi(x), (P1)

where fi’s are L-Lipschitz smooth and γ-strongly convex. We seek to solve (P1) on
a network of agents in a decentralized manner. To do so, we similarly to Chapter
3 equivalently rewrite (P1) using communication matrix W defined in (3.27) as
follows

min√
Wx=0,

x1,...,xm∈Rn

F (x) ,
1

m

m∑
i=1

fi(xi), (P2)

x = (x>1 , x
>
2 , , ..., x

>
n )> is the stack column vector. We also consider a stochastic

version of problem (P2), whose objectives fi’s are given by their expectations:
fi(xi) = Efi(xi, ξi). If fi’s are dual-friendly then we can construct the dual problem
to problem (P2) with dual Lagrangian variable y = [yT1 ∈ Rn, · · · , yTm ∈ Rn]T ∈ Rmn

min
y∈Rmn

Ψ(y) ,
1

m

m∑
i=1

ψi(m[
√
Wy]i), (D2)

where ψi(λi) = max
xi∈Rn

{〈λi, xi〉 − fi(xi)} is the Fenchel–Legendre transform of fi(xi)

and the vector [
√
Wx]i represents the i-th n-dimensional block of

√
Wx. From

the fact that F (x) is LF–Lipschitz smooth and γF–strongly convex it follows that
Ψ(y) is LΨ–Lipschitz smooth with LΨ = λmax(W )

γF
and γΨ–strongly convex with
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γΨ =
λ+

min(W )

LF
in the `2-norm in y0 + (KerAT )⊥. Here LF = L/m, γF = γ/m. We

also consider the stochastic version of problem (D2), whose objectives ψi’s are given
by their expectations ψi(λi) = E[ψi(λi, ξi)].

We consider the unbiased stochastic dual oracle returns ∇ψi(λi, ξi) under the
following σ2

ψ-sub-Gaussian variance condition (for all i = 1, ...,m)

E exp
(
‖∇ψi(λi, ξi)−∇ψi(λi)‖2

2/σ
2
ψ

)
≤ exp(1).

Problem (D2) can be considered as a particular case of problem (5.2) with with
A =

√
W , b = 0 and σ2

Ψ = λmax(W )mσ2
ψ (Lemma 3.2.1).

Similarly to Chapter 3 we make the following change of variables

ỹ :=
√
Wỹ, z :=

√
Wz, y :=

√
Wy

to present the algorithms of this Chapter solving the pair of primal-dual problems
(P2) and (D2) in a decentralized manner. We also need to multiply the corresponding
steps in the algorithm by

√
W.

The bound (5.6) for the pair of decentralized primal-dual problems (P2) and
(D2) will change as follows

Õ

(√
L

γ
χ(W )

)
,

where we used A =
√
W and the symmetry of

√
W , LF = L/m, γF = γ/m for

(P2).
The bound (5.11) for the pair of decentralized primal-dual problems (P2) and

(D2) will change as follows

Õ

(
max

{
σ2

ΨR
2
y

ε2
,

√
L

γ
χ(W )

})
= Õ

(
max

{
M2σ2

ψ

ε2
χ(W ),

√
L

γ
χ(W )

})
,

where we used σ2
Ψ = λmax(W )mσ2

ψ (Lemma 3.2.1) and (Lan et al., 2017)

‖λ∗‖2
2 ≤ R2

λ =
‖∇F (x∗)‖2

2

λ+
min(W )

≤

∥∥∥∥∥∥∥ 1
m

 ∇f1(x∗)
...

∇fm(x∗)


∥∥∥∥∥∥∥

2

2

λ+
min(W )

=

∑m
i=1 ‖∇fi(x∗)‖2

2

m2λ+
min(W )

≤ M2

mλ+
min(W )

.

Tables 5.1 and 5.2 summarize these bounds together with bounds from Chapter
5. Note that the bounds on communication steps (rounds) are optimal (up to a
logarithmic factor) due to (Arjevani and Shamir, 2015; Scaman et al., 2017, 2018).
Bounds for the oracle calls per node are probably optimal in the class of methods
with optimal number of communication steps (up to a logarithmic factor) in the
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Table 5.1: The optimal bounds for dual deterministic oracle

Property of fi
γ-strongly convex,
L-smooth

γ-strongly convex,
‖∇fi(x∗)‖2 ≤M

The number of
communication
rounds

Õ
(√

L
γ
χ(W )

)
O
(√

M2

γε
χ(W )

)
The number of
oracle calls of
∇ψi(λi) per node i

Õ
(√

L
γ
χ(W )

)
O
(√

M2

γε
χ(W )

)

Table 5.2: The optimal bounds for dual stochastic (unbiased) oracle

Property of fi
γ-strongly convex,
L-smooth

γ-strongly convex,
‖∇fi(x∗)‖2 ≤M

The number of
communication
rounds

Õ
(√

L
γ
χ(W )

)
O
(√

M2

γε
χ(W )

)
The number of
oracle calls of
∇ψi(λi, ξi)
per node i

Õ
(

max
{
M2σ2

ψ

ε2
χ(W ),

√
L
γ
χ(W )

})
O
(

max
{
M2σ2

ψ

ε2
χ(W ),

√
M2

γε
χ(W )

})

deterministic case (Allen-Zhu, 2018; Foster et al., 2019; Woodworth et al., 2018)
and optimal for the non-smooth stochastic primal oracle and stochastic dual oracle
for parallel architecture.2 For stochastic oracle the bounds hold in terms of high
probability deviations (we skip the corresponding logarithmic factor).

The detailed proofs of the statements of this Chapter can be found in the arXiv
preprint (Gorbunov et al., 2019).

2In parallel architecture the bounds on stochastic oracle calls per node of type max{B,D} can
be parallel up to B/D processors.
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