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Zusammenfassung

Die Analyse von Next-Generation Sequencing (NGS) Daten ist ein zentraler Aspekt der moder-

nen genomischen Forschung. Bei der Extraktion von Daten aus den beiden am häufigsten verwendeten

Quellorganismen bestehen jedoch vielfältige Problemstellungen. Wir untersuchen in dieser Arbeit die

Problemstellungen der Fehlidentifizierung von Krebszelllinienkulturen und den Mangel an geeigneten

Patienten-abgeleiteten Datensätzen für das Trainieren von maschinellen Lernmodellen. Die Fehliden-

tifizierung von Krebszelllinienkulturen stellt eine bedeutende Fehlerquelle dar und wird durch die Ab-

wesenheit geeigneter Computer-gestützter Kultur-Identifizierungsalgorithmen zusätzlich erschwert. Im

Kontrast hierzu sind Patienten-abgeleitete Biopsien selten von Fehlidentifizierungen betroffen jedoch

für seltene Krebsarten, insbesondere solche mit hoher Subtyp-Diversität, wenig bis überhaupt nicht

verfügbar was z.B. die Anwendung von artifizieller Intelligenz stark einschränkt. Diese Thesis präsentiert

Lösungsansätze für diese Problemstellungen wobei übergreifend das Konzept der Abstandsquantifizierung

zwischen sequenzierten Entitäten verwendet wird.

Im ersten Kapitel wird ein neuartiger Ansatz vorgestellt welcher einen Abstand zwischen Kreb-

szellinienkulturen auf Grundlage ihrer kleinen genomischen Varianten bestimmt um die Kulturen zu

identifizieren. Eine Voll-Exom sequenzierte Kultur wird durch paarweise Vergleiche zu Referenzdatensätzen

identifiziert so ein gemessener Abstand geringer ist als dies bei nicht verwandten Kulturen zu erwarten

wäre. Die Wirksamkeit der Methode wurde verifiziert, jedoch verbleiben Einschränkung da nur das

Sequenzierformat des Voll-Exoms unterstützt wird.

Daher wird im zweiten Kapitel eine publizierte Modifikation des Ansatzes vorgestellt welcher die

Unterstützung der weitläufig genutzten Bulk Ribonucleic acid (RNA) sowie der Panel-Sequenzierung

ermöglicht. Die Ausweitung der Technologiebasis führt jedoch zu einer Verstärkung von Störeffekten

welche zu Verletzungen der mathematischen Konditionen einer Abstandsmetrik führen. Daher werden

die entstandenen Verletzungen durch statistische Verfahren zuerst quantifiziert und danach durch dy-

namische Schwellwertanpassungen erfolgreich kompensiert.

Das dritte Kapitel stellt eine neuartige Daten-Aufwertungsmethode (Data-Augmentation) vor welche

das Trainieren von maschinellen Lernmodellen in Abwesenheit von neoplastischen Trainingsdaten ermöglicht.

Ein abstraktes Abstandsmaß wird zwischen neoplastischen Entitäten sowie Entitäten gesundem Ur-

sprungs mittels einer transkriptomischen Dekonvolution hergestellt. Die Ausgabe der Dekonvolution

erlaubt dann das effektive Vorhersagen von klinischen Eigenschaften von seltenen jedoch biologisch

vielfältigen Krebsarten wobei die prädiktive Kraft des Verfahrens der des etablierten Goldstandard ebenbürtig

ist.
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Abstract

The analysis of Next-Generation Sequencing (NGS) data is a central aspect of modern Molecular Ge-

netics and Oncology. However, the analysis of sequencing data derived from the frequently sequenced

source organisms, Cancer Cell Lines (CCLs) and patient-derived neoplasms, remains susceptible to er-

rors and subject to constraints. This thesis addresses the erroneous misidentification of CCLs and con-

straining training data scarcity of rare and diverse cancer types. The shared element of the contributions

is the quantification of an abstract distance between sequenced entities.

The first scientific contribution is the development of a method which identifies Whole-exome-

sequenced CCLs via the quantification of a distance between their sets of small genomic variants. A

distinguishing aspect of the method is that it was designed for the computer-based identification of NGS-

sequenced CCLs. An identification of an unknown CCL occurs when its abstract distance to a known

CCL is smaller than is expected due to chance. The method performed favorably during benchmarks but

only supported the Whole-exome-sequencing technology.

The second contribution therefore extended the identification method by additionally supporting the

Bulk mRNA-sequencing technology and Panel-sequencing format. However, the technological extension

incurred predictive biases which detrimentally affected the quantification of abstract distances. Hence,

statistical methods were introduced to quantify and compensate for confounding factors. The method

revealed a heterogeneity-robust benchmark performance at the trade-off of a slightly reduced sensitivity

compared to the Whole-exome-sequencing method.

The third contribution is a method which trains Machine-Learning models for rare and diverse cancer

types which present with little or no training data. A distance is quantified between neoplastic entities

and cells of healthy origin via transcriptomic deconvolution. Machine-Learning models are subsequently

trained on these distances to predict clinically relevant characteristics. The performance of such-trained

models was comparable to that of models trained on both the substituted neoplastic data and the gold-

standard biomarker Ki-67. No proliferation rate-indicative features were utilized to predict clinical char-

acteristics which is why the method can complement the proliferation rate-oriented pathological assess-

ment of biopsies.

The thesis revealed that the quantification of an abstract distance can address sources of erroneous

NGS data analysis, but as well found that the distance quantification-concept is susceptible to confound-

ing factors and is therefore most effectively applied to the analysis and comparison of homogeneously

sequenced entities.
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Chapter 1

Introduction

The decryption of the human genome was a pivotal event because the creation of a human reference

genome rendered multiple advances in the domain of Life-Sciences possible [1, 2]. The decryption, id

est (i.e.) comprehensive genotyping of the genome’s nucleotides sequence, was facilitated by the intro-

duction of the shotgun-sequencing technology. The novel shotgun-sequencing technology represented

a technological leap relative to the established chain termination method (Sanger-Sequencing) which is

why it is referred to as Next-Generation Sequencing (NGS) technology [3]. The instrumental advantages

of the NGS technology were low per-base sequencing costs and a high throughput rate whose combina-

tion stimulated the widespread utilization of NGS technology and public availability of NGS datasets [4].

A plethora of Life-Science domains profited from the corresponding increase in availability of ge-

nomic data since complex empirical studies which relied on increased sample-sizes became feasible

[5]. Cross-disciplinary scientific domains did, however, gain particular scientific momentum because

they combined the diverse types of knowledge required for the correct extraction of information from

high-throughput NGS datasets. The required knowledge encompasses scientific fields such Molecular

Genetics, Biostatistics and Computer Sciences whose intersection is found in the data-analysis domains

of Computational Biology and Bioinformatics [2].

The importance of data-analysis for NGS-based genomic research is highlighted by the degree to

which data-driven research has influenced the research paradigm of Molecular Genetics [5]. The re-

search paradigm in the low-throughput era was hypothesis-driven in that the sequencing data had the

purpose of supporting or refuting scientific hypotheses that were formulated before the sequencing itself

took place [3]. The modern research paradigm is, in contrast, frequently data-driven in that data is gener-
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ated first and explanatory hypothesis established after a thorough analysis of the data has been conducted

[6].

The demands posed on the data-integrity and the data quality-control have increased correspondingly

with the data volume, technological diversity and reliance on the NGS data-analysis. A primary reason

for this development lies within the up-stream positioning of the data-analysis process within the work-

flow structure of a research project. An error in the data-analysis process may reduce the scientific value

of the corresponding study significantly because the data-analysis output is the input for domain experts

whose down-stream-located task is to interpret and contextualize the data-analysis results, potentially

without means to verify the correctness of the data [7]. Furthermore, currently utilized quality-assurance

solutions were at least partially developed before the advent of the NGS technology and can require

additional overhead quality-assurance experiments in addition to the actual sequencing experiments if

the established methods are applicable at all [8, 9]. Therefore, addressing the sources of erroneous NGS

data-analysis based on the NGS data itself via application of computer-based in-silico methods is of great

importance for multiple Life-Science domains which is why it is the scientific subject of this thesis.

Sequencing data-based Cancer Cell Line identification

All sequencing data within the domain of Oncology is derived from the sequencing of biological

entities which, in a non-exhaustive listing, constitute of Cancer Cell Line (CCL), patient-derived biop-

sies, organoids and xenografts [9]. CCLs are high throughput two dimensional petri-dish model cultures

which are most widely utilized in the Life-Sciences. However, since the beginning of research on CCLs

have CCL-misidentifications been a risk factor associated with their utilization which is why the ability

to identify CCLs is crucial for genomic research [9]. Gold-standard CCL identification methods, such as

Short Tandem Repeat (STR) exist, but their conception predates the introduction of the NGS-technology

which is why data-driven research is conceptually disadvantaged with respect to CCL identification.

The disadvantage materializes in that pre-NGS technology methods require additional experiments con-

ducted on the physical CCL culture for identification. The physical availability of the sequenced culture

is, however, frequently not given in the era of the data-driven research paradigm for instance because

CCL NGS data is virtually exchanged via the internet. Furthermore, the STR gold-standard method

cannot be applied to NGS data because long tandem repeats are conscientiously not counted by NGS-

analysis software due to the difficulty associated with correctly resolving tandem-repeat structures [10].

In summary, the great risk of CCL-misidentification in conjunction with a lack of support of the gold-

standard method for NGS data-analysis motivates the development of a generic CCL NGS data-based

identification method [11].
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Sequencing data-augmentation for Machine-Learning of rare and diverse cancer types

CCLs excel because their sample-sizes can be comparatively easily scaled. However, they are lim-

ited in their capacity to reflect the biological reality of a patient’s in-situ neoplasm [12]. Patient-derived

data is therefore superior in its scientific value but commonly limited with respect to its sample-sizes

[13]. The limited sample-sizes of patient-derived material exacerbates the acquisition of suitable biopsy

material that comprehensively covers the neoplastic diversity [14]. The availability of sufficient amounts

of training data is, however, instrumental for an effective training of Machine-Learning (ML) models

to avoid, including to but not limited to, overfitting, a class-balanced classification or regression perfor-

mance and the reduction of the model-complexity [15]. This lack of NGS training data therefore has the

ramification of precluding the full exploitation of the scientific potential of NGS data with respect to the

current endeavors of personalizing the patient-treatment and drug-regime.

An approach utilized in the domain of Machine-Learning (ML) to augment training data, i.e. to in-

crease the amount of suitable training data, is to, for instance, perturb the available data in order to

generated altered data that can be added to the original training data [16]. In the domain of Oncology,

training data sizes can be increased by the inclusion of data of healthy origin should the addition prove

informative with respect to a neoplasm [17]. Properties of a neoplasm can exempli gratia (e.g.) be iden-

tified via the quantification of the similarity of a neoplasm to a healthy cell since a malignant neoplasm

is generally less similar to a healthy cell than a benign neoplasm. Chapter 5 presents a method that aug-

ments the data of a cancer type with low incidence rate to address the limited data sample-sizes. Such

augmented data is subsequently shown to allow for the training of ML models whose predictive power

is comparable to that of a model trained on substituted neoplastic data.

1.1 Aim

The aim of the thesis is to develop methods which address the problems of CCL misidentification

and lack of training data. This thesis utilizes the quantification of abstract distances as conceptual frame-

work for the development of the methods. In the context of the thesis, ’distance-quantification’ signifies

that entities whose distance cannot be qualified with a physical distance are given an abstract distance in

order to predict their properties such as their identity or clinical grading.

The reason why we apply abstract distance quantification is that distances are generally geometrically

interpretable and applicable to pairs of entities. The pair-wise nature allows for empirical sampling of
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otherwise latent parameters via an analysis of the distribution of all pair-wise distances. Statistical tests

can thereafter decide on the properties of the entities conditioned on the sampled parameters. An example

is the identification of a significantly small distance between CCLs. If the distribution of all quantified

pair-wise distances is known, one can resolve for the distance-value at 95% of all distance-values are

greater and thereby determine an empirical threshold for distance-based identification. Secondary con-

siderations are the run-time which is critical given the high volume of the analyzed data. The training

of, for instance, Deep-Learning Networks can take a considerable amount of time and resources to train

what would impede the development of the methods.

Consequently, the distance-quantification over NGS data is the central element of all methods: CCLs

are identified via pair-wise comparisons of their NGS-derived distances and rare cancer types are classi-

fied via a distance-quantification of their NGS data to NGS data derived from healthy donors.

1.2 Contributions

The scientific contributions of the thesis are three novel Bioinformatic approaches which address

CCL misidentification and training data-augmentation. The contributions’ methodology, theoretical

background, benchmark performance and a critical discussion of their advantages and disadvantages

are presented. Abstract distance-quantification is utilized by all contributions but differs with respect

to the type of utilized NGS data (Chapter 3 and 4: small variants, Chapter 5: transcriptomic) and data

format (Chapter 3: Whole Exome-Sequencing (WES), Chapter 4: Bulk Ribonucleic acid (RNA)-seq and

Panel-seq) and type of problem that is solved (identification versus augmentation).

1.2.1 Whole-Exome sequencing technology-based CCL identification

We present a NGS data-based CCL identification method in Chapter 3 which identifies CCLs based

on a distance metric over small variants that are rare what represents a stark contrast to established

methods which are inflexibly dependent on predetermined genomic entities such as Single-Nucleotide

Polymorphisms (SNPs). The approach, called UNIQUe variant identification Of canceR cell liNes

(Uniquorn), is structured such that the identification of CCLs data with limited Data-Heterogeneity is

first established in Chapter 3 and its generalization for diversely sequenced CCLs in Chapter 4. The

Uniquorn method was benchmarked favorably on more than 700 CCLs. The method was, however,

only benchmarked on WES sequenced CCLs to limit the technological diversity and ensure the accurate

empirical approximation of intractable distributions.
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1.2.2 Generalized NGS technology-based CCL identification

Chapter 4 reports on the extension of Uniquorn WES to identify CCLs that were either Bulk RNA,

WES or Panel-sequenced. The Chapter addresses the problem that Bulk RNA-sequencing and Panel-

sequencing technologies were not supported by the Uniquorn WES approach but are frequently utilized

to sequence CCLs. The Uniquorn extension is therefore designed to cope with a great amount of Data-

Heterogeneity in order to support the majority of the currently utilized NGS technologies.

The distance metric applied in Chapter 3 proved ineffective due to significant differences with re-

spect to the amount of variants called by diverse sequencing technologies for identical CCLs. The

Uniquorn methodology was thus modified via integration of empirical resampling techniques to quantify

the strength of the technological heterogeneity which represented a confounding factor. The technolog-

ical factor could thereafter be compensated for by a dynamic adjustment of the identification thresholds

according to the strength of the technological bias, rendering the method applicable for significantly

more use-cases.

1.2.3 Prediction of Clinical Characteristics of rare and diverse Neoplasms

We report on a novel method to predict clinically relevant characteristics of rare yet biologically

diverse Neuroendocrine Neoplasms (NENs) via transcriptomic deconvolution in Chapter 5. The Data-

Augmentation method first analyzes whether a distance-quantification via deconvolution is possible and

secondly whether such derived distances are informative with respect to clinical characteristics. Gener-

ally, clinical characteristics can be predicted by Machine-Learning (ML) models trained on neoplastic

data. The required amounts of neoplastic training data are, however, frequently not available for rare and

diverse cancer types. Therefore, a Data-Augmentation of the training data is conducted via a substitution

of the neoplastic training data with ubiquitously available data of healthy origin. The substitution of the

training data is based on the distance between a neoplasm to data of healthy origin i.e. the deconvolution

results are utilized as base for the distance quantification and subsequent model training.

1.3 Thesis outline

The thesis is composed of a General Introduction, a Scientific Background and three contribution

Chapters in addition to a Conclusion Chapter and Appendix, see Figure 1.1.

The background Chapter 1 introduces the most important deoxyribonucleic acid (DNA) and RNA

5



Figure 1.1: Overview of the thesis. The thesis comprises of six Chapters and multiple (Sub)-Sections.

Sections 2.1, 2.2 and 2.3 provide contextualizing background information regarding the scientific con-

cepts of Biostatistics and ML algorithms which were applied as part of the scientific contributions. Con-

tribution Chapters for CCL identification and classification-by-deconvolution each consist of an intro-

duction, methods, results and discussion Section. The thesis finishes with a Conclusion Chapter that

integrates the contributions’ findings with respect to abstract distance-quantification, followed by the

Supplementary Material.

sequencing technologies relevant to the Chapters 3 and 4. Thereafter, the concept of a distance metric

over a space is defined and the general context of distance-quantification over NGS data presented. Iden-

tification by distance-quantification requires the determination of a threshold where sufficient similarity

is achieved. The Uniquorn methods applies statistical hypothesis tests to determine that threshold and

hypothesis tests are therefore explained in the succeeding Section 2.3. The following Section 2.3.2 intro-

duces empirical sampling and empirical testing methods and Section 2.3.2 displays how the identifica-

tion threshold determination could be conducted when standard hypothesis tests were not applicable. We

present the methodological background of transcriptomic deconvolution in Section 2.4 and continue with

an introduction of and explanation to why two ML methods, Support Vector Machine Regression (SVR)

and Non-negative Matrix Factorization (NMF), were utilized in Chapter 5.
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In the main part of the thesis, the contributions are presented. Chapter 3 commences with an introduc-

tion to CCL cultures to render the biological background palpable. We outline the historic development

of CCL identification methods to motivate why in-silico identification methods are required. Thereafter,

the specific concept of distance-quantification via the matching of small variants is explained in Section

3.1.2. A benchmark based on WES data from three major CCL screening studies serves to estimate the

performance of the distance-quantification identification method.

Chapter 4 presents the motivation to additionally support the Bulk RNA-sequencing and Panel-

sequencing technologies. Section 4.1 outlines the differences and similarities between the WES-only and

the universal identification method. The following Section benchmarks training data from a WES sce-

nario but in addition contains hundreds of Bulk RNA and panel-sequenced CCLs. Chapter 4 concludes

with a discussion of the suitability of the generalized identification method as universal identification al-

gorithm, the method’s advantages and disadvantages and a listing of identified confounding factors that

deny the correct identification of CCLs.

Chapter 5 begins by presenting the biological background of NENs which is distinct in the sense that

NENs are simultaneously rare and biologically diverse. Furthermore, we outline why neoplastic NGS

data, required for ML model training, is not available and thus a training on data derived from healthy

donors motivated. The novelty of the neoplastic deconvolution approach is rendered comprehensible and

its potential within the field of NEN research is explained. The explanation focuses in particular on the

approach that NENs are classified based on their abstract distance to a healthy training sample as quanti-

fied by a reconstruction error and relative cell-type proportion predictions. Multiple NEN datasets were

benchmark and the method’s performance with respect to the prediction of clinical characteristics deter-

mined as comparable to the current gold-standard biomarker. Chapter 5 concludes with a discussion of

the classification-by-deconvolution aspects that proved successful while simultaneously elaborating on

currently present limitations of the method.

Chapter 6 aggregates the distance-quantification-related findings of Chapters 3 to 5 and discusses

potential future research. The Appendix contains the Supplementary Material Sections for Figures 7.1

& tables 7.2 and an abbreviation register 8 which conclude the thesis.
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1.4 Own prior work

The Uniquorn WES method was published in Otto et al. 2017 [18] and its generalization in Otto et

al. 2019 [19]. Following contributions were made by the authors of these publications: For [18], Raik

Otto, Ulf Leser and Christine Sers wrote the manuscript while Raik Otto developed the method. Ulf

Leser and Raik Otto wrote the second publication [19] and Raik Otto conceived the method. Jan-Niklas

Rössler contributed to the visualizations presented in Chapter 3. The research presented in Chapter 5 is

scheduled for publication in 2021. In case of an acceptance, the contributions of the authors to Chapter

5 will be structured as follows:

Conceptualization Raik Otto, Christine Sers, Ulf Leser

Data curation Carsten Grötzinger, Katharina Detjen, Pamela Riemer, Bertram Wiedenmann, Guido Rindi

Formal analysis Raik Otto

Funding acquisition Ulf Leser, Christine Sers, Katharina Detjen

Investigation Ulf Leser, Pamela Riemer, Bertram Wiedenmann, Guido Rindi

Methodology Raik Otto, Ulf Leser

Administration Ulf Leser, Christine Sers

Resources Raik Otto, Pamela Riemer, Katharina Detjen, Carsten Grötzinger, Christine Sers, Ulf Leser

Software Raik Otto

Supervision Ulf Leser, Christine Sers

Validation Raik Otto, Katharina Detjen, Pamela Riemer, Bertram Wiedenmann, Guido Rindi

Visualization Raik Otto

Writing Raik Otto, Katharina Detjen, Ulf Leser, Christine Sers
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Chapter 2

Scientific Background

Chapter 2 provides the theoretical background of the thesis. The Chapter begins with subsection 2.1, a

short description of the commonalities and differences of those NGS technologies that are relevant within

the context of the thesis. Thereafter, a mathematical definition of distance metrics is given which is

required to quantify distances in Section 2.2. Section 2.3 defines and explains the statistical tests relevant

for an understanding of Chapters 3 and 4. Subsequently, Section 2.4 elaborates on the deconvolution-

based distance-quantification as applied in Chapter 5. The introduction finishes with Section 2.5, a

description of ML algorithms required for the transcriptomic deconvolution.

2.1 Next-Generation sequencing

NGS technologies can be classified according to the type of molecular entity which they genotype [2,

5]. In the context of this thesis, DNA and RNA-based technologies are relevant due to their wide-spread

utilization and the fact that small genomic variants and messenger Ribonucleic Acid (mRNA) expression

levels can be obtained from their analysis, respectively.

A sub-classification of NGS technologies, applied within the framework of this thesis, is the sequenc-

ing format which will refer to the discrimination of NGS technology by the amount of targeted loci. The

sequencing format therefore relates to the volume of data that is generated during a sequencing run. For

example, Whole Genome-Sequencing (WGS) and Panel-sequencing both sequence DNA and therefore

belong to the same technology, but differ with respect to their format because the amount of covered

DNA basepairs differs by a factor of ∼ 106 what has major ramifications for the CCL identification

methods. See Figure 2.1 for a depiction of the technologies and formats relevant to this thesis.
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Figure 2.1: Overview of sequencing technologies and formats relevant to this thesis. A primary differ-

ence between sequencing technologies and formats are the genomic loci that are genotyped, highlighted

by gray frames located on the double helix that represents a genome. Whole Genome-Sequencing (WGS)

genotypes all regions of the genome with exclusion of the telomeres, the centromere and highly repetitive

regions where repeat-resolution is generally not sufficiently reliable for short read-based high-throughput

technologies [2]. Whole Exome-Sequencing (WES), arrays and Panel-sequencing share the property of

genotyping only selected regions. The difference between WES and Panel-sequencing is that WES tar-

gets the whole exome while Panel-sequencing only targets a few hundred genes. Arrays differ from

WGS, WES and Panel-sequencing technologies by utilization of probes located on the surface of a chip

which emit light due to laser-excitement when a molecule binds what indicates that the corresponding

mRNA was expressed in the sample. mRNA arrays cover comparatively short parts of the genome,

limited by the length of the sequence with which the probe with which the molecule hybridizes.

Whole-Genome sequencing

In the context of this thesis, WGS is defined as the shot-gun sequencing of a whole human eukaryotic

genome and informs about a mutational or wild-type status of DNA located within the nucleus and the

mitochondrium [20]. A wild-type status is defined as a basepair call at a given genomic locus that is iden-

tical to the reference genome’s basepair call and a mutation indicates a divergence from the reference.

When a mutation substitutes a single genomic basepair (length of one basepair) and has a population

prevalence of greater or equal to 5%, it is considered a Single-Nucleotide Polymorphism (SNP) and else

an either somatic or private Single-Nucleotide Variant (SNV). Insertions and Deletions (InDels) are de-

fined as genomic insertions or deletions of lengths of one up to ten basepairs. Substitutions of lengths

of two up to ten are not qualified by a population prevalence and will therefore be referred to as sub-

stitutions. Large-scale structural somatic Copy Number Aberrations (CNAs) or germline Copy Number

Variations (CNVs) are not included in the mutation term and are not subjected to analyses within the

thesis.
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A distinctive advantage of the WGS format compared to other approaches is that up to 84% of the

(human) genome can be confidently sequenced [21]. This extensive coverage enables algorithms to call

large-scale CNVs and determine the ploidy of a genome what is significantly more challenging for other

sequencing technologies although constraints with respect to the calling of tandem-repeats remain [22].

WGS typically analyzes the DNA of a mixture of cells. In cases of healthy cells from a single donor,

this circumstance is not considered a confounding factor since all cells from the same human being are

assumed to possess the same genomic sequence with the exception of gametocytic cells and non-nucleic

cells such as erythrocytes [23]. The identity assumption does not hold for neoplastic cells whose genome

is subject to somatic i.e. non-germline mutations and structural genomic aberrations, respectively. Small

variants such as SNVs up to large-scale CNVs can be called from WGS data. WGS data is therefore

technologically suitable for NGS data-based CCL identification. Note, however, that the WGS technol-

ogy is not intensively benchmarked by the contributions because no large-scale publicly available studies

of WGS sequenced CCLs exist.

A drawback of the WGS technology is that it suffers from greater sequencing costs, higher storage

space requirements, Random Access Memory (RAM) footprint and in general lower sequencing cover-

age compared to WES and Panel-sequencing, which is why the relative utilization rate is generally low

compared to other sequencing formats [23].

Whole-Exome sequencing

Whole Exome-Sequencing (WES) is defined as the sequencing of the ⑦2% of the genome or ⑦22,000

genes in a human being that are currently assumed to be proteinogenic [24]. The primary rational is to

obtain information about small DNA variants and InDels from the genomic regions that have a direct im-

pact on the primary up to quaternary protein structure level [25]. WES always targets the expressed part

of the genome which is comparatively small what is important for the thesis, since the locus-restriction

significantly reduces the heterogeneity of WES data which is why the proof-of-concept in Chapter 3 is

based on WES data.

WES DNA and Panel DNA sequencing both utilize primers that bind to characteristic basepair se-

quences usually located at the 3’ end of a gene’s transcriptional start-site or shortly before its exons’
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3’ prime end (for eukaryotes) [23]. The strand direction is of importance because the human DNA-

dependent RNA-polymerase matches (’reads’) DNA basepairs from their 3’ to their 5’ end and polymer-

izes (’writes’) mRNA basepairs from their 5’ to their 3’ end [26].

The 3’ upstream sequence-dependency incurs the problem that the primer sequences have to be

chosen such that they are located 3’ upstream and are either unique or at least shared by as few genomic

loci as possible. The sequence of the gene which is not part of the primer itself does not have to known

beforehand [25]. The polymerized sequences of the gene therefore may differ from the reference genome

up to a limited extent what allows for the discovery of novel small variants such as SNVs or small

InDels and substitutions. Novel variants do not have to be transcribed to be picked up by WES DNA

sequencing, which is an advantage over the RNA-sequencing technology and motivates the support of

the WES technology for CCL identification purposes.

Panel-sequencing

Panel-sequencing, also known as targeted-sequencing, is the sequencing technology with smallest

amount of covered genes. Panel-sequencing pursues two objectives: flexibility with respect to targeted

genes and a reduction of sequencing costs [27]. A legion of commercially available DNA and mRNA-

sequencing panels can target ⑦50 up to few a hundred genes what further reduces costs by standard-

ization. These comparatively affordable pre-designed panels are applied by a wide range of researchers

since the panel-design suffices to answer various clinical and scientific questions [28]. Genomic loci

that do not harbor translated genes, such as pseudogenes, can as well be targeted, given the existence

of a unique primer-capture sequence, but the commercially standardized kits generally target genes with

translated exons [29].

A disadvantage is that the low volume of data generated can lead to strand-bias problems even for

high coverage panels, in particular in case of hyperploid neoplastic genomes [30]. A strand-bias is de-

fined as the almost exclusive sequencing of only one or a few strands when multiple strands exist. The

ramification is that mutations on one strand are either not picked up or hemizygous mutations (assuming

di-ploidy) are mistakenly called as being homozygous. CCLs are frequently panel-sequenced after e.g.

a drug treatment since only a limited amount of genomic loci is considered to be of particular interest

and thus, Panel-sequencing data is analyzed in Chapter 4 of this thesis [27]. In analogy to the WES

technology, 3’ primer sequences have to be known and 5’ sequences that are down-stream and not part

of the primer may vary.
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In spite of their scientific usefulness do panel-sequenced datasets present with challenges with re-

spect to the CCL identification since only few genes are genotyped. Therefore, Panel-sequencing was

not integrated into the proof-of-concept method shown in Chapter 3 but supported by the generalized

extension presented in Chapter 4.

RNA-sequencing

Sequencing of Ribonucleic acid (RNA) refers to the quantification and basepair sequence-detection

of RNA molecules. Different types of RNA-molecules exist, such as the long non-coding RNA, but this

thesis will in the following only refer to translated mRNA molecules. Various sub-variants of RNA-

sequencing exist between which the major differentiation is whether a mixture of cells is sequenced

(Bulk-sequencing) or single-cell sequenced (Single-cell sequencing). Further subtypes differ in their

inclusion of an intermediate complementary deoxyribonucleic acid (cDNA) step and how they isolate

the mRNA molecules (poly-A-tailed mRNA selection) versus depletion of ribosomal Ribonucleic acid

(rRNA) (ribo-depletion). We will present the subtypes most relevant to this thesis.

Bulk RNA-sequencing

RNA Bulk-sequencing is in the following defined as the sequencing of translated single-stranded

RNA molecules that are not part of the ribosome and possess a poly-A tail with free-floating and un-

specific primers [31]. Both the sequence and the expression levels of mRNA can be determined by

Bulk-sequencing. Primers are required to bind to the ends of mRNA molecules after the molecules were

isolated and fragmented in order to reverse transcribe the mRNA into cDNA, see Figure 2.2 [28]. No

specific primer sequences are required because the poly-a tail identifies mRNA molecules after they have

either been extracted from a cell convolute or the ribosomal RNA been depleted. Therefore, all mRNA

molecules in a mixture can, theoretically, be detected which is why RNA-sequencing is as well called

Full transcriptome sequencing. The sequence-independence is important because the sequence of the

mRNA fragments does not have to be known before the sequencing and thus, novel and simultaneously

transcribed mutations such as somatic SNVs, can be called [31].

The term Bulk-sequencing serves to differentiate this technology from the Single-cell sequencing

(scRNA) technology by indicating that in Bulk RNA-sequencing, a mixture of cells with possibly di-

verging mRNA expression levels and sequences is analyzed. The Bulk aspect represents a significant

limitation for cancer-related analyses since cancer is commonly sub-clonal i.e. different sub-populations
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with distinct expression pattern, drug-responses and survival curves exist of which the most resilient

sub-population may ultimately dominate the cancer once a relapse occurs [32].

Figure 2.2: RNA Bulk-sequencing. The process

of mRNA-sequencing as conducted by the Ion Tor-

rent technology platform is depicted. The single-

stranded mRNA is first captured whereafter primer

sequences are attached and two cDNA reverse-

transcriptions conducted. The reverse-transcriptions

serve to stabilize the molecule since double-stranded

DNA is more stable than single-stranded RNA. At-

tached barcodes allow to identify molecules and en-

able the binding of the molecules to surface-probes

on a sequencing lane during an eventual polymerase

chain reaction (PCR) step (not depicted). Source

Figure [33]

Bulk-sequencing as well implies the undiffer-

entiated simultaneous sequencing of cells of dif-

ferent types. Algorithms which predict which

types of cells where present in the sequenced con-

volute, and in what relative proportions, exist and

are generally based on the deconvolution of the

transcriptome [34, 35]. Deconvolution into neo-

plastic sub-clonal populations with individual and

general unknown characteristics is currently only

possible with strong limitations since the cell-

type or sub-clonal population has to be known for

the model training step [32]. Deconvolution algo-

rithms are applied in Chapter 5 to predict the clin-

ically relevant characteristics of neoplasms.

mRNA microarray

Messenger RNA microarrays are an estab-

lished technology platform whose origins trace

back to the 1980s [36]. We will discuss the

type of array that binds mRNA and follows the

AffymetrixTM technology. Sequences of nu-

cleotides, called probes, are located on a chip and

hybridize to mRNA fragments. The probe sequences are fixed and preferably specific for single genes

or even their exons what allows the quantification of their expression levels or detection of differential

splicing in eukaryotes. After mRNA molecules are hybridized to the probes, they are illuminated with

laser-light and the expression levels thus quantified via an optical i.e. electro-magnetic signal [37].

Like Bulk RNA-sequencing can mRNA-arrays only quantify convoluted mixtures of cells, assuming

that no sorting of cell-types takes place beforehand. Arrays can, however in contrast to Bulk RNA-seq,

only quantify gene and exon expression levels, respectively, and not the basepair sequence what is a
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major limitation and excludes them from the CCL identification approach. Arrays that pickup structural

DNA variants, such as CNVs, exist but as of 2020, arrays are mainly utilized to quantify mRNA expres-

sion levels.

mRNA arrays represented a significant fraction of all high throughput datasets produced throughout

the 1990s and 2000s but are gradually replaced by more powerful technologies such as Bulk RNA or

Single-cell sequencing. Nevertheless, arrays will most likely remain in utilization for an extended period

of time due to their technological maturation and inexpensiveness [38]. Neoplastic expression data cre-

ated with mRNA technology is utilized in Chapter 5 of this thesis for deconvolution purposes.

An array-based subtype of WES DNA sequencing is the Hybrid capture sequencing technology

whose sequencing format is typically located between the full exome and Panel-sequencing formats

with about 500 to 2k targeted genes [5]. Hybrid capture sequencing is reported to possess a superior

capacity to discover novel variants compared to full exome-sequencing while simultaneously achieving

an advantageous mutational resolution[5]. Primary disadvantages are the fixed probe sequences on the

array and a reduced exomic locus coverage. The sequencing format finds application in Chapters 3 and

4 of the thesis.

Single Cell-RNA sequencing

Single-cell sequencing (scRNA) quantifies single mRNA molecules within single-cells [39] and is

the most recently introduced technology relevant to this thesis. As of 2021, scRNA sequencing platforms

are evolving quickly with regard to multiple aspects such as the mode of cell-isolation, procedure of re-

verse transcription, second strand synthesis and sequencing library generation [40].

The scRNA technology is the greatest contributor in terms of samples in Chapter 5 and thus essential

to this thesis. Single-cell sequencing can cover the full transcriptome or genome provided that a high

amount of identical cells are sequenced to aggregate their signal to balance the high drop-out rate [41].

This technology particularly excels with respect to the sequencing of neoplastic genomes due to their

single-cell resolution that allows to identify sub-clonal populations of a neoplasm. Furthermore, cell-

development stages can be traced what allows for an improved understanding of cell-type differentiation

trajectories. Nonetheless, a high degree of technological diversity exists (see Figure 2.3) what exacerbate

the replicability of experiments.
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Figure 2.3: Overview of scRNA technologies relevant to this thesis. Main sources of heterogeneity

and idiosyncrasies between different scRNA platforms are the cell-isolation, mRNA-isolation, strand

synthesis, cDNA amplification and library construction along with Unique Molecular Identifier (UMI)

utilization. This thesis analyses data from the Cell Expression by Linear amplification and Sequenc-

ing (CEL-seq), Drop-seq, Smart-seq C1 and Smart-seq2 platforms and evaluates which technology

proved most suited for the purpose of neoplastic transcriptomic deconvolution by training on healthy

scRNA data, see 5.2.1. It is illustrated why multi-technology benchmarks have to be an integral part

of Bioinformatics analysis since the diversity and comparatively recent introduction of the scRNA tech-

nology can cause a significant degree of result volatility for different technologies [35]. Source Figure:

[39]

A major advantage of the scRNA technology for the purpose of transcriptomic deconvolution is,

that no cell-type specific cell-surface marker are required for the identification of a since-cell sequenced

cell [42]. Therefore, a cell-sorting during the pre-processing is facultative what increases the turn-over

rate and decreases the procedural complexity and run-time [43]. A corresponding disadvantage is, that

unsorted-cells have to be assigned a cell-type after the sequencing since knowledge of the cell-type is

critical for down-stream analyses. Various procedures for the cell-type assignment exist and no widely-

accepted gold-standard method has been developed what increases the volatility of scRNA data-derived

analyses when the data was generated with different technologies and algorithms [42]. The scRNA

technology is liberally utilized in Section 5 where it provides information on individual cell-types what

represents a fundamental requirement for transcriptomic deconvolution.

In summary, scRNA provides a multitude of valuable insights in to the genome and transcriptomes

but remains a still maturing technology which, due to the scarcity of the sequenced material which ranges
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in the nanograms, requires a high amount of replicates.

2.2 Abstract distance-quantification

The quantification of a distance based on NGS data is the shared element of all contributions pre-

sented in the thesis. Here, we will detail on the two types of distance-quantification utilized by the sci-

entific contributions. To that end, we will first contextualize the distance-quantification concept for the

domain of Bioinformatics. Thereafter, we introduce the distance-quantification concept for sequenced

entities based on their assigned positions in a metric space spanned over small variants as applied in

Chapters 3 and 4. Lastly, we will present the quantification of distance between a neoplasm and healthy

cells based on a vector norm as applied in Chapter 5.

Contextualization of the distance-quantification concept

At the core of the distance-quantification lies the comparison of features of entities [44]. Within

this thesis, a distance-quantification is modeled geometrically via the assignment of a numeric degree of

similarity between two entities by a function based on the amount of matching features of two entities.

Entities’ positions are geometrically modeled such that their features assign the entities a position in a

metric space. A function maps a degree of similarity i.e. a distance to two entities based on their posi-

tions what requires the space to be a metric space that adheres to mathematical conditions displayed in

detail in Subsection 2.2. These mathematical conditions are required because the intuitive notion that

the knowledge of the positions of two entities in a given space automatically renders the quantification

of a reasonable distance possible cannot generally be assumed and has to be mathematically defined [45].

Distance-quantification is an abstract concept commonly applied in various domains connected to

Bioinformatics such as Phylogenetics and Oncology [46, 47]. In NGS-based Phylogenetics, genomic

features are investigated based on NGS data in order to create a tree that reflects the evolutionary lineage

of e.g. species. A representative procedure to construct a lineage tree based on the genetic similarity

of species can be implemented as follows [48]: First, all pair-wise distances between the samples are

calculated followed by an update step that merges the two samples with least distance into a new, united

sample while deleting the samples’ entries from the table of pair-wise similarities. Thereafter, all pair-

wise distances between the newly created sample to all remaining samples are inserted into the table of

distances. This update step is recursively applied until only one sample remains that comes to serve as

the root of the lineage tree. This sequence of mergers then represents a possible lineage history of the

compared species based on their pair-wise genetic similarities.
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Figure 2.4: Heatmap of clustered neoplasms. The heatmap illustrates how an abstract distance-

quantification between transcriptome-sequenced neoplasms renders the extraction of contextualized in-

formation via a clustering possible. 69 neoplasms are shown whose pair-wise transcriptomic-distance

has been calculated and their positions been arranged such that pair-wisely most similar neoplasms are

juxtaposed. Brighter colors indicate a higher degree of similarity and darker colors less similarity. The

dendrograms on either rows or columns show the pair-wise clustering according to pair-wise distance.

The upper rows show metadata with respect to the neoplastic subtype (carcinoma/ NEC versus tumor/

NET), neoplastic grading (from G1 to G3), Histology and mutational status. All 69 samples were ana-

lyzed in Chapter 5 where their clustering pattern was instrumental with respect to the association of tran-

scriptomic activity and clinical phenotype. The heatmap provides the information that samples cluster

according to their neoplastic subtype (one outlier) and only to a lesser extent according to their grading.

Histology is unrelated to the samples’ cluster pattern and mutational status hints at an underlying stratifi-

cation process that distinguishes mutated from wild-type sample but as well underlines that the mutation

stratification is heterogeneous within the tumor/ NET subtype field. In summary, the biological aspect

such as subtype and grading can be discerned from the biological processes that are not suited to explain

commonalities between neoplasms what is a critical finding from an oncological perspective.

The distance-quantification concept is as well widely established for stratification and clustering of

neoplastic entities [49]: Neoplasms with comparable phenotype are grouped based on their genomic

properties to identify disease-causing genotype-to-phenotype relationships. Given the hypothetical sce-

nario that clustering was applied to a population only consisting of two phenotypes and that a single
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mutation was responsible for the phenotype, a clustering based on the mutation would stratify the pop-

ulation identically to the phenotype. However, a dichotomic clustering is generally not possible and

after grouping a population based on a set of genomic properties, various hypothesis have to be tested

in order to identify the genotype-to-phenotype relationship. An illustration of how clustering extracts

contextualized information by analyzing single data points as an ensemble is depicted in Figure 2.4.

Implementation of the distance-quantification

The quantification of a distance between two sequenced entities, x and y requires knowledge of their

position in a metric space [50]. The positions are in turn being determined by the entities’ respective

set of features [45]. For illustration purposes, let x and y consist of one feature which can take the

dichotomic values 0 or 1. The quantification of a distance d ∈ R+ is then defined as the mapping of

a scalar to the space location-defining feature sets of x and y, D(x, y) = d where D is the metric or

distance function. Multiple calculation rules for D exist and one of the simplest is to apply the absolute

value distance:
D(x, y) = |x− y| (2.2.1)

Formula 2.2.1 illustrates that in case x and y are either both 0 or both 1 their distance is 0 and 1 in

any other case. The dichotomic feature domain of 0 and 1 is, however, only applicable in few scenarios

and a suitable and commonly applied calculation rule for features with a domain in R is the Euclidean

distance rule. The calculation rule of the Euclidean distance for two sequenced entities is then defined as

follows [51]:
Dpoint(x, y) :=

2
√

(x− y)2 (2.2.2)

Equation 2.2.2 highlights a mathematical condition that has to hold for metrics: the limitation of

distances to positive domains, here, achieved by squaring the difference x − y. The squaring induces,

however, a super-linearity for the input domain differences (x−y)2 (D2(1, 3) = 4, D2(1, 4) = 9) which

is why application of the square root recovers the linearity (example: D(1, 3) = 2, D(1, 4) = 3). In the

more realistic case of multiple features per entity, where n ∈ Z+ indicates the amount of features. The

Euclidean calculation rule is defined as follows:

D(x, y) := 2
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 (2.2.3)

Note, that x and y are generally defined as vectors ~x, ~y when more than one feature is present. The

same index i in the vector refers to the same feature in different entities. For brevity, x and y will in the
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following refer to their vector-formulation ~x and ~y and any exceptions will be mentioned.

More formally, a non-negative distance d can be quantified between all points in the set X of a space

if the space possess a distance metric D which induces a topology [50]:

D : X ×X → d (2.2.4)

d ∈ R
+
0 (2.2.5)

For any points x and y in X , the following conditions have hold for the distance mapping for D to

be considered a (full) metric:
Semi-positivity := D(x, y) ≥ 0 (2.2.6)

IdentityD(x, y) := 0 ↔ x = y (2.2.7)

Symmetry := D(x, y) = D(y, x) (2.2.8)

Triangle inequality := D(x, z) ≤ D(x, y) +D(y, z) (2.2.9)

Equation 2.2.6 requires a distance to be greater than or equal to zero. Equation 2.2.7 enforces that

the distance is equal to zero if and only if (iff) x and y are identical. Equation 2.2.8 requires that the

distance of x to y is identical to the distance from y to x. Equation 2.2.9 stipulates that the underlying

space is flat in that the direct line connecting two points (the geodesic) has a quantified distance that is

equal to or less than the length of any other (indirect) line connecting the same two points.

Multiple Bioinformatics algorithms, such as phylogenetic tree constructors utilize ultra metrics which

require the additional condition D(x, z) ≤ max{D(x, y), D(y, z)}. The ultra-metric condition is, how-

ever, not applied in this thesis and therefore not considered in the following. If metric conditions specified

in equations 2.2.6 to 2.2.9 are not fulfilled, D can still qualify as (partial) metric, depending on the con-

dition that is not fulfilled. Relevant to this thesis, the symmetry condition 2.2.8 is dropped in Chapters 3

and 4 where a quasi-metric is applied in equation 3.2.3.

In summary, an abstract semi-positive distance can be quantified between entities based on their

n−dimensional respective set of features provided that the metric D is semi-positive, symmetric, identi-

cal sample of zero distance and the underlying space flat.
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Vector norms

Chapter 5 follows the same geometric interpretation in that features (here mRNA expression levels)

of sequenced entities are mapped onto a position in a space but differs in that a vector norm and not a

Euclidean calculation rule is utilized for obtaining the scalar d. The first vector contains the gene expres-

sion features of a neoplasm and the second vector the reconstruction of the first vector conducted by a

constraint ML algorithm. The difference vector obtained from subtraction of the two vectors possesses

a geometric length. This length (but not orientation) is a quantification of the distance between the neo-

plasms and healthy cells. Note, that the orientation of the vector provides knowledge about the cell-types

which make up the neoplasm and are informative when predicting clinical characteristics because the

expression of marker genes, which is contained in the difference vector, is by definition characteristic for

cell-types. A norm on the difference vector then serves to obtain a discrete and semi-positive distance-

quantification. Importantly, note that the vector norm distance, as applied in this thesis, is not quantified

between two entities existing in reality for example between CCLs but between one existing entity (the

cancer) and a prototypic representative of e.g. an adult stem-cell. The hypothesis underlying this type of

distance-quantification is that the adult stem-cell represent a cell-type with high proliferation potential.

The smaller the distance of neoplasm is to the stem-cell, the greater the proliferation potential of the

neoplasm is assumed to be which is why an informative correlation with the grading of the neoplasm

could exist.

Metrics on vector spaces are a special case of general distance metrics presented in equation 2.2.5

[52]. A vector norm is defined as a mapping ||.|| of a set of vectors V onto the set of semi-positive,

real-valued numbers R+
0 for every vector v ∈ V [45].:

||.|| : V → R
+
0 (2.2.10)

v → ||v|| (2.2.11)

The norm ||.|| has to fulfill the following conditions in order to qualify as a distance metric [53] [52]:

Definite quadratic form ||v|| = 0 −→ v = 0 (2.2.12)

Absolute homogeneity ||α · v|| = |α| · ||v|| (2.2.13)

Subadditiveness ||v + v′|| ≤ ||v||+ ||v′|| (2.2.14)
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Equation 2.2.12 requires that a vector norm only maps a vector to zero if v itself is zero. 2.2.13

requires that the norm of v multiplied with vector α is identical to the vector norm of v multiplied by the

absolute value of α, i.e. the L1 norm of α. Equation 2.2.14 requires that the vector norms of the addition

of v′ to v is less than or equal to the added vector norms of both v and v′.

Application of NGS data for distance-quantification

The application of distance metrics and vector norms from Sections 2.2 and 2.2 assumes that NGS

data can either directly or after a transformation be plugged-in to the formulas as features while preserv-

ing the required conditions. The thesis posits that NGS data can indeed be plugged-in into the distance-

quantification equation and information be derived from the metric due to the assumptions stated in table

2.1.

Assumption Definition

Exclusivity The determined numerical distance exclusively quantifies the biological distance between

two entities

Zero identity A distance D(x, y) = 0 is zero when the same organism was sequenced in absence of

technologically confounding factors

Biased identity A distance D(x, y) ≥ 0 can be greater than zero and still x and y be identical when technical

bias distorts the distance-quantification

Testability A statistical test can determine whether a distance is sufficiently small to assume that x and

y are biologically identical when a technological bias is present

Table 2.1: Assumptions of distance-based identification. The table specified which assumptions are

made when assuming that sequenced entities can be identified via the quantification of an abstract dis-

tance between them.

See the contributions Chapters for a detailed modeling of the NGS-to-distance-quantification.

Note that the thesis utilizes the terms distance and similarity synonymously since they can be trans-

formed into each other:

S(x, y) =
1

1 +D(x, y)
(2.2.15)

D(x, y) =
1

S(x, y)
− 1 (2.2.16)

Equation 2.2.15 transforms a distance metric into a similarity metric and equation 2.2.16 transforms

a similarity metric into a distance metric provided that both D and S are euclidean in nature [54].
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2.3 Statistical tests

Statistical tests render unto a scientist the possibility of taking informed decisions with respect to the

inequality of properties of probabilistic distributions [55]. Statistical tests were applied by all scientific

contributions and in the following, the hypothesis tests with greatest relevance to this thesis will be

explained: the z, t, binomial and Logrank test.

2.3.1 Hypothesis testing

The intuition regarding a statistical hypothesis tests is that they allow to quantify the probability of

committing a mistake when assuming the inequality of scalars or vectors. The tests are called hypothe-

sis tests because they assume a so called null-hypothesis H0 which is subsequently rejected or retained

based on the probability to commit a mistake when rejecting H0 [55]. If H0 is rejected, the alternative

hypothesis H1, which states the inequality of parameters, is assumed. The value that the tested parameter

is compared to is either a fixed scalar, in case of one sample location-tests, or alternatively, the estimated

parameter of another probability distribution.

We commence by introducing the two-tailed one sample location z-test due to its simplicity and in

order to suitably illustrate the general aspects of statistical testing. A one-sided test is limited to testing

in either greater or smaller direction, a two-sided test tests simultaneously on both greater or smaller

conditions. Given a set of measured realizations x1, x2, . . . xn of a distribution X̂ approximated by

sampling, the sample location z-test tests on inequality of the empirically approximated mean µx of X̂

of another scalar M given the standard error SE of the samples drawn from the distribution. Note that

SE specifically refers to the variance observed for the samples from X when approximating the true

value of a parameter of interest, i.e. SE is not the standard deviation of the usually latent and intractable

distribution. H0 and H1 are defined as follows for a two-sided one sample z-test:

H0 := µx = M (2.3.1)

H1 := µx 6= M (2.3.2)

H0 is rejected if the probability of incorrect rejection is lower than a user-defined threshold, com-

monly referred to as α-level. The probability of an incorrect rejection is calculated based on the assumed

distribution, a test-statistic which quantifies the statistical power of the difference between between µx

and M given the standard error SE. The z-value is a quantification of the corresponding statistical
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strength of the relationship of these variables:

z =
M − µx

SE
(2.3.3)

SE is then weighted by the amount of observed point-wise data n:

SE := σ/
√
n (2.3.4)

σ :=

√

√

√

√

n
∑

i=1

(µx − xi)2 (2.3.5)

Note that the z-test assumes that the real σ is known what, however, frequently is not the case and

only the sample’s variance can be quantified. The probability to reject H0 although H0 has, by ground-

truth, to be retained is called the p-value. Differently formulated, the p-value provides the information

how often a sample from a population would look like as was observed due to chance if H0 was true.

To calculate the p-value, the cumulative distribution function (CDF) of the probability density function

(PDF) of z-scores has to be known. In a majority of cases and due to the central limit theorem of

statistics, shown in equation 2.3.7, the PDF of the distribution of z-values is a Gaussian distribution with

expected value µ = 0 and standard deviation σ = 1 [55]:

N(µ = 0, σ = 1, x) =
1

1 ·
√
2π

e
1

−2
(x−0

1
)2 (2.3.6)

The difference between µx and M is called significant when z-score ≥ z-critical holds, while the

distance between the z-critical and the z-score is known as the statistical power. Parameter α is the

upper bound of the probability to incorrectly reject H0. α takes on values in the interval [0, .., 1] over

the body R
+
0

. The critical value is the smallest z-score that results in a p-value that is equal or smaller

than α. The critical value is the CDF of the Gaussian distribution, labeled Φ(z) (Phi), resolved for the

z-score at which the integral function equals α:

∫ z

−z

N(µ = 0, σ = 1, x)dx =
1

2

[

1 + erf

(

x− 0

1 ·
√
2

)]

= Φ(z) = α (2.3.7)

The function erf refers to the Gaussian error function which quantifies the probability that the z-value

falls within the range of [−x, x]. A convenient aspect of the z-test definition is that the critical value al-

ways equals 1.96 for a two-sided test with α-level of 5% due to the assumption A) that the standard

deviation of X’s population is known and B) that the CDF of the z-scores follows a Gaussian distribu-

tion [56].
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Since α is an upper bound and zero the lower limit, a region of acceptance R0 is directly created

depending on the value that was chosen for α:

zcrit =

∫ z

z

N(µ = 0, σ = 1, x)dx = α (2.3.8)

R0 := (zcrit, · · · , 0] (2.3.9)

If the p-value falls within the interval of R0, the test on µx = M will lead to a rejection of H0 and

µx 6= M will be accepted. In the case that H0 was incorrectly rejected, a statistical error of Type-I, was

committed while incorrectly retaining H0 is a Type-II error.

2.3.1.1 t-test

The cumulative distribution function (CDF) of the error-distribution has to be known in order to

resolve for the critical value of the test-statistic. An important reason why hypothesis testing is applied

in a plethora of scientific domains is that the CDF that controls the Type-I error can be obtained via the

central limit theorem [56].

The central limit theorem states that the errors that occur when estimating the potentially unknown

expected value µ of a probabilistic distribution via empirical estimation of µ follow a Gaussian CDF

Φ(z) [56]. Let the empirically estimated mean Sn be defined as
∑n

i=1
xi/n. The properly normalized

error of µ-estimation, ∆, then depends on the sample-size n and the difference between Sn and µ [57]:

∆ :=
√
n(Sn − µ) (2.3.10)

Application of the Lindeberg-Lévy theorem then quantifies ∆ by utilization of Φ(z) from equation

2.3.7 assuming an asymptotic sample-size growth of n → ∞ for any z ∈ R resolves to [58]:

lim
n→∞

CDFn([∆ ≤ z]) = Φ(z) (2.3.11)

The CDF of the ∆ of independently and identically distributed (i.i.d.) random variables can thus be

expressed as follows for sufficiently large n. Note that µ is fixed but that σ2 is a variable:

CDFn(∆, n)
n=∞−−−→ N(µ = 0, σ2) (2.3.12)

27



We summarize that the distribution of the errors required for determination of the critical z-value

is generally a Gaussian CDF Φ(z) due to the central limit theorem. However, any test that assumes

an approximate Gaussian distribution has to ensure that a sufficiently large sample-size is provided for

equation 2.3.11 to be applicable and, in addition, that the specific value of σ2 is known or can be approx-

imated.

Here, we present the t-test which is frequently applied in the scientific domain of Bioinformatics. A

commonality between the earlier introduced z-test and the t-test is that both assume the expected value

of the tested probability distribution to follow a Gaussian distribution. An important difference is that the

t-test empirically estimates σ2 whereas the z-test assumes the population’s σ2 to be known. However, a

z-test may still be applicable provided that the sample-size is sufficiently large to reliably estimate σ2,

what generally is assumed to be the case for a n ≥ ⑦1000 [57].

The t-test is of great importance for the domain of Bioinformatics and, in particular, for the analy-

sis of differential gene expression [59]. In Section 5, differentially expressed genes between pancreatic

neuroendocrine and exocrine cell-types are identified via a t-test.

The t-test tests on the possible inequality of parameters of two distributions X and Y . H0 states

that µX = µY and H1 that µX 6= µY . Here, we present a two-sided t-test for the basic case of equal

variance between X and Y as well as equal sample sizes nX and nY . In case of differing sample sizes

and variances, a Welch test can be applied at the cost of test-sensitivity due to increased type-II errors

(H0 should be rejected but is retained) [60]. In the following, s2 is utilized en lieu of σ2 to distinguish

an empirical variances from the population’s variances that is generally unknown.

The t-test applies a test-statistic that is based on a t-distribution with single values of the distribution

being referred to as eponymous t-values. These are calculated based on the difference of the tested

parameters µX and µY and their pooled standard deviation spooled [59]:

t :=
µX − µY

spooled ·
√

2
n

(2.3.13)

The unbiased estimator for the pooled variance is then defined as follows:

spooled :=

√

s2X + s2Y
2

(2.3.14)
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Identification of the critical-value tcrit requires resolving Φ(t) for the desired α-level. H0 is rejected

if t ≥ tcrit holds after correction of tcrit due to approximation of the unknown population’s variance by

subtracting two degrees of freedom from nX + nY .

2.3.1.2 Binomial test

The Binomial test tests on the significant departure of an empirical distribution of realizations x1, x2, . . . xn

from their expected Binomial distribution. Chapters 3 and 4 utilize a Binomial test to determine whether

an observed amount of matches between a query and a reference CCL can still be explained with the

amount of matching variants expected due to chance based on an empirically approximated sample dis-

tribution.

The Binomial test requires that a tested probability distribution X takes on discrete and dichotomic

values e.g. X = 1 or X = 0 and follows a Binomial distribution B(p, n, k). Given B(p, n, k), n

indicates the amount of trials for success, k the amount of observed successes and p the probability of

success with q = 1− p [61]:

B(p, n, x = k) =

(

n

x

)

px(q)n−x (2.3.15)

(

n

x

)

:=
n!

x!(n− x)!
(2.3.16)

{p|p ∈ R, [0 ≥ p ≥ 1]}

Where ! indicates the factorial sign. The nomenclature of
(

n
x

)

in place of the common convention of
(

n
k

)

is chosen to establish clarity in following equations 2.3.17 and 2.3.18 where x is the probability of a

partial sum to observe exactly x successes as opposed to observing 0 up to k successes for the test as a

whole.

The Binomial-test thus quantifies the probability that an observed outcome of a Binomial distribution

2.3.15 was created with a chosen chance-of-success parameters p0. The aim of the test is to reject or

retain H0 which states that the observed outcome was created with the chosen p0 given the probability

for an upper bound on the error of committing a type-I of α. The p-value of a Binomial test are the

summed up point-wise probabilities of observing 0, · · · , k or alternatively k + 1, · · ·n successes. The

here shown one-sided test either tests if the observed amount of successes k was too low or too high

assuming a specific p = p0:

29



k
∑

i=0

B(p, n, x = i) ≤α, p < p0 (2.3.17)

n
∑

i=k+1

B(p, n, x = i) ≤α, p > p0 (2.3.18)

For H0 to be rejected we thus have to demonstrate that α-level is greater than the summed point-wise

probabilities, however, depending on whether we test on p0, either the lower tail (0, · · · , k) or higher tail

(k + 1, · · ·n) of the Binomial distribution is summed over. There are multiple approaches to conduct

a two-sided Binomial test on p 6= p0 and here, we describe the simplest approach: the p-values for

rejection of p = p0 according to 2.3.17 and 2.3.18 are both calculated but followed by a halving of α

to compensate for double-testing. A two-sided test thus defaults to plugin-in values for k and p = po

and testing the CDF of the Binomial distribution F (p = p0, n, x) on less than or equal to α/2 (two-sided

case):

Z(p0, n, x)
k

∑

i=0

F (p0, n, x = i) ≤ α

2
∨

n
∑

i=k+1

F (p0, n, x = i) ≤ α

2
(2.3.19)

Critical-value determination is conducted in analogy to the z and t-test by resolving F (p, n, x) for

the desired α-level. A key difference to the t-test is that large sample-sizes are generally adversarial

to the effective application of a Binomial test. For large sample-sizes, the underlying Binomial distri-

bution approximates a Gaussian distribution due to the central limit theorem what would motivate the

application of a z-test that is superior in sensitivity and possesses computational advantages [61].

2.3.1.3 Logrank-test

The non-parametric Logrank test is instrumental for clinical trials since the test allows to identify

significant differences with respect to the efficacy of patient treatments. For instance, one can compare

the effectiveness of an established drug-treatment with a novel but not sufficiently tested drug. The in-

tention of the test would be to determine whether the novel drug should be adopted due to a significant

increase in the overall patient survival time.

Advantages of the test are the absence of user-defined parameters and that the frequently occurring

discarding of patients from the survival statistic can be adequately modeled via sample-censorship. The

Logrank-test is central to Chapter 5 where it is demonstrated that classification-by-deconvolution can

subtype cancer patients into cohorts that differ with respect to their overall patient survival time.
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The test rejects or retains the null-hypothesis H0 that the hazard functions hi(t) of c-many compared

cohorts differ [62]:

H0 := hi(t) == h′i(t) (2.3.20)

i, i′ ∈{i|i ∈ N, 1 > i ≤ ∞, i 6= i′} (2.3.21)

A hazard function is the frequency at which an event, e.g. the passing of a cancer patient, is expected

to occur by chance within a given interval [63]. Importantly, the expected value of a hazard function

hi(t) follows, by assumption, a hypergeometric distribution with a fixed set of parameters that is directly

derived from the input data [62]. Since H0 states equality of the hazard functions, the Logrank-test is

designed to show that at least one hazard function does not utilize the same set of parameters given a risk

that the assumption of diverging parameters is incorrect. Let Nj be the amount of possible events over

all cohorts (e.g. surviving patients) and Oj be the marginal amounts of observed events (e.g. deceased

patients), here shown for c = 2:

Oj := Oi,j +Oi′,j (2.3.22)

Nj := Ni,j +Ni′,j (2.3.23)

The variance-weighted difference between expected and observed events is quantified for all c co-

horts. Importantly, the Logrank-test probes a time-series that consists of d equidistant intervals. The d

weighted divergences are summed up as scalar which can then be attributed with a type-I error risk for

H0 rejection since its CDF is known.

Let there be d many intervals and c many cohorts with indicator variables j and i with j indicating

an interval and i a cohort. Assume Nj to be the amount of patients that can still decease in interval j. Oj

is, in contrast, the observed amount of events within interval j. The expected amount of events for each

cohort i in interval j is then calculated as follows:

Ei,j = Oj

Ni,j

Nj

(2.3.24)

The variance for interval j and cohort i is analogously approximated as:
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Vi,j = Ei,j(
Nj −Ni,j

Nj

)(
Nj −Oj

Nj − 1
) (2.3.25)

The distribution of the differences between Ej and Oj asymptotically follows a Gaussian distribution

due to the central limit theorem. The divergence of at least one cohort i is thus quantified by a z-value

over all j as shown here [62]:

Z(Oi,j , Ei,j , Vi,j) =

∑J
j=1(Oi,j − Ei,j)
√

∑J
j=1 Vi,j

d−→ N (0, 1) (2.3.26)

Equation 2.3.26 follows from the Lindeberg-Lévy theorem stated in equation 2.3.11, for a sufficiently

large J . Solving for the critical value, as demonstrated in equation 2.3.8, determines the threshold at

which H0 can be rejected with upper confidence bound α what can for instance indicate a survival

advantages of the patients treated with the novel drug.

2.3.2 Empirical sampling and testing

Hypothesis testing is not possible when the error CDF is unknown, test-statistics for H0 rejection

unreliable or the underlying data spurious what leads to a loss of goodness-of-fit of the CDF to the error

function [64]. Spurious data, as defined by Fricker et al. [65], refers to a mathematical relationship in

which two or more events or variables are associated but not causally related, due to either coincidence

or the presence of a certain third, latent factor. To overcome these challenges, empirical sampling and

testing can be applied to obtain empirical p-values. We will present the basic theoretical principles of

empirical sampling to demonstrate how the sampling enables empirical testing with methods that were

applied in Chapters 4 and 5.

Empirical sampling is defined as the sampling of the distribution of type-I errors via empirical CDF

approximation with the aim of obtaining p-values. The empirically sampled distribution can, by as-

sumption, be utilized to inform about the probability of type-I errors or, alternatively, the confidence

interval in which an unknown parameter is located with a given likelihood [66]. The key aspect of

empirical distribution sampling is the precision with which a given CDF can be approximated by sam-

pling. This sampling precision is described by the concept of confidence interval CDF bands by the

Dvoretzky–Kiefer–Wolfowitz inequality (DKW), illustrated in Figure 2.5.

Given an intractable CDF F (x) whose PDF was evaluated at n x-coordinates, the empirically ap-

proximating CDF function Fn(x) is defined as follows[67]:
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Figure 2.5: Example of an empirical distribution sampling with confidence intervals. The plot shows the

empirical approximation of the CDF of a standard normal distribution via an empirical sampling from the

PDF. The true CDF is the continuous orange line and the empirical sample the cyan stepped function.

The flanking purple upper and lower stepped lines are example confidence intervals which bound the

location of the true CDF based on the DKW what quantifies the precision with which a function can be

empirically approximated. Source Figure [67]

Fn(x) :)
1

n

n
∑

i=1

1{X≤x}, x ∈ R (2.3.27)

Where 1 is the indicator function that equates to 1 when the condition is fulfilled and 0 otherwise. The

precision of the approximation can then be quantified by the DKW depending the sample-size parameter

n and the error ǫ :

pr

(

sup
x∈R

|Fn(x)− F (x)| > ǫ

)

≤ 2−2nǫ2 , ∀ǫ > 0 (2.3.28)

The CDF bands constrain the approximated function F (x) into a tube which is composed of the

empirical function Fn(x) and an error term ǫ:

Fn(x)− ǫ ≤ F (x) ≤ Fn(x) + ǫ where ǫ :=

√

ln 2
α

2n
(2.3.29)

Based on the tube-approximations via DKW, H0 may be rejected or has to be retain if the tested
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parameter is located within an interval given the supremum on the upper bound of the acceptable type-I

error limit α. In the following we show how three different empirical tests, applied in Chapters 4 and 5,

reject H0 via empirical p-value estimation.

Empirical parameter estimation

The Jackknife resampling technique for parameter estimation enumerates all possible leave-one-out

subset input constellations. The aim is to evaluate these enumerated input-subsets in order to approxi-

mately learn the distribution of a parameter given the enumerations. The resampling term indicates that

smaller subsets of an original samples are evaluated and enumeration indicates that all possible leave-

one-out input subsample combinations are evaluated [68].

The Jackknife technique will be applied in Chapters 3 and 4 to determine the likelihood x̂ to observe

matching small variants between CCLs. The reason is that it can be shown that the expected value of x̂,

as obtained by resampling, is identical to the standard arithmetic mean [68]. The variance estimation is

the key aspect of Jack-Knife resampling and calculated as follows:

V ar(x̂) =
n− 1

n

n
∑

i=1

(x̂i − x̂)2 =
1

n(n− 1)

n
∑

i=1

(xi − x̂)2 (2.3.30)

The confidence interval of a parameter x̂ can thus be determined as shown in equation 2.3.30 and ap-

plication of DKW allows us to resolve for a critical value at which an observed CCL matching parameter

xj significantly diverges from the background distribution [69]:

Pr(xj ≥ x̂) ≤ α (2.3.31)

The primary advantage of the Jack-Knife approach is its simplicity. A disadvantage is that Jack-Knife

tests are not exact tests in that α-levels do not necessarily approach the true value of the tested parameter

since only a resampling occurs. This implies that the true population can differ when the sample possess

a different variance than the distribution population.

P-value correction via permutation sampling

In the following, the Westfall & Young permutation test for p-value correction is presented which

finds application in Chapters 4 and 5. Permutation techniques differ from enumeration approaches in

that distributions and not parameters are estimated. Furthermore, sampling occurs without replacement

and permutation tests are generally exact tests which asymptotically equal the true value [70].
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The Westfall & Young test infers the distribution of the type-I errors by perturbing labels of a given

cohort ( in contrast to Jack-Knife leave-on-out sampling that excludes samples). The perturbation there-

fore refers to the shuffling of the cohort-membership of the samples. The aim is to approximate the real

distribution of p-values via the perturbation. After approximating the p-value distribution, the original

p-value that relates to the tested cohort-definition is adjusted. The Young & Westfall test seeks to control

the Family-wise error rate (FWER) while remain sensitive to H0 rejection compared to approaches such

as the Benjamini-Hochberg multiple-testing correction [71, 72].

Assuming that there are n phenotypes, there are nm possible shuffles for m samples. Out of these

shuffles, the ones with only a single phenotype are excluded, since the calculation of a difference requires

at least two cohorts. We therefore obtain nm − 2n many possible case for the Westfall & Young test.

Let b = nm − 2n be the number of all allowed enumerations of the cohort-phenotypes of datasets X

and p0 be the initial p-value derived from the unperturbed cohort-labeling. The Westfall & Young in its

step-down max-T version conducts the following procedures for the bth permutation, g = 1, ..., b : [71]:

1. Shuffle the cohort-labels of the original matrix X b times to obtain perturbations

2. Compute the test-statistic t1, tg, ..., tb for each perturbation (g is an index variable)

3. Order tg decreasingly to obtain monotonicity

The H0-distribution corrected p-value p̂H0 is calculated as follows:

p̂H0 := 1/b
b

∑

g=1

IIndicator(tg|tg ≤ pH0) (2.3.32)

A key disadvantage of the exact permutation tests are they can be computation-intensive. Despite the

comparatively low size of class labels in common NGS data sets (compared to the amount of genes), a

permutation-based approach can fail to terminate in high sample-size experiments, in which case one can

limit the sample-size and, as a trade-off, decrease the test’s accuracy. An additional disadvantage is that

any set of samples drawn from the approximated distribution suffers from the Behrens–Fisher problem

that states that the same variance has to be assumed for every class-label permutation for the test results

to be exact what is frequently not possible [73].

P-value calculation via probabilistic empirical Sampling

Monte Carlo procedures refer to a group of methods which have in common that they sample repeat-

edly from a probability PDF to infer information about a parameter of the CDF when the CDF itself is
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unknown or intractable [68]. An advantage of Monte Carlo methods is their versatility in that they can

be applied in various scientific domains since they are based on the evaluation of probability functions

which are ubiquitously found in multiple scientific fields [74]. In particular, the empirical p-value estima-

tion via Monte Carlo sampling has become an established procedure in the field of Bioinformatics [75].

Reasons for the utilization of Monte Carlo methods for p-value estimation are that Monte Carlo methods

neither require exhaustive enumeration nor an asymptotic sampling assumptions [75]. Chapter 5 ap-

plies empirical Monte Carlo p-value estimation to quantify how much more likely a given transcriptomic

deconvolution of matrix X is compared to the deconvolution of a randomly perturbed matrix X ′.

Monte Carlo methods estimate the p-value via probing the domain of the p-value distribution CDF to

learn the co-domain what informs about the location of the true p-value within a confidence interval [64].

Monte Carlo sampling is consequently defined as drawing without replacement until a desired width of

the confidence interval is achieved based on a sample-size power-calculation [76].

Let M be the amount of Monte Carlo samples of size n x1, x2, · · · , xn from a given distribution.

Monte Carlo p-value estimation then quantifies the amount of times that samples resulted in a significant

p-value k given a specified critical value threshold. The estimate of the p−value p̂ is defined as follows

[70]:

p̂ =
1

M

M
∑

j=1

kj =
k + 1

M + 1
(2.3.33)

The true p-value is then located in an encapsulating interval with width σ̂:

σ̂ =

[

1

M − 1

M
∑

j=1

(kj − p̂)2
]

1

2

(2.3.34)

With the probability for the interval defined by p̂ following the Chebyshev inequality, e.g. 68% for 1

σ̂[77]:

Pr(p̂± σ̂) = p̂± σ̂ ×
√

p̂(1− p̂)

M
(2.3.35)

Disadvantages of the empirical Monte Carlo p-value estimation are that the p-value are assumed to

follow a continuous, uni-modal distribution and that an uncorrected p̂ can underestimate the true p-value.

The p-value underestimation is a result of its Binomial expected value i.e. because it is not a distribution

that is being sampled but the variable p̂ [76]. The probability to underestimate p̂ is calculated as follows

[76]:
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P (p̂ ≤ α) =
⌊Mα⌋+ 1

M + 1
(2.3.36)

To limit the underestimation as presented in equation 2.3.36 for the purpose of transcriptomic de-

convolution, perturbation sample-sizes are generally set to 1000 by default what is as well the case for

Chapter 5.

2.4 Deconvolution

Transcriptomic Deconvolution, also known as compressed sensing [78], is subject to ongoing inten-

sive research and applied in Chapter 5 of the thesis where it contributes to the augmentation of neoplastic

data for ML model training purposes. The intuition of a deconvolution is that one matrix can be fac-

torized into two matrices whose multiplication recreates i.e. reconstructs the original matrix, see Figure

2.6. Deconvolution commences at the state where two matrices are given and the transcriptome, i.e. the

original matrix, has to be reconstructed via a multiplication of the matrices. Importantly, one matrix has

a width of one dimension, i.e. can be modeled as a vector, and its entries are not known at the onset of

the reconstruction. A deconvolution algorithm chooses the entries such that the reconstruction is optimal

as quantified by a reconstruction error. The such determined vector reprents the abundance of cell-types

in the reconstructed transcriptome [34]. The abundance of the specific cell-types are considered clin-

ically relevant since the relative cell-type proportions can potentially provide information regarding a

neoplasm’s clinical characteristics.

Definition

We will refer to the query, a neoplastic transcriptome, as vector C, to the cell-type expression sig-

natures as matrix B and to the cell-type proportions as vector F . Matrix B is of dimensions # (amount

of) genes × # cell-types and provides information on what marker-genes are characteristic for which

cell-types. Vector F is of length # genes and indicates which cell-types are present according to the

reconstruction of C of length # genes [80]:

C = B × F + ǫ, ǫ ∈ R (2.4.1)

with
∑

F = 1, F ∈ x|x ∈ [0, . . . , 1], x ∈ R0

The reconstruction illustrated in equation 2.4.1 assumes that C can be reconstructed by a linear

combination of a semi-positive vector F with the marker gene signature matrix B while accepting an in-
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Figure 2.6: Deconvolution matrix factorization. The figure illustrates that transcriptomic deconvolution

is based on a matrix factorization with error term. Matrix B consists of marker genes which distinguish

cell-types. B has a width of the amount of cell-types and a height of the amount of genes. The initially

unknown matrix (vector) F is determined by a deconvolution algorithm such that the (normed) distance

to the original matrix C becomes minimal depending on the target function which quantifies the error.

Gray areas serve to distinguish the commonly applied single-sample deconvolution from the matrix for-

mulation with a width greater than one, i.e. the deconvolution is applied to single samples while the

defactorization is defined for a multi-sample contexts. The names of the matrices are chosen such that

they match equation 2.4.1. The figure was procured from [79] and modified.

curred error-term ǫ (Epsilon), ǫ ∈ R [81, 82, 83]. A deconvolution consists of a training and a prediction

phase: During the training phase C and F , whose cell-type proportions make up a convolute, are known.

Solving equation 2.4.1 for B finalizes the conceptually simple training phase. Challenges associated

with deconvolution generally center in the process of how B is obtained and a plethora of approaches

that include, but are not limited to, unsupervised Monte Carlo maximum-likelihood [84] and supervised

pseudo-matrix calculation have been applied to solve for B [85].

During the prediction phase, C and B are known, but F is unknown and equation 2.4.1 is solved for

F . This is defined as actual deconvolution step because vector F is calculated during the reconstruction

of C. The intricate element about a deconvolution is that a reconstruction is almost always possible, if ǫ

is not constraint. Therefore, an empirical p-value is utilized to evaluate how non-random and statistically

likely a result is. Commonly calculated by empirical resampling, the p-value quantifies how likely a ran-

domly composed C would have resulted in the same reconstruction error, described in detail in Section

2.3.2.

Based on Equation 2.4.1, the reconstruction of C is generally formulated as an optimization problem

by introducing a loss function L that quantifies the reconstructive error ǫ. During training, the optimiza-
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tion problem is to minimize ǫ via optimal choice of B with fixed F . For the prediction, B is fixed and F

is iterated over to reconstruct C with minimal error [86]:

minL(|C − (B × F )|) (2.4.2)

This optimization problem can be solved by various algorithms. The choice of the deconvolution

algorithm and scRNA training dataset is critical due to the significant differences between the algo-

rithms that may be suitable for different combinations of training and query data [35]. Algorithms differ

primarily with respect to their predictive performance for different NGS technologies because they were

developed for and benchmarked on a limited selection of technologies, most often Bulk RNA-sequencing

and mRNA-arrays. Moreover, run time and RAM footprint differ greatly as well [87].

Properties and Constraints

To reduce both run time and avoid numerical problems while reduction the RAM footprint, feature-

reduction algorithms are commonly utilized. These feature reduction algorithms are subdivided into

algorithms which require the manual pre-selection of features and semi-supervised algorithms that deter-

mine a subset based on an optimization criterion [88, 82]. The manually selected subset features of the

supervised approach are features that are generally statistically associated with only a single cell-type

and can thus be identified via a one-versus-all differential expression analysis. Due to the prefiltering, B

from equation 2.4.1 generally contains less genes than the query C because it only composes of genes

that are characteristic for cell-types. The deconvolution is therefore restricted to the marker genes what

may cause thousands of gene in C to be ignored for deconvolution purposes. Nonetheless, effective de-

convolution in even as few as ten marker genes has been demonstrated for healthy pancreatic tissue and

the determination of tumor immune-cell infiltration [35].

An important aspect that explains why deconvolution gained scientific momentum from 2015 on-

wards are improvements with respect to the marker gene selection [34]. Before 2015, marker genes had

to be selected such that they avoid co-linearity constraints what reduced the amount of suitable genes

[89]. Co-linearity (sometimes also called multi-linearity, [90]) is defined as a situation where two or

more coefficients in a statistical model are linearly related [89]. Due to co-linearity, parameter estimates

may be unstable, standard errors of estimates inflated and consequently inference statistics biased [91].

The co-linearity constraint was overcome by algorithms published from 2015 onword, such as Bulk

Sequence single-cell deconvolution analysis pipeline (BSeq-sc) and MUlti-Subject SIngle Cell deconvo-

lution (MuSiC) [34, 28] which are utilized in Chapter 5. The ramification of the dropped constraint was
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that marker genes may be expressed in more than one cell-type (what may imply their correlation) what

dramatically increased the statistical power of the deconvolution [84].

p >> n Problems and Over-Determination of B

Algorithms for transcriptomic deconvolutions are designed to address ’p >> n’ problems (p sig-

nificantly greater than n) where p is the amount of features (here genes) and n the amount of samples.

’p >> n’ problems entail that the amount of features p is significantly greater than the amount of sam-

ples n [92]. ’p >> n’ problems therefore imply that the mathematical solution is over-determined and a

feature reduction in the form of a Linear Dimensionality Reduction (LDR) technique may be required.

Consequently, the cell-type signature matrix B has to be over-determined, i.e. comprise of more

genes than samples, to predict cell-type proportions [83]. In high-throughput sequencing settings with

several thousands of genes, over-determination is generally assured, but mRNA panel sequencing ap-

proaches that cover a small amount of genes can restrict the applicability which is why the thesis only

focuses on the deconvolution of over-determination-assuring Bulk-RNA sequencing technologies [34].

2.5 Algorithms for Transcriptomic Deconvolution

Various types of ML algorithms are commonly applied for deconvolution, including supervised

kernel-based methods and linear factorization as well as unsupervised likelihood-maximization approaches

[28, 34]. The thesis will, however, be limited to the supervised algorithms relevant to Chapter 5, namely

the ν-SVR, derivative of the C-Support Vector Machine (SVM) algorithm and the NMF algorithm. We

will introduce the C-SVM algorithm first due to its historical precedence and more intuitive formula-

tion followed by a highlighting of commonalities and differences to the applied ν-SVR. Secondly, the

NMF algorithm will be introduced due to its widespread utilization for deconvolution in addition to its

utilization by the scientific contribution of this thesis.

Support Vector Machines

C-SVM algorithms are a class of widely utilized ML algorithms whose purpose it is to decide on

the binary classification problem of whether a given sample is part of one class or another [15]. Given

a d-dimensional space over the set of Rd, the C-SVM, in its original formulation, classifies samples via

the introduction of a d − 1 dimensional hyperplane that partitions the space and the contained samples

[93]. Intuitively, the coordinate equation of a hyperplane H in a three-dimensional euclidean space is

spanned by two vectors ~µ, ~u ∈ R
3 that define the edges of the infinite hyperplane (third vector feature
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set to 0 for dimension d− 1). H is then defined as set of locations whose positional vector ~x fulfills the

following equation for an arbitrarily chosen but fixed z ∈ R
1:

H := {(µ, u, z) ∈ R
3|x1 · µ+ x2 · u = z} (2.5.1)

Where · denotes the component-wise multiplication. For the generic, less intuitive d-dimensional

case, the Hesse normal form based on a normal vector ~w is commonly chosen. Vector ~w is determined

by solving the scalar product 〈w, ~µ, ~u〉 equation for a vectors that is a member of the set of vectors whose

scalar product with H is zero, i.e. which is pointing orthogonally to H . Next, an intercept scalar, as well

called ’bias’ term, b is determined to connect the normal vector to the origin of the coordinate system.

Given both ~w and b, we can define the hyperplane H coherently to the commonly utilized SVM literature

[94]:

H := {~x ∈ R
d|〈~x,w〉+ b = 0} (2.5.2)

For brevity and to obtain coherence with the literature reporting on SVM theory, the normal vector ~w

will in the following be referred to as w without vector indicator marks. Importantly, vectors ~x which do

not fulfill equation 2.5.2 have a scalar product 〈~x,w〉 that is either positive (geometrically located above

H) or negative (geometrically located below H). A C-SVM can therefore, in theory, partition the space

and separate all samples of class one in one subspace and the other samples in a different subspace of

R
d, by choosing H , such that the scalar product indicates a class membership via its sign. The samples

that are closest to H are the eponymous Support Vectors ai which enclose H . The space between H and

ai is called a margin. The width of the margin between between H minus the bias and any ai is 1 since

H is chosen such that the scalar product 〈ai, w〉 minus the bias amounts to either 1 or −1 with no other

training sample located within the margin by definition of ai, see Figure 2.7.

The standardization 2
||w|| of the margin’s width allows to easily determine whether a given samples

is located within the margin between H and ai. The choice of H , during the training phase, is such that

no other samples has a corresponding scalar product of equal or less than one (hard-margin definition)

except for the Support Vectors which will be utilized as constraints in the following optimization equation

for w. Given that a prediction yi of class membership (y = 0 ∨ y = 1) is to be made for a new sample

xi, the prediction is formulated as follow:
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Figure 2.7: Classification Concept of a Support Vector Machine. The partitioning hyperplane H is

defined as the set vectors ~x whose scalar product (scalar product operator denoted by ∗) with the normal

vector w and a bias vector b is zero (scalar product brackets and vector arrows omitted for clarity in the

Figure). Any samples’ scalar product with H is either positive, negative or zero what indicates the class

membership due to a location within one of the partitions if the product is not zero. During the training

phase, H is chosen such that the samples closest to H have a scalar product of one and these samples

are the eponymous Support Vectors ai. The concept of a SVM-based binary classification is therefore to

determine H such that all training data samples of opposite classes are optimally separated via a partition

of the space (hard-margin definition). New, to-be-classified samples can be classified based on the sign

of their scalar product with H . Source Figure [95]

yi = sign(w · ~xi − b) (2.5.3)

In the hypothetical case that a linear separation is possible and every training sample can be correctly

classified via equation 2.5.3, a C-SVM with hard margin can be applied, i.e. no incorrect classification

occurs and H perfectly partitions the space. A hard margin C-SVM, however, is generally not possible

and violations of the margin have to be accepted for practical purposes what leads to the definition of

a soft margin C-SVM. A soft margin C-SVM first introduces an error function losserr to quantify the

degree of incorrectly located samples. One of the most frequently chosen error functions is the hinge-loss

function [96]:

losserr :=
1

n

n
∑

i=1

max(0, 1− yi(w · ~xi − b)) (2.5.4)
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Theoretically, w could be chosen such that equation 2.5.4 becomes minimal for a given set of training

samples i.e. that no sample available during the training phase violates the margin with a scalar product

with H of less than one. An illustrative yet highly hypothetical approach that ensures such absence

of errors is to first define H according to a loss function of choice to subsequently define all violating

datapoints as support vector to achieve margin-clearance. The trade-off is, however, that the complexity

of w as commonly measured by the square norm of ||w||2 increases what has the negative effect that

the C-SVM model overfits on a given training dataset i.e. will not perform well on different datasets.

Therefore, a trade-off between sparsity of the C-SVM model i.e. a reduction of ||w|| and the minimization

of the loss function 2.5.4 is required. The trade-off is parameterized by the C variable that penalizes the

classification error during training time:

minimize C · losserr + ||w||2 (2.5.5)

subject to C ∈ [0, . . . ,∞], C ∈ R

Importantly, increases in the C parameter lead to more complex models that utilize more training

samples as Support Vectors. Therefore, the standard C-SVM differs from the ν-SVM via the choice of

w to minimize equation 2.5.6 what will be further elucidated in Subsection 2.5.0.1.

Given the minimization function 2.5.6, w can be determined via a numerical optimization algorithm

which commonly implies the formulation of a Lagrange optimization function. A Lagrangean formu-

lation of the optimization function requires a reformulation of equation 2.5.6 in that 2.5.4, losserr, is

reformulated as ξi (Xi) which quantifies the margin-violation of a given ~xi [94]. The lagrangean primal

problem formulation is then defined as follows for n training samples [15]:

minimize
1

n

n
∑

i=1

ξi +
1

2
||w||2 (2.5.6)

subject to yi(w · ~xi − b) ≥ 1− ξi ≥ 0, ∀i (2.5.7)

ξi ≥ 0, ξi ∈ R (2.5.8)

The corresponding dual formulation is omitted for brevity. The linearity of the hyperplane H is,

however, the key constraint of an SVM in that non-linearly separable datapoints can only be partially

or not at all be linearly separated. Crucially, the SVM in its original formulation [97] introduces the
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Kernel trick, a projection of the input space onto a generally higher dimensional space in which a lower-

dimensionally linear hyperplane can effectively separate samples non-linearly in the higher-dimensional

space. The corresponding kernel function k(~xi, ~xj), however, cannot be arbitrarily chosen and is limited

to the constraint of being positive semi-definite [98]. The reason for this constraint is primarily motivated

by computational complexity aspects since a non positive semi-definite kernel function would generally

require an update of the higher-order projections of all samples x if a new samples was to be added. A

semi-positive kernel function allows to assume linearity of the kernel projection via addition of a linear

mapping operator φ (phi) which preserves the scalar product result of the mapping without re-calculation

of all higher-order embeddings k(x, xi) = 〈φ(x), φ(xi)〉. Consequently, constraint 2.5.8 is redefined as

follows for the kernel-trick:

yi(w
Tφ(xi) + b) ≥ ξi (2.5.9)

Such trained SVM models can effectively address a plethora of binary classification problems [99].

2.5.0.1 ν-Support Vector Machine Regression

In Chapter 5, a ν Support Vector Machine Regression was applied which is a derivative of the original

C-SVM formulation and differs in the type of problem that is solved (regression versus classification)

and the prioritization of the training error (ξ) over the model complexity (C). First, the regression versus

classification aspect will be highlighted and secondly the ν parameter. Note, however, that both aspect

are independent from each other, i.e. ν-SVM formulations are possible as well as C-SVR models.

The standard C-SVM classifies samples as member of two classes via the introduction of a hyper-

plane H by establishing a margin between H and Support Vectors ai where the margin, in an ideal

scenario, does not contain any other datapoints. A SVR shares the property of establishing a hyperplane

H over a set of training samples but in contrast to a SVM attempts to contain as many training samples

as possible within its margins with a minimally normed ||H|| [100]. H in its formulation as orthogonal

normal vector w is utilized to predict the value of a generally unknown function f(x) given a specific

input x:

f(x) =
n
∑

i=1

wT · ~x+ b (2.5.10)

f(x) ∈ R, wT , ~x, b ∈ R
d
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The advantage of a regression-formulation as presented in equation 2.5.10 is that a SVR-algorithm

is outlier-robust and computationally superior to comparable ML models [99] since the kernel-trick can

be seamlessly reapplied to the regression:

f(x) =

n
∑

i=1

wT · φ(~x) + b (2.5.11)

Identical to the default SVM hard versus soft-margin definition, an error term ξi is required to com-

pensate for violations of the margins. Note, that violations occur not between the Support Vectors and

H as is the case for a C-SVM but outside of the infinite tube spanned by the vectors. Since the violation

term ξ differs depending on what side of H the violation occurred, an asterik (*) will in the following

serve to distinguish the sides of the hyperplanes where the violation occurred. Note that the violation

term of the C-SVM was symmetric since the distance to H remained invariant to the direction of the vi-

olation while the distance of an incorrectly regressed sample to the margins on either side will generally

differ. The minimization problem of a C-SVR is therefore formulated as follows [98]:

minimize
1

2
||w||2 + C

n
∑

i=1

ξi + ξ∗i (2.5.12)

subject to



























f(xi)〈wT , xi〉 − b ≤ ξi

〈wT , xi〉+ b− f(xi) ≤ ξ∗i

ξi, ξ
∗
i ≥ 0

Based on the primal optimization formulation 2.5.12, the corresponding dual formulation can be

calculated analogously to the classification formulation, however, for brevity we will only present the

primal problem formulation. In summary, the objective functions of a SVM and a SVR differ but the

underlying hyperplane concepts remains comparable.

ν versus C-SVM

The ν parameter differentiates the applied SVM model from the default model presented earlier and

primarily modifies how the optimization presented in equation 2.5.7 is solved, i.e. the choice of H dif-

fers although the underlying optimization formulation remains the same [94]. The primary motivation

to utilize ν is to obtain an optimization formulation where as few as possible features have to be utilized

for the problem formulation while limiting the error during training time [93]. Given the context of

Bioinformatics with data types such as e.g. gene expression data that includes ten-thousands of genes or
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more, the ν formulation is frequently prioritized over C formulation to reduce the calculation complexity.

Figure 2.8: ǫ-independent SVR loss function.

As proven by the Karush-Kuhn-Tucker condition

(KKT) equation, the area bounded by - and +ǫ and

the samples contained within the tube be can ig-

nored, merely the slack variables ξ have impact on

the optimization equation, what reduces computa-

tional complexity and helps to identify the optimal

set of support-vectors [101].

As shown in equation 2.5.12 for the SVR

and equation 2.5.6 for the SVM, parame-

ter C acts as a penalty term for incorrectly

classified or regressed samples. An increase

of C will generally reduce the training error

but render the model more complex as mea-

sured by ||w||2 since more samples are uti-

lized as Support Vectors. C, however, is

not directly interpretable since it is generally

unclear to what extent the model complexity

and the training error will increase when C

is changed [99]. In contrast, the ν formu-

lation is interpretable because ν serves as an

upper bound on the fraction of margin vio-

lations and as a lower bound on the amount

of samples utilized as Support Vectors [99,

94].

Importantly, the ν formulation applies the concept of an ǫ (epsilon)-insensitivity which is defined as

the omission of training samples from the primal optimization equation iff the samples are located within

a distance ǫ around H [102]. The key concept of the ν parameter is to choose ǫ such, that aforementioned

constraints on the amount of Support Vectors and the error during training time are preserved [99], see

Figure 2.8.

The corresponding ν-optimization problem is formulated as follows for slack variable ξi, ξ
∗
i and the

ǫ width:
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Minimize
1

2
||w||2 + C · 1

n

n
∑

i=1

(ξi + ξ∗i )

subject to



























(wT · xi + b)− f(xi) ≤ ǫ+ ξi

f(xi)− (wT · xi + b) ≤ ǫ+ ξ∗i

C, ξi, ξ
∗
i ≥ 0

A well defined loss function Lǫ states that, based on the KKT proof, only residuals greater than ǫ

affect the choice of H and in turn the definition of the normal vector w [103]:

Lǫ =











0, if |f(x)− w × F | ≤ ǫ

|f(x)− (w × F )| − ǫ, else

The ǫ-constraint on w, shown in equation 2.5.13, is labeled ǫ−insensitivity because the ǫ parameter

introduces an ǫ − tube around the hyperplane within which residuals do not affect the loss function,

illustrated in Figure 2.8. As outlined by the KKT-proof the ǫ-independence reduces the computational

complexity since the samples within the ǫ-tube can be omitted from the optimization equation [101]. The

ν parameter is then solved for C and the ν-SVR redefines the optimization problem as follows:

Minimize
1

2
||w||2 + C(νǫ+

1

n

n
∑

i=1

(ξi + ξ∗o))

subject to



























(wT · xi + b)− f(xi) ≤ ǫ+ ξi

f(xi)− (wT · xi + b) ≤ ǫ+ ξ∗i

ξi, ξ
∗
i , ǫ ≥ 0

The optimal solution for the loss function in equation 2.5.13 is, analogously to the standard C-SVM,

found via Lagrange optimization with Lagrange variables α, η, β ≥ 0. Equation 2.5.13 utilizes β is a

weight on the classification error ǫ, η as weight on the slack variables ξ and α a margin-size weight on

w. The ν-SVR optimization problem has to be solved for w, b, ξ
(∗)
i [102]:
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L(w, b, α
(∗)
i , β, ξ∗, ǫ, η(∗)i ) =

1

2
||w||2 + Cνǫ+

C

n

n
∑

i=1

(ξi + ξ∗i ) (2.5.13)

−
n
∑

i=1

αi(ξi + yi − (wT · xi)− b+ ǫ)

−
n
∑

i=1

α∗
i (ξ

∗
i + (wT · xi) + b− yi + ǫ)

− βǫ−
n
∑

i=1

(ηiξi + η∗i ξ
∗
i )

The ν-SVR kernel-projection into a higher-dimensional space is formulated analogously to the C-

SVR, the kernel being indicated by the variable κ (Kappa). κ induces the transformation-invariant dot

product 〈xi, xj〉 of the feature space [97]:

κ(x, y) = φ(x) · φ(y) (2.5.14)

In summary, given the complex regression problems within the domain of Bioinformatics, the ν-

SVR has found ample attention due to its dimensionality-reduction property and limitation of the error

during training time, thereby facilitating the training of overfit-robust models for e.g. the transcriptomic

deconvolution [34, 86]. Distance-quantification concepts with respect to a transcriptomic deconvolution

conducted by a ν-SVR algorithm are involved in both the methodological and clinical aspects. The

methodological aspect refers to the distance of samples on the hyperplane H and whether they are located

within the margin or ǫ-tube.

2.5.0.2 Non-negative matrix factorization

Here, we present the Non-negative Matrix Factorization (NMF) algorithm due to its utilization as

transcriptomic deconvolution ML algorithm in Chapter 5 of this thesis and its widespread application for

deconvolution in general. The NMF algorithm, in its original design, will be presented, followed by an

outline of selected aspects which are particularly relevant to this thesis.

2.5.0.3 Definition NMF

A Non-negative Matrix Factorization (NMF) algorithm solves a linear multivariate problem that ad-

dresses the factorization of a matrix into semi-positively defined matrices [104]. Key aspects of a NMF

algorithm, that will be discussed in this section 2.5.0.2, are the non-negativeness of the factorization

products, its target function, matrix sparseness, eventual convergence and its initialization problem.
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The basic principle of a NMF shows resemblance to the deconvolution definition from Equation

2.4.1 and is defined as reconstruction of a given input by numerically estimating two entities whose

product approximates i.e. reconstructs the input. More precisely, given three matrices, C,B and F , let

the following matrix definitions apply:

C ∈ R
m×n
+ , B ∈ R

m×k
+ , F ∈ R

k×n
+ (2.5.15)

A NMF is then defined as the factorization of C into B and F [105]:

C = B × F + ǫ, ǫ ∈ R (2.5.16)

B ∈ R
m×k, F ∈ R

k×n

B,F ≥ 0, k ≤ min(m,n)

The term of B × F + ǫ is called the Non-negative Matrix Factorization (NMF) of C [106]. The

matrices are labeled C, B and F to indicate continuity with equation 2.4.1 in Section 2.4 where C is the

to-be-deconvolved transcriptome, B the cell-type signature matrix, ǫ the error term and F the vector of

cell-type fractions.

The optimal choice of k, is an assumption regarding the amount of latent factors that generate C. k

is a central aspect of the NMF and its value can generally not be efficiently determined apriori [107].

Publications frequently utilize a mixture of domain specific knowledge to render the choice of k biolog-

ically interpretable. A numerical optimization of k can, for instance, take place via an Evidence lower

bound (ELBO) statistic target function which is an approximation of an observed distribution with a pre-

dicted, learned distribution [108]. Alternatively, the cophonetic correlation can be used which quantifies

how well observed data can be reproduced. The key element of cophonetic correlations is, that a dendro-

gram is utilized which quantifies how faithfully pair-wise distances, observed in the input data, can be

reproduced with the learned NMF model [109].

An important aspect of the NMF algorithm is its choice of goodness-of-reconstruction target function

D which governs the results for matrices B and F in equation 2.5.17 [104]. The reconstruction-error
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function D has to be (1) continuously differentiable, (2) convex in B and F and (3) zero iff C = B × F

[106]. The aim of a NMF is then to minimize D:

minimize D(C,B, F ) B ≥ 0, F ≥ 0 (2.5.17)

Note, that B and F serve as input variables for D in contrast to C which parameterizes D(C,B, F ).

Nonetheless, D will in the following refer to the distance of a norm on C and on B × F for simplicity.

From the perspective of Bioinformatics, an interpretable factorization of C is of great importance and

generally achieved if the matrix B can compress and group latent information from C with F providing

information on the relative importance of the information contained in B [110]. For example: In the case

of a transcriptomic deconvolution, B would contain the cell-type expression signatures that together

constitute the transcriptome while F would harbor the relative proportions of the cell-types within the

convolute. The achieve the feature-compression in B, a sparse solution is generally required when

equation 2.5.17 is solve. The sparseness is integrated into the solution via the introduction of norms

on B and F as follows [105]:

minimize ||B|| × ||F ||+ ǫ (2.5.18)

such that =||B|| ≤ λ, ||F || ≤ λ,B, F ≥ 0, λ > 0

Where λ ∈ R+ is a user-defined sparseness-inducing variable that acts as a direct trade-off between

the training error and model sparseness. The numerical decomposition of C requires solving a bi-convex

problem since equation 2.5.21 is either only convex in B or only in F what denies the identification of

a global minimum by naive optimization [110]. However, there are multiple ways to solve the NMF

and the most commonly utilized are the multiplicative update rule, the gradient descent approach and

the alternative least-squares method [111]. Here, we present the multiplicative update rule since it is

generally considered to be the first published NMF decomposition method [112]:

F ←F
(BT × C)

(BTB × F )
(2.5.19)

B ←B
(C × F T )

(B × FF T )
(2.5.20)
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Equations 2.5.19 and 2.5.20 illustrate that the bi-convex problem can be solved despite the absence

of a closed single-update step formula by iteratively fixing either F or B and a subsequent update of the

other matrix. It is noteworthy that the numerically approximated matrix B is chosen such that B consists

of pair-wisely independent vectors what is commonly referred to as clustering property of NMFs since

the information of different latent structures in C is clustered in the orthogonal vectors of B [113]. The

decomposition is finished once the updates of the matrices converge or numerical changes of the matri-

ces’ entries are smaller than a specified threshold.

An important drawback of the NMF decomposition is that the factorization, as shown in Equation

2.5.17, might not be unique [114] and depends on the initialization of B and F what is known as initial-

ization problem [107]. Publications have reported that equations 2.5.19 and 2.5.20 converge against a

local saddle point, however, not necessarily against the global minimum which is why multiple factoriza-

tions are computed, each with a different initialization to increase the chances of identifying the global

minimum [115]. The default procedure with respect to the NMF initialization is to randomly initialize B

and F with a limited set of positive non-zero entries such that a rapid convergence is ensured [115].

2.5.0.4 NMF for Transcriptomic Decomposition

Due to its sparseness, guaranteed convergence and clustering-properties, the NMF is a widely applied

algorithm for LDR and ′p >> n′ problems in general and transcriptomic deconvolution in particular as

reported by Moffitt et al. whose algorithm is utilized in Chapter 5 [116].

The NMF utilized in Chapter 5 differs primarily in the formulation of the target function while the

remaining properties and definitions remain comparable to a standard NMF model. The target function

D was based on the squared L2-norm for i genes and j samples and defined as follows:

DL2(C,B, F ) := ||C −B × F ||2 =
∑

m

∑

n

(Cmn − [B × F ]mn)
2 (2.5.21)

Where [B × F ]mn denotes the mnth entry of the matrix product of B × F [117]. The squared error

function ensures a balanced convergence of both B and F while improving the grouping and sparsity of

the solution [117].

A deconvolution model that utilizes a NMF algorithm commences by training on the scRNA input

data to determine matrix B. Matrix C, consisting of the purified cell-type data, is then reconstructed until

51



convergence of B × F is achieved as defined in the multiplicative update equations 2.5.19 and 2.5.20.

During run time with a new C ′, the equation is generally solved for F via creation of the pseudoinverse

pinv() of B via transformation of equations 2.5.21 to C ′×pinv(B) = F . F then represents the cell-type

proportion predictions.
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Chapter 3

Identification of Exome-Sequenced Cancer

Cell Lines via Distance-Quantification

This Chapter illustrates how the distance-quantification concept can address the challenging problem

of CCL-misidentification via the conception of a NGS data-optimized CCL-identification method. The

Chapter serves as introduction and contextualization to the following Chapter 4 and is based on the publi-

cation of Otto et al., 2017 [18]. The Chapter first contextualizes the CCL-identification problem, explains

how CCLs are assigned a position in a space and how CCLs are identified based on their respectively as-

signed positions. Thereafter, the approach is benchmarked, the advantages and disadvantages discussed

and the Chapter finalized by a conclusion that evaluates the efficiency of the approach.

3.1 Introduction

CCLs are crucial to modern Life-sciences and of particular importance for the domain of Oncology

since CCLs further experiments on neoplastic cell-cultures, help to investigate the cancer etiology and

aid in the validation of driver mutation candidates [118, 119]. Additionally, usage of CCLs avoids ethical

and legal issues when compared to patient-based studies [120].

CCLs are, however, susceptible to misidentification i.e. the incorrect assumption that CCL A is being

analyzed when in truth CCL B was sequenced [118, 10, 121, 122, 123]. An example of a well-known

case of misidentification, that negatively affected a wide range of researchers, was the confusion of the

widely used MDA-MB-435 mammary CCL with the M14 melanoma CCL which caused massive losses

of research time and resources [124]. According to studies, 5-10% of all CCLs are misidentified [125,

8]. Accordingly, many journals currently require authors to ensure identity of the CCLs they employed
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in experiments upon publication. Therefore, identification methods which are able to detect the misiden-

tification of CCLs are of instrumental value to the community of scientists concerned with Oncology.

CCL are increasingly Next-Generation sequenced what has the unintended side-effect that misiden-

tification of CCLs is furthered by the fact that the established laboratory-centric identification methods

can not be applied. Computer-based identification methods for homogeneously sequenced CCL exist,

but are not suited for real-world scenarios where highly heterogeneous CCLs have to be identified. We

therefore present the novel in-silico identification method Uniquorn for Whole-Exome sequenced CCLs.

3.1.1 CCL Identification - Overview

Traditionally, CCL identification is carried out in-vitro in a laboratory using specific assays such

as STR genotyping [126], SNP panel identification assay (SPIA) [10], MinION [11] or Multiplex Cell

Authentication (MCA) [9]. These assays are costly to perform, time consuming and require physical

availability of CCLs. Additionally, a reference database that defines what genomic features are char-

acteristic and sufficient for identification of a given CCL has to be available [18]. Such databases are,

however, only generated by major institutions such as the American Type Culture Collection (ATCC)

and do not provide information on custom-made CCLs of which there can be many in individual labs

[9]. Moreover, database information can be misleading if a given CCL culture loses genomic entities

that were defined as characteristic by the database due to natural evolution or drug-exposition pressure,

thereby motivating the development of new identification methods.

Given the nowadays common scenario of having to identify sequenced CCLs based on their computer-

based NGS data, STR and SPIA identification is not applicable due to absence of the required information

in the NGS data [118]. The mRNA-array focused SPIA method requires highly reliable ploidy-calls of

SNPs at specific genomic loci what, given the heterogeneous nature of NGS data and cancer in general,

cannot be assumed. STR is even less suited to identify CCLs based on their NGS data since the calling

of the required repeat-counts at specific genomic loci is both technically challenging and repeat-count

information absent in the majority of NGS data sets. Even if the required information was available, the

effectiveness of STR and SPIA on lab- and project-specific NGS data sets were unclear. Both methods

were evaluated only with homogeneous NGS profiles, i.e., references and query samples were sequenced

using the same technologies, algorithms, and filtering methods; on top, these procedures require that the

ploidy of the reference samples R matches the ploidy of the query sample q. Such a scenario of homoge-

neous, easily comparable NGS data sets is quite different from that typically found today, where different
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labs use different technologies, leading to heterogeneous NGS profiles. Hudson et al., for instance com-

pared the small missense variant calls accompanying identical CCLs (as defined by the creators of the

reference libraries) between Cancer Cell Line Encyclopedia (CCLE) and catalogue of somatic mutations

in cancer Cancer Cell Line Project (COSMIC CLP) and found them coinciding at only 43% [127]. A

prominent case highlighting the extend of data-heterogeneity is the Ishikawa-Heraklion-02er CCL which

was DNA-genotyped by the Broad institute, finding 213 missense mutations, and the Sanger institute,

which reported 52 pair-wisely different missense mutations [127]. Causes for the data heterogeneity

between large-scale sequencing projects are complex and include technical and design aspects. For

example, sequencing of sub-clonal and aneuploid CCL cultures may cause heterogeneous sequencing

results [36]. Furthermore, studies differ in their aims and priorities, leading to different choices of algo-

rithmic parameters and workflow designs which in turn can cause differing genotyping results even for

the same CCLs [128].

Another aspect that exacerbates the identification of CCLs based on their NGS data is the label and

header of a NGS data-containing Variant Calling Format (VCF) file usually indicates which CCL was

sequenced to generate the data. However, no nomenclature system that could help avoid idiosyncratic

and misleading CCL-names has been universally adopted thus far, leading to highly bewildering naming

ambiguities such as TT (derived from thyroidal tissue) and T.T (derived from esophageal tissue), which

are different CCLs with almost identical names[129]. Another example that underlines that CCL names

cannot be reliably utilized to infer their relationship are the NCI/ADR-RES derived from the OVCAR-8;

two CCLs with a common origin but significantly different names, obscuring their close relationship

[118, 123, 130].

The pressing need for a in-silico identification method is highlighted by the fact that already today,

most experiments on CCLs involve extensive sequencing [11]. Computer-based CCL in-silico identifi-

cation approaches are an increasingly attractive complement to laboratory-based identification methods

[10]. In the in-silico scenario, only the NGS-genotyped information of the to-be-identified CCL (termed

query) and CCLs of a reference-collection (termed reference library) are required for identification. Iden-

tification occurs by matching of small variants contained in the NGS data to identify the reference CCL

that shows a significant amount of matching variants i.e. high genomic similarity.

The in-silico approach has several advantages from a Bioinformatics vantage point: sequence fea-

tures of the CCL in the reference library can be obtained once and distributed electronically (no physical
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access required). Additionally, sequence features of the query CCL are often by-products of the original

experimentation (no additional cost). The comparison of the features can be performed rapidly and with-

out additional experimental efforts. Figure 3.1 compares the in-silico with the in-vitro approach which

quantifies the distance between a query and reference CCLs to determine whether the query’s distance is

significantly small to a reference CCL.

Figure 3.1: Novelty of in-silico identification concept. The gold-standard STR method (top) compares

tandem counts at specific genomic loci. STR-counts are generally unavailable in NGS-data and therefore,

a CCL whose NGS data is available has to be additionally STR-genotyped which requires the physical

availability of the to-be-identified CCL sample to conduct a PCR. Even in-silico identification methods

that can utilize NGS-derived SNPs are dependent on the genotyping of the loci that harbor the SNPs.

SNP-calls of specific loci however, may not be available due to panel sequencing of the to-be-identified

CCL or are incomparable due to utilization of divergent sequencing platforms and filtering of SNP dur-

ing driver-mutation identification. The Uniquorn in-silico workflow (bottom) requires neither physical

availability nor genotyping of specific loci but in contrast works with every NGS-technology that geno-

types small variants. Uniquorn does require sets of reference CCLs, called reference libraries, to match

the variants of the to-be-identified CCL and the reference CCLs. After calculating the variant overlap, a

statistical test determines whether a variant overlap is sufficiently unlikely to occur by chance in which

case the unknown CCL is predicted to be identical to the reference CCL i.e. is identified.

The feasibility of CCL in-silico identification based on their NGS data has been demonstrated by

multiple publications, however, with the severe limitation that all CCLs NGS data used therein was gen-

erated homogeneously by one laboratory with one sequencing technology and identical variant-calling

software pipeline [10, 11, 9]. Real-world scenarios, however, show a strong data heterogeneity where

in-silico identification has to take into account different sequencing technologies, software, natural ge-

nomic evolution and mutational-pressure of anti-cancer drugs which can alter a genome dramatically and

induce subclonality.
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Overview of the Uniquorn WES method

We present Uniquorn WES, a novel in-silico CCL identification method for the reliable and fast iden-

tification of Whole-Exome sequenced CCLs. Uniquorn WES requires no additional in-vitro experiments

and solely relies on small variant calls for identification. Uniquorn WES is designed to compare small

variant fingerprints derived from a wide range of WES technologies, with differing quality, depth, and

sequencing-scope what renders Uniquorn WES useful for large and internet-exchange-based research

projects.

Uniquorn WES was developed as complement to the established in-vitro methods since it can iden-

tify CCLs when neither STR nor SPIA can be applied. Uniquorn supports WES technology and turns

the small variants pairwise identity of the query sample to any sample from a reference library R, taking

into account the prevalence of each variant in the library and a statistical assessment of the observed

number of common variants. We evaluated our algorithm on three high-profile CCL datasets with alto-

gether 1988 reference samples, namely COSMIC CLP (1024), CCLE (904) and National Cancer Institute

60 (NCI-60) CellMiner (60). WES profiles between these libraries are highly heterogeneous, because

different laboratories created the data using different WES technologies and software, what even in-

cludes covering partly different genomic regions [127]. SNP-based identification using the available

data is not generally possible, as in two out of these three sets all SNPs were filtered to facilitate iden-

tification of driver mutations and ploidy calls for same SNPs diverge between the repositories for same

CCLs. Furthermore, neither of these data sets contains information on STRs. In such a rather difficult

setting, Uniquorn WES achieves a sensitivity of 97% at a specificity of 99%. We also show that several

CCLs found to be identical, were differently labeled by different CCL repositories. Finally, we confirm a

very low probability of random false positive hits by comparing all reference libraries’ CCLs with 1024

genomes of the 1000 genomes projects [131, 132].

3.1.2 Identification via distance-quantification based on NGS data

The concept of distance-quantification between CCLs was introduced by Demichelis et al. in 2008

who demonstrated that the matching of SNPs can quantify a distance between CCLs as part of the SNP

panel identification assay (SPIA) algorithm [10]. Key questions of distance-based identification is A)

whether positions indicate distances and B) at what threshold a distance is sufficiently small to predict

that two entities are identical. Demichelis et al. applied a binomial test based on shared SNPs and

set the identification p-value threshold of the binomial test to 0.05 which resulted in a advantageous

classification performance. Up to this point however, no method has been published that extends the
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distance-based identification to heterogeneously genotyped i.e. sequenced CCLs.

Figure 3.2: Identification by distance-

quantification. The identification-by-distance-

quantification concept is illustrated at hand of two

reference CCLs X and Z and a query CCL X ′

which is identical to X . It is shown that all CCLs

will be assigned a position in a metric space based

on their small weighted variants. The reference

CCL is surrounded by a spherical area within which

a distance D(.) is sufficiently small to assume an

identity of two CCLs as is the case for X and X ′.
The size of the sphere is defined by the test on

sufficient similarity: A position which results in a

p-value smaller than 0.05 lies within the sphere,

everything else outside.

The identification-by-Distance-quantification

concept of Uniquorn builds on the Demichelis

et al. approach and assigns every CCL a posi-

tion in a space with a distance-quantifying met-

ric based on the CCLs’ NGS data, see Fig-

ure 3.2. The main difference to Demiche-

lis are significant differences with respect to

the analyzed genomic entity (SNP versus SNVs

without population prevalence ) and the omis-

sion of any assumption regarding the analyzed

NGS-data other than the limitation to WES-

technology.

The purpose of the position attribution in a

metric space, as explained in the introduction Sec-

tion 2.2, is to quantify the distance between the

data-points. The underlying rational is that an un-

known query CCL can be identified if the query’s

distance to a known reference CCLs is sufficiently

small. The small distance is, by assumption, ob-

served because the same CCL were sequenced

(see Exclusivity assumption), see Figure 3.3.

Importantly, the Uniquorn approach assumes

a comparatively homogeneous data landscape

with respect to the utilized technology since it is limited to the WES technology. The homogeneity

assumption is critical because only iff the conditions of a distance metric are fulfilled, can a meaningful

distance be derived from the positions of the CCLs. The degree of Data-Heterogeneity that the Uniquorn

WES approach is subjected to is illustrated in Table 3.1.
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Figure 3.3: Decision on CCL similarity via distance-quantification. Determination of CCL identity

requires the definition of sufficient similarity of two CCL with respect to their sets of small variants.

Commonly, a p-value is calculated that quantifies the risk of committing a mistake when assuming that

two CCLs are identical. The y-axis shows this type-I risk while the x-axis shows the amount of matching

small variants between a known reference CCL and query CCL in percent. The figure illustrates that the

p-value between the unrelated reference CCL x and query CCLs y and z is not significant (α = 0.95)

although y shares 80% of variants with x. The (ground-truth identical) query CCL x′ however, is assigned

a significant p-value smaller than 0.05. The similarity between two CCLs based on their small variants

can thus be translated into a p-value. The resulting p-value consequently allows to decide on sufficient

similarity in the variant-space. Note that the plot is an example and the underlying p-value function not

necessarily representative for real-world scenarios.

61



Reference
Library

Total amount
of variants

Cancer
Cell Lines

∅ Variants
Per CCL

Variant calling
software

SNP-MAF
Filter*

COSMIC
CLP 760E5 1024 7,4E5 Caveman[133] > 0.0

CCLE 140E5 904 1,5E5 Pindel [134]
MuTect [135]

≥ 0.05

Cellminer 0,68E5 60 0,01E5 GATK[136]
> 1.0

(none)

Table 3.1: Degree of data heterogeneity for Uniquorn WES. The three by amount of sequenced samples

largest CCL sequencing studies are shown. The studies diverge significantly in multiple key aspect, most

importantly for identification however, with respect to the absolute and the average number of variants,

which differ by orders of magnitude, choice of algorithms, technologies and mount of sequenced CCLs.

STRs, utilized by the gold-standard technologies are not covered and SNPs - required for SNP-based

identification - are incoherently fully included, filtered according to Minor Allele Frequency (MAF)

threshold or fully excluded. Filter*: Exclusion of SNPs with a MAF of greater than x. Nonetheless, the

WES or its derivative, the hybrid-capture sequencing technology was utilized by all studies.

3.2 Method

Let q be an unknown to-be-identified query CCL whose NGS dataset is available in a VCF-file.

Uniquorn WES then determines the distance D(q, r) between q and all reference data sets r in reference

library R to decide whether the distance is sufficiently small to assume an identity of q and r. The

distance between q and r and is designed to range from 0 to positive infinity:

D : q × r → d ∈ [0,∞), d ∈ R+,0 (3.2.1)

Uniquorn quantifies this distance based on the amount of matching variants between q and r where

the sets of variants are modeled as genomic position-ordered vector of substitutions and InDels. Each

variant is defined by its start position and its length.

3.2.1 Pre-processing

Uniquorn identifies samples only based on their informative variants, the informativeness being mod-

eled as high weight (higher informativeness) or low weight (less informativeness). To this end, each vari-

ant v found in any sample of the given reference library R is weighted during pre-processing according

to the inverse of its frequency fv in R using:

w(v) = 2−(fv−1) (3.2.2)
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Variants with weight lower than a threshold are discarded during pre-processing, the default threshold

being 0.5. Other thresholds can be chosen, depending on the desired trade-off between sensitivity and

false positive rate (see Table 3.2 and discussion section 3.4). Variant weights are library-dependent i.e.

the same variants will receive different weights in different libraries to reflect the inherent divergence of

sequencing technologies and algorithms.

3.2.2 Variant matching

Next, the absolute amount of overlapping variants O(q, r) between q and r is calculated based on the

coordinates of the variants varq ∈ q and varr ∈ r:

O(q, r) :=

|r|
∑

i=1

varri ∈ varq (3.2.3)

Note that the overlap depends on |r| and not |q| i.e. the overlap of r’s variants with q is quantified and

not q’s overlap with r. This distinction will become important in the next confidence score calculation

step 3.2.3 that quantifies the likelihood to observe a specific O(q, r) given all O(q, r ∈ R).

3.2.3 Confidence score calculation

Uniquorn WES calculates a confidence score CS which empirically quantifies the certainty that q

and a r are identical i.e. their distance sufficiently small given all overlaps between q and ∀r. The score

is based on the probability P̂ q
r to observe a given amount of overlapping variants O(q, r) by chance

conditioned on the expected rate of matching variants p between unrelated CCLs. The true value of p is

generally not available because a ground-truth knowledge of p would require meta-information regarding

the way how the profiles of q and r were obtained which is commonly not available. Therefore, we

developed a simple yet effective empirical heuristic to approximate p based on all O(q, r) where |R|
represents the amount of reference CCLs in R:

p̂ :=
1

|R| ·
|R|
∑

i=1

(q, ri)

|ri|
(3.2.4)

By modeling assumption, the maximal posterior likelihood of p̂ equates the empirical mean of all

O(q, r) in R. p̂ is subsequently utilized as parameter of a binomial function that quantifies P̂ q
r . Let T be

the overall amount of variants in R, N be the number of variants in r, n the subset of these also found

in q, and k = N − n the amount of variants in r not found in q. Then, the approximated lower-tail

probability P̂k to miss exactly k variants from r in q given p due to chance is:
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P̂k :=

(

N

k

)

qkr p
N−k
r =

N !

k!(N − k)!
(1− pr)

kpN−k
r (3.2.5)

Following Mi et al., we next compute a p-value by summing up the probabilities to miss 0 up to k

variants [137].

P̂ q
r =

N
∑

N−n=k

P̂k (3.2.6)

P̂ q
r is corrected for multiple testing by the Benjamini-Hochberg method to obtain q-values. The

corrected P̂ q
r is utilized as quantification of the error type one risk when rejecting the null hypothesis H0

[72]. Uniquorn identifies CCLs by testing on the rejection of the null hypothesis H0 that states q and r

share a given amount of variants due to chance. The alternative hypothesis H1 formulates that q and r

show a similarity that is not due to chance. We then transform the P̂ q
r q-value to obtain distance-suitable

confidence score values D(q, r) with a domain between 0 and ∞ and decide whether to reject H0 given

a defined threshold:

D(q, r) = −1 · logeP̂ q
r (3.2.7)

If the distance i.e. confidence score threshold and the second threshold regarding the minimal amount

of matching variants (default five) are met, the variant profile of a reference CCLs r is predicted to stem

from the same CCL as the profile of q. Note that this implies that multiple CCLs from the same reference

library might be predicted to be identical to q. We find this strategy to have advantages over the option

to simply return the best matching reference sample.

The score is library-specific i.e. the score obtained from the comparison of query q with a sample

r from reference library R assesses the probability that q is identical to r independently of all other

libraries. Importantly, the likelihood to observe a given overlap O(q, r) as shown in equation 3.2.3 is

approximated via an empirical sampling over all O(q, r) in R in equation 3.2.4 and thus the confidence

scores for identity not statistically independent. The default threshold for D(q, r) was chosen such that

it balances sensitivity and specificity in during the benchmark, see Receiver on Operator Characteristic

(ROC)-curve in Supplementary Figure 7.1.

3.2.4 Evaluation

We benchmarked Uniquorn WES using 1988 CCLs from the three datasets described above (see Ta-

ble 3.2) as query sample against each of the three reference libraries; thus, we performed 1988 · 1988
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⑦4E6 comparisons in total. A True Positive (TP) identification was counted when Uniquorn predicted

that a query was identical to a reference CCL in accordance with the gold-standard (see gold-standard

creation); analogously for True Negative (TN) predictions. A False Positive (FP) prediction was counted

when Uniquorn predicted query and reference CCL to be identical but not the gold-standard. False Neg-

ative (FN) predictions were cases were query and reference CCL were assessed as not being identical by

our algorithm but identified as such in the gold-standard.

Note that the maximal number of TP predictions per query in this evaluation scheme depends on

whether this CCL was present in only one or in more than one datasets (many such cases exist; see

Figure 3.4). If a CCL existed only in a single reference library, only one TP prediction can occur. If

it is part of two libraries or has related identified CCLs within the same library, four TP predictions are

possible, since each will be used as query and should identify both itself and the related sample; for CCLs

in all three libraries, maximally nine TP predictions can be found. Using our gold-standard, a maximum

of 3573 TP predictions was possible.

3.2.4.1 Gold-Standard creation

The gold-standard defines which pairs of CCLs are considered identical within our evaluation. To

create a gold-standard we first defined all CCLs with the same regularized name as identical. CCL names

were regularized by removing any non-alpha-decimal and capitalization of all remaining characters. In

a second step, we manually confirmed or rejected the identity of all CCLs whose names only differed

by a small prefix or suffix, such as MDA-MB-435 and MDA-MB-435s. In a third step, we screened the

literature for cases were CCLs with same regularized name were reported as being different, e.g. TT and

T.T, and adapted the gold-standard accordingly for these cases. Note that pairs of identical CCLs may be

part of the same or of different reference libraries (See Figure 3.4).

After the evaluation, we furthermore checked all FP predictions to determine whether these are in-

deed FPs predictions or errors in the gold-standard (see Discussion); one such example is the pair SNB19

and U-251, which have completely different names but denote the biologically identical CCLs[10]. The

entire gold-standard is available in supplementary material File 7.1.
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3.2.5 Utilized Datasets

Figure 3.4: Source of true positive CCL identifications based on the gold-standard. Total amount,

percentage, and source of all 3573 TPs identifications for each of the 1988 CCL samples are shown.

For instance, 1238 TPs are identified because copies of the same or highly similar CCL are contained in

COSMIC CLP and CCLE. Positive identification within a single circle are due to relatedness of CCLs

within the same library and self-identifications. 43% of all possible TP cross-identifications are due to

CCL copies in different reference libraries. Percentages do not sum up to 100% due to rounding errors.

3.2.5.1 Reference Libraries

Uniquorn WES compares NGS data of a given query sample q with that of samples r from a given

CCL library R. Currently, three large libraries are integrated into the package: (1) COSMIC CLP, ob-

tained January 13th 2016 from http://sftp-cancer.sanger.ac.uk (2) CCLE, obtained Jan-

uary 13th 2016 from http://www.broadinstitute.org/ccle and (3) CellMiner, obtained Jan-

uary 13th 2016 from http://discover.nci.nih.gov/cellminer. All data sets are based on

the same reference genome HG19/ GrCH37. SNV profiles and CCL-names were directly parsed from

the files provided. Note that the Uniquorn package also features an Application Programming Inter-

face (API) for adding novel, possibly in-house-created, reference libraries.

Table 3.1 shows most important characteristics of the three libraries. COSMIC CLP is the largest

dataset with 1024 WES genotyped CCLs from 30 tissues. CCLE contains 904 hybrid-capture genotyped

CCLs from more than 36 tissues. The CellMiner project comprises WES genotype data of the NCI-60
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panel from nine tissues.

Figure 3.5: Detailed analysis of the variant class heterogeneity in the three largest CCL studies. The dis-

tribution of CCLs variant frequencies and weights across libraries. A: Number of rare variants in CCLs

according to Uniquorn’s weighting scheme. ’All’ shows the log-amount of variants per CCLswithout

any filtering (weight 0.0) and Unique indicates the amount of variants that remain after all variants were

filtered that were present in more than a single CCLs (weight 1.0). Differences between software, tech-

nologies and filters (non-exhaustive) i.e. heterogeneous data-processing lead to different amounts of

filtered, non-unique mutations as shown by the significantly different reduction of variants between the

CellMiner (medium), COSMIC CLP (low) and CCLE panel (strong), see Table 3.1 for the sources of

heterogeneity. It is shown, that all panels possess unique, i.e. rare variants on which the Uniquorn

identification method is based. B: Distribution of weights per library. At least 50% of variants are high-

weight (rare) variants. CCLE shows significantly less unique variants than COSMIC CLP and CellMiner,

which explains the strong difference between raw and filtered variants in Figure A. C: Number of vari-

ants per reference sample for different weight thresholds in the different reference libraries. CCLs from

COSMIC CLP show a high amount of unique variants on average, especially when compared to those

from CCLE.
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3.3 Results

The Uniquorn WES method identifies a Whole-exome sequenced query CCLs by comparing its

variant profile to that of all CCLs in a given set of Whole-exome sequenced reference libraries, see Figure

3.6. To this end, each variant in a reference library is weighted according to its inverse frequency. Only

rare variants are used further. To assess the impact of different thresholds for this weight, we studied the

distribution of variant counts in each of the three libraries (Figure 3.5A). As can be seen in Figure 3.5B,

more than 50% of variants are unique within their library (weight 2 or higher), which means that even

a very stringent threshold of 1.0 would filter out less than half of all variants. In Figure 3.5C, we show

the distribution of the number of variants per CCL using different weight thresholds. When using only

unique variants, CCL from CCLE library have on average 153 variants in their profile (COSMIC CLP:

744; CellMiner: 1139).

Figure 3.6: Uniquorn WES workflow. CCLs from a reference library are compared to a given query

sample q based on their set of small variants (variant profile) obtain by Whole-Exome DNA sequencing.

Variants are weighted according to their prevalence within the library (e.g. CCLE) and frequent variants

are subsequently excluded. Thereafter, Uniquorn computes a confidence score quantifying the likelihood

for each reference sample r being identical to q. The significance of differences in the number of variants

in q versus r (for instance due to different sequencing scopes) are assessed in a second test.

Distance-quantification

In related publications, distances are generally modeled as n-dimensional space over the domain of

real-valued numbers where n is the amount of features e.g. a set SNVs. The distances can thereafter

stratify and cluster samples based on their genotype what yields experimentally testable hypotheses to

explain the phenotype to genotype relationship. Uniquorn follows that approach but limits the compared

entities to small variants such as SNVs and InDels. All small variants are sorted according to their ge-

nomic locus, starting with the autosomal chromosome 1 up to the autosomal chromosomes X and Y, if

present. The sorted variants are then formatted as vector where very position in the vector corresponds

to the sorted genomic locus.
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The matching of small variant can intuitively be modeled as a logical and (∧) operation between the

vectors of compared CCLs. The comparison is not symmetric because once CCL is defined as reference

and all variants contained in the querry’s vector that do not correspond to the genomic loci of the refer-

ence are discarded. In contrast, should a variant be contained in the reference but not the query, a zero

entry is made in the query’s vector while a matching variant is assigned a one. A Minkowski-distance

is then quantified between these binary vectors via a logical ∧ operation [130]. In summary, a metric

space is created that has the same dimension as the amount of variant that the reference CCL has because

all small variants serve as features for the position. A position is obtained by setting all variant that are

present in either query or reference to one.

As illustration which is not applied: One could sum over the query vector and divide by the di-

mensionality of the reference to obtain the percentage of matching variants to obtain a naive distance-

quantification, between the CCLs. The main problem in that hypothetical example is that the linear

distance obtained from a pair-wise matching precludes an effective testing for sufficient similarity of the

CCLs since the dimensionality is highly volatile and depends on the amount of variants in the reference.

Therefore, a subsequent statistical tests overcomes that factors on the amount of variance in the reference

is require for an efficient identification i.e. test on sufficient similarity of the CCLs.

3.3.1 Cross-validation benchmark

We benchmarked the accuracy of Uniquorn WES using three high impact and diverse CCL libraries,

namely COSMIC CLP, CCLE and CellMiner, which as ensemble entailed 1988 CCLs. We manually

identified duplicates in this set and tested how reliably Uniquorn WES would detect them. To this end,

each of the 1988 CCLs samples was once utilized as query-sample and all three libraries as references.

Since Uniquorn compares a single query-sample to all reference-samples, 1988 · 1988⑦4 · 106 compar-

isons occurred during the cross-validation benchmark, underlining the size of the benchmark. Uniquorn

predicted for each of the query-reference-pairs whether they were derived from the same CCL.

As only 3573 of these ⑦ 4 · 106 pairs are duplicates according to our gold-standard, the positive

predictive value (PPV) is a particularly important evaluation measure. The benchmark results shown in

Table 3.2 and Figure 3.7 indicate a very high specificity (at least 99%) across a range of weight thresholds,

which can be explained by the extremely large number of true negatives. The more important metric is

sensitivity, which is also very high for thresholds 0.5 and 0.25, correctly identifying 3474 and 3461 of
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the 3573 identical or related CCLs, respectively. Limiting the comparison to unique variants (weight

threshold 1.0) yields the best PPV and lowest False Positive Rate (FPR), but lower weights of 0.5 and

0.25 result in higher sensitivity. Quantitative regularization slightly reduces identification efficiency, but

suppresses as significant fraction of FP predictions, see Figure 3.7 for an analysis of the impact of the

weight parameter on the identification performance.

Weight
Threshold

1.0 0.5 0.25 0.0

Maximally
Possible TPs

3573

True positives
3027

(3372)
3474

(3521)
3461

(3528)
3111

(3485)

False negatives 546
(201)

99
(52)

112
(45)

462
(88)

False positives 22
(18)

37
(94)

59
(155)

4631
(7689)

Sensitivity % 85
(94)

97
(99)

97
(99)

87
(98)

Specificity 99

F1 % 91
(97)

98
(98)

98
(97)

55
(47)

Positive
predictive value

99
(99)

99
(97)

98
(96)

40
(31)

Table 3.2: Uniquorn WES benchmark. A higher threshold enforces utilization of more specific variants

but reduces the amount of considered variants. Depending on the threshold (0.0, 0.25, 0.5, 1.0) between

3027 and 3474 of the 3573 true relationships between CCLs are successfully recovered. Numbers in

brackets show results when the to-be-expected amount of matching variants is set manually to ten vari-

ants; numbers without brackets show statistically estimated background-noise strength (regularized, see

methods Section 3.2).
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Figure 3.7: Results of the cross-identification benchmark depending on regularization and variant inclu-

sion weight. (A) Amounts of TP, (B) FN, (C) FP and (D) TN predictions. (E) Sensitivity. (F) F1-Score

(harmonic mean of specificity and sensitivity). (G) Specificity. (H) PPV. Best specificity and sensitivity

values are achieved using a weight threshold of 0.5. A threshold of 1.0 achieves the least false positives,

most true negatives, and the highest positive.

3.3.2 Out-group benchmark

The previous evaluation measured the performance of Uniquorn WES when searching a CCL of a

reference library within the set of reference libraries. We also tested how the method performs when it

has to deal with profiles that are not derived from CCLs. Specifically, we used 1092 WGS profiles from

the 1000 genomes dataset as query samples and tested whether Uniquorn would assign them to a refer-

ence CCLs, any such assignment certainly would be an error [131]. Note that these comparisons work

on very heterogeneous sequencing technologies, namely WGS-sequenced profiles (1000 genomes) with

much smaller hybrid and WES profiles (reference libraries). This implies large differences in terms of

common SNPs (contained in 1000 genomes profiles, filtered in the references) and in the sheer number

of variations (on average, a 1000 genomes profile consists of ⑦5E7 variations per sample compared to

⑦5E2 variations in the reference profiles). Using a weight threshold of 1.0 and regularization to cater for

this difference, Uniquorn did not produce a single FP prediction.
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These comparisons highlight the importance of our regularization step; omitting this filter, the com-

parison would produce 167 FP predictions for the ⑦2E6 comparisons. Based on this and the previous

experiments, Uniquorn’s default confidence-score threshold is set to 10 (⑦−log2(0.001)). By default, the

regularization filter automatically measures the strength of the background-noise and adjusts the required

amount of matching mutations accordingly. However, users can set both thresholds manually to adapt to

different reference libraries or to change the balance between false prediction rates and sensitivity, see

Figure 7.1 for a ROC-curve analysis.

3.3.3 Comparison to established methods

Uniquorn WES compares favorably to other methods for the identification of CCLs in terms of the

amount of data and experimental work necessary (see Table 3.3). In first place, it is similar to estab-

lished methods e.g. SPIA and STR-counting in that it is comparison-based. Uniquorn WES, however, is

different to the aforementioned methods due to its focus on in-silico identification of CCLs based on vari-

ant profiles obtained from different NGS high-throughput sequencing technologies. Unlike SNP-based

methods, Uniquorn does not depend on common, well characterized and publicly available genomic en-

tities, but instead relies on rare somatic mutations, as SNP-based comparisons have severe drawbacks

when applied in cancer research. First, SNPs with a MAF of ≥ 5% are usually frequently filtered from

datasets (to focus on driver-mutations, e.g. by CCLE) and thus cannot be assumed to be generally avail-

able for a CCL identification. Second, the loci of the most characteristic SNPs often are not genotyped

during WES sequencing, and even less often so in panel sequencing. Moreover, neoplastic genomes are

frequently subjected to large-scale structural variations, often removing cancer-irrelevant loci, and with

polyploid chromosomes whose variant calls cannot be directly compared to diploid references. Uniquorn

was designed to robustly deal with such problems.
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Identification
Method

Physical
Sample

Required

Experiment
Required

Locus
Coverage
Required

Zygosity-
pattern required

Dependent on
Reference
Genome

STR X X - - -

SPIA X X X X -

NGS-SNP - - X X X

Uniquorn - - - - X

Table 3.3: Properties of Uniquorn compared to established methods for CCL identification. SPIA and

STR-counting require additional verification experiments to be applied to the physical CCL sample.

Identification of CCLs by matching their SNP-zygosities directly from the NGS-data requires that the

loci of the characteristic SNPs were sequenced and not filtered. For SPIA and NGS-SNP, zygosity calls

have to be comparable (technology, ploidy, algorithms, etc.). Uniquorn WES only requires utilization of

the same reference genome for variation calling. Note that CCL samples created with a specific reference

genome versions can be converted into another version, e.g. by a lift-over software, thereby decreasing

the gravity of this limitation.

We also compared identification results of Uniquorn WES and the SNP-based method by Demiche-

lis et al. [10] quantitatively. 130 of the 155 CCLs used by Demichelis and colleagues are present in

the Uniquorn WES benchmark set. These 130 CCLs have 265 different representations in our data set

because many are present in different CCL reference libraries. Uniquorn WES identified 100% of these

265 CCLs at an inclusion weight of 0.5 (see Supplementary File 7.3). Thus, Uniquorn showed an equal

performance compared to the established SNP-based identification methods.

The method was implemented in the freely available R-Bioconductor package Uniquorn. The soft-

ware is freely available and benchmark libraries CCLE and COSMIC CLP can be freely obtained and

used as Uniquorn WES reference libraries. The CellMiner Project library is included by default. Custom

libraries can be created e.g. for identification of proprietary CCL samples.

3.4 Discussion

3.4.1 Analysis of false positive predictions

Analysis of the 22 FP predictions from Table 3.2 (weight 1.0) revealed that all FP-predictions were

caused by a set of only 13 CCLs and have in common that their small variant profiles are very small; they

have a mean size of 366 (sd=4E3) variants, while the profile sizes of CCLs that were never resulted in a

FP prediction have a mean size of 3768 (sd=8E2) variants (p=0.006). 20 of these 22 FP predictions oc-
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curred with a query sample identifying a reference from a library which does not contain the query, which

means that they would not occur if a lab can safely exclude a reference library from considerations. The

most problematic CCLs regarding FP predictions is the HCC-2998, which is contained in the CellMiner

and COSMIC CLP libraries. Accordingly, it was used twice as query, what resulted in five FP predic-

tions in total (three FP predictions when used as query and two FP predictions when utilized as reference

CCL). When used as query, HCC-2998 correctly identified itself in CellMiner and COSMIC CLP with

a high confidence. However, it was also predicted to be similar to three CCLs from CCLE (JHUEM-

7, SNU-81, HEC-251). These false predictions all had very low confidence scores, sharply above the

threshold, and can be explained by to the stronger influence of randomly matching variants within small

profiles.

Three factors were found to be associated with FN predictions: About 100 of the 546 FN-predictions

for weight 1.0 occurred between query-reference pairs that were defined as identical by the gold-standard

due to either cross-contamination (e.g. ACCS and T24 [122]) or an origin within the same human being

but not the same cancer-tissue (e.g. AU-565 and SKBR-3 [138]). Secondly, FN predictions are enriched

in CCLs with small profiles. CCLs that failed at least once to identify a related query have on average

345 (σ=2E2) variants, while CCLs, that always identified their counterparts successfully, have on aver-

age 528 (σ=1E3) variants (p-value=1E-8). Thirdly, CCLs that are highly similar to another CCL within

the same library generally perform poorly because in those cases the amount of rare variants is insuffi-

cient. For instance, HEL and its closely related sub-clone HEL 92.1.7 both failed to identify themselves

because they are so similar that none of their variants are unique within the library [139]. This effect can

be diminished by appropriate adjustment of the weighting scheme, as can be seen by a FN-reduction of

82% from weight 1.0 to weight 0.5. However, these cases are rare within our evaluation data: As shown

in Figure 3.5, unique variants are present in 1986 out of 1988 CCLs (99.9%).

The overall concept of identification by pair-wise distance-quantification in conjunction with a statis-

tical test on sufficiently small distance proved successful in light of the benchmark given the homogeneity

assumption. Importantly, an increase in heterogeneity may render the statistical tests biased and thus fur-

ther research with respect to applicability of the distance concept given greater heterogeneity has to be

conducted.
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CCL-identification based on generic ’omics data

Every NGS technology that allows calling of small genomic variants can hypothetically be utilized

to identify CCLs based on the Uniquorn WES method provided that their amount of features per sample

is comparable. We therefore see an extension of the Uniquorn WES approach to RNA-sequencing data

as possible without conceptual changes. Extension to panel sequencing requires the re-adjustment and

optimization of thresholds to compensate for the relatively low number of variants and may require more

statistical balancing such as Monte Carlo sampling. Furthermore, since fewer matching entities may al-

ready indicate that two CCLs are similar, the statistical tests for matches occurring just by chance might

have to be strengthened. Usage of scRNA technologies is of high interest due to the technology’s impor-

tance but requires more adjustments to compensate for higher impact of random events (noise) given the

vastly lower coverage in single cells. Less similar NGS technologies, such as methylation, Chromatin

ImmunoPrecipitation-sequencing (ChIP-seq), or Assay for Transposase-Accessible Chromatin using se-

quencing (ATAC-seq), as well require more profound changes to the Uniquorn method.

3.5 Conclusion

Uniquorn WES is a novel in-silico method for helping to avoid confusion of CCLs during lab pro-

cessing and related down-stream analyses. The distance-quantification approach proved fruitful since the

limited heterogeneity of the NGS data rendered the distance quantification effective in that the biological

distance could be quantified as opposed to the technological distance Uniquorn works across a range of

sequencing techniques and, importantly, can be applied regardless of whether SNPs were filtered or not.

A favorable sensitivity of up to 97% and specificity of 99% has been achieved when benchmarking vari-

ous CCL created by diverse WES technology platforms. However, Uniquorn’s limitation to sequencing

data generated by the same sequencing format has to be extended to increase the amount of use-case

scenarios.
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Chapter 4

Distance-based identification of Bulk-RNA

and Panel-sequenced Cancer Cell Lines

This Chapter demonstrates how the distance-based identification concept introduced in Chapter 3 has

been significantly enhanced via a methodological extension. The purpose of the extension was to render

the technology-constraint solution of Chapter 3 generic by supporting the currently most-widely utilized

sequencing technologies.

The Chapter first presents difficulties encountered when applying the distance-quantification-based

approach from Chapter 3 for the identification of Whole-Exome sequenced CCLs to RNA-Bulk and

Panel-sequenced CCLs. We thereafter illustrate the modifications applied to the distance-based identifi-

cation concept and explain how the modifications compensate for confounding factors. Next, we present

a benchmark on highly heterogeneous data to evaluate whether the method is sufficiently generalized.

The Chapter concludes with a discussion of the suitability of the distance-based identification concept to

address the CCL identification problem on a generic base. The contributions of this Chapter are based on

the publication Otto et al., 2019 [19].

4.1 Introduction

A major advantage of the inclusion of RNA and Panel-sequencing is the great increase of possible

use-cases of the Uniquorn method because the reference databases can be composed of diverse types of

sequencing technologies and formats. Users of the Uniquorn method can therefore compose their refer-

ence libraries much more liberally while ascertaining that a new query CCL sequenced by technology,

not present in the reference database, will be efficiently identified. The major disadvantage is that tech-
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nological confounding factors are incurred from comparing diversely created NGS data what severely

limits the identification performance of the unmodified Uniquorn method and requires the modification

of the Uniquorn 1 approach.

4.1.1 Data-Incompleteness and Data-Heterogeneity

The methodological reason that renders the distance-quantification approach susceptible towards

confounding factors was the conditioning of intractable parameters on reference-databases. In order

to determine the distance between a reference and a query CCL, a heuristic approximation of the base-

line likelihood p̂ to observe a match between unrelated CCLs has to be approximated. p̂ is approximated

by dividing through the amount of variants present in a reference CCL (see equation 3.2.3). One will

observe diverging distance-quantifications between a query and a reference depending on the underlying

sequencing technology and formats because the diverse amalgamation of different technologies and for-

mats causes the confounding factors of Data-Incompleteness and Data-Heterogeneity to bias the distance

quantifications.

Data-Incompleteness is incurred from the comparison of highly diversely generated NGS formats,

when the same biological entity was sequenced but at at least partially different genomic loci. Dif-

ferently formulated, Data-Incompleteness occurs when the intersect of the set of reference and query

loci is different from its union, for instance when a Whole-Genome-sequenced CCL is compared to a

Panel-sequenced CCL; the sequenced loci will merely show a negligible overlap. The ramification of the

Data-Incompleteness is that it distorts the statistical test on sufficient similarity between two CCLs what

causes false positive and negative classifications, see Figure 4.1.
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Figure 4.1: CCL test-on-identity p-value skewing caused by Data-Incompleteness and Data-

Heterogeneity. The figure illustrates that the p-value of the test on identity is susceptible for confounding

factors introduced by an uneven variant count between the query and the reference CCL. Given the sce-

nario that the reference CCL was WES sequenced, about ⑦80% of the variants contained in the reference

CCL would have to be matched by the query to result in a p-value of 0.05. The p-value of lower than 0.05

would then lead to a rejection of H0 and the acceptance of H1 that assumes both CCL to be of identical

origin. Given a WGS or Panel sequenced reference CCL, the percentage of variants that has to match for

a p-value of less than 0.05 varies compared to WES what introduces a bias due to incomplete knowledge

about the correct value for p as approximated by p̂. Data-Incompleteness in the case of Uniquorn thus

causes the test-statistics of the Uniquorn WES method from Chapter 3 to fail.

Data-Incompleteness therefore introduces a bias with respect to the distance-quantification by vio-

lating the Exclusivity assumption explained in the introduction table 2.1. The consequence is that the

identification effectiveness of the method is significantly reduced because the identification by distance-

quantification approach assumes that the distance between CCL reflects their biological similarity i.e.

remains invariant to the sequencing technology. The naive distance metric approach, however, quantifies

the distance of the CCLs’ technologies and not the CCLs’ biological distance.

Data-Incompleteness, furthermore violates the conditions that a metric has to fulfill, such as the

symmetry of the distance-quantification (equation 2.2.8) and the triangle inequality (equation 2.2.9), See

Figure 4.2. The triangle inequality fails because the underlying metric space is not sufficiently ’flat’ for

the identification by distance-quantification approach in the sense that positions in the metric space are
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not anymore indicative of biological distances, see Figure 4.2.

Figure 4.2: Geometric interpretation of the triangle-inequality violation. The drawing illustrates that the

triangle inequality can be violated when the position-derived distance-quantification does not only quan-

tify the biological distance but, in contrast, violates the Biological Exclusivity assumption from equation

2.1. The flat space grid illustrates the distance-quantification for the homogeneous WES identification

method. Positions of CCLs X and X ′, as determined by their respective variants, are indicative of their

biological distance D(XX ′). The curved space grid illustrates the situation of the Uniquorn Bulk-RNA

method. Importantly, positions can still be assigned to CCLs X and X ′ but the derived distance D(XX ′)
is not representative of their biological distance due to its amalgamation with the technological distance

what precludes the statistical tests from effectively deciding on the sufficient similarity of CCLs.

A geometric example illustrating the Data-Incompleteness-derived curvature of the space is a sce-

nario where a reference CCL was once sequenced with the Panel-sequencing format and once with the

WGS technology i.e. a dramatic difference with respect to the amount of variants in the reference CCLs

exists. Assume, that the amount of matching variants between either reference CCL and the query is iden-

tical and therefore the relative position of a query to the references is as well identical since unmatched

variants in a reference do not alter the relative position of the query. The p-value of the corresponding

tests on significant similarity will, however, differ because the underlying binomial test is based on the

biased approximation of p̂ i.e. the respective amount of variants on the references. The consequence is

that the n-dimensional sphere that surrounds the reference, within which a test on sufficient similarity

is significant, shrinks and grows based on the reference CCL’s technology and format even when the

location of the query remains identical.

Data-Heterogeneity occurs when the same genomic loci were sequenced but the sequencing platform

or post-sequencing software differed. Even if the same biological source is sequenced, differences in the
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called variants will be observed [140], see Figure 4.3. This phenomenon can be caused by, but is not

limited to, lane-specificity, non-identical reactant concentrations, differences between the performances

of different variant calling algorithms. Data-Heterogeneity is suitably illustrated by Hudson et al. who

compared the small missense variant calls of identical CCLs in the CCLE and COSMIC CLP study and

found them coinciding at only 43% [127].

Figure 4.3: Impact of confounding factors. Data-

Heterogeneity (A) has the impact that the sequenc-

ing technology of the reference decides whether a

query CCL will be identified as identical or not. The

reason is that different hard and software will re-

sult in differently called variants what impacts the

size of the identification sphere, indicated here with

technology 1 (T1) and technology 2 (T2). Data-

Incompleteness (B) will cause the algorithm to in-

correctly assign a position to a query CCL which is

further away from the reference CCL than is cor-

rect (but never closer). The reason is, that the po-

sition of the query cannot be accurately determined

because have been sequenced in the reference CCL

that have not been sequenced during the generation

of the query’s NGS data.

Consequently, the position-derived quanti-

fied distance will differ in that it becomes

more volatile and random in correlation to

the degree of heterogeneity. Note, that

Data-Heterogeneity does not significantly af-

fect the calculation of p̂ but, geometrically

interpreted, moves the query into or out of

the n-dimensional sphere where the statis-

tical test on sufficient similarity is signifi-

cant while the sphere itself remains invari-

ant.

In summary, Data-Incompleteness and Data-

Heterogeneity have different origins (sequencing

of different loci versus different processing of data

from identical loci) and detrimentally affect dif-

ferent aspects of the identification (ineffectiveness

of statistical identification tests versus volatility of

distance-quantification). Importantly, both latent

factors are frequently compounded when CCLs

from different origins are compared what ulti-

mately confounds the distance-quantification ap-

proach because the distances are not exclusively

representative of the biological distances.
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4.1.2 Differences to Uniquorn WES

The rational for limiting Uniquorn WES to the Whole-Exome technology was to ensure Data-

Homogeneity between the compared CCL profiles. Data-Homogeneity refers to the comparability of

the sequencing technologies and formats what in particular means that identical CCLs have a compara-

ble variant counts in their NGS data. Uniquorn universal’s statistical model was, in contrast, specifically

designed for the identification of CCLs sequenced with diverse sequencing technologies and formats that

can cause reference CCL profiles to possess dramatically different variant counts, a challenge explained

in the following Subsection 4.1.1.

Property Uniquorn specific Uniquorn universal

Benchmarked
Technologies DNA

DNA
RNA

# Benchmarked
Samples 1984 3896

# Variants
Benchmarked 0.97 · 106 151 · 106

Benchmarked
sequencing formats Whole-Exome-seq

Panel-seq
Whole-Exome-seq

Bulk-RNA-seq
Hybrid-capture

SNP
filtering* Yes No

Table 4.1: The universal Uniquorn version extends the proof-of-concept Uniquorn significantly with re-

spect to covered samples sizes, NGS-technologies and types of data processing. Furthermore, Uniquorn

universal was benchmarked on a much wider and much more heterogeneous set of CCLs. *SNP-filtering

refers to the post-sequencing of sequencing data regarding SNPs, such as filtering based on minor allele

frequencies.

We benchmarked Uniquorn universal by identifying all identity-relationships in a set of 1612 RNA-

sequenced CCLs (5309 related) and in a mixed set of 3596 RNA and DNA-sequencing CCL-profiles

(11512 related). Ninety-six% of the relationships of the later RNA-sequencing CCL-profiles were

correctly identified and 95% of the relationships were found in the mixed scenario i.e. when DNA-

sequencing samples were used to identify RNA-sequencing samples and vice versa. A Panel-sequencing

scenario was benchmarked by synthetically limiting the 3596 mixed-scenario samples to the set of genes

contained in the Clearseq © /AgilentTM, TruSight © /IlluminaTM and Hotspot v2 © /Thermo FisherTM

Panel, respectively. Panel-sequencing showed sensitivities of 83% (151 genes, Clearseq), 82% (94 genes,
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TruSight) and 65% (49 genes, Hotspot v2). The algorithm is freely available as R package Uniquorn and

contains the NCI-60 CCLs by default. Scientists can identify their own custom CCL-samples as well as

publicly available CCL-samples.

4.2 Methods

Uniquorn universal’s general identification concept and its workflow structure with respect to variant

weighting and confidence score calculation remains identical to the Uniquorn proof-of-concept thus, see

thesis subsection 3.2.1 for a description.

We introduced two statistical approaches which first quantify and secondly compensate Data-Heterogeneity

and Incompleteness. In Subsection 4.2.1 we demonstrate how a beta-distribution based bias-factor esti-

mation quantifies the strength of the bias on the identification p-value. Subsection 4.2.1 shows how sta-

tistical permutation resampling quantifies the volatility of the p-value calculations. Methods subsection

4.2.1 describes the thresholds that are dynamically determined based on the bias strength to compensate

the effect of highly heterogeneous NGS data.

4.2.1 Quantification of spuriousness and filtering of false positive predictions

We observed that the degree of Data-Heterogeneity introduced by the diverse range of sequencing

technologies caused a significant amount of matches to occur between unrelated q and r CCL samples in

spite of the filtering of non-informative variants via weighting and filtering. We term these highly likely

random and non-informative matches spurious matches because they cannot be caused by a common

origin or the compared profiles but must be caused by spurious technological noise effects. The char-

acteristic property of these spurious matches is, that are found in many q to r comparisons but by total

amount seldomly exceed an absolute amount of three to ten randomly matching variants. Furthermore,

false positive predictions show an amount of matching variants that is comparable to the average amount

of matching variants in R.

We quantify the spuriousness between q and any r with a spuriousness variable SP ∈ [0, .., 1], SP ∈
R. sp is estimated by the integral of the B function with parameters smax and smean, where smax is the

maximal number of shared variants between q and any sample from r, and smean is the mean of the

number of these matches. The B function has been found to suitably estimate the expected number of

additional variants in that it is governed (1) by the relative number of matches and (2) by the absolute

size of its input-parameters and (3) by its domain {x|x ∈ [0, .., 1], x ∈ R}. Thereafter, a threshold on the
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acceptable amount of observed unmatched variants Mmin is calculated as follows:

Mmin :=
Smean + Smax · SPR

1− SPR

(4.2.1)

Where the spuriousness of a reference database R, SPR is computed as the integral of the beta

distribution based on the ratio of the average amount mavg and the maximum amount mmax of matching

variants in R. We chose the integral of the beta distribution due to the integral’s skewness, two-parameter

positive integer domain for mavg, mmax and real-valued co-domain between and including 0 and 1:

SPR :=

∫ p=1

p=0
betaCDF (p;α, β) :=

∫

Γ(mmax) · Γ(mavg)

Γ(mmax +mavg)
(4.2.2)

In a second step, we filter all overlaps with less matches than threshold TR to exclusively retain

overlaps that show a higher number of matches than expected by chance:

TR :=

(

mavg +mavg · SPL

1− SPL

)

(4.2.3)

Thus, after quantification of the bias, a compensation is implemented.

Empirical sampling of the confidence score

In the specific case of a low-variant count e.g. Panel-sequenced q, can the exclusion or addition of a

single variant render a test on q and r identity significant i.e. the test on identity becomes unstable and

volatile. In particular when the variant in question is a spuriousness variant is present due to technological

diversity i.e. noise can the volatility aspect be observed. The spuriousness-detection approach described

in subsection 4.2.1 is generally not suited for Panel-sequenced CCL samples due to the low sample

size due to insufficient variant-count sample-size. However, an exhaustive Jackknife approach which

enumerates all possible leave-on-out configurations of features i.e. variants in q can be efficiently applied

due to the low variant count on q, see section 2.3.2 for a description of the Jackknife method. The

Jackknife-approach serves to estimate the 95% upper bound by the confidence scores CS is perturbed

when single variants are excluded in order to quantify the volatility. A single leave-one-out confidence

score calculation ĈSi for variant vari is defined as ĈSi = −1 · logeD(qi, r) where qi := vari 6∈ q. Let,

vV S be the increasingly ordered vector of all ĈSi. The upper confidence score volatility bound CSup is

the smallest ĈSi for which the following holds:

CSup := ĈSi ≥ vV S [⌈|q| · 0.95⌉] (4.2.4)

Where vV S [i] signifies the ith increasingly ordered permuted confidence score, i.e., CSup is the ceiled
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95% percentile bound.

Rejection of the null hypothesis

Three conditions have to be fulfilled for rejection of H0 given to compensate for Data-Heterogeneity:

1. CSq,r ≥ t, user defined threshold (default value is t = 3)

2. CSq,r ≥ CSup, the confidence scores must be greater than 95% confidence scores obtain by

permutation

3. CSq,r must rank among the top-k positions of all r in R (default value k = 2)

4. O(q, r) ≥ TR, the amount of overlapping variants must be greater than can be expected due to

spuriousness

Technology Source
Genotyped

Genes
Variant Calling

Software
SNP

Filtering*

RNA Bulk-seq
Klijn et al.

GDC
Expressed
alleles only

GATK RNA
FreeBayes None

Hybrid-capture CCLE 1651 MuTect > 0.01

Exome-seq
CGP

Cellminer
20965
> 20k

Pindel
Caveman

GATK DNA
None

Table 4.2: Data differs with respect to sequencing technology, variant calling algorithms, SNP-filtering,

and number of covered genes. Variants within Genomic Data Commons (GDC) and Klijn et al. reposi-

tories were manually called by first utilizing the Trimmomatic and the Spliced Transcripts Alignment to

a Reference (STAR) aligner [141] and a subsequent diverging variant calling step: the Genome Analy-

sis Toolkit (GATK)-RNA variant caller [142] was utilized for data from Klijn et al. and the FreeBayes

variant-caller [143] for GDC data to increase the heterogeneity of the benchmarked data. *SNPs were

pre-filtered by the creators of the data based the SNPs’ minor allele frequency [144].

Evaluation

We benchmarked Uniquorn in its universal version using 3596 CCL-profiles derived from 1516 dis-

tinct CCL-samples from five libraries, each characterized by a different technology, see Table 4.2. We

utilized the 3596 profiles both as reference and as queries, resulting in 3596 identification tasks and

roughly 13 Million individual comparisons. Each query profile possessed between one and nine match-

ing reference profiles (median = 3) because many CCLs are contained in more than one library. In

addition to obtaining key performance indicators (Tables 4.5, 4.4 and 4.6), we also assessed whether

the performance was biased related to certain properties of the profiles such as sequencing technology

(Figure 4.5 and Supplementary Material Figure 7.5).
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Sensitivity was defined as the fraction of all predictions which correctly predicted that two CCL

profiles were similar and specificity as the fraction of all predictions which correctly stated that two CCL

profiles were not similar.

4.2.2 Gold-standard creation

We created a Gold Standard based on CCL names and literature research. Firstly, names of CCLs

were either parsed from the VCF-files directly (Cellminer, GDC, Klijn et al.) or extracted from the meta-

file that aggregated the variant-calls of all CCL-profiles into a single document (CCLE, Cancer Genome

Project (CGP)). Secondly, a pre-processing step removed all non-alpha-decimal characters and spaces

from the names and capitalized the processed names. CCLs that differed only by a prefix or by a suffix,

such as MDA-MB-435 and MDA-MB-435S, were considered candidates for being identical and validated

using literature. Also, collisions of different CCLs that had the same name after the pre-processing e.g.

TT and T.T were resolved by literature research. This process resulted in 11508 identity-relationships of

which 5309 are based on RNA-sequencing profiles. Supplementary Table 7.1 contains the gold-standard

contains the identity-definitions based on reports and a link to the reports where needed.

4.2.3 General data procurement and creation of the Panel-sequencing data

The CCL profiles of all libraries we considered were obtained by either DNA or RNA sequencing.

However, labs often only perform Panel sequencing with their samples to save on cost and labor [145,

122]. To test the capability of Uniquorn universal to identify a Panel-sequenced sample within an RNA

or DNA sequenced library, we created synthetic Panel-sequencing profiles by removing all variants from

a profile that fall outside the region of three predefined Panels, i.e., gene set. Firstly, we formatted all

profiles into the VCF-format and secondly bedtools intersected all VCF-files with Browser Extensible

Data file (BED)-files containing the genomic coordinates of the Panels [146]. The TruSight’s BED-file

(trusight cancer manifest a.bed) was obtained from illumina.com. The websites of the Hotspot v2 ther-

mofisher.com and the ClearSeq Panel agilent.com did not provide the Panels’ genomic-coordinates in

BED but comma-separated format and thus we manually converted the comma-separated files into the

BED-format using BioMart[147].

We procured the data either in the VCF-format or as Binary sequence alignment file (BAM)-files, see

Table 4.3. BAM-files were converted into FAST-ALL Quality file (FASTQ)-files and conscientiously

processed with different variant calling algorithms to obtain VCF-files 4.2. The CCL-profiles from

the CGP and CCLE repositories were extracted from the meta-files and transformed into VCF-files.

R version 3.5.1 (2018-07-02) was utilized on a Linux Debian Mint operating system and benchmarks
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performed with the Bioconductor Uniquorn package 2.0.031 [148, 149].

Library URL Files Date

Klijn et al. ebi.ac.uk BAMs July 16th 2017

GDC gdc.cancer.gov BAMs May 24th 2017

CGP
sftp-

cancer.sanger.ac.uk

CosmicCLP

MutantExport.tsv January

13th 2017

CCLE Broadinstitute.org/ccle

CCLE hybrid

capture1650 hg19

NoCommonSNPs CDS

2012.05.07.maf

Cellminer discover.nci.nih.gov VCFs

Table 4.3: Origin and name of utilized files used for the benchmark are shown. Klijn et al. [150],

GDC[151] CGP[152], CCLE [4] and Cellminer [153, 154] were procured.

Figure 4.4: (A) Absolute amount of variants per benchmarked library. (B) Mean amount of variants per

profile per benchmarked library. All repositories differed by at least one power of two with respect to

the amount of variants they contain i.e. are heterogeneous. Whiskers depict the standard deviation of the

mean variant-counts

4.3 Results

4.3.1 Identification of Bulk RNA and Panel-sequenced CCLs

CCLs are essential tools for cancer research but are also highly susceptible to misidentification,

which makes the accurate identification of a CCL used in an experiment crucial [145, 155]. We recently

published the Uniquorn proof-of-concept, a method to identify CCLs using variant profiles derived from
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exome DNA-sequencing or from hybrid-capture DNA-sequencing [18]. Here, we present the universal

version of Uniquorn which can robustly identify RNA and Panel-sequenced CCLs derived from hetero-

geneous sequencing technologies while retaining Uniquorn’s ability and performance to identify DNA-

sequenced CCLs [19]. Furthermore, Uniquorn universal no longer relies on SNP-filtering, which brings

its own problems (such as the concrete set of SNPs to filter) when using pre-computed profiles.

We benchmarked Uniquorn universal on NGS data from 1612 RNA, 1080 DNA-exome and 904

targeted hybrid-capture sequenced CCLs from five repositories, in the following called libraries, which

utilized four different sequencing technologies to adequately reflect the heterogeneity of a real-world

scenario (Table 4.2 and Figure 4.4). Four identification scenarios were benchmarked of which three

were novel and not covered by Uniquorn proof-of-concept: RNA-sequencing identification (Table 4.4),

mixed RNA-sequencing and DNA-sequencing identification (Table 4.5), Panel-sequencing identification

(Table 4.6) and Uniquorn proof-of-concept’s DNA-sequencing only scenario (Supplementary Material

Table 7.2). It was benchmarked whether a CCL was correctly identified when comparing it to all refer-

ence CCL-profiles from all five reference libraries, leading to ⑦13 million CCL benchmark comparisons

overall. Since a TP prediction was only possible for about 11,000 of the ⑦13 million comparisons, our

evaluations put special emphasis on the PPV.

4.3.2 Cross-validation benchmark

The first finding was that Uniquorn universal could effectively identify full-transcriptome sequenced

CCL-profiles: with default parameters (Weight Threshold 0.5), Uniquorn universal’s sensitivity to iden-

tify RNA-sequenced CCLs reached 95.7% its PPV 85.5% (Table 2). The rationale for choosing 0.5 as

default weight threshold is shown in Supplementary Material Figures 7.2 and 7.3.
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Threshold 1.0 0.5 0.25 0.0

Possible TP 5309

TP 5096 5082 5071 4192

FN 213 227 237 1117

FP 850 860 865 1411

Sensitivity % 96.0 95.7 95.5 79.0

Specificity % 99

F1% 90.6 90.3 90.2 76.8

PPV% 85.7 85.5 85.4 74.8

Table 4.4: The performance of Uniquorn universal to identify full-transcriptome sequenced CCL-profiles

is shown. 1612 of such profiles were identified within five reference libraries containing 3596 DNA and

RNA-sequencing sequenced CCLs. Columns 2 to 5 show key measures dependent on the mutational

inclusion weight (see methods). Inclusion weights 1.0, 0.5 and 0.25 showed comparable performance

with sensitivities above 95%. 0.5 is the default parameter setting of the Uniquorn R-package.

The second finding was that Uniquorn universal could effectively identify CCL profiles in a real-

word scenario: Heterogeneously created RNA-sequencing and DNA-sequencing CCL-profiles had to

be identified by equally heterogeneously created reference CCL-profiles what resulted in an average

sensitivity of 95% and average PPV of 90% (Table 4.5). Both RNA-sequencing and mixed-sequencing

benchmarks showed extremely high specificity values (99.9% and higher) which were caused by the very

large number of true negative predictions.
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Threshold 1.0 0.5 0.25 0.0

Possible TP 11512

TP 10951 10945 10937 9843

FN 561 567 575 1326

FP 1128 1106 1139 4626

Sensitivity % 95.1 95.1 95.0 85.5

Specificity % 99

F1% 92.8 92.9 92.7 85.5

PPV% 90.7 90.8 90.6 85.4

Table 4.5: Uniquorn universal’s ability to identify CCL-profiles created and identified by RNA-seq,

DNA-exome and DNA-hybrid-capture CCL-profiles is shown to determine the expected real-word use-

case performance. 3596 CCLs that were sequenced and processed with various technologies and algo-

rithms were identified (see Tables 4.1 and 4.2 for technologies). The sensitivity was comparable to the

RNA-sequencing benchmark (Table 2) with the exception of inclusion weight 0.5 which resulted in a

higher F1-score and PPV than weight 1.0. A performance drop can be observed for weight threshold 0.0

where all variants, informative and non-informative, were utilized.

The 3596 available reference CCL profiles were reduced to the genomic regions covered by three of

the most widely utilized ClearSight© , TruSight© and Hotspot v2© Panels to simulate Panel-sequencing

benchmark profiles. Identification of the resulting 3 · 3596 = 10788 Panel-profiles revealed as third

finding that Panel-sequenced profiles could be successfully identified with an average sensitivity of 82%

and PPV of 68% if the Panel covered more than 100 genes (Table 4.6). Panels covering less than 100

genes were significantly less suited for CCL-identification with an average sensitivity of 60% and a PPV

of 55%. Specificity always remained higher than 99%. False-negative and false-positive identifications

were found to be predominantly caused by CCL-profiles that covered less than 100 genes.

Subsequently, we analyzed what factors caused Uniquorn universal to incorrectly classify i.e. iden-

tify a CCL-profile and it was determined that technological heterogeneity does not significantly impact

Uniquorn universal’s sensitivity and F1 score 4.5. However, although sensitivity and F1 score remained

robust with respect to the utilized technology, sensitivity showed a strong positive correlation (r of 0.7)

with the amount of genes covered by a profile. The uncovered a log-linear sensitivity to amount-of-

covered-genes relationship is shown in Supplementary Material Figure 7.4 and the benchmark results for

each library are shown in Supplementary Material Figure 7.5. In contrast, the PPV showed a limited bias

with respect to utilized sequencing technology and no log-linear relationship to the amount of covered
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genes.

Panel Clearsight TruSight Hotspot v2

Genes 151 94 49

Possible TP 11512

TP 9505 9423 7525

FN 2007 2089 3987

FP 4591 4424 6097

Sensitivity % 82.6 81.9 65.4

Specificity % 99

F1% 74.2 74.3 59.9

PPV% 67.4 68.1 55.2

Table 4.6: Uniquorn universal achieves sensitivities of ⑦83%, ⑦82% and ⑦65% while constantly show-

ing a specificity of higher than 99% at default parameters for Panel-sequencing identification.

We focused on investigating what effect a varying choice of identification parameters had on the

identification performance and found that sensitivity remained robust, in particular for high-volume full

transcriptome sequenced CCLs while specificity was moderately affected and the PPV showing high

sensitivity to the choice of the identification threshold, shown in Supplementary Material Figure 7.1.
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Figure 4.5: Relationship between Data-Heterogeneity and identification performance. CCL profile

sequenced and processed by vastly different technologies and algorithms were identified and deter-

mined whether Uniquorn universal’s identification performance remained robust in spite of the Data-

Heterogeneity. Bars depict average performance, whiskers standard deviation. Profile sizes of the query

CCL shrink dramatically from left ( 210 variants) to right ( 50 variants). Sensitivity and F1 score are

highest when full transcriptome profiles are used and lowest for small Panel-sequencing profiles but re-

main robust when faced with different technologies. In general, PPV decreases with the profile size with

the exception of WES and hybrid-capture technologies, which show a higher sensitivity.

4.4 Discussion

4.4.1 Feasibility of the identification of Bulk and Panel-sequenced CCLs

Uniquorn universal is optimized for the identification of CCLs whose variant profiles were obtained

from diverse technologies and diverging computational processing pipelines. Thus, it complements es-

tablished methods by addressing some of their key limitations: 1) The physical CCL sample is not

required, as it is, for instance, in the case of STR-counting-based identification) Uniquorn universal is

agnostic to sequencing technology and thus able to reuse data provided by the creators of CCL libraries.

The support of various RNA and DNA sequencing format as well shows the significantly advantage of
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relaxing the requirement on reference libraries since the do not have to be identical to the queries format

i.e. one reference CCL image of one format suffices.

We benchmarked the performance of the algorithm in high-diversity scenarios, which we consider

best mimic the real situation, in laboratories dealing with CCLs, confirming its ability to cope with vari-

ous sequencing technologies and data-processing (Table 4.2). This considerably extends the functionality

of Uniquorn proof-of-concept to also handle RNA and Panel-sequenced CCLs (Tables 4.4 and 4.6).

Panel sequenced profiles were simulated by reducing the amounts of covered genes of the 3596

available profiles from about 22,000 down to 151, 94 and 49 covered genes, respectively. Differences in

the identification efficiency of the benchmarked Panels (Agilent ClearSight, Illumina TruSight, Thermo-

Fisher Hotspot v2) was therefore caused by differing amounts of covered genes and not due heteroge-

neous technology since the variants call within the covered genes were identical for each Panel. Signif-

icant differences regarding sensitivity, F1-score and PPV were detected between the Panels, indicating

that not the sequencing technology (Figure 4.5) but the number of covered genes is most influential with

respect to how efficiently a CCL profile can be identified (Supplementary Material Figure 7.4). Re-

markably, the identification efficiency of Panel-sequencing profiles was merely 12% to 13% lower than

the efficiency measured for full transcriptome sized CCL-profiles although the Panels covered orders of

magnitude less genes than the full-transcriptome profiles. An exception was the hotspot v2 Panel which

showed a significantly decreased sensitivity of 65% which was 30% lower than the full-transcriptome

profile identification but as well only covered 49 genes. We therefore deem the concept of identification

by pair-wise distance-quantification as successfully applicable in case of Uniquorn universal due to its

successful benchmark results.

4.4.2 Reasons for incorrect Identifications

By manual inspection of benchmark results (available online in [19] as ’Supplementary Material Ta-

ble 1’) we found that FP predictions are associated with CCLs that had diverged significantly from their

origin due to long-term subclonation or exposure to drug treatment e.g. the CEM-2, Jurkat and CCRF-

CEM CCLs. This finding is supported by reports of the same phenomenon for the same CCLs when

STR-identification was applied [126]. False-negative predictions where furthermore frequently associ-

ated with CCLs whose relationship-status could not be fully resolved due to an unclear nomenclature:

E.g. when it was unclear whether CCLs with a similar name were different or identical CCLs or in the

case of false-positive, whether CCLs with different names were nevertheless identical but counted as FP
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predictions by the Gold Standard (Supplementary Material Table 7.1) which lists numerous labeling in-

consistencies. Thus, low variant-counts and an unclear relationship caused by the absence of a generally

applied CCL-nomenclature system are still the dominant causes of incorrect predictions.

We deem the applied empirical resampling and spuriousness quantification approaches outlined in

Subsections 4.2.1 and 4.2.1 as adequate. The main reason for this conclusion are Uniquorn universal’s

real-world benchmark results shown table 4.5 and the comparative benchmark results between Uniquorn

proof-of-concept and Uniquorn universal in supplementary table 7.2 where a minor loss of sensitivity in

exchange for a significant gain of robustness was observed.

4.5 Conclusion

Uniquorn in its universal version complements established methods in particular when those cannot

be applied e.g. due to absence of a physical sample. The Uniquorn universal method supports quality-

assurance procedures in high-CCL-throughput laboratories since it seamlessly integrates into analysis

pipelines to serve as a quick test for in-house or procured third-party CCL-profiles. The Uniquorn uni-

versal method is freely available as Bioconductor R-package Uniquorn and can be easily implemented.

Users of the generalized Uniquorn method can utilize their own sets of CCL-profiles as reference.

However, as the run time of Uniquorn in its generalized version is very low, it is advisable to always

include a wide range of reference profiles to also detect unexpected contamination. The CGP and CCLE

repositories contain 1695 CCL-profiles while showing a low false-negative rate as references and are

freely available. The Uniquorn R-package is ported with the limited NCI-60 reference Panel but a tutorial

that enables researcher to easily utilize the 1695 CGP and CCLE CCLs is documented in the Uniquorn

Bioconductor vignette. The Klijn et al. [150] and GDC CCL-repositories show suitable identification

characteristics and can be obtained by application at the European Genome-phenome Archive (EGA).

The utilization of a an abstract distance concept to identify CCLs has proven susceptible for Data-

Heterogeneity and Data-Incompleteness but proved successful after a modification of the concept, as

judged by the benchmark results. Detailed analyses of factors influencing the identification of CCL-

profiles such as SNP filtering are indicated to further improve the Uniquorn universal method. A further

extension to non-neoplastic Cell Lines, single or methyl-sequenced CCLs are viable subjects for future

work to further expand the range of research fields which can utilize the generalized Uniquorn method.
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Chapter 5

Data-Augmentation via

Distance-Quantification based on

Transcriptomic Deconvolution

This Chapter introduces a novel method to predict clinically relevant properties of rare and diverse neo-

plasms via Data-Augmentation. The biological background will be introduced first and thereafter the

distance-quantification-based data-augmentation explained. A following benchmark determines whether

ML models trained on the augmented data can effectively characterize rare and diverse neoplasms based

on the output of a transcriptomic deconvolution. A discussion highlights advantages and disadvantages

of the approach while the conclusion Section argues whether the distance-quantification approach could

effectively augment the data and render a neoplastic characterization without neoplastic training data

possible.

5.1 Introduction

The personalization of the patient treatment is in the prime focus of current cancer research. It is

defined as the adjustment of the treatment to individual neoplastic characteristics and promises to help

identify more effective drug-regimes, to reduce side effects and ultimately to prolong the patient-survival

while reducing monetary costs [156, 157]. Personalized treatment constitutes a particularly urgent need

in case of rare cancers with highly variable and unpredictable clinical courses, such as NENs and, more

specifically, Pancreatic Neuroendocrine Neoplasm (PanNEN). Well differentiated PanNEN are referred

to as Neuroendocrine Tumors (NETs) and typically exhibit a low (G1, G2) or, in rare cases, high (G3)

proliferative index, as quantified by Proliferation marker protein Ki-67 (Ki-67) gold-standard staining,
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with median survival of patients exceeding ten years [158]. This overall indolent course of the disease

stresses the need for careful balancing of treatment benefits and side effects. In contrast, patients with

poorly differentiated Neuroendocrine Carcinomas (NECs) face a dismal prognosis of a few months and

hence are eligible for aggressive and ideally personalized therapies [159, 160].

Endeavours to personalize the treatment of PanNEN and the more general group of gastroenteropancreatic

neuroendocrine neoplasms (GEP-NENs), arising in the gastro-enteropancreatic system, suffer from the

impediments of small sample numbers and imbalanced sample characteristics. First, GEP-NENs are rare:

the current age adjusted incidence rate of GEP-NENs is estimated as 7.38 cases per 100,000 persons for

well differentiated GEP-NENs, currently defined as NETs [158, 161] in the United States of America

where they as well only account for 1-2% of pancreatic tumors [162]. Secondly, GEP-NENs are highly

heterogeneous, with low proliferative, well differentiated G1 and G2 NETs being overrepresented in all

publicly available datasets, while poorly differentiated NECs are underrepresented [163]. Thirdly, am-

biguity with respect to morphologic NEC-versus-NET subtype classification is a frequently encountered

issue even by experienced pathologists, questioning the reliability of currently available classifications

[164, 165, 166]. However, precise subtype determination constitutes a key element of personalization.

It relies on a characterization of a tumor’s molecular landscape [167] which can be revealed by either

in-vivo, in-vitro or in-silico methods. In-vivo methods, such as medical imaging, and in-vitro methods,

such as Ki-67 Immune Histo-Chemistry (IHS), currently constitute the gold-standard methods. How-

ever, even these approaches are limited in their ability to discern subtypes in samples with ambiguous

morphologies and same proliferation rates [167]. Therefore, new approaches that complement the gold-

standard approaches in case of ambiguity are highly needed.

Throughout the last decade, ML models have become the main in-silico approach for the classifi-

cation of neoplastic samples based on the NGS of the samples’ molecular landscape [168]. Machine-

Learning (ML) models, however, require training on large amounts of data covering all subtypes of

neoplasms. Accordingly, the beneficial usage of ML models for PanNENs is challenging since sample

numbers are low while class imbalance is high: All publicly available datasets are severely skewed to-

wards low and medium grade neoplasms.

The impact that insufficient training data has can be leveraged detrimentally if a cancer type is si-

multaneously rare and diverse. Two correlated aspects impair the analysis of rare yet biologically diverse

cancer types: The rareness of a cancer not only diminishes the overall amount of available training data,
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it frequently causes a class-imbalance within the training data which in turn reduces the predictive power

of the ML models [169]. Different subtypes of cancer can have different incidence-rates and therefore

differ in their respective likelihood to present with biopsies required for sequencing. Provided that a rare

cancer type is diverse, multiple sub-categories of the cancer have to be sufficiently populated with train-

ing data to achieve a class-balanced performance of the ML models. The most often occurring subtype

of a rare cancer will therefore generally be predicted best by a ML model due to the corresponding data

availability. The subtype with greatest incidence-rate might, however, might not be the most aggressive

or scientifically valuable subtype of the cancer with greatest need for accurate ML predictions [166].

PanNENs are an example os such a type of cancer because its high-grade, malignant neoplasms are

scarcely available compared to benign low-grade neoplasms. The need to predict the clinical character-

istics of high-grade PanNENs with great statistical performance is highly pressing, yet ML model can be

more effectively trained to characterize the low grade PanNENs due to the increased availability of train-

ing data [164]. The amount of samples drawn from the overall population of the cancer type therefore

has to be significantly increased to cover the rarely observed subtypes what, however, is counteracted by

the cancer type’s rareness [169].

5.1.1 Distance-quantification via deconvolution

Distance-quantification between entities is an established concept in the field of Bioinformatical neo-

plastic classification [170, 171, 172]. Entities can be classified via measurement of their distance to a

informative reference entity which may or may not be neoplastic itself. This entity can, for instance,

be a holotype of a high-grade series carcinoma in order to quantify how alike a neoplasm is to a ma-

lignant carcinoma [17]. Importantly, the distance-quantification approach can be exploited to augment

training data of neoplasms where suitable samples are scarce. The amount of available training data is

limited for the types of cancer which is why the substitution of neoplastic data is tempting. Instead of

quantifying the distance between neoplastic entities we will show that a distance-quantification between

neoplastic and healthy entities is informative with respect to clinical meta-data such as the grading. This

neoplastic-to-healthy distance-quantification takes place via deconvolving the neoplastic transcriptome

into healthy cell-type fractions. The deconvolution is essential because, in analogy to the ’kernel-trick’

utilized for the SVM, is the transcriptomic data of the neoplasm projected on a different space, here, the

deconvolution-results.

The main assumptions underlying classification-by-deconvolution are that:
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1. Low-grade neoplasms are more similar to healthy cells than high-grade neoplasms

2. Different clinical characteristics present with different cell-type proportion and reconstruction er-

rors

3. That deconvolution-derived results allow the quantification of meaningful distance between neo-

plasms and health cells

The distance-quantification-concept differs from Chapter 3 and Chapter 4 in that the distance was

quantified via a norm of a vector representing the distance between a query sample and a reconstruction

of that sample. Additionally, a second vector comprising of cell-type proportion predictions serves to

train a ML model which predicted the grading as function of the distance to healthy cells.

5.2 Methods

5.2.1 Utilized datasets

We procured three of the GEP-NEN datasets from the publicly accessible gene omnibus database

Gene Expression Omnibus (GEO) and obtained the Scarpa et al. dataset from ICGC [173, 147]. The

Riemer et al. dataset was made available by C. Grötzinger, Charité Berlin. For a listing of the Riemer

dataset, see Supplementary Table 7.4. Seven scRNA deconvolution training datasets were located on

publicly available GEO servers with the exception of the Segerstolpe et al. dataset that was acquired from

the Array Express database [147, 148]. Four additional scRNA training datasets (Grün [42], Haber [174],

Stanescu [175], Yan [176]) were subjected to preliminary benchmarks but not to detailed result analyses

based on ranking, which revealed inferior performance for the purpose of GEP-NEN deconvolution.
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Data set Purpose Procurement Date

Baron Benchmark GSE84133, GEO May 5th 2018

Califano Training GSE98894, GEO May 5th 2018

Fadista Out-group GSE50244, GEO February 11th 2019

Grün
Training

(Discarded) GSE81076, GEO May 5th 2018

Haber
HISC

Training GSE92332, GEO May 5th 2018

Lawlor Benchmark GSE86473, GEO May 5th 2018

Missiaglia Benchmark GSE73339, GEO May 5th 2018

Sadanandam Benchmark GSE73338, GEO May 5th 2018

Scarpa Benchmark EGAS00001001732, ICGC June 1st 2017

Segerstolpe Training E-MTAB-5061, Array Express July 15th 2018

Stanescu
Training

(discared) GSE78510, GEO February 2nd 2018

Riemer Benchmark Unpublished June 1st 2015

Yan
Training

(discared) GSE36552, GEO February 2nd 2018

Table 5.1: Overview of the data sets obtained to train and benchmark the deconvolution framework.

Purpose indicates for what purpose the datasets were utilized, Source indicates the source of the dataset

and Date shows the date that the data was obtained.

The ranking evaluated whether the deconvolution algorithms were tested on a given datasets, the

amount of sequenced cells, a stratification of the cell-types roughly correlated to the stratification in

healthy tissue and the technological homogeneity of the datasets compared to each other in order to fa-

cilitate the interpretation of benchmark results.

From the sources listed in Table 5.1, we obtained 364 Bulk RNA-seq and 20,953 scRNA samples. All

samples underwent a sequencing data quality assurance process based on the publication of Conesa et al.,

which included but was not limited to analyses of read-counts and read-qualities in addition to outlier and

heteroscedasticity detection [177]. Where required, reads were clipped and adapter sequences removed.

For an overview of the datasets’ properties, see Table 5.2.
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Dataset Type
Grading

G1 G2 G3

Patient
survival

information

Baron [178]
Pancreas
scRNA 8569 GO -

Califano[179]
PanNEN

Bulk RNA 105 G1 & G2 x

Fadista* [180]
Pancreas

Bulk RNA 89 non neoplastic NA

Haber [174]
Pancreas
scRNA 642 G0 -

Lawlor [181]
Pancreas
scRNA 6102 G0 -

Missiaglia [182]
PanNEN

mRNA array 46 G1 25 G2 4 G3 x

Representative Set (RepSet)
GEP-NEN
Bulk RNA

14 G1 23 G2 9 G3 NET
9 G3 NEC 14 Ambiguous X

Riemer
GEP-NEN &

Bulk RNA
0 G1 10 G2 8 G3 NET

9 G3 NEC 13 Ambiguous X

Sadanandam [163]
PanNEN

Bulk RNA 7 12 8 x

Scarpa [183]
PanNEN

Bulk RNA 14 13 2 X

Segerstolpe [184]
Pancreas
scRNA 3514 G0 -

Table 5.2: Overview of deconvolved PanNEN, GEP-NEN and out-group datasets. The distribution of

samples with G3, G2 or G1 grading was unequal between the datasets: 30 of the 44 high-grade G3

samples were part of the Riemer dataset which however, lacked low-grade G1 samples. Non pancreatic

colorectal and gastric samples were included in the Riemer dataset and represented exclusively G3 sam-

ples. The Scarpa dataset was limited to two G3 graded samples but contained 14 out of 78 G1 and 13 of

the 69 G2 graded samples. G0 indicates that samples were non-neoplastic control samples. *The Fadista

dataset was utilized for an out-group sanity test that analyzed whether proportion to proliferation rate

correlation rates were cancer specific.

The Baron, Lawlor and Segerstolpe datasets were utilized to train the deconvolution algorithms on

exocrine and endocrine cell-types. The Haber et al. dataset was utilized to quantify the similarity of the

neoplasms to Human Intestinal Stem Cells (HISCs) by measuring their predicted relative proportion.

The Riemer and Scarpa datasets were combined to create the RepSet on the grounds that they pos-

sessed the greatest technological homogeneity of all studies while simultaneously being representative of

a wide range of GEP-NEN types. The construction was necessary on the grounds that the deconvolution

results vary between different grades with none of the available datasets possessing a sufficiently bal-

anced grade distribution which would representatively demonstrate the changes of deconvolution results.

The RepSet consisted of the 29 PanNEN from Scarpa et al. and the 23 PanNEN and 17 non-pancreatic

GEP-NEN from Riemer et al. to which no modifications were applied. A clustering of samples according

to the biological properties such as grading and not study of origin was verified as shown in Supplemen-
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tary Figure 7.7. We controlled for immune-infiltration via application of the Estimation of STromal and

Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm in the RepSet and

found no immune infiltration or stromal tissue contamination [185].

Software

All read-based analyses were based on the human reference genome GRCh38 [186]. The GATK

RNA-seq gold-standard pipeline as described by GATK was used for mutation calling [142]. Transcript

fusion analyses were applied with the STAR fusion detection algorithm [141]. Reads were clipped

and adapters removed by the trim-galore software [187]. Transcripts Per Million bases (TPM) counts

were utilized for analyses and generated by the Kallisto software from the quality-assured .fastqc files

[188]. We ran differential expression analyses via the ’DESeq2’ R package where we formulated the

design matrix based on cohort and study membership to exclude potential batch effects during differential

expression analysis [189]. ’Ggplot2’ and ’ggbiplot’ were utilized for graphics generation. ’Survival’,

’sleuth’, ’biomaRt’ and ’RocR’ were further R packages utilized for numeric analyses and the ’stringR’

R package for string related operations [190, 191, 192]. The software ’GSEA’ as provided by the Broad

institute, Linux version 4.0.2 was utilized for enrichment analyses [193].

5.2.2 Deconvolution algorithms

Deconvolution into relative cell-type proportions requires training on transcriptomes of cell with

specified cell-type. The classification can either take place before the sequencing in form of Fluorescence

Activated Cell Sorting (FACS) or via the assignment of a cell-type after a single-cell sequencing run via

in-silico methods. We trained exclusively on scRNA data from endocrine, exocrine and stem cells that

were assigned a cell-type after sequencing. The utilzied assignment algorithms differed from study to

study and represented a source of volatility.

We created different deconvolution models, one endocrine-only model composed of α, β, γ and δ cell-

types and an exocrine cell-type model comprising of ductal and acinar cells. The exocrine cell-type

model was limited to ductal and acinar cells due to sample-size constraints. Analogously, epsilon cell-

types were excluded from the endocrine-only model due to insufficient sample sizes. Endocrine cell-

types were included since NENs originate from endocrine cell-types. Exocrine cell-types were included

due to the demonstrated feasibility of Pancreatic Ductal Adenocarcinoma (PDAC)-deconvolution.

Additionally, the reported high carcinogenic potential of the ductal cell-type motivated the approx-

imation of high-grade series cell-types with a model that contained a ductal cell-type signature. HISC

were included in models to analyze whether a correlation between the degree of de-differentiation and
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the HISC cell-type proportion exists as has been reported by previous studies [17]. The HISC propor-

tions were initially trained on both fetal and intestinal stem cells but subsequently limited to the HISC

datasets due to superior statistical efficacy [28, 174].

Neither normalization nor log-transformation was applied at any point during the deconvolution and

the amount of permutations per deconvolution was set to 10E3, where applicable. The three decon-

volution algorithms were each trained on three pancreatic scRNA datasets and their results compared:

BSeq-sc, MuSiC and Moffitt, see Supplementary Tables 7.5 (CIBERSORT), 7.6 (MuSiC) and 7.7 (Mof-

fitt). Cell-type proportion predictions were analyzed for the optimal BSeq-sc and Baron scRNA com-

bination and the regression coefficients of the ν-SVR as calculated by BSeq-sc utilized as cell-type

proportion predictions.

The BSeq-sc 1.0 R-implementation algorithm was acquired from cibersort.stanford.edu.

Beforehand, the most recent version 1.4 of the csSAM R-package required to run BSeq-sc had been

obtained from github [81]. The MuSiC algorithm version 0.1.1 was obtained from the GitHub reposi-

tory github.com/xuranw/MuSiC. The Moffit et al. NMF algorithm was trained according to the

specifications laid out in the corresponding publication which was replicated with the ’NMF’ R-package

version 0.22 [194].

Before the models were trained, a differential expression analysis was performed to identify 800

marker genes whose expression was significantly higher in a given cell-type compared to all other cell-

types, utilizing the limma R package [195]. Note that models were thus trained on an aggregate of about

4000-5000 genes since each cell-type contained its pair-wisely unique set of marker genes. The amount

of 800 genes per cell-type was selected as trade-off between performance, computation time and memory

restrictions. The MuSiC algorithm could select the most suited subset of genes independently but due

to the aforementioned time and memory constraints, we limited the amount of genes deconvolved by

MuSiC as well.

We ascertained that the deconvolution models were comparatively expressed between the non-pancreatic

and pancreatic tissues by conducting a differential expression analyses between the pancreatic and non-

pancreatic tissue followed by the determination of the intersect of the significantly differentially ex-

pressed genes with the marker gene signature. We found that only 4% of the ductal and 29% of the HISC
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signature genes showed a differential expression activity between pancreatic and non-pancreatic tissue

and therefore concluded that the amount of marker genes with a tissue-bias was sufficiently low as not to

significantly influence the Riemer and RepSet benchmark results.

We furthermore ensured that the ductal marker genes were not associated with proliferation activity

by calculating their overlap with the proliferation-specific GO-annotation geneset ’CELL PROLIFERA-

TION GO 0008283’. We found the overlap to amount to 5% and therefore not to constitute a confounding

factor for the deconvolution. The machine-learning models which predict the clinical characteristic were

exclusively trained on deconvolution-derived results, such as the relative cell-type proportions, which

did not contain any directly proliferation-associated feature.

Machine-Learning model training and Survival tests

We applied a multiclass Random-Forest algorithm trained by the R caret package [196] to differ-

entiate between either combined G1 and G2 and G3 GEP-NENs, consisting of NETs and NECs. We

compared the predicted Ki-67, ductal and HISC proportion-based sensitivities, specificities, F1-Score

and ROC curves.

The features of the ML model were the Root mean square error (RMSE) of the transcriptomic recon-

struction, the reconstruction p-value and the cell-type predictions depending on the model (endocrine-

only, endocrine and exocrine or endocrine and HISC). For the Fadista dataset sanity test a generalized

linear model was trained identically to the deconvolution model i.e. we commenced by identifying the

cell-type specific differentially expressed genes and trained a regression model on this subset of genes

on the scRNA training datasets. Since no grading classification was possible in non-neoplastic tissue,

we linearly predicted the Ki-67 count levels in the patient-derived data via linear regression. The Cal-

ifano et al. dataset did not provide grading information, however the dataset was benchmarked as an

unsupervised deconvolution cohort and found that the distribution of the resulting deconvolution models

p-values were comparable to those of all other GEP-NEN cohorts.

We trained the differential expression sanity-tests on the same genes as the deconvolution algorithm

i.e. the genes whose expression differentiated the ductal cell-types from the remaining cell-types in the

Baron scRNA dataset. Subsequently, a generalized linear model that predicted Ki-67 counts was trained

on differentially expressed genes and the Pearson Product-Moment correlation of predicted Ki-67 counts

and Ki-67 staining levels with the ground-truth quantified.
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The survival curves were trained with R-package ’Survminer’, version 0.4.8 [197]. The threshold

for the subgroups were determined by averaging the aggregated gradings’ cell-type proportions or Ki-67

levels, e.g. aggregated G1 and G2 values were summed up and divided by two to obtain the distinguishing

threshold between the ’low’ and ’medium’ subgroups. The grading survival statistics were utilized ’as-

is’ and directly tested without any alteration. Ten Riemer et al. samples either did not possess survival

information or were doublets derived from the same patient with identical survival time and were thus

excluded.

5.2.3 Identification of the optimal training dataset and algorithm combination

We chose BSeq-sc, MuSiC and Moffit et al. due to their proven ability to deconvolve either healthy

pancreatic tissue (BSeq-sc, MuSiC) or cancerous exocrine pancreatic tissue (Moffitt et al.) [34, 28,

116]. The extension of the liberally cited Cell-type identification by estimating relative subsets of RNA

transcripts (CIBERSORT), BSeq-sc utilized a ν-SVR that was optimized for parsimonious modeling

due to the ν parameter which is an upper bound on the training error and lower bound on the relative

fraction of support vectors thereby reducing overfitting in contrast to the default C-SVR implementation

[100]. MuSiC is based on a NMF and is unique in that no specified marker genes are required due

to a dynamic gene weighting that prioritizes informative genes and suppresses information from non

informative genes with a reported ability to discern between closely related tissues such as exocrine and

endocrine. The Moffitt et al. NMF algorithm was conceived to deconvolve pancreatic ductal carcinomas

and thus benchmarked on PanNEN and NEN samples. The Moffitt et al. algorithm was implemented as

specified in the related publication due to absence of a publicly available implementation.

We identified the combination of training scRNA dataset and deconvolution algorithm whose pre-

dictions where most suited by analyzing comparing the stability and significance of the resulting corre-

lations. In particular, the correlation with Ki-67 levels averaged over all patient-derived Bulk RNA-seq

data sets together with the algorithm specific quality score was taken as measurement of effectiveness.

The Pearson product moment correlations of the relative proportions and the Ki-67 levels were subse-

quently calculated to compare the performance to predict sample grading and patient survival, Figure

5.5.

P-value Monte Carlo sampling

We calculated an empirical p-value in order to consider a deconvolution successful i.e. to determine

whether a deconvolution was sufficiently unlikely to be caused by chance. We determined the p-value via
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a Monte Carlo sampling over the correlation between the neoplastic transcriptome C and its reconstruc-

tion B×F . We first determined the Pearson-Product Moment correlation R between the observed C and

the conducted B×F calculation and thereafter determined the percentile within which R was located in

the null distribution of correlations R∗. Since R∗ is generally intractable, we empirically approximated

R∗ via resampling over the genes g drawn from M . We thereby generated resampled random mixtures

C∗
i , each with a randomly selected set of genes, such that |C∗

i | = |C| (same amount of genes) held.

Subsequently, a deconvolution was applied to every resampled C∗
i and every correlation R∗

i between C∗
i

and its reconstitution B∗
i × F ∗

i calculated. The obtained R∗
i were ordered increasingly and determined

how many percent of the randomly observed R∗
i showed a correlation as great or greater than R. This

percentage quantified the p-value. We ensured that the sample-size was sufficiently great by setting the

amount of resampling runs to 1E3 and required the p-value to be less than 0.05.

5.3 Results

Overview

We developed a framework for predicting the clinical characteristics of rare and diverse PanNEN.

The framework explicitly addresses the ubiquitous lack of publicly available PanNEN datasets via an

application of a transcriptomic deconvolution combined with a specific data augmentation strategy that

substitutes neoplastic training data with data of healthy origin. The underlying hypothesis of the data

augmentation is that a deconvolution’s output is informative with respect to the clinical characteristics

of a PanNEN and therefore renders the training of comprehensive ML models on widely available data

feasible. The framework consists of multiple steps, illustrated in Figure 5.1.

First, deconvolution algorithms are trained to factorize healthy transcriptomes based on scRNA data of

known cells with known type. In a second step, the framework deconvolves PanNEN transcriptomes

in order to predict their respective cell-type proportions and determine a sample-specific reconstruction

error. Third, the deconvolution output is utilized as training data for ML algorithms for the characteriza-

tion of PanNENs and non-pancreatic GEP-NENs with respect to clinical properties. The characterization

comprises the prediction of the neoplastic grading, subtype (NEC or NET), and survival time. Lastly,

the performance of such trained ML models is compared to the performance of baseline models directly

trained on neoplastic expression and Ki-67 biomarker data.

5.3.1 Deconvolution algorithms, cell-type signatures and evaluation datasets

The efficacy of deconvolution-based approaches critically depends on the effective combination of

deconvolution algorithms and scRNA training datasets [35]. We evaluated three state-of-the-art deconvo-
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Figure 5.1: Overview of the developed framework that predicts clinical characteristics without train-

ing on neoplastic transcriptomic data. A: During a pre-processing phase, deconvolution algorithms are

trained on exocrine (ductal & acinar), endocrine (α to δ) and HISC scRNA data from healthy donors.

B: Deconvolution of NEN transcriptomes. Relative cell-type proportions are obtained and utilized as

input of ML model that predicts grading, patient survival and carcinoma or tumor subtype. C: Direct

comparison of the ML model’s predictions with clinical ground truth allows to benchmark the predictive

performance of the deconvolution-approach. Additionally, we calculate the Pearson Product-Moment

correlations of the deconvolution-derived predictions with the establish Ki-67 gold-standard grading

marker levels. Finally, the deconvolution-model’s predictive performance is compared to a baseline

model trained on the substituted data.
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lution algorithms: CIBERSORT [34] in its BSeq-sc version, MuSiC [28] and NMF as applied by Moffitt

et al. on pancreatic adenocarcinoma PDACs [116]. We furthermore identified three scRNA studies with

a focus on single-cell sequencing of endocrine and exocrine cells. We refer to these datasets by the stud-

ies’ first author: Baron [178], Segerstolpe [184] and Lawlor [181].

We considered three different cell-type models for the neoplastic deconvolution into cell-type propor-

tions. The endocrine cell-type model comprises only endocrine cell-types (α to δ), since GEP-NENs are

thought to originate from endocrine cell-types. The second model includes both endocrine and exocrine

cell-types (ductal and acinar). The reasons for using such a model are: (i) adult pancreatic stem cells

are proposed to reside in the ductal compartment, (ii) trans-differentiation of exocrine cells to endocrine

cell-types occurs, at least in mouse models of pancreatic injury and regeneration, and (iii) poorly differ-

entiated Pancreatic Neuroendocrine Carcinoma (PanNEC) frequently contain small areas with morpho-

logical differentiation of pancreatic adenocarcinoma and share a similar mutational pattern with PDACs

[198]. The third model (endocrine & HISC) adds prototypic adult stem cells to the endocrine model, us-

ing transcriptome profiles of adult HISCs. The inclusion of stem cells follows from the work by Riester

et al. [17] who demonstrated that patient survival time can be predicted accurately via the quantification

of a distance between a sample and a holotypic stem cell. The HISC cell-type proportion was included as

a measure to assess the distance of a given cell to a stem cell, but not to quantify intestinal stem cell-type

proportions.

The three deconvolution algorithms were each trained on three cell-type models generated from

the three different scRNA datasets. All resulting 27 combinations (3 (algorithm) x 3 (model) x 3

(scRNA dataset)) were benchmarked to identify the most effective setup, see Supplementary Table 7.5.

We assessed the feasibility of a transcriptomic deconvolution of GEP-NENs by deconvolving patient-

derived NENs from four PanNEN datasets and one mixed PanNEN and non-pancreatic GEP-NEN dataset

(manuscript in preparation, raw data available at the EGA database, EGAD00001006657). Additionally,

one non-neoplastic control-group dataset was deconvolved to obtain a non-neoplastic baseline and to

quantify the impact of neoplastic transformation on the deconvolution performance. In the following, we

refer to the neoplastic datasets by the name of their publication’s corresponding authors, namely Califano

[179], Missiaglia [182], Sadanandam [163], Scarpa [183], and Riemer (unpublished), see Table 5.1 and

Supplementary Table 7.4.

Four neoplastic datasets exhibited a strong class imbalance with respect to grading and NEC versus
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NET subtype, while the fifth did not provide grading information overall. The four datasets with grading

information were skewed towards G1 & G2 NETs with the exception of the Riemer dataset that was

skewed towards G3 NECs which has to be taken into account during the interpretation of the benchmark

results, see Table 5.2. In order to derive benchmark statistics from a class-balanced dataset representative

for all subtypes, we constructed an additional sixth dataset, called Representative Set (RepSet) by com-

bining the Riemer and Scarpa datasets. We chose the Riemer and Scarpa datasets on the ground of their

technological homogeneity, their complementary grading, and their favorable NEC and NET population

characteristics. The RepSet composed of 69 GEP-NENs (52 PanNEN, 17 non-pancreatic GEP-NENs),

sufficiently balanced with respect to grading (14 G1, 23 G2, 32 G3) and NEC versus NET subtype status

(9 G3 Gastroenteropancreatic Neuroendocrine Carcinomas (GEP-NECs), 9 G3 Gastroenteropancreatic

Neuroendocrine Tumors (GEP-NETs), 14 ambiguous G3 GEP-NENs). In the following, we will indicate

that a cohort of samples exclusively consists of pancreatic NENs by referring to it as a PanNEN cohort,

such as the G1 and G2 subcohort of the RepSet. In contrast, we will refer to a mixed cohort of pancreatic

and non-pancreatic NENs as a GEP-NEN cohort, as is the case with the RepSet G3 high grade NENs.

Deconvolution of pancreatic and non-pancreatic GEP-NEN transcriptomes

We deconvolved four PanNEN, a mixed PanNEN and GEP-NEN datasets and the created RepSet for

a total of 347 deconvolutions (69 G1, 59 G2, 44 G3, undetermined grading 105, 69 RepSet doublets).

Nine combinations of deconvolution algorithms (three) and scRNA datasets (three) were analyzed with

the aim to identify the most suited algorithm and training data combination. We also applied the method

to 89 non-neoplastic samples from Fadista et al. to test the deconvolution of transcriptomes of healthy

origin. We analyzed the resulting statistical significance and power of the deconvolution results to assess

how well GEP-NENs can be deconvolved into healthy cell-type proportions, see Supplementary Tables

7.5, 7.6 and 7.7. Overall, we found that deconvolution of PanNEN and GEP-NEN, as measured by re-

construction p-values, differed greatly between different combinations of algorithm and training data.

The greatest statistical power was obtained by the CIBERSORT algorithm trained on the Baron et al.

scRNA dataset. All following results will therefore be based on this combination, if not stated otherwise.

We found that the grading had a significant impact on the reconstruction p-value and the ML model

performance and therefore aggregated results by grading. We could effectively deconvolve non-neoplastic

control, low-grade G1, and medium-grade G2 samples with any of the three deconvolution models. De-

convolution of G3 PanNEN was successful with a model exclusively consisting of endocrine cell-types,

but inclusion of non-endocrine cell-types (models two and three, respectively) was required to decon-

volve G3 GEP-NENs from non-pancreatic tissues, as illustrated in Figure 5.2 for the RepSet. This is
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noteworthy because GEP-NENs are supposed to originate from endocrine cells. A characteristic feature

found to discern high-grade GEP-NENs from low to medium grade GEP-NENs, regardless of the tissue

of origin, was that an endocrine model’s p-value was consistently greater than the p-value of the related

exocrine model for all G3 GEP-NENs. This finding was reproducible in all NEN datasets as shown in SM

Figure 7.8 and proved important for the subsequent ML model training since it represents a characteristic

classification pattern that differentiated high grade from medium and low grade samples.
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Figure 5.2: Statistical significance of the RepSet and control cohort dataset deconvolutions aggregated

by grading. The figure shows empirical p-values obtained from deconvolving 89 non-neoplastic pan-

creatic neuroendocrine samples (Control group) and 51 RepSet PanNEN (G1-G3) and 18 high-grade

non-pancreatic GEP-NEN (G3 non-pancreatic). Whiskers indicate the standard deviation of the p-values

and deconvolutions with a p-value of less than 0.05 are considered successful. The transcriptomic de-

convolution of PanNENs of all gradings proved possible for a model exclusively trained on healthy en-

docrine cells as indicated by an aggregated p-value of less than 0.05 but generally failed for high-grade

non-pancreatic GEP-NENs. Importantly, a deconvolution model trained on exocrine cell-types (ductal

and acinar) succeeded in deconvolving all types of GEP-NENs invariant to their grading despite showing

inferior performance when deconvolving low and medium grade PanNEN.

We analyzed the predicted cell-type proportions of all datasets and found the RepSet to be repre-

sentative for the general behavior of cell-type predictions, see Figure 5.3 for the RepSet predictions and

Supplementary Figure 7.9 and Table 7.8 for the predictions of the remaining datasets. We found the cell-
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type proportion predictions of the endocrine-only model for G1 NETs to be most similar to the healthy

cell-type stratification, approximately resembled that of the healthy pancreatic endocrine tissue [181].

A correlation between cell-type proportions and grading was visible in that the endocrine-only model

showed an increase of the alpha cell-type proportion and a decrease in gamma cell-type proportion with

increased grading. The alpha cell-type proportion was significantly positively correlated with the grad-

ing (r= 0.87) and great statistical power (p-value correlation ≤2E-16) even when the non-significant G3

deconvolution models with greatest alpha cell-type proportion were excluded.

Also, cell-type proportions of the endocrine & exocrine model were correlated with the grading. Sim-

ilar to the endocrine model, G1 PanNENs were composed of cell-type proportions approximately equal

to the healthy islet stratification, albeit that 8% of the G1 PanNEN cells were classified as ductal cells.

Like the endocrine-only model, the mixed model predicted an increase in alpha cell-type proportions

between G1 and G2 PanNEN. However, the increase of the predicted ductal cell-type proportion was

greater than that of the alpha cell-type when comparing the G1 to G2 predictions. The ductal cell-type

proportion was the highest for G3 GEP-NENs, while alpha cell-type proportions decreased compared to

G2 PanNENs. Exocrine acinar cells did not contribute notably to the deconvolution of low or high-grade

PanNENs. HISC model predictions were generally comparable to the combined endocrine and exocrine

model. However, the increase of the HISC cell-type proportion with grading was less distinct than that of

the ductal proportion of the mixed model or the alpha proportion of the endocrine-only model. In addi-

tion to analyzing the mixed RepSet, we compared the cell-type proportions for the subset of the RepSet

that either exclusively consisted of PanNENs or exclusively of non-pancreatic GEP-NEN. The resulting

cell-type proportions were comparable, despite a generally less well stratified cell-type proportion for

medium grade non-pancreatic GEP-NEN compared to the exclusively pancreatic subset.
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Figure 5.3: Cell-type proportions predicted by deconvolution of RepSet grouped by grading. The grad-

ing was correlated with the predicted cell-type proportions which favored a single dominant cell-type

in high grade GEP-NEN while all of the other proportion predictions were reduced. Deconvolution

with a model exclusively trained on endocrine cell-types (left) revealed a comparatively complex and

balanced distribution of cell-type proportions which approximately resembles that of the healthy en-

docrine pancreas [181]. With increased grading, however, the alpha cell-type dominated the predicted

cell-type proportions. Panels two (exocrine) and three (HISC) illustrate that a cell-type proportion to

grading correlation remained when the deconvolution model additionally included exocrine and intesti-

nal stem cell-types, respectively. The ductal and stem cell-types, however, replaced the alpha cell-type

as the dominant cell-type for high-grade GEP-NENs, which was complemented by the observation that

models which included a ductal or HISC signature generally showed superior p-values for high-grade

GEP-NENs compared to exclusively endocrine models.
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5.3.2 Correlation of predictedcell-type proportions with Ki-67 count levels

We commenced the analyses by visually discovering a common clustering pattern of the cell-type

proportions with Ki-67 biomarker levels in the RepSet, shown in Supplementary Figures 7.7 and 7.10,

and subsequently quantified the extent to which Ki-67 levels were correlated with the ductal and HISC

cell-type proportions in all datasets. In the following, italic Ki-67 will refer to the gene’s mRNA and

non-italic Ki-67 to the protein). Although the alpha cell-type proportion of the endocrine-only model

was correlated with the grading as shown in Figure 5.3, we discarded the alpha cell-type signature from

the analysis since the p-values of the high-grade G3s in the endocrine only deconvolution model were

not significant (Figure 5.2).

We calculated the Pearson Product-Moment correlations between the Ki-67 count levels and the pre-

dicted cell-type proportions and found a significant correlation for the ductal cell-type proportion in five

out of six datasets, with p-values ranging from 6E-6 (RepSet) to 0.007 (Riemer et al.), see Supplementary

Tables 7.9. The insignificantly correlated dataset, Missiaglia (p-value 0.14), was found to be strongly bi-

ased for low-grade PanNENs, with low Ki-67 levels preventing a Ki-67-based differentiation of G1 and

G2 PanNENs. The HISC cell-type proportion was significantly correlated in four out of six datasets,

p-values ranging from 2E-5 (Scarpa et al.) to 4E-2 (Riemer et al.). Overall, the HISC proportion proved

to be less correlated with Ki-67 than the ductal cell-type proportion.

5.3.3 Correlation of predicted cell-type proportions with the grading

Thereafter, we determined the correlation between the predicted cell-type proportions and the Histopathol-

ogy derived grading information available for all datasets (except for the Califano dataset). The ductal

cell-type proportions were significantly correlated in five out of five datasets, with p-values ranging from

1E-10 (RepSet) to 4E-2 (Riemer et al.), shown in Supplementary Table 7.9. The statistical power of

the ductal cell-type proportions to the annotated grading was thus greater than the correlation with the

grading-indicating Ki-67 biomarker levels but generally coherent with the ductal cell-type proportions

to Ki-67 count level correlation. The HISC cell-type proportion proved less correlated with the grading

than with Ki-67 count levels, being significantly correlated in only two out of five datasets with p-values

ranging from 3E-7 (RepSet) up to 2E-5 (Scarpa et al.).

Further ANalysis Of VAriance test (ANOVA) of the distribution of cell-type proportions between

the gradings revealed that the ductal proportion predictions could effectively separate G3 from G2

GEP-NENs in four out of five datasets and G1 from G2 in two out of four datasets, see Supplemen-
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tary Table 7.5. The HISC proportion predictions allowed to discern G3 from G2 GEP-NENs in two out

of five datasets and G1 from G2 in two out of four datasets, the HISC proportions therefore being less

suited for a statistical differentiation between gradings.

5.3.4 Machine-Learning-based prediction of the grading

Due to the significant correlations between the grading and Ki-67 levels and cell-type proportions,

respectively, we decided to train a ML model on healthy pancreatic cell-type proportions to predict the

grading of PanNEN and non-pancreatic GEP-NENs. The first model was called ’Deconvolution’ and

was trained on the deconvolution results and thus not informed about the grading-indicative Ki-67 levels.

The second model ’Expression & Ki-67’, served as comparative baseline model and was trained on the

union of all cell-type marker genes and additionally on the grading-informative Ki-67 gene. We trained

a Random Forest for either model and compared the observed predictive performances with respect to

multiple key performance characteristics for all datasets, shown in Supplementary Tables 7.10 and 7.11,

while key comparative predictive performances as observed for the RepSet are illustrated in Figure 5.4.
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Figure 5.4: Comparative performance characteristics of grading-predicting ML models either trained

on expression data or the deconvolution output for the RepSet dataset. The expression based ML model

slightly outperforms the deconvolution-based model with respect to accuracy and specificity, however,

the general predictive performances of either training method remain comparable. The major source of

varying predictive performance was the grading of a GEP-NEN and not the training method. Percentages

were averaged over 10-fold cross validations.

The predictive performance of the ML models differed notably between lowly and highly graded

samples in a majority of datasets and thus we disaggregated the analyses by grading to visualize the

observed differences. For the RepSet, the ’Deconvolution’ model achieved a sensitivity (G1 100%, G2

82%, G3 91% ) that was comparable to that of the ’Expression & Ki-67’ model (G1 93%, G2 86%,

G3 85%), similarly to the accuracy characteristic of the ’Deconvolution’ (G1 95%, G2 85%, G3 91%)
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and ’Expression & Ki-67’ (G1 94%, G2 87%, G3 92%) model. The predictive specificity showed the

greatest differences between the ’Deconvolution’ (G1 91%, G2 87%, G3 92%) and ’Expression & Ki-67’

(G1 95%, G2 87%, G3 100%) model in that the expression-trained model performed 8% better for G3

GEP-NENs than the deconvolution-trained model.

Analysis of the ’Deconvolution’ model revealed that both reconstruction error of a transcriptome, as

measured by the RMSE, and the ductal cell-type proportion were the most important features, thereby

supporting assumptions i) and ii) specified in section 5.3.1. Important features of the ’Expression &

Ki-67’ model were Ki-67 and proliferation and cell-cycle regulating genes.

5.3.5 Classification of neoplasms as NEC or NET

We furthermore explored the relationship between deconvolution-derived ductal and HISC cell-type

marker genes and the NEC versus NET subtype and found that reducing the transcriptome to either ductal

or HISC marker genes rendered NETs and NECs linearly separable on a plot of a Principal Component

Analysis (PCA), shown in Supplementary Figure 7.10 and 7.11. This finding was of interest because it

suggested that a ML model could classify the subtype effectively based on these sets of genes.

We therefore benchmarked whether a logistic regression model trained on cell-type fractions and

reconstruction RMSE could differentiate between NECs and NETs and compared its performance to that

of a model trained on Ki-67 levels. We limited the benchmark to the RepSet since it was the only dataset

with a balanced NEC and NET population. Note that pathologists’ NEC and NET annotations were

partially ambiguous and that samples with uncertain morphology could be assigned to either the NEC

and NET cluster in the PCA on the basis of the ductal or HISC signature. A linear separation of NET

and NEC subtypes, respectively, resulted from supervised clustering using the panNETassigner signature

[163], see Supplementary Figures 7.10 and 7.11, which led us to manually assign a NET (one sample)

or NEC (13 samples) subtype to ambiguous samples.

A sensitivity of 84% was achieved by both the combined endocrine & exocrine and HISC models

in the RepSet. Specificity amounted to 91% for the combined model and 85% for the HISC model.

In comparison, the model trained on Ki-67 levels obtained a sensitivity of 84% and a specificity of

88%. The predictive performance remained comparable when the ambiguous cases were excluded, see

Supplementary Table 7.12.
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5.3.6 Prediction of the overall patient survival time

Information on disease-related survival was available for three datasets: Riemer et al., Scarpa et al.

and their combination, the RepSet. Analyses revealed a statistically significant Pearson product-moment

correlation (r=-0.45, p-value 0.017), between the cell-type proportion predictions of the 32 high-grade

GEP-NENs of the Riemer and RepSet datasets and their corresponding patient survival times. We there-

fore applied Cox-Hazard ratio tests to quantify the extent to which the ductal and HISC cell-type pro-

portion predictions informed about the disease-related patient survival time relative to the grading and

Ki-67 baselines.

We utilized two different cohort designs for the tests, the first design required three subgroups (’low’,

’medium’ and ’high’ risk subgroup) while the second cohort design tested on two subgroups ( ’low’ and

’medium’ combined versus ’high’ risk subgroup). The three arm design was chosen to reflect that a

three-arm design is the established clinical standard and the two arm design was tested because the grad-

ing ANOVA tests indicated that G3 GEP-NENs could be well discerned from G2 GEP-NENs but not G2

GEP-NENs from G1 GEP-NENs. Three arm design testing was limited to the Scarpa et al. and RepSet

because the Riemer et al. dataset only consisted of G2 and G3 GEP-NENs.

The two-arm design Cox tests revealed that the ductal signature achieved significance for all three

datasets (range p-values 2.1E-3 to 4.5E-2) and the HISC signature in only two datasets (range signifi-

cant p-values 2.2E-4 to 4E-2). The corresponding Ki-67 (range p-values 3.5E-3 to 1.4E-2) and grading

(range p-values 5.4E-4 to 3.6E-2) baselines were always significant, see Supplementary Table 7.5. The

three-arm design resulted in Cox test p-values with slightly less statistical power for both the ductal sig-

nature (range p-values 8.6E-3 to 2.0E-2) as well as the HISC (significant p-value of 8E-3). The ductal

signature tested significantly for both datasets and the HISC signature for the Scarpa et al. dataset. The

Ki-67 (range p-values 2.6E-3 to 5E-2) and grading (range p-values 2.3E-3 to 8.7E-3) baselines’ statistical

power remained comparable to the two-arm design and were significant for both the Scarpa et al. and

RepSet.

A comparison of the baseline and cell-type proportion prediction Cox-tests results for the two-arm

RepSet cohort design revealed that the ductal signature’s statistical performance was superior (p-value

6.6E-3) to the Ki-67 (p-value 1.4E-2) baseline but inferior to the grading gold-standard (p-value 2.0E-

3), see Supplementary Table 7.5. Averaged results over all three datasets differed, however, in that the
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ductal signature (p-value 1.8E-2) was slightly less statistically powerful than both the Ki-67 (p-value

1.1E-2) and averaged grading baseline p-values (p-value 1.3E-2). Comparison of the three-arm design

provided comparable insights, including the finding that the HISC signature’s p-values always remained

less statistically powerful than any baseline and the ductal signature-derived Cox-test p-value. We thus

concluded that the predictive performance with which ductal cell-type proportions informed about patient

survival was generally comparable to that of the Ki-67 and grading baselines based on the RepSet results

despite a slightly superior distribution of the dataset-averaged p-values.

Figure 5.5: Kaplan-Meier plot comparing the predictive power of the ductal cell-type proportions and

the clinical grading for the RepSet with respect to the disease-related patient survival time. The RepSet

was split into two subgroups either based on the grading (G1 and G2 combined) or the ductal cell-type

proportion predictions. Tests on a difference of the subgroups’ disease-related patient survival time were

significant in either case with the grading-based subgroup showing greater statistical power. We found

that the deconvolution-derived ductal cell-type proportion predictions were informative with respect to

the disease-related patient survival time and the statistical power of the corresponding Cox hazard ratio-

test comparable but inferior to that of the pathologist-derived grading.
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5.3.7 Out-group tests, immune cell infiltration and methodological comparison

We performed three sanity tests to verify the correlation of Ki-67 levels with predicted cell-type frac-

tions. Firstly, we tested whether the effect is cancer-specific i.e. absent in healthy tissue. Secondly, we

compared results to a simpler baseline. Thirdly, we determined whether the correlation could be caused

due to confounding contamination with exocrine tissue, immune-cells or other tissue. Regarding the first

control, deconvolution of the healthy control dataset (Fadista et al.), resulted in an insignificant correla-

tion of Ki-67 levels, ductal and HISC fractions. Next, we determined whether a differential expression

analysis in conjunction with a generalized linear model could effectively predict Ki-67 mRNA expres-

sion levels. A logistic regression model could either predict the Ki-67 levels with comparable (2x) or

worse (3x) statistical power. Given that a logistic model was superior in only one dataset (Missiaglia),

the differential expression-based model was discarded on the grounds of inferior predictive power (statis-

tics shown in Supplementary Table 7.13). Third, ESTIMATE analysis [185] of the RepSet revealed no

correlation of immune scores with annotated clinical parameters or deconvolution outcomes, data not

shown.

5.4 Discussion

5.4.1 Feasibility of deconvolving GEP-NEN transcriptomes

We developed and benchmarked an in-silico framework that allows the application of ML models for

rare cancers despite low sample numbers. The framework applies transcriptomic deconvolution trained

on data of samples from healthy origin to study tumor samples. We consequently determined and com-

pared the performance of ML models trained on the deconvolution output with respect to predicting

clinically relevant neoplastic characteristics. Three different deconvolution models were generated and

their ability to factorize neoplastic transcriptomes into relative cell-type proportions and a reconstruc-

tion error assessed. A model consisting exclusively of endocrine cell-types could effectively deconvolve

pancreatic GEP-NENs with low and medium grading. Interestingly, this ’endocrine-only’ model per-

formed poorly for high-grade G3 PanNEN and failed to achieve significant results for G3 NENs from

non-pancreatic sites, despite the fact that these G3 NENs share the defining feature of neuroendocrine

marker expression. Remarkably, a deconvolution with addition of exocrine cell-type information led to

improved results for G3 samples with significant deconvolution of PanNENs as well as GEP-NENs of

non-pancreatic origin.

Analysis of predicted cell-type proportions G1, and to a lesser extent G2, pancreatic neoplasms
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showed cell-type proportion distributions that resembled the cell-type stratification in the healthy pan-

creatic endocrine tissue when the endocrine-only model was applied. Samples with known clinical an-

notation of insulinoma deconvolved primarily into beta-cells, whereas one tumor with known production

of pancreatic polypeptide deconvolved into gamma-cells, which physiologically produce this hormone.

Thus, in-silico lineage allocation and clinical reality converged.

All three benchmarked deconvolution models showed the same proclivity to deconvolve low grade

neoplasm into multiple cell-type proportions and high grade neoplasms into a single dominant cell-

type proportion whose cell-type, however, differed between the models (alpha or ductal or HISC). In

the endocrine-only model, the alpha-cell type proportions increased with grading. The prediction of

higher alpha cell-type proportions from G2 and G3 PanNEN transcriptomes is consistent with recent

observations from studies using entirely different methodology. For instance, similarity to alpha or

beta-cells, respectively, was proposed as a basis for stratification of sporadic Pancreatic Neuroendocrine

Tumor (PanNET) [156, 157, 161, 159], with expression of the alpha-cell specific transcription factor

Aristaless Related Homeobox (ARX) in more advanced stage PanNET. Conversely, beta-cell like tu-

mors exhibited a more favorable clinical course [160].

The model predictions of high ductal cell proportions in high-grade PanNENs implies similarities

with the expression features of fully differentiated non-transformed ductal cells. Interestingly, pancreatic

ductal cells were assigned a central position in lineage trees derived in-silico from single-cell sequencing

of adult pancreatic cells with ductal cell sub-populations giving rise to different endocrine cell-types [42].

Thus, the ductal features may reflect such an endocrine progenitor population of ductal cells in the adult

pancreas. Alternatively, this may point to a ’reserve’ multi-potency of adult ductal cells, capable of gen-

erating endocrine cells under specific stimuli and pressure. Indeed, exocrine pancreatic cells were found

capable of reprogramming to endocrine cells in a process that reactivated embryonic multi-potency mark-

ers [199]. Conversely, an acquisition of exocrine features by islet cells occurred in a rat model of mild

islet cell injury, indicating that ductal characteristics are within the range of lineage plasticity of pancre-

atic endocrine cells [199, 200]. Hence, the non-endocrine cell fates predicted for high-grade GEP-NENs

have precedence in de-differentiation or trans-differentiation processes in rodent models. Given that ad-

mixtures of ductal adenocarcinoma are frequently present in PanNECs, ductal features could moreover

reflect similarity to adeno-carcinomas. Moreover, separating RepSet NENs based on either the ductal

marker genes or the previously published panNETassigner signature [163] resulted in almost identical

clusters of neoplasms, further supporting that ductal cell type predictions relate to biologically relevant
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features of NENs. Recent findings state that NECs and NETs possess different developmental trajecto-

ries on the ground of differential hypo and hyper-methylation patterns in genes associated with cellular

development [201]. NETs are reported to derive from an endocrine developmental lineage, however,

the developmental lineage of NECs is reported to be closer related to the exocrine cell-type of acinar

cells. Should the differential development hypothesis be further supported, then the classification of

NETs as being alike to an endocrine cell-type and NECs as similar to an exocrine cell-type would fur-

ther strengthen the adeno-carcinoma-similarity hypothesis which would show as prediction of NECs as

an exocrine cell-type. However, the differential developmental trajectory hypothesis remains subject to

further research.

The observed correlation between cell-type proportions and Ki-67 levels is a notable finding, because

staining levels of Ki-67 represent the current gold-standard method for GEP-NEN grading. Moreover,

the ductal and HISC cell-type proportions were either comparably well or even more strongly correlated

with the ground-truth grading than Ki-67 levels. This correlation between the grading and the model-

specific dominant cell-type allowed for an effective grading prediction by deconvolution-trained ML

models. Their statistical power was comparable to that of a baseline model trained on expression data

and Ki-67 levels. These results underline the efficacy of our deconvolution approach for characterizing

PanNENs, and possibly NENs in general. The deconvolution-trained ML model that predicted clinical

characteristics such as the grading did not include either Ki-67 levels or any other proliferation marker as

features. Therefore, the deconvolution-trained prediction of characteristics can serve as a complementary

approach to the established proliferation based methods.

While our study focused on PanNEN, the rarity of resection tissues from PanNECs led us to include

high-grade GEP-NENs which originated from other locations, e.g. stomach and colorectum. There-

fore, the tissue of origin could affect the deconvolution results. However, the overall performance of the

in-silico classification model remained stable between datasets that contained GEP-NENs of purely pan-

creatic origin and those that included high-grade samples of diverse gastrointestinal tissue-backgrounds.

Nonetheless, we ascertained that the ductal and HISC models were not biased for either pancreatic or

non-pancreatic tissue by verifying that the ductal and HISC marker genes predominantly consisted of

genes with similar expression in PanNENs and non-pancreatic GEP-NENs. Models trained on the duc-

tal and HISC cell-type proportions, respectively, were able to predict the survival of GEP-NEN pa-

tients in a two-arm and in a three-arm cohort design. Partitioning the RepSet into a ductal-high and

a ductal-low sub-cohort revealed a significant difference in disease-related survival time, comparable
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to that of partitioning the cohort by Ki-67 expression and only slightly inferior to a partitioning based

on the pathologists-derived grading ground-truth. However, we observed a high degree of variation of

the survival-time test’s p-value between different deconvolution algorithms and different training sets,

indicating a need for further fine-tuning of the method for this purpose. The prediction of clinical char-

acteristics via a similarity measurement to stem cells previously was demonstrated [17] and could be

replicated by the framework, with the difference that deconvolved HISC proportions served as quantifi-

cation of similarity. However, the ductal cell-type proportions were generally found to be more suited

for the prediction of the overall patient survival time than HISC cell-type proportions.

5.5 Conclusion

Our results show that the combination of transcriptomic deconvolution and ML methods for the study

of PanNENs can lead to clinically meaningful results. Our proposed strategy reduces the dependency on

scarcely available neoplastic training data for PanNEN and GEP-NEN research in general. Therefore,

classification-by-deconvolution has the potential to support pathologists in cases of an incongruous or

uncertain grading and morphological differentiation, which in turn may lead to a better personalization

of the clinical management of GEP-NENs.

Future research is required to render the classification-by-deconvolution method more robust. Ad-

ditionally, a gold-standard dataset is required to validate the results of a deconvolution with respect to

predicted cell-type proportions. Eventually, the classification-by-deconvolution method should also be

tested in other rare cancer types.

Evaluation of the distance-quantification aspect

We conclude that the distance-quantification based on transcriptomic deconvolution between neo-

plasms and prototypic cell-types is possible since the benchmark results indicated a successful predic-

tion of clinical characteristics. Importantly, the distance-quantification to non-neoplastic prototypic cells

allowed for the substitution of neoplastic training data. The advantages of a distance-quantification are

therefore that distance-quantification can increase the amount of available training data and can allow

the prediction of neoplastic properties.

The disadvantage of deconvolution-based distance quantification approach is its volatility in that dif-

ferent combinations of algorithms and training data sets resulted partially in highly different results. The

volatility is a major obstacle because no gold-standard is currently available to identify the ground truth-
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prediction and the identification of the best algorithm and data combination occurred via comparison to

pathologists’ findings. Therefore, the distance-quantification shows promising perspectives for the field

of neoplastic prediction but requires more research and a ground-truth gold-standard before a generalized

and robust approach of this kind can be developed.

125



126



Chapter 6

Summary and conclusion of the thesis

Verification of the correct identity of CCLs is of great importance for multiple Life-Science domains.

However, a generalized identification method that determines the identity of CCLs based on hetero-

geneously generated NGS data has not been established thus far. We therefore developed the Uniquorn

method which serves as scientific contribution to this thesis and utilizes the concept of distance-quantification

to identify CCLs. The distance-quantification concept, as shown in Chapter 3, can successfully identify

CCLs based on their rare small variants but has limitations with respect to the technological diversity.

The Uniquorn method’s limitation to the WES technology motivated the method’s generalization in

order to significantly extend the range of use-case scenarios. The second scientific contribution therefore

added the support of the Bulk RNA-seq technology and Panel-sequencing format. This extension, how-

ever, incurred Data-Incompleteness and Data-Heterogeneity which caused the distance-quantification

approach to fail because distance-quantifications reflected the technological similarity of the data and not

the biological similarity of the sequenced CCLs. We therefore conclude that the naive ’identification-by-

distance-quantification’ approach presented in Chapter 3 can identify homogeneously sequenced CCLs

but requires modifications to generalize to the identification of technologically diverse NGS data. We

furthermore, uncovered the lower bound with respect to genes where distance-quantification fails to iden-

tify CCL profiles and approximated it as ⑦1E3 genes.

The modified and generalized Uniquorn method could, however, recover the identification by distance-

quantification concept via the introduction of statistical resampling methods. The method first quantified

the degree of Data-Heterogeneity and Data-Incompleteness to secondly adjust the identification thresh-

olds such that the biases were compensated for. Benchmarks revealed that the such modified Uniquorn

127



method remained robust to a high degree of technological diversity. However, identification sensitivity

was lost compared to the unmodified Uniquorn WES method and therefore a trade-off between sensitiv-

ity and methodological robustness exists. We therefore conclude that the Uniquorn identification method

can serve as generic CCL NGS identification method if a loss of predictive power over its WES version

is accepted.

The third scientific contribution addressed the problem that rare and diverse cancer types frequently

lack sufficient sample-sizes for a comprehensive ML model training. A transcriptomic deconvolution

approach was therefore applied to support the ML-based classification of rare and diverse cancer types.

The deconvolution aimed to augment the neoplastic training data by substituting it with data of healthy

origin which is widely available. The choice of the deconvolution algorithm and training dataset strongly

affected the performance of the deconvolution. A careful identification process did, however, result in

the identification of a suitable algorithm (BSeq-sc) and scRNA training dataset (Baron et al.) combi-

nation. ML models were subsequently trained on deconvolution-derived relative cell-type proportion

predictions and reconstruction errors to predict clinical characteristics of neoplasms. Such trained ML

models could thereafter efficiently predict the grading, overall patient survival time and the carcinoma

versus tumor subtype status during benchmarks which entailed five different NEN studies. The predic-

tive performance was comparable to that of the Ki-67 biomarker and only slightly inferior to that of the

pathologists’-derived grading.

We therefore consider the distance-quantification based approach of transcriptomic deconvolution

to augment training data of rare and diverse cancer types possible. Transcriptomic deconvolution does,

however, remain an approach in development, in particular, with respect to the deconvolution of neo-

plasms. Primarily, the robustness of the deconvolution still has to improve before the need for bespoke

adaption of algorithms and datasets by a user to a given type of cancer can be relinquished.

Critical assessment of the contributions’ development process

Insights have been gained throughout the development of the scientific contributions and conse-

quently aspects revealed which would have improved the development of the methods.

The ’classification-by-deconvolution’ approach has been benchmarked on a single type of cancer.

This represents a major disadvantage since a cell-type independent generalization of any methods is

highly advantageous. Due to the novel nature of the method, additional proof of concept analyses on
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different types of cancer would have strongly increased our understanding of the methods capabilities

and limitations since cancer type-specific confounding factors would likely have been obviated when

analyzing different types of cancer.

The decision not to include additional cancer types was taken on the ground of the advantages of

limiting the benchmark to one type of cancer. The primary advantage was that the biological interpre-

tation of the deconvolution results was dramatically simplified since only a single type of cancer had to

be analyzed and interpreted. Additionally, data availability and biological expertise constituted limiting

factors. Suitable scRNA data and Bulk RNA-sequenced biopsies would have to been identified what

represents a significant increase in required time and increases the developmental complexity. Inclusion

of additional cancer types would have as well required the inclusion of additional domain experts. The

inclusion would have been necessary on the ground that the experts’ evaluations would have been critical

since deconvolution gold-standard datasets with ground-truth annotations are generally not available due

to the rare and diverse nature of suitable cancer types.

A possible retrospective improvement of the CCL-identification contributions has been identified

with respect to the reference dataset-generation. Analyses of the benchmark results revealed that query

i.e. to-be-identified CCLs with a low amount of covered genes cannot be identified as effectively as

CCLs with a large amount of covered genes. However, it has not been sufficiently analyzed to what

extent the reference CCLs contribute towards an efficient identification of CCLs with a low amount of

covered genes. The background is that analyses have revealed the existence of CCLs in given refer-

ence datasets whose variant profile was highly similar while simultaneously possessing likely causally

connected below-average identification performances. An analysis of the reference dataset compositions

would therefore have been indicated since minor adjustments to the variant selection process of similar

CCL profiles could have improved the identification performance in particular with respect to panels

covering a limited amount of genes. Moreover, a user is currently left to their own discretion when creat-

ing their reference datasets what is likely to decrease the identification performance when highly similar

reference profiles are added.

Nonetheless, all contributions can potentially be adapted to incorporate the aforementioned improve-

ment during the course of future research activities. An augmented automatic composition of reference

database based on the reference CCLs’ similarity can added and deconvolution benchmarks be conducted

on different types of cancer.
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Advantages of the distance-quantification concept

The thesis is based on the distance-quantification concept and application of this concept has proven

feasible as illustrated by the contributions. Three main advantages of the abstract distance-quantification

concept were identified. The primary advantage was the mathematically well-defined nature of the

distance-metric concept. Mathematical conditions could be identified that clarified when a metric on

a space is able to quantify meaningful distances. The second advantage was that the interpretability of

complex scenarios was improved. Given a benign scenario where the space is ’flat’ and all metric condi-

tions hold, the assignment of positions in a metric space to CCLs allows for an intuitive visualization of

relative distances of CCLs as illustrated in Figure 3.2. Given the alternative scenario of a ’curved’ (posi-

tions are not indicative of distances) space caused by confounding factors such as Data-Incompleteness,

illustrations of the violation of mathematical conditions such as the triangle-inequality facilitated the

method development. The perspective of interpreting neoplasms as entities whose distance to a pro-

totypic stem cell motivated the development of the classification-by-deconvolution contribution. The

motivation to train ML models on cell-type proportions was based on the report by Riester et al. [17] that

an abstract distance of a neoplasms to a stem-cell was clinically informative. The third advantage entails

the possibility to analyze quantified distances as ensemble to approximate latent and intractable param-

eters. The likelihood to observe pair-wise random matches of small variants between unrelated CCLs

was, for instance, approximated by empirically calculating the amount of matches within a collection of

reference CCLs.

Disadvantages of the distance-quantification concept

Three major disadvantages of the distance-quantification concept were identified during the devel-

opment of the methods. All disadvantages are associated with either a reduction of the usefulness of the

distance-quantification or the addition of complexity to the method development due to work required to

implement the distance-concept or to recover the distance-quantification’s usefulness.

Lack of comparability

A quantified distance is only informative relative to other distances, i.e. comparability has to be given

between distances. However, comparability is frequently not ensured. For instance, different datasets,

processed with different Next-Generation Sequencing (NGS) technologies may present with different

deconvolution-derived cell-type proportions for the subclass of high grade malignant carcinomas. The

distance of a deconvolved entity as quantified by the cell-type proportions therefore differs depending on

the utilized technology even when the predicted cell-type proportions possess the same numerical value.
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Numerically identical numbers can therefore counterintuitively indicate different biological or techno-

logical distances.

The disadvantage was found to primarily occur between different datasets and requires either a nor-

malization of the deconvolution training-data or a numerical correction of the output to balance the batch

effects. A major ramification of lack of comparability is that Machine-Learning models trained the cell-

type proportions from one dataset will overfit on a dataset due to the batch effect. The reason that a

normalization step has not been integrated into the respective scientific contribution in Chapter 5 is, that

only one dataset present with the central class of high-grade series carcinoma in sufficient sizes. Since

only one dataset possesses this class, no inter-dataset normalization could be developed.

Lack of interpretability

The geometric interpretation of an abstract distance can be difficult or even misleading in a complex

scenario where conditions on a metric space are at least partially violated. An example is the scenario

where Data-Heterogeneity ’curves’ the space within distances are quantified, as illustrated in Figure 4.1.

Analogously, percentages of cell-type proportions cannot be easily interpreted both from a biological

perspective which inquires what the biological interpretation of, for instance, a ductal cell-type propor-

tions of 20% is. The mathematical aspect with regards to interpretability is connected to the lack of

comparability in that a Machine-Learning model commonly utilize thresholds to separate classes. How-

ever, 20% ductal proportion can potentially be interpreted as a great proportion for one dataset but has to

be interpreted as low for another, i.e. the model cannot interpret the distance correctly.

A consequence of the lack of interpretability is the exacerbation of hypothesis validation. The design

a in-vitro experiment which supports or refutes a hypothesis is challenging When a biological interpre-

tation of an observed phenomenon is not possible. The lack of interpretability does affect the training

of Machine-Learning models given that it is trained and applied to the same datasets. However, the

Machine-Learning model will show a reduced performance when applied to other datasets whose thresh-

olds might not be interpretable i.e. comparable for the Machine-Learning model. Lack of interpretability

is therefore most commonly associated with cross-datasets experiments but generally absent in scenarios

where only one datasets or highly homogeneously generated datasets are analyzed.

131



Lack of parsimoniousness

The utilization of a distance-quantification approach adds complexity to the development of a method.

The identification of CCLs can, for instance, be conducted without a geometric interpretation of their

pair-wise distances. The underlying reason is, that statistical tests ultimately decide on the outcome

of the identification what does not required the assignment of human being-interpretable positions in a

metric space. In case of the classification-by-deconvolution approach, an abstract distance quantification

was helpful in that a biological interpretation in form of the cell-types was available, but the training

of Machine-Learning models was ultimately based on correlations between cell-type proportions. A

geometric interpretation was not found to be identical with the most parsimonious approach to a given

problem.

Modifications and future research

Suggested changes incorporate three major aspects. Firstly, future research should to ascertain that

any applied distance-quantification in a metric space will remain invariant to perturbations of the data.

Perturbations, such as those caused by Data-Heterogeneity, may violate the mathematical conditions

required by a metric as observed in the second contribution in Chapter 4. The compensation for the

increase in Data-Heterogeneity was an introduction of Biostatistics which both increased the complex-

ity of the method and reduced the sensitivity. Secondly, a decision to integrate a geometric integration

should be made before the development of the methods based on a positive trade-off gain between in-

creased complexity and the added support of the geometric interpretation. Thirdly, the comparability of

quantified distances between different datasets has to be ensured in particular with respect to the training

of Machine-Learning methods. If deconvolution-by-classification is to become a generically applica-

ble approach for the data-augmentation of rare and diverse neoplasms, the overfitting of models between

different datasets has to be addressed. Therefore, the normalization of predicted cell-type proportions be-

tween different datasets would be analyzed in detail before Machine-Learning models would be trained.

Ideally, a Machine-Learning model can first normalize the deconvolution-predictions of different datasets

and secondly train a model on all normalized predictions with inclusion of a hold-out dataset where the

generalized performance can be validated.

The thesis concludes that the concept of abstract distance-quantification is helpful during the concep-

tion stage of the contributed methods but less useful in complex scenarios with elevated Data-Heterogeneity.
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6.1 Outlook

The distance-based identification of CCL, whose NGS data was generated with different NGS tech-

nologies such as methyl-sequencing, remains to be explored and can possibly present with suitable

CCL identification performances. Specialized approaches which focus on the identification of Panel-

sequenced datasets can as well show positive results since the universal Uniquorn version revealed an

effective performance with respect to the identification of Panel-sequenced CCLs when larger amounts

of loci where targeted and purpose-built methods might decrease the lower bound on the amount of loci

further.

A distance-quantification based deconvolution approach represents a promising subject for future

research since it can prospectively support clinicians in their challenging classification endeavors. A

highly relevant future approach to deconvolution would be the combination of expression and methyl-

sequencing. An advantage of the methyl-sequencing technology is that the topological domain structures

are strongly associated with cell-type characteristic and remain intact even after cellular neoplastic trans-

formation. The volatility of Single-Cell sequencing datasets motivates the development of deconvolution

ensemble methods which average out the training dataset differences. Transcriptomic deconvolution can

potentially be applied to determine the neoplastic cell-type-of-origin, but a gold-standard benchmark

dataset will have to be generated to render that highly valuable scientific goal possible.
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Chapter 7

Supplement

7.1 Supplementary figures

Figure 7.1: ROC-curve of the cross-identification benchmark for different weight thresholds. Thresholds

0.5 and 0.25 reached the maximal sensitivity (see also Table 3.2). The embedded plot shows the same

ROC plot with an adjusted FPR-axis range to visualize the ROC-curve of inclusion weight 0.0. The

vertical black line shows the Uniquorn proof-of-concept default threshold (confidence score of 10). The

threshold was chosen as optimal cutoff between sensitivity and specificity.
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Figure 7.2: The ROC-curve iterates over the confidence score compares a score’s associated sensitivity

and associated specificity. It can thus be seen how the overall default weight threshold was chosen as the

optimal ratio between sensitivity and specificity. The embedded plot shows the same ROC-curve plot

with an adjusted FPR-axis range to visualize the ROC-curve of inclusion weight 0.0. The vertical black

line shows the Uniquorn default threshold sensitivity to specificity ratio. The identified thresholds were

set as default within the Uniquorn package.
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Figure 7.3: The Figure description is identical to Figure 7.2. Inclusion weights 0.5 and 0.25 show the

best ratio between sensitivity and FPR. The identification of different optimal threshold for panel and

non-panel-sequencing indicates, that users should actively adapt the identification threshold.
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Figure 7.4: Correlation between sensitivity and average variant-count per CCL within a library. A linear

regression depicts the relationship between the variant count of a CCL-profile and the sensitivity with

which CCL-profiles can be identified. A log-linear correlation between a library’s average number of

variants per contained CCL-profile and the sensitivity with which these profiles exists. Sensitivity is

correlated with an r of 0.7 and regression p-value of 0.041 and standard deviation with an r of -0.75

and p-value of 0.03. Shaded areas indicate the regression standard error and dashed lines indicate the

regression’s 95% confidence interval.
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Figure 7.5: Benchmark results split by library. Sensitivity and F1 value do not show a significant change

between libraries. Overall, the benchmark results remain robust with the exception of the PPV for the

Klijn library which is a minor outlier due to slightly worse PPV.
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Figure 7.7: Transcriptome correlation heatmap of the deconvolution results of the RepSet. The underly-

ing data is identical to Supplementary Figure 7.10. Deconvolution-derived relative cell type proportions

along with the grading, histology and Ki-67 levels are shown in the top rows. A clustering of high ductal

and HISC cell type proportions predictions is obviated for high-grade GEP-NENs. Note, that the alpha-

cell type dominated samples differ depending on whether ductal or HISC cell types are included in the

training data. In case that alpha and ductal cell types are incorporated into a single model (depicted), the

alpha signature is highest for differentiated models and only in case of an exclusively endocrine model

(not depicted) can a clustering of high alpha cell type proportion predictions be observed in high-grade

series GEP-NENs.
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Figure 7.8: Reconstruction p-value for the Sadanandam, Riemer, Scarpa, Missiaglia and Califano

datasets and the global average. The figure shows that the identified optimal combination of decon-

volution algorithm and scRNA training dataset could create significant deconvolution models for all

benchmarked datasets. Different datasets differed with respect to their proclivity to deconvolve, however,

a deconvolution was generally possible for every dataset regardless of the specific tissue background.
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Figure 7.9: Regression coefficients for the alpha, ductal and HISC cell type proportions for all bench-

marked datasets. The regression coefficients as opposed to the relative cell type proportions are shown

aggregated over the gradings. It is displayed that a general trend towards increased ductal and HISC

cell type proportion exists when grading increases. The alpha cell type proportion does show a general

proclivity as well however with greater variance. Note that the depicted alpha cell type proportions are

exclusively retrieved from the exclusive endocrine alpha to delta model and that alpha cell type propor-

tions in the other two models are not depicted.
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Figure 7.10: PCA of the correlation matrix of a subset of 204 genes of the RepSet. The dataset was re-

duced to 204 genes specified as characteristic for PanNEN molecularly defined subgroups with different

metastatic potential by Sadanandam et al. [163]. A distinctive NET (A) and to a lesser extent distinctive

NEC cluster (B) with inclusion of multiple ambiguous and few NET-classified samples was found when

applying a PCA on the correlation matrix. Identification of a linearly separating decision boundary (C)

of NECs and NETs involving both Principal-Component (PC) 1 and PC 2 was possible, despite the mis-

classification of NETs in the NEC cluster and a single NEC in the NET cluster. Ambiguous samples were

manually assigned as NEC or NET depending on their membership in either the cluster A or cluster B
for the purpose of the NEC and NET classification shown in Figure 5.3. One of the three ’NET-outlier’

in the NEC-cluster was a sarcoma-like Tumor classified as NET based on NE marker expression and

Ki-67 staining, which otherwise exhibited features of a small-round-blue cell tumor, recently shown to

resemble small cell neuroendocrine cancer. The second outlier was obtained from a patient with an estab-

lished prior history of NET and the outlier had received several courses of platinum based chemotherapy

prior to tissue sampling. The third sample had been annotated as well differentiated G3 NET, but was

connected to an aggressive clinical course with disease-related death occurring within seven months.
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Figure 7.11: Principal component analysis of the transcriptome of the RepSet reduced to sets of cell

type marker genes. Expression datasets were reduced to the marker gene sets of the ductal and HISC

cell types as determined by the CIBERSORT algorithm, respectively, and their PCAs depicted after

colorization for NEC and NET subtype. Purple dots represent samples whose NEC or NET classification

was not unanimously possible. It is visualized that a machine learning model trained on the ductal

or HISC signature-based deconvolution results can classify NECs and NETs because NECs and NET

differ characteristically in the set of genes that are utilized to deconvolve the ductal or HISC cell type

proportions. Note clustering by tissue of origin was identified which was supported by the finding that

the underlying ductal and HISC marker genes predominantly consist of genes whose expression does not

differ between the relevant tissue type of origin.
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Figure 7.12: Kaplan-Meier survival plot of disease-related patient survival time comparing the predictive

performance of the Ki-67 levels and ductal signature in the RepSet dataset for a two-arm design. A

’high’ and ’low’ risk subgroup of the RepSet were constructed based on either Ki-67 expression levels or

the predicted ductal proportion predictions and Cox-hazard ratio test on difference of survival between

the subgroups applied. It is illustrated that either test was significant, that the Ki-67 based test had more

statistical power but that the overall trend of survival rate prediction remained comparable between ductal

cell type proportion and the Ki-67 based predictions. Note that the depicted ductal proportion predictions

were extracted from a CIBERSORT model trained on Lawlor et al. as opposed to ubiquitously presented

Baron et al. scRNA data.
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Figure 7.13: Kaplan-Meier survival plot of disease-related patient survival time in the RepSet dataset

comparing the predictive performance of the grading and ductal signature for a three arm design. The

grading shows a clearly superior statistical power to distinguish the three cohorts at a p-value of 0.0022,

however, the ductal cell type proportion predictions remain significant at a p-value of 0.019.
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7.2 Supplementary tables

CL1 CL2 Reason

7860 786O Synonym
253J 253JBV Synonym
BE13 PEER Synonym

CMK115 CMK Synonym
COLO320HSR COLO320 Synonym

COLO704 COLO684 Synonym
EOL1 EOL1CELL Synonym
H3255 NCIH3255 Synonym
HEC1A HEC1 Synonym
HEC1B HEC1 Synonym

HEL9217 HEL Synonym
HEY HEYA8 Synonym

HUH6CLONE5 HUH6 Synonym
KP1NL KP1N Synonym
LC1F LC1SQSF Synonym

LC1SQ LC1F Synonym
LC1SQSF LC1SQ Synonym

LU99A LU99 Synonym
M059K M059J Synonym
M059KJ M059K Synonym

NCIADRRES OVCAR8 Synonym
NCIH510 NCIH510A Synonym

NCIH510A NCIH510 Synonym
NCISNU1 SNU1 Synonym
NCISNU5 SNU5 Synonym

OC314 OC316 Synonym
OVCAR3 NIHOVCAR3 Synonym

PECAPJ15 CAPJ15 Synonym
RT112 RT11284 Synonym
SNU1 NCISNU1 Synonym
SNU5 NCISNU5 Synonym

SNUC2B SNUC2A Synonym
U266 U266B1 Synonym
UO31 U031 Synonym

WM793 WM793B Synonym
WM793B WM793 Synonym

AU565 SKBR3 Related
C3A HEPG2 Related

COLO201 COLO205 Related
COLO775 RPMI8226 Related
COLO800 COLO818 Related
FTC133 FTC238 Related
GP2D GP5D Related

GT3TKB RERFLCAI Related
H9 HUT78 Related

HCC1588 LS513 Related
HCMB CHL1 Related

HLE HLF Related
HOP92 U251 Related
HRT18 HCT15 Related
HTK HOS Related

IGR39 IGR37 Related
IMR5 IMR32 Related

KARPAS422 OCILY10 Related
M059J M059K Related

MCIXC SKNMC Related
MKN28 MKN74 Related

MONOMAC1 MONOMAC6 Related
NCIH1770 NCIH2106 Related
NCIH1993 NCIH2073 Related
ONCODG1 OVCAR3 Related
SHSY5Y SKNSH Related
SNB19 U251 Related

SNUC2A SNUC2B Related
SW480 SW620 Related
SW579 CGTHW1 Related

T24 ACCS Related
TOV112D HS571T Related

TUR U937 Related
U118MG U138MG Related
WM115 WM2664 Related
YMB1E ZR751 Related
KPL1 MCF7 Known cross-contamination or derivation
M14 MDAMB435 Known cross-contamination or derivation
M14 MDAMB435S Known cross-contamination or derivation

MDAMB435 M14 Known cross-contamination or derivation
MDAMB435 MDAMB435S Known cross-contamination or derivation
MDAMB435 MDAN Known cross-contamination or derivation

MDAN M14 Known cross-contamination or derivation
MDAN MDAMB435S Known cross-contamination or derivation

OVCAR8 NCIADRRES Known cross-contamination or derivation
SR SR786 Known cross-contamination or derivation

Table 7.1: Known cross-contaminations and derivation Gold Standard utilized to benchark Uniquorn

proof-of-concept and Uniquorn in its universal version
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Weight

Threshold

Maximally

possible TPs

True

positives

False

negatives

False

positives Sensitivity % F1 % PPV

Uniquorn POC
1 3573 3027 546 22 85 91 99

0.5 3474 99 37 97 98 99
0.25 3461 112 59 97 98 98

0 3111 462 4631 87 55 40
Uniquorn universal

1 3573 3403 170 126 95 96 96
0.5 3408 165 123 95 96 97

0.25 3408 165 124 95 96 96
0 3402 171 135 95 96 96

Table 7.2: Comparison of Uniquorn performance in its proof-of-concept and universal version. The

same benchmark as conducted in Uniquorn proof-of-concept was conducted and results compared. It

can be see that the respective methods’ performance is comparable. POF = proof-of-concept

Spia

CCLs

Unified CCL

Labels 1

Equivalent

Uniquorn

Benchmark

Identification

successful

at weight 0.5

184A1 184A1
184B5 184B5
501mel 501MEL
786-O 786O 786O 1
A172 A172 A172 1
A375 A375 A375 1
A498 A498 A498 1
A549 A549 A549 1

ACHN ACHN ACHN 1
AN3-CA AN3CA AN3CA 1

BT-20 BT20 BT20 1
BT-474 BT474 BT474 1
BT-549 BT549 BT549 1
CAKI-1 CAKI1 CAKI1 1
Caki.2 CAKI2 CAKI2 1

CAL-51 CAL51 CAL51 1
CAMA-1 CAMA1 CAMA1 1
CAPAN-1 CAPAN1 CAPAN1 1

CCRF-CEM CCRFCEM CCRFCEM 1
CL-11 CL11 CL11 1
CL-14 CL14 CL14 1

COLO-205 COLO205 COLO205 1
COLO-320 COLO320 COLO320 1
COLO-824 COLO824 COLO824 1

CPC-N CPCN CPCN 1
DU-145 DU145 DU145 1
DU4475 DU4475 DU4475 1
EFE-184 EFE184 EFE184 1
EFM-19 EFM19 EFM19 1
EKVX EKVX EKVX 1
H128 NCIH128 NCIH128 1
H1339 NCIH1339 NCIH1339 1
H1395 NCIH1395 NCIH1395 1
H1437 NCIH1437 NCIH1437 1
H1450 NCIH1450
H1770 NCIH1770 NCIH1770 1
H1819 NCIH1819
H2009 NCIH2009 NCIH2009 1
H2141 NCIH2141 NCIH2141 1
H2171 NCIH2171 NCIH2171 1
H2195 NCIH2195
H220 NCIH220
H378 NCIH378 NCIH378 1
H460 NCIH460 NCIH460 1
H838 NCIH838 NCIH838 1
H889 NCIH889 NCIH889 1

HCC1143 HCC1143 HCC1143 1
HCC1187 HCC1187 HCC1187 1
HCC1395 HCC1395 HCC1395 1
HCC1419 HCC1419 HCC1419 1
HCC1500 HCC1500 HCC1500 1
HCC1569 HCC1569 HCC1569 1
HCC1599 HCC1599 HCC1599 1
HCC1806 HCC1806 HCC1806 1
HCC1937 HCC1937 HCC1937 1
HCC1954 HCC1954 HCC1954 1
HCC202 HCC202 HCC202 1
HCC2157 HCC2157 HCC2157 1
HCC2218 HCC2218 HCC2218 1
HCC2998 HCC2998 HCC2998 1
HCC33 HCC33 HCC33 1
HCC38 HCC38 HCC38 1
HCC70 HCC70 HCC70 1
HCC970 HCC970
HCT-116 HCT116 HCT116 1
HCT-15 HCT15 HCT15 1
HL-60 HL60 HL60 1

HOP-62 HOP62 HOP62 1
HOP-92 HOP92 HOP92 1
HS 578T HS578T HS578T 1

HT-29 HT29 HT29 1
HUP-T3 HUPT3 HUPT3 1
HUP-T4 HUPT4 HUPT4 1
IGROV1 IGROV1 IGROV1 1

Table 7.3: Comparison of the performance to SPIA. The table lists whether regularized CCL labels were

correctly found both by SPIA and Uniquorn (1 in indicator column)



K-562 K562 K562 1
KC12 KC12
KM12 KM12 KM12 1
KO295 KO295
KPL-1 KPL1 KPL1 1

KU-19-20 KU1920
LOX IMVI LOXIMVI LOXIMVI 1
LuCaP 35 LUCAP35

M14 M14 M14 1
Malme-3M MALME3M MALME3M 1
MCF-10A MCF10A
MCF-12A MCF12A

MCF7 MCF7 MCF7 1
MDA Pca 2b MDAPCA2B MDAPCA2B 1

MDA-MB-134-VI MDAMB134VI MDAMB134VI 1
MDA-MB-157 MDAMB157 MDAMB157 1
MDA-MB-175 MDAMB175
MDA-MB-231 MDAMB231 MDAMB231 1
MDA-MB-415 MDAMB415 MDAMB415 1
MDA-MB-435 MDAMB435 MDAMB435 1
MDA-MB-453 MDAMB453 MDAMB453 1
MDA-MB-468 MDAMB468 MDAMB468 1
MDA-MB361 MDAMB361 MDAMB361 1
MDAMB-330 MDAMB330 MDAMB330 1

MEWO MEWO MEWO 1
MFE-280 MFE280 MFE280 1
MFE-296 MFE296 MFE296 1
MOLT-4 MOLT4 MOLT4 1

N15C6 p48 N15C6P48
N33B2 p21 N33B2P21

NCI-ADR-RES NCIADRRES NCIADRRES 1
NCI-H226 NCIH226 NCIH226 1
NCI-H23 NCIH23 NCIH23 1

NCI-H322M NCIH322M NCIH322M 1
NCI-H460 NCIH460 NCIH460 1
NCI-H522 NCIH522 NCIH522 1
NCI-H660 NCIH660 NCIH660 1
OVCAR-3 OVCAR3 OVCAR3 1
OVCAR-4 OVCAR4 OVCAR4 1
OVCAR-5 OVCAR5 OVCAR5 1
OVCAR-8 OVCAR8 OVCAR8 1

PC-3 PC3 PC3 1
PMC42 PMC42

RPMI-8226 RPMI8226 RPMI8226 1
SF-268 SF268 SF268 1
SF-295 SF295 SF295 1
SF-539 SF539 SF539 1

SK-BR-3 SKBR3 SKBR3 1
SK-MEL-2 SKMEL2 SKMEL2 1

SK-MEL-28 SKMEL28 SKMEL28 1
SK-MEL-5 SKMEL5 SKMEL5 1
SK-OV-3 SKOV3 SKOV3 1
SLR 20 SLR20
SLR 21 SLR21
SLR 22 SLR22
SLR 23 SLR23
SLR 24 SLR24
SLR 25 SLR25
SLR 26 SLR26
SN12C SN12C SN12C 1
SNB-19 SNB19 SNB19 1
SNB-75 SNB75 SNB75 1

SR SR SR 1
SUM190 SUM190
SUM225 SUM225
SUM44 SUM44
SW156 SW156 SW156 1
SW403 SW403 SW403 1
SW620 SW620 SW620 1
SW948 SW948 SW948 1
T47D T47D T47D 1
T98G T98G T98G 1
TK-10 TK10 TK10 1

U-118 MG U118MG U118MG 1
U-251 U251 U251 1
U138 U138 U138MG 1
U87 U87 U87MG 1

UACC-257 UACC257 UACC257 1
UACC-62 UACC62 UACC62 1

UACC-732 UACC732
UACC-812 UACC812 UACC812 1
UACC-893 UACC893 UACC893 1

UO-31 UO31 UO31 1
ZR-75-1 ZR751 ZR751 1
ZR-75-30 ZR7530 ZR7530 1

Table 7.3: Comparison of the performance to SPIA. The table lists whether regularized CCL labels were

correctly found both by SPIA and Uniquorn (1 in indicator column)
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ID site primary site of met grading NEC/NET sex age Staging functionality

ICGC 0425 pancreas primary G1 NET Male 69 IB No 73.78

ICGC 0427 pancreas primary G2 NET Male 48 IB Yes 59.28

ICGC 0428 pancreas primary G2 NET Male 74 IB No 3.35

ICGC 0431 pancreas primary G1 NET Male 78 IIB Yes 49.58

ICGC 0432 pancreas primary G1 NET Male 76 IIB No 19.73

ICGC 0433 pancreas primary G2 NET Female 59 IIA No 49.02

ICGC 0434 pancreas primary G1 NET Male 59 IIA No 0.82

ICGC 0435 pancreas primary G2 NET Male 66 IIB No 20.22

ICGC 0436 pancreas primary G1 NET Male 61 IIB No 38.89

ICGC 0437 pancreas primary G2 NET Female 67 IB Yes 37.51

ICGC 0438 pancreas primary G1 NET Male 79 IV No 33.9

ICGC 0440 pancreas primary G1 NET Female 65 IB Yes 32.19

ICGC 0441 pancreas primary G2 NET Female 69 IB No 33.67

ICGC 0443 pancreas primary G1 NET Female 59 IB No 24.79

ICGC 0447 pancreas primary G1 NET Female 44 IA No 26.96

ICGC 0449 pancreas primary G1 NET Male 81 IA No 22.68

ICGC 0452 pancreas primary G2 NET Male 77 IIA No 20.55

ICGC 0453 pancreas primary G1 NET Male 56 IB No 23.77

ICGC 0455 pancreas primary G3 NET (amb) Male 78 IIB No 18.18

ICGC 0456 pancreas primary G2 NET Male 59 IB No 18.67

ICGC 0457 pancreas primary G3 NET Male 38 IV No 6.87

ICGC 0459 pancreas primary G1 NET Male 56 IA Yes 12.16

ICGC 0489 pancreas primary G2 NET Male 68 IB No 14.1

ICGC 0491 pancreas primary G1 NET Male 64 IA No 15.85

ICGC 0492 pancreas primary G2 NET Male 38 IIB No 9.04

ICGC 0497 pancreas primary G2 NET Male 71 IIB No 7.96

ICGC 0498 pancreas primary G2 NET Female 59 IIB No 5.42

ICGC 0500 pancreas primary G1 NET Female 75 IA No 2.01

ICGC 0501 pancreas primary G2 NET Male 64 IIA No 1.32

1444 pancreas primary G3 NET Male 72 IV No 30

PNET06 pancreas primary G2 NET Female 65 IIB No 72

PNET37 pancreas primary G2 NET Male 58 IB No 157

1286 pancreas primary G3 NET (amb)* Male 67 IV No 34

135602 pancreas primary G3 NEC Male 74 IIB No 2

PNET17 pancreas primary G3 NET (amb) * Female 73 IIB No 98

PNET22 pancreas primary G3 NET (amb) * Male 63 IIA No 92

1401 pancreas local recurrence G3 NET Female 54 IV No 37

1418 pancreas metastasis lymph node G2 NET Female 32 IV No 63

PNET04 pancreas metastasis liver G3 NET (amb) * Female 60 IV Yes 61

PNET21 pancreas metastasis liver G3 NET Male 61 IV missing 57

PNET41 pancreas metastasis liver G2 NET Male 42 IV Yes 34

135604 pancreas metastasis lymph node G3 NEC Male 74 IV No 2

139101 pancreas metastasis liver G2 NET Male 47 IV No 65

PNET05 pancreas metastasis peritoneum G3 NEC Male 65 IV No 1

PNET26 pancreas metastasis liver G3 NET (amb) * Male 64 IV No 81

1344 pancreas metastasis liver G3 NEC Male 59 IV No 1

105103 pancreas metastasis liver G2 NET Female 63 IV No 31

130002 pancreas metastasis liver G3 NET Male 44 IV No 57

130003 pancreas metastasis liver G3 NET Male 44 IV No 57

PNET08 pancreas metastasis liver G3 NEC Female 38 IV No 57

PNET55 pancreas metastasis liver G3 NET Male 44 IV No 57

128802 stomach primary G3 NET (amb) * Male 66 IV No 3

140302 stomach primary G3 NEC Male 71 III missing 93

124101 stomach metastasis peritoneum G3 NEC Female 55 IV No 74

124702 stomach metastasis liver G3 NET (amb) * Female 71 IV No 100

132502 stomach metastasis liver G3 NET (amb) * Male 61 IV Yes 92

IC15 small intestine primary G2 NET Female 49 IV No 124

145702 small intestine metastasis liver G2 NET Female 75 IV No 59

110202 small intestine metastasis liver G2 NET Female 32 IV missing 9

127402 small intestine metastasis liver G3 NET Male 59 IV Yes 135

148402 small intestine metastasis other G2 NET Male 48 IV No 34

IC02 small intestine metastasis lymph node G3 NEC (amb)* Female 68 IV No 2

127403 small intestine metastasis liver G3 NET Male 59 IV Yes 135

121103 colon rectum primary G3 NEC (amb)* Male 58 IIIB missing missing

136901 colon rectum primary G3 NEC Male 32 IIB missing missing

INET17 colon rectum primary G3 NEC (amb)* Female 61 IV No 1

123402 colon rectum primary G3 NEC Male 57 IIIB missing

141901 colon rectum metastasis G3 NEC Female 70 IV No 14

Table 7.4: Cohort composition Chapter 5. The samples included in the RepSet are shown. For a full

listing of all samples, please consult the corresponding publication.
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Sample Dataset Model P value Grading

425 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.001 G1

431 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.04 G1

432 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.014 G1

434 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.008 G1

436 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.007 G1

438 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.002 G1

440 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.0032 G1

443 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.009 G1

453 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.004 G1

459 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.0020054 G1

491 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.006 G1

427 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.007 G2

428 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.004 G2

433 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.003 G2

435 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.005 G2

437 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.019 G2

441 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G2

456 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.007 G2

489 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.001 G2

492 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.004 G2

497 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.011 G2

498 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.003 G2

501 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.006 G2

110202 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.02 G2

139101 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G2

148402 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.02 G2

IC15 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.02 G2

PNET06 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.02 G2

PNET37 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G2

PNET41 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G2

455 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.005 G3

457 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.003 G3

1286 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

1401 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

1418 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

1444 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

121103 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

123402 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

124101 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

124702 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

127402 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

128802 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

132502 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

135602 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

135604 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

136901 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

140302 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

141901 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

145502 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

IC02 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

INET17 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

PNET04 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0.096 G3

PNET05 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

PNET17 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

PNET21 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

PNET22 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

PNET26 RepSet Alpha Beta Gamma Delta Acinar Ductal Baron 0 G3

Table 7.8: P-values RepSet. For a complete list of p-values, please consult the publication documents.

Feature RepSet Riemer Scarpa Missiaglia Sadanandam

Ki-67 3E-4 0.01 0.004 7E-017 0.17
Ductal 7E-8 0.04 0.001 0.004 1E-4
HISC 0.007 0.46 2E-4 0.3 0.95

Table 7.9: Correlations between cell type proportions and Ki-67.Pearson product moment correlation-

derived p-values associated with the correlation of (M)Ki-67 levels and ductal and HISC fractions with

the clinical grading. The (M)Ki-67 levels were significantly correlated with the grading in four out of five

data sets with exception of the predominantly low to medium-grade Scarpa et al. data set. The relative

ductal proportion were significantly correlated in all five data sets, always showing a significance with

more statistical power to predict grading than MKi-67 mRNA counts but worse performance than Ki-67

staining level based grading as illustrated by the Missiaglia data set which only provided Ki-67 staining

levels. Significant correlations are formatted in the scientific numbering scheme whereas insignificant

correlations are presented as decimal numbers.
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Query Califano Missaglia* Sadanandam RepSet Scarpa Riemer Fadista
Dif Exp GLM Cor 0.28 0.24 -0.38 0.42 0.27 0.43 0.17
Dif Exp GLM P value 0.004 0.35 0.05 0.001 0.16 0.002 0.11
Convolution P Value* 0.0041 0.14 0.0038 5E-4 4E-5 0.0074 0.47
Comparison Comparable Comparable Supperior Supperior Supperior Comparable NA

Table 7.10: Deconvolution-trained Machine Learning performance. Positive class = NECs. * Ki-67

staining intensity and not mRNA levels utilized

Dataset Unsupervised Supervised

Accuracy% 87 85
Sensitivity% 84 81
Specificity% 91 88
PPV% 85 80
Kappa 0.75 0.69

Table 7.11: Expression and Ki-67-trained Machine Learning performance. Positive class = NECs. Lo-

gistic regression trained on deconvolution data of 57 NENs from the RepSet. ** Average obtained my

averaging over the statistics, not a common model

Dataset Unsupervised Supervised

Accuracy% 87 85
Sensitivity% 84 81
Specificity% 91 88
PPV% 85 80
Kappa 0.75 0.69

Table 7.12: Positive class = NECs.Logistic regression trained on deconvolution data of 57 NENs from

the RepSet. ** Average obtained my averaging over the statistics, not a common model

Query Califano Missaglia* Sadanandam RepSet Scarpa Riemer Fadista
Dif-Exp GLM Correlation 0.28 0.24 -0.38 0.42 0.27 0.43 0.17
Dif-Exp GLM p-value 0.004 0.35 0.05 0.001 0.16 0.002 0.11
Convolution p-value 0.004 0.14 0.004 5E-4 4E-5 0.007 0.47
Comparison Comparable Comparable Supperior Supperior Supperior Comparable NA

Table 7.13: Differential Expression Out-Group Benchmark. Values taken from CIBERSORT table 1,

ductal correlation. * Ki-67 staining intensity and not mRNA levels utilized
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