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Abstract 

Since the advent of electronic word-of-mouth communication, particularly in the form of user-gen-
erated reviews on e-commerce platforms, research has been undertaken to quantify and draw in-
sights from this growing wealth of data. Coinciding developments in machine learning and natural 
language processing have enabled the systemic analysis of these texts, heightening the role of user 
feedback from a simple information channel between users to an indispensable source of “big data” 
information regarding consumer sentiment and behaviour.  

While otherwise extensive, contemporary research into the role of consumer sentiment, and, in 
particular, its effect on sales outcomes, is largely built around data gathered from Western e-com-
merce platforms, most notably Amazon. This has potentially limited its generalizability to wider con-
texts. In addition, many studies simplify the role of feedback valence by interpreting the sentiment 
polarity of a written review as equivalent to its corresponding numerical rating – a conflation that
seems to go against existing research into rating inflation and other biases. 

This study seeks to further this field of e-commerce research by accounting for these issues. Using 
cross-sectional data gathered from an industry-leading Chinese cross-border e-commerce platform, 
this study analyses the relationships between user-generated review sentiments and order amounts
in a new context. By applying three different sentiment analysis tools to a total of 451,375 product 
reviews, overall sentiment polarity and subjectivity metrics were calculated for 8,319 product list-
ings. Using these values, alongside other control variables (including numerical ratings, separate 
from sentiment polarities) from the listings, econometric regression models describing the relation-
ships were estimated and interpreted. 

The findings of this study demonstrate that, on a broad level, the notion of review sentiment polar-
ity being positively related to sales outcomes is generalizable beyond the Western context. The role 
of a more nuanced aspect of review sentiments, namely the subjectivity of reviews, is found to be 
seemingly different from existing research into Western platforms, albeit somewhat inconclusively.
The findings also support the notion that review sentiment polarity is not directly represented by its 
corresponding numerical rating, and that future studies should continue to differentiate between 
these two metrics. 

This study leaves open the exact causal nature of these relationships, requiring future research 
using time series data over multiple years. In addition, a greater variety of product categories could 
be studied in order to confirm the overall generalizability of these findings.  
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1 Introduction 

2021 marked the estimated fiftieth anniversary of what has been considered the first-

ever e-commerce transaction, taking place between Stanford students on ARPANET in 

1971 or 1972 (Markoff, 2006). Since breaking out into the mainstream in the 1990s, e-

commerce has become an integral part of all commerce, and providers such as Amazon 

and Alibaba Group continue to expand over the former spheres of physical retailers. A 

driving force in the success of these platforms has been the role of user-submitted prod-

uct evaluations, consisting of both numerical ratings (e.g. stars on a discrete 1 to 5 scale) 

and plaintext written reviews. By encouraging electronic word-of-mouth (eWOM) infor-

mation spread, e-commerce platforms have synergistically both provided additional in-

formation channels to mitigate perceived risk (Dellarocas, 2003) and created an indis-

pensably valuable source of “big data” – for their own analysis, and others’, as well.  

The ever-increasing popularity of e-commerce has coincided with developments in nat-

ural language processing (NLP), or the computerized analysis of human language using 

statistical machine learning and deep learning methodologies. Sentiment analysis, the 

subfield of NLP dealing with affective states and subjective statements, has been exten-

sively applied in systematically analysing written user reviews (Pang & Lee, 2008). Com-

mon approaches include quantifying user-generated text into “polarity” scores (the pos-

itivity or negativity of the sentiment) and “subjectivity” scores (the degree of opinion in 

the text, as opposed to objective fact) (Pang & Lee, 2004). Among other uses, these fig-

ures have been utilized in econometric regression models as explanatory variables, in 

order to estimate, for example, sales outcomes (Ghose & Ipeirotis, 2006; Hu et al., 2014). 

Contemporary study into the role of user reviews in e-commerce product sales has been 

largely focused on data from Western platforms, particularly Amazon. However, devel-

opments in information technology, international shipping, and governmental policies 

have increasingly enabled expansion in cross-border e-commerce (CBEC), particularly 

from cost-competitive countries, such as China (Liu & Liu, 2017; Wang et al., 2017). 

Alibaba Group’s Chinese cross-border B2C platform, AliExpress, has seen significant 

growth in recent years, becoming a leading global e-commerce website and one of Ama-

zon’s primary competitors (Xu, 2016; Lukicheva & Semenovich, 2019). Despite this, 

compared to Amazon, AliExpress has remained largely underrepresented in these stud-

ies. To address this imbalance in research, this study seeks to analyse the relationship 

between review sentiments and product orders, using AliExpress product listings and 

their reviews. 
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In addition, a potential oversight in several of the aforementioned high-profile studies 

has been the equation of user-submitted numerical ratings with genuine review senti-

ment. Many published papers, including those presenting new NLP training methodolo-

gies, assume that the numerical rating a user submits corresponds to the positivity/neg-

ativity of their written review (Pang et al., 2002; Ghose & Ipeirotis, 2007). However, re-

cent research has shown that user-submitted ratings are heavily influenced by factors 

such as rating inflation (Filippas et al., 2018; Garg & Johari, 2020; Lee, 2020), leading 

to considerations about the accuracy of numerical ratings as a whole (Hu et al., 2009; 

Lee, 2020). To explore this potential disconnect further, this study uses both user-sub-

mitted numerical ratings and NLP-derived sentiment scores to estimate sales outcomes. 

1.1 Research objectives and research questions  

The objectives of this study are twofold: 

1. To further this field of research by studying the impact of user sentiment in an alter-

native e-commerce context, namely Amazon’s Chinese competitor, AliExpress. 
 

2. To achieve a more nuanced understanding of user sentiment impact by differentiat-

ing the effects of textual review sentiment from numerical ratings using general-pur-

pose sentiment analysis models. 

These objectives can be written out as the following research questions: 

1. To what extent are current theories regarding the relationships between user senti-

ment and sales applicable in a Chinese CBEC context?  
 

2. Can a discrepancy between the effects of user-submitted numerical ratings and NLP-

derived review polarities be identified using reviews and listings from a Chinese 

CBEC platform? 

In essence, this study intends to formulate cross-sectional econometric models using em-

pirical data gathered from the AliExpress website. These models examine the role of de-

rived sentiment metrics, specifically polarity and subjectivity scores, as well as average 

numerical ratings in estimating sales figures (order amounts). Control variables include 

the price and the age of the given listing, among others. The sentiment metrics are cal-

culated from the product listings’ user-generated reviews, using three leading open-

source NLP libraries for the Python programming language.  
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This study is novel, as it is among the first to utilize listing and review data from the scope 

of Chinese cross-border e-commerce. It investigates the key differences between this 

context and more commonly studied Western e-commerce platforms, particularly Ama-

zon. An additional advantage of using AliExpress as a source (as opposed to Amazon) is 

that it reports recent1 order amounts for each product listing, giving a more accurate ap-

proximation of sales outcomes than the “Sales Rank” (Floyd et al., 2014) figures reported 

by Amazon and used as a proxy by many other studies. 

This study is also among the first to utilize the relatively recently developed, “state-of-

the-art” NLP framework Flair, which calculates sentiment using complex deep learning 

neural networks (Akbik et al., 2019). In order to achieve more representative sentiment 

estimates and to account for random errors in analysis, two other NLP libraries for Py-

thon are also used: The Natural Language Toolkit (NLTK) and TextBlob. To a lesser ex-

tent, this study also serves as a demonstration of the utility of these general-purpose sen-

timent analysis tools in the context of this kind of e-commerce analysis. 

1.2 Scope of research 

This study covers cross-sectional data on three popular product categories of AliExpress, 

namely phone screen protectors, phone charging cables, and consumer electronics (a 

catch-all term that includes various electronics that do not fit other categories). These 

categories only represent what past studies have referred to as “feature-based goods” 

(Ghose & Ipeirotis, 2011), or goods whose appeal relies more on functionality over form 

– a factor which also influences the role of review sentiment, particularly that of subjec-

tivity. The data was gathered in March and April of 2021.  

AliExpress was chosen to represent Chinese CBEC, as it is the most popular website in 

the category (Alexa Internet, 2021) and it is expressly designed to link Chinese sellers to 

consumers abroad (Xu, 2016). While AliExpress is primarily considered to be a business-

to-consumer (B2C) platform, B2B and C2C sales are also supported (Xu, 2016; Liu & Liu, 

2017). Because AliExpress has a global reach, and due to limitations in non-English-lan-

guage sentiment analysis, the analysed reviews were filtered to only include English text. 

 
1 The number of orders reported by AliExpress per listing only includes recent orders from an 

unspecified timeframe. The specific duration of this timeframe is not relevant to the results of this 

study, as it remains constant across all entities observed. Regardless, the duration is likely ap-

proximately 6 months, as this is the duration of all other listing data (including reviews/ratings). 
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Due to the limitations of scope, this study only seeks to examine the relationships be-

tween the studied variables, not to predict sales outcomes or establish unambiguous, 

one-way cause-and-effect connections. From the point of view of the research objectives, 

this approach is sufficient, as the analysis fits into a broader research context, with the 

aim of investigating potentially overlooked factors in these relationships. Future study 

using time-series data would be needed to draw conclusions regarding the causality of 

these relationships, as well as to account for entity-specific fixed effects. 

Despite these limitations in scope, the results of this study will have implications in both 

expanding on current research and providing valuable findings to a wider business con-

text. Coming to understand the role of user reviews in sales is a fundamentally important 

exercise for both e-commerce sellers and platform providers alike. The findings of this 

study allow Western sellers to further understand their increasing competition from the 

East, and, likewise, cross-border Chinese sellers can come to understand the applicability 

of previous, Western research in their market. More specific aspects of e-commerce sen-

timent analysis, such as whether written reviews or numerical ratings are more im-

portant, or to what extent subjective statements are associated with increased sales, are 

also addressed by this study. 

1.3 Structure of the research 

The remainder of this thesis is structured as follows. Chapter 2 reviews prior literature 

on the subjects of word-of-mouth in e-commerce, sentiment analysis in sales estimation, 

and the key aspects of Chinese cross-border e-commerce. Chapter 3 presents the meth-

odological approach for the study, including the specifics of the data collection and pro-

cessing procedures as well as the construction of the econometric models. Chapter 4 pre-

sents the statistical significances, the goodness of fit, and the resultant coefficient esti-

mates of these econometric models. Chapter 5 concludes the paper by further discussing 

these results, their implications, as well as their limitations and potential for future 

study.  
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2 Theoretical background 

2.1 Reviews, ratings, and sales  

From a theoretical standpoint, marketing and social psychology scholars have long char-

acterised word-of-mouth (WOM) information as a key component of the consumer deci-

sion-making process (Brooks, 1957; Kozinets et al., 2010). Traditionally, WOM has been 

considered a by-product of natural human communication, but with the emergence of 

online sales platforms and electronic word-of-mouth communication (eWOM), the con-

cept has expanded to include moderated reviews and discussion on the same online sales 

platforms (Kozinets et al., 2010). Providing users with a native space for user-driven 

feedback has been shown to drive e-commerce sales by creating an additional infor-

mation channel and increasing trust (Dellarocas, 2003), and it is no surprise that every 

mainstream e-commerce platform includes user feedback on its listing pages. Studies 

have also shown that consumers themselves consider online reviews a significant factor 

in their purchasing decisions (Lackermair et al., 2013).  

Although consumers generally read product evaluations, some debate exists regarding 

the exact effects of user feedback on consumer behaviour and, subsequently, product 

sales. In a meta-analysis of the effects of user feedback on sales, Floyd et al. (2014) state 

that, due to a variety of differing conclusions across studies, “a consensus regarding the 

impact of online product reviews has yet to emerge”. Studies such as those by Ghose and 

Ipeirotis (2006) have found that, while user feedback matters, the average ratings of list-

ings have a less significant effect on sales outcomes than might be expected.  

Some of the complexity surrounding the effects of user feedback is a result of inconsist-

encies in numerical ratings. Factors such as rating inflation, or the gradual increase of 

user-submitted ratings over time, have devalued the usefulness of ratings in a prospec-

tive buyer’s decision-making process (Filippas et al., 2018; Garg & Johari, 2020). Due to 

rating inflation, when the vast majority of listings score above 4½ on a 1 to 5 scale, con-

sumers find it difficult to evaluate the true quality of the product in question (Garg & 

Johari, 2020; Lee, 2020). Other factors, such as fraudulent reviews, have also played a 

role – for instance, multiple studies have shown that products and businesses with a star 

rating between 4.2 and 4.5 tend to outperform those with ratings above 4.5, because us-

ers now trust ratings that seem realistic over those that are the highest (Maslowska et al., 

2017; Womply Research, 2021). In essence, due to a number of biases in ratings, the 

average rating of a product is simply not representative of its quality (Hu et al., 2009). 
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2.2 Sentiment analysis in sales estimation 

A potential solution to the issues surrounding rating biases is to analyse customer opin-

ions from textual reviews, instead of using their numerical ratings. Due to the wealth of 

publicly available textual data, online reviews have been a frequent point of focus in nat-

ural language processing. Sentiment analysis approaches have been widely employed in 

estimating sales and analysing consumer preferences, particularly across software sales 

(Fu et al., 2013; Maalej & Nabil, 2015; Panichella et al., 2015), the hospitality industry 

(Duan et al., 2013; Cheng & Jin, 2019), and e-commerce – especially using data from 

Amazon (Ghose & Ipeirotis, 2006, 2007, 2011; Floyd et al., 2014). The fact that written 

reviews are very often accompanied by a corresponding numerical rating has also led to 

researchers using them as convenient datasets to train machine-learning-based senti-

ment analysis tools (Pang et al., 2002; Pang & Lee, 2008; Bhatt et al., 2015). 

Highly cited studies examining the role of analysed sentiment in e-commerce include 

those by Ghose and Ipeirotis (2006, 2007, 2011), who researched the effect of review 

subjectivity on demand (using Amazon’s Sales Rank as a proxy) and review helpfulness. 

They found that overall review subjectivity is associated with positive sales outcomes, but 

for feature-based products, objective reviews were rated as more helpful by other users 

(Ghose & Ipeirotis, 2011). They suggested that objective reviews mainly verify the validity 

of the product description (Ghose & Ipeirotis, 2011), potentially reducing perceived risk. 

More recently, Li et al. (2019) approached this subject using a joint sentiment-topic ap-

proach on a highly specific dataset of tablet computers, finding that sales amounts can 

be predicted using either polarity scores or scores for specific product dimensions.  

One noteworthy aspect of some of these studies is the potentially false assumption that 

user-submitted numerical ratings are representative of the theoretical sentiment polarity 

of the corresponding written reviews. Although Ghose and Ipeirotis acknowledge that 

“the numeric rating does not capture all the polarity information that appears in the re-

view” (Ghose & Ipeirotis, 2007), they still assume it to be a sufficiently accurate approx-

imation and forgo extracting polarity from the review texts. This assumption is also made 

by researchers, such as Pang and Lee (2002), who train sentiment analysis models using 

reviews’ ratings as a proxy for their sentiment polarity. However, existing research sug-

gests that this approach is inaccurate, as it goes against the aforementioned research into 

rating inflation and other similar biases. A large-scale behavioural analysis conducted by 

Zhang et al. (2014) found the assumption to not necessarily be true: users tend to give 

out higher overall numerical ratings than their reviews would otherwise suggest. 
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Some researchers have addressed this rating-sentiment-disconnect by treating ratings 

and text reviews as distinct variables and using alternative data sources to quantify re-

view sentiment polarity. Hu et al. (2014) approached this distinction by proposing a se-

quential decision-making process, in which numerical ratings have an indirect effect on 

sales by leading potential customers to the product listing. They found that the ratings 

themselves did not inform the final decision, but that this was instead largely due to the 

sentiments expressed in the listings’ reviews. The findings of Hu et al. (2014) suggest 

that, for user reviews with both plaintext feedback and numerical ratings, the plaintext 

portion is ultimately the more significant influence on future purchases. On the other 

hand, Li et al. (2019) theorised that, at least across their highly specific data, numerical 

ratings mediated the overall sentiments expressed in reviews. 

In their analysis, Hu et al. (2014) used a custom-made sentiment dictionary, which 

scored sentiment polarity based on common terms like “excellent” or “terrible”. Li et al. 

(2019) used an existing lexicon but had to train numerous JST models for their topic 

identification. These approaches highlight how sentiment analysis tasks can be highly 

resource-intensive, requiring significant amounts of data and time to train machine 

learning models. However, basic forms of these sentiment analysis approaches have be-

come increasingly viable as NLP tools have improved, thanks to the emergence of prac-

tically applicable general-purpose sentiment analysis tools. This study seeks to utilize the 

sentiment analysis capabilities of three such (mostly) pre-trained tools, representing a 

selection of the most popular open-source NLP packages for Python: The Natural Lan-

guage Toolkit (NLTK), TextBlob, and Flair. 

2.3 Chinese cross-border e-commerce 

Chinese cross-border e-commerce (CBEC) can be considered to be generally underrepre-

sented in research, in comparison to Western e-commerce and its platforms, such as Am-

azon. In view of this, previous research has sought to outline some of the distinguishing 

features of these internationally-oriented Chinese platforms, particularly as compared to 

their Western and domestic Chinese equivalents. Most notably, the driving success fac-

tors of these platforms are their comparatively low prices, wide selections of products, 

convenience, and overall perceived value (Mou et al., 2017, 2019; Lukicheva & 

Semenovich, 2019). However, due to bad press and information asymmetries, consum-

ers’ purchase decisions on Chinese CBEC platforms are also considerably negatively af-

fected by perceived risk (Mou et al., 2017, 2019).  
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The lack of trust in Chinese CBEC platforms can result from simple communication in-

efficiencies due to language and culture barriers (Zhu et al., 2019) or from deeper-in-

grained perceived risks with the products or platforms themselves (Mou et al., 2017, 

2019). These perceived risks are not always unfounded. For instance, a recent high-pro-

file report by The European Consumer Organisation found that 66 % of products pur-

chased from (largely Chinese) cross-border platforms were unsafe (BEUC, 2021), 

demonstrating the risks associated with these forms of e-commerce. An analysis of online 

discussions about AliExpress by Lukicheva and Semenovich (2019) summarized the 

most commonly perceived risks regarding the platform as resulting from potentially de-

fective or low quality goods, long wait times, and inconsistencies with the declared char-

acteristics of the goods (among other reasons). In short, the role that risk plays in affect-

ing consumers’ purchase decisions is considered higher on Chinese CBEC platforms than 

on Western equivalents. 

In order to remain competitive, Chinese CBEC platforms have needed to ensure that their 

perceived value outweighs any perceived risks. While user reviews have been shown to 

be an important factor in mitigating perceived risk (Wu et al., 2013), the reviews found 

on Chinese CBEC platforms are not, themselves, immune from risk, either. Chinese plat-

forms have been found to be particularly prone to seller-reputation-escalation (SRE) 

practices, known colloquially as “brushing”, in which sellers pay for fraudulent reviews 

(Xu, 2016). These practices potentially exacerbate the aforementioned issue of users dis-

trusting highly-rated listings, which has been shown to result in suboptimal sales out-

comes for highly-rated listings (Maslowska et al., 2017). As such, the e-commerce ana-

lytics company Profitero has stated that, on Chinese platforms, potential customers have 

a notable tendency to focus more on review texts than on numerical ratings (Deng, 2016). 

Given these differentiating factors, the applicability of the results of Western e-commerce 

studies on Chinese CBEC platforms is not guaranteed. In particular, due to the increased 

role of risk and its mitigation, review sentiments can potentially have an even greater 

relation to sales outcomes than on Western platforms. In addition, due to the increased 

presence of SRE practices, equating ratings and overall sentiment polarities on Chinese 

CBEC platforms is potentially particularly erroneous. Other factors of Chinese CBEC 

platforms, such as the status of rating inflation, are not covered in existing research. As 

such, this study seeks to address the platform imbalance in e-commerce research, while 

also accounting for factors that have already been shown to differentiate these contexts. 
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3 Methodology 

3.1 Data collection procedure 

To conduct this study, three sets of data from AliExpress product listings were created 

using publicly available information, including reported order amounts, price options, 

and review texts. In addition, the approximate ages of the product listings were collected 

from a separate website, pricearchive.org, that collates AliExpress product listing data. 

This information was gathered through the use of Python libraries and self-programmed 

scripts that parse HTML and JavaScript content. The three datasets represent three pop-

ular product categories on the website: phone screen protectors (e.g. tempered glass co-

vers), phone charging cables (e.g. USB-C, Micro-USB, and Lightning cables), and con-

sumer electronics (primarily various adapters and audio equipment). 

The various types of collected information can be grouped into listing data (listing order 

amounts, average ratings, and ages), pricing data (various price options) and review data 

(user-generated written reviews and their corresponding numerical ratings). For each 

product listing, one instance of all types of listing data, up to 100 price options, and up 

to 100 reviews were collected. In total, for 10,150 listing data points collected (across all 

three product categories), 142,494 price options (avg. 14 per listing) and 579,948 written 

reviews were gathered. 

3.1.1 Ethics of data collection 

In this data collection context, necessary ethical considerations include those regarding 

the privacy of the website’s users and those regarding the interests of the websites’ hosts. 

Because the results of this study are published in aggregate form, and because no poten-

tially identifying information (e.g. photos, locations, usernames) was collected, the pri-

vacy of the website’s users was not violated in the data collection process (Kozinets, 2010; 

Mancosu & Vegetti, 2020). To prevent causing damage to the target websites, the data 

collection process was conducted in accordance with the best practices and norms of web 

scraping (Krotov et al., 2020), including by gathering the data in a slow, unobtrusive 

manner and without violating the respective websites’ robots.txt guidelines. It is also 

worth noting that the gathered data is already publicly available and that all of the col-

lected data was promptly deleted after analysis and neither published nor otherwise used 

to create a database.  
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3.2 Data preparation and variables 

Once collected, the three sets of raw data were processed into variables for regression. 

The selection of variables for regression was a product of the data available and previous 

work set by Chevalier and Mayzlin (2006) as well as Ghose and Ipeirotis (2006, 2007, 

2011). To analyse the role of review sentiment, the variables 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 and 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

were calculated from the raw review texts. In addition, to align with previous works, a 

unified, representative 𝑝𝑟𝑖𝑐𝑒 variable (for listings with multiple price options) was deter-

mined. Other control variables, such as those accounting for pricing-related search result 

advantages, were also calculated. Rows with null values (primarily those without age es-

timates on Pricearchive) were filtered out of the analysis, resulting in a total of 8,319 

listings across all three product categories. Non-English-language reviews were filtered 

out using langdetect, a Python port of a Java-based language-detection library (Danilak, 

2020), resulting in a total of 451,375 reviews to be analysed across all listings.  

 

 

    Figure 1. System design of the data preparation process 
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3.2.1 Listing variables 

First, for each product listing, a handful of directly available “listing” variables were col-

lected. These included the variable 𝑜𝑟𝑑𝑒𝑟𝑠 for the number of orders (used as the depend-

ent variable in empirical analysis) and the variable 𝑟𝑎𝑡𝑖𝑛𝑔 for the average rating (on a 

scale of one to five stars) of the listing. In addition, the variable for the estimated age 

(𝑎𝑔𝑒) of the listing was retrieved. Because AliExpress does not directly report the age of 

the product listing, the 𝑎𝑔𝑒 values were collected from Pricearchive.org, a third-party 

website that collates and compares historical pricing information on AliExpress listings 

(Pricearchive.org, 2020). These ages are considered estimates, as the values represent 

the earliest date from which Pricearchive has data on a given listing; in practice, the list-

ings are likely slightly older, but this difference can be expected to be minimal and 

roughly constant across all examined listings. Listings that did not have age estimates on 

Pricearchive were filtered out of the analysis (approx. 10 % of all listings).  

It is important to note that AliExpress does not report a listing’s order amount through-

out its history – instead, it only reports the order amount across an unspecified duration. 

Based on the fact that all other time-relevant information, including user reviews and 

seller ratings, is limited to the past 6 months, it could be assumed that the order amounts 

are from the past 6 months, as well. This means that a listing’s age is likely to have a 

smaller impact on the order amounts than one might expect – especially because the vast 

majority of listings (approx. 88 %) were older than 6 months. Regardless, due to indirect 

factors (such as third-party recommendations for and links to specific listings), this var-

iable may have some impact and was still included in the analysis. 

3.2.2 Pricing variables 

The pricing information of each listing was gathered with up to 100 price options repre-

senting the various colour/size/etc. combinations available for the product in question. 

Because AliExpress does not present information on how many of the listing’s orders 

were placed at whichever price option, some assumptions had to be made about the most 

representative price for each listing. If the various prices for a single listing did not differ 

considerably, this representative price could have been calculated as a simple arithmetic 

mean of the price options; however, a cursory examination of product listings revealed 

that price options can vary significantly, and care needed to be taken to select a price that 

would meaningfully represent the listing as a whole.   
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Most notably, a significant portion of the listings included one or two price options that 

were considerably lower than the other options and did not entirely match the title of the 

listing. A typical example from consumer electronics is a listing for a roughly 78 – 112 

USD battery management system that also includes an option to buy a 4 USD Bluetooth 

module (see Figure 2). We can reasonably expect most consumers who click open the 

listing to be in search of a battery management system, so the majority of them will not 

be purchasing the Bluetooth module (at least not exclusively). This makes the 4 USD 

price option an outlier, meaning that an arithmetic mean of all price options would skew 

lower than an ideal, representative price.  

 

 Figure 2. Example listing with outlier price options (AliExpress, n.d.) 

 

Using a simple median of the price options would avoid the influence of these low outli-

ers, but, as stated by Lukicheva and Semenovich (2019), a primary draw of AliExpress is 

its price competitiveness. Based on this, we can assume that many of the platform’s cus-

tomers are price-sensitive and may be drawn towards the lowest acceptable price option, 

i.e. the cheapest option that still meets their expectations. In the example of the battery 

management system, this lowest acceptable price option would be the one around 78 

USD – neither the minimum option of 4 USD (which does not meet the usual customer’s 

expectations) nor the median option of approximately 97 USD (which is a higher price 

than a highly price-sensitive customer would select).  
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To adjust for this issue, for each listing, a subset of price options was created that ex-

cluded any prices that were defined as statistical outliers according to the Median Abso-

lute Deviation (MAD) method, as recommended by Leys et al. (2013). This meant that a 

representative, non-outlier minimum price (to be used as the 𝑝𝑟𝑖𝑐𝑒 variable in regression 

analysis) could be identified. Approximately 19 % of all listings had a non-outlier mini-

mum price that differed from the minimum of all listed price options. The formula used 

for calculating MAD is as follows (Huber, 1981, p. 107): 

𝑀𝐴𝐷 = 𝑏 × med{|𝑥 − med{𝑥 }|}  

where 𝑏 = 2.5 (standard multiplier suggested by Leys et al. (2013)) and 𝑥  represents 

each of the price options. Using MAD, each listing’s non-outlier minimum price 

(𝑁𝑂𝑀𝑃) was calculated as follows: 

𝑁𝑂𝑀𝑃 = min{𝑥 },  such that min{𝑥 } ≥ med{𝑥 } − 𝑀𝐴𝐷 

However, (low) outlier price options still influence the visibility of the listing in search 

results. In the example of the battery management system, the price of the listing appears 

as 4 – 112 USD in search results, so while most users will not have spent 4 USD on the 

product, it still appears as 4 USD when sorting by lowest price. To account for this factor, 

a separate variable, the Search Price Distortion (𝑆𝑃𝐷) was created. The 𝑆𝑃𝐷 describes 

the competitive advantage that a listing achieves (compared to other comparable listings) 

by including a low outlier price. It is a simple percentage difference between the mini-

mum price and the non-outlier minimum price, according to the following formula: 

𝑆𝑃𝐷 = 1 − (min{𝑥 } ÷ 𝑁𝑂𝑀𝑃) 

In the battery management system example above, given that 𝑁𝑂𝑀𝑃 is roughly 78 USD 

and min{𝑥 } is 4 USD, the 𝑆𝑃𝐷 is roughly 95 % – a relatively extreme case. For the 81 % 

of listings without outlier prices, 𝑆𝑃𝐷 is zero. Considering the findings of Hu et al. (2014), 

who define a distinction between factors that lead a customer to a product listing and 

factors that influence their final purchasing decision, we can consider 𝑆𝑃𝐷 to represent 

the former category and 𝑁𝑂𝑀𝑃 to represent the latter (and the former, to some degree). 

Finally, to factor for the effects of any reported discounts, the variable 𝑠𝑎𝑙𝑒 was calcu-

lated. It is the percentage difference between the actual, discounted price and the given 

original price. These sales percentages are constant across all of a listing’s price options.  

𝑠𝑎𝑙𝑒 = 1 − (𝑝𝑟𝑖𝑐𝑒 ÷ 𝑝𝑟𝑖𝑐𝑒 ) 
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3.2.3 Review variables 

For each listing, a maximum of 100 reviews was collected, based on the order in which 

AliExpress presented them by default. Filtered for exclusively English-language reviews, 

this gave a total of 451,375 reviews (across all listings) for sentiment analysis. In order to 

alleviate random errors in machine-learning-based sentiment analysis, three different 

tools were used in parallel. These were three of the most notable open-source NLP librar-

ies for Python: The Natural Language Toolkit (NLTK) (Loper & Bird, 2002), TextBlob 

(Loria, 2020), and Flair (Akbik et al., 2019). The resulting polarity and subjectivity val-

ues from these tools’ calculations were averaged for more representative overall scores. 

First, for each sentence of a given review, a sentiment polarity score was calculated. All 

three libraries include a pre-trained sentiment polarity analysis algorithm, with both 

NLTK’s Valence Aware Dictionary for sEntiment Reasoning (VADER) and TextBlob us-

ing simple rule-based models (Hutto & Gilbert, 2014; Loria, 2020) and Flair using a more 

complex character-level deep learning neural network (Akbik et al., 2019). All of these 

algorithms rate sentiment polarity on a scale of -1 to +1. The resultant sentence-level 

polarity scores were averaged to achieve a review-level polarity score, and finally, these 

review-level polarity scores were averaged to achieve a listing-level overall polarity score, 

assigned to the listing’s 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 variable. 

Second, in addition to sentiment polarity, the three tools were used to quantify the over-

all subjectivity of each sentence of each review. TextBlob comes with a pre-trained sub-

jectivity classifier algorithm, but for NLTK and Flair, new subjectivity classifiers had to 

be trained. Both NLTK and Flair include source code links to subjectivity corpora – in 

both cases, these were Pang and Lee’s (2004) set of 5,000 subjective and objective sen-

tences pulled from movie reviews and plot descriptions. For NLTK, a comparatively sim-

ple naïve Bayes classifier was used, while for Flair, a more complex Transformer model 

(distilBERT) was used, as these were the default options outlined in the packages’ docu-

mentations. Once trained, the NLTK classifier would rate subjectivity binarily as either 

“obj” or “subj” (translated to 0 and 1, respectively), while both Flair and TextBlob would 

rate subjectivity on a scale of 0 to 1 (with 1 representing 100 % confidence that the given 

statement is subjective). As with the polarity scores, the sentence-level subjectivity scores 

were first averaged to assign a subjectivity score to each review, and then these review-

level subjectivity scores were averaged to achieve a listing-level overall subjectivity score, 

assigned to the listing’s 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 variable.  
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Prior to calculating polarity and subjectivity, however, the review texts themselves had 

to be broken down into sentence tokens and, for the custom-trained NLTK subjectivity 

classifier, word tokens. This way, each sentence of a given review is analysed individually, 

with the NLTK subjectivity classifier interpreting the sentences as a “list of strings” data 

structure. Other common NLP pre-processing techniques, such as stopword removal and 

lemmatization, were not used, as the three NLP packages are sufficiently context-aware 

to account for these factors in sentences.  

The polarity and subjectivity were analysed on a sentence-by-sentence basis, because 

NLTK’s VADER (as well as the custom-trained NLTK and Flair subjectivity classifiers) 

was trained using sentence-level text snippets (Hutto & Gilbert, 2014), resulting in po-

tentially inaccurate results when analysing multi-sentence text snippets. Because the 

sentence-level scores were averaged for each review, each review’s sentiment is equiva-

lently weighted in the overall 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 and 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 variables for the listing, regard-

less of the number of sentences in the review. In essence, the 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 and 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

variables can be considered to represent the probable polarity and subjectivity of any 

randomly selected user review for a given listing. 

By charting the sentiment analysis results for each of the three NLP packages, the distri-

butions of the reviews can be observed. As can be seen from Appendix 1, both NLTK’s 

VADER and TextBlob rate polarity quite modestly, whereas Flair is considerably more 

confident in its results. This means that the resulting averages of the three values will be 

spread wider than when only using NLTK’s VADER and TextBlob. By contrast, both of 

the custom-trained subjectivity models (NLTK and Flair) rate the majority of reviews as 

entirely subjective (although for NLTK this figure is more extreme, due to the binary na-

ture of its classification), whereas TextBlob leans towards them being mostly objective. 

There are no notable differences in these trends between the three product categories. 

By grouping the reviews by their corresponding user-submitted numerical ratings, the 

prevalence of rating inflation can also be seen. As can be seen from the review heatmap 

in Appendix 3, the vast majority of all reviews (approx. 88 %) had a numerical rating of 

5 stars. This disparity is so severe that even the 5-star reviews with negative sentiment 

polarities outnumbered all 1 to 4-star reviews. 
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3.3 Empirical econometric modelling  

ln(𝑜𝑟𝑑𝑒𝑟𝑠) = 𝛼 + 
𝛽  ln(𝑝𝑟𝑖𝑐𝑒) + 
𝛽 ln(𝑎𝑔𝑒) + 
𝛽 𝑟𝑎𝑡𝑖𝑛𝑔 + 
𝛽  𝑠𝑎𝑙𝑒 + 
𝛽 𝑆𝑃𝐷 + 
𝛽 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 + 
𝛽 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 
𝜀  

 

For each product category, the cross-sectional econometric model above was estimated 

using ordinary least squares (OLS) regression. In the model, 𝛼 is the model’s intercept 

term, 𝛽  to 𝛽  are the coefficients of the regressors (explanatory variables), and 𝜀  is the 

error term. The subscript 𝑖 represents a given instance of the different entities (listings) 

observed. Below, Tables 1 and 2 display descriptive information about these variables.  

 

Table 1. Definitions of variables 

Variable Definition Range min Range max

ln(𝑜𝑟𝑑𝑒𝑟𝑠) Natural logarithm of the number of orders  n/a n/a
ln(𝑝𝑟𝑖𝑐𝑒) Natural logarithm of the non-outlier minimum price (NOMP) n/a n/a
ln(𝑎𝑔𝑒) Natural logarithm of the number of days the listing has existed n/a n/a
𝑟𝑎𝑡𝑖𝑛𝑔 Average numerical rating of the listing 1 5
𝑠𝑎𝑙𝑒 Reported discount percentage of the listing 0 % 100 %

𝑆𝑃𝐷 Percentage difference between minimum price and NOMP 0 % 100 %

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 Average sentiment polarity (-1 to +1) of the user reviews -1 +1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 Average subjectivity (0 to 1) of the user reviews 0 +1

 

 

Table 2. Summary statistics 

 Screen protectors Phone charging cables Consumer electronics

Variable Mean St. Dev. Mean St. Dev. Mean St. Dev.

𝑜𝑟𝑑𝑒𝑟𝑠 2925.81 6616.77 1462.93 7035.06 177.68 445.18

𝑝𝑟𝑖𝑐𝑒 1.18 1.33 2.32 2.79 15.33 48.00

𝑎𝑔𝑒 394.31 253.19 441.20 309.41 470.25 288.31

𝑟𝑎𝑡𝑖𝑛𝑔 4.70 0.12 4.79 0.14 4.81 0.17

𝑠𝑎𝑙𝑒 54.83 % 34.57 % 43.73 % 29.95 % 22.36 % 17.85 %

𝑆𝑃𝐷 9.81 % 16.84 % 10.79 % 22.97 % 2.87 % 12.02 %

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 0.28 0.11 0.34 0.13 0.33 0.18

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 0.66 0.04 0.68 0.05 0.68 0.8

Notes: While the variables 𝑜𝑟𝑑𝑒𝑟𝑠, 𝑝𝑟𝑖𝑐𝑒, and 𝑎𝑔𝑒 are transformed into their natural logarithms for regres-

sion, for easier conceptualization, they are presented here as-is.  
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4 Results 

Table 3 presents the results of OLS regression for each of the three product categories. 

For correlation matrices and variable-specific VIF values, see Appendix 2. 

Table 3. OLS regression estimates 

Coefficient / variable 
Screen protectors Phone charging cables Consumer electronics

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

𝛼 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 9.1436 *** 0.9773 8.7174 *** 0.7650 4.5984 *** 0.5833

𝛽  ln(𝑝𝑟𝑖𝑐𝑒) –0.0770 **_ 0.0251 –0.2106 *** 0.0181 –0.0734 *** 0.0112

𝛽   ln(𝑎𝑔𝑒) –0.0903 **_ 0.0327 0.1337 *** 0.0243 0.0272   _ 0.0267

𝛽  𝑟𝑎𝑡𝑖𝑛𝑔 –0.0724   _ 0.1802 –1.0553 *** 0.1535 –0.1253   _ 0.1140

𝛽  𝑠𝑎𝑙𝑒 –0.4287 * _ 0.1753 0.9197 *** 0.1336 1.4468 *** 0.1006

𝛽  𝑆𝑃𝐷 1.0008 *** 0.1363 0.3338 *** 0.0846 0.5490 *** 0.1409

𝛽  𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 3.5641 *** 0.2131 2.2061 *** 0.1975 0.4554 *** 0.1187

𝛽  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 –2.9110 *** 0.4993 0.3304   _ 0.4072 –0.0472   _ 0.2415

Observations 2,295 3,229 2,795

R2  0.1605 0.3650 0.1225

Adjusted R2 0.1579 0.3637 0.1203

F-statistic 438.63 1856.4 390.36

Maximum VIF 10.897 5.1519 1.7164

Notes: The dependent variable is ln(𝑜𝑟𝑑𝑒𝑟𝑠). Across coefficient estimates, ***, **, and * denote statistical 
significances at 0.1 %, 1 %, and 5 %, respectively.  

 

The F-test indicates that the overall OLS results for all three product categories are sig-

nificant at the 𝑝 < 0.0001 significance level. The parameters which are consistently sig-

nificant (𝑝 < 0.01) across all three groups are 𝛼, 𝛽 , 𝛽 , and 𝛽 . The remaining parame-

ters, 𝛽 , 𝛽 , 𝛽 , and 𝛽 , are inconsistent in their estimates and/or significances, which 

could be due to differences between product groupings, limitations in data, or other in-

accuracies in model estimation. 

The coefficients of determination vary noticeably between the three groups, demonstrat-

ing that the degree to which changes in the dependent variable are reflected in changes 

in the independent variables is not consistent across groupings. In essence, this variation 

aligns with the specificity of the product category in question; consumer electronics is 

the broadest grouping, so the number of potential unaccounted factors affecting order 

amounts is greater. By contrast, phone charging cables (the specifications of which do 

not vary much) are most similar, and a greater degree of the change in orders is associ-

ated with these listing-specific independent variables. These differences across product 

categories are discussed further in Section 5. 
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The maximum variance inflation factors2 demonstrate a degree of multicollinearity in 

the first two models, with ln(𝑝𝑟𝑖𝑐𝑒) and 𝑠𝑎𝑙𝑒 having VIF values greater than 2.5 among 

screen protectors and phone charging cables, indicating “considerable collinearity” 

(Johnston et al., 2018). These VIF values can be found in Appendix 2d. To correct for 

multicollinearity, an additional set of regression models was estimated, with 𝛽  𝑠𝑎𝑙𝑒 ex-

cluded from the analysis: 

Table 4. Multicollinearity-corrected OLS regression estimates with 𝛽  𝑠𝑎𝑙𝑒 excluded 

Coefficient / variable 
Screen protectors Phone charging cables Consumer electronics

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

𝛼 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 9.5373 *** 0.9652 8.6877 *** 0.7706 5.8683 *** 0.5976 

𝛽  ln(𝑝𝑟𝑖𝑐𝑒) –0.0198 * _ 0.0091 –0.3212 *** 0.0084 –0.1294 *** 0.0109 

𝛽   ln(𝑎𝑔𝑒) –0.0922 **_ 0.0328 0.1158 *** 0.0244 –0.0107   _ 0.0275 

𝛽  𝑟𝑎𝑡𝑖𝑛𝑔 –0.1569   _ 0.1771 –0.9906 *** 0.1543 –0.2834 * _ 0.1176 

𝛽  𝑆𝑃𝐷 0.9782 *** 0.1362 0.4642 *** 0.0831 0.7382 *** 0.1454 

𝛽  𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 3.5715 *** 0.2133 2.2049 *** 0.1990 0.4839 *** 0.1230 

𝛽  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 –3.1305 *** 0.4918 0.5895   _ 0.4084 0.1165   _ 0.2500 

Observations 2,295 3,229 2,795

R2  0.1583 0.3557 0.0576

Adjusted R2 0.1561 0.3545 0.0556

F-statistic 431.52 1782.7 170.85

Maximum VIF 1.4631 1.8704 1.7159

Notes: The dependent variable is ln(𝑜𝑟𝑑𝑒𝑟𝑠). Across coefficient estimates, ***, **, and * denote statistical 
significances at 0.1 %, 1 %, and 5 %, respectively.  

 

Naturally, as this multicollinearity was not visible in consumer electronics, its coefficient 

of determination and F-statistic are decreased considerably from the previous model. 

For the other two product categories, these statistics do not show a large change. As 

would be expected, of the leftover coefficients, the largest change occurred in the collin-

ear variable 𝑝𝑟𝑖𝑐𝑒, while the others remained relatively consistent. 

Notably, neither significant collinearity nor excessive correlation is observed between the 

variables 𝑟𝑎𝑡𝑖𝑛𝑔 and 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦, demonstrating that these two variables differ noticeably. 

This indicates that a given product listing’s average rating is not entirely linearly repre-

sentative of the overall polarity of its written reviews, and vice versa.  

 
2 The variance inflation factor (VIF) is the reciprocal of the tolerance (1 − 𝑅 ) of a model in which 

a given explanatory variable is regressed on all other explanatory variables included in the original 

analysis (Johnston et al., 2018). It is calculated for all explanatory variables, and the maximum 

of these VIFs serves as an indicator of multicollinearity in the original model.  
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5 Discussion and conclusions  

Although the relationships between e-commerce user reviews and product sales have 

been extensively covered in existing research, prior studies have largely focused on data 

from a limited selection of platforms. In addition, many of these studies have drawn 

equivalences between user-submitted ratings and the polarities of corresponding textual 

reviews, conflating the two under a singular “valence” term. Using data from a context 

relatively underrepresented in research, this study demonstrates that some of the previ-

ous studies’ findings can be generalized to the Chinese cross-border e-commerce context, 

while some others cannot. The disconnect between numerical ratings and written re-

views is also visible in these results, reinforcing the notion that users tend to give higher 

numerical ratings than their written opinion would otherwise imply (Zhang et al., 2014).  

As mentioned in Section 4, an important distinction between these product categories is 

the breadth of the types of products they represent. Of the three groupings, the broadest 

is consumer electronics, which is a “catch-all” categorisation that includes various niche 

products. This means that the factors affecting a potential customer’s purchase decision 

are numerous, and accounting for them in a cross-sectional regression analysis is not 

practical. By contrast, the most specific grouping is phone charging cables. Due to the 

standardization of phone charging inputs, there are commonly only three types of sock-

ets (USB-C, micro-USB, and Lightning), and most consumers looking to purchase a 

charging cable can have their demands met by almost any listing. This increases the rel-

ative importance of factors like pricing and user reviews. In between these two categories 

is phone screen protectors, the listings of which are similar to each other but dependent 

on the model of the phone in question, so listings representing protectors for more pop-

ular phones will have a considerable advantage in order amounts. Understanding this 

distinction is key to understanding the generalizability of the results as a whole. 

Prior to interpreting the specifics of the results, the role of algorithmic bias in the re-

trieval of review texts should be addressed. Because a maximum of 100 written reviews 

was collected per listing, listings with more reviews than this may be subject to bias, as 

the sampling is not necessarily random. AliExpress sorts user reviews algorithmically, 

possibly favouring some kinds of reviews over others. Regardless, a quick comparison of 

listings with more than 100 reviews and those with fewer than 100 shows that the corre-

lation between sentiment polarities (calculated from up to 100 reviews) and average rat-

ings (from all reviews, as reported by AliExpress) is not significantly different, suggesting 

that AliExpress does not bias its review sorting in a way that affects these results. 
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5.1 Implications to research 

First, examining the analysed sentiment of reviews in Tables 3 and 4, the positive rela-

tionship between the overall sentiment polarity and the number of orders for a given 

listing is found to be relatively consistent across all three product groupings. This rela-

tionship is both intuitively reasonable and aligned with prior research, as positive re-

views have repeatedly been shown to encourage further sales (Floyd et al., 2014). In ad-

dition, both review positivity and sales outcomes may be jointly associated with uncon-

trolled variables, such as the overall appeal of the product in question. In any case, it can 

be determined that review valence has a similarly positive relationship with order 

amounts in the context of Chinese CBEC as it does on Western platforms. In general, it 

can be understood that “good” products are simultaneously more sought after and more 

likely to receive positive reviews, regardless of the platform in question.  

The role of subjectivity in reviews is less consistent. Between the OLS estimates of the 

three product groupings, subjectivity was only statistically significant in one: phone 

screen protectors. In this category, overall subjectivity had a negative relationship with 

order amounts, suggesting that listings with more objective, fact-based reviews are also 

in higher demand. While this goes against the general findings of Ghose and Ipeirotis 

(2006, 2007, 2011), they do note that, for feature-based goods (such as the products 

studied here), users tend to find objective reviews more helpful. This could mean that, at 

least for feature-based products, user reviews serve a role in mitigating risk by confirm-

ing the product description. Seeing that perceived risk is an exceptionally important fac-

tor in consumers’ decision-making processes on Chinese platforms (Mou et al., 2017, 

2019), this risk mitigation effect of review objectivity may outweigh the benefits of sub-

jectivity observed on Western platforms.  

Notably, the average rating of a product listing is not consistently statistically significant, 

suggesting that potential customers pay more attention to written reviews than numeri-

cal ratings. This is in accordance with the findings of Hu et al. (2014). Where it is signif-

icant, the average rating actually has a negative relation to order amounts – while this 

may seem unintuitive, it aligns with previous research demonstrating that unrealistically 

high ratings discourage purchases (Maslowska et al., 2017). Examining the connection 

between rating and polarity on a review level, it is worth noting that the polarity of a 

given review and its corresponding numerical rating is somewhat correlated at an ap-

proximate correlation coefficient of 0.47, but, at the same time, an overwhelming major-

ity of reviews have a rating of 4 or 5 stars – regardless of polarity. Across all reviews 
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analysed, there were more 5-star ratings with a negative review sentiment than there 

were 1 to 4-star ratings altogether (see Appendix 3). This seems to suggest that rating 

inflation is a significant factor in the Chinese CBEC context – perhaps even more so than 

on Western platforms. 

In terms of control variables, the price of a listing (𝑝𝑟𝑖𝑐𝑒) is consistently negatively re-

lated to the number of orders, aligning with the notion that AliExpress shoppers are 

price-sensitive (Lukicheva & Semenovich, 2019). In addition, the Search Price Distortion 

variable (𝑆𝑃𝐷), which controls for products with outlier minimum prices, is positively 

related to the number of orders, suggesting that the search ranking improvements asso-

ciated with outlier prices are beneficially related to increased sales. In the model for con-

sumer electronics, where it did not cause multicollinearity, the discount percentage 

(𝑠𝑎𝑙𝑒) was positively related to the number of orders, which makes intuitive sense, as 

discounts make the listing’s price seem more appealing. In general, it can be stated that 

the control variables behave as would be expected based on prior research. 

5.2 Implications to practice 

From a practical perspective, the results of this study have the effect of demonstrating 

that previous research into sentiment analysis in Western e-commerce is, broadly speak-

ing, applicable to the Chinese CBEC context. This means that companies currently en-

gaged in or looking to transition to Chinese CBEC can utilize much of the existing re-

search, without fear that the markets are too different. Some of the more nuanced differ-

ences in the results of this study, such as the seemingly different role of subjectivity in 

reviews, should also be accounted for. 

Overall, the understanding that review sentiment can be empirically demonstrated to be 

significantly related to order amounts is an important starting point for any develop-

ments involving user reviews. This study confirms that negative review sentiments can 

harm sales and that it is crucial for e-commerce businesses to monitor these sentiments. 

In addition, the fact that these general-purpose sentiment analysis tools provided mean-

ingful results is useful: platforms and sellers can use the same tools in their own senti-

ment analysis tasks and expect to get results, at least on a large scale. Among other pur-

poses, platforms and sellers can use these tools to quickly identify and address unsatis-

fied customers, especially those that leave high numerical ratings with a negative review 

text. On a larger scale, companies can also use these calculated sentiment metrics as per-

formance indicators to compare listings and make strategic decisions.  
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5.3 Limitations and future research 

While the results of this study are based on large amounts of empirical data, some fun-

damental limitations exist in their applicability. In order to build on the results of this 

study and to apply its results to a broader context, an understanding of these limitations 

is necessary.  

One important consideration regarding these results is that the polarity and subjectivity 

scores calculated using sentiment analysis tools are not necessarily objective measure-

ments – they are the “best guesses” of complex algorithms trained on large datasets. 

While these tools can sometimes outperform humans (Hutto & Gilbert, 2014), their per-

formance is context-dependent, and their accuracy/precision in this study cannot be es-

timated without manual review. As such, the results of this study are best understood 

and utilized in the context of general-purpose sentiment analysis, with the caveat that 

discrepancies between NLP-assigned sentiments and theoretical “true” sentiments can 

exist. Regardless, this study’s use of three different NLP libraries can be expected to have 

reduced random error, improving reproducibility with different data. 

Another limitation regarding the analysed sentiment scores is the relative simplicity of 

the chosen variables. Aspects such as the overall length and readability of the reviews 

were not included, meaning that each review was treated with equal weight. This could 

cause some distortion, as potential customers are likely to assign greater weight to re-

views with more substance. In addition, the aforementioned algorithmic bias could affect 

this, as reviews displayed first by AliExpress will have a greater impact on purchase de-

cisions than those found further into the feedback section. The role of photos in reviews 

was also left out of this study, even though review photos could be expected to have a 

large impact on the mitigation of perceived risk.  

Overall, the generalizability of these results is limited by the relatively specific groupings 

of products analysed. Although limiting the research to specific categories improves the 

significances of the analysed variables, additional research would have to be conducted 

to confirm that their estimates hold true for other product categories, as well. In partic-

ular, the products analysed in this study were largely feature-based, and factors such as 

review subjectivity will likely have differing effects on more subjectively-differentiated 

product categories, such as clothing or decorations. On an even broader note, the gener-

alizability of these results is possibly affected by the limitation of a single e-commerce 

data source; for future studies, additional CBEC platforms should also be investigated.  
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Finally, and perhaps most significantly, the results of this study are limited in that they 

do not seek to establish any direct causal links between the analysed variables. Due to 

the limited scope of this study, data could not be gathered over significant time spans, 

and thus this analysis is purely cross-sectional. This means that the results cannot be 

used to predict future sales outcomes or account for potential simultaneity in the model, 

resulting in some concerns regarding endogeneity. To account for this, some of the vari-

ables from other studies which could possibly contribute to simultaneity in a cross-sec-

tional model, such as review counts3, were deliberately left out of this study. The gener-

alizability of the results may also be limited due to effects such as seasonality. Given ad-

ditional time resources, further study could be conducted by following the same product 

listings over the course of multiple years, allowing for more comprehensive predictive 

time series analysis and a better understanding of trends and seasonal effects. Several 

time observations would also allow for a more robust entity-demeaned fixed effects 

model, enabling control over heterogeneity across products, as well. 

Despite these limitations, the results of this study can be considered to give valid and 

significant answers to the outlined research questions. By and large, these limitations 

invite future study and deeper analysis, for an even better understanding of the ever-

growing field of e-commerce.  

 
3 While the number of reviews for a given product listing likely affects the number of orders, the 

reverse is true, as well. In other words, people are more likely to buy products with many reviews, 

but new orders also lead to more reviews. This means that, for cross-sectional data, including the 

number of reviews as a variable is likely to contribute to significant simultaneity. 
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Appendices 

Appendix 1: Sentiment analysis histograms 

The following charts display the approximate distributions of review-level polarity and 

subjectivity scores using the three NLP libraries and the libraries’ averages.  
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Appendix 2: Correlation matrices and VIF calculations 

Appendix 2a: Correlation matrix for phone screen protectors (𝑛 = 2,295) 

 ln(𝑜𝑟𝑑𝑒𝑟𝑠) ln(𝑝𝑟𝑖𝑐𝑒) ln(𝑎𝑔𝑒) 𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑎𝑙𝑒 𝑆𝑃𝐷 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣.

ln(𝑜𝑟𝑑𝑒𝑟𝑠) 1
ln(𝑝𝑟𝑖𝑐𝑒) –0.0196 1
ln(𝑎𝑔𝑒) –0.0641 0.0369 1
𝑟𝑎𝑡𝑖𝑛𝑔 0.1543 –0.2941 –0.1701 1
𝑠𝑎𝑙𝑒 0.0172 –0.9472 –0.0473 0.344 1
𝑆𝑃𝐷 0.1516 0.4827 –0.0899 –0.0921 –0.4357 1
𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 0.3458 –0.0991 –0.0213 0.4306 0.1412 0.0437 1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 0.0107 0.0899 –0.0935 0.0152 –0.0236 0.0554 0.3478 1

 

Appendix 2b: Correlation matrix for phone charging cables (𝑛 = 3,229) 

 ln(𝑜𝑟𝑑𝑒𝑟𝑠) ln(𝑝𝑟𝑖𝑐𝑒) ln(𝑎𝑔𝑒) 𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑎𝑙𝑒 𝑆𝑃𝐷 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣.

ln(𝑜𝑟𝑑𝑒𝑟𝑠) 1
ln(𝑝𝑟𝑖𝑐𝑒) –0.5584 1
ln(𝑎𝑔𝑒) 0.0587 –0.0131 1
𝑟𝑎𝑡𝑖𝑛𝑔 0.0382 –0.0495 0.0405 1
𝑠𝑎𝑙𝑒 0.5455 –0.8823 –0.0409 0.0834 1
𝑆𝑃𝐷 –0.0803 0.2511 0.0196 –0.0476 –0.1297 1
𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 0.2134 –0.0957 –0.0492 0.5222 0.122 –0.1126 1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 0.0618 0.0572 –0.1361 0.2532 –0.0009 –0.1373 0.5453 1

 

Appendix 2c: Correlation matrix for consumer electronics (𝑛 = 2,795) 

 ln(𝑜𝑟𝑑𝑒𝑟𝑠) ln(𝑝𝑟𝑖𝑐𝑒) ln(𝑎𝑔𝑒) 𝑟𝑎𝑡𝑖𝑛𝑔 𝑠𝑎𝑙𝑒 𝑆𝑃𝐷 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣.

ln(𝑜𝑟𝑑𝑒𝑟𝑠) 1
ln(𝑝𝑟𝑖𝑐𝑒) –0.2024 1
ln(𝑎𝑔𝑒) –0.0167 –0.029 1
𝑟𝑎𝑡𝑖𝑛𝑔 –0.0044 –0.0308 0.1082 1
𝑠𝑎𝑙𝑒 0.3179 –0.3282 –0.1083 –0.0924 1
𝑆𝑃𝐷 0.0778 0.0815 –0.1298 –0.063 0.0769 1
𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 0.0431 0.1298 0.0254 0.4799 –0.0551 –0.0239 1
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 –0.0053 0.2422 –0.057 0.1326 –0.0336 –0.0059 0.4904 1

 

Appendix 2d: VIF calculations for all regression models 

Variable 
Screen protectors Phone charging cables Consumer electronics

w/ 𝑠𝑎𝑙𝑒 w/o 𝑠𝑎𝑙𝑒 w/ 𝑠𝑎𝑙𝑒 w/o 𝑠𝑎𝑙𝑒 w/ 𝑠𝑎𝑙𝑒 w/o 𝑠𝑎𝑙𝑒 

ln(𝑝𝑟𝑖𝑐𝑒) 10.897 1.4376 5.1519 1.1002 1.2247 1.0768 

ln(𝑎𝑔𝑒) 1.0666 1.0660 1.0370 1.0252 1.0433 1.0331 

𝑟𝑎𝑡𝑖𝑛𝑔 1.4591 1.4054 1.3903 1.3851 1.3599 1.3472 

𝑠𝑎𝑙𝑒 10.610 n/a 4.8751 n/a 1.1637 n/a 

𝑆𝑃𝐷 1.3465 1.3403 1.1520 1.0943 1.0355 1.0265 

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 1.4634 1.4631 1.8704 1.8704 1.7164 1.7159 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 1.2374 1.1974 1.5113 1.4984 1.4035 1.4004 
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Appendix 3: Heatmap of review-level polarities and ratings 

Sentiment  
polarity 

Numerical Rating 
Total 

1 star 2 stars 3 stars 4 stars 5 stars 

0.9 to 1.0 0 0 4 56 3,858 3,918 

0.8 to 0.9 1 2 20 379 23,178 23,580 

0.7 to 0.8 11 7 101 1,068 40,862 42,049 

0.6 to 0.7 11 29 111 933 46,262 47,346 

0.5 to 0.6 23 23 166 1,176 58,784 60,172 

0.4 to 0.5 41 31 201 1,249 51,008 52,530 

0.3 to 0.4 124 98 306 1,523 46,922 48,973 

0.2 to 0.3 106 60 292 1,089 27,810 29,357 

0.1 to 0.2 111 98 349 1,211 23,235 25,004 

0.0 to 0.1 209 153 546 1,567 20,393 22,868 

–0.1 to 0.0 606 243 832 1,733 14,146 17,560 

–0.2 to –0.1 898 362 950 1,609 10,410 14,229 

–0.3 to –0.2 1,451 592 1,510 1,835 10,778 16,166 

–0.4 to –0.3 6,802 1,716 3,823 3,231 14,657 30,229 

–0.5 to –0.4 2,223 764 1,634 1,286 3,977 9,884 

–0.6 to –0.5 998 334 613 456 1,451 3,852 

–0.7 to –0.6 735 231 368 298 857 2,489 

–0.8 to –0.7 280 77 126 86 259 828 

–0.9 to –0.8 173 37 46 23 48 327 

–1 to –0.9 6 1 1 4 2 14 

Total 14,809 4,858 11,999 20,812 398,897 451,375 

 


